
Contents:
Cruise summary 3
Cruise participants 4
Cruise Track Maps 5
Main Positions 7
Cruise narrative 8
CTD data 19
Scanfish data 22
MVP data 27
Ship's Computing and Data Listings 28
VMP Turbulence Microstructure Profiling 38
Temperature-Chlorophyll Chain 47
Moorings 54
Dye Release Experiments 64
Vessel Mounted ADCPs 67
Inorganic Nutrient Measurements 69
Chlorophyll Determination 72
Primary Production 74
Nitrogen Uptake 76
Pelagic Phytoplankton, Bacteria \& 79
Microheterotroph Enumeration
Sediment Biogeochemistry 82
Zooplankton Sampling 86
Fisheries Acoustics 87
Baited Underwater Camera 91
Cetacean Acoustics 94
Fishing Vessels 98
Seabird and Cetacean Sightings Surveys 99
Epilogue 102

Cruise Summary.

The overall cruise objective was to investigate the impacts of a large seabed bank (Jones Bank, Celtic Sea) on the physical, chemical, biological and ecological characteristics of a stratified shelf sea. Previous evidence (cruise CD173, July/August 2005) had indicated the bank to be a site of enhanced sub-surface mixing. This cruise aimed to determine the physical processes driving that mixing, and the consequences for (1) nutrient supply to the thermocline phytoplankton, (2) growth and distribution of the phytoplankton, (3) distributions of zooplankton, (4) sediment biochemistry, (5) fish distributions and behaviour, and (6) seabird and marine mammal distributions and behaviour. The vessel sailed from Southampton at 1800 on 2/7/08, and spent most of $3 / 7 / 08$ conducting EK60 calibrations near Portland. Once out at Jones Bank moorings were deployed (hampered by some unseasonably rough weather), followed by a series of station occupations (turbulence, biochemistry), dye release experiments, Scanfish surveys, and seabed grabs and cores. Observations for fish (EK60) and seabirds/mammals (visual) were made throughout the cruise. Towards the end of the cruise 2 Newquay fishing vessels carried out some fishing for us. Moorings were recovered around July 22/24, followed by 3 CTD stations across the shelf edge to the south of Jones Bank. The vessel docked in Falmouth on 27/7/08.

The cruise was funded through Oceans2025 core funding to the Proudman Oceanographic Laboratory and the Scottish Association for Marine Science, along with support from a NERC-Defra Sustainable Marine Bioresources Targetted Project (NE/F001983/1 to Aberdeen University, NE/F002017/1 to the Proudman Oceanographic Laboratory). Our thanks to the crew of the RRS James Cook, and to the tireless technical support provided by the National Marine Facilities.

A typical weather map for the first half of the cruise.

Cruise Participants.

Name	Affiliation
Jonathan Sharples (PI)	Proudman Oceanographic Laboratory
Mark Inall (co-PI)	SAMS
Beth Scott (co-PI)	University of Aberdeen
Chris Balfour	
Adam Batty	Proudman Oceanographic Laboratory
John Beaton	JNCC
Jeff Benson	SAMS
Debra Brennan	National Marine Facilities
Keith Davidson	SAMS
Clare Davis	SAMS
Claire Embling	University of Liverpool
Linda Gilpin	University of Aberdeen
Dave Green	Napier University
Angela Hatton	SAMS
Eleanor Howlett	SAMS
Colin Hutton	Proudman Oceanographic Laboratory
Emlyn Jones	National Marine Facilities
Gareth Knight	Proudman Oceanographic Laboratory
Morten Larsen	National Marine Facilities
Mark Lewis	SAMS
Inigo Martinez	JNCC
Susan McKinlay	Marine Laboratory, Aberdeen
Sharon McNeill	SAMS
Clare Neil	SAMS
Nick Owen	University of Strathclyde
Matthew Palmer	Trinity College Dublin
Romain Pete	Proudman Oceanographic Laboratory
Jason Scott	SAMS/University Montparse
Mike Smithson	National Marine Facilities
Dave Teare	Proudman Oceanographic Laboratory

Cruise Maps.

(i) Full cruise track.

(ii) Detailed cruise track over Jones Bank.

Main Positions.

Name	Latitude N	Longitude W	Station type
MS1	$49^{\circ} 51.21^{\prime}$	$07^{\circ} 56.87^{\prime}$	T and ADCP mooring, PP, CTD, cores, grab, camera, bongo
MS2	$49^{\circ} 53.82^{\prime}$	$07^{\circ} 52.58^{\prime}$	T and ADCP mooring, VMP, PP, CTD, cores, grab, camera, bongo
MS3	$49^{\circ} 56.33^{\prime}$	$07^{\circ} 48.83^{\prime}$	T and ADCP mooring, PP, CTD, cores, grab, camera, bongo
MS4	$49^{\circ} 45.00^{\prime}$	$07^{\circ} 40.00^{\prime}$	ADCP mooring, VMP, PP, CTD, cores, grab, camera, bongo
MS5	$50^{\circ} 00.00^{\prime}$	$08^{\circ} 09.00^{\prime}$	PP, CTD, cores, grab, camera, bongo
			CTD and grab
CR2	$49^{\circ} 56.30^{\prime}$	$08^{\circ} 02.00^{\prime}$	grab
CR3	$49^{\circ} 54.50^{\prime}$	$07^{\circ} 58.00^{\prime}$	CTD and grab
CR4	$49^{\circ} 52.70^{\prime}$	$07^{\circ} 55.00^{\prime}$	grab
CR5	$49^{\circ} 49.80^{\prime}$	$07^{\circ} 52.40^{\prime}$	CTD and grab
CR6	$49^{\circ} 48.80^{\prime}$	$07^{\circ} 47.00^{\prime}$	
TR6	$48^{\circ} 39.65^{\prime}$	$09^{\circ} 08.48^{\prime}$	CTD, grab, bongo
TR8	$48^{\circ} 17.64^{\prime}$	$09^{\circ} 26.43^{\prime}$	CTD, grab, bongo
TR10	$47^{\circ} 55.54^{\prime}$	$09^{\circ} 44.29^{\prime}$	CTD, bongo, SAPS

Key:

T	Temperature loggers
ADCP	Acoustic Doppler Current Profiler
VMP	Free-fall shear microstructure profiler, with T-Chl (temperature-chlorophyll logger) chain
PP	Primary production, nitrate uptake, bacterial production, DMS
CTD	Conductivity-Temperature-Depth sensor package
Cores	Mega-corer
Grab	Day grab
Camera	Seabed camera (typical deployment time 12-24 hours)
Bongo	Zooplankton vertical hauls
SAPS	Stand-alone pump (always used with PP)

Cruise narrative (Jonathan Sharples).

Date	$\begin{aligned} & \text { Time } \\ & \text { (BST) } \end{aligned}$	
Wednesday $2^{\text {nd }}$ July	1830	Vessel leaves NOC and begins slow steam to Portland. Weather: calm.
Thursday 3 ${ }^{\text {rd }}$ July	0500	EK60 calibration begins.
	0800	Move vessel into shallower water to try to reduce tidal current effects on the calibration target.
	1300	Science briefing meeting.
	2000	EK60 calibration completed.
	2100	Boat transfer to take Sophie Fielding off and get Andy Webb and Eleanor Howlett aboard. Start steam to Jones Bank. Weather: westerly $10 \mathrm{~m} \mathrm{~s}^{-1}$, partial cloud, slight sea within lee of Portland harbour.
Friday 4 ${ }^{\text {th }}$ July	2030	CTD JC025_001 on MS3 at 2030.
	2130	Mooring operations begin at MS3.
		Weather: am southeasterly $10 \mathrm{~m} \mathrm{~s}^{-1}$, full cloud, slight swell. pm increases to SE'ly force 6/7, moderate sea.
Saturday $5^{\text {th }}$ July	0030	Mooring complete: $49^{\circ} 56.3^{\prime} \mathrm{N}, 7^{\circ} 48.9 \mathrm{~W}$.
	0400	MS2 mooring complete: $49^{\circ} 53.84^{\prime} \mathrm{N}, 7^{\circ} 52.48 \mathrm{~W}$.
		Mooring operations stopped after deployment of MS2 due to weather. Ship heaves to on DP by MS2.
	1245	Begin to move to MS1. Swell slackened slightly, winds 30 knots.
	1400	Mooring deployment begins at MS1. Guard buoy first. ADCP lander second. Temperature line $3^{\text {rd }}$.
	1710	MS1 complete: $49^{\circ} 51.21^{\prime} \mathrm{N}, 7^{\circ} 56.82 \mathrm{~W}$
		Steam to MS4.
	1930	MS4 complete: $49^{\circ} 44.98{ }^{\prime} \mathrm{N}, 7^{\circ} 40.05 \mathrm{~W}$
		Overnight: Carry out tests of sonar buoys and of EK60 with drop keel down.
		Weather: SW'ly force 9 - 10, gusting to >50 knots, full cloud,

Tuesday $8^{\text {th }}$ July Wednesday $9^{\text {th }}$ July	$\begin{aligned} & 1400 \\ & 1530 \\ & 1600 \\ & 1700 \\ & 1745 \\ & 1830 \\ & 1930 \\ & 2100 \\ & \hline 0100 \\ & \hline 1830 \\ & \hline 13000 \\ & \hline 0200 \\ & \hline 0430 \\ & \hline \end{aligned}$	VMP redeployed. VMP cable snagged again, data noisy, possibly a shear probe needs replacing. Decision made to stop VMP work. Recover T-Chl chain. JC025_CTD009 2 bongo net hauls. Begin test deployment and recovery of seabed camera system. Begin deployment of seabed camera at MS2. MVP deployed and pre-survey tests begin. Weather: am WNW'ly $15-18$ knots, moderate swell, patchy sunshine; pm WNW'ly $20-25$ knots (up to 30 knots in squalls), full cloud, moderate sea and swell. MS1, beginning of first complete MVP circuit. NB: some circuits only sampled on 1 leg due to weather/tide pushing MVP cable under counter. MVP continues all day, approx. 2 hours per circuit. Guard buoy at MS3 missing, but main mooring still there. Seabed camera buoys visible at MS2. Weather: am SW'ly 15 - 20 knots, moderate swell, mainly sunny; pm SW'ly 15 knots, slight sea and swell, cloudy. End MVP survey and recover MVP at MS1. JC025_CTD010 pre-dawn cast. SAPS Bongo nets Grab Megacores attempted, but failed due to sandy seabed. Day grabs taken instead. JC025_CTD011 to collect bottom water. Recovered seabed camera. Deploy and test Scanfish. Very successful. Recovered Scanfish. Dye injected into thermocline. Deploy Scanfish.

Tuesday $15^{\text {th }}$ July	1230	T-Chl chain deployed.
	1300	VMP profiling begins at MS2.
	1900	JC025_CTD020
		Weather: light winds, calm sea, hazy/cloudy; pm wind W'ly 5 10 knots, light cloud, poor visibility.
	0230	VMP communications problems. VMP brought inboard, decision made to end station as we have a full tidal cycle.
	0400	Pre-dawn CTD cast JC025_CTD021
	0600	Recover T-Chl chain
	0645	Recover seabed camera
		Steam to MB1 to begin swath bathymetry survey.
	0900	Survey begins at MB1, first line to SW towards MB4
	1030	Muster drill
	1325	End of swath line, turn to head for MS3.
	1415	Seabed camera deployed MS3
	1600	Scanfish circuit begins at MS3.
		Weather: calm, full cloud, occasional squall with winds > 15 knots.
Wednesday $16^{\text {th }}$ July		Scanfish circuit around moorings continues.
	1700	Scanfish survey completed.
	1830	Seabed camera recovered.
	1900	Grab and coring operations begin.
		CTDJC025_022
		Bongo haul
		Weather: NW'ly 10 knots, calm sea, moderate swell, sunny with patchy high cloud.
Thursday $17^{\text {th }}$ July	0200	Dye released into thermocline.
	0300	Seabed camera deployed at MS3
	0400	JC025_CTD023 (pre-dawn) + SAPS MS3
	0800	Scanfish deployed to begin $1^{\text {st }}$ dye patch survey.
	1215	$1^{\text {st }}$ survey completed.
		Steam to MS3.

\begin{tabular}{|c|c|c|}
\hline \& 1445
1615
1730

2100 \& | Grab at: $49^{\circ} 54.5^{\prime} \mathrm{N}, 7^{\circ} 58.0^{\prime} \mathrm{W}$ |
| :--- |
| Grab and JC025_CTD030 at: $49^{\circ} 52.7^{\prime} \mathrm{N}, 7^{\circ} 55.0^{\prime}$ W |
| Seabed camera deployed MS1 |
| Grab at: $49^{\circ} 49.8^{\prime} \mathrm{N}, 7^{\circ} 52.4 \mathrm{~W}$ |
| Grab and JC025_CTD031 at: $49^{\circ} 48.8^{\prime} \mathrm{N}, 7^{\circ} 47.0 \mathrm{~W}$ JC025_CTD32 at MS4 |
| Begin series of closely-spaced circuits near MS4, using EK60 and echo sounder. |
| Weather: am NW'ly 20-23 knots, moderate swell, rough sea, sunny with patchy cloud; pm NW'ly 15 - 20 knots, moderate swell, rough sea, mainly sunny. |

\hline Sunday $20^{\text {th }}$ July \& 0500
2030

2300 \& | Scanfish deployed. Begin repeated circuit at MS4. |
| :--- |
| Turn off circuit and head over bank through $49^{\circ} 52.7^{\prime} \mathrm{N}, 7^{\circ} 55.0^{\prime}$ W towards MS5. |
| Scanfish recovered. |
| Weather: am N'ly 13 knots, moderate sea and swell, sunny. |

\hline \multirow[t]{7}{*}{Monday $21{ }^{\text {st }}$ July} \& 0430 \& MS1 JC025_CTD033 pre-dawn Bongo hauls Recovered seabed camera.

\hline \& 0745 \& MS2 JC025_CTD034 sampled for nutrients.

\hline \& 0820 \& T-Chl chain deployed.

\hline \& 0900 \& First profile with VMP for MS2 25 hour station.

\hline \& 1400 \& JC025_CTD035

\hline \& 2100 \& JC025_CTD036

\hline \& \& Weather: am NNW'ly 10 - 12 knots, slight sea and swell, sunny; pm NW'ly <5 knots increasing to 10 knots, calm, slight swell, sunny.

\hline \multirow[t]{5}{*}{Tuesday $22^{\text {nd }}$ July} \& 0000 \& VMP recovered for re-termination.

\hline \& 0100 \& MSS profiler deployed (drops not all the way to the seabed)

\hline \& 0500 \& VMP re-deployed.

\hline \& 1030 \& VMP station finished.

\hline \& 1040 \&

\hline
\end{tabular}

Wednesday $23{ }^{\text {rd }}$ July	1100 1130 1345 1430 1530 1650 1705 1810 0400 0700 0715 0830 0915 1130 1315 1430 1550 1600	JC025_CTD037 Trawler Crystal Sea informs us that a French trawler, while closely cutting in front of him, has managed to pick up the seabed ADCP at MS3. French trawler gets impatient! Dumps ADCP back into sea. Crystal Sea provides position. Over ADCP position. ADCP released and retrieved on board. Steam for MS4. Crewman on Crystal Sea chopped off end of his finger. We turn round to make for Crystal Sea in case he requires medical assistance. Helicopter arrives to pick up crewman. Head for MS4. Seabed camera deployed JC025_CTD038, T-chl chain deployed. First VMP profile. Weather: am calm, wind $0-5$ knots, cloudy; pm glass calm. JC025_CTD039 pre-dawn VMP station finished. JC025_040 plus T-Chl chain recovered. Seabed camera recovered. MS4 ADCP recovered. MS3 T-logger mooring recovered. Initial attempts to contact/fire ADCP release are ambiguous nothing sighted on surface. Decide to pick up T logger mooring first. T logger mooring aboard. Communication with ADCP mooring patchy. Several attempts from different positions made. Decide to leave MS2 and head for MS1 while we still have light to collect all of the moorings there. We hear that Crystal Sea requires assistance - they have something wrapped around their propeller and cannot move.

Thursday $24^{\text {th }}$ July	1800	We expect to have to tow them at least part of the way back to Cornwall. Tow lines passed over to the Crystal Sea. Weather: ESE'ly 15 knots, moderate swell, moderate sea, sunny.
	0900	Meet St. Mary's lifeboat off Isles of Scilly. Tow transferred.
	1000	Begin steam back to Jones Bank.
	1550	Arrive MS2. EK60 drop keel lowered.
	1610	ADCP lander released and on surface.
	1630	ADCP lander on board.
		Steam to MS1.
	1730	Arrive MS1.
	1800	Guard buoy recovered.
	1840	ADCP recovered.
	1930	T logger mooring recovered.
		Begin steam to Tr6.
		Weather ESE 10 knots, slight sea and swell, generally cloudy.
Friday $25^{\text {th }}$ July	0700	JC025_CTD041 at Tr6 ($48^{\circ} 39.65^{\prime}$ N, $9^{\circ} 08.48$ W) Bongo hauls
	0845	Grab
	0910	Begin steam to $\operatorname{Tr} 8$ ($48^{\circ} 17.64^{\prime} \mathrm{N}, 9^{\circ} 26.43 \mathrm{~W}$)
	1245	JC025_CTD042 at Tr8
		Bongo hauls
	1445	Grab sample (slightly off position to avoid a cable)
	1500	Steam for $\operatorname{Tr} 10\left(47^{\circ} 55.54^{\prime} \mathrm{N}, 9^{\circ} 44.29 \mathrm{~W}\right.$).
	1815	JC025_CTD043 at Tr10 (to 1500 metres)
		Bongo hauls.
	2200	SAPS complete.
	2315	Scanfish deployed and undulating 5-120 metres.
		Weather: am W'ly 10 knots, calm, slight swell, mainly cloudy; pm W'ly <10 knots, calm, slight swell, sunny.

Saturday $26^{\text {th }}$ July	0745	1600 1840
Navigation error spotted. Tr2 had been input incorrectly on the bridge, so that after Tr6 we turned eastward. Turned NW to regain the line. Steaming over SW slope of bank, clear internal waves in EK60, slicks on sea surface, also slicks visible in ship's radar. Begin Scanfish recovery. Steam for Falmouth. Weather: little wind, very calm, sunny with high cloud.		

CTD Data (Jonathan Sharples and Dave Teare).
A Seabird Electronics 911 CTD, attached to a rosette of 20 litre Niskin bottles was used throughout the cruise. The package had instruments for chlorophyll fluorescence, beam attenuation, dissolved oxygen and PAR, along with LADCP. Only the chlorophyll fluorescence and PAR were assessed for our work. The primary C-T sensors were place out on the fin attached to the CTD
 frame in an attempt to improve temperature and salinity data quality. Details on instrument serial numbers and manufacturers' calibrations are held by National Marine Facilities Sea Systems, and have been logged by NMF-SS with BODC.

Processed data logged with BODC

Raw CTD data was acquired at 24 Hz . Data was processed to 2 Hz by National Marine Facilities according the NMF and BODC SOLAS protocols. Both raw and processed CTD data is lodged at BODC, as are details on the Seabird routines used to process the data.

Salinity calibration

Water samples for salinity analyses were collected from most CTD casts. A total of 47 samples were analysed by NMF using a laboratory Autosal against standard seawater. Both primary and secondary salinity measurements made by the CTD were found to have an average offset of 0.0004 ± 0.0010 (PSS78) (i.e. Autosal salinity = CTD salinity +0.0004). This calibration has not been applied to the processed CTD data sent to BODC.

Chlorophyll calibration

Samples were collected for chlorophyll analyses. Standard filtering through gff filters provided chlorophyll concentrations with a low size limit of about $0.4 \mu \mathrm{~m}$. Size-fractionated filtering through polycarbonate filters of 20 and $2 \mu \mathrm{~m}$ was also carried out. The scatter plot below illustrates the quality of the fits to both the gff samples and to the sum of the 20 and $2 \mu \mathrm{~m}$ samples. The regression against the 20 and $2 \mu \mathrm{~m}$ samples is far better. Extraction of chlorophyll from gff filters is often incomplete, while extraction is more efficient from the polycarbonate filters. At the low chlorophyll concentrations
experienced during the cruise it may be that the gff filter extractions were too noisy to provide sufficient good data for the calibration.

Without the circled outliers, the regression on the 20 plus $2 \mu \mathrm{~m}$ samples is:

Using this regression the equation to calibrate the CTD chlorophyll to the concentrations seen during the cruise is:

$$
C H L_{\text {cal }}=0.88 \times C H H_{g_{\text {to }}}-0.12
$$

The rms error of the regression is $0.12 \mu \mathrm{~g} \mathrm{l}^{-1}$. Use of this calibration ignores chlorophyll in cells $<2 \mu \mathrm{~m}$. Errors in the gff analysis are unlikely to be systematic, but assessment of the differences between gff and the $2+20 \mu \mathrm{~m}$ sample analyses can provide some bounds on the potential impacts of poor gff results. The histogram below illustrates the spread of the magnitudes of the discrepancies between the two approaches to chlorophyll determination.

The significant tail towards positive discrepancies (gff samples higher than the $2+20 \mu \mathrm{~m}$ samples) is consistent with the gff analysis expected to yield more chlorophyll by catching the $<2 \mu \mathrm{~m}$ cells. The histogram provides an estimate of an upper bound on the "missed" chlorophyll: $0.5 \mu \mathrm{~g} \mathrm{l}^{-1}$.

Note that $\mathrm{CHL}_{\text {стд }}$ is the chlorophyll concentration reported in the raw and processed CTD data supplied to BODC.

Only chlorophyll samples collected in the vicinity of Jones Bank (i.e. the majority of the cruise) have been used for the calibration. Previous experience has shown often markedly different fluorescence characteristics at the shelf edge compared to the rest of the Celtic Sea. The calibration is therefore valid for CTDs 001 to 040 . CTDS 041 to 043 were at the shelf edge and should be treated as uncalibrated.

Data problems

Considerable problems were experienced with the quality of data from the CTD. The winch heavecompensation mechanism did not operate at $<100 \mathrm{~m}$ wire out. Combined with the size of the CTD package and the heavy weather experienced through much of the cruise, this had a detrimental impact on the progression of the CTD sensors downward through undisturbed water. It was clear from the raw data that heaving of the CTD as it passed through the thermocline was causing previouslysampled water to reappear at the C-T sensors. The CTD data is not suitable for detailed physical analyses (e.g. overturn scales); it is adequate from a broad representation of water column characteristics only.

Scanfish Data (Jonathan Sharples and Dave Teare).
Apart from a few hours during NMF sea trials, this was the first use of the NMF Scanfish. The vehicle performed exceptionally well, with smooth divereturn profiles and a handy ability to avoid sudden changes in bathymetry.

The Scanfish cable needed to be re-terminated once following a collision with, we assume, some fishing gear. For all tows the vehicle was fitted with a Chelsea Instruments Aquatracka fluorometer configured for rhodamine, with a small Turner Designs chlorophyll fluorometer attached to the outside of the vehicle. Calibration of the chlorophyll fluorometer (see below) refers to the Turner Designs instrument, providing "voltage 4" in the processed Seabird files.

Scanfish sensor information (Jef Benson, NMF):

$\begin{gathered} \hline \text { SENSOR / SYSTEM } \\ \text { TYPE } \end{gathered}$	SERIAL No	Service / Cal	Cruise Notes
Seabird 9+ underwater unit	09P-24680-0636	$\begin{gathered} \hline \text { Service } 13 \text { May } \\ 2010 \end{gathered}$	9600 baud uplink
Seabird 3P temperature sensor	03P-4105	Cal 4 September 2008	
Seabird 4C conductivity sensor	04C-3052	Cal 4 September 2008	
Digiquartz pressure sensor	83008	Cal 13 May 2008	Fitted in 0636 (pre-cruise calibration check at NOC)
Simrad Mesotech Altimeter	0105119		
Chelsea Aquatracka Mk3 Fluorometer	88-2615-126	Cal 2 January 2009	(Swapped for rhodamine Aquatracka)
Chelsea Aquatracka Mk3 Rhodamine Fluorometer	06-5706-001	$\begin{aligned} & \text { Cal } 16 \text { October } \\ & 2008 \end{aligned}$	SAMS supplied
Turner SCUFA Cyclops-7 Fluorometer	2100432		
Seabird 5T pump	5T-4513	Service 2 October 2011	
Sea-Bird 11plus Deck unit	11P-24680-0588		9600 baud uplink
Seabird 43 DO sensor	43-0862	$\begin{gathered} \hline \text { Cal } 2 \text { October } \\ 2010 \end{gathered}$	
Focal Optical Plankton Counter			

Processed data logged with BODC

Raw and processed data have been logged at BODC. Processing was carried out by NMF to BODC
SOLAS requirements. The oxygen advance was determined to be 3 seconds.

Calibration

Calibration of the temperature, salinity, and chlorophyll fluorescence was carried out by profiling the Scanfish vertically and comparing the data with CTD profiles (CTD024 and CTD025) carried out immediately before and after the Scanfish profile on July $17^{\text {th }}$.

Data from both CTD profiles and the Scanfish profile were bin averaged into 1 dbar intervals. Salinity and temperature calibrations were carried out by assessing the mean differences between Scanfish and mean of the data from the two CTD profiles for pressure bins in regions of the water column where the two CTD profiles indicated homogeneous and consistent conditions (between pressures 3 10 dbar and $55-80 \mathrm{dbar}$). Only the primary sensor data was used from the CTD profiles. The results (see plot below) showed marked and drifting offsets in the surface water, probably attributable to a delay in the Scanfish reaching ambient temperature conditions during the slow vertical descent.

Using only the data from 57-80 dbar indicates:

For salinity: \quad mean Scanfish-CTD offset $=+0.01 \pm 0.00$

For temperature: \quad mean Scanfish-CTD offset $=+0.009 \pm 0.006$

Note that the uncalibrated processed CTD data was used for the above calibration. The salinity calibration (page *) was not applied to the CTD data as it was felt to be negligible. These offsets have not been applied to the data logged with BODC.

Chlorophyll calibration was performed by using the CTD fluorometer data from the upper 37 dbar , minus a few outliers evident in the CTD025 profile (e.g. near pressures of 23 and 27 dbar). This covered almost all of the full range of chlorophyll measurements within the water column.

Scatter plots of Scanfish fluorometer output versus the mean of CTD024 and CTD025 calibrated chlorophyll output. Data from $2-37$ dbar was used, with spikes evident in CTD025 between 22-25 and 27-30 dbar removed. The plot on the right also removes all data below chl $=0.1 \mu \mathrm{~g} \mathrm{I}{ }^{-1}$.

The calibration data (see plot above) shows very noisy Scanfish fluorometer output at low chl concentrations. All of this data came from the upper few dbar of the Scanfish profile. Without this data the regression (left plot above) that allows estimation of chlorophyll concentrations from Scanfish data is:

$$
\mathrm{CHL}_{\text {scanfish cal }}=1.69 \times \mathrm{CH}^{(g) t_{\text {bantish }}}-1.95
$$

with $\mathrm{CHL}_{\text {scanfish }}$ the output from the Turner fluorometer on Scanfish. The rms error about this regression is $0.04 \mu_{\mathrm{g} \mathrm{l}^{-1}}$. As the calibration was performed using the calibrated CTD chlorophyll concentration, the total error in Scanfish chlorophyll estimates is $\sqrt{0.12^{2}+0.04^{2}}=0.13 \mu \mathrm{~g} \mathrm{I}^{-1}$. Note the problems described in the CTD fluorometer calibration concerning the analysis of the gff filtered chlorophyll samples and potential under-estimation of truw chlorophyll concentrations based on the calibrations. Again, that the Scanfish data provided to BODC has not had this calibration applied.

Data problems (Dave Teare, NMF)

The CTD and instruments generally performed well. The salinity, however, suffered from what initially appeared to be 'salinity spiking'. Closer observation of the data, both the underway and vertical calibration profiles, shows that the salinity takes approximately one minute to stabilise after going through a step change (the thermocline). This slow response is due to conductivity rather than temperature. After going from warm to cool water the salinity value stabilises to a lower salinity value, the reverse happens when going from cool to warm water. The following hypothesis seems reasonable:

The instrument bay, where the temperature and conductivity sensors are fitted, is not in a free water flow and is relatively enclosed. The water in the bay primarily comes from the outlet of the Seabird pump. It is therefore reasonable to assume that after passing through the thermocline, the water in the bay is either warmer or cooler than the outside water. This entrained water causes adverse warminglcooling of the conductivity cell which in turn affects the conductivity of the water within the cell. The temperature sensor, however, is barely affected due to its relatively low thermal mass and being totally enclosed within the water of the inlet duct tubing.

Remedy: Move the temperature and conductivity sensors to the outside of the vehicle.

There was also a small amount of spiking on the oxygen, this was coincident with the vehicle passing through the thermocline.

There were a number of problems with the OPC instrument. The main problem is that the Seabird CTD modifies the serial data output from the OPC, which causes data synchronisation errors in the OPC software. This causes the OPC ‘elapsed time’ counter to run erratically (gains approximately 3 minutes per hour) and also causes the position data to fail to update for periods of up to 10 seconds. The OPC utilises the rarely used 'stick parity' function. Stick parity hijacks the normal data transfer checking function of parity and allows the parity bit to be artificially set high or low. The OPC unit uses
the stick parity, set to high, as a beginning of frame marker. Most modern serial output instruments have dispensed with the parity bit checking protocol, consequently the Seabird serial data does not transmit the parity bit.

Remedies:

1. Ask Seabird to provide a serial board with parity enabled.
2. Run the OPC independently of the Seabird, using its own data transfer system.

The pressureldepth sensor only gave several fixed values over the depth cycle. This may be a sensor malfunction or may be associated with the above data transfer problem.
Data from this instrument should be treated with caution!

MVP data (Jonathan Sharples and Jef Benson).

The MVP was used once during the cruise. Given the success of Scanfish and the better horizontal resolution of profiles achieved with Scanfish, the MVP was subsequently regarded as a back-up vehicle.

MVP Sensor Information:
FORWARDING INSTRUCTIONS / ADDITIONAL INFORMATION:
MVP initial configuration instruments

CHECKED BY: J. Benson	DATE: 27 June 2008

SENSOR / SYSTEM TYPE	SERIAL No	Service / Cal	Cruise Notes
AML Micro CTD underwater unit	7027	Cal 13 June 2008	Post-cruise calibration
AML Micro DO2 sensor	7517	Cal 19 May 2008	Post-cruise calibration
MSFFF-I Fish Multiplexer	10113	Service 9 January 2010	
Controller Interface Box	10619	Service 4 April 2010	
Winch Control Box	036415	Service 4 April 2010	
Chelsea Minitracka2 Fluorometer	175222	Cal 12 January 2009	
PML Tilt and Roll sensor	TR02 (P01)		
MSFFF-I Fish	10112		
Satlantic OCR 507 Irradiance sensor	074	Cal 31 March 2008	Post-cruise calibration
Satlantic OCR 507-ICSW Irradiance sensor	136	Cal 31 March 2008	Post-cruise calibration

The MVP data in the *.m1 files includes 4 analog channels. These were connected as:

```
Analg 1 ------ Fluorometer
Analg 2 ------ Oxygen
Analg 3 ------ not connected
Analg 4 ------ Roll
```

No attempts have yet been made to carry out calibrations on the MVP data.

Ships Computing and Data Listings (Gareth Knight).

RVS LEVEL C System

Ifremer TECHSAS System

The Ifremer TECHSAS system is the primary data logger for all navigation, surfmet and winch data. The TECHSAS software is installed on an industrial based system with a high level of redundancy. The operating system is Red Hat Enterprise Linux Edition Release 3.3. The system itself logs data on to a RAID 0 disk mirror and also logs to the backup logger. The TECHSAS interface displays the status of all incoming data streams and provides alerts if the incoming data is lost. The ability exists to broadcast live data across the network via NMEA.

The storage method used for data storage is NetCDF (binary which is a self describing file and is OS independent) and also pseudo-NMEA (ASCII). The NetCDF data files are currently manually parsed through an application in order to convert them to RVS Format for data processing.

The TECHSAS data logging system was used to log the following instruments:

1) Applanix POSMV System (Converted to RVS Format as posmvpos, posmvatt, posmvsat)
2) Applanix POSMV System Heading
3) Kongsberg Seatex DPS-116 (Converted to RVS Format as dps116p and dps116s)
4) Chernikeef EM speed log (converted to RVS format as log_chf)
5) Skipper EM Speed Log (converted to RVS Format as log_skip)
6) Ships Gyrocompass (converted to RVS format as gyronmea)
7) Simrad EA600 Precision Echo Sounder (Converted to RVS Format as ea600)
8) NMFD Surface-water and Meteorology instrument suite (Converted to RVS as sm_surf, sm_met and sm_light)
9) ASHTECH ADU-5 Altitude Detection Unit Converted to RVS Format as adu5pat and adu5pos)
10) NMFSS Cable Logging and Monitoring (Converted to RVS as winch)

Techsas NetCDF to RVS Data Conversion

During this cruise there is no reliance upon the data provided by TECHSASechsas, however it has been included on the data archive in the standard rvs form using a piece of software used to make it compatible with the RVS ASCII data structure

An in house application was used to handle the conversion of NetCDF files to the RVS format. This was then parsed back to the data file and was processed as normal. These 2 new applications being ncvars and nclistit.

These new binaries require to environment variables in order to function:
\$NCBASE - the base for the NetCDF binaries system, set to /rvs/def9
\$NCRAWBASE - the base for the raw data files, set to /rvs/pro_data/TECHSAS/D321/NetCDF

The existing \$PATH variable must also include the path to the NC binaries, the path /rvs/def9/bin was appended to the \$PATH variable.

All Techsas data file names are in the format of YYYYMMDD-HHMMSS-name-type.category with the data/timestamp being the time the file was created by Techsas.

The files were each processed in the following way for this cruise:
nclistit 20060813-000001-gyro-GYRO.gyr - | titsil Gyronmea -

This output gyro data from TECHSAS in the listit output format that is then read in by the titsil application.

Data Processing

Applanix POSMV System

The Ships primary GPS System for scientific data and also part of the Dynamic Positioning system is the Applanix POSMV. The POSMV includes a intertial measurement unit capable of providing heading pitch and roll data to the bridge, logged by the techsas system and displayed in the main lab. The POSMV data is also used by the ADCP systems in order to account for ships motion.

The Applanix IMU is located at the ships centre point and is used as reference for all offsets for instruments on board the RRS James Cook The GPS antenna positions are held within the POSMV and the GPS position is corrected for the position of the MRU and so the GPS position that is recorded is the position of the MRU itself.

System Specifications

	Specification (With Differential Correction	During GPS Outages
Roll, Pitch Accuracy	$0.02^{\circ}(1$ sigma with GPS or DGPS	0.02°
Heave Accuracy	5 cm or 5\% whichever is greater for periods of 20 seconds or less	5 cm or 5\% whichever is greater for wave periods of 20 seconds or less
Heading Accuracy	0.02° with 2m antenna baseline	Drift less than 1° per hour (negligible for outages <60

		seconds)
Position Accuracy	$0.5-2 \mathrm{~m}(1$ sigma) dependant	Ddegredation
	on differential correction	2.5 m (1 sigma for outages $<$
	quality	$30 \mathrm{~s})(1$ sigma for outages $<$
		60 m (1
Velocity Accuracy	$0.03 \mathrm{~m} / \mathrm{s}$ horzontal	

Magellan Ashtech ADU-5

This is a four antenna GPS system that can produce attitude data from the relative positions of each antenna and is used to correct the VMADCP for ship motion. The antenna array is located on the port side of the ships monkey island. The ADU-5 system worked reliably throughout the cruise with some gaps that are quite usual with this system due to the amount of calculations necessary and the roll of the ship causing bad satellite communication. No Large data gaps are present. The ADU-5 forms part of the bestnav system which is an assembly of multiple GPS signals including the gyronmea and emlog stream in order to calculate the best possible position, speed heading pitch and roll of the ship.

Here the ADU5 Platform on the Starboard Side. Black surrounded Antenna indicates AFT. This is the primary antenna which sits behind all 3 other antennas.

ADU5 Offsets with reference to Antenna 1 (used internally by ADU5 for HPR Calculations

Vector	X(Right Positive)	Y(Forward Positive)	Z(Up Positive)
$1-2$	0.000	1.203	0.010
$1-3$	-0.599	0.600	0.010
$1-4$	0.597	0.598	0.012

Antenna Position on James Cook From MRU $(0,0,0)$

Antenna	X (Positive Starboard)	Y (Positive Forward)	Z (Positive Up)
1	9.265	1.541	19.416
2	10.463	1.537	19.419
3	9.863	0.932	19.426
4	9.870	2.138	19.419

SeaTex DPS 116

This DPS116 is a GPS system that was installed primarily as a backup for the POSMV to provide information for the ships DP system for ships use which we now receive an output from. The Seatex is only configured to output a single GPGGA message which we record on the TECHSAS System.

The DPS 116 is located at the top of the ships Main mast.

Ship's Gyrocompass

The Gyronmea is a file that receives its data from the Ships gyro compass located in the Bridge Electronics Space. There are two such Gyros on the bridge and we are able to use either one of them as a source of heading. The selected Gyro is logged by the TECHSAS system and is used as part of the bestnav calculation.

Chernikeef EM log

The Chernikeef EM log is a 2-axis electromagnetic water speed log. It measures both longitudinal (forward-aft) and transverse (port - starboard) ships water sped.

The EM log system was not showing the correct data following the last calibration attempt. The system has been highly unreliable since its installation within the ship and continues to be an ongoing issue that we are attempting to get support from the manufacturer for, however they are not so forth coming.

Skipper Doppler Log

The Skipper Doppler log is the ship fitted speed indicator mainly used by the bridge. It was repeated to the science systems due to the failure of the Chernikeef log to produce reasonable data for the first year and a half of the ships operation. The Skipper is continually logged as it provides good data quality and is a good comparison with the Chernikeef system.

Simrad EA600 Precision Echo Sounder (PES)

The EA600 Precision Echo Sounder is the ships primary depth readout. The EA600 output is passed to TECHSAS and also to the green display screens in the main lab. The EA600 is mounted on the port drop keel.

Surfmet System

This is the NMFD surface water and meteorology instrument suite. The surface water component consists of a flow through system with a pumped pickup at approx 5 m depth. TSG flow is approx 18 litres per minute whilst fluoriometer and transmissometer flow is approx $1.5 \mathrm{l} / \mathrm{min}$. Flow to instruments is degassed using a debubbler with $24 \mathrm{l} / \mathrm{min}$ inflow and $10 / \mathrm{I}$ min waste flow.

The meteorology component consists of a suite of sensors mounted on the foremast at a height of approx 16.4 m above the waterline. Parameters measured are wind speed and direction, air temperature, humidity and atmospheric pressure. There is also a pair of optical sensors mounted on gimbals on each side of the ship. These measure total irradiance (TIR) and photo-synthetically active radiation (PAR). The gimbals were removed and had new bearings installed at the beginning of the cruise prior to sailing.

The Non Toxic system was enabled as soon as we were far enough away from land and switched off during the port call in the Azores in order to protect the sea surface sensors from pollution which generally occurs close to land.

CASIX PCO2 System

This system is an autonomous pCO 2 system developed by PML and Dartcom. I advise that you contact Nick Hardman-Muntford at PML for information. The system was run at the same time as the Surfmet system. The System was cleaned on a weekly basis in order to remove fouling from the system as per the manual.

Network Services

The network itself worked well without any issues. Ports required patching through to enable scientists to use the ports.
The Wireless system, which failed during a previous cruise, was connected to a PC power supply as a means to test the Wireless system was still in working condition. The wireless system was used during the cruise and power supplies are hopefully on route.

Data Storage

This cruise a new device was installed, known as a Drobo or Disk Robot. It was installed on the network and the Drobo 1 share was used by scientists to share data. The Drobo has a hot swap spare to ensure that the storage remains functional and secure at all times. The Drobo was backed up daily to LTO tape using SMB Tar on the Cook3 workstation.

The Level C data was backed up to LTO daily and included the TECHSAS mount from the TECHSAS data logger.

Surfmet Sensor Calibration Information

Ship	RRS James Cook
Cruise	JC024
Technician	Chris Barnard
Date	$21 / 05 / 2008$

Manufacturer	Sensor	Serial no	Comments
FSI	OTM temperature	1361	Housing
FSI	OTM temperature	1376	Remote
Wetlabs	fluorometer	WS3S-117	(Replaced prior to Cruise)
Seatech	transmissometer	T1022D	No Cal Sheet
Vaisala	Barometer PTB100A	RO45005	(Replaced prior to Cruise)
Vaisala	Temp/humidity HMP45A	D1330038	(Replaced prior to Cruise)
Skye	PAR	28563	PORT Side
Skye	PAR	28558	STARBOARD Side
Kipp and Zonen	TIR CMB6	047462	PORT Side
Kipp and Zonen	TIR CMB6	047463	STARBOARD Side
Sensors without cal			
FSI	OCM Conductivity	1358	
Gill Windsonic	Anemometer Option 3	064537	
Nudam 6017	$+/-5 v$		
Nudam 6018	$+/-5 v$		

SPARES

Manufacturer	Sensor	Serial no	Comments
FSI	OTM temperature	13331379	1333 No Cal Sheet, Not used before
FSI	OTM temperature	1339	
Wetlabs	fluorometer	T1019D	No Cal Sheets
Seatech	transmissometer	Z4740021	
Vaisala	Barometer PTB100A	B4950011	
Vaisala	Temp/humidity HMP45A		

Skye	PAR	28556	
Skye	PAR		
Kipp and Zonen	TIR CMB6	962276	
Kipp and Zonen	TIR CMB6		
Sensors without cal		1333	
FSI	OCM conductvity	064538	
Gill Windsonic	Anemometer Option 3		
NUDAM 6017	$+/-5 \mathrm{v}$		
NUDAM 6018	$+/-5 \mathrm{v}$		

Surfmet : The Sensor List

Met Platform Sensors

Wind Speed and Direction

Manufacturer : Gill
Model : Windsonic (Option 3)

Ultrasonic Output Rate
Wind Speed
Wind Direction Range
Operating Temp Range
Moisture Protection
External Construction
Digital O/P Options
NMEA O/P
Analogue Outputs
Calibration

1, $2,4 \mathrm{~Hz}$
Range $0-60 \mathrm{~m} / \mathrm{s}$
0-359 no dead band $-35^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ IP65
Luran
RS232 / 422 / 485 / SDI-12
Yes
2 (optional)
Generic

Total Irradiance

Manufacturer : Kipp and Zonen
Model Number : CM6B

Spectral range
Sensitivity
Impedance
Response time
Non-linearity
Tilt error Operating temperature
Temperature dependence of sensitivity
Maximum irradiance
Directional error
Weight
Cable length
$305 \ldots 2800 \mathrm{~nm}$ (50\%points)
9... $15 \mu \mathrm{~V} / \mathrm{Wm}-2$
70... 100 Ohm

1/e 5 s, 99 \% 55 s
$<1.5 \%$ ($<1000 \mathrm{~W} / \mathrm{m} 2$)
$<1.5 \%$ at $1000 \mathrm{~W} / \mathrm{m} 2$
-40...+90 _C
_2 \%
(-10...+40_C)
2000 W/m2
< $20 \mathrm{~W} / \mathrm{m} 2$ at $1000 \mathrm{~W} / \mathrm{m} 2$
0.85 kg

10 m

Temperature and Humidity

Manufacturer : Vaisala
Model Number HMP45A

Relative humidity measurement

HMP45A
Measurement range
Accuracy at $+20^{\circ} \mathrm{C}\left(+68^{\circ} \mathrm{F}\right)$
Sensor

Temperature measurement

HMP45A
Measurement range
Accuracy $+20^{\circ} \mathrm{C}\left(+68^{\circ} \mathrm{F}\right)$
Sensor

Operating environment

Temperature
operation
storage
Inputs and outputs
Operating Voltage
Power consumption
Output load
Output scale
Output signal

Photosynthetic Active Radiation

Manufacturer : Skye Instruments
Model Number : SKE 510
Spectral Range
Sensitivity Current
Sensitivity Voltage
Working Range
Linear Error
Absolute Calibration Error
Cosine Error
Azimuth Error
Temperature coefficient
Longterm Stability
Response Time Internal Resistance
Temperature Range
Humidity Range
0.8 ... 100 \% RH
$\pm 2 \% \mathrm{RH}$ ($0 . . .90 \% \mathrm{RH}$)
$\pm 3 \% \mathrm{RH}(90 \ldots 100 \% \mathrm{RH})$
Vaisala HUMICAP ${ }^{\circledR} 180$

```
-39.2 ... +60 o C (-38.6 \ldots.. +140 }\mp@subsup{}{}{\circ}\textrm{F}
\pm0.2 ' C ( }\pm0.36\mp@subsup{}{}{\circ}\textrm{F}
Pt 1000 IEC }75
```

```
-40 ... +60 }\mp@subsup{}{}{\circ}\textrm{C}(-40\ldots+140 % F
-40 ... +80 }\textrm{C}(-40\ldots+176 % F
```

7 ... 35 VDC
$<4 \mathrm{~mA}$
>10 kohm (to ground)
$-40 \ldots+60^{\circ} \mathrm{C}\left(-40 \ldots+140^{\circ} \mathrm{F}\right)$ equals to $0 \ldots . .1 \mathrm{~V}$
resistive 4-wire connection

400-700nm
$3.5 \mu \mathrm{~A} / 100 \mathrm{Wm}^{2}$
$1 \mathrm{mV} / 100 \mathrm{Wm}^{2}$
$0-5000 \mathrm{Wm}^{2}$
<0.2\%
typ <3\% max 5\%
3\%
<1\%
$+/-0.1 \% /{ }^{\circ} \mathrm{C}$
+/-2\%
10ns
3000hms
$-35^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
$0-100 \%$ RH

Barometric pressure measurement

Pressure range
Accuracy at $+20^{\circ} \mathrm{C}\left(+68^{\circ} \mathrm{F}\right)$
Sensor

Operating environment

Temperature range
Humidity range

Inputs and outputs

Operating voltage
Power consumption: operation mode shutdown mode
Output voltage

Sea Surface Instruments

Fluorimeter

Manufacturer : WetLabs
Model Number : WetStar

Temperature Range	$0-30 \mathrm{C}$
Depth Rating	600 m
Response time	0.17 s
Input Voltage	$7-15 \mathrm{vdc}$
Current Draw	$<40 \mathrm{~mA}$
Output	$0-5 \mathrm{VDC}$

Transmissometer

Manufacturer : WetLabs
ModelNumber : WetStar

Pathlength	25 cm Wavelength
Bandwidth	-20 nm
Rated Depth	600 m
Temperature	$0-30^{\circ} \mathrm{C}$
Power Input	$7-15 \mathrm{VDC}$
Current Draw	$<40 \mathrm{~mA}$
Data Output	$0-5 \mathrm{Volts}$
Time Constant	0.167 sec
Temperature Error	0.02 percent F.S./deg C

Temperature Sensor

Manufacturer : Falmouth Scientific
Model : OTM

Probe
Reference Grade
Range
Accuracy
Stability
Resolution
Sampling Rate Programmable
Response Time
Self heating
Power
Warm-up

Conductivity Sensor

Manufacturer : Falmouth Scientific Model : OCM

Probe
Range
Accuracy
Stability
Resolution
Sampling Rate
Response Time

Falmouth Scientific
Platinum Resistance Thermometer
-2-32 Celsius
+/- 0.003
+/- 0.0005 Celsius / month
0.0001 C

4 - 32 Samples / sec
$400-500 \mathrm{~ms}$
<0.0003 C @ 1 meter / second flow
12 +/- 20\% VDC @ 60mA
2.0 Seconds from Power Up

Falmouth Scientific Inductive Conductivity Sensor
$0-65 \mathrm{mmho} / \mathrm{cm}(0-6.5 \mathrm{~S} / \mathrm{m})$
$+/-0.003 \mathrm{mmho} / \mathrm{cm}(+/-0.0003 \mathrm{~S} / \mathrm{m})$
$+/ 0.0005 \mathrm{mmho} / \mathrm{cm} / \mathrm{month}(+/-0.5 \mathrm{mS} / \mathrm{m})$
0.0002 mmho/cm

4-32 Samples / sec
5.0 cm (50milliseconds at 1 meter/second flow)

VMP Turbulence Microstructure Profiling (Matthew Palmer).
Microstructure measurements were made using two different profilers. A list of filenames, deployment times and positions can be found in the appendix at the end of this section. The first of these instruments, the VMP750 was used for the majority of deployments and the second instrument, MSS90 was used as a backup during a short period of instrument failure with the VMP750.

The descent of the instrument is controlled by buoyancy and brushes to maintain an optimal fall-speed $\sim 0.75 \mathrm{~ms}^{-1}$ whilst keeping the instrument falling vertically. With a typical water depth of 80-130m each profile therefore took -2-3 minutes descent time with a similar time for recovery to the surface from which the next profile was made.

The VMP750 weighs $\sim 50 \mathrm{~kg}$ in air and is connected to a winch via a line thrower system (figure 2), both of which are hydraulically powered.

Figure 2. Typical setup of winch, sheave and line-puller when the VMP is profiling down. Notice that there is slack in the tether between the winch and line-puller. There is also slack in the tether in the water near the ship so that the VMP can descend freely.

1. Rockland Scientific International manufactured Velocity Microstructure Profiler (VMP750) provided by Proudman Oceanographic Laboratory (POL): The VMP750 (figure 1) is a freefalling instrument rated to 750m depth that was deployed from the aft of the RRS James Cook, connected via a neutrally buoyant Kevlar tether which is fed sufficiently fast over the ship's stern to prevent any interference with the free-fall of the instrument from the surface to the seabed. To ensure safe deployment of the loose tether the ship moves forward slowly through the water during deployment which can result in some movement around the station position
depending on wind and tide. During descent the instrument simultaneously measures shear microstructure, from which the dissipation rate of turbulent kinetic energy can be derived (Dewey et al, 1987), temperature and conductivity microstructure, fluorescence, optical backscatter, pressure, tri-axis acceleration and temperature, conductivity and oxygen.
2. ISW Wassermesstechnik manufactured MSS90 (figure 3) provided by the Scottish Association for Marine Science (SAMS):

This is a similar but less well equipped instrument to the VMP750, it measures shear microstructure, temperature microstructure, temperature, conductivity, pressure and tri-axis acceleration. The instrument is lightweight, $\sim 15 \mathrm{~kg}$ in air, and is operated in a similar manner to the VMP750 from a simple electronic winch (figure 4). The instrument was not permitted to collide with seabed to protect the sensor package, instead profiling to within 20 m of the bed.

Figure 3: MSS90

Figure 4: ISW Wassermesstec hnik swm1000 electric winch

Microstructure measurements were made during 5 different stations at 2 locations:

1. 6/7/08: Station MS2.

Started 1449 6/7/08 (GMT)
Ended 0545 7/7/09 (GMT)

Some problems were experienced with deployment during the first hour of operation which resulted in a number of unsuccessful casts being made. This was traced to incorrect settings on the winch hydraulics. Following adjustment the winch and line thrower system worked well throughout the rest of the cruise. The start of the 25 hr station was adjusted to 1559 (GMT), VMP profile \#017.

Due to bad weather profiling was only possible in one direction to remain within acceptable proximity of the mooring station. Occasional breaks were therefore required to reposition the ship. VMP profiles were made every 6-7 minutes.

Breaks in profiling were made at the following times:

1. 1611-1706 repositioning
2. 1937-2056 CTD
3. $2133-2218$ repositioning
4. $0043-0127$ repositioning
5. $0314-0514$ CTD followed by repositioning

The tether managed to get entangled with the VMP on a number of occasions, subsequently a break in the connecting cable was suspected due to continual 'bad buffer' signals in the VMP software. The decision was made to stop profiling at 07/07/08 0545 (cast \#111) reterminate the VMP connection. Termination undertaken by Chris Balfour (POL). The station was aborted with over 1 tidal cycle of data collected including 86 full depth VMP profiles. It was noticed during post-processing that the O2 sensor was performing poorly following cast \#105 (0514 07/07/08). On inspection one of the power connections on the instrument had completely corroded and was not repairable.

2. 12/7/08: Station MS4.

Started 0217 12/7/08 (GMT) VMP profile \#124
Ended 0314 13/7/09 (GMT) VMP profile \#375

VMP profiles were made every 6-7 minutes.
Breaks in profiling were made at the following times (GMT):

1. $0606-0640$ repositioning
2. $0726-0841$ CTD
3. $1254-1347$ CTD
4. $2051-2139$ CTD

The slow response time of the Seabird CT sensors indicated a pump problem. On inspection the pump was found to be working intermittently and was removed, depending on free flow for the next deployment. No significant problems were experienced with the microstructure measurements during this deployment period. A 25 hr dataset was successfully collected with minimal stops. A total of 238 full depth VMP profiles were made.

3. 14/7/08: Station MS2.

Started 1153 14/7/08 (GMT) VMP profile \#376
Ended 0032 15/7/09 (GMT) VMP profile \#533

VMP profiles were made every 5-6 minutes.
Breaks in profiling were made at the following times (GMT):

1. 1745-1844 CTD

At 0036 15/07/09 all communication was lost with the VMP. Station aborted after 152 full depth profiles over 1 full tidal cycle. Instrument brought on board for retermination by Chris Balfour (POL).
4. 21/7/08: Station MS2.

Started 0756 21/07/08 (GMT) VMP profile \#539
Ended 0923 22/07/08 (GMT) VMP profile \#754

VMP profiles every 5-6 minutes.
Breaks in profiling were made at the following times (GMT):

1. 1252-1349 CTD
2. 1954-2047 CTD
3. 2309 - 2355 switch from VMP to MSS90 profiler
'Bad buffer signals were received from 1634 (\#630) to 1756 (\#644) 21/07/08 indicating a poor connection/data feed. The problem went away for some time returning intermittently until it was decided to recover the instrument at 2309 21/07/08 for retermination by Chris Balfour (POL). During this break the replacement MSS90 profiler (SAMS) was deployed to minimize gaps in the microstructure time series. 51 microstructure profiles were made from near surface to $\sim 100 \mathrm{~m}$ depth using the MSS90 between 2355 21/07/08 and 0344 22/07/08.

VMP profiling recommenced at 0354 22/07/08 (profile \#697) and continued successfully until 0923 when the 25 hour station was complete. A total of 256 microstructure profiles were made, 205 from the VMP and 51 from the MSS90.
5. 22/07/08: Station MS4.

Started 1710 22/07/08 (GMT) VMP profile \#755

Breaks in profiling were made at the following times (GMT):

1. 0258-0355 CTD

Successful 1 tidal cycle deployment, no errors or problems. 112 full depth profiles made.

Appendix:

	2.date	3.Time(bst) 4.Longitude (${ }^{\circ} \mathrm{E}$)		
5.Latitude(${ }^{\circ} \mathrm{N}$)				
POL_004_JC25		17	-7	$4.980318 \mathrm{e}+001$
L 004 JC25 018 p	06-Jul-2008	17:08:08	-7.795689e+000	$4.979798 \mathrm{e}+001$
004 JC25-019		17:14:38	-7.777689e+000	
L 004 JC25 020	06-Jul-2008	18:09:34	-7.666795e	1
L_-004_JC25_021.	06-Jul-2008	18:15:26	$-7.666710 \mathrm{e}+000$	
L_004_JC25_022.	06-Jul-2008	18:21:08	$-7.666842 \mathrm{e}+000$	$4.975001 \mathrm{e}+001$
04-JC25 023	06-Jul-2008	18:27:14	-7.667398e+000	
L_004_JC25_024.	06-Jul-2008	18:33:14	$-7.668645 \mathrm{e}+000$	
- JC25-025	06-Jul-2008	18:39:04	-7.669056e+000	
OL_004_JC25_026.p	06-Jul-2008	18:45:02	-7.669201e+000	$4.974917 \mathrm{e}+001$
- 2025	08	18	7.669324e+000	
OL_004_JC25_028.	06-Jul-2008	18:56:30	-7.669139e+000	$4.974906 \mathrm{e}+001$
004_JC25_02	06-Jul-2008	19:02:18	-7.669106e+000	
(004 JC25 030.p	06-Jul-2008	19:08:14	-7.669117e+000	$4.974900 \mathrm{e}+001$
_004_JC25_031	06-Jul-2008	19:13:56	-7.669072e+000	01
L_004_JC25_032.p	06-Jul-2008	19:19:56	-7.669071e+000	$4.974904 \mathrm{e}+001$
OL_004_JC25_033	06-Jul-2008	19:25:32	$-7.669068 \mathrm{e}+000$	$4.974909 \mathrm{e}+001$
L_004_JC25_034	06-Jul-2008	19:31:06	-7.669160e+000	4.97
L_004_JC25_035.	06-Jul-2008	19:37:24	$-7.669087 \mathrm{e}+000$	$4.974909 \mathrm{e}+001$
L_004_JC25_036	06-Jul-2008	19:42:56	-7.669017e+000	4.97
-004_JC25_037.p	06-Jul-2008	19:48:46	-7.669078e+000	$4.974902 \mathrm{e}+001$
L_004_JC25_038	66-Jul-2008	19	$-7.669104 \mathrm{e}+000$	
04_JC25_039	06-Jul-2008	19:55:28	-7.669048e+000	01
-004_JC25_040			000	
04_JC25_04	06-Jul-2008	20:06:36	-7.668968e+000	01
004_JC25_042.	06-Jul-2008	20:12:04	-7.668992e+000	相
04_JC25_043	06-Jul-2008	20:17:50	-7.668962e+000	.974909e+001
04_JC25_044.p	06-Jul-2008	20	000	$4.974907 \mathrm{e}+001$
004 J25 04	06-Jul-2008	20:28:44	-7.668854e+000	$4.974914 \mathrm{e}+001$
-004_JC25_04	06-Jul-2008	20:34:28	-7.669438e+000	001
_004_JC25_04	06-Jul-2008	20	-7.669635e+000	$4.974948 \mathrm{e}+001$
04_JC25_048	08	21	-7.698888e+000	001
L_004_JC25_04	06-Jul-2008	22:05:36	-7.704204e+000	$4.980531 \mathrm{e}+001$
04_JC25_050	06-Jul-2008	22:10:42	$-7.708686 \mathrm{e}+000$	001
_004_JC25_051.p	06-Jul-2008	22:15:30	-7.713058e+000	.980809e+001
4_JC25_052.p	06-Jul-2008	22:20:40	-7.717826e+000	.980951e+001
_004_JC25_053.	06-Jul-2008	22	$-7.722424 \mathrm{e}+000$. 9
JC25_05	06-Jul-2008	22:30:50	-7.727277e+000	001
04_JC25_055.p	06-Jul-2008	22:35:44	-7.732512e+000	.
004 JC25 056.p		23:21:30	.771203e+000	$4.982825 \mathrm{e}+001$
04_JC25_057	06-Jul-2008	23:27:16	-7.775152e+000	982989e+001
-004_JC25_058		23:33:02	-7.778720e+000	
_004_JC25_05	-Jul-2008	23:38:40	-7.782403e+000	$4.983295 \mathrm{e}+001$
OL_004_JC25_060.p	06-Jul-2008		-7.786441e+000	.
OL_004_JC25_061.p	06-Jul-2008	23:50:02	$-7.790454 \mathrm{e}+000$	$4.983604 \mathrm{e}+001$
L_004_JC25_062	06-Jul-2008	23:56:06	$-7.794957 \mathrm{e}+000$	$4.983759 \mathrm{e}+001$
L_004_JC25_063	Jul-2008	00:04:18	-7.799790e+000	$4.984036 \mathrm{e}+001$
L_004_JC25_06	07-Jul-2008	00:09	$-7.802232 \mathrm{e}+000$	
L_004_JC25_065	07-Jul-2008	00:1	-7.805308e+000	01
004_JC25_066	07-Jul-2008	00:23:26	-7.810058e+000	.984832e+001
_004_JC25_067	07-Jul-2008	00:27:06	7.812017e+000	488493e+001
-004_JC25_068	07-Jul-2008	00:31:38	$-7.814573 \mathrm{e}+000$.985201e+001
04_JC25_069.p	07-Jul-2008	00:35:18	-7.816760e+000	.985362e+001
04_JC25_070	07-Jul-2008	00:38:26	$18624 \mathrm{e}+000$	$985499 \mathrm{e}+00$
004 JC25 071 p	07-Jul-2008	00:52:06	+000	001
JC25_07	07-Jul-2008	00:56:52	$-7.830200 \mathrm{e}+000$	00
_004_JC25_073.p	07-Jul-2008		-7.833257e+000	相
OL_004_JC25_074.p	07-Jul-2008	01:06:20	-7.835689e+000	4.9
OL_004_JC25_075.p	07-Jul-2008	01:11:48	-7.838410e+000	.987191e+001
OL_004_JC25_076.p	07-Jul-2008	01:16:00	$-7.840536 \mathrm{e}+000$	$4.987430 \mathrm{e}+001$
_004_JC25_077.p	07-Jul-2008	01:22:22	$-7.843842 \mathrm{e}+000$.987831e+001
OL_004_JC25_078.p	07-Jul-2008	01:26:56	$-7.846054 \mathrm{e}+000$	$4.988129 \mathrm{e}+001$
OL_004_JC25_079.p	07-Jul-2008	01:31:08	$-7.847485 \mathrm{e}+000$.988400e+001
04_JC25_080.p	07-Jul-2008	01:35:56	-7.849021e+000	$4.988730 \mathrm{e}+00$
OL_004_JC25_081.p	07-Jul-2008	01:41:02	$-7.850278 \mathrm{e}+000$	$4.989025 \mathrm{e}+001$
04_JC25_082.p	07-Jul-2008	01:45:50	-7.851509e+000	$4.989298 \mathrm{e}+001$
OL_004_JC25_083.p	07-Jul-2008	01:54:36	-7.853956e+000	$4.989694 \mathrm{e}+00$
OL_004_JC25_084.p	07-Jul-2008	02:30:20	-7.855280e+000	$4.989592 \mathrm{e}+001$
POL_004_JC25_085.p	07-Jul-2008	02:35:04	-7.855276e+000	$4.989587 \mathrm{e}+00$
POL_004_JC25_086.p	07-Jul-2008	02:40:00	-7.855171e+000	$4.989590 \mathrm{e}+001$
OL_004_JC25_087.p	07-Jul-2008	02:45:08	-7.855282e+000	$4.989587 \mathrm{e}+001$
POL_004_JC25_088.p	07-Jul-2008	02:49:48	$-7.855278 \mathrm{e}+000$	$4.989585 \mathrm{e}+001$
OL_004_JC25_089.p	07-Jul-2008	02:54:52	$-7.855365 \mathrm{e}+000$	$4.989584 \mathrm{e}+001$
POL_004_JC25_090.p	07-Jul-2008	03:00:28	-7.856069e+000	$4.989602 \mathrm{e}+001$
POL_004_JC25_091.p	07-Jul-2008	03:08:20	-7.858810e+000	$4.989660 \mathrm{e}+001$

004 JC25 170 p 12-Ju-2008	02	-7.672393e+000	$4.974934 \mathrm{e}+001$
12-Jul-2008	08:10:12	-7.672390e+000	
12-Jul-2008	08:14:48	-7.672392e+000	
3.p 12-Jul-2008	08:19:3	-7.672401e+000	1
12-Jul-2	08:	-7.	
12			
76.p 12-Jul-2008			
82.p 12-			
12-Ju			
25_184.p 12-Jul-2008	10:30:04	-7.672420e+	
25_185.p 12-Jul-20	10:	-7.67	
25_186.p 12-Jul-2	10:	$-7.672396 \mathrm{e}+00$	$4.974934 \mathrm{e}+001$
25_187.p 12-Jul-2008	10:47:06	$-7.672409 \mathrm{e}+00$	$4.974935 \mathrm{e}+001$
25_188.p 12-Jul-2008	10:52:3	$-7.672418 \mathrm{e}+000$	$4.974937 \mathrm{e}+001$
25_189.p 12-Jul-2	10:	-7.672382e+	$4.974933 \mathrm{e}+001$
25-p	11:	-7.677087e+000	
L_004_JC25_194.p 12-Jul-2008			
C25_195.p 12-J			
25_196.p 12-Jul			
25_197.p 12-Jul-200	11:	$-7.798570 \mathrm{e}+000$	$4.979235 \mathrm{e}+001$
25_198.p 12-Jul-20	11:	-7.808315e+000	$4.979594 \mathrm{e}+001$
C25_199.p 12-Jul-2008	11:	$-7.825177 \mathrm{e}+000$	$4.980246 \mathrm{e}+001$
25_200.p 12-Jul-2008	12:	-7.842251e+000	$4.980946 \mathrm{e}+001$
12-Jul-	12:12:46	$-7.865195 \mathrm{e}+000$	4.981880e+001
25_202.p 12-Jul-2008	12:18:12	$-7.881179 \mathrm{e}+000$	
25_203.p 12-Jul-2008	12:23:3	-7.897119e+000	
12-Jul-2008	12:28:28	-7.912016e+000	
	12:33:		
207.p 12-J	2:44:00		
C25-208.p 12-Jul-2	12:49:10	-7.937747e+000	
C25_209.p 12-Jul-200	12:54:04	7.938249e+000	
2-Ju	12:	-7.938143e+000	
12-Jul		$-7.939176 \mathrm{e}+00$	
25_212.p 12-Jul-200		-7.940581e+000	
C25 213.p 12-Jul-2008	13:	$-7.939006 \mathrm{e}+00$	
12-Ju		-7.	
		-7.928218e+000	
25_216.p 12-Jul-2	13:27:0	$-7.917869 \mathrm{e}+000$	
12-Jul-2008	3:32:18	-7.906979e+000	
004-JC25_218.p 12-Jul-2008	13:37:	$7.896359 \mathrm{e}+000$	
25_219.p 12-Jul-			
C25-220.p 12-Ju	13:47:4	-7.883598e+000	
C25_221.p 12-Jul-200	13	7.879451e+000	
C25_222.p 12-Jul-	13:	-7.874616e+0	
25_223.p 12-Jul-	14:50	-7.873395e+	
12-Ju	14:5	-7.8	
.p 12-Jul-2008	15:03	-7.83	
4_JC25_229.p 12-Jul-2008	15:15:20	-7.804649e+000	
12-Jul-2008	15:18:	-7.795208e+000	
25_231.p 12-Jul-2	15:23:	-7.782606e+000	
25_232.p 12-Jul-2000	5:2	$7.769026 \mathrm{e}+00$	
C25_233.p 12-Ju	5:3		
C25_234.p 12-Ju	5:	7	
25_235.p 12-Jul-2008	5:44:3	7.729783e+000	
-Jul-	15:4	-7.718601e+000	
-Jul	15:5	$-7.706530 \mathrm{e}+00$	$4.989097 \mathrm{e}+001$
12-Jul-2	15:58	-7.694208e+000	$4.989896 \mathrm{e}+001$
12-	16:	$-7.679658 \mathrm{e}+000$	
25_244.p 12-J			
C25-245.p 12-Jul-2008	6:33		
L_004_JC25_246.p 12-Jul-2008	6:37:40	7.7	
25_247.p 12-Jul-2008	16:42:52	-7.759467e+000	
C25_248.p 12-Jul-2008	16:47	-7.771464e+000	
25_249.p 12-Jul-20	16:51:5	$-7.783501 \mathrm{e}+000$,
0.p 12-Jul-2008	16:57:06	-7.795654e+000	4.981
25_251.p 12-Jul-2008	17:01:5	$-7.784959 \mathrm{e}+000$	4.98
C25_252.p 12-Jul-20	17:05	$-7.774894 \mathrm{e}+000$	
25_253.p 12-Jul-2	17:1	$-7.760044 \mathrm{e}+000$. 98
12-Ju	17:16:18	$-7.747824 \mathrm{e}+000$	
25_257.p 12-J			
C25-258.p 12-Jul-2008			
004_JC25-259.p 12-Jul-2008			
L_004_JC25_260.p 12-Jul-2008		-7.741801e+000	
004_JC25_261.p 12-Jul-2008		$27 \mathrm{e}+000$	
04_JC25_262.p 12-Jul-2008	18:05:14	-7.767866e+000	
L_004_JC25_263.p 12-Jul-2008	18:09:44	$-7.778886 \mathrm{e}+000$	$4.986025 \mathrm{e}+001$
004_JC25-264.p 12-Jul-2008	18:14:18	$-7.790396 \mathrm{e}+000$	崖
POL_004_JC25_265.p 12-Jul-2008	18:18:44	$-7.801159 \mathrm{e}+000$	4.98
-			
		$-7.825430 \mathrm{e}+0$	

POL_004_JC25_170.p 12-Jul-2008 POL_004 JC25-172.p 12-Jul-2008 POL_004_JC25_173.p 12-Jul-2008 POL-004-JC25-175.p 12-Jul-2008 POL_004_JC25_176.p 12-Jul-2008 POL_004_JC25_178.p 12-Jul-2008 POL_004_JC25_179.p 12-Jul-2008 POL_004_JC25_180.p 12-Jul-2008 POL_004_JC25_182.p 12-Jul-2008 POL_004_JC25_183.p 12-Jul-2008 POL_004_JC25_184.p 12-Jul-2008 POL_004_JC25_186.p 12-Jul-2008 POL_004_JC25_187.p 12-Jul-2008 POL_004_JC25_188.p 12-Jul-2008 POL_004_JC25_190.p 12-Jul-2008 POL_004_JC25_191.p 12-Jul-2008 POL_004_JC25_192.p 12-Jul-2008 POL_004_JC25_193.p 12-Jul-2008 POL_004_JC25_195.p 12-Jul-2008 POL_004_JC25_196.p 12-Jul-2008 POL_004_JC25_197.p 12-Jul-2008 POL_004_JC25_199.p 12-Jul-2008 POL_004_JC25_200.p 12-Jul-2008 POL_004_JC25_201.p 12-Jul-2008 POL_004_JC25_203.p 12-Jul-2008 POL_004_JC25_204.p 12 -Jul-2008 POL_004_JC25_206.p 12-Jul-2008 POL_004_JC25_207.p 12-Jul-2008 POL_004_JC25_208.p 12-Jul-2008 POL_004_JC25_210.p 12-Jul-2008 POL_004_JC25_211.p 12-Jul-2008 POL_004_JC25_212.p
POL $004-J C 25-J u l-2008$
213.p
12-Jul-2008 POL_004_JC25_214.p 12-Jul-2008 POL_004_JC25_216.p 12-Jul-2008 POL_004_JC25_217.p 12-Jul-2008 POL_004_JC25_218.p 12-Jul-2008 POL_004_JC25_219.p 12-Jul-2008 POL_004_JC25_221.p 12-Jul-2008 POL_004_JC25_222.p 12-Jul-2008 POL-004-JC25-224.p 12-Jul-2008 POL_004_JC25_225.p 12-Jul-2008 POL_004_JC25_226.p 12-Jul-2008 POL_004_JC25_228.p 12-Jul-2008 POL_004_JC25_229.p 12-Jul-2008 POL_004_JC25_230.p 12-Jul-2008 $\begin{array}{ll}\text { POL_004_JC25_231.p } & 12-J u l-2008 \\ \text { POL_004_JC25_232.p 12-Jul-2008 }\end{array}$ POL_004_JC25_233.p 12-Jul-2008 POL_004_JC25_234.p 12-Jul-2008 POL_004_JC25_236.p 12-Jul-2008 POL_004_JC25_237.p 12-Jul-2008 POL_004_JC25_238.p 12-Jul-2008 POL_004_JC25_240.p 12-Jul-2008 POL_004_JC25_241.p 12 -Jul-2008 POL_004_JC25 243.p 12-Jul-2008 POL_004_JC25_244.p 12-Jul-2008 POL 004-JC25-246p 12-Jul-2008 POL_004_JC25_247.p 12-Jul-2008 POL_004_JC25_248.p 12-Jul-2008 POL_004_JC25_249.p 12-Jul-2008 POL_004_JC25_250.p
POL $004-J C 25-J u l-2008 ~$ POL_004_JC25_252.p 12-Jul-2008 POL_004_JC25_253.p 12-Jul-2008 POL_004_JC25_255.p 12-Jul-2008 POL_004_JC25_256.p 12-Jul-2008 POL_004_JC25_257.p 12-Jul-2008 POL_004_JC25_259.p 12-Jul-2008 POL_004_JC25_260.p 12-Jul-2008 POL_004-JC25 262.p 12-Jul-2008 POL_004_JC25_263.p 12-Jul-2008 POL_004_JC25_265.p 12-Jul-2008 POL_004_JC25_267.p 12-Jul-2008

POL_004_JC25_268.p 12-Jul-2008 POL_004_JC25_269.p 12-Jul-2008 POL 004-JC25-270p 12-Jul-2008 POL_004_JC25_271.p 12-Jul-2008 POL_-004_JC25_272.p 12-Jul-2008 POL_004_JC25_273.p 12-Jul-2008 POL_004_JC25_274.p 12-Jul-2008 POL_004_JC25_275.p 12-Jul-2008 POL_004_JC25_276.p 12-Jul-2008 POL_004_JC25_277.p 12-Jul-2008 POL_004_JC25_278.p 12-Jul-2008 POL_004_JC25-279.p 12-Jul-2008 POL_004_JC25_280.p 12-Jul-2008 POL_004_JC25_281.p 12-Jul-2008 POL_004_JC25_282.p 12-Jul-2008 POL_004_JC25_283.p 12-Jul-2008 POL_004_JC25_284.p 12-Jul-2008 POL_004_JC25_286.p 12-Jul-2008 POL_-004_JC25_287.p 12-Jul-2008 POL_004_JC25_288.p 12-Jul-2008 POL_004_JC25_289.p 12-Jul-2008 POL_004_JC25_290.p 12-Jul-2008 POL_004_JC25_291.p 12-Jul-2008 POL_004_JC25_292.p 12-Jul-2008 POL_004_JC25_293.p 12-Jul-2008 POL_004_JC25_294.p 12-Jul-2008 POL_004_JC25_296.p 12-Jul-2008 POL_004_JC25_297.p 12-Jul-2008 POL_004_JC25 298.p 12-Jul-2008 POL_004_JC25_299.p 12-Jul-2008 POL_004_JC25_300.p 12-Jul-2008 POL_004_JC25_301.p 12-Jul-2008 POL_004_JC25_302.p 12-Jul-2008 POL_004-JC25 304.p 12-Jul-2008 POL_004_JC25_305.p 12-Jul-2008 POL_004_JC25_306.p 12-Jul-2008 OL_004_JC25_307.p 12-Jul-2008 OL_004_JC25_308.p 12-Jul-2008 POL_004_JC25_309.p 12-Jul-2008 POL_004_JC25_310.p 12-Jul-2008 POL_004_JC25_311.p 12-Jul-2008 POL_004_JC25_312.p 12-Jul-2008 POL 004 JC25 313.p 12-Jul-2008 POL_004_JC25_314.p 12-Jul-2008 POL_004_JC25_315.p 12-Jul-2008 POL $004^{-} \mathrm{JC} 25^{-317}$ p 12-Jul-2008 OL-004-JC25-318.p 12-Jul 2008 POL_004_JC25_318.p 12-Jul-2008 POL_004_JC25_319.p 12-Jul-2008 POL_004_JC25_320.p 12-Jul-2008 POL_004_JC25_321.p 12-Jul-2008 POL 004 JC25 323.p 13-Jul-2008 POL_004_JC25_324.p 13-Jul-2008 POL_004_JC25_325.p 13-Jul-2008 POL_004 JC25_326.p 13-Jul-2008 POL_004_JC25_327.p 13-Jul-2008 POL_004_JC25_328.p 13-Jul-2008 POL_004_JC25_329.p 13-Jul-2008 $\begin{array}{ll}\text { POL_004_JC25_330.p } & \text { 13-Jul-2008 } \\ \text { POL 004 JC25 331.p } & 13-J u l-2008\end{array}$ POL-004_JC25_331.p 13-Jul-2008 POL_004_JC25_333.p 13-Jul-2008 POL_004_JC25_334.p 13-Jul-2008 POL-004-JC25_335.p 13-Jul-2008 POL_004_JC25_337.p 13-Jul-2008 POL_004_JC25_338.p 13-Jul-2008 POL_004_JC25_339.p 13-Jul-2008 POL_004_JC25_340.p 13-Jul-2008 POL_004_JC25_341.p 13-Jul-2008 POL_004_JC25_342.p 13-Jul-2008 POL_004_JC25_343.p 13-Jul-2008 POL_004_JC25_344.p 13-Jul-2008 POL_004_JC25_346.p 13-Jul-2008 POL_004_JC25_346.p 13-Jul-2008 POL_004_JC25_348.p 13-Jul-2008 POL_004_JC25_349.p 13-Jul-2008 POL_004_JC25_350.p 13-Jul-2008 POL_004_JC25_351.p 13-Jul-2008 POL_004_JC25_352.p 13-Jul-2008 POL_004_JC25_353.p 13-Jul-2008 POL_004_JC25_354.p 13-Jul-2008 POL_004_JC25_355.p 13-Jul-2008 POL_004_JC25_356.p 13-Jul-2008 POL_004_JC25_357.p 13-Jul-2008 POL_004_JC25_358.p 13-Jul-2008 POL_004_JC25_359.p 13-Jul-2008
POL 004 JC25 360.p 13-Jul-2008 OOL_004_JC25_360.p 13-Jul-2008 POL_004_JC25_362.p 13-Jul-2008 POL_004_JC25_363.p 13-Jul-2008 POL_004_JC25_365.p 13-Jul-2008

18:33:08 $18: 38: 02$
$18: 42: 48$
$-7.837232 e+000$ $-7.851077 e+000$ $-7.846160 \mathrm{e}+000$ $-7.833457 e+000$ $-7.821547 e+000$ $-7.809679 e+000$ $-7.798602 \mathrm{e}+000$ $-7.797170 \mathrm{e}+000$ $-7.808224 \mathrm{e}+000$ $-7.818866 e+000$ $-7.829774 \mathrm{e}+000$ $-7.829774 \mathrm{e}+000$ $-7.842487 \mathrm{e}+000$
$-7.853680 \mathrm{e}+000$ $-7.853680 e+000$
$-7.864202 e+000$ $-7.877938 \mathrm{e}+000$ $-7.879166 e+000$
$-7.866068 \mathrm{e}+000$
$-7.854043 e+000$
$-7.842172 \mathrm{e}+000$
$-7.829322 \mathrm{e}+000$
$-7.829322 \mathrm{e}+000$
$-7.829331 \mathrm{e}+000$
$-7.829331 \mathrm{e}+000$
$-7.855722 \mathrm{e}+000$
$-7.855722 \mathrm{e}+000$
$-7.866056 \mathrm{e}+000$ $-7.866056 e+000$
$-7.885433 e+000$ $-7.897875 \mathrm{e}+000$ $-7.905345 e+000$
$-7.882022 \mathrm{e}+000$
$-7.868804 e+000$
$-7.855243 e+000$
$-7.848210 e+000$
$-7.838810 e+000$
$-7.821196 e+000$
$-7.819198 \mathrm{e}+000$
$-7.830960 e+000$
$-7.844716 e+000$
$-7.858449 e+000$
$-7.872873 e+000$
$-7.882641 e+000$
$-7.871911 \mathrm{e}+000$
$-7.852721 e+000$
$-7.810210 \mathrm{e}+000$
$-7.817083 \mathrm{e}+000$ $-7.824659 \mathrm{e}+000$ $-7.833135 e+000$
$-7.839230 e+000$
$-7.840972 \mathrm{e}+000$
$-7.843543 e+000$
$-7.846239 e+000$
$-7.834473 \mathrm{e}+000$
$-7.834473 \mathrm{e}+000$
$-7.819388 \mathrm{e}+000$
$-7.819388 \mathrm{e}+000$
$-7.801550 \mathrm{e}+000$
$-7.801550 e+000$
$-7.782093 e+000$ $-7.763073 \mathrm{e}+000$ $-7.739952 e+000$
$-7.713066 e+000$
$-7.693753 e+000$
$-7.678407 e+000$
$-7.667351 e+000$
$-7.667351 \mathrm{e}+000$
$-7.661164 \mathrm{e}+000$
$-7.665211 \mathrm{e}+000$
-7.665098 e+000 $-7.665133 e+000$ $-7.665165 \mathrm{e}+000$
$-7.665073 e+000$
$-7.665118 e+000$
$-7.665202 e+000$
$-7.665128 e+000$
$-7.665151 e+000$
$-7.665151 e+000$
$-7.665098 e+000$
$-7.665197 e+000$
$-7.665147 e+000$
$-7.665066 \mathrm{e}+000$
$-7.665281 e+000$
$-7.665525 e+000$
$-7.667988 e+000$
$-7.667864 e+000$
$-7.667205 e+000$
$-7.667234 \mathrm{e}+000$
$-7.668217 e+000$
$-7.668387 e+000$
$-7.668488 \mathrm{e}+000$
$-7.668377 \mathrm{e}+000$
$-7.668392 e+000$
$-7.668474 \mathrm{e}+000$
$-7.668571 \mathrm{e}+000$
$-7.668597 e+000$
$-7.668606 \mathrm{e}+000$
$-7.668711 e+000$
$-7.668744 \mathrm{e}+000$
$-7.668894 \mathrm{e}+000$
$-7.668925 e+000$
$-7.668943 e+000$
$-7.669014 e+000$
$-7.669144 \mathrm{e}+000$
$-7.669139 e+000$
$-7.669175 \mathrm{e}+000$
$-7.669175 \mathrm{e}+000$
$-7.669274 \mathrm{e}+000$
$-7.669266 e+000$
$4.982332 \mathrm{e}+001$
$4.982482 \mathrm{e}+001$ $4.982482 \mathrm{e}+001$
$4.983418 \mathrm{e}+001$ $4.983418 \mathrm{e}+001$
$4.984201 \mathrm{e}+001$ $4.984201 \mathrm{e}+001$
$4.984948 \mathrm{e}+001$ $4.984948 \mathrm{e}+001$
$4.985703 \mathrm{e}+001$ $4.985703 \mathrm{e}+001$ $4.986420 \mathrm{e}+001$ $4.987337 e+001$ $4.987244 \mathrm{e}+001$ $4.986603 \mathrm{e}+001$ $4.98603 \mathrm{e}+001$ $4.985932 \mathrm{e}+001$ $4.985151 \mathrm{e}+001$ $4.984423 \mathrm{e}+001$ $4.983710 \mathrm{e}+001$ $4.983674 \mathrm{e}+001$ $4.984566 \mathrm{e}+001$ $4.985352 \mathrm{e}+001$ $4.986108 \mathrm{e}+001$ $4.986859 \mathrm{e}+001$ $4.986859 \mathrm{e}+001$ $4.988798 \mathrm{e}+001$ $4.988798 \mathrm{e}+001$ $4.987745 \mathrm{e}+001$
$4.986952 \mathrm{e}+001$ $4.986952 \mathrm{e}+001$
$4.985576 \mathrm{e}+001$ $4.985576 e+001$
$4.985311 \mathrm{e}+001$ $4.985311 \mathrm{e}+001$
$4.986193 \mathrm{e}+001$ $4.986193 e+001$
$4.987687 e+001$ $4.988369 \mathrm{e}+001$ $4.989090 \mathrm{e}+001$ $4.989192 \mathrm{e}+001$ $4.989192 \mathrm{e}+001$ $4.988964 \mathrm{e}+001$
$4.989012 \mathrm{e}+001$ $4.989012 \mathrm{e}+001$
$4.989926 \mathrm{e}+001$ $4.989926 \mathrm{e}+001$
$4.990300 \mathrm{e}+001$ $4.990300 \mathrm{e}+001$
$4.989838 \mathrm{e}+001$ $4.989418 \mathrm{e}+001$ $4.988953 \mathrm{e}+001$ $4.988114 \mathrm{e}+001$ $4.987064 \mathrm{e}+001$ $4.985924 \mathrm{e}+001$ $4.985924 \mathrm{e}+001$
$4.978638 \mathrm{e}+001$ $4.978638 \mathrm{e}+001$
$4.978202 \mathrm{e}+001$ $4.978202 \mathrm{e}+001$
$4.978132 \mathrm{e}+001$ $4.978132 \mathrm{e}+001$
$4.978321 \mathrm{e}+001$ $4.978585 \mathrm{e}+001$ $4.978622 \mathrm{e}+001$ $4.978704 \mathrm{e}+001$ $4.978807 \mathrm{e}+001$ $4.978767 \mathrm{e}+001$ $4.978767 \mathrm{e}+001$
$4.978331 \mathrm{e}+001$ $4.978331 \mathrm{e}+001$
$4.977831 \mathrm{e}+001$ $4.977831 \mathrm{e}+001$
$4.977289 \mathrm{e}+001$ $4.977289 \mathrm{e}+001$
$4.976761 \mathrm{e}+001$ $4.976761 \mathrm{e}+001$
$4.976102 \mathrm{e}+001$ $4.975383 \mathrm{e}+001$ $4.975111 \mathrm{e}+001$ $4.974666 \mathrm{e}+001$ $4.974417 \mathrm{e}+001$ $4.974417 \mathrm{e}+001$ $4.974653 \mathrm{e}+001$ $4.974917 \mathrm{e}+001$
$4.974897 \mathrm{e}+001$ $4.974897 \mathrm{e}+001$
$4.974898 \mathrm{e}+001$ $4.974898 \mathrm{e}+001$
$4.974900 \mathrm{e}+001$ $4.974900 \mathrm{e}+001$
$4.974902 \mathrm{e}+001$ $4.974900 \mathrm{e}+001$ $4.974898 \mathrm{e}+001$ $4.974897 \mathrm{e}+001$ $4.974895 \mathrm{e}+001$ $4.974895 \mathrm{e}+001$
$4.974899 \mathrm{e}+001$ $4.974899 \mathrm{e}+001$
$4.974895 \mathrm{e}+001$ $4.974895 \mathrm{e}+001$
$4.974902 \mathrm{e}+001$ $4.974902 \mathrm{e}+001$
$4.974911 \mathrm{e}+001$ $4.974911 \mathrm{e}+001$
$4.974963 \mathrm{e}+001$ $4.974972 \mathrm{e}+001$ $4.974963 \mathrm{e}+001$ $4.974796 \mathrm{e}+001$ $4.974607 \mathrm{e}+001$ $4.974607 \mathrm{e}+001$
$4.974545 \mathrm{e}+001$ $4.974545 \mathrm{e}+001$ $4.974501 \mathrm{e}+001$
$4.974495 \mathrm{e}+001$ $4.974495 \mathrm{e}+001$
$4.974503 \mathrm{e}+001$ $4.974503 \mathrm{e}+001$
$4.974495 \mathrm{e}+001$ $4.974490 \mathrm{e}+001$ $4.974513 \mathrm{e}+001$ $4.974556 \mathrm{e}+001$ $4.974572 \mathrm{e}+001$ $4.974586 \mathrm{e}+001$ $4.974601 \mathrm{e}+001$ $4.974627 \mathrm{e}+001$ $4.974651 \mathrm{e}+001$ $4.974677 \mathrm{e}+001$ $4.974721 \mathrm{e}+001$ $4.974733 \mathrm{e}+001$ $4.974759 \mathrm{e}+001$ $4.974769 \mathrm{e}+001$ $4.974786 \mathrm{e}+001$ $4.974812 \mathrm{e}+001$ $4.974843 \mathrm{e}+001$

	03:37:00	000	
13-Jul-2008	03:41:52	$-7.669373 \mathrm{e}+000$	$4.974940 \mathrm{e}+001$
13-J			
POL_004_JC25_369.p 13-Jul-2008			
13			
13-			
C2	12:56:58	$7.707678 \mathrm{e}+000$	
C25	13:	-7.	$4.974552 \mathrm{e}+001$
14-	13:06:22	-7.684595e+00	$4.975312 \mathrm{e}+001$
25_379.p 14-Jul-2008	13:11:26	-7.672399e+000	4.9
25_380.p 14-Jul-2008	13:16:18	-7.660551e	$4.976897 \mathrm{e}+001$
004_JC25_381.p 14-		7.647349e+	
004_JC25_382.p 14-Jul-200	13	. 6	
-004 JC25	13:46:08		
L_004_JC25-387.p 14-Juld	13:	-7.612621e+000	
25	13:5	-7.62	
C25_389.p 14-	14:	-7.6	$4.975964 \mathrm{e}+001$
C25_390.p 14-J	14:	-7.646013e	
004_JC25_391.p 14-	14:09:42	-7.658254e+	$4.974467 \mathrm{e}+001$
14		7.669824e+00	
004_JC25_393.p 14-Jul-2008		$7.670229 \mathrm{e}+0$	
		. 68	
	14:25		
-25			
C25_397.p 14-		-7.728209e+00	
L_004_JC25_398.p 14-Jul	14:	7.735210e+000	
25_399.p 14-Jul-2	14:	-7.725490e+	
25_400.p 14-Jul	14	-7.7	
C25_401.p 14-	14:55:14	-7.702304e+00	$4.974279 \mathrm{e}+001$
04_JC25_402.p 14-Jul-2	14:5	-7.691479e+	$4.974989 \mathrm{e}+001$
403.p 14-	15	7.679609e+000	
004_JC25_404.p 14-Jul-200	15:09:16	-7.667412e+000	
405.p 14-Jul-2008	15:14	-7.654982e+000	
406.p 14-Jul-2008	15:1	7.641691e+000	
40	15:23	7.631298e+000	
25_408.p 14-	15:2	7.619557e+000	
C25-409.p 14-Jul-20	15:3	-7.605057e+000	
C25_410.p 14-Jul-2008	15:37:3	$7.601083 \mathrm{e}+000$	
25_411.p 14-J		-7.6	
25		-7.6	
L_004_JC25_413.p 14-		-7.627949e+	
		-7.648219e+000	
14-Jul-2	16:03:	-7.658020e+000	
004_JC25_417.p 14-Jul-20	16:08:00	$7.667650 \mathrm{e}+0$	
118.p 14-	16:11:5	-7.676939e	
C25-419.p 14-J	16:1	-7.686379e+000	
C25-420.p 14-Jul-20	16:1	$-7.695773 \mathrm{e}+000$.972137e+001
25_421.p 14-J	16:2	+000	
25_422.p 14-J		7.7	
		-7.726651e+000	
		-7.73	
		$-7.720257 \mathrm{e}+000$	
04_JC25_427.p 14-Jul-200	16:47	-7710539e+000	
-J	16:51:12	7.700660e+0	
	16:55	.6909	
C25_430.p 14-Jul-2.	6:5	07	
25_431.p 14-	7:		
25_432.p 14-J	7:07	7.6	
14-J	17:	$7.650623 \mathrm{e}+000$	
4-J	17:	$-7.640974 \mathrm{e}+00$	
	17:	$-7.631290 \mathrm{e}+000$	
14-J	17	-7.621404e+000	
		$-7.610295 \mathrm{e}+000$	
,			
C25_440.p 14		12	
C25-441.p 14-Jul-2	17:42	7.611165	
25_442.p 14-Ju-	17:4	7.62	
C25_443.p 14-Jul-2008	17:50:5	7.629877e+000	
25_444.p 14-Jul-2008	17:54	-7.639184e+000	
14-Ju	17:5	$-7.648202 \mathrm{e}+000$	$4.974930 \mathrm{e}+001$
25_446.p 14-Ju	18:02:28	$-7.657566 \mathrm{e}+000$	4.9
25_447.p 14-Jul-	18:101	$-7.666610 \mathrm{e}+000$.97
25_448.p 14-Jul-200	18:	7.676462e+000	. 97
14-	18	7.68	
		-	
C25_452.p 14	寿	-	
C25_453.p 14-	18:2	$-7.723375 \mathrm{e}+000$	
L_004_JC25_454.p 14-Jul-2008		$7.735586 \mathrm{e}+000$	
004_JC25_455.p 14-Jul-2008	18:36:26	7.743426e+000	
04_JC25_456.p 14-Jul-2008	18:40:16	$-7.740084 \mathrm{e}+000$	
C25_457.p 14-Jul-2008	18:44:10	-7.730722e+000	$4.972305 \mathrm{e}+001$
004_JC25_458.p 14-Jul-2008	18:47:5	$-7.721835 \mathrm{e}+000$	$4.972895 \mathrm{e}+001$
L_004_JC25_459.p 14-Jul-2008	19:4	$-7.613456 \mathrm{e}+000$	$4.977374 \mathrm{e}+001$
004_JC25_460.p 14		$-7.623702 \mathrm{e}+000$	
		-7.654098e+000	

POL_004_JC25_366.p 13-Jul-2008 POL_004 JC25 368.p 13-Jul-2008 POL_004_-JC25_369.p 13-Jul-2008 POL_004_JC25_370.p 13-Jul-2008 POL-004-JC25-372.p 13-Jul-2008 POL_004_JC25_373.p 13-Jul-2008 POL_004_JC25_374.p 13-Jul-2008 POL_004_JC25_376.p 14-Jul-2008 POL_004_JC25_377.p 14-Jul-2008 POL_004_JC25_378.p 14-Jul-2008 POL_004_JC25_379.p 14-Jul-2008 POL_004_JC25_381.p 14-Jul-2008 POL-004-JC25_382.p 14-Jul-2008 POL_004_JC25_384.p 14-Jul-2008 POL_004_JC25_385.p 14-Jul-2008 POL_004_JC25_387.p 14-Jul-2008 POL_004_JC25_388.p 14-Jul-2008 POL_004_JC25_389.p 14-Jul-2008 POL_004_JC25_390.p 14-Jul-2008 POL 004-JC25 392.p 14-Jul-2008 POL_004_JC25_393.p 14-Jul-2008 POL_004_JC25_394.p 14-Jul-2008 POL_004_JC25_396.p 14-Jul-2008 POL_004_JC25_397.p 14-Jul-2008 POL_004_JC25_398.p 14-Jul-2008 $\begin{array}{ll}\text { POL_004_JC25_399.p } & \text { 14-Jul-2008 } \\ \text { POL 004 JC25 400.p } & 14 \text {-Jul-2008 }\end{array}$ POL_004_JC25_401.p 14-Jul-2008 POL_004_JC25_402.p 14-Jul-2008 POL_004_JC25_404.p 14-Jul-2008 POL_004_JC25_405.p 14-Jul-2008 POL_004_JC25_406.p 14-Jul-2008 POL_004_JC25_408.p 14-Jul-2008 POL_004_JC25_409.p 14-Jul-2008 POL_004_JC25_411.p 14-Jul-2008 POL_004_JC25_413.p 14-Jul-2008 POL_004_JC25_414.p 14-Jul-2008 POL_004_JC25_416.p 14-Jul-2008 POL_004_JC25_417.p 14-Jul-2008 POL_004_JC25_418.p 14-Jul-2008 POL_004_JC25-419.p 420.p 14-Jul-2008 POL_004_JC25_421.p 14-Jul-2008 POL_004_JC25_422.p 14-Jul-2008 POL 004 JC25 424.p 14-Jul-2008 POL_004_JC25_425.p 14-Jul-2008 POL_004_JC25_426.p 14-Jul-2008 POL_004_JC25_428.p 14-Jul-2008 POL-004-JC25-430.p 14-Jul-2008 POL_004_JC25_431.p 14-Jul-2008 POL_004_JC25_432.p 14-Jul-2008 POL_004_JC25_434.p 14-Jul-2008 POL_004_JC25_435.p 14-Jul-2008 POL_004_JC25_436.p 14-Jul-2008 POL_004_JC25_437.p 14-Jul-2008 POL 004-JC25 439.p 14-Jul-2008 POL_004_JC25_440.p 14-Jul-2008 POL_004_JC25_441.p 14-Jul-2008 POL_004_JC25_442.p 14-Jul-2008 POL_004_JC25_443.p 14-Jul-2008 POL_004_JC25_444.p 14-Jul-2008 POL_004_JC25_446.p 14-Jul-2008 POL_004_JC25_447.p 14-Jul-2008 POL 004 -JC25 449.p 14-Jul-2008 POL_004_JC25_450.p 14-Jul-2008 POL_004_JC25_451.p 14-Jul-2008 POL_004_JC25_452.p 14-Jul-2008 POL_004_JC25_453.p 14-Jul-2008 POL_004_JC25_455.p 14-Jul-2008 POL_004_JC25_456.p 14-Jul-2008 POL_004_JC25_457.p 14-Jul-2008 POL 004 -JC25_459.p 14-Jul-2008 POL_004_JC25_460.p 14-Jul-2008 P25 462 p 14-Jul-2008 POL_004_JC25_463.p 14-Jul-2008

21-Jul-2008			
21			
21-J			
21-Jul-2008		-7.734274e+000	
21-Jul-2008	12:01:16	-7.723147e+000	
C25_572.p 21-Jul-2008	12:	-7.711447e+000	$4.971318 \mathrm{e}+001$
25_573.p 21-Jul-2008	12:	-7.698138e+	$4.971879 \mathrm{e}+001$
25_574.p 21-Jul-2008	12:16:28	$-7.686819 \mathrm{e}+000$	4.9
25	12:	-7.	$4.973351 \mathrm{e}+001$
21	12:	-7.6	
21-Jul-2	12:31:2	.6523	
C25_578.p 21-Jul-20		-641416e+000	
25_579.p 21-Jul-20088	12:40		
L_004_JC25_581.p 21-Jul			
C25_582.p 21	12:54:4	-7.602238e+000	
L_004_JC25_583.p 21-J	13:00:08	-7.603055e+000	
C25_584.p 21-Jul-	13:04:58	-7.617248e+000	
L_004_JC25_585.p 21-Jul-2008	13:	-7.	
21	13:1	-7.639463e	
25	13:	-7.	
C25_588.p 21	13:	-7.61	$4.976586 \mathrm{e}+001$
25-589.p 21	13	-7.672350e+000	
L_004_JC25_590.p 21-Jul-200	13:33:	-7.682211e+000	
25_591.p 21-Jul-2008	13:38:2	7.692876e+000	
-		-7.698562e+000	
004_JC25_593.p 21-Ju			
C25_594.p 21-	3:		
C25_595.p 21-	13:4	$7.718221 \mathrm{e}+000$	
C25_596.p 21-Jul-2	13:	00	
C25_597.p 21-Jul-2008	13:	-7.73	
C25_598.p 21-Jul-2		-7.6	
25 599p 21-Jul-20088	14	-7.606992e+	$4.977783 \mathrm{e}+001$
C25 600.p 21-Jul-2008	15:	$-7.599349 \mathrm{e}+$	978
C25	15:	$-7.599349 \mathrm{e}+$	
C25		$-7.607744 \mathrm{e}+000$	
C25_603.p 21-Jul-2008	15:12:16	$-7.621741 \mathrm{e}+000$	
C25_604.p 21-Jul-2008	15:18:0	-7.634696e+000	
25_605.p 21-Jul-2008	15:24:1	-7.648227e+000	
25_606.p 21-Jul-2008	15:28:5	7.658289e+000	
25_607.p 21	15:34:30	$7.671046 \mathrm{e}+000$	
C25_608.p 21-J	5:3	$7.681506 \mathrm{e}+000$	
J25-609.p 21-J	15:	$-7.693097 \mathrm{e}+000$	
C25_610.p 21-Ju	15:49:		
C25_611.p 2			
C25_612.p 21-Jul-2008	16:		
L_004_JC25_616.p 21-Jul-200	16:22:02	$-7.694933 \mathrm{e}+000$	
25_617.p 21-Jul-200	16:27:00	$-7.682104 \mathrm{e}+000$	
004_JC25_618.p 21-Jul-2008	6:32:02	-7.669377e+000	
004_JC25_619.p 21-Jul-200	16:37:00	$7.656732 \mathrm{e}+000$	
25_620.p 21-Ju	16:42:1	.6	
C25_621.p 21-Ju	16:4	7.6	
C25_622.p 21-Ju	6:5	-7.616530e+00	4.97
C25_623.p 21-Jul	16:5	7.6	$977974 \mathrm{e}+001$
21-J		$-7.595660 \mathrm{e}+00$	
4_JC25_625.p 21-Jul-2008		-7.607921e+000	
25_626.p 21-Jul-200	17:1	$-7.622778 \mathrm{e}+000$	$4.978993 \mathrm{e}+001$
	17:2	-7.635010e+	$4.978179 \mathrm{e}+001$
		-7.6485	
		$-7.662185 \mathrm{e}+000$	
	17:37:2		
L_004_JC25_631.p 21-Jul-2008	17:44:14	-7.691518e+000	
C25_632.p 21-Jul-200	17:49:	703	
004_JC25_633.p 21-J		-7.717707e+000	
C25_634.p 21-Ju	8:01	$-7.731250 \mathrm{e}+000$	
L_004_JC25-635.p 21-Ju		-7.737113e+000	
L_004_JC25_636.p 21-Ju	18:12:4		
25_637.p 21-J	18:18:20	-7.704901e+000	
25 638.p 21-J	18:2	$-7.689666 \mathrm{e}+000$. 97
25_639.p 21-Jul-2	18:2	$-7.675300 \mathrm{e}+000$	97
25_640.p 21-Ju-	18:3	$-7.661287 \mathrm{e}+000$	97
C25	18	$-7.646564 \mathrm{e}+000$	
25_642.p 21-Ju		-7.63358	
25_643.p 21-Jul-20	18:5	-7.6203	
	保	,	
L_004_JC25_645.p 21-Jul-2008	:0	$-7.600635 \mathrm{e}+000$	
25_646.p 21-Ju-	9:11:	.6151	
25_647.p 21-J	9:16:4	俍	
L_004_JC25_648.p 21-Jul-2008	9:22:2	$7.645637 \mathrm{e}+000$	
L_004_JC25_649.p 21-Jul-2008	19:27	$7.658512 \mathrm{e}+000$	9781
L_004_JC25_650.p 21-Jul-2008	19:33:20	$-7.671035 \mathrm{e}+000$	4.97732
04_JC25_651.p 21-Jul-2008	19	$-7.683824 \mathrm{e}+000$	
C25_652.p 21-Jul-2008	19:44:22	$-7.696312 \mathrm{e}+000$	975
25_653.p 21-Jul-2008	19:50:32	$-7.711246 \mathrm{e}+000$	$4.974846 \mathrm{e}+001$
25_654.p 21-Jul-2008	19:56:14	$-7.724862 \mathrm{e}+000$	975395e+001
C25_655.p 21-Jul-2008	20:02	$-7.740254 \mathrm{e}+000$. 976
004_JC25_656.p 21	20:0	$-7.752720 \mathrm{e}+000$	97
L_004_JC25_657.p 21	20:14:2	-7.765831e+000	
POL_004_JC25_658.p 21-Jul-2008			
	20:3		

POL_004_JC25_563.p 21-Jul-2008 POL_004_JC25_565.p 21-Jul-2008 POL_004_JC25_566.p 21-Jul-2008 POL_004_JC25_567.p 21-Jul-2008 POL-004-JC25-569.p 21-Jul-2008 POL_004-JC25_570.p 21-Jul-2008 POL-004-JC25_571.p 21-Jul-2008 POL_004_JC25_573.p 21-Jul-2008 POL_004_JC25_574.p 21-Jul-2008 POL_004_JC25_575.p 21-Jul-2008 POL_004_JC25_577.p 21-Jul-2008 POL_004_JC25_578.p 21-Jul-2008 POL_004_JC25_580.p 21-Jul-2008 POL_004_JC25_581.p 21-Jul-2008 POL_004_JC25_583.p 21-Jul-2008 POL_004_JC25_584.p 21-Jul-2008 POL_004_JC25_585.p 21-Jul-2008 POL_004_JC25_586.p 21-Jul-2008
POL_004_JC25_587.p 21-Jul-2008 POL_004_JC25_588.p 21-Jul-2008 POL_004_JC25_590.p 21-Jul-2008 POL_004_JC25_591.p 21-Jul-2008 POL_004_JC25_593.p 21-Jul-2008 POL_004_JC25_594.p 21-Jul-2008 POL_004_JC25_595.p 21-Jul-2008 POL_004_JC25_596.p 21-Jul-2008
POL 004 JC25 597.p 21-Jul-2008 POL_004-JC25_598.p 21-Jul-2008 POL-004-JC25-600.p 21-Jul-2008 POL_004_JC25_601.p 21-Jul-2008 POL_004_JC25_603.p 21-Jul-2008 POL_004-JC25_604.p 21-Jul-2008 POL_004_JC25_605.p 21-Jul-2008 POL_004_JC25_606.p 21-Jul-2008 POL_004_JC25_608.p 21-Jul-2008 POL_004_JC25_610.p 21-Jul-2008 POL_004_JC25_611.p 21-Jul-2008 POL_004_JC25_613.p 21-Jul-2008 POL_004-JC25_614.p 21-Jul-2008 POL_004_JC25_615.p 21-Jul-2008 POL_004_JC25_616.p 21-Jul-2008 POL_004_JC25_618.p 21-Jul-2008 POL_004_JC25_619.p 21-Jul-2008 POL_004_JC25_621.p 21-Jul-2008 POL_004-JC25_622.p 21-Jul-2008 POL_004_JC25_623.p 21-Jul-2008 POL_004_JC25_624.p 21-Jul-2008
POL $004-J C 25$ 625.p 21-Jul-2008 POL_004_JC25_626.p 21-Jul-2008 POL_004_JC25_627.p 21-Jul-2008 POL-004-JC25-629p 21-Jul-2008 POL_004_JC25_630.p 21-Jul-2008 POL_004_JC25_631.p 21-Jul-2008 POL_004_JC25_632.p 21-Jul-2008 POL_004_JC25_634.p 21-Jul-2008 POL_004_JC25_635.p 21-Jul-2008 POL_004_JC25_637.p 21-Jul-2008 POL_004_JC25_638.p 21-Jul-2008 POL_004_JC25_639.p 21-Jul-2008 POL_004_JC25_640.p 21-Jul-2008 POL_004_JC25_641.p 21-Jul-2008 POL_004_JC25_643.p 21-Jul-2008 POL_004_JC25_644.p 21-Jul-2008 POL-004-JC25-646.p 21-Jul-2008 POL_004_JC25_647.p 21-Jul-2008 POL_004_JC25_648.p 21-Jul-2008 POL_004_JC25_649.p 21-Jul-2008 POL_004_JC25_650.p 21-Jul-2008 POL_004_JC25_652.p 21-Jul-2008 POL_004-JC25_653.p 21-Jul-2008 POL_004_JC25_654.p 21-Jul-2008 POL_004_JC25_656.p 21-Jul-2008 POL_004_JC25_657.p 21-Jul-2008 POL 004 JC25 659.p 21-Jul-2008 POL_004_JC25_660.p 21-Jul-2008

11:21:30 11:24:38 11:32:56 11:38:32 $11: 44: 28$
$11: 50: 06$ 11:55:40 12:01:16 12:06:28 12:16:28 12:21:28 $12: 26: 28$
$12 \cdot 31: 22$ 12:31:22
12:36:16 $12: 40: 52$
$12: 45: 30$ 12:50:08 12:54:44 13:04:58 13:09:50 13:14:36 13:24:20 13:29:06 13:33:42 13:38:26 13:44:46 13:47:18 13:49:50 13:54:46 14:52:08 14:57:24 15:02:16 15:07:18 15:12:16 15:18:08 15:24:16 $15: 28: 54$
$15: 34: 30$ $15: 39: 14$
$15: 44: 22$ 15:49:18 15:55:42 16:00:08 16:05:48 16:11:56 16:16:56 16:22:02 16:32:02 16:37:00 16:42:12 16:47:54 16:58:34 17:03:48 17:14:58 17:20:22 17:26:02 17:31:54 17:37:28 17:49:20 17:55:20 18:01:12 18:07:04 18:18:20 18:24:00 18:29:46 18:35:26 18:41:40 $18: 47: 12$
18:53:02 18:58:40 19:05:38 19:11:16 19:22:24 19:27:50 19:33:20 19:38:52 $19: 44: 22$
$19: 50: 32$ 19:56:14 20:02:56 20:14:26 20:21:14 20:33:10
$-7.663482 \mathrm{e}+000$ $7.671143 \mathrm{e}+000$.677451e+000 $.690415 \mathrm{e}+000$ $.702720 \mathrm{e}+000$.715651e+000 $.727826 e+000$ $7.734274 \mathrm{e}+000$ $711447 \mathrm{e}+000$ $7.698138 \mathrm{e}+000$.686819e+000 $.675446 e+000$ $7.652387 \mathrm{e}+000$ $-7.641416 \mathrm{e}+000$ $7.631847 \mathrm{e}+000$.621770e+000 .602238e+000 $7.603055 \mathrm{e}+000$ $.617248 \mathrm{e}+000$ $.629088 \mathrm{e}+000$.639463e+000 $.650536 \mathrm{e}+000$ $.672350 \mathrm{e}+000$.682211e+000 $.692876 \mathrm{e}+000$ $.698562 \mathrm{e}+000$ $.707227 e+000$.718221e+000 $.729866 e+000$ $7.738511 \mathrm{e}+000$ $.618414 \mathrm{e}+000$ $7.599349 \mathrm{e}+000$ $7.599349 \mathrm{e}+000$ $.607744 \mathrm{e}+000$.634696e+000 $7.648227 \mathrm{e}+000$ 7.658289 e+000 $.671046 \mathrm{e}+000$ $.693097 e+000$ $.704189 \mathrm{e}+000$ $.718426 e+000$ $.736937 \mathrm{e}+000$.720499e+000 $7.707677 \mathrm{e}+000$.694933e+000 $.669377 \mathrm{e}+000$.656732e+000 $.643785 \mathrm{e}+000$ $.629554 \mathrm{e}+000$ $.616530 \mathrm{e}+000$ $7.595660 \mathrm{e}+000$ $7.607921 e+000$.622778e+000 $.648504 \mathrm{e}+000$ $7.662185 \mathrm{e}+000$ $7.675701 \mathrm{e}+000$ $7.691518 \mathrm{e}+000$ $7.703746 \mathrm{e}+000$ $.717707 \mathrm{e}+000$ $7.731250 \mathrm{e}+000$ $.720015 \mathrm{e}+000$.704901e+000 .689666e+000 $7.661287 \mathrm{e}+000$ $.646564 \mathrm{e}+000$ $.633580 \mathrm{e}+000$.620347e+000 .607752e+000 $.615165 \mathrm{e}+000$.631823e+000 .645637e+000 $.658512 \mathrm{e}+000$ $.683824 \mathrm{e}+000$ $.696312 \mathrm{e}+000$ $.711246 e+000$ 724862e+000 $7.752720 \mathrm{e}+000$.765831e+000 $793123 \mathrm{e}+000$ $7.806788 \mathrm{e}+000$
$4.976585 \mathrm{e}+001$ $4.976139 \mathrm{e}+001$.975752e+001 $4.974064 \mathrm{e}+001$ $4.973195 \mathrm{e}+001$ $4.972369 \mathrm{e}+001$ $4.971442 \mathrm{e}+001$ $4.971318 \mathrm{e}+001$ $4.971879 \mathrm{e}+001$ $4.972611 \mathrm{e}+001$ $4.973351 e+001$ $4.974793 \mathrm{e}+001$ $4.975508 \mathrm{e}+001$ $4.976848 \mathrm{e}+001$ $4.977537 \mathrm{e}+001$ $4.978193 \mathrm{e}+001$ $4.979116 \mathrm{e}+001$ $4.979317 \mathrm{e}+001$ $4.978710 \mathrm{e}+001$
$4.977975 \mathrm{e}+001$ $4.977266 \mathrm{e}+001$ $4.976586 \mathrm{e}+001$ $4.975884 \mathrm{e}+001$ $4.974560 \mathrm{e}+001$ $4.974182 \mathrm{e}+001$ $4.973620 \mathrm{e}+001$ $4.973268 \mathrm{e}+001$ $4.972907 \mathrm{e}+001$ $4.972218 \mathrm{e}+001$ $4.971407 \mathrm{e}+001$ $4.977783 \mathrm{e}+001$ $4.978606 \mathrm{e}+001$ $4.978606 \mathrm{e}+001$ $4.979373 \mathrm{e}+001$ $4.979144 \mathrm{e}+001$ $4.978310 \mathrm{e}+001$
$4.977394 \mathrm{e}+001$ $4.976738 \mathrm{e}+001$ $4.975913 \mathrm{e}+001$ $4.975223 \mathrm{e}+001$ $4.973749 \mathrm{e}+001$ $4.972843 \mathrm{e}+001$ $4.972205 \mathrm{e}+001$ $4.970669 \mathrm{e}+001$ $4.971435 \mathrm{e}+001$ $4.973021 \mathrm{e}+001$ $4.973772 \mathrm{e}+001$ $4.974530 \mathrm{e}+001$ $4.975318 \mathrm{e}+001$ $4.976218 \mathrm{e}+001$ $4.977097 \mathrm{e}+001$
$4.977974 \mathrm{e}+001$ $4.978958 \mathrm{e}+001$ $4.979643 \mathrm{e}+001$ $4.978179 \mathrm{e}+001$ $4.977332 \mathrm{e}+001$ $4.976466 \mathrm{e}+001$ $4.975642 \mathrm{e}+001$ $4.974659 \mathrm{e}+001$
$4.973909 \mathrm{e}+001$ $4.973018 \mathrm{e}+001$ $4.972152 \mathrm{e}+001$ $4.970759 \mathrm{e}+001$ $4.971659 \mathrm{e}+001$ $4.972539 \mathrm{e}+001$ $4.973360 \mathrm{e}+001$ $4.974174 \mathrm{e}+001$ $4.975113 \mathrm{e}+001$ $4.975958 \mathrm{e}+001$
$4.976876 \mathrm{e}+001$ $4.977776 \mathrm{e}+001$ $4.978954 \mathrm{e}+001$ $4.979542 \mathrm{e}+001$ $4.979021 \mathrm{e}+001$ $4.978149 \mathrm{e}+001$ $4.977325 \mathrm{e}+001$ $4.976502 \mathrm{e}+001$
$4.975677 \mathrm{e}+001$ $4.974846 \mathrm{e}+001$ $4.975395 \mathrm{e}+001$ $4.976483 \mathrm{e}+001$ $4.978304 \mathrm{e}+001$ $4.979336 \mathrm{e}+001$ $4.981172 \mathrm{e}+001$

POL 004 JC25 661.p 21-Jul-2008 20:39:00 -7.819812e+000 POL 004 JC25 662p 21-Jul-2008 POL $004^{-} \mathrm{JC} 25$ 663.p 21-Jul-2008 POL-004-JC25-664.p 21-Jul-2008 POL_004_JC25_665.p 21-Jul-2008 POL_004_JC25_666.p 21-Jul-2008 POL_004_JC25_667.p 21-Jul-2008 POL 004 JC25 668.p 21-Jul-2008 POL 004 JC25 669.p 21-Jul-2008 POL_004_JC25_670.p 21-Jul-2008 POL_004_JC25_671.p 21-Jul-2008 POL_004_JC25_672.p 21-Jul-2008 POL_004_JC25_673.p 21-Jul-2008 POL_004_JC25_674.p 21-Jul-2008 POL_004_JC25_675.p 21-Jul-2008 POL_004_JC25_676.p 21-Jul-2008 POL_004_JC25_677.p 21-Jul-2008 POL_004 JC25 678.p 21-Jul-2008 POL 004 JC25 679.p 21-Jul-2008 POL_-004_JC25_680.p 21-Jul-2008 POL-004_JC25_681.p 21-Jul-2008 POL_004_JC25_682.p 21-Jul-2008 POL_004_JC25_683.p 21-Jul-2008 POL_004_JC25_684.p 21-Jul-2008 POL_004_JC25_685.p 21-Jul-2008 POL_004_JC25_686.p 21-Jul-2008 POL 004 JC25 687.p 21-Jul-2008 POL_004 JC25 688.p 21-Jul-2008 POL_004_JC25_689.p 21-Jul-2008 POL_004_JC25_690.p 21-Jul-2008 POL_004_JC25-691.p 22-Jul-2008 $\begin{array}{ll}\text { POL_004_JC25_692.p } & 22-J u l-2008 \\ \text { POL_004_JC25_693.p } & 22-J u l-2008\end{array}$ $20: 39: 00$
$20: 44: 26$
$20: 51: 28$
$20: 57: 26$
$21: 50: 24$
$21: 56: 46$
$22: 02: 58$
$22: 07: 50$
$22: 13: 26$
$22: 19: 10$
$22: 24: 30$
$22: 30: 08$
$22: 35: 26$
$22: 40: 54$
$22: 46: 08$
$22: 51: 44$
$22: 54: 26$
$22: 54: 36$
$22: 57: 02$
$23: 03: 04$
$23: 08: 54$
$23: 14: 48$
$23: 20: 28$
$23: 26: 30$
$23: 32: 46$
$23: 38: 42$
$23: 45: 00$
$23: 48: 00$
$23: 50: 36$
$23: 56: 20$
$00: 02: 10$
$00: 07: 08$
$00: 12: 32$
$-7.819812 \mathrm{e}+000$ $-7.832147 e+000$ $-7.844471 e+000$ $-7.855015 e+000$ $-7.992165 \mathrm{e}+000$ $-8.009823 \mathrm{e}+000$ $-8.025978 \mathrm{e}+000$ $-8.032725 e+000$ $-8.039392 e+000$ $-8.044384 e+000$ $-8.044384 \mathrm{e}+000$
$-8.047796 \mathrm{e}+000$ $-8.047796 \mathrm{e}+000$ $-8.055553 e+000$ $-8.062803 e+000$ $-8.074461 e+000$ $-8.089180 \mathrm{e}+000$ $-8.104747 e+000$ $-8.112679 \mathrm{e}+000$ $-8.113153 e+000$ $-8.119850 e+000$ $-8.138912 \mathrm{e}+000$ $-8.138912 \mathrm{e}+000$ $-8.148163 e+000$ $-8.149109 \mathrm{e}+000$ $-8.149430 e+000$ $-8.149969 \mathrm{e}+000$ $-8.149690 \mathrm{e}+000$ $-8.149705 e+000$ $-8.149372 \mathrm{e}+000$ $-8.149218 e+000$ $-8.149369 \mathrm{e}+000$ $-8.149798 e+000$ $-8.150222 \mathrm{e}+000$ $-8.150341 e+000$ $-8.150274 \mathrm{e}+000$
$4.982101 \mathrm{e}+001$ $4.982974 \mathrm{e}+001$ $4.983824 \mathrm{e}+001$ $4.984534 \mathrm{e}+001$ $4.991822 \mathrm{e}+001$ $4.992740 \mathrm{e}+001$ $4.993644 \mathrm{e}+001$ $4.994388 \mathrm{e}+001$ $4.995091 \mathrm{e}+001$ $4.995574 \mathrm{e}+001$ $4.995574 \mathrm{e}+001$ $4.995887 \mathrm{e}+001$

OL_004_JC25_710.p 22-Jul-2008	06:08:58	$-7.872840 \mathrm{e}+000$	
00-JC25_711.p 22-Jul-2008	06:14:26	$-7.872801 \mathrm{e}+000$	4.9
OL_004_JC25_712.p 22-Jul-2008	06:20:10	$-7.872838 \mathrm{e}+000$	$4.989343 \mathrm{e}+001$
04_JC25_713.p 22-Jul-2008	06:25:58	-7.872787e+000	
OL_004_JC25_714.p 22-Jul-2008	06:31:24	$-7.872803 \mathrm{e}+000$	4.9
04_JC25_715.p 22-Jul-2008	06:37:06	-7.872781e+000	
OL_004_JC25_716.p 22-Jul-2008	06:42:28	$-7.872780 \mathrm{e}+000$	$4.989340 \mathrm{e}+001$
25_717.p 22-Jul-2008	06:48:06	$-7.872784 \mathrm{e}+000$	
OL_004_JC25_718.p 22-Jul-2008	06:53:48	$-7.872787 \mathrm{e}+000$	$4.989340 \mathrm{e}+001$
04_JC25_719.p 22-Jul-2008	06:59:26	-7.872797e+000	
OL_004_JC25_720.p 22-Jul-2008	07:05:14	$-7.872776 \mathrm{e}+000$	$4.989336 \mathrm{e}+001$
04-JC25_721.p 22-Jul-2008	07	$-7.872887 \mathrm{e}+000$	
OL_004_JC25_722.p 22-Jul-2008	07:16:56	$-7.872793 \mathrm{e}+000$	$4.989342 \mathrm{e}+001$
004_JC25_723.p 22-Jul-2008	07	$-7.872793 \mathrm{e}+000$	
OL_004_JC25_724.p 22-Jul-2008	07:28:34	$-7.872789 \mathrm{e}+000$	$4.989339 \mathrm{e}+001$
OL_004_JC25_725.p 22-Jul-2008	07:34:00	$-7.872782 \mathrm{e}+000$	
OL_004_JC25_726.p 22-Jul-2008	07:39:48	$-7.873079 \mathrm{e}+000$. 98
_004_JC25_727.p 22-Jul-2008	07:45:20	$-7.874146 \mathrm{e}+000$	
004_JC25_728.p 22-Jul-2008	07:51:50	$-7.875289 \mathrm{e}+000$.989406e+001
_004_JC25_729.p 22-Jul-2008		$-7.875964 \mathrm{e}+000$	
004_JC25_730.p 22-Jul-2008	08:03:04	$-7.876475 \mathrm{e}+000$	01
-004_JC25_731.p 22-Jul-2008	08:10:42	$-7.877023 \mathrm{e}+000$	
OL_004_JC25_732.p 22-Jul-2008	08:16:40	$-7.877463 \mathrm{e}+000$	001
-004_JC25_733.p 22-Jul-2008	08	$7.877896 \mathrm{e}+000$	
OL_004_JC25_734.p 22-Jul-2008	08:29:04	$-7.878334 \mathrm{e}+000$	989520e+001
-004_JC25_735.p 22-Jul-2008	08:35:36	-7.878833e+000	$4.989539 \mathrm{e}+001$
OL_004_JC25_736.p 22-Jul-2008	08:41:52	$-7.879257 \mathrm{e}+000$	989562e+001
-004_JC25_737.p 22-Jul-2008		22e+000	
004_JC25_738.p 22-Jul-2008	08:54:46	$-7.880183 \mathrm{e}+000$	989598e+001
-004_JC25_739.p 22-Jul-2008	09:00:26	-7.880613e+000	
004_JC25_740.p 22-Jul-2008	09:06:00	$-7.881002 \mathrm{e}+000$. 9
OL_004_JC25_741.p 22-Jul-2008		$7.881459 \mathrm{e}+000$	
004_JC25_742.p 22-Jul-2008	09:17:34	$-7.881844 \mathrm{e}+000$	$4.989665 \mathrm{e}+001$
OL_004_JC25_743.p 22-Jul-2008	09:23:02	$-7.881942 \mathrm{e}+000$	
004_JC25_744.p 22-Jul-2008	09:28:16	$-7.882019 \mathrm{e}+000$	$4.989728 \mathrm{e}+001$
OL_004_JC25_745.p 22-Jul-2008		$-7.882055 \mathrm{e}+000$	
004_JC25_746.p 22-Jul-2008	09:40:16	$-7.882056 \mathrm{e}+000$	$4.989767 \mathrm{e}+001$
004_JC25_747.p 22-Jul-2008	09:	$-7.882125 \mathrm{e}+000$	
004_JC25_748.p 22-Jul-2008	09:51:24	$-7.882107 \mathrm{e}+000$	$4.989791 \mathrm{e}+001$
OL_004_JC25_749.p 22-Jul-2008	09:57	$-7.882159 \mathrm{e}+000$	$4.989808 \mathrm{e}+001$
004_JC25_750.p 22-Jul-2008	10:02:44	$-7.882175 \mathrm{e}+000$	$4.989823 \mathrm{e}+001$
-004_JC25_751.p 22-Jul-2008	10:08:	$-7.882205 \mathrm{e}+000$	$4.989840 \mathrm{e}+001$
004_JC25_752.p 22-Jul-2008	10:14:20	$-7.882216 \mathrm{e}+000$	$4.989854 \mathrm{e}+001$
-004_JC25_753.p 22-Jul-2008	10:20:24	$-7.882285 \mathrm{e}+000$	001
004_JC25_754.p 22-Jul-2008	10:26:28	$-7.882298 \mathrm{e}+000$	4.989890 e+001
OL_004_JC25_755.p 22-Jul-2008	18:14:02	$-7.876109 \mathrm{e}+000$	$4.989410 \mathrm{e}+001$
004_JC25_756.p 22-Jul-2008	18:20:06	$-7.876543 \mathrm{e}+000$	$4.989417 \mathrm{e}+001$
OL_004_JC25_757.p 22-Jul-2008	18:26:08	$-7.877054 \mathrm{e}+000$.989424e+001
004_JC25_758.p 22-Jul-2008	18:32:30	$-7.877276 \mathrm{e}+000$	$4.989429 \mathrm{e}+001$
-004_JC25_759.p 22-Jul-2008	18:3	$-7.877568 \mathrm{e}+000$.989434e+001
_004_JC25_760.p 22-Jul-2008	18:44:28	$-7.877736 \mathrm{e}+000$	01
_004_JC25_761.p 22-Jul-2008	18:50:06	-7.877992e+000	989444e+001
004_JC25_762.p 22-Jul-2008	18:53:20	7.878080e+000	$4.989447 \mathrm{e}+001$
004_JC25_763.p 22-Jul-2008	18:57	$7.878254 \mathrm{e}+000$	通
004_JC25_764.p 22-Jul-2008	19:03:20	7.878480e+000	$4.989460 \mathrm{e}+001$
004_JC25_765.p 22-Jul-2008	19:0	$7.878709 \mathrm{e}+000$	$4.989467 \mathrm{e}+001$
004_JC25_766.p 22-Jul-2008	19:15:14	$-7.878915 \mathrm{e}+000$	01
_004_JC25_767.p 22-Jul-2008		$7.879174 \mathrm{e}+000$	
004_JC25_768.p 22-Jul-2008	19:27:04	$-7.879365 \mathrm{e}+000$	01
OL_004_JC25_769.p 22-Jul-2008	19:33:40	$7.879638 \mathrm{e}+000$	
004_JC25_770.p 22-Jul-2008	19:39:26	$-7.879835 \mathrm{e}+000$	01
OL_004_JC25_771.p 22-Jul-2008	19:45:26	$-7.880035 \mathrm{e}+000$	
_004_JC25_772.p 22-Jul-2008	19:51:18	$-7.880242 \mathrm{e}+000$	01
OL_004_JC25_773.p 22-Jul-2008	19:57:02	$-7.880436 \mathrm{e}+000$	
OL_004_JC25_774.p 22-Jul-2008	20:03:06	$-7.880628 \mathrm{e}+000$	01
OL_004_JC25_775.p 22-Jul-2008	20:11:22	$-7.880662 \mathrm{e}+000$	
OL_004_JC25_776.p 22-Jul-2008	20:18:20	$-7.880622 \mathrm{e}+000$	01
OL_004_JC25_777.p 22-Jul-2008	20:25:22	$-7.880616 e+000$	
OL_004_JC25_778.p 22-Jul-2008	20:32:24	$-7.880616 \mathrm{e}+000$	01
OL_004_JC25_779.p 22-Jul-2008	20:39:16	$-7.880679 \mathrm{e}+000$	
OL_004_JC25_780.p 22-Jul-2008	20:46:40	$-7.880958 \mathrm{e}+000$.989551e+001
OL_004_JC25_781.p 22-Jul-2008	20:53:34	$-7.881174 \mathrm{e}+000$	
OL_004_JC25_782.p 22-Jul-2008	20:59:44	$-7.881376{ }^{+000}$	$4.989568 \mathrm{e}+001$
OL_004_JC25_783.p 22-Jul-2008	21:06:12	$-7.881517 \mathrm{e}+000$.989587e+001
OL_004_JC25_784.p 22-Jul-2008	21:13:22	$-7.881670{ }^{+000}$	$4.989601 \mathrm{e}+001$
POL_004_JC25_785.p 22-Jul-2008	21:21:12	$-7.881869 \mathrm{e}+000$.989624e+001
OL_004_JC25_786.p 22-Jul-2008	21:28:26	$-7.882029 \mathrm{e}+000$	$4.989641 \mathrm{e}+001$
POL_004_JC25_787.p 22-Jul-2008	21:34:06	$-7.882169 \mathrm{e}+000$	$4.989655 \mathrm{e}+001$
OL_004_JC25_788.p 22-Jul-2008	21:41:00	$-7.882274 \mathrm{e}+000$	$4.989677 \mathrm{e}+001$
POL_004_JC25_789.p 22-Jul-2008	21:46:58	$-7.882240 \mathrm{e}+000$	$4.989687 \mathrm{e}+001$
POL_004_JC25_790.p 22-Jul-2008	21:53:00	$-7.882308 \mathrm{e}+000$	$4.989704 \mathrm{e}+001$

POL_004_JC25_709.p 22-Jul-2008 POL_004_JC25_710.p 22-Jul-2008 POL_004_JC25_712.p 22-Jul-2008 POL_004_JC25_713.p 22-Jul-2008 POL-004-JC25-715.p 22-Jul-2008 POL_004_JC25_716.p 22-Jul-2008 POL_004_JC25_717.p 22-Jul-2008 POL-004_JC25_718.p 22-Jul-2008 POL_004_JC25_720.p 22-Jul-2008 POL_004_JC25_721.p 22-Jul-2008 POL_004_JC25_723.p 22-Jul-2008 POL_004_JC25_724.p 22-Jul-2008 POL-004-JC25-726.p 22-Jul-2008 POL 004 JC25 727.p 22-Jul-2008 POL_004_JC25_728.p 22-Jul-2008 POL_004-JC25_729.p 22-Jul-2008 POL_004_JC25_731.p 22-Jul-2008 POL_004_JC25_732.p 22-Jul-2008 POL 004 JC25-734.p 22-Jul-2008 POL_004_JC25_735.p 22-Jul-2008 POL-004-JC25-737p 22-Jul-2008 POL_004_JC25_738.p 22-Jul-2008 POL_004_JC25_739.p 22-Jul-2008 POL_004_JC25_740.p 22-Jul-2008 POL_004_JC25_741.p 22-Jul-2008 POL_004_JC25_743.p 22-Jul-2008 POL_004_JC25_744.p 22-Jul-2008 POL_004_JC25_745.p 22-Jul-2008 POL 004- $\mathrm{C}^{-7} 5^{-747 . p ~ 22-J u l-2008 ~}$ POL_004_JC25_748.p 22-Jul-2008 POL_004_JC25_749.p 22-Jul-2008 POL_004_JC25_750.p 22-Jul-2008 POL_004_JC25_751.p 22-Jul-2008 POL_004_JC25_753.p 22-Jul-2008 POL_004_JC25_754.p 22-Jul-2008 OL_004_JC25_755.p 22-Jul-2008 POL_004_JC25_757.p 22-Jul-2008 POL_004_JC25_758.p 22-Jul-2008 POL_004_JC25_759.p 22-Jul-2008 POL_004_JC25_760.p 22-Jul-2008 POL_004_JC25_761.p 22-Jul-2008 POL_004_JC25_763.p 22-Jul-2008 POL_004_JC25_764.p 22-Jul-2008 POL_004_JC25_765.p 22-Jul-2008 POL_004_JC25_767.p 22-Jul-2008 POL_004-JC25_768.p 22-Jul-2008 POL_004_JC25_769.p 22-Jul-2008 POL_004_JC25_770.p 22-Jul-2008 POL_004_JC25_771.p 22-Jul-2008 POL-004-JC25-773p 22-Jul-2008 POL 004 JC25 774.p 22-Jul-2008 POL_004_JC25_775.p 22-Jul-2008 POL-004-JC25-777.p 22-Jul-2008 POL_004_JC25_778.p 22-Jul-2008 POL_004_JC25_779.p 22-Jul-2008 POL_004_JC25_780.p 22-Jul-2008 POL-004-JC25-782.p 22-Jul-2008 POL_004_JC25_783.p 22-Jul-2008 POL_004_JC25_784.p 22-Jul-2008 POL_004_JC25_785.p 22-Jul-2008 POL_004_JC25_787.p 22-Jul-2008 POL_004_JC25_789.p 22-Jul-2008 POL_-004_JC25_790.p 22-Jul-2008

06:03:24 $06: 08: 58$
$06: 14: 26$ 06:20:10 06:25:58 06:37:06 06:42:28 06:48:06 06:53:48 07:05:14 07:11:04 07:16:56 07:22:48 $07: 28: 34$
$07: 34: 00$ 07:39:48 07:45:20 07:51:50
07:57:38 08:03:04 08:10:42 $08: 16: 40$
$08: 22: 54$ 08:29:04 08:35:36 08:41:52 08:47:34 09:00:26 09:06:00 09:17:34 09:28:16 09:34:30 09:40:16 09:51:24 09:57:02 10:02:44 10:08:44 10:20:24 10:26:28 18:14:02 18:20:06 18:32:30 18:38:26 18:44:28 18:50:06 18:53:20 19:03:20 19:09:20 19:15:14 19:27:04 19:33:40 19:39:26 19:45:26 19:57:02 20:03:06 20:11:22 20:18:20 20:25:22 20:39:16 20:46:40 20:53:34 20:59:44 21:13:22 21:21:12 21:28:26 21:41:00 21:53:00
$7.872982 \mathrm{e}+000$ $7.872840 \mathrm{e}+000$ $7.872801 \mathrm{e}+000$ $7.872787 \mathrm{e}+000$ $7.872803 \mathrm{e}+000$.872781e+000 $7.872780 \mathrm{e}+000$.872784e+000 .872787e+000 $7.872776 e+000$ $7.872887 \mathrm{e}+000$ $7.872793 \mathrm{e}+000$ $7.872793 e+000$.872789e+000 $7.873079 e+000$ $7.874146 \mathrm{e}+000$ $7.875289 \mathrm{e}+000$ $7.875964 \mathrm{e}+000$ $7.876475 \mathrm{e}+000$ $7.877023 \mathrm{e}+000$ $-7.877463 \mathrm{e}+000$ $7.877896 \mathrm{e}+000$.878334e+000 $7.879257 \mathrm{e}+000$ $7.879702 \mathrm{e}+000$ $7.880183 e+000$ $7.880613 \mathrm{e}+000$ $7.881002 \mathrm{e}+000$ $7.881459 \mathrm{e}+000$ $7.881844 \mathrm{e}+000$ $7.881942 \mathrm{e}+000$ $7.882055 \mathrm{e}+000$ 7.882056 e+000 $7.882125 \mathrm{e}+000$ $7.882107 \mathrm{e}+000$ $7.882159 \mathrm{e}+000$ $7.882175 \mathrm{e}+000$ $7.882205 \mathrm{e}+000$ $7.882216 \mathrm{e}+000$ $7.882298 \mathrm{e}+000$ $7.876109 \mathrm{e}+000$ $7.876543 \mathrm{e}+000$ $7.877054 \mathrm{e}+000$ $7.877276 \mathrm{e}+000$ $7.877736 \mathrm{e}+000$ $-7.877992 \mathrm{e}+000$ $7.878080 \mathrm{e}+000$ $7.878254 \mathrm{e}+000$ $878709 \mathrm{e}+000$ $7.878915 \mathrm{e}+000$ $7.879174 \mathrm{e}+000$ $7.879365 \mathrm{e}+000$ $7.879638 \mathrm{e}+000$ $7.879835 \mathrm{e}+000$ $7.880035 \mathrm{e}+000$ $7.880436 \mathrm{e}+000$ $7.880628 \mathrm{e}+000$ $7.880662 \mathrm{e}+000$ $7.880622 \mathrm{e}+000$ $7.880616 e+000$ $7.880616 \mathrm{e}+000$ $7.880958 \mathrm{e}+000$ $7.881174 \mathrm{e}+000$ $7.881376 \mathrm{e}+000$ $.881670 \mathrm{e}+000$ $7.881869 \mathrm{e}+000$ $7.882029 \mathrm{e}+000$ $-7.882169 \mathrm{e}+000$ $7.882240 \mathrm{e}+000$ $-7.882308 \mathrm{e}+000$
4.989327e+001 $4.989337 \mathrm{e}+001$ $4.989341 e+001$ $4.989342 \mathrm{e}+001$ $4.989341 e+001$ $4.989340 \mathrm{e}+001$ $4.989340 \mathrm{e}+001$ $4.989340 \mathrm{e}+001$ $4.989341 \mathrm{e}+001$ $4.989336 \mathrm{e}+001$ $4.989339 \mathrm{e}+001$ $4.989342 \mathrm{e}+001$ $4.989339 \mathrm{e}+001$ $4.989340 \mathrm{e}+001$ $4.989349 \mathrm{e}+001$ $4.989376 \mathrm{e}+001$ $4.989423 \mathrm{e}+001$ $4.989437 \mathrm{e}+001$ $4.989463 \mathrm{e}+001$ $4.989482 \mathrm{e}+001$
$4.989501 \mathrm{e}+001$ $4.989520 \mathrm{e}+001$ $4.989539 \mathrm{e}+001$ $4.989574 \mathrm{e}+001$ $4.989598 \mathrm{e}+001$ $4.989614 \mathrm{e}+001$ $4.989631 \mathrm{e}+001$ $4.989665 \mathrm{e}+001$ $4.989698 \mathrm{e}+001$ $4.989728 \mathrm{e}+001$ $4.989767 \mathrm{e}+001$ $4.989775 \mathrm{e}+001$ $4.989791 e+001$ $4.989808 \mathrm{e}+001$ $4.989840 \mathrm{e}+001$ $4.989854 \mathrm{e}+001$ $4.989874 \mathrm{e}+001$ $4.989410 \mathrm{e}+001$ $4.989417 \mathrm{e}+001$ $4.989424 \mathrm{e}+001$ $4.989429 \mathrm{e}+001$ $4.989438 \mathrm{e}+001$ $4.989444 \mathrm{e}+001$ $4.989452 \mathrm{e}+001$ $4.989460 \mathrm{e}+001$ $4.989467 \mathrm{e}+001$ $4.989474 \mathrm{e}+001$ $4.989484 \mathrm{e}+001$ $4.989497 \mathrm{e}+001$ $4.989505 \mathrm{e}+001$ $4.989516 \mathrm{e}+001$ $4.989534 \mathrm{e}+001$ $4.989543 \mathrm{e}+001$ $4.989544 \mathrm{e}+001$ $4.989539 \mathrm{e}+001$ $4.989539 \mathrm{e}+001$ $4.989540 \mathrm{e}+001$ $4.989551 \mathrm{e}+001$ $4.989561 \mathrm{e}+001$ $4.989587 \mathrm{e}+001$ $4.989601 \mathrm{e}+001$ $4.989624 \mathrm{e}+001$ $4.989641 \mathrm{e}+001$ $4.989677 \mathrm{e}+001$ $4.989704 \mathrm{e}+001$

> POL_004_JC25_791.p 22-Jul-2008 21:59:28 -7.882250e+000 POL-004 ${ }^{-}$JC25 ${ }^{-}$792.p 22-Jul-2008 22:06:28 $\quad-7.882231 \mathrm{e}+000$ POL-004-JC25-793.p 22-Jul-2008 $22: 12: 16 \quad-7.882240 \mathrm{e}+000$ POL_004_JC25_794.p 22-Jul-2008 $22: 18: 36-7.882212 \mathrm{e}+000$ POL_004_JC25_795.p 22-Jul-2008 $22: 24: 34 \quad-7.882225 e+000$ POL_004_JC25_796.p 22-Jul-2008 22:30:58 \quad-7.882215e+000 POL_004_JC25_797.p 22-Jul-2008 22:37:14 -7.882193e+000 POL 004 JC25 798.p 22-Jul-2008 POL 004 JC25 799.p 22-Jul-2008 POL_004_JC25_800.p 22-Jul-2008 POL 004 JC25 801.p 22-Jul-2008 POL 004 JC25-802.p 22-Jul-2008 POL-004 JC25-803.p 22-Jul-2008 POL_004_JC25_804.p 22-Jul-2008 POL_004_JC25_805.p 22-Jul-2008 POL_004_JC25_806.p 22-Jul-2008 POL_004_JC25_807.p 22-Jul-2008 POL 004 JC25 808.p 22-Jul-2008 POL_004_JC25_809.p 22-Jul-2008 POL_004_JC25_810.p 22-Jul-2008 - _JC25_811.p 22-Jul-2008 POL_004_JC25_812.p 23-Jul-2008 POL_004_JC25_813.p 23-Jul-2008 POL_004_JC25_814.p 23-Jul-2008 POL_004_JC25_815.p 23-Jul-2008 POL_004_JC25_816.p 23-Jul-2008 POL_004_JC25_817.p 23-Jul-2008 POL 004 JC25 818.p 23-Jul-2008 POL_004_JC25_819.p 23-Jul-2008 POL $004{ }^{-}$JC25 820.p 23-Jul-2008 POL 004 JC25_821.p 23-Jul-2008 POL_004_JC25_822.p 23-Jul-2008 POL_004_JC25_823.p 23-Jul-2008 POL_004_JC25_824.p 23-Jul-2008 POL_004_JC25_825.p 23-Jul-2008 POL_004_JC25_826.p 23-Jul-2008 POL_004_JC25 827.p 23-Jul-2008 POL_004_JC25_828.p 23-Jul-2008 POL_004_JC25_829.p 23-Jul-2008 POL_004 JC25 830.p 23-Jul-2008 POL_004_JC25_831.p 23-Jul-2008 POL_004_JC25_832.p 23-Jul-2008 POL_004_JC25_833.p 23-Jul-2008 POL_004_JC25_834.p 23-Jul-2008 POL_004_JC25_835.p 23-Jul-2008 POL 004 JC25 836.p 23-Jul-2008 POL_004_JC25 837.p 23-Jul-2008 POL_004_JC25_838.p 23-Jul-2008 POL_004_JC25_839.p 23-Jul-2008 POL_004_JC25_840.p 23-Jul-2008 POL_004_JC25_841.p 23-Jul-2008 POL_004_JC25_842.p 23-Jul-2008 POL_004_JC25_843.p 23-Jul-2008 POL_004_JC25_844.p 23-Jul-2008 POL_004_JC25_845.p 23-Jul-2008 POL_004_JC25_846.p 23-Jul-2008 POL_004_JC25_847.p 23-Jul-2008 POL_004_JC25_848.p 23-Jul-2008 POL_004_JC25_849.p 23-Jul-2008 POL_004_JC25_850.p 23-Jul-2008 POL_004_JC25_851.p 23-Jul-2008 POL_004_JC25_852.p 23-Jul-2008 POL_004_JC25_853.p 23-Jul-2008 POL_004_JC25_854.p 23-Jul-2008 POL 004 JC25 855.p 23-Jul-2008 POL 004 JC25 856.p 23-Jul-2008 POL_004_JC25_857.p 23-Jul-2008 POL_004_JC25_858.p 23-Jul-2008 POL_004_JC25_859.p 23-Jul-2008 POL_004_JC25_860.p 23-Jul-2008 POL_004_JC25_861.p 23-Jul-2008 POL_004_JC25_862.p 23-Jul-2008 POL_004_JC25_863.p 23-Jul-2008 POL_004_JC25_864.p 23-Jul-2008 POL_004_JC25_865.p 23-Jul-2008 POL_004_JC25_866.p 23-Jul-2008 POL_004_JC25_867.p 23-Jul-2008 POL_004_JC25_868.p 23-Jul-2008 POL_004_JC25_869.p 23-Jul-2008 POL_004_JC25_870.p 23-Jul-2008 POL_004_JC25_871.p 23-Jul-2008
> $4.989721 \mathrm{e}+001$ $4.989741 \mathrm{e}+001$ $4.989757 \mathrm{e}+001$ $4.989778 \mathrm{e}+001$ $4.989790 \mathrm{e}+001$ $4.989810 \mathrm{e}+001$ $4.989826 \mathrm{e}+001$ $4.989842 \mathrm{e}+001$ $4.989861 \mathrm{e}+001$ $4.989871 \mathrm{e}+001$ 4.989893 e+001 $4.989893 \mathrm{e}+001$ $4.989912 \mathrm{e}+001$ $4.989928 \mathrm{e}+001$
$4.989945 \mathrm{e}+001$ $4.989945 \mathrm{e}+001$
$4.989952 \mathrm{e}+001$ $4.989952 \mathrm{e}+001$
$4.989953 \mathrm{e}+001$ $4.989949 \mathrm{e}+001$ $4.989946 e+001$ $4.989948 \mathrm{e}+001$ $4.989950 \mathrm{e}+001$ $4.989950 \mathrm{e}+001$ $4.990011 \mathrm{e}+001$ $4.990062 \mathrm{e}+001$ $4.990098 \mathrm{e}+001$ $4.990126 \mathrm{e}+001$ $4.990155 \mathrm{e}+001$ $4.990174 \mathrm{e}+001$ $4.990195 \mathrm{e}+001$ $4.990219 \mathrm{e}+001$ $4.990239 \mathrm{e}+001$ $4.990239 \mathrm{e}+001$ $4.990252 \mathrm{e}+001$ $4.990267 \mathrm{e}+001$
$4.990279 \mathrm{e}+001$ $4.990279 \mathrm{e}+001$
$4.990293 \mathrm{e}+001$ $4.990293 \mathrm{e}+001$
$4.990304 \mathrm{e}+001$ $4.990304 \mathrm{e}+001$
$4.990318 \mathrm{e}+001$ $4.990330 \mathrm{e}+001$ $4.990336 \mathrm{e}+001$ $4.990342 \mathrm{e}+001$ $4.990347 \mathrm{e}+001$ $4.990347 \mathrm{e}+001$ $4.990351 \mathrm{e}+001$ $4.990357 \mathrm{e}+001$
$4.990359 \mathrm{e}+001$ $4.990359 \mathrm{e}+001$
$4.990360 \mathrm{e}+001$

Temperature-Chlorophyll Chain (Mike Smithson).

The towed temperature-chlorophyll (T-Chl) chain consists of a series of self-contained internallyrecording fluorometers and temperature loggers attached to a 10 mm diameter galvanised steel wire. The chain is designed to be towed through the water at speeds up to 4 knots. A 380 kg lead sphere shackled to the bottom end of the wire acts as a depressor to prevent the line of instruments from streaming out behind the ship. Copper ferrules are crimped onto the wire at 1 m intervals and are used as mounting points to attach the instruments. Specially designed clamps allow for quick attachment and release of instruments at these mounting points. The clamps reduce deployment and recovery times for the chain from an estimated 2 hours or more to about 10 minutes. The time saving over the total number of deployments on this cruise is estimated to be of the order of 24 hours.

The fluorometers were Wetlabs FLB self-logging, internally-powered fluorometers. Two types of temperature logger were used, both manufactured by Star-Oddi. Mounted at the same position on the wire as the fluorometers were Star-Oddi Centi-TD temperature and depth loggers. Interspersed were Star-Oddi Starmon-mini temperature loggers.

6 deployments were carried out during the cruise. All but the second deployment were in conjunction with the VMP turbulence profiles, when the ship was making headway at about 0.5 knot. For the second deployment the chain was towed along Jones Bank at a nominal speed of 3.5 knots. The deployments in conjunction with the VMP were made using the starboard-side davit. The towed deployment was made using the stern gantry.

Tables 1, 2 and 3 give details and specifications of the fluorometers and temperature loggers. Details of each deployment are given in Tables 4 to 9. Instrument positions are counted from the deepest ferrule (i.e. the first instrument attached to the wire during deployment). Start and end times refer to the start and end of logging for individual instruments. The times for the start and end of useful data (i.e. when the chain was finally in position and when recovery began) are also given. All times are in GMT. Instrument types are F - Wetlabs FLB fluorometer, T - Star-Oddi Starmon-mini temperature logger, TP - Star-Oddi Centi-TD temperature and pressure logger.

Data return for the six deployments was 100\%.

Table 1: Details of Wetlabs FLB chlorophyll fluorometers

Excitation wavelength:	470 nm	Sensitivity:	$0.01 \mu \mathrm{~g} \mathrm{I}^{-1}$
Emission wavelength:	695 nm	Range:	0.01 to $125 \mu \mathrm{~g} \mathrm{I}^{-1}$

Serial number	Calibration date
775	28 -Jun-2007
776	28 -Jun-2007
777	28 -Jun-2007
778	28 -Jun-2007
779	28 -Jun-2007
780	$09-J u l-2007$
906	14 -Feb-2008
907	14 -Feb-2008
937	14 -Feb-2008
938	14 -Feb-2008

Table 2: Details of Star-Oddi Centi-TD temperature loggers
Temperature accuracy: $\pm 0.1^{\circ} \mathrm{C} \quad$ Depth accuracy: $\pm 0.4 \mathrm{~m}$
Temperature resolution: $0.032^{\circ} \mathrm{C} \quad$ Depth resolution: 0.03 m
Temperature range: $\quad-1^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ Depth range: 0 to 100 m
Temperature time constant: 20 s

Serial number	Calibration date
3268	29-Jun-2007
3269	29-Jun-2007
3270	29-Jun-2007
3271	29-Jun-2007
3272	29-Jun-2007
3273	29-Jun-2007
3275	29-Jun-2007
3276	$29-J u n-2007$
3278	29-Jun-2007
683	$06-$ Nov-2007

Centi-PR - has pitch and roll sensors in addition to temperature and pressure
Table 3: Details of Star-Oddi Starmon-mini temperature loggers
Accuracy: $\quad \pm 0.05^{\circ} \mathrm{C} \quad$ Range: $-2^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Resolution: $\quad 0.013^{\circ} \mathrm{C}$
Time constant: 18 s

Serial number	Calibration date
2604	30-May-2007
2605	30-May-2007
2606	30-May-2007
2608	$30-$ May-2007
2610	$30-$ May-2007
2611	$30-$ May-2007
2612	$30-$ May-2007
2613	$30-$ May-2007
2614	$30-$ May-2007
2617	29-Jun-2007
2618	29-Jun-2007
2619	29-Jun-2007
2621	29-Jun-2007
2622	29-Jun-2007
2624	29-Jun-2007

Table 4: $1^{\text {st }} \mathrm{T}$-Chl chain deployment (MS2) Logging interval: 30 s

Start of useful data: \quad 13:50:00 on 6-Jul-08 End of useful data: \quad 15:00:30 on 7-Jul-08

*Figure in parentheses indicates end date

Table 5: $2^{\text {nd }} \mathrm{T}$-Chl chain deployment (towed along Jones Bank)
Logging interval: $30 \mathrm{~s} \quad$ Start of useful data: 13:02:00 on 10-Jul-08
Nominal towing speed: 3.5 knots \quad End of useful data: 02:05:00 on 11-Jul-08

Position	Nominal depth (m)	Instrument type	Serial Number	$\begin{gathered} \text { 10-Jul-08 } \\ \hline \text { Start time } \\ (\mathrm{GMT}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 11-Jul-08 } \\ \hline \text { End time } \\ \text { (GMT) } \end{gathered}$
1	65	F	778	10:22:00	07:24:10
		TP	3275	11:00:00	17:50:25
5	61	T	2619	11:00:00	15:34:26
8	58	T	2618	11:00:00	15:59:32
11	55	T	2612	11:00:00	15:55:33
14	52	T	2610	11:00:00	15:57:28
16	50	F	907	10:17:00	07:16:33
		TP	3276	11:00:00	17:45:45
18	48	T	2606	11:00:00	16:05:38
20	46	F	938	10:15:00	06:18:15
		TP	3272	11:00:00	17:39:14
22	44	T	2624	11:00:00	15:40:38
24	42	F	780	10:13:00	06:06:13
		TP	3273	11:00:00	17:23:57
26	40	T	2621	11:00:00	15:51:41
28	38	F	906	10:10:00	05:06:00
		TP	3270	11:00:00	17:36:31
30	36	T	2605	11:00:00	15:49:23
32	34	F	779	10:06:00	06:26:10
		TP	3271	11:00:00	16:39:53
34	32	T	2604	11:00:00	15:53:37
36	30	F	776	10:03:00	05:30:50
		TP	3278	11:00:00	17:28:22
38	28	T	2611	11:00:00	15:29:30
40	26	F	937	10:00:00	05:55:15
		TP	3269	11:00:00	17:32:21
42	24	T	2613	11:00:00	16:03:51
44	22	T	2617	11:00:00	15:46:47
46	20	F	777	09:56:00	05:30:50
		TP	3268	11:00:00	17:41:45
48	18	T	2608	11:00:00	16:01:52
51	15	F	775	09:53:00	05:45:05
		TP	683	11:00:00	17:53:26
55	11	T	2614	11:00:00	15:38:36
59	7	T	2622	11:00:00	15:42:47

Table 6: $3^{\text {rd }} \mathrm{T}$-Chl chain deployment (MS4)
Logging interval: 30 s
$\begin{array}{ll}\text { Start of useful data: } & 01: 52: 00 \text { on 12-Jul-08 } \\ \text { End of useful data: } & 03: 05: 30 \text { on 13-Jul-08 }\end{array}$

				11/12-Jul-08	13-Jul-08
Position	Nominal depth (m)	Instrument type	Serial Number	Start time (GMT)	End time (GMT)
1	65	F	775	20:12:00(11)	05:54:45
		TP	3271	01:00:00(12)	07:51:30
5	61	T	2619	01:00:00(12)	06:17:24

8	58	T	2618	01:00:00(12)	06:10:20
11	55	T	2612	01:00:00(12)	06:23:16
14	52	T	2610	01:00:00(12)	06:20:19
16	50	F	937	20:06:00(11)	05:47:15
		TP	3273	01:00:00(12)	07:45:09
18	48	T	2606	01:00:00(12)	06:25:49
20	46	F	776	20:00:00(11)	05:18:25
		TP	3278	01:00:00(12)	07:35:47
22	44	T	2624	01:00:00(12)	06:13:53
24	42	F	906	19:52:00(11)	05:03:30
		TP	3269	01:00:00(12)	07:33:11
26	40	T	2621	01:00:00(12)	06:31:59
28	38	F	780	19:47:00(11)	04:36:45
		TP	3270	01:00:00(12)	07:20:25
30	36	T	2605	01:00:00(12)	06:34:12
32	34	F	938	19:42:00(11)	05:39:45
		TP	3272	01:00:00(12)	07:40:59
34	32	T	2604	01:00:00(12)	06:42:08
36	30	F	779	19:36:00(11)	04:48:05
		TP	3268	01:00:00(12)	07:25:12
38	28	T	2611	01:00:00(12)	06:36:04
40	26	F	777	19:28:00(11)	04:55:20
		TP	3276	01:00:00(12)	07:29:26
42	24	T	2613	01:00:00(12)	06:37:57
44	22	T	2617	01:00:00(12)	06:28:00
46	20	F	907	19:23:00(11)	05:32:00
		TP	3275	01:00:00(12)	07:38:19
48	18	T	2608	01:00:00(12)	06:44:23
51	15	F	778	19:16:00(11)	05:11:05
		TP	683	01:00:00(12)	07:54:30
55	11	T	2614	01:00:00(12)	06:30:05
59	7	T	2622	01:00:00(12)	06:39:53

*Figure in parentheses indicates start date

Table 7: $4^{\text {th }}$ T-Chl chain deployment at (MS2) Logging interval: 30 s
$\begin{array}{ll}\text { Start of useful data: } & \text { 11:41:00 on 14-Jul-08 } \\ \text { End of useful data: } & \text { 03:57:30 on 15-Jul-08 }\end{array}$

				14-Jul-08	13-Jul-08
Position	Nominal depth (m)	Instrument type	Serial Number	Start time (GMT)	End time (GMT)
1	65	F	775	08:00:00	08:42:25
		TP	3270	07:00:00	10:56:06
5	61	T	2619	07:00:00	09:31:26
8	58	T	2618	07:00:00	09:02:48
11	55	T	2612	07:00:00	10:21:40
14	52	T	2610	07:00:00	10:13:06
16	50	F	937	07:55:00	08:14:10
		TP	3278	07:00:00	10:46:33
18	48	T	2606	07:00:00	09:05:09
20	46	F	776	07:51:00	07:14:10
		TP	3268	07:00:00	10:44:00
22	44	T	2624	07:00:00	10:19:33
24	42	F	906	07:21:00	08:35:40
		TP	3271	07:00:00	10:53:34

26	40	T	2621	07:00:00	08:57:25
28	38	F	780	07:47:00	08:21:50
		TP	3275	07:00:00	10:48:55
30	36	T	2605	07:00:00	10:24:03
32	34	F	938	07:43:00	06:07:10
		TP	3269	07:00:00	10:35:30
34	32	T	2604	07:00:00	09:33:42
36	30	F	779	07:39:00	07:06:10
		TP	3272	07:00:00	10:41:18
38	28	T	2611	07:00:00	10:17:12
40	26	F	777	07:35:00	06:58:00
		TP	3273	07:00:00	10:38:23
42	24	T	2613	07:00:00	09:17:26
44	22	T	2617	07:00:00	10:26:21
46	20	F	907	07:31:00	08:29:10
		TP	3276	07:00:00	10:51:13
48	18	T	2608	07:00:00	09:20:58
51	15	F	778	07:26:00	05:55:14
		TP	683	07:00:00	10:30:52
55	11	T	2614	07:00:00	10:10:13
59	7	T	2622	07:00:00	10:07:25

*Figure in parentheses indicates start date

Table 8: $5^{\text {th }} \mathrm{T}$-Chl chain deployment (MS2)
Logging interval: 30 s
Start of useful data: 07:30:00 on 21-Jul-08 End of useful data: 09:37:30 on 22-Jul-08

Position	Nominal depth (m)	Instrument type	Serial Number	$\begin{gathered} \text { 21-Jul-08 } \\ \hline \text { Start time } \\ (\text { GMT }) \end{gathered}$	$\begin{gathered} \hline \text { 22-Jul-08 } \\ \hline \text { End time } \\ \text { (GMT) } \\ \hline \end{gathered}$
1	65	F	775	05:18:00	11:29:10
		TP	3270	07:00:00	12:56:15
5	61	T	2619	07:00:00	13:46:07
8	58	T	2618	07:00:00	13:48:50
11	55	T	2612	07:00:00	13:50:48
14	52	T	2610	07:00:00	13:53:51
16	50	F	937	05:22:00	11:38:45
		TP	3278	07:00:00	13:00:51
18	48	T	2606	07:00:00	13:56:48
20	46	F	776	05:38:00	11:46:25
		TP	3268	07:00:00	13:04:00
22	44	T	2624	07:00:00	13:59:37
24	42	F	906	05:29:00	11:56:20
		TP	3271	07:00:00	13:12:01
26	40	T	2621	07:00:00	14:02:39
28	38	F	780	05:25:00	12:03:50
		TP	3275	07:00:00	13:16:52
30	36	T	2605	07:00:00	14:05:25
32	34	F	938	05:58:00	12:10:35
		TP	3269	07:00:00	13:21:30
34	32	T	2604	07:00:00	14:09:22
36	30	F	779	05:42:00	12:24:05
		TP	3272	07:00:00	13:25:00
38	28	T	2611	07:00:00	14:11:50
40	26	F	777	05:51:00	12:30:55

		TP	3273	$07: 00: 00$	$13: 28: 26$
42	24	T	2613	$07: 00: 00$	$14: 14: 12$
44	22	T	2617	$07: 00: 00$	$14: 16: 32$
46	20	F	907	$05: 34: 00$	$12: 37: 05$
		TP	3276	$07: 00: 00$	$13: 31: 13$
48	18	T	2608	$07: 00: 00$	$14: 19: 17$
51	15	F	778	$06: 06: 00$	$12: 46: 10$
		TP	683	$07: 00: 00$	$13: 34: 31$
55	11	T	2614	$07: 00: 00$	$14: 22: 43$
59	7	T	2622	$07: 00: 00$	$14: 24: 56$

Table 9: $6^{\text {th }}$ T-Chl chain deployment (MS4) Logging interval: 30 s

Start of useful data:
16:22:00 on 22-Jul-08
End of useful data: 06:10:00 on 23-Jul-08

Position	Nominal depth (m)	Instrument type	Serial Number	$\begin{gathered} \hline \text { 22-Jul-08 } \\ \hline \text { Start time } \\ (\mathrm{GMT}) \end{gathered}$	$\begin{gathered} \hline \text { 23-Jul-08 } \\ \hline \text { End time } \\ \text { (GMT) } \end{gathered}$
1	65	F	775	11:37:00	10:47:50
		TP	3270	14:00:00	12:14:35
5	61	T	2619	15:00:00	09:09:56
8	58	T	2618	15:00:00	08:35:13
11	55	T	2612	15:00:00	09:07:53
14	52	T	2610	15:00:00	08:55:32
16	50	F	937	11:44:00	09:37:10
		TP	3278	14:00:00	11:53:30
18	48	T	2606	15:00:00	08:37:56
20	46	F	776	11:54:00	10:30:15
		TP	3268	14:00:00	12:04:04
22	44	T	2624	15:00:00	09:04:33
24	42	F	906	12:02:00	09:46:05
		TP	3271	14:00:00	11:56:38
26	40	T	2621	15:00:00	08:41:10
28	38	F	780	12:09:00	10:23:10
		TP	3275	14:00:00	12:09:17
30	36	T	2605	15:00:00	08:33:04
32	34	F	938	12:17:00	10:03:05
		TP	3269	14:00:00	11:58:51
34	32	T	2604	15:00:00	08:47:06
36	30	F	779	12:29:00	10:09:45
		TP	3272	14:00:00	12:01:47
38	28	T	2611	15:00:00	08:57:44
40	26	F	777	12:36:00	10:16:55
		TP	3273	14:00:00	12:06:22
42	24	T	2613	15:00:00	08:51:17
44	22	T	2617	15:00:00	08:48:59
46	20	F	907	12:45:00	10:37:50
		TP	3276	14:00:00	12:11:50
48	18	T	2608	15:00:00	08:59:57
51	15	F	778	12:51:00	09:56:05
		TP	683	14:00:00	12:16:59
55	11	T	2614	15:00:00	08:43:11
59	7	T	2622	15:00:00	08:53:43

Moorings (Colin Hutton).

General notes :

1. All times in this moorings report are in GMT.
2. All configurations were supplied by Matthew Palmer (POL).
3. All latitudes and longitudes were taken from the ships log.
4. All deployment times were taken from the ships log.
5. Despite flashing prior to deployment it was noticed that several of the navigation lights attached to the buoys failed to function when in the water.

MOORINGS were deployed using the aft cranes with a release hook and the deck winch

MS1 (top slope bank mooring)
Deployed : 15.45 GMT on 5/7/08
Depth : 78m
Position : 49 51.25N, 7 56.94W
Acoustic Release S/N: 120
Recovered : 18.48 GMT on 24/7/08

Temperature chain configuration :
Top wire :

Depth (m)	Type	Sensor	S/N
Top	Microcat	CTD	3276
1	Starmon	T	2839
3	Starmon	T	2838
5	Starmon	T	2837
7	Starmon	T	2836
9	Starmon	T	2835
11	Starmon	T	2834
13	Starmon	T	2833
15	Starmon	T	2840
17	Starmon	T	2841
19	Starmon	T	2842
21	Starmon	T	2843
23	Starmon	T	2844
25	Starmon	T	2845
27	Starmon	T	2846
29	Starmon	T	2847
31	Starmon	T	2848

33	Starmon	T	2849
35	Star Odi	TP	3661

Bottom wire :

Distance from sphere (height above microcat (m))	Type	Sensor	S/n
$0(40)$	Star Odi	TP	3662
$5(35)$	Starmon	T	2850
$10(30)$	Vemco	T	2699
$15(25)$	Vemco	T	2701
$20(20)$	Starmon	T	2851
$25(15)$	Vemco	T	9714
$30(10)$	Vemco	T	9756
$35(5)$	Starmon	T	2852
$40(0)$	Microcat	CTD	3218

The mooring was recovered in full using aft cranes and deck winch.

MS2 (mid slope bank mooring)
Deployed : 02.23 GMT on 5/7/08
Depth : 114m
Position : 49 53.90N, 0752.57 W
Acoustic Release S/N : 122
Recovered : 13.25 GMT on 23/7/08

Temperature chain configuration :
Top wire

Depth (m)	Type	Sensor	S/N
Top	Microcat	CTD	3481
0	Star Odi	T	3615
2	Star Odi	T	3616
4	Star Odi	T	3617
6	Star Odi	T	3618
8	Star Odi	T	3619
10	Star Odi	T	3598
12	Star Odi	T	3599
14	Star Odi	T	3600
16	Star Odi	T	3601

18	Star Odi	T	3602
20	Star Odi	T	3604
22	Star Odi	T	3605
24	Star Odi	T	3606
26	Star Odi	T	3607
28	Star Odi	T	3608
30	Star Odi	T	3609
32	Star Odi	T	3610
34	Star Odi	T	3611
36	Star Odi	T	3613
38	Star Odi	T	3614
40	Star Odi	T	3217
42	Star Odi	T	3211
44	Star Odi	T	3222
46	Star Odi	T	3239
48	Star Odi	T	3233
50	Star Odi	T	3235
52	Star Odi	T	3212
54	Microcat	CTD	4550

Bottom wire :

Distance from sphere (height above microcat (m))	Type	Sensor	S/N
$0(60)$	Star Odi	TP	3655
$5(55)$	Star Odi	T	3130
$10(50)$	Star Odi	T	3218
$15(45)$	Star Odi	T	3131
$20(40)$	Star Odi	T	3231
$25(35)$	Star Odi	T	3132
$30(30)$	Star Odi	T	3125
$35(25)$	Star Odi	T	3135
$40(20)$	Star Odi	T	3237
$45(15)$	Star Odi	T	3216
$50(10)$	Star Odi	T	3250
$55(5)$	Star Odi	T	3133
$59(1)$	Microcat	CTD	4549

The release was activated part way through the recovery as the rope had snagged around the Microcat and had caused abrasion in the line.

Two of the mini-loggers were lost during recovery ($\mathrm{s} / \mathrm{n} 3130$ and $\mathrm{s} / \mathrm{n} 3655$.)
Recovery was by means of aft cranes and deck winch.

MS3 (off slope bank mooring)
Deployed : 21.47 GMT on 4/7/07
Depth : 122m
Position : 49 56.40N, 0749.00 W
Acoustic Release S/N : 118
Recovered : 11.40 GMT on 23/7/08

Temperature chain configuration :
Top wire :

Depth (m)	Type	Sensor	S/N
Top	Microcat	CTD	3250
0	Vemco	T	1061
5	Vemco	T	1062
10	Vemco	T	1063
12	Vemco	T	1064
14	Vemco	T	1069
16	Vemco	T	1070
18	Vemco	T	1078
20	Vemco	T	1079
22	Vemco	T	1080
24	Vemco	T	1081
26	Vemco	T	1082
28	Vemco	T	1083
30	Vemco	T	1084
32	Vemco	T	1085
34	Vemco	T	1086
36	Vemco	T	1087
38	Vemco	T	6175
40	Vemco	T	6176
42	Vemco	T	6177
44	Vemco	T	6178
46	Vemco	T	7334
50	Vemco	T	8517
55	Vemco	T	5591
60	Star Odi	TP	3653

Bottom wire :

Distance from sphere (height above microcat (m)	Type	Sensor	S/N
$0(60)$	Star Odi	TP	3654
$10(50)$	Vemco	T	5592
$20(40)$	Vemco	T	5593
$30(30)$	Vemco	T	5594
$40(20)$	Vemco	T	3021
$50(10)$	Vemco	T	3022
$59(1)$	Microcat	CTD	4607

The mooring was recovered in full using aft cranes and deck winch.

MS4
Deployed : 18.29 GMT on 5/7/08
Depth : 110m
Position : 49 44.99N, 07 40.05W
Acoustic Release S/N : 123
ADCP S/N : 1032
Recovered : 07.59 GMT on 23/7/08

ADCP Configuration :
CR1
CF11101
EAO
EBO
ED1100
ES35
EX00000
EZ1111111
WA50
WBO
WD111100000
WF176
WN45
WP1
WS200
WV129
TE00:00:02.00
TP00:02.00
CK
CS
Instrument = Workhorse Sentinel
Frequency $=307200$
Water Profile = Yes
Bottom Track $=$ No

High Res Modes $=$ No
High Rate Pinging = No
Shallow Bottom Mode = No
Wave Gauge = No
Lowered ADCP = No
Beam Angle $=20$
Temperature $=10.00$
Deployment Hours $=504.00$
Battery Packs = 2
Automatic TP = Yes
Memory Size (MB) = 2000
Saved Screen = 3

Consequences generated by PlanADCP version 2.04 :
First cell range $=4.38 \mathrm{~m}$
Last cell range $=92.38 \mathrm{~m}$
Max range $=89.48 \mathrm{~m}$
Standard deviation $=6.02 \mathrm{~cm} / \mathrm{s}$
Ensemble size $=1054$ bytes
Storage required $=911.89$ MB (956188800 bytes)
Power usage $=400.15 \mathrm{~Wh}$
Battery usage $=0.9$

The mooring was interrogated at 07.40 GMT , the range was 114 m , it was released at 07.44.GMT and surfaced at 07.45.GMT.

Recovery was by means of aft cranes and deck winch.

LANDER FRAME MOORINGS deployed with the aft crane and release hook

MS1 Lander
Deployed : 13.39 GMT on 5/7/08
Depth : 78m
Position : 49 51.21N, 07 56.82W
Acoustic Release S/N : 347 (pyro)
ADCP S/N : 2666
Recovered : 17.50 GMT on 24/7/08

Configuration :
CR1
CF11101
EAO
EBO
ED800
ES35
EX00000

```
EZ1111111
WA50
WB0
WD111100000
WF176
WN40
WP2
WS200
WV130
TE00:00:02.00
TP00:01.00
CK
CS
Instrument = Workhorse Sentinel
Frequency = 307200
Water Profile = Yes
Bottom Track = No
High Res. Modes = No
High Rate Pinging = No
Shallow Bottom Mode = No
Wave Gauge = No
Lowered ADCP = No
Beam Angle = 20
Temperature = 10.00
Deployment Hours = 504.00
Battery Packs = 2
Automatic TP = Yes
Memory Size (MB) = 1000
Saved Screen = 2
Consequences generated by PlanADCP version 2.04 :
First cell range = 4.38m
Last cell range = 82.38m
Max range = 89.30m
Standard deviation = 4.29 cm/s
Ensemble size = 954 bytes
Stowage required = 825.38 MB (865468800 bytes)
Power usage = 724.09 Wh
Battery usage = 1.6
```

The mooring was interrogated at 17.30 GMT, the range was 167 m , it was released at 17.31 GMT and surfaced at 17.34 GMT.

Recovery was by means of a snap hook onto the frame and lifting by the aft crane.

MS2 Lander
Deployed : 03.07 GMT on 5/7/08
Depth : 114m
Position : $4953.85 \mathrm{~N}, 0752.48 \mathrm{~W}$
Acoustic Release $\mathrm{S} / \mathrm{N}: 318$ (pyro)............also marked as $\mathrm{S} / \mathrm{N}: 57$ (pyro)

ADCP S/N : 1903
Recovered : 15.40 GMT on 24/7/08

Configuration :
CR1
CF11101
EAO
EBO
ED1150
ES35
EX00000
EZ1111111
WA50
WBO
WD111100000
WF176
WN52
WP2
WS200
WV130
TE00:00:02.00
TP00:01.00
CK
CS
Instrument = Workhorse Sentinel
Frequency $=307200$
Water Profile = Yes
Bottom Track $=$ No
High Res Modes $=$ No
High Rate Pinging = No
Shallow Bottom Mode = No
Wave Gauge = No
Lowered ADCP = No
Beam Angle $=20$
Temperature $=10.00$
Deployment Hours $=504.00$
Battery Packs = 2
Automatic TP = Yes
Memory Size (MB) = 2000
Saved Screen = 2

Consequences generated by PlanADCP version 2.04 :
First cell range $=4.38 \mathrm{~m}$
Last cell range $=106.38 \mathrm{~m}$
Max range $=89.51 \mathrm{~m}$
Standard deviation $=4.29 \mathrm{~cm} / \mathrm{s}$
Ensemble size = 1194 bytes
Storage required $=1033.02 \mathrm{MB}$ (1083196800 bytes)
Power usage $=798.39 \mathrm{~Wh}$
Battery usage $=1.8$

The mooring was interrogated at 15.10 GMT , the range was 159 m , it was released at $!5.12 \mathrm{GMT}$ and surfaced at !5.14 GMT. Recovery was by means of a snap hook onto the frame and lifting by the aft crane.

Note : Attempts to release this mooring failed on both 23/7/08 and 24/7/08 using the codes for Release S/N 57 which had been noted prior to deployment. It was subsequently discovered that the Release S/N 318 was, in fact, the one deployed on the mooring. On recovery it was noted that two different serial numbers were affixed to the release.

MS3 Lander
Deployed : 22.28 GMT on 4/7/08
Depth : 122m
Position : 49 56.30N, 07 48.90W
Acoustic Release S/N : 42
ADCP S/N : 10628
Recovered : 12.24 GMT on 22/7/08

Configuration :
CR1
CF11101
EAO
EBO
ED1150
ES35
EX00000
EZ1111111
WA50
WBO
WD111100000
WF176
WN30
WP1
WS400
WV130
TE00:00:02.00
TP00:02.00
CK
CS
Instrument $=$ Workhorse Sentinel
Frequency $=307200$
Water Profile $=$ Yes
Bottom Track = No
High RES Modes = No
High Rate Pinging = No
Shallow Bottom Mode = No
Wave Gauge $=$ No

Lowered ADCP = No
Beam Angle $=20$
Temperature $=10.00$
Deployment hours $=504.00$
Battery Packs = 2
Automatic TP = Yes
Memory Size (MB) $=2000$
Saved Screen = 2

Consequences generated by PlanADCP version 2.04
First cell range $=6.38 \mathrm{~m}$
Last cell range $=122.38 \mathrm{~m}$
Max range $=99.40 \mathrm{~m}$
Standard deviation $=3.07 \mathrm{~cm} / \mathrm{s}$
Ensemble size $=754$ bytes
Storage required $=652.34 \mathrm{MB}$ (684028800 bytes)
Power usage $=481.46 \mathrm{~Wh}$
Battery usage $=1,1$

Recovery was by means of a snap hook onto the frame and lifting with the aft crane.
This mooring was trawled by a French vessel and was thrown back into the sea.
The recovery line and lifting lines had been cut and a length of trawl line was attached to the remainder of the recovery line. Once recovered it was noted that two of the glass buoyancy spheres were missing and several others were damaged. The frame of the lander showed signs of severe scuffing.

GUARD BUOYS deployed using aft crane and a release hook

MS1
Deployed : 13.16 GMT on 5/7/08
Depth : 114m
Position : 49 51.15N, 0756.66 W
Recovered : 17.17 GMT on 24/7/08
The mooring was recovered in full using the aft crane and deck winch

MS3
Deployed : 23.27 GMT on 4/7/08
Depth : 122m
Position : 49 56.21N, 07 48.80W
Recovered : not recovered

This mooring was reported as missing on 8/7/08. The reasons why are not known and likewise the current whereabouts of the buoy is unknown.

Dye Release Experiment (Mark Inall).

Two dye release experiments were carried out during the cruise. The dye used was Rhodamine WT, diluted with propan-2-ol (also known as Iso-propyl-alcohol, or IPA) to achieve the required density for injection into the seasonal thermocline. A total mass of 50 kg of Rhodamine WT used, with 23 kg released on the first experiment and the remaining 27 kg release on the second. Rhodamine WT fluoresces at 590 nm and was detected in situ by using a Chelsea instruments Aquatraka III Rhodamine-tuned fluorimeter (SN:06-3598R-06) which was fitted to the Scanfish towed undulating vehicle.

In both experiments the dye was injected on the $\sigma_{\theta}=26.5$ isopycnal (at approximately 35 m water depth) at a position approximately 1 km NE of station MS2. The dye mixture was pumped from storage tanks on the deck through a 25 mm diameter hose attached to a weight lowered from the stern. Multiple small holes at the end of the hose acted to diffuse the dye and a seabird SMP37 microcat (SN:4609) was attached to the diffusing end of the hose to measure the precise injection depth and in situ density.

Scanfish surveys of the dye-patch were carried out a various time intervals after each release. Serial output from the Rhodamine-tuned fluorimeter was fed in real time from the CTD deck unit PC into a second PC. This second PC was running a matlab script written to visualise the dye concentrations on a geographical grid survey pattern.

To enable the dye to be tracked in an environment with strong tidal and inertial currents two mini lagrangian drifters were deployed. These were WOCE standard SVP-B drifters manufactured by Marlin-Yug Ltd with the drogue depth modified from the standard 50m depth to the dye release depth of 35 m . The buoys (SN: IMEI639400 \& IMEI632400) take a GPS fix on the hour every hour then transmit their position via the Iridium satellite network. Positions were received on-board via the internet.

Dye Release \#1 (R1)

Time: July $9^{\text {th }}$ 2008, 19:00 - 19:04 BST
Position: 49.94749N 07.798127W
Release: 23 kg Rhodamine WT specific gravity $=1.0245$ at $18^{\circ} \mathrm{C}$ at 37 m water depth.
Drifter buoy deployed: SN639400

Scanfish Surveys (R1S1 and R1S2)

1. R1S1

- Start: 49.944N 7.743W JDAY 191.91836
- End: 49.884N 7.765W JDAY 192.05447

2. R1S2

- Start: 49.786N 7.860W JDAY 193.59250
- End: 49.805N 7.778W JDAY 193.93503

Due to termination failure of the scanfish survey survey R1S1 was aborted early and the planned time-gap of 12 hours between surveys was not possible. Due to the low concentrations detected during R1S2 it was agreed that it was not worthwhile conducting a third survey of the first dye release.

Dye Release \#2 (R2)
Time: July $17^{\text {th }} 2008,02: 12-02: 18$ BST
Position: 49.90615N 07.859162W
Release: 27 kg Rhodamine WT specific gravity $=1.0245$ at $18^{\circ} \mathrm{C}$ at 35 m water depth.
Drifter buoys deployed: SN639400 and SN632400

Scanfish Surveys (R2S1 to R2S4)

1. R2S1

- Start 49.9617N
7.6245W
JDAY 199.28942
- End 49.8608N 7.7894W JDAY 199.47736

2. R2S2

- Start 49.9316N 7.6930W JDAY 199.66991
- End 49.854ON 7.8195W JDAY 199.90988

3. R2S3

- Start 49.9070N 7.7773W JDAY 200.23618
- End 49.8445 N
7.8481W JDAY 200.47024

4. R 2 S 4

- Start 49.9006N 7.6653W JDAY 200.74497
- End 49.8980N 7.7881W JDAY 200.97295

Figure 1: Dye release No. R1. dye mixing and storage tanks next to coiled deployment hose on the aft deck.

Figure 2: Cartoon showing the estimated extent of the dye patch 2 days after the first release.
Mooring positions MS1 to MS4 are shown for reference.

Vessel Mounted ADCPs (Mark Inall).

James Cook is fitted with two vessel mounted ADCPs (VMADCPs), an RDI Ocean Surveyor 75 kHz and an RDI Broadband 150 kHz . Both are mounted in the port drop-keel, and can operate with the keel in the up or down position. However, due to acoustic interference with the EK60 multi-frequency fisheries acoustic sounder, the VMADCPs were only switched on for relatively short periods during JC25.

Both ADPCs were in bottom track range for the entire cruise (except for the very start of the final scanfish line from the Porcupine Abyssal Plane to the shelf break), so navigational correction from ship-relative velocities to fixed earth-relative coordinates was not necessary.

Both VMADPC PCs were running the RDI acquisition software 'VMDAS'. The VMDAS setups for each Doppler are given below. RDI binary format files with the 'ENX' extension were read directly into matlab for visualisation and post-processing.

Under hull aeration was a problem during bad weather, with the OS75 affected more severely than the 150BB. The VMADCPs were principally used during the dye release surveys and the final scanfish line from the shelf break to Jones Bank. The ship steamed at 8 knots during these times and the weather was favourable, therefore reasonable VMADCP data were returned.

OS75 Setup:

No. Bins: 25; Bin size: 8m; Blank after transmit: 8m; Ping rate: $1 \mathrm{~s}^{-1}$
All times in BST

File name	Start date/time	End date/time	Comments
${ }^{*} 000 .^{*}$	$3 / 7 / 08-21: 22$	$4 / 7 / 08-06: 41$	
001	$4 / 7 / 08-06: 43$	$5 / 7 / 08-07: 27$	
002	$5 / 7 / 08-07: 29$	$5 / 7 / 08-15: 44$	
003	$5 / 7 / 08-15: 49$	$5 / 7 / 08-16: 15$	EK60 sync test
004	$5 / 7 / 08-16: 15$	$5 / 7 / 08-19: 21$	Ek60 sync text over
005 and 006			Unknown tests
007	$9 / 7 / 08-21: 51$	$10 / 7 / 08-02: 02$	
008	$10 / 7 / 08-11: 46$	$11 / 7 / 08-14: 30$	
009	$11 / 7 /-8-14: 31$	$11 / 7 / 08-22: 51$	Dye R1S2
010	$17 / 7 / 08-06: 17$	$18 / 7 / 08-11: 37$	R2S1 to R2S3
011	$18 / 7 / 08-17: 24$	$19 / 7 / 08-11: 14$	R2S4
012	$25 / 7 / 08-20: 07$		Shelf brk to Jones Bk

150 BB Setup
No. Bins: 50; Bin size: 4m; Blank after transmit: 4m; Ping rate: $1 \mathrm{~s}^{-1}$
All times in BST

File name	Start dateltime	End date/time	Comments
${ }^{*} 000 .{ }^{*}$	$3 / 7 / 08-21: 23$	$4 / 7 / 08-09: 10$	
001	$4 / 7 / 08-09: 11$	$5 / 7 / 08-07: 30$	
002	$5 / 7 / 08-07: 31$	$5 / 7 / 08-15: 04$	
003 to 007	$5 / 7 / 08-15: 04$	$5 / 7 / 08-19: 22$	EK60 sync tests
008	$9 / 7 / 08-21: 52$	$10 / 7 / 08-02: 02$	
009	$10 / 7 / 08-11: 46$	$11 / 7 / 08-14: 30$	
010	$11 / 7 /-8-14: 30$	$11 / 7 / 08-22: 49$	Dye R1S2
011	$17 / 7 / 08-06: 17$	$18 / 7 / 08-11: 37$	R2S1 to R2S3
012	$18 / 7 / 08-17: 24$	$19 / 7 / 08-11: 14$	R2S4
013	$25 / 7 / 08-20: 07$		Shelf brk to Jones Bk

Inorganic Nutrients Measurements (Sharon McNeill).
To determine the level of inorganic nutrients (nitrate, phosphate, silicate and ammonium) in the continental shelf and shelf edge waters of the Celtic Sea.

Methodology

Measurements were made using standard colorimetric methods with a Lachat Autoanalyser.
Primary standards were prepared as follows:
Ammonium 10013.27 $\mu \mathrm{m}$
Phosphate $10028.95 \mu \mathrm{~m}$
Nitrate $10072.30 \mu \mathrm{~m}$
Silicate $10511.86 \mu \mathrm{~m}$

A mixed nutrient stock was prepared from adding $1 \mathrm{ml} \mathrm{NH} 4,0.5 \mathrm{ml} \mathrm{PO} 4,2 \mathrm{ml} \mathrm{SiO} 2$ and 3 ml NO 3 of primary standards and diluting to 100 ml . Five working stocks then were prepared by diluting down the mixed nutrient stock, giving the highest concentration of $5 \mu \mathrm{M} \mathrm{NH} 4,2.5 \mu \mathrm{M} \mathrm{PO} 4,10.5 \mu \mathrm{M} \mathrm{SiO} 2$ and $15.1 \mu \mathrm{M}$ NO3. Analyses of triplicate samples showed that results were reproducible to within 5% at concentrations $>1 \mu \mathrm{M}$, with errors increasing at lower concentrations.

Table 1: CTD sampling locations

Date	Time on deck				
			$49^{\circ} 53.9 \mathrm{~N}$		
06/07/08	MS2	002	$7{ }^{\circ} 52.15 \mathrm{~W}$	05:16	8
			$49{ }^{\circ} 53.87 \mathrm{~N}$		
06/07/08	MS2	004	$7{ }^{\circ} 51.93 \mathrm{~W}$	14:49	6
			$49^{\circ} 53.75 \mathrm{~N}$		
06/07/08	MS2	005	$7{ }^{\circ} 52.92 \mathrm{~W}$	21:13	10
			$49^{\circ} 54.415 \mathrm{~N}$		
07/07/08	MS2	006	$7{ }^{\circ} 52.502 \mathrm{~W}$	05:31	12
			$49^{\circ} 54.02 \mathrm{~N}$		
07/07/08	MS2	007	7052.02W	09:06	9
			$49^{\circ} 53.57 \mathrm{~N}$		
07/07/08	MS2	008	$7{ }^{\circ} 52.18 \mathrm{~W}$	12:31	10
			$49^{\circ} 51.535 \mathrm{~N}$		
09/07/08	MS1	010	$7{ }^{\circ} 56.627 \mathrm{~W}$	04:16	8
			$49^{\circ} 44.957 \mathrm{~N}$		

11/07/08	MS4	012	$7{ }^{\circ} 40.354 \mathrm{~W}$	04:14	12
			$49^{\circ} 44.939 \mathrm{~N}$		
12/07/08	MS4	014	$7^{\circ} 39.915 \mathrm{~W}$	01:11	9
			$49^{\circ} 45.15 \mathrm{~N}$		
12/07/08	MS4	015	7³9.11W	08:26	9
			$49^{\circ} 44.61 \mathrm{~N}$		
12/07/08	MS4	016	$7 \times 40.19 \mathrm{~W}$	13:41	10
			$49^{\circ} 44.602 \mathrm{~N}$		
12/07/08	MS4	017	$7{ }^{\circ} 39.001 \mathrm{~W}$	21:37	10
			$49^{\circ} 45.252 \mathrm{~N}$		
13/07/08	MS4	018	$7{ }^{\circ} 39.745 \mathrm{~W}$	04:40	9
			$49^{\circ} 53.86 \mathrm{~N}$		
14/07/08	MS2	019	$7{ }^{\circ} 51.85 \mathrm{~W}$	11:24	11
			$49^{\circ} 54.14 \mathrm{~N}$		
14/07/08	MS2	020	$7{ }^{\circ} 52.99 \mathrm{~W}$	18:40	9
			$49^{\circ} 53.553 \mathrm{~N}$		
15/07/08	MS2	021	$7{ }^{\circ} 52.424 \mathrm{~W}$	03:52	10
			$49^{\circ} 56.165 \mathrm{~N}$		
17/07/08	MS3	023	$7{ }^{\circ} 49.534 \mathrm{~W}$	03:40	9
			$49^{\circ} 59.611 \mathrm{~N}$		
19/07/08	MS5	027	$8^{\circ} 08.615 \mathrm{~W}$	04:05	8
			$49^{\circ} 56.31 \mathrm{~N}$		
19/07/08	transect 1	029	$8^{\circ} 20.3 W$	12:00	6
			$49^{\circ} 52.75 \mathrm{~N}$		
19/07/0	transect 2	030	$7{ }^{\circ} 54.90 \mathrm{~W}$	15:40	8
			$49^{\circ} 48.48 \mathrm{~N}$		
19/07/08	transect 3	031	$7{ }^{\circ} 46.59 \mathrm{~W}$	19:11	8
			$49^{\circ} 45.158 \mathrm{~N}$		
19/07/08	trans 4 MS4	032	$7{ }^{\circ} 40.187 \mathrm{~W}$	20:45	8
			$49^{\circ} 50.675 \mathrm{~N}$		
21/07/08	MS1	033	$7{ }^{\circ} 56.883 \mathrm{~W}$	04:04	9
			$49^{\circ} 53.602 \mathrm{~N}$		
21/07/08	MS2	034	$7{ }^{\circ} 52.377 \mathrm{~W}$	07:05	11
			$49^{\circ} 54.16 \mathrm{~N}$		
21/07/08	MS2	035	$7{ }^{\circ} 52.62 \mathrm{~W}$	13:39	10
			$49^{\circ} 53.723 \mathrm{~N}$		
21/07/08	MS2	036	$7{ }^{\circ} 52.847 \mathrm{~W}$	20:41	11

22/07/08	MS2	037	$49^{\circ} 53.72 \mathrm{~N}$	10:25	11
			$7{ }^{\circ} 52.79 \mathrm{~W}$		
			$49^{\circ} 44.81 \mathrm{~N}$		
22/07/08	MS4	038	7040.22W	16:35	9
			$49^{\circ} 45.237 \mathrm{~N}$		
23/07/08	MS4	039	$7{ }^{\circ} 39.950 \mathrm{~W}$	03:50	10
			$49^{\circ} 45.070 \mathrm{~N}$		
23/07/08	MS4	040	$7{ }^{\circ} 39.913 W$	06:43	9
			$48^{\circ} 39.64 N$		
25/07/08	Shelf edge1 041		$9^{\circ} 08.48 \mathrm{~W}$	06:45	8
			$48^{\circ} 17.57 \mathrm{~N}$		
25/07/08	Shelf edge2 042		$9^{\circ} 26.57 \mathrm{~W}$	12:00	7
			$47^{\circ} 55.54 \mathrm{~N}$		
25/07/08	Shelf edge		$9^{\circ} 44.29 \mathrm{~W}$	18:48	10

Samples were collected from CTD casts and analysed within 24hours. Figure 1 shows a typical profile with low nutrient concentrations in the surface waters due to their uptake by primary producers, nutrients then becoming more plentiful in the deeper waters. Zooplankton excretion and NH 4 cycling in the surface waters give a different profile for ammonium where the concentrations are higher in shallower depths.

Figure 1: Station MS4 CTD017

Chlorophyll determination (Keith Davidson).

Collection and analysis of chlorophyll samples provides an estimate of the autotrophic biomass within the water column and allows calibration of fluorometric data collected by CTD.

Sample Collection

Water samples were collected from pre dawn CTD casts (Table 1) and transferred into one litre pre washed polycarbonate bottles. These bottles were kept in the dark until processing.

On all CTD casts that primary production measurements were conducted samples were collected for chlorophyll determination at the same six depths at those sampled for primary production, equivalent to $100 \%, 50 \%, 25 \%, 15 \%, 3 \%$ and 1% of surface light intensity. On occasions when the fluorescence maximum did not coincide with one of these depths, a further sample was collected at this depth. On all sampling occasions a sub thermoclyne sample was also collected by CTD for chlorophyll analysis.

For CTDs 041-043 close to or at the shelf edge at from which samples for chlorophyll determination were collected but at which primary production was not conducted, sampling depths are detailed in Table 1.

Sample Processing

Two 500 ml sub samples from each depth were filtered under low vacuum through pre ashed GFF glass fibre filters (effective pore size $0.4 \mu \mathrm{~m}$). These filters were stored frozen in eppindorf tubes.

A further two 500 ml sub samples from each depth were filtered sequentially through $20 \mu \mathrm{~m}$ and $2 \mu \mathrm{~m}$ pore size polycarbonate membrane filters. These filters were stored frozen in eppindorf tubes.

Sample Analysis

Samples will be transported frozen to SAMS for post cruise analysis.
Analysis will be conducted by extraction of chlorophyll overnight in the dark at $4^{\circ} \mathrm{C}$ in 90% acetone. Subsequently samples will be sonicated and then centrifuged to release the pigment into solution. Analysis of pigment concentrations will be conducted using a Turner Designs Trilogy fluorometer.

Table 1: Sampling locations \& depths

Date	Station	Cast number	Location	Time of deployment (GMT)	Main sampling depths (m)	Sub thermoclyde sampling depth (m)	Chlorophyll maximum sampling depth (m)
			$49^{\circ} 53.9^{\prime} \mathrm{N}$		As primary	107	27
06/07/2008	MS2	002	$7^{\circ} 52.15{ }^{\text {W }}$ W	03:40	production*		
			$49^{\circ} 54.4{ }^{\prime} \mathrm{N}$		As primary production*	100	No defined chlorophyll
07/07/2008	MS2	006	$7^{\circ} 52.5^{\prime} \mathrm{W}$	03:47			maximum
			$49^{\circ} 51.5 \mathrm{~N}$		As primary	68	25
09/07/2008	MS1	010	$7^{\circ} 56.7 \mathrm{~W}$	03:42	production*		
			$49^{\circ} 45^{\prime} \mathrm{N}$		As primary	107	27
11/07/2008	MS4	012	$7^{\circ} 40.36{ }^{\text {W W }}$	03:45	production*		
			$49^{\circ} 45.3$ '		As primary	125	30
13/07/2008	MS4	018	$7^{\circ} 39.8{ }^{\text {' W }}$	04:06	production*		
			$49^{\circ} 53.6^{\prime} \mathrm{N}$		As primary	108	38
15/07/2008	MS2	021	$7{ }^{\circ} 52.4{ }^{\text {' W }}$	03:09	production*		
			$49^{\circ} 56.17^{\prime} \mathrm{N}$		As primary production*	113	$\begin{gathered} 30 \\ \text { at } 3 \% \text { PP } \end{gathered}$
17/07/2008	MS3	023	$7^{\circ} 49.54{ }^{\text {W W }}$	03:00			light depth
			$49^{\circ} 56.61{ }^{\prime} \mathrm{N}$		As primary	123	$\begin{gathered} 33 \\ \text { at } 30 \mathrm{pp} \end{gathered}$
19/07/2008	MS5	027	$8^{\circ} 8.62^{\prime} \mathrm{W}$	03:30			light depth
			$49^{\circ} 51.5 \mathrm{~N}$		As primary	73	36
21/07/2008	MS1	033	$7^{\circ} 56.7 \mathrm{~W}$	03:00	production*		
			$49^{\circ} 45.3^{\prime} \mathrm{N}$		As primary production*	128	$\begin{gathered} 33 \\ \text { at 3\% PP } \end{gathered}$
23/07/2008	MS4	039	$7^{\circ} 39.8{ }^{\text {W }}$ W	03:30			light depth
			$48^{\circ} 39.4{ }^{\prime} \mathrm{N}$		4	52	34
25/07/2008	-	041	$9^{\circ} 08.28{ }^{\prime} \mathrm{W}$	06:04			
			$48^{\circ} 17.6^{\prime} \mathrm{N}$		3	73	22
25/07/2008	-	042	$9^{\circ} 26.6^{\prime} \mathrm{W}$	11:37			
			$47^{\circ} 55.6^{\prime} \mathrm{N}$		8	56	36
25/07/2008	-	043	$9^{\circ} 44.3{ }^{\prime} \mathrm{W}$	12:12			

*All stations were sampled at six depths corresponding to $100 \%, 50 \%, 25 \%, 15 \%, 3 \%$ and 1% of surface light intensity.

Primary Production (Linda Gilpin).

General protocol

Estimates of size fractionated column integrated primary production were made at stations MS1 MS5 during cruise JCO25 using 24 hour on-deck incubations with ${ }^{14} \mathrm{C}$.

Details of methodology

Where light profiles were available for sampling stations, they indicated the euphotic zone depth to vary from 40 to 44 m . Due to the relative proximity of the stations to Jones Bank, 40 m was used for those stations where a light profile was not available prior to sampling. CTD casts were made predawn between 0300 and 0400GMT and four 60mL polycarbonate bottles were filled with water from each of six depths equivalent to the $100,50,25,15,3$ and 1% light depth. The water was pre-screened with a $200 \mu \mathrm{~m}$ mesh. Each bottle was spiked with $10 \mu \mathrm{Ci}(370 \mathrm{kBq})$ of $\mathrm{NaH}^{14} \mathrm{CO}_{3}$. Triplicate bottles from each depth were incubated on-deck in tanks shaded with neutral density filters to reproduce the in situ light regimes. The fourth bottle from each depth was incubated in a dark tank; all tanks were cooled with a continuous flow of seawater from the non-toxic supply. The samples were incubated for 24 hours. Between dusk and dawn the samples were placed in a coldroom in a dark box in order to eliminate the effects of light spill from deck lighting. Following incubation, each sample was filtered sequentially under low vacuum through 20, 2 and $0.2 \mu \mathrm{~m}$ polycarbonate membrane filters, fumed for ~ 1 hour over HCl and desiccated for atleast 24 hours prior to the addition of 3 mL of Optiphase Hisafe III scintillation cocktail. The incorporation of ${ }^{14} \mathrm{C}$ into the particulate phase was established using a Perkin Elmer Tricarb 3100TR scintillation counter. The spikes of ${ }^{14} \mathrm{C}$ were standardised for each experiment using a mix of Optiphase Hisafe cocktail, Carbosorb and deionised water in a ratio of 30:10:1 by volume.

Stations sampled

Date	Stn name	CTD cast	Expt. name	Depths sampled (m)
$6 / 7 / 08$	MS2	2	OD1	$2,6,13,17,32,41$
$7 / 7 / 08$	MS2	6	OD2	$2,5,12,17,32,40$
$9 / 7 / 08$	MS1	10	OD3	$2,5,12,16,30,40$
$11 / 7 / 08$	MS4	12	OD4	$2,7,14,18,32,42$
$13 / 7 / 08$	MS4	18	OD5	$2,8,15,19,33,43$
$15 / 7 / 08$	MS2	21	OD6	$2,7,13,17,32,43$
$17 / 7 / 08$	MS3	23	OD7	$2,5,12,16,30,43$
$19 / 7 / 08$	MS5	27	OD8	$2,7,13,18,33,44$
$21 / 7 / 08$	MS1	33	OD9	$3,8,15,19,30,42$
$23 / 7 / 08$	MS4	39	OD10	$2,7,14,18,32,42$

Preliminary results

Preliminary results indicate column production values were low, ranging from $230-415 \mathrm{mgC} \mathrm{m}^{-2}$. Size fractionation generally demonstrates production dominated by cells less than $20 \mu \mathrm{~m}$ with negligible production in the larger fraction. However, a marked exception to this pattern was observed at MS2 during the first two visits on $6^{\text {th }}$ and $7^{\text {th }}$ July when rates in the $>20 \mu \mathrm{~m}$ fraction were comparable to those in the other fractions. This pattern was not observed on a later visit to the station on $15^{\text {th }}$ July when the contribution by the $>20 \mu \mathrm{~m}$ fraction was negligible (Figure 1). This feature will be interpreted in relation to other biological and physical datasets as they emerge.

Figure 1: Depth profiles of primary production at MS2 on $7^{\text {th }}$ and $15^{\text {th }}$ July 2008 demonstrating different fractionation patterns.

Nitrogen Uptake (Keith Davidson).

To obtain an estimate of contribution of new (nitrate) and regenerated (ammonium) to production determination was made of the rate of uptake of nitrate and ammonium using ${ }^{15} \mathrm{~N}$ stable isotopes of nitrogen.

Sample Collection

Water samples were collected from pre dawn CTD casts (Table 1) and stored in thermos flasks until processing. Samples were pre filtered through $200 \mu \mathrm{~m}$ mesh to remove large zooplankton grazers.

Samples were collected at three depths (Table 1) representative of the surface mixed layer (collected at 25% surface irradiance), within the thermocylne (collected at 3% surface irradiance) and sub thermoclyne water (0% surface irradiance).

From each depth eight 200 ml sub samples were transferred into 250 ml polycarbonate bottles.
Four bottles received spike additions of ${ }^{15} \mathrm{~N}$ Sodium nitrate and four bottles received spike additions of ${ }^{15} \mathrm{~N}$ ammonium chloride. Bottles were then incubated for four hours on deck in tanks with flow through seawater and neutral density screens to simulate different irradiance levels.

For samples collected form both the surface mixed layer and the thermoclyne duplicate bottles of both ${ }^{15} \mathrm{NO}_{3}$ and ${ }^{15} \mathrm{NH}_{4}$ spiked water were incubated at light intensities simulating their depth of collection and also in the dark. Water collected from below the euphotic zone was incubated in the dark and also in 100\% surface irradiance. On deck incubations are summarised in Table 2.

In all cases the concentration of the ${ }^{15} \mathrm{~N}$ spike was set as 10% of the known or estimated concentration of nitrate or ammonium (as appropriate) at the particular depth.

After incubation, samples were filtered through 13 mm pre ashed GFF filters. Filters were stored frozen in eppindorf tubes for post cruise analysis at SAMS.

Sample Analysis

Samples will be transported frozen to SAMS for post cruise analysis.
Analysis will be conducted using a PDZ Europa ANCA 20-20 GSL mass spectrometer. Defrosted samples will be oven dried $\left(60^{\circ} \mathrm{C}\right)$ for 4 hours and then wrapped in tin disks prior to analysis.

Table 1: Sampling locations \& depths

Date	Station	Cast number	Location	Time of deployment (GMT)	collection depth (m)		
					Sub thermocyle	Thermoclyne	Surface mixed layer
06/07/2008			$49^{\circ} 53.9^{\prime} \mathrm{N}$		107	32	13
	MS2	002	$7^{\circ} 52.15{ }^{\text {W }}$	03:40			
			$49^{\circ} 54.4{ }^{\prime} \mathrm{N}$		100	40	17
07/07/2008	MS2	006	$7^{\circ} 52.5{ }^{\text {W }}$	03:47			
			$49^{\circ} 51.5 \mathrm{~N}$		68	30	12
09/07/2008	MS1	010	$7^{\circ} 56.7 \mathrm{~W}$	03:42			
			$49^{\circ} 45^{\prime} \mathrm{N}$		107	32	13
11/07/2008	MS4	012	$7^{\circ} 40.36$ W	03:45			
			$49^{\circ} 45.3^{\prime} \mathrm{N}$		125	33	15
13/07/2008	MS4	018	$7{ }^{\circ} 39.8{ }^{\text {' W }}$	04:06			
			$49^{\circ} 53.6{ }^{\prime} \mathrm{N}$		108	32	13
15/07/2008	MS2	021	$7^{\circ} 52.4{ }^{\text {' W }}$	03:09			
					113	30	13
17/07/2008	MS3	023		03:00			
			49°		123	33	13
			$56.61{ }^{\prime} \mathrm{N}$				
19/07/2008	MS5	027	$8^{\circ} 8.62{ }^{\text {' W }}$	03:30			
			$49^{\circ} 51.5 \mathrm{~N}$		73	36	15
21/07/2008	MS1	033	$7^{\circ} 56.7 \mathrm{~W}$	03:00			
			$49^{\circ} 45.3^{\prime} \mathrm{N}$		128	33	14
23/07/2008	MS4	039	$7^{\circ} 39.8{ }^{\text {' W }}$	03:30			

Table 2: On deck light regime

Characteristics of sampling depth	Spike Addition	On deck light regime
Surface mixed layer	${ }^{15} \mathrm{NO}_{3}$	2 bottles at 25% surface irradiance 2 bottles at 0% surface irradiance
Surface mixed layer	${ }^{15} \mathrm{NH}_{4}$	2 bottles at 25% surface irradiance 2 bottles at 0% surface irradiance
Thermoclyne	${ }^{15} \mathrm{NO}_{3}$	2 bottles at 3% surface irradiance
		2 bottles at 0% surface irradiance
Thermoclyne	${ }^{15} \mathrm{NH}_{4}$	2 bottles at 3% surface irradiance

		2 bottles at 0% surface irradiance
Sub thermoclyne	${ }^{15} \mathrm{NO}_{3}$	2 bottles at 100% surface irradiance
		2 bottles at 0% surface irradiance

Pelagic Phytoplankton, Bacteria \& microheterotroph Enumeration (Debra Brennan).

Samples were collected for the enumeration of:

1) Phytoplankton including diatoms, dinoflagellates and ciliates by light microscopy
2) Bacteria, heterotrophic and phototrophic nanoflagellates (HNAN and PNAN), cyanobacteira and bacterial functional groups by fluorescence microscopy.

Phytoplankton

Sample collection:
Phytoplankton samples were collected from the pre dawn CTD casts indicated in Table 1, up to 8 depths. Separate sub samples were fixed with 1% final concentration of Lugol's lodine and 1% final concentration of glutaradehyde for post cruise analysis by microscopy.

A $20 \mu \mathrm{~m}$ phytoplankton net was deployed at a number of stations (Table 1) to a approximate depth of 20 m . Collected samples were fixed with both glutaradehyde and Lugol's iodine as above.

A live phytoplankton sample was distributed between three different nutrient growth media recipes each favouring growth of certain algal groups e.g. diatoms or dinoflagellates. These samples will be returned to SAMS where cells will be isolated and grown into pure cultures.

Preliminary identification of phytoplankton observed during JC25 is listed below:

Dinoflagellates:
Ceratium symmetricum, C. contortum, C. declinatum, C. furca, C. fusus
Dinophysis tripos, D. norvegica
Protoperidium sp.
Gonyaulax sp.
Prorocentrum lima, P. micans
Some naked dinoflagellates

Diatoms:
Pseudo-nitzschia sp.
Straitella sp.
Rhizosolenia sp.
Coscinodiscus sp.
Various small centric diatoms

Others
Silicoflagellates- Dictyocha sp.
Phaeocystis sp.
Radiolaria sp.
It was noted that station MS3 had a lower abundance of all species compared with the other stations.

Other Pelagic microbes

HNAN/PNAN \& CYANOBACTERIA
Sample collection:
Samples were collected from pre- dawn CTD casts at 8 depths (6 primary production depths, chlorophyll maximum and sub thermoclye).
All samples were immediately fixed with 1% (final conc) glutaraldehyde.

HNAN/PNAN

15 ml of fixed sample was filtered through a $0.8 \mu \mathrm{~m}$ polycarbonate filter with a $0.8 \mu \mathrm{~m}$ cellulose nitrate backing filter. The sample was filtered under low vacuum to maintain an even distribution of cells across the filter.
$25 \mu \mathrm{l}$ of the fluorescent stain DAPI was added to the final 5 ml and incubated for 4 min before recommencing filtration. Subsequently 5 ml of milli-Q water (pre sterilised by $0.2 \mu \mathrm{~m}$ filtration) was added to rinse down any remaining sample from the tower.

The filter was then mounted on a microscope slide and frozen at -21 degrees for later analysis.

CYANOBACTERIA

Samples were processed using a similar filtration procedure as for HNAN/PNAN but in this case cells were collected following filtration of 5 ml of fixed sample onto a $0.2 \mu \mathrm{~m}$ white polycarbonate filter. No stain is required for enumeration as the cyanobacteria auto fluoresce when viewed under ultra violet illumination.

Sample analysis:
Slides will be kept frozen and transported to SAMS for post cruise enumeration by fluorescent microscopy.

BACTERIAL ABUNDANCE

5 ml of fixed sample placed in a cryovial and snap frozen with liquid nitrogen prior to freezing at -80 degrees. Post cruise, bacterial abundance analysed by flow cytometry.

BACTERIAL FUNCTIONAL GROUP BY FISH (fluorescent in situ hybridisation)

Samples were collected from 3 depths from pre dawn CTD casts: 1\% light depth, chlorophyll maximum and 50% light depth.

A 10 ml sub sample from each depth was fixed with paraformaldehyde and incubated for at least 4 hours before filtration.

Samples were filtered onto a $0.2 \mu \mathrm{~m}$ white polycarbonate filter with $0.8 \mu \mathrm{~m}$ cellulose backing filter .
Filters were air dried and place in a petri dish before freezing at -21 degrees for post cruise analysis. Samples will be processed following FISH procedure where specific probes are used to identify specific bacterial types using fluorescence microscopy.

Table 1: sampling protocol

Date	Station	Depths	HNAN/ PNAN	Cyano- bacteria	Bacterial abundance	FISH	Phytoplankton	Net sample
6.7 .08	MS2	8	\bullet	\bullet	\bullet	\bullet	\bullet	
7.7 .08	MS2	7	\bullet	\bullet	\bullet		\bullet	
$9 / 7 / 08$	MS1	8	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
$11 / 7 / 08$	MS4	8	\bullet	\bullet	\bullet	\bullet	\bullet	
$13 / 7 / 08$	MS4	8	\bullet	\bullet	\bullet		\bullet	\bullet
$15 / 7 / 08$	MS2	8	\bullet	\bullet	\bullet	\bullet	\bullet	
$17 / 7 / 08$	MS3	8	\bullet	\bullet	\bullet	\bullet	\bullet	
$19 / 7 / 08$	MS5	8	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
$21 / 7 / 08$	MS1	8	\bullet	\bullet	\bullet	\bullet	\bullet	
$23 / 7 / 08$	MS4	8	\bullet	\bullet	\bullet	\bullet	\bullet	
$25 / 7 / 08$	TR6	3					\bullet	\bullet
$25 / 7 / 08$	TR8	3					\bullet	
$25 / 7 / 08$	TR10	3					\bullet	\bullet

Sediment Biogeochemistry (Morten Larsen and Susan McKinlay).

The SOC-GDD Megacorer was deployed during the cruise: No modifications and full ballast was used. Eight carriages were used at most stations, unless more penetration of the sea bed was required to get longer cores, then two or four carriages were removed.

Site MS2- Full ballast, 8 tubes. Compact mud after 2 cm and occasional shells .Overlying water clear and, worm tubes on the surface, also small decapods in most cores .To obtain pore, water, samples had to be doubles up after 2 cm , and centrifuged at 4500 RPM for 10 minutes

Site MS1- Full ballast, 8 tubes -Failed to recover any core due to firing mechanism being hampered by the sandy sediment. Removed half of the carriages to try and increase penetration, but still failed to capture the cores, due to bubbling and the firing mechanism malfunctioning. Decided to use the Day Grab and sub core. 3 small mini cores taken varying from 4 cm to 10 cm , from 3 different drops. These couldn't be worked up in the glove bag, so sliced in the cold room for possible PSA, TOC, ACID Microwave digestion and Gamma detection

Site MS3- Sediment softer at this station, but sill compacted after 8cm, Mega corer preformed well, with some nice cores obtained. Pore water still hard to achieve after 10 cm , from sediment surface.

Site MS4- Ref Site- Full ballast, 8 tubes. Sediment similar to MS 2, the majority of the cores from this station had disturbed sediment surfaces. This was caused by the corer bouncing on the sea bed or bubbling as the corer came on board.

Site MS5- New Ref Station- The day Grab was used as a visual, and found to contain fine mud. So a full ballast core was sent down and obtained $7 / 8$ nice cores.

6 MUC Cores from each station (excluding MS1) were closed and incubated at in situ temperature $\left(\sim 10.5^{\circ} \mathrm{C}\right)$ and O_{2} concentration ($88 \%-91 \%$ atmospheric saturation). The six cores were used to measuring the following:

- Fluxes of ammonia, nitrate and phosphate between sediment and water.
- Rates of denitrification - using the isotope paring technique (addition of ${ }^{15} \mathrm{NO}_{3}{ }^{-}$)
- Total oxygen uptake rates of the sediment. .
- Microprofiles of oxygen and nitrate.
- Sediment production rates of DIC (Dissolved Inorganic Carbon)

Sediment from 3-6 cores from each station (excluding MS1) were used for following:

- Sulfate reduction rates -3 sub-cores injected with S-35.
- Potential anammox (anaerobe oxidation of ammonia)
- Pore water profiles of DIC and sulfate- in 1 cm intervals.
- Sediment porosity and organic matter - in 1 cm intervals.

At MS1 only the following measurements were carried out with sediment from Day grab:

- Sulfate reduction rates - 3 sub-cores injected with S-35.
- Pore water profiles of sulfate
- Anammox
- Microprofiles of oxygen and nitrate.

Fig 1. 2 selected microprofiles of nitrate and oxygen from MS3. Sediment surface is found a zero micrometer. The nitrate profile is measured in steps of 200 micrometer and the oxygen profile with a step size of 100 micrometer. Nitrate profiles from all stations showed a nitrate penetration depth of $\sim 10 \mathrm{~mm}$. Oxygen profiles from all stations showed an oxygen penetration depth greater 6 mm .

Collected samples will be returned to the Scottish Association for Marine Science, for further analysis.

Photograph 1: A daytime megacorer deployment.

Photograph 2. A Day Grab, landing on deck

Photograph 3. Day grab sample from MS2, Celtic Sea

Deployments of megacorer and Day grab:

Station	Site	Date	$\begin{aligned} & \hline \text { Time } \\ & \text { (UTC) } \end{aligned}$	$\begin{aligned} & \text { Lat } \\ & \text { (DN) } \end{aligned}$	$\begin{aligned} & \text { Lat } \\ & (\mathrm{M} / \mathrm{V}) \end{aligned}$	$\begin{aligned} & \text { Lon } \\ & \text { (DN) } \end{aligned}$	$\begin{aligned} & \text { Lon } \\ & \text { (MN) } \end{aligned}$	Depth	Comment
Jones Bank	MS 2	06/07/08	08.20	53	87	51	85	113	Day Grab, used for visual only
Jones Bank	MS 2	06,07/08	09.00	53	871:78	51	855:54	113	5/8 very shart cores, 3 bubbled
Jones Bank	MS 2	06/07/08	09.40	53	869:91	51	855:59	112.4	3/8 poor, discarded
Jones Bank	MS 2	06/07/08	10.00	53	849:77	51	860:21	112.1	6.83 bubbled
Jones Bank	MS 2	06/07/08	10.36	53	863:49	51	865:13	112	6182 bubbled
Jones Bank	MS 1	09,07/08	08.28	51	54566	56	58552	82	3/8 All bubbled. Discarded
Jones Bank	MS 1	09107/08	08.55	51	54617	56	56558	82	018 Discarded-removed 4
Jones Bank	MS 1	09107/08	09.25	51	54470	56	56623	82	$0 / 4$ Discarded try Day Grab
Jones Bank	MS 1	09107/08	09.53	51	54485	56	56582	82	Mini-core Day grab
Jones Bank	MS 1	09107/08	10.07	51	54321	56	56590	81	Mini-core Day grab
Jones Bank	MS 1	09107/08	10.18	51	54329	56	56587	82	Mini-core Day grab (Discarc)
Jones Bank	MS 1	09,07/08	10.29	51	54098	56	56401	83	Mini-core Day grab
Jones Bank	MS 1	11,07/08	07.30	44	96	40	35	132	Day grab used visual only
Jones Bank	MS4	11/07/08	07.49	44	95808	40	35323	132	8/8 Bounced-Discarded
Jones Bank	MS4	11/07/08	08.17	44	95763	40	35378	132	4/8.Core1, Gamma \& spare.
Jones Bank	MS4	11,07/08	08.56	44	95731	40	35325	132	$3 / 8$ Bounced -None taken
Jones Bank	MS4	11,07/08	09.15	44	95683	40	35365	133	788 Core 2 (Morten remainder)
Jones Bank	MS4	11,07/08	09.50	44	95612	40	35339	133	618 Core 3 (Morten remainder)
Jones Bank	MS2	1407/08	08.25	53	76708	52	96213	107	Off Station
Jones Bank	MS2	1407/08	09.36	53	86987	51	84904	117	$2 / 4$ Morte 1 D.Green 1
Jones Bank	MS2	14,07/08	10.02	53	86879	51	85092	117	$3 / 41$ bubbled Morten
Jones Bank	MS2	14/07/08	10.30	53	86165	51	85077	117	5/65 Nice cores Morten
Jones Bank	MS3	16,07/08	18.03	56	03345	48	68897	126	Day Grab, visual only
Jones Bank	MS3	16,07/08	18.25	56	03646	48	68751	126	MS3- Core 1 taken
Jones Bank	MS3	16,07/08	18.58	56	03286	48	68762	123	MS3 Core 2, PLUS Gamma core
Jones Bank	MS3	16,07/08	19.25	56	03439	49	68766	123	MS3 Spare core taken
Jones Bank	MS3	16,07/08	19.56	56	03411	48	68801	123	MS3 Core 3 taken
Ref Jones Bank	MS 5	19107/08	06.58	59	61245	08	61437	130	Day grab Visual
Ref Jones Bank	MS 5	19107/07	07.20	59	61265	08	61653	130	Mega corer 78, core 1, gamma \& spare
Ref Jones Bank	MS 5	19,07/08	07.50	59	61178	08	61529	130	Mega Corer 7/8, Core 2
Ret Jones Bank	MS 5	19107/08	08.29	59	61290	08	61758	129	Mega corer 78, Core 3 (2 bubbled)

Zooplankton sampling with Bongo nets (Beth Scott).

Bongo nets, a set of $200 \mu \mathrm{~m}$ and $95 \mu \mathrm{~m}$ nets were deployed using the starboard winch for straight vertical tows. Two tows were taken at each station (except the first test of the system at MS2). It takes 3 people to deploy, 1 to run the winch, 1 to hold the weight/keel, 1 to hold the bongos vertical until over the side until bongos are fully swung out and read to drop. The wire goes in and out at 0.25 m / s and as the recommended speed for vertical or oblige tows is $0.5 \mathrm{~m} / \mathrm{s}$ this is a bit slow and takes more time than it needs to. The timing of entry, timing at bottom and to start hauling back and time it hits surface are recorded. When the first net is recovered, the nets are washed down with a salt water hose, cod ends removed, second set put on and 2nd tow deployed immediately.

Volume swept is calculated by
Volume $=$ circular area * depth of sample (Circular area of net $=0.0707 \mathrm{~m} 2)$

Processing samples: Contents of cod ends are collected and put into labelled bottles with approximately 200 ml of 4% formalin solution. The labelling protocol is JC025 00\# (number of CTD cast) and $95 \mu \mathrm{~m}$ or $200 \mu \mathrm{~m}$, sample number 1 or 2 and the station label (i.e. MS1 or Tr1).

Table 1 Bongo Net Samples at Main Stations

Locations	Depth of tow/ Volume swept	Spring No of samples	Neap No of samples	Total
MS1	$60-68 \mathrm{~m}$ $4.24-4.81 \mathrm{~m}^{3}$	4		4
MS2	$90-95 \mathrm{~m}$ $6.36-6.72 \mathrm{~m}^{3}$	3	2	5
MS3	110 m			
$7.78 \mathrm{~m}^{3}$		2	2	
MS4	$110 \mathrm{~m}^{3}$		4	4
MS5	$7.78 \mathrm{~m}^{3}$			2
Totals	$7.78 \mathrm{~m}^{3}$	2	8	17

Table 2 Bongo Net Samples at Shelf edge

Locations	Depth of tow/ Volume swept	No of samples
Tr1 Shelf Edge	130 m	2
shallow	$9.19 \mathrm{~m}^{3}$	2
Tr2 Shelf Edge edge	$9.90 \mathrm{~m}^{3}$	2
Tr3 Shelf Edge	196 m	2
deep	$13.86 \mathrm{~m}^{3}$	
Totals		6

Fisheries acoustics (Clare Embling, Beth Scott \& Sophie Fielding (BAS)).
Fisheries acoustics was used on the James Cook to record fish schools within the water column throughout the survey, but in particular during the scanfish boxes (12.5 or 25 hour long circuits of the same 'oval' circuit repeated 6 or 12 times respectively), and during the 12.5 or 25 hour turbulence stations. This was carried out with the aim of studying fish behaviour over the diurnal and tidal cycles. The EK60 also proved to have a good capability for visualising internal waves from the patterns of zooplankton density above \& within the thermocline.

The ship EK60 fish echosounder system is positioned on the starboard drop keel on the James Cook, and comprises 5 transponders, at 18, 28, 70, 120 and 200 kHz . It was synchronised with the EA500 (another ship echosounder) using the SIMRAD Synchronisation Unit (SSU), but could not be worked synchronously with the shipboard ADCP due to a believed software problem that controls the ADCP ping rate. The ADCP operated at $75 \& 150 \mathrm{kHz}$ so contaminated the 70,120 and 200 kHz of the EK60 returns. In addition, the EK60 was obscured by bubbles (especially at the lower frequencies) if operated with the keel up - mainly due to the bulbous bow, combined with a flat bottom to the ship forcing air bubbles along the bottom of the hull. Since the EK60 and the ADCP transponders were on opposite keels, only one was able to work optimally at any one time. Therefore, although the EK60 was operated continuously during the survey, the data during which the EK60 keel was up \& the ADCP operational is not as good quality as that collected in the rest of the survey. The bridge also operated an echosounder that was not synchronised with the EK60, and that produced noise on the 38 kHz , so by co-ordination with the bridge it was ensured that this was used to a minimum during the key data collection phases (it was mainly used for the deployment \& retrieval of various bits of kit).

A key part in ensuring that the data could be used for fish abundance estimation and fish species recognition is the calibration of the five transponders - this was carried out by Sophie Fielding, an acoustician from the British Antarctic Survey (BAS) on Thursday $3^{\text {rd }}$ July. Due to problems in trying to calibrate the system in an area of high tidal current (which made it extremely difficult to position the small carbon tungsten ball within the narrow beam of each of the transponders), we were only able to calibrate three of the five frequencies: 38,120 and 200 kHz . A full report is provided by Sophie and is included as an appendix.

Core data collected (EK60 starboard keel down, ADCP switched off) is listed in the table below, activities in italics are those data collected supplementary to the core stationary \& box survey data.

Start date \& time (GMT)	End date \& time (GMT)	Task
$6^{\text {th }}$ July 2008 04:30	$7{ }^{\text {th }}$ July 2008 17:30	MS2 stationary turbulence monitoring (25 hr: spring)
$8^{\text {th }}$ July 2008 00:00	$9^{\text {th }}$ July 2008 01:00	Bank 'box' repeat survey (25 hr : spring) ${ }^{1}$
$9^{\text {th }}$ July 2008 19:30	$9^{\text {th }}$ July 2008 21:30	Small 'box' perpendicular to bank box survey
10th July 2008 03:00	$10^{\text {th }}$ July 2008 08:30	Transects perpendicular to bank box between MS2\&3
$12^{\text {th }}$ July 2008 02:15	$13^{\text {th }}$ July 2008 04:15	MS4 stationary turbulence monitoring (25 hr : neap)
$13^{\text {th }}$ July 2008 06:45	$13^{\text {th }}$ July 2008 20:30	MS4 'box' repeat survey (12 hr: neap) ${ }^{2}$
13 ${ }^{\text {th }}$ July 2008 20:30	$14^{\text {th }}$ July 2008 03:00	Transect MS4-across bank-MS5-bank
$14^{\text {th }}$ July 2008 12:00	$15^{\text {th }}$ July 2008 01:30	MS2 stationary turbulence monitoring (12 hr: neap)
$15^{\text {th }}$ July 2008 15:00	$16^{\text {th }}$ July $200816: 00$	Bank 'box' repeat survey (25 hr: neap)
18th July 2008 12:04	18 ${ }^{\text {th }}$ July 2008 17:30	Transect to \& from MS5 from bank
19 ${ }^{\text {th }}$ July 2008 10:27	19 ${ }^{\text {th }}$ July 2008 20:00	CTD \& grab survey over top of bank MS5-MS4
19 ${ }^{\text {th }}$ July 2008 20:00	20 ${ }^{\text {th }}$ July 2008 04:00?	Bathymetry transects over MS4 area
$20^{\text {th }}$ July 2008 04:00	$20^{\text {th }}$ July 2008 19:30	MS4 'box' repeat survey (15 hr : spring)
$21^{\text {st }}$ July 2008 08:00	$22^{\text {nd }}$ July 2008 09:30	MS2 stationary turbulence monitoring (25 hr : spring)
$22^{\text {nd }}$ July 2008 17:10	$23^{\text {rd }}$ July 2008 06:00	MS4 stationary turbulence monitoring (12 hr: spring)
$23^{\text {rd }}$ July 2008 17:00	$24^{\text {th }}$ July $200808: 00$	Towed transect from Jones Bank - Scilleys ${ }^{3}$
24th July 2008 19:30	$25^{\text {th }}$ July 2008 14:30	Jones Bank to Shelf edge transect ${ }^{4}$

On the spring tide bank box, nice clear progression of internal waves at the steep slope on the turn of the most south-easterly point of the 'box' (see following figures):

Figure 1 - Slope (dark red line is the echo from the bottom) \& zooplankton layers at 06:30 (GMT) on 8Jul08 (the more intense the colour the more energy is reflected from the target from blue -> green -> yellow -> red) (shown is the output from the 200 kHz echosounder)

[^0]

Figure 3 - Slope \& zooplankton layers at 10:45 (GMT) on 8Jul08: rapid \& steep internal waves at slope. Clear fish school at top of thermocline (intense red marks) just off slope (shown is the output from the 200 kHz echosounder).

Figure 4 - Slope \& zooplankton layers at 12:50 (GMT) on 8Jul08. Clear fish schools within \& below the thermocline (intense red marks) on \& off slope (shown is the output from the 200 kHz echosounder)

The clustering of internal waves over the bank edge is clearly visible in the transect carried out over the whole bank on returning from the shelf break. There is clearly higher density of scatters (fish/zooplankton) within the thermocline on one side of the bank, in which internal waves are visible. Also of note is the deeper high density layer on the edges of the bank at around 100m depth on the deeper side and 90 m depth on the shallower side of the bank.

Figure 5 - Jones Bank \& fish/zooplankton layers between 14:45-17:00 (GMT) on 26Jul08 (from 38 kHz echosounder)

A preliminary look at the data showed a clear diurnal change in behaviour, with fish schools concentrated mainly on \& around Jones Bank during the day, but dispersing at night. There were very few fish schools visible off the bank (in MS4 \& MS5), but clear marks of individual fish rising off the bottom during the day off the bank (and fewer of these 'bottom' fish marks on the bank).

Records of keel up/down \& ADCP on/off

Date \& Time (GMT)	Action	Comments
$3{ }^{\text {rd }}$ July 2008 04:00	Keel down, ADCP off	Start of calibration
$3{ }^{\text {rd }}$ July 2008 08:00?	Keel up, ADCP off	Move into shallower water for calibration so keel brought up
$5^{\text {th }}$ July 2008 20:35	Keel down, ADCP off	For MS2 turbulence \& bank box
$9^{\text {th }}$ July 2008 21:30	Keel up, ADCP on	Brought up for dye release experiment
$10^{\text {th }}$ July 2008 02:00	Keel up, ADCP off	Scanfish snagged on something, dye tracking stopped
$10^{\text {th }}$ July 2008 02:53	Keel down, ADCP off	
$10^{\text {th }}$ July 2008 11:46	Keel up, ADCP on	For T-Chl chain tow from MS1-MS3-MS1-MS4
$11^{\text {th }}$ July 2008 03:08	Keel down, ADCP on	T-Chl tow ended.
$11^{\text {th }}$ July 2008 14:30	Keel up, ADCP on	Search for dye
$11^{\text {th }}$ July 2008 22:50	Keel down, ADCP off	End of dye search
$15^{\text {th }}$ July 2008 07:30	Keel up, ADCP off, SWATH on	Start of SWATH bathymetry survey
$15^{\text {th }}$ July 2008 12:41	Keel down, ADCP off, SWATH off	End of SWATH bathymetry survey
$16^{\text {th }}$ July 2008 18:53	Keel up, ADCP off	Keels changed ready for dye release
$17^{\text {th }}$ July 2008 02:00?	Keel up, ACCP on	Ask Mark Inall when ADCP switched on
$18^{\text {th }}$ July 2008 12:04	Keel down, ADCP off	Steaming to MS5 \& back
$18^{\text {th }}$ July 2008 17:30	Keel up, ADCP on	For final dye tracking survey
$19^{\text {th }}$ July 2008 10:15	Keel up, ADCP off	End of dye experiment
$19^{\text {th }}$ July 2008 10:27	Keel down, ADCP off	
$24^{\text {th }}$ July 2008 08:03	Keel up, ADCP off	Keel taken up to steam back from Scilleys
$24^{\text {th }}$ July 2008 14:56	Keel down, ADCP off	Keel dropped once back on Jones Bank
$25^{\text {th }}$ July 2008 19:30	Keel up, ADCP off	Keel raised, dropped, and raised again (confusion!)
$25^{\text {th }}$ July 2008 20:30?	Keel up, ADCP on	ADCP run with scanfish on return transect

Baited Underwater Camera (Inigo Martinez, FRS Marine Laboratory and Aberdeen University.

The FRS Baited Underwater Camera (BUC) is a Lander frame fitted with a Kongsberg 5 mega pixel underwater camera, flash unit and a 24 v battery pack (fig 1). The lander is deployed on a free fall both on tethered mode or on legged mode. On JC_025 all deployments were on tethered mode where the BUC is suspended 2 m above the seabed by a flotation package. The lander is attached to a ballast with a 1 m scale (fig 2) where a standard 500 g of fresh mackerel bait is placed. In this case to make the life of the bait longer a second bait was placed frozen, on a seawater dissolving bag and wrapped on a mesh bag (fig 4). The camera was programmed to take one picture each minute.

Fig 1 (left). Baited camera frame fitted with camera, flash, battery and acoustic releases.
Fig 2 (right). deploying lander with ballast attach by 2 m wire.

The BUC was deployed on 9 occasions of which 7 were successful, one being obscured by continuous sediment resuspension. A total of 6186 pictures were collected over 103 hours (table 1). All sampling stations at the bank and on the flanks were covered (fig 3).

| JC025 | | | James Bank | | | |
| :--- | ---: | :--- | :---: | :---: | :---: | ---: | ---: |
| deployment | date | site | depth | lat | lon | images |
| JC025_01 | $07-09 / 08 / 2008$ | MS2 | 115 | 49.9 | -7.9 | 469 |
| JC025_02 | $10-11 / 07 / 08$ | MS1 | 84 | 49.9 | -7.9 | 76 |
| JC025_03 | $12-13 / 07 / 08$ | MS4 | 115 | 49.7 | -7.7 | 828 |
| JC025_04 | $14-15 / 07 / 08$ | MS1 | 95 | 49.8 | -7.9 | 400 |
| JC025_05 | $15-16 / 07 / 08$ | MS3 | 127 | 49.9 | -7.8 | 893 |
| JC025_06 | $17 / 07 / 2018$ | MS3 | 125 | 49.9 | -7.8 | 771 |
| JC025_07 | $18-19 / 07 / 08$ | MS5 | 124 | 50.0 | -8.2 | 899 |
| JC025_08 | $19 / 07 / 2008$ | MS1 | 102 | 49.8 | -7.9 | 928 |
| JC025_09 | $22-23 / 07 / 08$ | MS4 | 134 | 49.7 | -7.7 | 922 |

Table 1. Baited underwater camera deployment dates, sampling station, depth, position and number of images on each deployment.

```
JC025 - James Bank
```


Fig 3. Sampling Stations and baited underwater camera deployments at the James Bank's top (MS1), slope (MS2), bottom (MS3), and on the flanks (MS4 and MS5).

From each picture all species are identified and individuals within species counted on spreadsheets. Once all data is summarised 4 main biological indicators are obtained; Species Richness, First arrival time for each specie, Maximum number of individuals in one shoot per specie and Time of maximum number within each deployment. All this indicators can be crossed or modelled with other biological and oceanographic variables.

Other useful information obtained from the pictures is the length frequency of individuals (separated by 10 pictures/10 min to avoid pseudoreplication), speed track of invertebrates and permanence on the bait area. Individual images can be imported on ImageJ to calibrate the picture with the scale in view and individual fish can be measured by drawing its dorsal line (fig. 5).

Fig. 4 (left) Whiting (Merlangius merlangus) and invertebrates attracted to the bait over the scale attached to the ballast..

Fig 5 (right) Measuring length of a conger (Conger conger) close to the scale attracted by the frozen bait wrapped on the red mesh bag.

Cetacean acoustics (Clare Embling).

Three different methods were used on the James Cook to listen for the vocalizations of cetaceans (whales, dolphins and porpoises): C-PODs, sonobuoys and a vertical hydrophone array.

C-PODs

C-PODs (POrpoise Detectors - Chelonia Ltd) detect the clicks of dolphins and porpoises and record the data within a memory card, with sufficient battery power to monitor for up to 4 months. C-PODs were placed on each of the ADCP moorings to examine whether there was a change in the behaviour of porpoises and dolphins in the area over diurnal and tidal cycles. An additional C-POD was deployed on the camera lander mooring line.

C-POD deployment details:

Mooring location	Position	Deployment depth	CPOD ID	Clock start time	Clock stop time
MS1 (ADCP)	$49^{\circ} 51.21^{\prime} \mathrm{N}, 7^{\circ} 56.82 \mathrm{~W}$	$70 \mathrm{~m}^{5}$	051	04/07/08 18:10	26/07/08 19:06
MS2 (ADCP)	$49^{\circ} 53.84{ }^{\prime} \mathrm{N}, 7^{\circ} 52.48 \mathrm{~W}$	$120 \mathrm{~m}^{1}$	050	04/07/08 18:11	24/07/08 18:56 ${ }^{6}$
MS3 (ADCP)	$49^{\circ} 56.30^{\prime} \mathrm{N}, 7^{\circ} 48.90 \mathrm{~W}$	$130 \mathrm{~m}^{1}$	049	04/07/08 17:02	22/07/08 13:49 ${ }^{2}$
MS4 (ADCP)	$49^{\circ} 44.98{ }^{\prime} \mathrm{N}, 7^{\circ} 40.05 \mathrm{~W}$	$130 \mathrm{~m}^{1}$	077	04/07/08 19:50	23/07/08 09:56 ${ }^{2}$
MS2 (camera lander)	$49^{\circ} 53.74{ }^{\text {N }}$, $7^{\circ} 52.68 \mathrm{~W}$	$110 \mathrm{~m}^{1}$	078	07/07/08 17:52	09/07/08 14:24 ${ }^{2}$
MS4 (camera lander)	$49^{\circ} 44.95$ N, $7^{\circ} 39.91 \mathrm{~W}$	$120 \mathrm{~m}^{1}$	078	09/07/08 23:47	13/07/08 21:10
MS1 (camera lander)	$49^{\circ} 50.83{ }^{\prime} \mathrm{N}, 7^{\circ} 56.12 \mathrm{~W}$	$60 \mathrm{~m}^{1}$	078	13/07/08 21:34	15/07/08 11:40
MS3 (camera lander)	$49^{\circ} 56.07{ }^{\prime} \mathrm{N}, 7^{\circ} 46.61 \mathrm{~W}$	$120 \mathrm{~m}^{1}$	078	15/07/08 10:46	16/07/08 10:46 ${ }^{2}$
MS3 (camera lander)	$49^{\circ} 56.06{ }^{\prime} \mathrm{N}, 7^{\circ} 48.74 \mathrm{~W}$	$120 \mathrm{~m}^{1}$	078	16/07/08 22:49	17/07/08 18:57
MS5 (camera lander)	$50^{\circ} 00.09^{\prime} \mathrm{N}, 8^{\circ} 09.01 \mathrm{~W}$	$100 \mathrm{~m}^{1}$	078	18/07/08 13:36	19/07/08 11:37
MS1 (camera lander)	$49^{\circ} 50.93{ }^{\prime} \mathrm{N}, 7^{\circ} 56.01 \mathrm{~W}$	$60 \mathrm{~m}^{1}$	078	19/07/08 15:46	22/07/08 11:08
MS4 (camera lander)	$\begin{gathered} 49^{\circ} 44.98^{\prime} \mathrm{N}^{\prime}, 7^{\circ} 40.05 \\ \mathrm{w}^{\prime} \end{gathered}$	$120 \mathrm{~m}^{1}$	078	22/07/08 12:02	23/07/08 10:52
"	*	20m	049	22/07/08 15:28	23/07/08 10:26

[^1]Three out of four of the 3 -week ADCP mooring deployments, and 2 out of 9 of the camera lander mooring deployments failed. It is not completely clear why the deployments failed, however the CPODs are version 0 , straight off the production line so teething problems are, perhaps, to be expected. Part way through the cruise Chelonia issued a new set-up procedure (inserting the memory card with the batteries disconnected), after which there have been no C-POD failures recorded. One of the 3week ADCP mooring C-POD deployments was successful, and managed to collect data for 7 days, it is not clear why it failed after 7 days (the memory card wasn't full, however the LED was no longer flashing on retrieval). All files were sent to Nick Tregenza (Chelonia Ltd), of those files examined so far, porpoises were recorded during short episodes on several deployments (see figure 1).

Figure 1 - Clear harbour porpoise train (narrowband clicks at around 130 kHz) at 07:20 (GMT) on $17 J u l 08$ recorded by C-POD deployed on camera lander mooring (10 m off bottom) at MS3

Sonobuoys
Sonobuoys are ex-military devices that when thrown into the sea will deploy a hydrophone (underwater microphone) to a set depth (30 m or 140 m), and inflate a float with a VHF antenna that transmits the sounds recorded on the hydrophones back to a VHF receiver on the ship. The devices are expendable so do not need to be retrieved (but do litter the ocean). Sonobuoys can pick up the sounds of whales and dolphins (low to medium frequency) but not porpoises which produce sound at higher frequencies than the hydrophones are designed to detect. The aim was to be able to continue to detect whales and dolphins during the night at the stationary monitoring locations, times at which observers are unable to see any animals. However, ideally it does need detections of cetaceans during daylight by which to calibrate the recordings (evidence suggests that cetaceans will also
change their vocalization patterns diurnally). On the James Cook we had many problems trying to get the antenna positioned and connected such that we were able to hear the sonobuoy transmissions this meant that we missed out on the first stationary monitoring at MS2. The antenna was initially connected through the ship coax cable trunking up to the top of the bridge; it is thought that this did not work due to the loss of signal at each of the cable junctions. A single long cable was used to avoid this problem, but it wasn't until the antenna was moved to alternative location, that we were finally able to get receive the sounds from the sonobuoys. Also, many of the sonobuoys no longer worked (one sank, and others just didn't transmit sound back), so overall, the sonobuoy deployments were not a huge success. However, the deployments that were able to record data are listed in the table below (sampled at 48 kHz). All deployments were set to drop hydrophones to 30 m , except for the final deployment off the shelf edge which was set to 140 m :

Date \& time (GMT)	Location	Sonobuoy channel	Recordings	Comments
06/07/08 13:13	MS2	20	JC2520080706 131236.wav JC2520080706 135514.wav JC2520080706_155144.wav	Not convinced it was working properly
06/07/08 19:48	MS2	20	JC2520080706_195018.wav JC2520080706_211856.wav	Not convinced it was working properly
12/07/08 13:50	MS4	16	JC2520080712_125229.wav JC2520080712_133120.wav JC2520080712_141010.wav JC2520080712_144901.wav JC2520080712_152751.wav	After antenna fixed
13/07/08 03:20	MS4	79	JC2520080713_022837.wav JC2520080713_030729.wav JC2520080713 034620.wav JC2520080713 042511.wav JC2520080713-050402.wav JC2520080713_054253.wav JC2520080713_062144.wav	Started fading in and out quite rapidly
14/07/08 11:47	MS2	79	JC2520080714_115613.wav JC2520080714_123504.wav JC2520080714_131900.wav JC2520080714_135805.wav JC2520080714_143708.wav	
19/07/08 13:40	$\begin{aligned} & 49^{\circ} 54.5^{\prime} \mathrm{N}, \\ & 7^{\circ} 58.0^{\prime} \mathrm{W} \end{aligned}$	90	JC2520080719_134050.wav JC2520080719_141941.wav	Deployed after seeing dolphins feeding
25/07/08 16:35	Tr8	85 \& 90	JC2520080725_163852.wav JC2520080725_171742.wav JC2520080725_175632.wav JC2520080725 183523.wav JC2520080725 191415.wav JC2520080725_195306.wav JC2520080725_203156.wav	Deployed 2 sonobuoys to make sure at least one worked! Surrounded by fin whales, so hoping to have recorded their low frequency 'moans'.

Vertical hydrophone array

A vertical hydrophone array was built that comprised of 4 hydrophones spaced along 65 metres of cable, spaced at $5 \mathrm{~m}, 15 \mathrm{~m}, 55 \mathrm{~m}$ and 65 m depth. The cable was cable-tied to a rope on which weights were placed to ensure the hydrophone was held as vertical as possible within the water column. VEMCO loggers were placed next to each of the hydrophones to record the depth of each of the hydrophones. The cable was brought back to a MOTU Ultralite soundcard (sampling at 96 kHz) and the sounds recorded onto laptop. All equipment was powered by a 12 V sealed battery \& were contained within a waterproof pelicase. The hydrophone is deployed over the side of a small boat in the vicinity of feeding dolphins, with the aim of recording the depth at which the dolphins were diving during their feeding activity. It was known that this would be challenging as it required (i) calm weather; (ii) feeding dolphins within the vicinity of the ship, and (iii) only possible during turbulence profiling when the ship was stationary. A test run was carried out on the morning of $12^{\text {th }}$ July 2008. The rescue boat was launched, and we motored off to around 500 m from the ship, launched the ship drogue \& deployed the hydrophone. The ship drogue was not very effective, so the boat drifted quite a lot during the deployment and rolled badly, making for unpleasant working conditions (made us all quite green). However, the hydrophone worked fine, although the only sound to be heard in the depths was the ship echosounder. There was also some high pitched electrical noise from the soundcard which could not be resolved by earthing the hydrophone (may need a better earthing contact). The data from the VEMCO loggers showed that the hydrophone dragged a little behind the boat, and was not vertical in the water column, so more weight would need to be attached on subsequent deployments.

There were no conditions in which dolphins were in the vicinity of the ship in which it was possible to launch the rescue boat to record their vocalizations. However, given more stationary work, and a higher density of dolphins (perhaps in more coastal areas which have lower swell), the concept has been proven possible.

Fishing Vessel - Fishing Observer Report (Beth Scott).

Two commercial fishing vessels the Crystal Sea, Skipper Dave Stevens, and the Imogen, Skipper Roger Nowell, were chartered (see attached contracts) to collect representative samples of demersal, benthic and pelagic fish. The Cornish Fisherman's Producers Organisation, with our contact, Andy Wheeler, were an invaluable part of the logistics of the set up this co-operation.

Two fisheries observers, James Roberts and David Hughes were contracted from MRAG via James Clark to identify and enumerate species as well as take length frequency data for the top 10 species (by biomass for demersal species, by number for pelagic species). See attached documents for the design of the fishing for each vessel.

The original plan was to have the boats come out in sequence with the pelagic boat first on the grounds on the $21^{\text {st }}$ of July. Unfortunately due to engine trouble the Imogen could not make it to the grounds until the $25^{\text {th }}$. Once arriving at the Jones Bank, Imogene successfully deployed 4 tows at each of the MS1-3 and MS4 sites. Night time tows were not done due to concerns with the amount of trawling going on and the amount of mackerel in the water column. At the time of this report Imogen was on her way to MS5 to complete 4 more tows and attempt a night time tow if the conditions allowed.

The Crystal Sea came to the grounds on the $22^{\text {nd }}$ and completed MS1-MS3 and 3 out of 4 tows of the MS4 site. However on the $23^{\text {rd }}$ they picked up a trawl net in their propeller and the James Cook ended up towing them to just off the Scillies. As they could not return to the area the region of MS5 will not be fished demersaly.

In total 7 tows were completed by the Crystal Sea and to date 8 tows have been completed by Imogen (with another 4 expected). A full report from MRAG will be available in a week's time.

Seabird and cetacean sightings surveys (Andy Webb).

Three surveyors were recruited by the Joint Nature Conservation Committee to carry out standardised visual surveys of seabirds, cetaceans and any other surface-dwelling animals during JC025. All surveyors were trained to standards set by the European Seabirds at Sea Co-ordinating group.

The methods used were standard line-transect methods with distance estimation, as described by Camphuysen et al. (2004). Two observers were used at most times to record all seabird, cetacean and fish species while the James Cook was steaming. Sightings were binned into 5-minute time periods. Distance travelled was calculated from the ship's navigation data.

Table 1. Detailed summary of line transect survey of seabirds and cetaceans on RSS James Cook, 3 - 26 July 2008.

Date			Lital time transect data (HH:MM)		Km	Notes
$03 / 07 / 2008$	$00: 15$	6.6	Leaving Portland			
$04 / 07 / 2008$	$09: 35$	173.6	Steaming to Jones Bank			
$05 / 07 / 2008$	$00: 50$	11.6	Steaming MS1 to MS4			
$06 / 07 / 2008$						
$07 / 07 / 2008$						
$08 / 07 / 2008$	$15: 45$	259.2	MPV circuit around MS1 - MS3			
$09 / 07 / 2008$	$01: 05$	15.5	Exploratory dye-release survey			
$10 / 07 / 2008$	$04: 40$	43.4	Dye release survey			
	$07: 20$	43.7	Towing t-chain at 3kn			
$11 / 07 / 2008$	$08: 05$	125.3	Dye-release survey			
$12 / 07 / 2008$						
$13 / 07 / 2008$	$13: 50$	206.0	Scanfish circuit around MS4			
$14 / 07 / 2008$						
$15 / 07 / 2008$	$05: 00$	73.3	General steaming and Swath bathymetry survey			
	$07: 00$	90.6	Scanfish circuit around MS1 - MS3			
$16 / 07 / 2008$	$11: 15$	166.7	Scanfish circuit around MS1 - MS3			
$17 / 07 / 2008$	$13: 05$	114.9	Dye release survey			
$18 / 07 / 2008$	$13: 15$	181.3	Dye release survey			
$19 / 07 / 2008$	$03: 05$	34.8	Steaming between CTD stations			
$20 / 07 / 2008$	$15: 25$	217.5	MS4 circuit			
$22 / 07 / 2008$	$01: 45$	23.8	Steaming between stations			
$23 / 07 / 2008$	0	0	Most of day recovering moorings			
$24 / 07 / 2008$	$06: 00$	119.2	Scillies to moorings			
$25 / 07 / 2008$	$06: 15$	98.4	Transect to shelf-break			
$26 / 07 / 2008$	$02: 05$	31.9	Return from shelf break			
TOTAL	$146: 35$	1863.6				

In total, 18 seabird species, four cetacean, one seal and two fish species were recorded during line transect surveys.

Figure 1. Location by date of line transect survey data in relation to the Jones Bank during surveys from RSS James Cook, 3-26 July 2008.

At fixed stations, a different sampling method was employed and was derived from point sampling methods described in Buckland et al. (2001). In essence, these were point samples taken at 5-minute time intervals in a 90° arc, in which observations were assigned to four binned distances from the ship.

Table 2. Detailed summary of point counts of seabirds and cetaceans on RSS James Cook, 3-26 July 2008.

Date

Total time (HH:MM)		
points		

03/07/2008 04/07/2008 05/07/2008

06/07/2008
07/07/2008 08/07/2008 09/07/2008 10/07/2008
(HH:MM) points Notes

Point counts

01:00	12	Trial at MS1. Problem with ship associates
01:00	12	MS4. Poor weather
07:35	91	MS2. Marginal weather
10:35	127	MS2. Marginal weather
$00: 00$	0	MS1 aborted because of heavy rain

$11 / 07 / 2008$	$00: 20$	4	MS1
$12 / 07 / 2008$	$16: 00$	193	MS4
$13 / 07 / 2008$			
$14 / 07 / 2008$	$08: 30$	102	MS2
			MS2 stationary counts aborted due to profiler
15/07/2008			
malfunction			
16/07/2008			
17/07/2008		12	MS5
18/07/2008	$01: 00$	70	MS5
$19 / 07 / 2008$	$05: 50$	6	MS1
	$00: 30$		Miscellaneous CTD stations between MS5, MS1 and
	$04: 20$	55	MS4
20/07/2008	$01: 40$	20	MS2
21/07/2008	$03: 00$	36	MS4
	$61: 35$	740	

A total of 14 seabird, one cetacean and one fish species were recorded during point counts.

Camphuysen CJ, Fox AD, Leopold MF, and Petersen IK, 2004. Towards standardised seabirds at sea census techniques in connection with environmental impact assessments for offshore wind farms in the U.K.: a comparison of ship and aerial sampling methods for marine birds, and their applicability to offshore wind farm assessments. Netherlands Institute for Sea Research, Texel. COWRIE - BAM-02-2002

Buckland S.T., Anderson D.R., Burnham K.P., Laake J.L., Borschers D.L. \& Thomas L. 2001. Introduction to Distance Sampling. Estimating the abundance of biological populations. University Press, Oxford.

Epilogue:

At the completion of this report we have just agreed with Elsevier to produce a special issue of Progress in Oceanography based on the results from this cruise. Likely date for completion of manuscripts is June 2010, with publication hopefully during 2011.

Jonathan Sharples
Proudman Oceanographic Laboratory
July 31 ${ }^{\text {st }} 2009$

[^0]: ${ }^{1}$ Weather and swell made it too difficult to run the MVP up the edge (SW) so the decision was made to run it only on downward track until the weather improved. This way the ship could make it around the track (and all three moorings) in 2 hours. First circuit well off-course, subsequent circuits much better. At 07:15 the MVP was able to be towed on both sides of the 'box', but still had to be brought in for the turns.
 ${ }^{2}$ First circuit of box too large \& doesn't match the subsequent circuits of MS4.
 ${ }^{3}$ May have lost some files during the night due to a full EK60 disk, Echoview stopped receiving data at 03:00, but the EK60 computer said 'low disk space'. Gareth freed up space on the disk \& restarted the ER60 computer which seems to have resolved the problem - may therefore have no loss of data.
 ${ }^{4}$ EK60 doesn't work at depth: 200 kHz doesn't work below 200 m - only the 18 kHz echosounder was able to detect to the bottom when we were off the shelf edge (when we were in water 2800 m deep).

[^1]: ${ }^{5}$ Any record of depth at each of the moorings? Exact depth will be obtained from the corrected EK60 data (once corrected for the draft of the ship \& the depth of the keel.
 ${ }^{6}$ Duff deployment (no data recorded on the memory card)
 ${ }^{7}$ Check exact position of camera lander with Inigo

