Search the data

Metadata Report for BODC Series Reference Number 1136376


Metadata Summary

Data Description

Data Category CTD or STD cast
Instrument Type
NameCategories
Sea-Bird SBE 43 Dissolved Oxygen Sensor  dissolved gas sensors
WET Labs {Sea-Bird WETLabs} ECO BB(RT)D backscattering sensor  optical backscatter sensors
Paroscientific 410K Pressure Transducer  water temperature sensor; water pressure sensors
Sea-Bird SBE 3plus (SBE 3P) temperature sensor  water temperature sensor
Sea-Bird SBE 4C conductivity sensor  salinity sensor
Chelsea Technologies Group Aquatracka III fluorometer  fluorometers
Chelsea Technologies Group Alphatracka II transmissometer  transmissometers
Instrument Mounting lowered unmanned submersible
Originating Country United Kingdom
Originator Dr Matt Palmer
Originating Organization National Oceanography Centre, Liverpool
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) UKOARP_ThemeB
 

Data Identifiers

Originator's Identifier JR271_003T_2_DOWNCAST
BODC Series Reference 1136376
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2012-06-03 05:59
End Time (yyyy-mm-dd hh:mm) 2012-06-03 06:00
Nominal Cycle Interval 1.0 decibars
 

Spatial Co-ordinates

Latitude 56.26665 N ( 56° 16.0' N )
Longitude 2.63325 E ( 2° 38.0' E )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor or Sampling Depth 3.03 m
Maximum Sensor or Sampling Depth 23.25 m
Minimum Sensor or Sampling Height -3.25 m
Maximum Sensor or Sampling Height 16.97 m
Sea Floor Depth 20.0 m
Sea Floor Depth Source -
Sensor or Sampling Distribution Variable common depth - All sensors are grouped effectively at the same depth, but this depth varies significantly during the series
Sensor or Sampling Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
Sea Floor Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
 

Parameters

BODC CODERankUnitsTitle
ACYCAA011DimensionlessSequence number
ATTNDR011per metreAttenuation (red light wavelength) per unit length of the water body by 25cm path length red light transmissometer
BB117R011per metre per nanometre per steradianAttenuation due to backscatter (660 nm wavelength at 117 degree incidence) by the water body [particulate >unknown phase] by in-situ optical backscatter measurement
CPHLPM011Milligrams per cubic metreConcentration of chlorophyll-a {chl-a CAS 479-61-8} per unit volume of the water body [particulate >unknown phase] by in-situ chlorophyll fluorometer and manufacturer's calibration applied
DOXYSC011Micromoles per litreConcentration of oxygen {O2 CAS 7782-44-7} per unit volume of the water body [dissolved plus reactive particulate phase] by Sea-Bird SBE 43 sensor and calibration against sample data
OXYSSC011PercentSaturation of oxygen {O2 CAS 7782-44-7} in the water body [dissolved plus reactive particulate phase] by Sea-Bird SBE 43 sensor and calibration against sample data and computation from concentration using Benson and Krause algorithm
POPTDR011PercentTransmittance (red light wavelength) per 25cm of the water body by 25cm path length red light transmissometer
POTMCV011Degrees CelsiusPotential temperature of the water body by computation using UNESCO 1983 algorithm
PRESPR011DecibarsPressure (spatial coordinate) exerted by the water body by profiling pressure sensor and correction to read zero at sea level
PSALST011DimensionlessPractical salinity of the water body by CTD and computation using UNESCO 1983 algorithm
SIGTPR011Kilograms per cubic metreSigma-theta of the water body by CTD and computation from salinity and potential temperature using UNESCO algorithm
TEMPST011Degrees CelsiusTemperature of the water body by CTD or STD

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database

RSS James Clark Ross Cruise JR20120601/JR272 CTD Data Quality Document

Downwelling PAR Irradiance (DWIRPP01)

PAR data were from the stainless steel CTD casts only. This was because the PAR sensors were not always installed on the titanium casts, as the majority of deployments were deeper than 500 metres.

Attenuance (ATTNDR01) and Transmittance (POPTDR01)

For many of the casts, the attenuance values produced by the manufacturer's calibration were negative and outside the expected range of the parameter (0 to 400 m-1). All negative values were flagged. Although the actual values may be considered suspect, the shape of the profiles appears reasonable and the user may wish to determine an appropriate offset for the values from the cruise to correct the values to bring them within the expected range for attenuance values.

As with the attenuance profiles the values in the transmittance channel go beyond 100 % transmittance. Occurrences of this have been flagged as suspect. The transmittance channels are only available from the titanium CTD casts. The stainless steel casts do not have transmittance channels.

Fluorescence (CPHLPM01)

Some of the casts have data values that are outside of the parameter range (0 to 999 mg m3) that have been flagged as suspect. Several of the profiles have some spikes that have been flagged as suspect. Cast CTD004s is constant with values of zero.


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

Sea-Bird Dissolved Oxygen Sensor SBE 43 and SBE 43F

The SBE 43 is a dissolved oxygen sensor designed for marine applications. It incorporates a high-performance Clark polarographic membrane with a pump that continuously plumbs water through it, preventing algal growth and the development of anoxic conditions when the sensor is taking measurements.

Two configurations are available: SBE 43 produces a voltage output and can be incorporated with any Sea-Bird CTD that accepts input from a 0-5 volt auxiliary sensor, while the SBE 43F produces a frequency output and can be integrated with an SBE 52-MP (Moored Profiler CTD) or used for OEM applications. The specifications below are common to both.

Specifications

Housing Plastic or titanium
Membrane

0.5 mil- fast response, typical for profile applications

1 mil- slower response, typical for moored applications

Depth rating

600 m (plastic) or 7000 m (titanium)

10500 m titanium housing available on request

Measurement range 120% of surface saturation
Initial accuracy 2% of saturation
Typical stability 0.5% per 1000 h

Further details can be found in the manufacturer's specification sheet.

Instrument Description JR20120601 Titanium Frame

Standard Rosette CTD Unit and Auxiliary Sensors

Two CTD systems were used during this cruise; a stainless steel frame and a titanium frame. This document outlines the instrument description of the titanium frame.

The Titanium CTD system used an 11 plus deck unit (s/n 11P-20397-0502). A 24-way titanium frame (s/n SBE CTD TITA2), with a Sea-Bird 9/11 plus underwater unit (SN 09P-39607-0803) with secondary temperature and conductivity sensors was used throughout the cruise. All other instruments were attached to a Sea-Bird 32 Carousel 24 Position Pylon (s/n 32-24680-0346) with Ocean Test Equipment 10L ES-110B trace metal-free water samplers, (s/n 1T through 24T).

The CTD unit included the following sensors:

Sensor Model Serial Number Calibration Comments
Pressure transducer Digiquartz temperature compensated pressure sensor, Frequency 2 93896 12/05/2011 -
Conductivity sensor SBE 4C, Frequency 1 04C-2165 12/10/2011 Primary sensor
Conductivity sensor SBE 4C, Frequency 4 04C-3272 09/03/2012 Secondary sensor
Temperature sensor SBE 3P, Frequency 0 03P-4381 12/10/2011 Primary sensor
Temperature sensor SBE 3P, Frequency 3 03P-4593 28/02/2012 Secondary sensor
Dissolved oxygen SBE 43 43-1940 03/09/2011 -
Fluorometer Chelsea MKIII Aquatracka fluorometer 88-2615-126 04/05/2012 -
Transmissometer Chelsea MKII 25cm path Alphatracka transmissometer 161047 18/03/2008 -
Photosynthetically Active Radiation CTG 2pi PAR irradiance sensor, UWIRR PAR 02 28/01/2010 -
Photosynthetically Active Radiation CTG 2pi PAR irradiance sensor, DWIRR PAR 04 01/10/2010 -
Altimeter Tritech PA200 altimeter 6196.118171 15/11/2006 -
Turbidity meter WET Labs, ECO-BB BBRTD-168 19/10/2009 -

Sea-Bird Electronics SBE 911 and SBE 917 series CTD profilers

The SBE 911 and SBE 917 series of conductivity-temperature-depth (CTD) units are used to collect hydrographic profiles, including temperature, conductivity and pressure as standard. Each profiler consists of an underwater unit and deck unit or SEARAM. Auxiliary sensors, such as fluorometers, dissolved oxygen sensors and transmissometers, and carousel water samplers are commonly added to the underwater unit.

Underwater unit

The CTD underwater unit (SBE 9 or SBE 9 plus) comprises a protective cage (usually with a carousel water sampler), including a main pressure housing containing power supplies, acquisition electronics, telemetry circuitry, and a suite of modular sensors. The original SBE 9 incorporated Sea-Bird's standard modular SBE 3 temperature sensor and SBE 4 conductivity sensor, and a Paroscientific Digiquartz pressure sensor. The conductivity cell was connected to a pump-fed plastic tubing circuit that could include auxiliary sensors. Each SBE 9 unit was custom built to individual specification. The SBE 9 was replaced in 1997 by an off-the-shelf version, termed the SBE 9 plus, that incorporated the SBE 3 plus (or SBE 3P) temperature sensor, SBE 4C conductivity sensor and a Paroscientific Digiquartz pressure sensor. Sensors could be connected to a pump-fed plastic tubing circuit or stand-alone.

Temperature, conductivity and pressure sensors

The conductivity, temperature, and pressure sensors supplied with Sea-Bird CTD systems have outputs in the form of variable frequencies, which are measured using high-speed parallel counters. The resulting count totals are converted to numeric representations of the original frequencies, which bear a direct relationship to temperature, conductivity or pressure. Sampling frequencies for these sensors are typically set at 24 Hz.

The temperature sensing element is a glass-coated thermistor bead, pressure-protected inside a stainless steel tube, while the conductivity sensing element is a cylindrical, flow-through, borosilicate glass cell with three internal platinum electrodes. Thermistor resistance or conductivity cell resistance, respectively, is the controlling element in an optimized Wien Bridge oscillator circuit, which produces a frequency output that can be converted to a temperature or conductivity reading. These sensors are available with depth ratings of 6800 m (aluminium housing) or 10500 m (titanium housing). The Paroscientific Digiquartz pressure sensor comprises a quartz crystal resonator that responds to pressure-induced stress, and temperature is measured for thermal compensation of the calculated pressure.

Additional sensors

Optional sensors for dissolved oxygen, pH, light transmission, fluorescence and others do not require the very high levels of resolution needed in the primary CTD channels, nor do these sensors generally offer variable frequency outputs. Accordingly, signals from the auxiliary sensors are acquired using a conventional voltage-input multiplexed A/D converter (optional). Some Sea-Bird CTDs use a strain gauge pressure sensor (Senso-Metrics) in which case their pressure output data is in the same form as that from the auxiliary sensors as described above.

Deck unit or SEARAM

Each underwater unit is connected to a power supply and data logging system: the SBE 11 (or SBE 11 plus) deck unit allows real-time interfacing between the deck and the underwater unit via a conductive wire, while the submersible SBE 17 (or SBE 17 plus) SEARAM plugs directly into the underwater unit and data are downloaded on recovery of the CTD. The combination of SBE 9 and SBE 17 or SBE 11 are termed SBE 917 or SBE 911, respectively, while the combinations of SBE 9 plus and SBE 17 plus or SBE 11 plus are termed SBE 917 plus or SBE 911 plus.

Specifications

Specifications for the SBE 9 plus underwater unit are listed below:

Parameter Range Initial accuracy Resolution at 24 Hz Response time
Temperature -5 to 35°C 0.001°C 0.0002°C 0.065 sec
Conductivity 0 to 7 S m-1 0.0003 S m-1 0.00004 S m-1 0.065 sec (pumped)
Pressure 0 to full scale (1400, 2000, 4200, 6800 or 10500 m) 0.015% of full scale 0.001% of full scale 0.015 sec

Further details can be found in the manufacturer's specification sheet.

Chelsea Technologies Group Aquatracka MKIII fluorometer

The Chelsea Technologies Group Aquatracka MKIII is a logarithmic response fluorometer. Filters are available to enable the instrument to measure chlorophyll, rhodamine, fluorescein and turbidity.

It uses a pulsed (5.5 Hz) xenon light source discharging along two signal paths to eliminate variations in the flashlamp intensity. The reference path measures the intensity of the light source whilst the signal path measures the intensity of the light emitted from the specimen under test. The reference signal and the emitted light signals are then applied to a ratiometric circuit. In this circuit, the ratio of returned signal to reference signal is computed and scaled logarithmically to achieve a wide dynamic range. The logarithmic conversion accuracy is maintained at better than one percent of the reading over the full output range of the instrument.

Two variants of the instrument are available, both manufactured in titanium, capable of operating in depths from shallow water down to 2000 m and 6000 m respectively. The optical characteristics of the instrument in its different detection modes are visible below:

Excitation Chlorophyll a Rhodamine Fluorescein Turbidity
Wavelength (nm) 430 500 485 440*
Bandwidth (nm) 105 70 22 80*
Emission Chlorophyll a Rhodamine Fluorescein Turbidity
Wavelength (nm) 685 590 530 440*
Bandwidth (nm) 30 45 30 80*

* The wavelengths for the turbidity filters are customer selectable but must be in the range 400 to 700 nm. The same wavelength is used in the excitation path and the emission path.

The instrument measures chlorophyll a, rhodamine and fluorescein with a concentration range of 0.01 µg l-1 to 100 µg l-1. The concentration range for turbidity is 0.01 to 100 FTU (other wavelengths are available on request).

The instrument accuracy is ± 0.02 µg l-1 (or ± 3% of the reading, whichever is greater) for chlorophyll a, rhodamine and fluorescein. The accuracy for turbidity, over a 0 - 10 FTU range, is ± 0.02 FTU (or ± 3% of the reading, whichever is greater).

Further details are available from the Aquatracka MKIII specification sheet.

Chelsea Technologies Group ALPHAtracka and ALPHAtracka II transmissometers

The Chelsea Technologies Group ALPHAtracka (the Mark I) and its successor, the ALPHAtracka II (the Mark II), are both accurate (< 0.3 % fullscale) transmissometers that measure the beam attenuation coefficient at 660 nm. Green (565 nm), yellow (590 nm) and blue (470 nm) wavelength variants are available on special order.

The instrument consists of a Transmitter/Reference Assembly and a Detector Assembly aligned and spaced apart by an open support frame. The housing and frame are both manufactured in titanium and are pressure rated to 6000 m depth.

The Transmitter/Reference housing is sealed by an end cap. Inside the housing an LED light source emits a collimated beam through a sealed window. The Detector housing is also sealed by an end cap. A signal photodiode is placed behind a sealed window to receive the collimated beam from the Transmitter.

The primary difference between the ALPHAtracka and ALPHAtracka II is that the Alphatracka II is implemented with surface-mount technology; this has enabled a much smaller diameter pressure housing to be used while retaining exactly the same optical train as in the Mark I. Data from the Mark II version are thus fully compatible with that already obtained with the Mark I. The performance of the Mark II is further enhanced by two electronic developments from Chelsea Technologies Group - firstly, all items are locked in a signal nulling loop of near infinite gain and, secondly, the signal output linearity is inherently defined by digital circuitry only.

Among other advantages noted above, these features ensure that the optical intensity of the Mark II, indicated by the output voltage, is accurately represented by a straight line interpolation between a reading near full-scale under known conditions and a zero reading when blanked off.

For optimum measurements in a wide range of environmental conditions, the Mark I and Mark II are available in 5 cm, 10 cm and 25 cm path length versions. Output is default factory set to 2.5 volts but can be adjusted to 5 volts on request.

Further details about the Mark II instrument are available from the Chelsea Technologies Group ALPHAtrackaII specification sheet.

WETLabs Single-angle Backscattering Meter ECO BB

An optical scattering sensor that measures scattering at 117°. This angle was determined as a minimum convergence point for variations in the volume scattering function induced by suspended materials and water. The measured signal is less determined by the type and size of the materials in the water and is more directly correlated to their concentration.

Several versions are available, with minor differences in their specifications:

  • ECO BB(RT)provides analog or RS-232 serial output with 4000 count range
  • ECO BB(RT)D adds the possibility of being deployed in depths up to 6000 m while keeping the capabilities of ECO BB(RT)
  • ECO BB provides the capabilities of ECO BB(RT) with periodic sampling
  • ECO BBB is similar to ECO BB but with internal batteries for autonomous operation
  • ECO BBS is similar to ECO BB but with an integrated anti-fouling bio-wiper
  • ECO BBSB has the capabilities of ECO BBS but with internal batteries for autonomous operation

Specifications

Wavelength 471, 532, 660 nm
Sensitivity (m-1 sr-1)

1.2 x 10-5 at 470 nm

7.7 x 10-6 at 532 nm

3.8 x 10-6 at 660 nm

Typical range ~0.0024 to 5 m-1
Linearity 99% R2
Sample rate up to 8Hz
Temperature range 0 to 30°C
Depth rating

600 m (standard)

6000 m (deep)

Further details can be found in the manufacturer's specification sheet.

Paroscientific Absolute Pressure Transducers Series 3000 and 4000

Paroscientific Series 3000 and 4000 pressure transducers use a Digiquartz pressure sensor to provide high accuracy and precision data. The sensor comprises a quartz crystal resonator that responds to pressure-induced stress, and temperature is measured for thermal compensation of the calculated pressure.

The 3000 series of transducers includes one model, the 31K-101, whereas the 4000 series includes several models, listed in the table below. All transducers exhibit repeatability of better than ±0.01% full pressure scale, hysteresis of better than ±0.02% full scale and acceleration sensitivity of ±0.008% full scale /g (three axis average). Pressure resolution is better than 0.0001% and accuracy is typically 0.01% over a broad range of temperatures.

Differences between the models lie in their pressure and operating temperature ranges, as detailed below:

Model Max. pressure (psia) Max. pressure (MPa) Temperature range (°C)
31K-101 1000 6.9 -54 to 107
42K-101 2000 13.8 0 to 125
43K-101 3000 20.7 0 to 125
46K-101 6000 41.4 0 to 125
410K-101 10000 68.9 0 to 125
415K-101 15000 103 0 to 50
420K-101 20000 138 0 to 50
430K-101 30000 207 0 to 50
440K-101 40000 276 0 to 50

Further details can be found in the manufacturer's specification sheet.


Project Information

UKOARP Theme B: Ocean acidification impacts on sea surface biology, biogeochemistry and climate

The overall aim of this theme is to obtain a quantitative understanding of the impact of ocean acidification (OA) on the surface ocean biology and ecosystem and on the role of the surface ocean within the overall Earth System.

The aims of the theme are:

  • To ascertain the impact of OA on planktonic organisms (in terms of physiological impacts, morphology, population abundances and community composition).
  • To quantify the impacts of OA on biogeochemical processes affecting the ocean carbon cycle (both directly and indirectly, such as via availability of bio-limiting nutrients).
  • To quantify the impacts of OA on the air-sea flux of climate active gases (DMS and N2O in particular).

The main consortium activities will consist of in-situ measurements on three dedicated cruises, as well as on-deck bioassay experiments probing the response of the in-situ community to elevated CO2. Most of the planned work will be carried out on the three cruises to locations with strong gradients in seawater carbon chemistry and pH; the Arctic Ocean, around the British Isles and the Southern Ocean.

Weblink: http://www.oceanacidification.org.uk/research_programme/surface_ocean.aspx


Data Activity or Cruise Information

Cruise

Cruise Name JR20120601 (JR271)
Departure Date 2012-06-01
Arrival Date 2012-07-02
Principal Scientist(s)Ray Leakey (Scottish Association for Marine Science)
Ship RRS James Clark Ross

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification