Metadata Report for BODC Series Reference Number 1097056


Metadata Summary

Data Description

Data Category Water sample data
Instrument Type
NameCategories
Non-toxic sea water supply  continuous water samplers
SPX Bran+Luebbe colorimetric Autoanalyser 3  colorimeters; autoanalysers
World Precision Instruments Liquid Waveguide Capillary Cell  spectrophotometers
Instrument Mounting research vessel
Originating Country United Kingdom
Originator Mr Malcolm Woodward
Originating Organization Plymouth Marine Laboratory
Processing Status banked
Project(s) Atlantic Meridional Transect Phase2(AMT)
 

Data Identifiers

Originator's Identifier AMT12_GPUMP_Woodward_nuts
BODC Series Reference 1097056
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2003-05-21 18:02
End Time (yyyy-mm-dd hh:mm) 2003-06-10 16:00
Nominal Cycle Interval -
 

Spatial Co-ordinates

Southernmost Latitude 31.19104 S ( 31° 11.5' S )
Northernmost Latitude 37.57189 N ( 37° 34.3' N )
Westernmost Longitude 36.95646 W ( 36° 57.4' W )
Easternmost Longitude 20.67584 W ( 20° 40.6' W )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor Depth 6.0 m
Maximum Sensor Depth 6.0 m
Minimum Sensor Height -
Maximum Sensor Height -
Sea Floor Depth -
Sensor Distribution Fixed common depth - All sensors are grouped effectively at the same depth which is effectively fixed for the duration of the series
Sensor Depth Datum Approximate - Depth is only approximate
Sea Floor Depth Datum -
 

Parameters

BODC CODE Rank Units Short Title Title
AADYAA01 1 Days Date(Loch_Day) Date (time from 00:00 01/01/1760 to 00:00 UT on day)
AAFDZZ01 1 Days Time(Day_Fract) Time (time between 00:00 UT and timestamp)
ALATGP01 1 Degrees Lat_GPS Latitude north (WGS84) by unspecified GPS system
ALONGP01 1 Degrees Lon_GPS Longitude east (WGS84) by unspecified GPS system
BOTTFLAG 1 Dimensionless C22_flag Sampling process quality flag (BODC C22)
NTRILWTX 1 Micromoles per litre NO2_Lwnano Concentration (nM sensitivity) of nitrite {NO2- CAS 14797-65-0} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis with liquid waveguide capilliary cell
NTRZLWTX 1 Micromoles per litre NO3+NO2_Lwnano Concentration (nM sensitivity) of nitrate+nitrite {NO3+NO2} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis with liquid waveguide capilliary cell
PHOSLWTX 1 Micromoles per litre PO4_Lwnano Concentration (nM sensitivity) of phosphate {PO43- CAS 14265-44-2} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis with liquid waveguide capilliary cell
SAMPRFNM 1 Dimensionless SampRef Sample reference number
 

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database

Data Quality Report - see processing documentation

Data quality information is included in the general documentation for this series. Please read.


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

SPX Bran+Luebbe Autoanalyser 3

The instrument uses continuous flow analysis (CFA) with a continuous stream of material divided by air bubbles into discrete segments in which chemical reactions occur. The continuous stream of liquid samples and reagents are combined and transported in tubing and mixing coils. The tubing passes the samples from one apparatus to the other with each apparatus performing different functions, such as distillation, dialysis, extraction, ion exchange, heating, incubation, and subsequent recording of a signal.

An essential principle of the system is the introduction of air bubbles. The air bubbles segment each sample into discrete packets and act as a barrier between packets to prevent cross contamination as they travel down the length of the tubing. The air bubbles also assist mixing by creating turbulent flow (bolus flow), and provide operators with a quick and easy check of the flow characteristics of the liquid.

Samples and standards are treated in an exactly identical manner as they travel the length of the tubing, eliminating the necessity of a steady state signal, however, since the presence of bubbles create an almost square wave profile, bringing the system to steady state does not significantly decrease throughput and is desirable in that steady state signals (chemical equilibrium) are more accurate and reproducible.

The autoanalyzer can consist of different modules including a sampler, pump, mixing coils, optional sample treatments (dialysis, distillation, heating, etc), a detector, and data generator. Most continuous flow analyzers depend on color reactions using a flow through colorimeter, however other methods have been developed that use ISE, flame photometry, ICAP, fluorometry, and so forth.

More details can be found in the manufacturer's introduction to autoanalysers and instrument description .

World Precision Instruments Liquid Waveguide Capillary Cell

Liquid Waveguide Capillary Cell (LWCC) is a flow cell for absorbance measurements in the ultraviolet, visible and near infra-red ranges. Pathlengths range from 50-500cm, with increasing measurement sensitivity from 50 to 500-fold. The flow cells are fiber coupled and have a very small sample volume ranging from 125µL (50cm pathlength) to 1,250µL (500cm pathlength).

The sample solution is introduced into the LWCC at the liquid input. Light is coupled into the LWCC from a light source via a fiber optic cable. After passing through the LWCC, light is collected with an optical fiber and guided to a detector. The concentration of the sample is determined by measuring its absorbance in the LWCC, similar to a standard UV/VIS spectrometer.

Specifications

Model LWCC-3050 LWCC-3100 LWCC-3250 LWCC-3500
Optical Pathlength 50cm 100cm 250cm 500cm
Internal Volume 125µL 250µL 625µL 1250µL
Fiber Connection 500um SMA
Transmission @254nm* 20 10 5 -
Transmission @540nm* 35 30 25 20
Noise [mAU]** <0.1 <0.2 <0.5 <1.0

Maximum Pressure 100 PSI

Wetted Material PEEK, Fused Silica, PTFE

Liquid Input Standard 10-32 Coned Port Fitting

* Referenced using coupled 500µm fibers

** Measured using ASTM E685-93

*** A one-meter waveguide of 550µm internal diameter requires approximately 1.5 psi for water flow of 1.0 mL/min.

Further details can be found in the manufacturer's specification sheet .

Non-toxic (underway) sea water supply

A source of uncontaminated near-surface (commonly 3 to 7 m) seawater pumped continuously to shipboard laboratories on research vessels. There is typically a temperature sensor near the intake (known as the hull temperature) to provide measurements that are as close as possible to the ambient water temperature. The flow from the supply is typically directed through continuously logged sensors such as a thermosalinograph and a fluorometer. Water samples are often collected from the non-toxic supply. The system is also referred to as the underway supply.

AMT12 Nutrient (micro- and nano-molar) measurements from CTD bottle and surface underway samples

Originator's Protocol for Data Acquisition and Analysis

Water samples were taken from the Sea-Bird CTD rosette system and from the non-toxic supply tap. They were sub-sampled into acid-clean 60 ml HDPE (nalgene) sample bottles. Analysis for nutrients was completed within 3 hours of sampling in all cases. Clean handling techniques were employed to avoid contamination of the samples.

The main nutrient analyser was a 5-channel Bran and Luebbe AAIII segmented flow autoanalyser. This cruise was the first in which this new instrument was deployed. The analytical chemical methodologies used were according to Brewer and Riley (1965) for nitrate, Grasshoff (1976) for nitrite, Kirkwood (1989) for phosphate and silicate, and Mantoura and Woodward (1983) for ammonium.

Nanomolar ammonium concentrations were obtained using an adapted method from Jones (1991); this uses a fluorescent analysis technique following ammonia gas diffusion out of the samples, passing across a hydrophobic Teflon membrane due to differential pH chemistry. Unfortunately, this system could only be used in the early stages of the cruise as the fluorometer broke down.

Nanomolar nitrate+nitrite, nitrate and phosphate concentrations were obtained on some samples using a 3-channel nanomolar analyser. This method combines sensitive segmented flow colorimetric analytical techniques with a Liquid Waveguide Capillary Cell (LWCC). The phosphate waveguide did not produce consistently reliable results.

References Cited

Brewer P.G. and Riley J.P., 1965. The automatic determination of nitrate in sea water. Deep-Sea Research, 12, 765-772.

Grasshoff K., 1976. Methods of seawater analysis. Verlag Chemie, Weiheim: 317 pp.

Jones R.D., 1991. An improved fluorescence method for the determination of nanomolar concentrations of ammonium in natural waters. Limnology and Oceanography, 36, 814-819.

Kirkwood D.S., 1989. Simultaneous determination of selected nutrients in seawater. ICES CM1989/C:29, 12pp.

Mantoura R.F.C. and Woodward E.M.S., 1983. Optimisation of the indophenol blue method for the automated determination of ammonia in estuarine waters. Estuarine, Coastal and Shelf Science, 17, 219-224.

BODC Data Processing Procedures

Data were submitted to BODC in Microsoft Excel spreadsheet format. Sample metadata were checked against information held in the database - there were no discrepancies. Parameter codes defined in BODC parameter dictionary were assigned to the variables. Data from the nanomolar ammonium and LWCC systems were submitted in units of nmol/l. Nano-molar data were divided by 1000 to convert the units to µmol/l for storage in the database. Users should be aware that these LWCC measurements are valid to the fourth decimal place. The data were assigned parameter codes defined in BODC parameter dictionary. Data loaded into BODC's database using established BODC data banking procedures.

A parameter mapping table is provided below;

Originator's Parameter Units Description BODC Parameter Code Units Comments
Ammonium (AAIII) µmol l -1 Concentration of ammonium {NH 4 } per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis AMONAATX µmol l -1 -
Ammonium (nano-molar system) nmol l -1 Concentration (nM sensitivity) of ammonium {NH 4 } per unit volume of the water body [dissolved plus reactive particulate phase] by nanomolar ammonium system after Jones (1991) AMONNATX µmol l -1 nmol l -1 converted to µmol l -1 (conversion used * 1/1000)
Nitrate+Nitrite (AAIII) µmol l -1 Concentration of nitrate+nitrite {NO 3 +NO 2 } per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis NTRZAATX µmol l -1 -
Nitrate+Nitrite (LWCC nano-molar system) nmol l -1 Concentration (nM sensitivity) of nitrate+nitrite {NO 3 +NO 2 } per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis with liquid waveguide capilliary cell NTRZLWTX µmol l -1 nmol l -1 converted to µmol l -1 (conversion used * 1/1000)
Nitrite (AAIII) µmol l -1 Concentration of nitrite {NO 2 } per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis NTRIAATX µmol l -1 -
Nitrite (LWCC nano-molar system) nmol l -1 Concentration (nM sensitivity) of nitrite {NO 2 } per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis with liquid waveguide capilliary cell NTRILWTX µmol l -1 nmol l -1 converted to µmol l -1 (conversion used * 1/1000)
Phosphate (AAIII) µmol l -1 Concentration of phosphate {PO 4 } per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis PHOSAATX µmol l -1 -
Phosphate (LWCC nano-molar system) nmol l -1 Concentration (nM sensitivity) of phosphate {PO 4 } per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis with liquid waveguide capilliary cell PHOSLWTX µmol l -1 nmol l -1 converted to µmol l -1 (conversion used * 1/1000)
Silicate (AAIII) µmol l -1 Concentration of silicate {SiO 4 } per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis SLCAAATX µmol l -1 -

Data Quality Report

The dataset has been checked by the data originator - any suspect data values were removed from the data set before submission to BODC.

The detection limits for measurements from the AAIII Bran and Luebbe autoanalyser have are 0.02 µmol l -1 , except the colorimetric ammonium which has a detection limit of 0.08 µmol l -1 . Samples in the database with a flag of "<" had concentrations below the specified detection limits.

At low concentrations, the values obtained by the LWCC are likely to be more accurate than those from the AAIII analyser.

Problem Report

Not relevant to this data set.


Project Information

The Atlantic Meridional Transect - Phase 2 (2002-2006)

Who was involved in the project?

The Atlantic Meridional Transect Phase 2 was designed by and implemented by a number of UK research centres and universities. The programme was hosted by Plymouth Marine Laboratory in collaboration with the National Oceanography Centre, Southampton. The universities involved were:

What was the project about?

AMT began in 1995, with scientific aims to assess mesoscale to basin scale phytoplankton processes, the functional interpretation of bio-optical signatures and the seasonal, regional and latitudinal variations in mesozooplankton dynamics. In 2002, when the programme restarted, the scientific aims were broadened to address a suite of cross-disciplinary questions concerning ocean plankton ecology and biogeochemistry and the links to atmospheric processes.

The objectives included the determination of:

The data were collected with the aim of being distributed for use in the development of models to describe the interactions between the global climate system and ocean biogeochemistry.

When was the project active?

The second phase of funding allowed the project to continue for the period 2002 to 2006 and consisted of six research cruises. The first phase of the AMT programme ran from 1995 to 2000.

Brief summary of the project fieldwork/data

The fieldwork on the first three cruises was carried out along transects from the UK to the Falkland Islands in September and from the Falkland Islands to the UK in April. The last three cruises followed a cruise track between the UK and South Africa, only deviating from the traditional transect in the southern hemisphere. During this phase the research cruises sampled further into the centre of the North and South Atlantic Ocean and also along the north-west coast of Africa where upwelled nutrient rich water is known to provide a significant source of climatically important gases.

Who funded the project?

Natural Environment Research Council (NERC)


Data Activity or Cruise Information

Cruise

Cruise Name JR20030512 (AMT12, JR102, JR88, JR90)
Departure Date 2003-05-12
Arrival Date 2003-06-17
Principal Scientist(s)Tim Jickells (University of East Anglia School of Environmental Sciences)
Ship RRS James Clark Ross

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain