Metadata Report for BODC Series Reference Number 1054425


Metadata Summary

Data Description

Data Category CTD or STD cast
Instrument Type
NameCategories
Sea-Bird SBE 43 Dissolved Oxygen Sensor  dissolved gas sensors
Chelsea Technologies Group 2-pi PAR irradiance sensor  radiometers
Sea-Bird SBE 911plus CTD  CTD; water temperature sensor; salinity sensor
Turner Designs Cyclops-7 phycoerythrin cyanobacteria fluorometer  fluorometers
Paroscientific 410K Pressure Transducer  water temperature sensor; water pressure sensors
Sea-Bird SBE 3plus (SBE 3P) temperature sensor  water temperature sensor
Sea-Bird SBE 4C conductivity sensor  salinity sensor
Chelsea Technologies Group Aquatracka III fluorometer  fluorometers
Chelsea Technologies Group Alphatracka II transmissometer  transmissometers
Instrument Mounting lowered unmanned submersible
Originating Country United Kingdom
Originator Prof Patrick Holligan
Originating Organization University of Southampton School of Ocean and Earth Science
Processing Status banked
Project(s) Atlantic Meridional Transect Phase2(AMT)
 

Data Identifiers

Originator's Identifier AMT14_87
BODC Series Reference 1054425
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2004-05-29 01:41
End Time (yyyy-mm-dd hh:mm) -
Nominal Cycle Interval 1.0 decibars
 

Spatial Co-ordinates

Latitude 48.99983 N ( 48° 60.0' N )
Longitude 16.39483 W ( 16° 23.7' W )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor Depth 0.5 m
Maximum Sensor Depth 811.93 m
Minimum Sensor Height 4003.17 m
Maximum Sensor Height 4814.6 m
Sea Floor Depth 4815.1 m
Sensor Distribution Variable common depth - All sensors are grouped effectively at the same depth, but this depth varies significantly during the series
Sensor Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
Sea Floor Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
 

Parameters

BODC CODE Rank Units Short Title Title
ATTNDR01 1 per metre Attn_Red_25cm Attenuation (red light wavelength) per unit length of the water body by 25cm path length red light transmissometer
CPHLPM01 1 Milligrams per cubic metre chl-a_water_ISfluor_manufctrcal_sensor1 Concentration of chlorophyll-a {chl-a CAS 479-61-8} per unit volume of the water body [particulate >unknown phase] by in-situ chlorophyll fluorometer and manufacturer's calibration applied
CPHLPS01 1 Milligrams per cubic metre chl-a_water_ISfluor_sampcal Concentration of chlorophyll-a {chl-a CAS 479-61-8} per unit volume of the water body [particulate >unknown phase] by in-situ chlorophyll fluorometer and calibration against sample data
DOXYSC01 1 Micromoles per litre WC_dissO2_calib Concentration of oxygen {O2 CAS 7782-44-7} per unit volume of the water body [dissolved plus reactive particulate phase] by Sea-Bird SBE 43 sensor and calibration against sample data
FVLTPELN 1 Volts PhyE_Volt Instrument output (voltage) by linear-response phycoerythrin fluorometer
IRRDPP01 1 MicroEinsteins per square metre per second DwIrr_2-piPAR Downwelling 2-pi scalar irradiance as photons (PAR wavelengths) in the water body by 2-pi scalar radiometer
OXYSSC01 1 Percent BK_SBE43 Saturation of oxygen {O2 CAS 7782-44-7} in the water body [dissolved plus reactive particulate phase] by Sea-Bird SBE 43 sensor and calibration against sample data and computation from concentration using Benson and Krause algorithm
POTMCV01 1 Degrees Celsius WC_Potemp Potential temperature of the water body by computation using UNESCO 1983 algorithm
PRESPR01 1 Decibars Pres_Z Pressure (spatial co-ordinate) exerted by the water body by profiling pressure sensor and corrected to read zero at sea level
PSALCC01 1 Dimensionless P_sal_CTD_calib Practical salinity of the water body by CTD and computation using UNESCO 1983 algorithm and calibration against independent measurements
SIGTPR01 1 Kilograms per cubic metre SigTheta Sigma-theta of the water body by CTD and computation from salinity and potential temperature using UNESCO algorithm
TEMPCU01 1 Degrees Celsius Uncal_CTD_Temp Temperature of the water body by CTD and NO verification against independent measurements
 

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

Problem Report

Beam attenuance

The transmissometers suffered from operational difficulties due to the high temperature; casts 38 to 54 appeared to be affected, and users should take account of quality control flags. Where data are binned to 1 decibar, there will be large sections of these casts where the data are null, due to the absence of good quality data for each bin.

There were no air/dark readings supplied from the cruise and the values generated from the instrument voltage based on manufacturer's readings are frequently larger than would be expected. The absolute attenuation values are therefore questionable but the relative profile should be reliable except for profiles where hysteresis was a problem.

The transmissometer has been calibrated with pure water as the reference for 100% transmission and therefore beam attenuation values in clear water should be close to 0 m-1. Chelsea Instruments advise that ALPHAtracka is calibrated at the factory at 20°C in distilled water with an electrical conductivity less than one µS cm-1 and filtered to better than 5 µm and that it is possible that the user will encounter water which is purer than that used during the calibration. The attenuance data will need further offset correction relative to the profile minimum values to bring them in line with recognised values. Whether this should be done for the dataset as a whole or on a cast by cast basis is for the user to decide based on their requirements. The absolute attenuation values are therefore questionable but the relative profile should be reliable except for profiles where hysteresis was a problem.

RSS James Clark Ross Cruise AMT14 CTD Data Quality Document

Fluorescence (Chelsea Technology Group (CTG) Aquatracka MKIII fluorometer)

The nominal chlorophyll-a values have been calculated from the CTG Aquatracka MKIII fluorometer data (with manufacturer's calibration applied) from the up-cast at bottle firing and the fluorometric chlorophyll-a data from sampled bottles. The sampling strategy for the extracted chlorophyll-a dataset used to calibrate the fluorometer focused on the upper water column, therefore the calibration is biased towards these depths. The calibration may not be as reliable below depths ~150m. All values outside the range of the parameter were flagged 'M'. Where previous 'T' flags were overwritten, the original flagged data are available on request. The chlorophyll channels are constant for cast AMT14_11, however this is a shallow cast at around 300 m, so is unlikely the sensor would have been removed. Casts AMT14_01, AMT14_12 and AMT14_13 were very noisy and the 1Hz data were heavily flagged based on comparison with upcast data. Data from these profiles should be used with caution.

Attenuance

Some spikes in the data were flagged on series AMT14_08, AMT14_66, AMT14_71 and AMT14_88.

Downwelling and upwelling sub-surface PAR irradiance

The downwelling and upwelling PAR channels in series AMT14_14 are constant. This is not a particularly shallow cast at around 1000 m depth but this cast was taken at night. Upwelling and downwelling PAR sensors were only deployed on shallow casts. The downwelling profiles show some variablility for the shallower part of the profile, which may be a result of shading from the vessel.

Cyclops 7 fluorometer voltage (FVLTPELN)

No calibration details were provided so only the raw voltage is available. Data are only available from 08 May 2004 (cast AMT_026 onwards) when the sensor was added in place of the PAR upwelling sensor. The profiles have been flagged for noise in surface waters.

Salinity

Cast AMT14_87 the quality of the salinity profile is poor, although most bad data and spikes have been flagged prior to binning, users should be advised that the profile should be used with caution.

Oxygen

The profiles have been flagged for noise and spikes but are generally of good quality.

For all channels, cast 11 has bad data in the upper 15 db.


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

Sea-Bird Dissolved Oxygen Sensor SBE 43 and SBE 43F

The SBE 43 is a dissolved oxygen sensor designed for marine applications. It incorporates a high-performance Clark polarographic membrane with a pump that continuously plumbs water through it, preventing algal growth and the development of anoxic conditions when the sensor is taking measurements.

Two configurations are available: SBE 43 produces a voltage output and can be incorporated with any Sea-Bird CTD that accepts input from a 0-5 volt auxiliary sensor, while the SBE 43F produces a frequency output and can be integrated with an SBE 52-MP (Moored Profiler CTD) or used for OEM applications. The specifications below are common to both.

Specifications

Housing Plastic or titanium
Membrane

0.5 mil- fast response, typical for profile applications

1 mil- slower response, typical for moored applications

Depth rating

600 m (plastic) or 7000 m (titanium)

10500 m titanium housing available on request

Measurement range 120% of surface saturation
Initial accuracy 2% of saturation
Typical stability 0.5% per 1000 h

Further details can be found in the manufacturer's specification sheet .

James Clarke Ross Cruise AMT14 CTD Instrumentation

The CTD unit was a Sea-Bird Electronics 911 plus system, with dissolved oxygen sensor. The CTD was fitted with a transmissometer, a fluorometer, down and up welling PAR sensors. All instruments were attached to a Sea-Bird SBE 32 carousel. The table below lists more detailed information about the various sensors.

Sensor Model Serial Number Calibration Comments
Pressure transducer Digiquartz temperature compensated pressure sensor 73299 08/05/2002 -
Conductivity sensor 1 SBE 4C 2580 03/02/2004 -
Conductivity sensor 2 SBE 4C 2841 09/10/2003 -
Temperature sensor 1 SBE 3P 4301 02/10/2003 -
Temperature sensor 2 SBE 3P 4151 20/09/2003 -
Dissolved oxygen SBE 43 43B-0363 06/02/2003 -
Transmissometer Chelsea MkII Alphatracka 161045 28/04/2001 0.25 m path
Fluorometer Chelsea MkIII Aquatracka 88/2050/95 13/11/2002 -
PAR - upwelling Chelsea PAR sensor 10 05/05/1999 -
PAR - downwelling Chelsea PAR sensor 11 05/05/1999 -
Light Back-Scatter Sea Tech Light Scatter Sensor 339 16/04/1997 -

Change of sensors during cruise: The upwelling PAR sensor was replaced with a Turner Design Cyclops-7 fluorometer (s/n 'n/a' calibration date 'n/a') on 8 th May 2004.

Sampling device

Rosette sampling system equipped with 24 x 20 l sampling bottles (manufactured by Ocean Test Equipment Inc.).

Sea-Bird Electronics SBE 911 and SBE 917 series CTD profilers

The SBE 911 and SBE 917 series of conductivity-temperature-depth (CTD) units are used to collect hydrographic profiles, including temperature, conductivity and pressure as standard. Each profiler consists of an underwater unit and deck unit or SEARAM. Auxiliary sensors, such as fluorometers, dissolved oxygen sensors and transmissometers, and carousel water samplers are commonly added to the underwater unit.

Underwater unit

The CTD underwater unit (SBE 9 or SBE 9 plus ) comprises a protective cage (usually with a carousel water sampler), including a main pressure housing containing power supplies, acquisition electronics, telemetry circuitry, and a suite of modular sensors. The original SBE 9 incorporated Sea-Bird's standard modular SBE 3 temperature sensor and SBE 4 conductivity sensor, and a Paroscientific Digiquartz pressure sensor. The conductivity cell was connected to a pump-fed plastic tubing circuit that could include auxiliary sensors. Each SBE 9 unit was custom built to individual specification. The SBE 9 was replaced in 1997 by an off-the-shelf version, termed the SBE 9 plus , that incorporated the SBE 3 plus (or SBE 3P) temperature sensor, SBE 4C conductivity sensor and a Paroscientific Digiquartz pressure sensor. Sensors could be connected to a pump-fed plastic tubing circuit or stand-alone.

Temperature, conductivity and pressure sensors

The conductivity, temperature, and pressure sensors supplied with Sea-Bird CTD systems have outputs in the form of variable frequencies, which are measured using high-speed parallel counters. The resulting count totals are converted to numeric representations of the original frequencies, which bear a direct relationship to temperature, conductivity or pressure. Sampling frequencies for these sensors are typically set at 24 Hz.

The temperature sensing element is a glass-coated thermistor bead, pressure-protected inside a stainless steel tube, while the conductivity sensing element is a cylindrical, flow-through, borosilicate glass cell with three internal platinum electrodes. Thermistor resistance or conductivity cell resistance, respectively, is the controlling element in an optimized Wien Bridge oscillator circuit, which produces a frequency output that can be converted to a temperature or conductivity reading. These sensors are available with depth ratings of 6800 m (aluminium housing) or 10500 m (titanium housing). The Paroscientific Digiquartz pressure sensor comprises a quartz crystal resonator that responds to pressure-induced stress, and temperature is measured for thermal compensation of the calculated pressure.

Additional sensors

Optional sensors for dissolved oxygen, pH, light transmission, fluorescence and others do not require the very high levels of resolution needed in the primary CTD channels, nor do these sensors generally offer variable frequency outputs. Accordingly, signals from the auxiliary sensors are acquired using a conventional voltage-input multiplexed A/D converter (optional). Some Sea-Bird CTDs use a strain gauge pressure sensor (Senso-Metrics) in which case their pressure output data is in the same form as that from the auxiliary sensors as described above.

Deck unit or SEARAM

Each underwater unit is connected to a power supply and data logging system: the SBE 11 (or SBE 11 plus ) deck unit allows real-time interfacing between the deck and the underwater unit via a conductive wire, while the submersible SBE 17 (or SBE 17 plus ) SEARAM plugs directly into the underwater unit and data are downloaded on recovery of the CTD. The combination of SBE 9 and SBE 17 or SBE 11 are termed SBE 917 or SBE 911, respectively, while the combinations of SBE 9 plus and SBE 17 plus or SBE 11 plus are termed SBE 917 plus or SBE 911 plus .

Specifications

Specifications for the SBE 9 plus underwater unit are listed below:

Parameter Range Initial accuracy Resolution at 24 Hz Response time
Temperature -5 to 35°C 0.001°C 0.0002°C 0.065 sec
Conductivity 0 to 7 S m -1 0.0003 S m -1 0.00004 S m -1 0.065 sec (pumped)
Pressure 0 to full scale (1400, 2000, 4200, 6800 or 10500 m) 0.015% of full scale 0.001% of full scale 0.015 sec

Further details can be found in the manufacturer's specification sheet .

Chelsea Technologies Group Aquatracka MKIII fluorometer

The Chelsea Technologies Group Aquatracka MKIII is a logarithmic response fluorometer. Filters are available to enable the instrument to measure chlorophyll, rhodamine, fluorescein and turbidity.

It uses a pulsed (5.5 Hz) xenon light source discharging along two signal paths to eliminate variations in the flashlamp intensity. The reference path measures the intensity of the light source whilst the signal path measures the intensity of the light emitted from the specimen under test. The reference signal and the emitted light signals are then applied to a ratiometric circuit. In this circuit, the ratio of returned signal to reference signal is computed and scaled logarithmically to achieve a wide dynamic range. The logarithmic conversion accuracy is maintained at better than one percent of the reading over the full output range of the instrument.

Two variants of the instrument are available, both manufactured in titanium, capable of operating in depths from shallow water down to 2000 m and 6000 m respectively. The optical characteristics of the instrument in its different detection modes are visible below:

Excitation Chlorophyll a Rhodamine Fluorescein Turbidity
Wavelength (nm) 430 500 485 440 *
Bandwidth (nm) 105 70 22 80 *
Emission Chlorophyll a Rhodamine Fluorescein Turbidity
Wavelength (nm) 685 590 530 440 *
Bandwidth (nm) 30 45 30 80 *

* The wavelengths for the turbidity filters are customer selectable but must be in the range 400 to 700 nm. The same wavelength is used in the excitation path and the emission path.

The instrument measures chlorophyll a, rhodamine and fluorescein with a concentration range of 0.01 µg l -1 to 100 µg l -1 . The concentration range for turbidity is 0.01 to 100 FTU (other wavelengths are available on request).

The instrument accuracy is ± 0.02 µg l -1 (or ± 3% of the reading, whichever is greater) for chlorophyll a, rhodamine and fluorescein. The accuracy for turbidity, over a 0 - 10 FTU range, is ± 0.02 FTU (or ± 3% of the reading, whichever is greater).

Further details are available from the Aquatracka MKIII specification sheet .

Turner Designs Cyclops-7 Submersible Sensors

The Cyclops-7 series of sensors is designed for integration into multi-parameter platforms, providing measurements of in vivo chlorophyll-a, cyanobacteria (phycocyanin and phycoerythrin), rhodamine and fluorescein dyes, optical brighteners, coloured dissolved organic matter (CDOM), crude oil and refined fuels, BTEX (benzene, toluene, ethylbenzene, and xylenes) or turbidity.

The voltage output of the sensor can be correlated with in situ concentration by calibration with a standard of known concentration. The excitation wavelength varies, depending on the environmental variable of interest, with visible wavelengths being used for chlorophyll, rhodamine, fluorescein and cyanobacteria; UV being used for CDOM, oil, optical brighteners and refined fuels; and IR being used for turbidity. The photodiode detector operates over the range 300-1100 nm. Custom optics over the range 260-900 nm are also available.

The Cyclops-7 operates over an ambient temperature range of 0 to 50°C and a water temperature range of -2 to 50°C. It has a depth rating of 600 m and displays a linearity of 0.99 R 2 over the full range.

Specifications

Application Minimum detection limit Dynamic range
Chlorophyll-a 0.025 µg L -1 0 to 500 µg L -1
CDOM 0.4 ppb QS* 0 to 2500 ppb QS*
Crude Oil 0.02 ppb QS* 0 to 1500 ppb QS*
Cyanobacteria 150 cells mL -1 0 to 150000 cells mL -1
Optical Brighteners 1 ppb QS* 0 to 15000 ppb QS*
Fluorescein Dye 0.01 ppb 0 to 500 ppb
Rhodamine Dye 0.01 ppb 0 to 1000 ppb
Turbidity 0.05 NTU 0 to 3000 NTU
Refined Fuels 2 ppb NS** 0 to 10000 ppb NS**
BTEX 0.1 ppm > 2500 ppm

*QS - Quinine Sulphate

**NS - 1,5 Napthalene Disulfonic Disodium Salt

Further details can be found in the manufacturer's specification sheet .

Chelsea Technologies Group ALPHAtracka and ALPHAtracka II transmissometers

The Chelsea Technologies Group ALPHA tracka (the Mark I) and its successor, the ALPHA tracka II (the Mark II), are both accurate (< 0.3 % fullscale) transmissometers that measure the beam attenuation coefficient at 660 nm. Green (565 nm), yellow (590 nm) and blue (470 nm) wavelength variants are available on special order.

The instrument consists of a Transmitter/Reference Assembly and a Detector Assembly aligned and spaced apart by an open support frame. The housing and frame are both manufactured in titanium and are pressure rated to 6000 m depth.

The Transmitter/Reference housing is sealed by an end cap. Inside the housing an LED light source emits a collimated beam through a sealed window. The Detector housing is also sealed by an end cap. A signal photodiode is placed behind a sealed window to receive the collimated beam from the Transmitter.

The primary difference between the ALPHA tracka and ALPHA tracka II is that the Alphatracka II is implemented with surface-mount technology; this has enabled a much smaller diameter pressure housing to be used while retaining exactly the same optical train as in the Mark I. Data from the Mark II version are thus fully compatible with that already obtained with the Mark I. The performance of the Mark II is further enhanced by two electronic developments from Chelsea Technologies Group - firstly, all items are locked in a signal nulling loop of near infinite gain and, secondly, the signal output linearity is inherently defined by digital circuitry only.

Among other advantages noted above, these features ensure that the optical intensity of the Mark II, indicated by the output voltage, is accurately represented by a straight line interpolation between a reading near full-scale under known conditions and a zero reading when blanked off.

For optimum measurements in a wide range of environmental conditions, the Mark I and Mark II are available in 5 cm, 10 cm and 25 cm path length versions. Output is default factory set to 2.5 volts but can be adjusted to 5 volts on request.

Further details about the Mark II instrument are available from the Chelsea Technologies Group ALPHA tracka II specification sheet .

Chelsea Technologies Photosynthetically Active Radiation (PAR) Irradiance Sensor

This sensor was originally designed to assist the study of marine photosynthesis. With the use of logarithmic amplication, the sensor covers a range of 6 orders of magnitude, which avoids setting up the sensor range for the expected signal level for different ambient conditions.

The sensor consists of a hollow PTFE 2-pi collector supported by a clear acetal dome diverting light to a filter and photodiode from which a cosine response is obtained. The sensor can be used in moorings, profiling or deployed in towed vehicles and can measure both upwelling and downwelling light.

Specifications

Operation depth 1000 m
Range 2000 to 0.002 µE m -2 s -1
Angular Detection Range ± 130° from normal incidence
Relative Spectral Sensitivity

flat to ± 3% from 450 to 700 nm

down 8% of 400 nm and 36% at 350 nm

Further details can be found in the manufacturer's specification sheet .

Paroscientific Absolute Pressure Transducers Series 3000 and 4000

Paroscientific Series 3000 and 4000 pressure transducers use a Digiquartz pressure sensor to provide high accuracy and precision data. The sensor comprises a quartz crystal resonator that responds to pressure-induced stress, and temperature is measured for thermal compensation of the calculated pressure.

The 3000 series of transducers includes one model, the 31K-101, whereas the 4000 series includes several models, listed in the table below. All transducers exhibit repeatability of better than ±0.01% full pressure scale, hysteresis of better than ±0.02% full scale and acceleration sensitivity of ±0.008% full scale /g (three axis average). Pressure resolution is better than 0.0001% and accuracy is typically 0.01% over a broad range of temperatures.

Differences between the models lie in their pressure and operating temperature ranges, as detailed below:

Model Max. pressure (psia) Max. pressure (MPa) Temperature range (°C)
31K-101 1000 6.9 -54 to 107
42K-101 2000 13.8 0 to 125
43K-101 3000 20.7 0 to 125
46K-101 6000 41.4 0 to 125
410K-101 10000 68.9 0 to 125
415K-101 15000 103 0 to 50
420K-101 20000 138 0 to 50
430K-101 30000 207 0 to 50
440K-101 40000 276 0 to 50

Further details can be found in the manufacturer's specification sheet .

James Clarke Ross Cruise AMT14 CTD Processing

Sampling strategy

A total of 89 successful CTD casts were made during the cruise. Rosette bottles were fired throughout the water column on the upcast of most profiles. Data were measured at 24 Hz by a PC running SEASAVE, Sea-Bird's data acquisition software. The raw data files were supplied to BODC after the cruise.

Originator's processing

Only a subset of files had been partially processed on board during the cruise. The raw data were therefore reprocessed at BODC to produce and homogeneous set of CTD data files for this cruise. BODC used the latest version of the SeaBird Processing software available at the time to process the raw binary data files (DAT files) based on information held in the sensor configuration files (CON files), and bottle firing files (BL).

BODC post-processing and screening

Voltage conversions

Field Calibrations


Project Information

The Atlantic Meridional Transect - Phase 2 (2002-2006)

Who was involved in the project?

The Atlantic Meridional Transect Phase 2 was designed by and implemented by a number of UK research centres and universities. The programme was hosted by Plymouth Marine Laboratory in collaboration with the National Oceanography Centre, Southampton. The universities involved were:

What was the project about?

AMT began in 1995, with scientific aims to assess mesoscale to basin scale phytoplankton processes, the functional interpretation of bio-optical signatures and the seasonal, regional and latitudinal variations in mesozooplankton dynamics. In 2002, when the programme restarted, the scientific aims were broadened to address a suite of cross-disciplinary questions concerning ocean plankton ecology and biogeochemistry and the links to atmospheric processes.

The objectives included the determination of:

The data were collected with the aim of being distributed for use in the development of models to describe the interactions between the global climate system and ocean biogeochemistry.

When was the project active?

The second phase of funding allowed the project to continue for the period 2002 to 2006 and consisted of six research cruises. The first phase of the AMT programme ran from 1995 to 2000.

Brief summary of the project fieldwork/data

The fieldwork on the first three cruises was carried out along transects from the UK to the Falkland Islands in September and from the Falkland Islands to the UK in April. The last three cruises followed a cruise track between the UK and South Africa, only deviating from the traditional transect in the southern hemisphere. During this phase the research cruises sampled further into the centre of the North and South Atlantic Ocean and also along the north-west coast of Africa where upwelled nutrient rich water is known to provide a significant source of climatically important gases.

Who funded the project?

Natural Environment Research Council (NERC)


Data Activity or Cruise Information

Cruise

Cruise Name JR20040428 (AMT14, JR101)
Departure Date 2004-04-28
Arrival Date 2004-06-01
Principal Scientist(s)Patrick M Holligan (University of Southampton School of Ocean and Earth Science)
Ship RRS James Clark Ross

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain