Search the data

Metadata Report for BODC Series Reference Number 1075651


Metadata Summary

Data Description

Data Category Fluorescence or pigments
Instrument Type
NameCategories
Chelsea Instruments MINITracka II fluorometer  fluorometers
Instrument Mounting moored surface buoy
Originating Country United Kingdom
Originator Dr Naomi Greenwood
Originating Organization Centre for Environment, Fisheries and Aquaculture Science Lowestoft Laboratory
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) Oceans 2025
Oceans 2025 Theme 10
Oceans 2025 Theme 10 SO11
 

Data Identifiers

Originator's Identifier LB2_032_FL_175063
BODC Series Reference 1075651
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2009-05-14 06:30
End Time (yyyy-mm-dd hh:mm) 2009-07-02 23:30
Nominal Cycle Interval 1800.0 seconds
 

Spatial Co-ordinates

Latitude 53.45150 N ( 53° 27.1' N )
Longitude 3.63920 W ( 3° 38.4' W )
Positional Uncertainty 0.05 to 0.1 n.miles
Minimum Sensor or Sampling Depth 1.0 m
Maximum Sensor or Sampling Depth 1.0 m
Minimum Sensor or Sampling Height 22.5 m
Maximum Sensor or Sampling Height 22.5 m
Sea Floor Depth 23.5 m
Sea Floor Depth Source -
Sensor or Sampling Distribution Fixed common depth - All sensors are grouped effectively at the same depth which is effectively fixed for the duration of the series
Sensor or Sampling Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
Sea Floor Depth Datum Approximate - Depth is only approximate
 

Parameters

BODC CODERankUnitsTitle
AADYAA011DaysDate (time from 00:00 01/01/1760 to 00:00 UT on day)
AAFDZZ011DaysTime (time between 00:00 UT and timestamp)
ACYCAA011DimensionlessSequence number
FVLTTDZX1DimensionlessRaw signal (arbitrary scale) of instrument output by autoranging chlorophyll fluorometer

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

Chelsea Instruments MINItracka Fluorometer

The MINItracka Fluorometer is an in-situ optical sensor that uses a single high intensity LED light source and, according to the manufacturer, is designed to enhance rejection of ambient daylight. The fluorometer provides a linear response between chlorophyll concentration and fluorometer voltage.

Sensor specifications, current at August 2006, are given in the table below. More information can be found at the manufacturer's specification sheet.

Sensor Specifications

  Chlorophyll-a Chlorophyll-a Rhodamine Amido Rhodamine Fluorescein
Excitation wavelengths 430/30 nm 470/30 nm 470/30 nm 425/30 nm 480/80 nm
Emission wavelength 685/30 nm 685/30 nm 590/45 nm 550/30 nm 530/30 nm
Concentration range 0.03-100 µg l-1 0.03-100 µg l-1 0.03-100 µg l-1 0.04-200 µg l-1 0.03-100 µg l-1
Resolution 0.01 µg l-1 0.01 µg l-1 0.01 µg l-1 0.025 µg l-1 0.01 µg l-1
Calibration standard Chlorophyll-a in acetone Chlorophyll-a in acetone      
  Nephelometer Phycoerythrin Phycocyanin
Excitation wavelengths 470/30 nm 530/30 nm 590/35nm
Emission wavelength 470/30 nm 580/30 nm 645/35 nm
Concentration range 0.04-100 FTU 0.03-100 µg l-1 0.03-100 µg l-1
Resolution 0.01 FTU 0.01 µg l-1 0.01 µg l-1
Mechanical   Electrical  
Body Size 149 mm long x 70 mm dia Input Voltage 7 to 40 VDC
Weight in Air 0.7 Kg Output Voltage 0 to 4 VDC (linear)
Weight in Water 0.15 Kg Power requirements 0.7 W typical
Depth Rating 600 m Signal : Noise 10,000 : 1 @ full scale

Cefas SmartBuoy data processing

This document outlines the procedures in place at Cefas in August 2005 for processing and quality assuring SmartBuoy data.

Raw data files are processed and the data move through 4 levels, starting with raw data at level 0 through to level 3, where data are fully quality-assured and expressed in appropriate units. The application of the procedures at each level result in data deemed fit to progress to the next level.

Cefas Quality Assurance (QA) Protocols

At Level 0, raw binary data files from the loggers are transferred to the network.

Automated checks - Level 1

Level 1 involves applying automated quality assurance procedures to the data. These include the following steps:

  • Burst data are loaded into memory for processing.
  • Calibration data for all instruments and sensors used on the deployment are retrieved from the SmartBuoy database. These may be manufacturers' sensor calibrations or the most current laboratory calibrations. Instruments are returned to the manufacturer and re-calibrated at regular intervals.
  • mV are converted to volts, where necessary.
  • LiCor signals are converted from Volts to PAR irradiance in µE m-2 s-1.
  • Salinity is derived from C and T using UNESCO 88 (PSS78) formula.
  • Burst data maximum and minimum ranges are checked and flagged if they fail the checks.
  • Burst means, result count, and result standard deviation are calculated from non-flagged burst data.
  • If there are data from two PAR sensors at different depths, Kd (m-1) is calculated for burst mean data only as LN(PAR1m/PAR2m).
  • Burst mean data maximum, minimum and rate of change checks are carried out and flags applied to any failures.
  • Time stamped burst and burst mean data with default units are stored on SmartBuoy database.

The data are now at QA status = 1.

Manual checks - Level 2

Level 1 burst mean data are now ready for manual QA procedures in order to progress to Level 2. Deployment notes are consulted for any comments on sensor performance or malfunction and post-deployment photographs of sensors, if available, are examined.

Cefas use a data visualisation tool to examine the SmartBuoy data.

  • A comparison is made between the end of one deployment with beginning of the next to identify possible drift and/or biofouling of OBS, Fluorometer, Salinity, PAR, and oxygen sensors.
  • Battery voltages are checked for sudden jumps and, if present, other sensors are examined for similar jumps to determine whether there is a problem with the sensor or if the buoy was disturbed.
  • Reference voltages on the FSI CT module are checked.
  • The standard deviation of OBS is examined. A steady increase in standard deviation is a good indication of the onset of biofouling. It is also used as a rough indicator for fluorometers during summer, except during spring, when there are large fluctuations in chlorophyll.
  • Li-Cor is examined for fouling, which could be indicated by a steady drop in daily maximum or a steady increase in standard deviation. If above-water Li-Cor data are available, they are used for comparison.
  • Pressure is examined for sudden decreases, indicating when the buoy was taken out of the water.
  • Roll and pitch are examined for any anomalies. It is expected that the spring/neap cycle will be present in the buoy tilt signal.
  • Where possible, comparison is made between burst mean data from sensors measuring the same variable. This is in order to determine whether there is a systematic offset (drift) or sensor fault and whether biofouling is present.
  • Comparison is made between burst mean sensor outputs from different variables as this can be helpful in determining the onset of biofouling. Any data that fail the checks are flagged with flags specific to the check that was failed.

Calibrations - Level 3

The combined information from Level 2 is used to determine the periods during which the data series are considered suspect. The data have now reached QA status = 2 and can progress to Level 3, where they will be fully calibrated with field-derived sample data.

  • For salinity an offset is calculated as the difference between result output from logger and the result from a discrete sample collected at the same time.
  • Calibration from regression analysis of field samples and logger output is applied to derive new parameters, e.g. chlorophyll calculated from fluorescence, suspended load calculated from OBS.
  • Chlorophyll calibrations are determined from GF/F filtered water samples, which are extracted in acetone and measured for fluorescence using a Turner Designs Fluorometer.
  • Suspended matter calibrations are determined from a known volume of water sample filtered through pre-weighed 0.4 µm Cyclopore filters. The filters are dried and reweighed to determine the weight of material per unit volume.
  • Salinity is calibrated using water samples that have been analysed with a Guildline Autosal salinometer.
  • Water samples from the Aqua Monitor are analysed for nutrients by colorimetric analysis of 0.4 µm Cyclopore-filtered samples.

The data have now reached QA status = 3 as time stamped, field calibrated burst mean data with parameter codes and units stored on SmartBuoy database with associated uncertainty or 95% confidence limits as appropriate. All SmartBuoy data banked at BODC have passed full Cefas QA procedures. Data that fail the Cefas QA checks are not submitted for banking.

SmartBuoy data processing by BODC

The following outlines the procedures that take place at BODC for banking Cefas SmartBuoy data.

BODC receives SmartBuoy data from Cefas after all quality checks have been passed and all possible calibrations applied. The data files are submitted as separate MS Excel spreadsheets for each parameter, i.e. there are separate files for temperature and salinity from the same instrument. An exact copy of the data is archived for safekeeping upon arrival.

Once the submitted data files are safely archived, the data undergo standard reformatting and banking procedures:

  • The data files are reformatted using an in-house program into a common format, which is a NetCDF subset.
  • Data files arising from the same instrument are combined into a single file.
  • Standard parameter codes are assigned that accurately describe the data.
  • Unit conversions are applied, if necessary, so that units are standardised. Oxygen concentration supplied by the originator in units of mg l-1 is converted to µmol l-1 by multiplying by 31.25.
  • The data are screened visually and any spikes or instrument malfunctions can be clearly labelled with quality control flags.
  • Comprehensive documentation is prepared describing the collection, processing and quality of each data series.
  • Detailed metadata and documents are loaded to the database and linked to each series so that the information is readily available to future users.

Project Information

Oceans 2025 - The NERC Marine Centres' Strategic Research Programme 2007-2012

Who funds the programme?

The Natural Environment Research Council (NERC) funds the Oceans 2025 programme, which was originally planned in the context of NERC's 2002-2007 strategy and later realigned to NERC's subsequent strategy (Next Generation Science for Planet Earth; NERC 2007).

Who is involved in the programme?

The Oceans 2025 programme was designed by and is to be implemented through seven leading UK marine centres. The marine centres work together in coordination and are also supported by cooperation and input from government bodies, universities and other partners. The seven marine centres are:

  • National Oceanography Centre, Southampton (NOCS)
  • Plymouth Marine Laboratory (PML)
  • Marine Biological Association (MBA)
  • Sir Alister Hardy Foundation for Marine Science (SAHFOS)
  • Proudman Oceanographic Laboratory (POL)
  • Scottish Association for Marine Science (SAMS)
  • Sea Mammal Research Unit (SMRU)

Oceans2025 provides funding to three national marine facilities, which provide services to the wider UK marine community, in addition to the Oceans 2025 community. These facilities are:

  • British Oceanographic Data Centre (BODC), hosted at POL
  • Permanent Service for Mean Sea Level (PSMSL), hosted at POL
  • Culture Collection of Algae and Protozoa (CCAP), hosted at SAMS

The NERC-run Strategic Ocean Funding Initiative (SOFI) provides additional support to the programme by funding additional research projects and studentships that closely complement the Oceans 2025 programme, primarily through universities.

What is the programme about?

Oceans 2025 sets out to address some key challenges that face the UK as a result of a changing marine environment. The research funded through the programme sets out to increase understanding of the size, nature and impacts of these changes, with the aim to:

  • improve knowledge of how the seas behave, not just now but in the future;
  • help assess what that might mean for the Earth system and for society;
  • assist in developing sustainable solutions for the management of marine resources for future generations;
  • enhance the research capabilities and facilities available for UK marine science.

In order to address these aims there are nine science themes supported by the Oceans 2025 programme:

  • Climate, circulation and sea level (Theme 1)
  • Marine biogeochemical cycles (Theme 2)
  • Shelf and coastal processes (Theme 3)
  • Biodiversity and ecosystem functioning (Theme 4)
  • Continental margins and deep ocean (Theme 5)
  • Sustainable marine resources (Theme 6)
  • Technology development (Theme 8)
  • Next generation ocean prediction (Theme 9)
  • Integration of sustained observations in the marine environment (Theme 10)

In the original programme proposal there was a theme on health and human impacts (Theme 7). The elements of this Theme have subsequently been included in Themes 3 and 9.

When is the programme active?

The programme started in April 2007 with funding for 5 years.

Brief summary of the programme fieldwork/data

Programme fieldwork and data collection are to be achieved through:

  • physical, biological and chemical parameters sampling throughout the North and South Atlantic during collaborative research cruises aboard NERC's research vessels RRS Discovery, RRS James Cook and RRS James Clark Ross;
  • the Continuous Plankton Recorder being deployed by SAHFOS in the North Atlantic and North Pacific on 'ships of opportunity';
  • physical parameters measured and relayed in near real-time by fixed moorings and ARGO floats;
  • coastal and shelf sea observatory data (Liverpool Bay Coastal Observatory (LBCO) and Western Channel Observatory (WCO)) using the RV Prince Madog and RV Quest.

The data is to be fed into models for validation and future projections. Greater detail can be found in the Theme documents.


Oceans 2025 Theme 10

Oceans 2025 is a strategic marine science programme, bringing marine researchers together to increase people's knowledge of the marine environment so that they are better able to protect it for future generations.

Theme 10: Integration of Sustained Observations in the Marine Environment spans all marine domains from the sea-shore to the global ocean, providing data and knowledge on a wide range of ecosystem properties and processes (from ocean circulation to biodiversity) that are critical to understanding Earth system behaviour and identifying change. They have been developed not merely to provide long-term data sets, but to capture extreme or episodic events, and play a key role in the initialisation and validation of models. Many of these SOs will be integrated into the newly developing UK Marine Monitoring Strategy - evolving from the Defra reports Safeguarding our Seas (2002) and Charting Progress (2005), thus contributing to the underpinning knowledge for national marine stewardship. They will also contribute to the UK GOOS Strategic Plan (IACMST, 2006) and the Global Marine Assessment.

Weblink: http://www.oceans2025.org/


Oceans 2025 Theme 10, Sustained Observation Activity 11: Liverpool Bay and Irish Sea Coastal Observatory

Sustained, systematic observations of the ocean and continental shelf seas at appropriate time and space scales allied to numerical models are key to understanding and prediction. In shelf seas these observations address issues as fundamental as 'what is the capacity of shelf seas to absorb change?' encompassing the impacts of climate change, biological productivity and diversity, sustainable management, pollution and public health, safety at sea and extreme events. Advancing understanding of coastal processes to use and manage these resources better is challenging; important controlling processes occur over a broad range of spatial and temporal scales which cannot be simultaneously studied solely with satellite or ship-based platforms.

Considerable effort has been spent by the Proudman Oceangraphic Laboratory (POL) in the years 2001 - 2006 in setting up an integrated observational and now-cast modelling system in Liverpool Bay (see Figure), with the recent POL review stating the observatory was seen as a leader in its field and a unique 'selling' point of the laboratory. Cost benefit analysis (IACMST, 2004) shows that benefits really start to accrue after 10 years. In 2007 - 2012 exploitation of (i) the time series being acquired, (ii) the model-data synthesis and (iii) the increasingly available quantities of real-time data (e.g. river flows) can be carried out through Sustained Observation Activity (SO) 11, to provide an integrated assessment and short term forecasts of the coastal ocean state.

BODC image

Overall Aims and Purpose of SO 11

  • To continue and enlarge the scope of the existing coastal observatory in Liverpool Bay to routinely monitor the northern Irish Sea
  • To develop the synthesis of measurements and models in the coastal ocean to optimize measurement arrays and forecast products. Driving forward shelf seas' operational oceanography with the direct objective of improving the national forecasting capability, expressed through links to the National Centre for Ocean Forecasting (NCOF)
  • To exploit the long time-series of observations and model outputs to: a) identify the roles of climate and anthropogenic inputs on the coastal ocean's physical and biological functioning (including impacts of nutrient discharges, offshore renewable energy installations and fishing activity) taking into consideration the importance of events versus mean storms / waves, river discharge / variable salinity stratification / horizontal gradients; b) predict the impacts of climate change scenarios; and c) provide new insights to Irish Sea dynamics for variables either with seasonal cycles and interannual variability, or which show weak or no seasonal cycles
  • To provide and maintain a 'laboratory' within which a variety of observational and model experiments can be undertaken (Oceans 2025 Themes 3, 6, 8, 9), including capture of extreme events
  • Demonstrate the value of an integrated approach in assessment and forecasting
  • Demonstrate the coastal observatory as a tool for marine management strategies through collaboration with the Environment Agency (EA), Department for Environment, Food and Rural Affairs (DEFRA), Joint Nature Conservation Commmittee (JNCC), English Nature (EN), Department of Agriculture and Rural Development (DARD), and Local Authorities, providing management information pertinent to policy (e.g. Water Framework Directive)

Measurement and Modelling Activities

  • East Mooring Site: Bottom frame with full suite of physical measurements (high frequency Acoustic Doppler Current Profiler (ADCP), conductivity, temperature, turbidity and fluorescence), a Centre for Environment, Fisheries and Aquaculture Science (CEFAS) directional wavebuoy, and a CEFAS Smartbuoy collecting surface properties including salinity, temperature, turbidity, nutrients, irradiance and chlorophyll. All transmit data in real-time via Orbcomm. The Smartbuoy also collects daily water samples.
  • West Mooring Site: Bottom frame with full suite of physical measurements (high frequency ADCP, conductivity, temperature, turbidity and fluorescence), CEFAS Smartbuoy.
  • Spatial Survey: Four - six week intervals (determined by biofouling of optical sensors). Spatial surveys comprise of vertical profiles of CTD, suspended particulate material (SPM), some bed sediment sampling and surface and bed nutrients, phytoplankton, zooplankton.
  • Ferry: The Birkenhead - Belfast ferry samples near surface (5 m depth) temperature, salinity, turbidity, chlorophyll, with data transmitted by Orbcomm. The route is scientifically varied passing through six completely different hydrodynamic regions, which significantly impact on their ecological function.
  • Tide gauges: Real-time data are obtained from tide gauges operated by Mersey Docks and Harbour Company (MDHC) and the UK tide gauge network.
  • Satellite imagery: Weekly composite satellite data, Advanced Very High Resolution Radiometer (AVHRR) sea surface temperature (SST) and ocean colour (chlorophyll and suspended sediment), are provided by the Remote Sensing Data Analysis Service (RSDAS) based at Plymouth Marine Laboratory (PML).
  • HF radar: A phased array HF radar system (a 12-16MHz WERA HF radar) measuring surface currents and waves with maximum range 75km at a resolution of 4km for sea surface currents and for 2-D wave spectra.
  • Meteorology station: With web camera, located on Hilbre Island at the mouth of the Dee Estuary
  • Operational models: The Coastal Observatory uses Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS), which is part of Oceans 2025 Theme 9.

More detailed information on this Work Package is available at pages 32 - 35 of the official Oceans 2025 Theme 10 document: Oceans 2025 Theme 10

Weblink: http://www.oceans2025.org/

References:

IACMST., 2004. The Economics of Sustained Marine Measurements. IACMST Information Document, N0.11, Southampton: IACMST, 96 pp


Data Activity or Cruise Information

Data Activity

Start Date (yyyy-mm-dd) 2009-05-14
End Date (yyyy-mm-dd) 2009-07-31
Organization Undertaking ActivityProudman Oceanographic Laboratory (now National Oceanography Centre, Liverpool)
Country of OrganizationUnited Kingdom
Originator's Data Activity IdentifierLB2_032 / POLRIG1068
Platform Categorymoored surface buoy

COBs Site B SmartBuoy deployment LB2_032/1068

Deployment and recovery

This mooring was deployed in a collaboration between Cefas and the POL Liverpool Bay Coastal Observatory. The rig was deployed in May 2009 during RV Prince Madog cruise PD18/09. The rig was recovered in August 2009 during RV Prince Madog cruisePD33/09.

Rig Description

The SmartBuoy carried a suite of Cefas instruments mounted just below the surface, as well as instrumentation belonging to POL upto 15 m deep. Further information is given in the table below.

The single point mooring was composed mainly of 0.5 inch long link chain, marked by a 1.8 m diameter toroid and anchored by a half tonne clump of scrap chain.

The following instruments were connected to a Eco System Monitor;

Instrument Serial
Number
Meter
depth (m)
Record
Length (days)
Owner
MiniTracka Chlorophyll Fluorometer 175063 1 50 Cefas
Falmouth Scientific OEM CT sensor 1401 1 77 Cefas
Druck 5 bar Pressure Transducer 1220412 1 81 Cefas
Seapoint Turbidity Meter 1550 1 21 Cefas

The following instruments were stand alone sensors;

Instrument Serial
Number
Meter
depth (m)
Record
Length (days)
Owner
Sea-Bird 37 MicroCAT 5793 5 81 POL
Sea-Bird 37 MicroCAT 5791 10 81 POL
Minilogger 2849 15 81 POL
  • Cefas - The Centre for Environment, Fisheries and Aquaculture Science, Lowestoft (UK)
  • POL - The Proudman Oceanographic Laboratory, Liverpool (UK)

Related Data Activity activities are detailed in Appendix 1

Cruise

Cruise Name PD18/09
Departure Date 2009-05-12
Arrival Date 2009-05-14
Principal Scientist(s)Phil J Knight (Proudman Oceanographic Laboratory)
Ship RV Prince Madog

Complete Cruise Metadata Report is available here


Fixed Station Information

Fixed Station Information

Station NameCoastal Observatory Site 21
CategoryOffshore location
Latitude53° 27.13' N
Longitude3° 38.48' W
Water depth below MSL25.0 m

Liverpool Bay Coastal Observatory Site 21

This station is one of 34 stations regularly visited by the Proudman Oceanographic Laboratory (POL) as part of the Liverpool Bay Coastal Observatory. The main activity at this site are CTD profiles (since August 2002) which are taken during each site visit. This station was also the secondary mooring site (also referred to as Site B) for the Coastal Observatory project between April 2005 and March 2010. After March 2010 the moorings were moved to site 20. The station lies within a box of mean water depth 24 m with the following co-ordinates:

Box Corner Latitude (+ve North) Longitude (+ve East)
North-west corner 53.46028 -3.658
South-east corner 53.44249 -3.6105

The position of this station relative to the other POL Coastal Observatory sites can be seen from the figure below.

BODC image

Mooring Deployment History

2010

Rig Type Typical Instruments Rig IDs Comment
Frame ADCP, CTD, OBS, Telemetry ADCP 1088, 1092, 1096, 1100, 1104, 1107, 1111 January - December
SmartBuoy CT, FL, OBS, BD 1087, 1091, 1095, 1099, 1103, 1110, 1115 January - December

2009

Rig Type Typical Instruments Rig IDs Comment
Frame ADCP, CTD, OBS, Telemetry ADCP 1057, 1065, 1069, 1072, 1076, 1080, 1084 January - December
SmartBuoy CT, FL, OBS, BD 1056, 1064, 1068, 1075, 1079, 1083 January - December

2008

Rig Type Typical Instruments Rig IDs Comment
Frame ADCP, CTD, OBS, Telemetry ADCP 1026, 1030, 1033, 1038, 1053 January - December
SmartBuoy CT, FL, OBS, BD LB2_023/1025, LB2_024/1029, LB2_025/1034, LB2_026/1037, LB2_029/1052 January - December

2007

Rig Type Typical Instruments Rig IDs Comment
Frame ADCP, CTD, OBS, Telemetry ADCP 992, 999, 1002, 1007, 1012, 1019 January - December
SmartBuoy CT, FL, OBS, BD 991, LB2_016/998, LB2_017/1003, LB2_018/1006, LB2_019/1011, LB2_020/1015, LB2_021/1018, LB2_022/1022 January - December

2006

Rig Type Typical Instruments Rig IDs Comment
Frame ADCP, CTD, OBS, Telemetry ADCP 952, 960, 964, 968, 972, 976, 980, 984, 988 January - December
SmartBuoy CT, FL, OBS, BD LB2_006, LB2_007, LB2_008, LB2_009, LB2_010, LB2_011, LB2_012, LB2_013/983, LB2_014/987 January - December

2005

Rig Type Typical Instruments Rig IDs Comment
Frame ADCP, CTD, OBS 923, 927, 931, 936, 940, 943, 947, 950 January - December
SmartBuoy CT, FL, OBS, WMS LB2_001/926, LB2_002/930, LB2_003/935, LB2_004/939, LB2_005/946 May - December
Marker buoy CT 922 April - May

CTD Sampling History

Year Number of Cruises Total Casts per year
2011 5 5
2010 6 6
2009 7 18
2008 9 16
2007 8 17
2006 9 18
2005 9 14
2004 8 8
2003 9 9
2002 2 2

The CTD instrument package for these cruises was a Sea-Bird 911plus, with beam transmissometer, fluorometer, LICOR PAR sensor, LISST-25, and oxygen sensor.

Key

ADCP = Acoustic Doppler Current Profiler
BD = Bacterial degradation experiment
CT = Conductivity and temperature logger
CTD = Conductivity, temperature, depth sensor
FL = Fluorometer
OBS = Optical Backscatter Turbidity meter
Telemetry ADCP = ADCP sending data back to shore in real-time
WMS = Automatic water sampler

Related Fixed Station activities are detailed in Appendix 2


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification

Appendix 1: LB2_032 / POLRIG1068

Related series for this Data Activity are presented in the table below. Further information can be found by following the appropriate links.

If you are interested in these series, please be aware we offer a multiple file download service. Should your credentials be insufficient for automatic download, the service also offers a referral to our Enquiries Officer who may be able to negotiate access.

Series IdentifierData CategoryStart date/timeStart positionCruise
1640805Hydrography time series at depth2009-05-14 06:10:0053.4515 N, 3.63917 WRV Prince Madog PD18/09
1640829Hydrography time series at depth2009-05-14 06:10:0053.4515 N, 3.63917 WRV Prince Madog PD18/09
1640878Hydrography time series at depth2009-05-14 06:10:0053.4515 N, 3.63917 WRV Prince Madog PD18/09
1075522Hydrography time series at depth2009-05-14 06:30:0053.4515 N, 3.6392 WRV Prince Madog PD18/09
1076088Transmittance/attenuance, turbidity, or SPM conc.2009-05-14 06:30:0053.4515 N, 3.6392 WRV Prince Madog PD18/09

Appendix 2: Coastal Observatory Site 21

Related series for this Fixed Station are presented in the table below. Further information can be found by following the appropriate links.

If you are interested in these series, please be aware we offer a multiple file download service. Should your credentials be insufficient for automatic download, the service also offers a referral to our Enquiries Officer who may be able to negotiate access.

Series IdentifierData CategoryStart date/timeStart positionCruise
1622706Currents -subsurface Eulerian2005-04-05 10:00:0053.45417 N, 3.64533 WRV Prince Madog PD11/05
701686Hydrography time series at depth2005-04-05 10:00:0153.45217 N, 3.6435 WRV Prince Madog PD11/05
701871Hydrography time series at depth2005-04-05 10:00:0353.45417 N, 3.64533 WRV Prince Madog PD11/05
1622731Currents -subsurface Eulerian2005-05-12 08:20:0053.45417 N, 3.64533 WRV Prince Madog PD18/05
701883Hydrography time series at depth2005-05-12 08:20:0353.45417 N, 3.64533 WRV Prince Madog PD18/05
1195131Fluorescence or pigments2005-05-12 08:30:0053.4522 N, 3.6413 WRV Prince Madog PD18/05
1195118Hydrography time series at depth2005-05-12 08:30:0053.4522 N, 3.6413 WRV Prince Madog PD18/05
1195143Transmittance/attenuance, turbidity, or SPM conc.2005-05-12 08:30:0053.4522 N, 3.6413 WRV Prince Madog PD18/05
701717Hydrography time series at depth2005-05-12 08:30:0153.45217 N, 3.64133 WRV Prince Madog PD18/05
701698Hydrography time series at depth2005-05-12 08:35:0053.45217 N, 3.64133 WRV Prince Madog PD18/05
1195155Water column chemistry2005-05-14 00:00:0053.4522 N, 3.6413 WRV Prince Madog PD18/05
1622755Currents -subsurface Eulerian2005-06-16 08:10:0053.45367 N, 3.64717 WRV Prince Madog PD21/05
701914Hydrography time series at depth2005-06-16 08:10:0353.45367 N, 3.64717 WRV Prince Madog PD21/05
1195179Fluorescence or pigments2005-06-16 08:30:0053.4512 N, 3.6482 WRV Prince Madog PD21/05
1195167Hydrography time series at depth2005-06-16 08:30:0053.4512 N, 3.6482 WRV Prince Madog PD21/05
1195180Transmittance/attenuance, turbidity, or SPM conc.2005-06-16 08:30:0053.4512 N, 3.6482 WRV Prince Madog PD21/05
701858Hydrography time series at depth2005-06-16 08:30:0153.45117 N, 3.64817 WRV Prince Madog PD21/05
701729Hydrography time series at depth2005-06-16 08:35:0053.45117 N, 3.64817 WRV Prince Madog PD21/05
1195192Water column chemistry2005-06-17 00:00:0053.4512 N, 3.6482 WRV Prince Madog PD21/05
1622823Currents -subsurface Eulerian2005-07-14 07:00:0053.45367 N, 3.64733 WRV Prince Madog PD25/05
698775Hydrography time series at depth2005-07-14 07:00:0353.45367 N, 3.64733 WRV Prince Madog PD25/05
698880Hydrography time series at depth2005-07-14 07:15:0053.45333 N, 3.64217 WRV Prince Madog PD25/05
698867Hydrography time series at depth2005-07-14 07:20:0153.45333 N, 3.64217 WRV Prince Madog PD25/05
1195223Fluorescence or pigments2005-07-14 07:30:0053.4533 N, 3.6422 WRV Prince Madog PD25/05
1195211Hydrography time series at depth2005-07-14 07:30:0053.4533 N, 3.6422 WRV Prince Madog PD25/05
1195235Transmittance/attenuance, turbidity, or SPM conc.2005-07-14 07:30:0053.4533 N, 3.6422 WRV Prince Madog PD25/05
1195247Water column chemistry2005-07-15 00:00:0053.4533 N, 3.6422 WRV Prince Madog PD25/05
1622859Currents -subsurface Eulerian2005-08-18 11:40:0053.454 N, 3.64817 WRV Prince Madog PD30/05
698806Hydrography time series at depth2005-08-18 11:40:0353.454 N, 3.64817 WRV Prince Madog PD30/05
679323Fluorescence or pigments2005-08-18 12:00:0053.4518 N, 3.649 WRV Prince Madog PD30/05
698855Hydrography time series at depth2005-08-18 12:00:0053.45183 N, 3.649 WRV Prince Madog PD30/05
679335Surface temp/sal2005-08-18 12:00:0053.4518 N, 3.649 WRV Prince Madog PD30/05
679347Transmittance/attenuance, turbidity, or SPM conc.2005-08-18 12:00:0053.4518 N, 3.649 WRV Prince Madog PD30/05
679359Water column chemistry2005-08-20 00:00:0053.4518 N, 3.649 WRV Prince Madog PD30/05
1622903Currents -subsurface Eulerian2005-09-16 10:00:0053.45467 N, 3.649 WRV Prince Madog PD34/05
698818Hydrography time series at depth2005-09-16 10:00:0353.45467 N, 3.649 WRV Prince Madog PD34/05
1622940Currents -subsurface Eulerian2005-10-27 09:30:0053.45 N, 3.64317 WRV Prince Madog PD41/05
696314Hydrography time series at depth2005-10-27 09:30:0353.45 N, 3.64317 WRV Prince Madog PD41/05
679372Fluorescence or pigments2005-10-27 10:00:0053.4499 N, 3.6407 WRV Prince Madog PD41/05
679360Surface temp/sal2005-10-27 10:00:0053.4499 N, 3.6407 WRV Prince Madog PD41/05
679384Transmittance/attenuance, turbidity, or SPM conc.2005-10-27 10:00:0053.4499 N, 3.6407 WRV Prince Madog PD41/05
696547Hydrography time series at depth2005-10-27 10:00:0153.45 N, 3.64083 WRV Prince Madog PD41/05
696351Hydrography time series at depth2005-12-14 12:00:0353.45 N, 3.658 WRV Prince Madog PD48/05
1622988Currents -subsurface Eulerian2005-12-15 14:39:3853.45 N, 3.658 WRV Prince Madog PD48/05
1623064Currents -subsurface Eulerian2006-02-06 12:30:0053.448 N, 3.639 WRV Prince Madog PD04/06
696363Hydrography time series at depth2006-02-06 12:30:0353.448 N, 3.639 WRV Prince Madog PD04/06
679396Surface temp/sal2006-02-06 13:00:0053.4481 N, 3.6393 WRV Prince Madog PD04/06
679403Transmittance/attenuance, turbidity, or SPM conc.2006-02-06 13:00:0053.4481 N, 3.6393 WRV Prince Madog PD04/06
1623168Currents -subsurface Eulerian2006-04-05 13:20:0053.44767 N, 3.638 WRV Prince Madog PD12/06
700370Fluorescence or pigments2006-04-05 14:00:0053.4455 N, 3.6279 WRV Prince Madog PD12/06
700308Surface temp/sal2006-04-05 14:00:0053.4455 N, 3.6279 WRV Prince Madog PD12/06
700437Transmittance/attenuance, turbidity, or SPM conc.2006-04-05 14:00:0053.4455 N, 3.6279 WRV Prince Madog PD12/06
700382Fluorescence or pigments2006-05-11 12:00:0053.4437 N, 3.6237 WRV Prince Madog PD16/06
700333Surface temp/sal2006-05-11 12:00:0053.4437 N, 3.6237 WRV Prince Madog PD16/06
700449Transmittance/attenuance, turbidity, or SPM conc.2006-05-11 12:00:0053.4437 N, 3.6237 WRV Prince Madog PD16/06
1623224Currents -subsurface Eulerian2006-05-30 20:18:3853.4485 N, 3.6405 WRV Prince Madog PD16/06
1623261Currents -subsurface Eulerian2006-06-23 13:30:0053.44867 N, 3.64 WRV Prince Madog PD20/06
700394Fluorescence or pigments2006-06-23 14:00:0053.4495 N, 3.6415 WRV Prince Madog PD20/06
700321Surface temp/sal2006-06-23 14:00:0053.4495 N, 3.6415 WRV Prince Madog PD20/06
700450Transmittance/attenuance, turbidity, or SPM conc.2006-06-23 14:00:0053.4495 N, 3.6415 WRV Prince Madog PD20/06
1623297Currents -subsurface Eulerian2006-07-27 08:00:0053.44983 N, 3.64367 WRV Prince Madog PD22/06
747069Fluorescence or pigments2006-07-27 08:30:0053.4478 N, 3.6451 WRV Prince Madog PD22/06
746945Surface temp/sal2006-07-27 08:30:0053.4478 N, 3.6451 WRV Prince Madog PD22/06
747174Transmittance/attenuance, turbidity, or SPM conc.2006-07-27 08:30:0053.4478 N, 3.6451 WRV Prince Madog PD22/06
747070Fluorescence or pigments2006-08-16 07:30:0053.4508 N, 3.6409 WRV Prince Madog PD25/06
746957Surface temp/sal2006-08-16 07:30:0053.4508 N, 3.6409 WRV Prince Madog PD25/06
747186Transmittance/attenuance, turbidity, or SPM conc.2006-08-16 07:30:0053.4508 N, 3.6409 WRV Prince Madog PD25/06
1623341Currents -subsurface Eulerian2006-08-16 11:00:0053.44983 N, 3.64383 WRV Prince Madog PD25/06
747082Fluorescence or pigments2006-09-22 10:00:0053.4485 N, 3.6471 WRV Prince Madog PD29/06
746969Surface temp/sal2006-09-22 10:00:0053.4485 N, 3.6471 WRV Prince Madog PD29/06
747198Transmittance/attenuance, turbidity, or SPM conc.2006-09-22 10:00:0053.4485 N, 3.6471 WRV Prince Madog PD29/06
1623377Currents -subsurface Eulerian2006-09-22 11:30:0053.45 N, 3.644 WRV Prince Madog PD29/06
1013211CTD or STD cast2006-11-02 12:28:0053.45 N, 3.6525 WRV Prince Madog PD35/06
747094Fluorescence or pigments2006-11-02 13:00:0053.4508 N, 3.6408 WRV Prince Madog PD35/06
746970Surface temp/sal2006-11-02 13:00:0053.4508 N, 3.6408 WRV Prince Madog PD35/06
747205Transmittance/attenuance, turbidity, or SPM conc.2006-11-02 13:00:0053.4508 N, 3.6408 WRV Prince Madog PD35/06
1623389Currents -subsurface Eulerian2006-11-02 13:50:0053.45017 N, 3.644 WRV Prince Madog PD35/06
753106Hydrography time series at depth2006-11-02 13:50:0353.45017 N, 3.644 WRV Prince Madog PD35/06
1013223CTD or STD cast2006-11-02 13:52:0053.44767 N, 3.6445 WRV Prince Madog PD35/06
1003658CTD or STD cast2006-12-15 11:32:0053.4505 N, 3.64133 WRV Prince Madog PD37/06
1623421Currents -subsurface Eulerian2006-12-15 14:39:5753.44967 N, 3.64383 WRV Prince Madog PD37/06
753131Hydrography time series at depth2006-12-15 14:40:0353.44967 N, 3.64383 WRV Prince Madog PD37/06
747101Fluorescence or pigments2006-12-15 15:00:0053.4489 N, 3.6482 WRV Prince Madog PD37/06
746982Surface temp/sal2006-12-15 15:00:0053.4489 N, 3.6482 WRV Prince Madog PD37/06
747217Transmittance/attenuance, turbidity, or SPM conc.2006-12-15 15:00:0053.4489 N, 3.6482 WRV Prince Madog PD37/06
1003671CTD or STD cast2006-12-15 15:25:0053.447 N, 3.64433 WRV Prince Madog PD37/06
1623052Currents -subsurface Eulerian2007-02-14 16:00:0553.45 N, 3.64233 WRV Prince Madog PD02/07
753155Hydrography time series at depth2007-02-14 16:10:0353.45 N, 3.64233 WRV Prince Madog PD02/07
979049CTD or STD cast2007-02-14 18:42:0053.45167 N, 3.63917 WRV Prince Madog PD02/07
979234CTD or STD cast2007-02-15 14:36:0053.44867 N, 3.642 WRV Prince Madog PD02/07
753087Hydrography time series at depth2007-03-13 10:50:0153.45 N, 3.64217 WRV Prince Madog PD04/07
747113Fluorescence or pigments2007-03-13 11:00:0053.4504 N, 3.6372 WRV Prince Madog PD04/07
746994Surface temp/sal2007-03-13 11:00:0053.4504 N, 3.6372 WRV Prince Madog PD04/07
747229Transmittance/attenuance, turbidity, or SPM conc.2007-03-13 11:00:0053.4504 N, 3.6372 WRV Prince Madog PD04/07
937495CTD or STD cast2007-04-16 10:59:0053.449 N, 3.64667 WRV Prince Madog PD06/07
1623088Currents -subsurface Eulerian2007-04-16 11:00:0053.45083 N, 3.64083 WRV Prince Madog PD06/07
753179Hydrography time series at depth2007-04-16 11:00:0353.45083 N, 3.64083 WRV Prince Madog PD06/07
862307Fluorescence or pigments2007-04-19 12:00:0053.45095 N, 3.63857 WRV Prince Madog PD06/07
862092Surface temp/sal2007-04-19 12:00:0053.45095 N, 3.63857 WRV Prince Madog PD06/07
862516Transmittance/attenuance, turbidity, or SPM conc.2007-04-19 12:00:0053.45095 N, 3.63857 WRV Prince Madog PD06/07
937551CTD or STD cast2007-04-19 12:05:0053.45167 N, 3.636 WRV Prince Madog PD06/07
752987Hydrography time series at depth2007-04-19 12:50:0153.451 N, 3.6385 WRV Prince Madog PD06/07
753051Hydrography time series at depth2007-04-19 12:50:0253.451 N, 3.6385 WRV Prince Madog PD06/07
942240CTD or STD cast2007-05-17 06:51:0053.45033 N, 3.63633 WRV Prince Madog PD09/07
1623132Currents -subsurface Eulerian2007-05-17 07:50:0053.451 N, 3.6425 WRV Prince Madog PD09/07
753192Hydrography time series at depth2007-05-17 08:00:0353.451 N, 3.6425 WRV Prince Madog PD09/07
753014Hydrography time series at depth2007-05-17 12:50:0153.451 N, 3.63933 WRV Prince Madog PD09/07
753063Hydrography time series at depth2007-05-17 12:50:0153.451 N, 3.63933 WRV Prince Madog PD09/07
942288CTD or STD cast2007-05-17 12:57:0053.45217 N, 3.644 WRV Prince Madog PD09/07
862319Fluorescence or pigments2007-05-17 13:00:0053.45098 N, 3.63938 WRV Prince Madog PD09/07
862111Surface temp/sal2007-05-17 13:00:0053.45098 N, 3.63938 WRV Prince Madog PD09/07
862528Transmittance/attenuance, turbidity, or SPM conc.2007-05-17 13:00:0053.45098 N, 3.63938 WRV Prince Madog PD09/07
943046CTD or STD cast2007-06-21 09:28:0053.44983 N, 3.6415 WRV Prince Madog PD13/07
862320Fluorescence or pigments2007-06-21 10:00:0053.45295 N, 3.64237 WRV Prince Madog PD13/07
952916Hydrography time series at depth2007-06-21 10:00:0053.453 N, 3.64233 WRV Prince Madog PD13/07
952928Hydrography time series at depth2007-06-21 10:00:0053.453 N, 3.64233 WRV Prince Madog PD13/07
862123Surface temp/sal2007-06-21 10:00:0053.45295 N, 3.64237 WRV Prince Madog PD13/07
862541Transmittance/attenuance, turbidity, or SPM conc.2007-06-21 10:00:0053.45295 N, 3.64237 WRV Prince Madog PD13/07
952873Hydrography time series at depth2007-06-21 10:00:0153.453 N, 3.64233 WRV Prince Madog PD13/07
952897Hydrography time series at depth2007-06-21 10:00:0153.453 N, 3.64233 WRV Prince Madog PD13/07
943058CTD or STD cast2007-06-21 11:45:0053.45117 N, 3.63833 WRV Prince Madog PD13/07
1623181Currents -subsurface Eulerian2007-06-21 13:30:0053.45117 N, 3.64017 WRV Prince Madog PD13/07
952848Hydrography time series at depth2007-06-21 13:30:0353.45117 N, 3.64017 WRV Prince Madog PD13/07
943427CTD or STD cast2007-07-27 09:09:0053.45233 N, 3.64167 WRV Prince Madog PD16/07
862332Fluorescence or pigments2007-07-27 14:00:0053.4503 N, 3.63867 WRV Prince Madog PD16/07
862135Surface temp/sal2007-07-27 14:00:0053.4503 N, 3.63867 WRV Prince Madog PD16/07
862553Transmittance/attenuance, turbidity, or SPM conc.2007-07-27 14:00:0053.4503 N, 3.63867 WRV Prince Madog PD16/07
946413Hydrography time series at depth2007-07-27 14:10:0053.45033 N, 3.63867 WRV Prince Madog PD16/07
946369Hydrography time series at depth2007-07-27 14:10:0153.45033 N, 3.63867 WRV Prince Madog PD16/07
946394Hydrography time series at depth2007-07-27 14:10:0153.45033 N, 3.63867 WRV Prince Madog PD16/07
1623248Currents -subsurface Eulerian2007-07-27 14:40:0053.45533 N, 3.63917 WRV Prince Madog PD16/07
946357Hydrography time series at depth2007-07-27 14:40:0353.45533 N, 3.63917 WRV Prince Madog PD16/07
943476CTD or STD cast2007-07-27 17:40:0053.45083 N, 3.629 WRV Prince Madog PD16/07
943821CTD or STD cast2007-08-30 06:29:0053.45567 N, 3.63633 WRV Prince Madog PD20/07
941445Hydrography time series at depth2007-08-30 18:40:0053.44967 N, 3.64633 WRV Prince Madog PD20/07
941421Hydrography time series at depth2007-08-30 18:40:0153.44967 N, 3.64633 WRV Prince Madog PD20/07
862344Fluorescence or pigments2007-08-30 19:00:0053.4497 N, 3.64633 WRV Prince Madog PD20/07
862147Surface temp/sal2007-08-30 19:00:0053.4497 N, 3.64633 WRV Prince Madog PD20/07
862565Transmittance/attenuance, turbidity, or SPM conc.2007-08-30 19:00:0053.4497 N, 3.64633 WRV Prince Madog PD20/07
943950CTD or STD cast2007-08-30 19:02:0053.449 N, 3.6295 WRV Prince Madog PD20/07
945760CTD or STD cast2007-10-04 07:33:0053.4505 N, 3.646 WRV Prince Madog PD23/07
862356Fluorescence or pigments2007-10-04 13:00:0053.44862 N, 3.6421 WRV Prince Madog PD23/07
767894Hydrography time series at depth2007-10-04 13:00:0053.44867 N, 3.64217 WRV Prince Madog PD23/07
862159Surface temp/sal2007-10-04 13:00:0053.44862 N, 3.6421 WRV Prince Madog PD23/07
862577Transmittance/attenuance, turbidity, or SPM conc.2007-10-04 13:00:0053.44862 N, 3.6421 WRV Prince Madog PD23/07
767845Hydrography time series at depth2007-10-04 13:00:0153.44867 N, 3.64217 WRV Prince Madog PD23/07
767857Hydrography time series at depth2007-10-04 13:00:0153.44867 N, 3.64217 WRV Prince Madog PD23/07
945803CTD or STD cast2007-10-04 13:30:0053.4475 N, 3.63617 WRV Prince Madog PD23/07
1623316Currents -subsurface Eulerian2007-10-04 13:30:0053.46633 N, 3.64017 WRV Prince Madog PD23/07
767870Hydrography time series at depth2007-10-04 13:30:0353.46633 N, 3.64017 WRV Prince Madog PD23/07
946530CTD or STD cast2007-11-21 16:18:0053.44783 N, 3.63417 WRV Prince Madog PD27/07
770576Hydrography time series at depth2007-11-21 17:00:0053.4475 N, 3.64283 WRV Prince Madog PD27/07
770588Hydrography time series at depth2007-11-21 17:00:0053.4475 N, 3.64283 WRV Prince Madog PD27/07
862368Fluorescence or pigments2007-11-21 17:30:0053.44752 N, 3.64288 WRV Prince Madog PD27/07
862160Surface temp/sal2007-11-21 17:30:0053.44752 N, 3.64288 WRV Prince Madog PD27/07
862589Transmittance/attenuance, turbidity, or SPM conc.2007-11-21 17:30:0053.44752 N, 3.64288 WRV Prince Madog PD27/07
946542CTD or STD cast2007-11-21 18:37:0053.45167 N, 3.64817 WRV Prince Madog PD27/07
770539Hydrography time series at depth2007-11-22 08:00:0053.4475 N, 3.64283 WRV Prince Madog PD27/07
770540Hydrography time series at depth2007-11-22 08:00:0053.4475 N, 3.64283 WRV Prince Madog PD27/07
946806CTD or STD cast2008-01-11 01:41:0053.45167 N, 3.64517 WRV Prince Madog PD01/08
946880CTD or STD cast2008-01-11 12:07:0053.447 N, 3.63667 WRV Prince Madog PD01/08
770472Hydrography time series at depth2008-01-11 12:20:0053.44833 N, 3.64483 WRV Prince Madog PD01/08
770484Hydrography time series at depth2008-01-11 12:20:0053.44833 N, 3.64483 WRV Prince Madog PD01/08
770423Hydrography time series at depth2008-01-11 12:20:0153.44833 N, 3.64483 WRV Prince Madog PD01/08
770447Hydrography time series at depth2008-01-11 12:20:0153.44833 N, 3.64483 WRV Prince Madog PD01/08
862381Fluorescence or pigments2008-01-11 12:30:0053.44827 N, 3.64482 WRV Prince Madog PD01/08
862172Surface temp/sal2008-01-11 12:30:0053.44827 N, 3.64482 WRV Prince Madog PD01/08
862590Transmittance/attenuance, turbidity, or SPM conc.2008-01-11 12:30:0053.44827 N, 3.64482 WRV Prince Madog PD01/08
1623027Currents -subsurface Eulerian2008-01-11 13:10:0053.44967 N, 3.6415 WRV Prince Madog PD01/08
770392Hydrography time series at depth2008-01-11 13:10:0353.44967 N, 3.6415 WRV Prince Madog PD01/08
946892CTD or STD cast2008-01-11 14:03:0053.44983 N, 3.65117 WRV Prince Madog PD01/08
947139CTD or STD cast2008-03-14 15:36:0053.44933 N, 3.6395 WRV Prince Madog PD07/08
1623119Currents -subsurface Eulerian2008-03-14 18:40:0353.4495 N, 3.64217 WRV Prince Madog PD07/08
772429Hydrography time series at depth2008-03-14 18:50:0353.4495 N, 3.64217 WRV Prince Madog PD07/08
862393Fluorescence or pigments2008-03-14 19:00:0053.44827 N, 3.63855 WRV Prince Madog PD07/08
862184Surface temp/sal2008-03-14 19:00:0053.44827 N, 3.63855 WRV Prince Madog PD07/08
862608Transmittance/attenuance, turbidity, or SPM conc.2008-03-14 19:00:0053.44827 N, 3.63855 WRV Prince Madog PD07/08
772398Hydrography time series at depth2008-03-14 19:00:0153.44833 N, 3.6385 WRV Prince Madog PD07/08
772417Hydrography time series at depth2008-03-14 19:00:0153.44833 N, 3.6385 WRV Prince Madog PD07/08
947140CTD or STD cast2008-03-14 19:34:0053.448 N, 3.65333 WRV Prince Madog PD07/08
772282Hydrography time series at depth2008-04-16 16:30:0353.4495 N, 3.6415 WRV Prince Madog PD09/08
1623144Currents -subsurface Eulerian2008-04-16 16:30:0653.4495 N, 3.6415 WRV Prince Madog PD09/08
947268CTD or STD cast2008-04-16 16:36:0053.448 N, 3.63917 WRV Prince Madog PD09/08
1082205Fluorescence or pigments2008-04-16 17:00:0053.45 N, 3.64 WRV Prince Madog PD09/08
772301Hydrography time series at depth2008-04-16 17:00:0053.4465 N, 3.63733 WRV Prince Madog PD09/08
772325Hydrography time series at depth2008-04-16 17:00:0053.4465 N, 3.63733 WRV Prince Madog PD09/08
772350Hydrography time series at depth2008-04-16 17:00:0053.4465 N, 3.63733 WRV Prince Madog PD09/08
772362Hydrography time series at depth2008-04-16 17:00:0053.4465 N, 3.63733 WRV Prince Madog PD09/08
1082186Hydrography time series at depth2008-04-16 17:00:0053.45 N, 3.64 WRV Prince Madog PD09/08
1082266Transmittance/attenuance, turbidity, or SPM conc.2008-04-16 17:00:0053.45 N, 3.64 WRV Prince Madog PD09/08
947281CTD or STD cast2008-04-16 17:32:0053.45017 N, 3.62983 WRV Prince Madog PD09/08
948247CTD or STD cast2008-05-15 14:00:0053.449 N, 3.6485 WRV Prince Madog PD14/08
838307Hydrography time series at depth2008-05-15 14:50:0353.44983 N, 3.64133 WRV Prince Madog PD14/08
1623200Currents -subsurface Eulerian2008-05-15 14:50:4753.44983 N, 3.64133 WRV Prince Madog PD14/08
838320Hydrography time series at depth2008-05-15 15:10:0053.4495 N, 3.63883 WRV Prince Madog PD14/08
838344Hydrography time series at depth2008-05-15 15:10:0053.4495 N, 3.63883 WRV Prince Madog PD14/08
838381Hydrography time series at depth2008-05-15 15:10:0053.4495 N, 3.63883 WRV Prince Madog PD14/08
1082217Fluorescence or pigments2008-05-15 15:30:0053.45 N, 3.64 WRV Prince Madog PD14/08
1082198Hydrography time series at depth2008-05-15 15:30:0053.45 N, 3.64 WRV Prince Madog PD14/08
1082278Transmittance/attenuance, turbidity, or SPM conc.2008-05-15 15:30:0053.45 N, 3.64 WRV Prince Madog PD14/08
948259CTD or STD cast2008-05-15 15:50:0053.447 N, 3.62967 WRV Prince Madog PD14/08
948573CTD or STD cast2008-06-25 17:51:0053.45233 N, 3.649 WRV Prince Madog PD19/08
857876Hydrography time series at depth2008-06-25 19:10:0353.452 N, 3.64333 WRV Prince Madog PD19/08
949484CTD or STD cast2008-07-31 08:01:0053.4485 N, 3.63583 WRV Prince Madog PD23/08
857919Hydrography time series at depth2008-07-31 08:50:0053.44817 N, 3.6455 WRV Prince Madog PD23/08
857920Hydrography time series at depth2008-07-31 08:50:0053.44817 N, 3.6455 WRV Prince Madog PD23/08
1024614Fluorescence or pigments2008-07-31 09:00:0053.45 N, 3.65 WRV Prince Madog PD23/08
1024534Surface temp/sal2008-07-31 09:00:0053.45 N, 3.65 WRV Prince Madog PD23/08
1024699Transmittance/attenuance, turbidity, or SPM conc.2008-07-31 09:00:0053.45 N, 3.65 WRV Prince Madog PD23/08
949496CTD or STD cast2008-07-31 09:22:0053.45033 N, 3.63933 WRV Prince Madog PD23/08
1623617Currents -subsurface Eulerian2008-09-10 16:34:5953.45017 N, 3.64333 WRV Prince Madog PD29/08
1024626Fluorescence or pigments2008-09-10 17:30:0053.448 N, 3.6422 WRV Prince Madog PD29/08
939300Hydrography time series at depth2008-09-10 17:30:0053.44817 N, 3.644 WRV Prince Madog PD29/08
939312Hydrography time series at depth2008-09-10 17:30:0053.44817 N, 3.644 WRV Prince Madog PD29/08
1024546Surface temp/sal2008-09-10 17:30:0053.448 N, 3.6422 WRV Prince Madog PD29/08
1024706Transmittance/attenuance, turbidity, or SPM conc.2008-09-10 17:30:0053.448 N, 3.6422 WRV Prince Madog PD29/08
939232Hydrography time series at depth2008-09-10 17:30:0153.44817 N, 3.644 WRV Prince Madog PD29/08
939244Hydrography time series at depth2008-09-10 17:30:0153.44817 N, 3.644 WRV Prince Madog PD29/08
939219Hydrography time series at depth2008-09-11 08:00:0353.45017 N, 3.64333 WRV Prince Madog PD29/08
949724CTD or STD cast2008-10-22 19:46:0053.44983 N, 3.64433 WRV Prince Madog PD33/08
950123CTD or STD cast2008-12-11 12:27:0053.44983 N, 3.65 WRV Prince Madog PD37/08
1022865Hydrography time series at depth2008-12-11 13:40:0353.44983 N, 3.644 WRV Prince Madog PD37/08
1623691Currents -subsurface Eulerian2008-12-11 13:44:5953.44983 N, 3.644 WRV Prince Madog PD37/08
1024638Fluorescence or pigments2008-12-11 14:00:0053.4502 N, 3.6463 WRV Prince Madog PD37/08
1022969Hydrography time series at depth2008-12-11 14:00:0053.45017 N, 3.64633 WRV Prince Madog PD37/08
1022970Hydrography time series at depth2008-12-11 14:00:0053.45017 N, 3.64633 WRV Prince Madog PD37/08
1024558Surface temp/sal2008-12-11 14:00:0053.4502 N, 3.6463 WRV Prince Madog PD37/08
1024718Transmittance/attenuance, turbidity, or SPM conc.2008-12-11 14:00:0053.4502 N, 3.6463 WRV Prince Madog PD37/08
1022908Hydrography time series at depth2008-12-11 14:00:0153.45017 N, 3.64633 WRV Prince Madog PD37/08
1022921Hydrography time series at depth2008-12-11 14:00:0153.45017 N, 3.64633 WRV Prince Madog PD37/08
950135CTD or STD cast2008-12-11 14:31:0053.44967 N, 3.64783 WRV Prince Madog PD37/08
950227CTD or STD cast2009-02-05 12:54:0053.44867 N, 3.64633 WRV Prince Madog PD02/09B
1048376Hydrography time series at depth2009-02-05 13:50:0353.44967 N, 3.6435 WRV Prince Madog PD02/09B
1048481Hydrography time series at depth2009-02-05 14:10:0053.45183 N, 3.6455 WRV Prince Madog PD02/09B
1048493Hydrography time series at depth2009-02-05 14:10:0053.45183 N, 3.6455 WRV Prince Madog PD02/09B
1048444Hydrography time series at depth2009-02-05 14:10:0153.45183 N, 3.6455 WRV Prince Madog PD02/09B
1048432Hydrography time series at depth2009-02-05 14:10:0253.45183 N, 3.6455 WRV Prince Madog PD02/09B
950239CTD or STD cast2009-02-05 14:27:0053.449 N, 3.646 WRV Prince Madog PD02/09B
1024651Fluorescence or pigments2009-02-05 14:30:0053.4518 N, 3.64542 WRV Prince Madog PD02/09B
1024571Surface temp/sal2009-02-05 14:30:0053.4518 N, 3.64542 WRV Prince Madog PD02/09B
1024731Transmittance/attenuance, turbidity, or SPM conc.2009-02-05 14:30:0053.4518 N, 3.64542 WRV Prince Madog PD02/09B
950541CTD or STD cast2009-02-06 13:51:0053.44967 N, 3.64283 WRV Prince Madog PD02/09B
951519CTD or STD cast2009-04-02 07:39:0053.4515 N, 3.65083 WRV Prince Madog PD12/09
1640737Hydrography time series at depth2009-04-02 08:43:0653.4495 N, 3.6435 WRV Prince Madog PD12/09
1623746Currents -subsurface Eulerian2009-04-02 08:45:0053.4495 N, 3.6435 WRV Prince Madog PD12/09
1640774Hydrography time series at depth2009-04-02 08:50:0053.45067 N, 3.641 WRV Prince Madog PD12/09
1640786Hydrography time series at depth2009-04-02 08:50:0053.45067 N, 3.641 WRV Prince Madog PD12/09
1640694Hydrography time series at depth2009-04-02 08:50:0153.45067 N, 3.641 WRV Prince Madog PD12/09
1640725Hydrography time series at depth2009-04-02 08:50:0153.45067 N, 3.641 WRV Prince Madog PD12/09
951520CTD or STD cast2009-04-02 09:21:0053.45133 N, 3.6545 WRV Prince Madog PD12/09
1075638Fluorescence or pigments2009-04-02 10:00:0053.4507 N, 3.641 WRV Prince Madog PD12/09
1075510Hydrography time series at depth2009-04-02 10:00:0053.4507 N, 3.641 WRV Prince Madog PD12/09
1076076Transmittance/attenuance, turbidity, or SPM conc.2009-04-02 10:00:0053.4507 N, 3.641 WRV Prince Madog PD12/09
953760CTD or STD cast2009-05-13 05:18:0053.45017 N, 3.65 WRV Prince Madog PD18/09
1640830Hydrography time series at depth2009-05-13 07:40:0353.44967 N, 3.641 WRV Prince Madog PD18/09
1623955Currents -subsurface Eulerian2009-05-13 07:45:0053.44967 N, 3.641 WRV Prince Madog PD18/09
1640805Hydrography time series at depth2009-05-14 06:10:0053.4515 N, 3.63917 WRV Prince Madog PD18/09
1640829Hydrography time series at depth2009-05-14 06:10:0053.4515 N, 3.63917 WRV Prince Madog PD18/09
1640878Hydrography time series at depth2009-05-14 06:10:0053.4515 N, 3.63917 WRV Prince Madog PD18/09
953876CTD or STD cast2009-05-14 06:13:0053.45067 N, 3.64383 WRV Prince Madog PD18/09
1075522Hydrography time series at depth2009-05-14 06:30:0053.4515 N, 3.6392 WRV Prince Madog PD18/09
1076088Transmittance/attenuance, turbidity, or SPM conc.2009-05-14 06:30:0053.4515 N, 3.6392 WRV Prince Madog PD18/09
1023070CTD or STD cast2009-06-17 16:20:0053.44733 N, 3.64217 WRV Prince Madog PD24/09
1023278CTD or STD cast2009-06-18 10:05:0053.4495 N, 3.64167 WRV Prince Madog PD24/09
1640922Hydrography time series at depth2009-06-18 12:20:0353.44983 N, 3.64133 WRV Prince Madog PD24/09
1623642Currents -subsurface Eulerian2009-06-18 12:25:0053.44983 N, 3.64133 WRV Prince Madog PD24/09
1023291CTD or STD cast2009-06-18 12:31:0053.4525 N, 3.63567 WRV Prince Madog PD24/09
1023334CTD or STD cast2009-08-02 22:17:0053.44933 N, 3.64 WRV Prince Madog PD33/09
1023463CTD or STD cast2009-08-03 11:37:0053.44967 N, 3.64083 WRV Prince Madog PD33/09
1623992Currents -subsurface Eulerian2009-08-03 12:35:0353.44967 N, 3.64117 WRV Prince Madog PD33/09
1641010Hydrography time series at depth2009-08-03 12:40:0353.44967 N, 3.64117 WRV Prince Madog PD33/09
1075663Fluorescence or pigments2009-08-03 13:30:0053.449 N, 3.6427 WRV Prince Madog PD33/09
1075534Hydrography time series at depth2009-08-03 13:30:0053.449 N, 3.6427 WRV Prince Madog PD33/09
1641046Hydrography time series at depth2009-08-03 13:30:0053.449 N, 3.64267 WRV Prince Madog PD33/09
1641058Hydrography time series at depth2009-08-03 13:30:0053.449 N, 3.64267 WRV Prince Madog PD33/09
1076107Transmittance/attenuance, turbidity, or SPM conc.2009-08-03 13:30:0053.449 N, 3.6427 WRV Prince Madog PD33/09
1640971Hydrography time series at depth2009-08-03 13:30:0153.449 N, 3.64267 WRV Prince Madog PD33/09
1640983Hydrography time series at depth2009-08-03 13:30:0153.449 N, 3.64267 WRV Prince Madog PD33/09
1023475CTD or STD cast2009-08-03 13:57:0053.45217 N, 3.644 WRV Prince Madog PD33/09
1024386CTD or STD cast2009-09-16 08:23:0053.44817 N, 3.6455 WRV Prince Madog PD38/09
1641126Hydrography time series at depth2009-09-16 09:30:0353.4495 N, 3.64117 WRV Prince Madog PD38/09
1623826Currents -subsurface Eulerian2009-09-16 09:34:5953.4495 N, 3.64117 WRV Prince Madog PD38/09
1641163Hydrography time series at depth2009-09-16 09:40:0053.44933 N, 3.63917 WRV Prince Madog PD38/09
1641175Hydrography time series at depth2009-09-16 09:40:0053.44933 N, 3.63917 WRV Prince Madog PD38/09
1641083Hydrography time series at depth2009-09-16 09:40:0153.44933 N, 3.63917 WRV Prince Madog PD38/09
1641102Hydrography time series at depth2009-09-16 09:40:0253.44933 N, 3.63917 WRV Prince Madog PD38/09
1024398CTD or STD cast2009-09-16 10:05:0053.45183 N, 3.64367 WRV Prince Madog PD38/09
1024454CTD or STD cast2009-09-16 14:49:0053.45133 N, 3.64183 WRV Prince Madog PD38/09
1030318CTD or STD cast2009-12-02 14:57:0053.45067 N, 3.647 WRV Prince Madog PD47/09
1641243Hydrography time series at depth2009-12-02 16:10:0353.45 N, 3.64183 WRV Prince Madog PD47/09
1623906Currents -subsurface Eulerian2009-12-02 16:15:0053.45 N, 3.64183 WRV Prince Madog PD47/09
1075675Fluorescence or pigments2009-12-02 18:30:0053.45 N, 3.6388 WRV Prince Madog PD47/09
1075546Hydrography time series at depth2009-12-02 18:30:0053.45 N, 3.6388 WRV Prince Madog PD47/09
1641279Hydrography time series at depth2009-12-02 18:30:0053.45 N, 3.63883 WRV Prince Madog PD47/09
1641280Hydrography time series at depth2009-12-02 18:30:0053.45 N, 3.63883 WRV Prince Madog PD47/09
1076119Transmittance/attenuance, turbidity, or SPM conc.2009-12-02 18:30:0053.45 N, 3.6388 WRV Prince Madog PD47/09
1641199Hydrography time series at depth2009-12-02 18:30:0153.45 N, 3.63883 WRV Prince Madog PD47/09
1641218Hydrography time series at depth2009-12-02 18:30:0153.45 N, 3.63883 WRV Prince Madog PD47/09
1030331CTD or STD cast2009-12-02 18:52:0053.4515 N, 3.631 WRV Prince Madog PD47/09
1030392CTD or STD cast2010-01-26 13:53:0053.45167 N, 3.643 WRV Prince Madog PD02/10
1090623CTD or STD cast2010-06-10 11:09:0053.44917 N, 3.645 WRV Prince Madog PD17/10
1641716Hydrography time series at depth2010-06-10 18:20:0053.45717 N, 3.63883 WRV Prince Madog PD17/10
1641648Hydrography time series at depth2010-06-10 18:20:0153.45717 N, 3.63883 WRV Prince Madog PD17/10
1641661Hydrography time series at depth2010-06-10 18:20:0153.45717 N, 3.63883 WRV Prince Madog PD17/10
1641728Hydrography time series at depth2010-06-10 19:10:0053.45717 N, 3.63883 WRV Prince Madog PD17/10
1090819CTD or STD cast2010-07-07 16:34:0053.4505 N, 3.63883 WRV Prince Madog PD21/10
1112362CTD or STD cast2010-08-12 12:59:0053.45083 N, 3.64233 WRV Prince Madog PD29/10
1114264CTD or STD cast2010-09-29 13:52:0053.44933 N, 3.63883 WRV Prince Madog PD36/10
1140965CTD or STD cast2010-12-07 17:35:0053.45017 N, 3.64667 WRV Prince Madog PD49/10
1149147CTD or STD cast2011-01-13 14:11:0053.4505 N, 3.6415 WRV Prince Madog PD01/11
1150020CTD or STD cast2011-03-17 14:53:0053.4495 N, 3.64333 WRV Prince Madog PD07/11
1117169CTD or STD cast2011-04-20 19:29:0053.45167 N, 3.64067 WRV Prince Madog PD11/11
1118714CTD or STD cast2011-06-07 03:07:0053.45233 N, 3.64417 WRV Prince Madog PD43/11