Search the data

Metadata Report for BODC Series Reference Number 1360422


Metadata Summary

Data Description

Data Category Water sample data
Instrument Type
NameCategories
SPX Bran+Luebbe colorimetric Autoanalyser 3  colorimeters; autoanalysers
Clean pumped sea water supply  continuous water samplers
Instrument Mounting research vessel
Originating Country United Kingdom
Originator Mr Malcolm Woodward
Originating Organization Plymouth Marine Laboratory
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) UKSOLAS
 

Data Identifiers

Originator's Identifier D338_CPUMP_NUTS_62:
BODC Series Reference 1360422
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2009-04-17 13:37
End Time (yyyy-mm-dd hh:mm) 2009-05-13 19:32
Nominal Cycle Interval -
 

Spatial Co-ordinates

Southernmost Latitude 18.78947 N ( 18° 47.4' N )
Northernmost Latitude 22.14141 N ( 22° 8.5' N )
Westernmost Longitude 19.81241 W ( 19° 48.7' W )
Easternmost Longitude 17.13691 W ( 17° 8.2' W )
Positional Uncertainty 0.05 to 0.1 n.miles
Minimum Sensor or Sampling Depth 3.0 m
Maximum Sensor or Sampling Depth 3.0 m
Minimum Sensor or Sampling Height -
Maximum Sensor or Sampling Height -
Sea Floor Depth -
Sea Floor Depth Source -
Sensor or Sampling Distribution Unspecified -
Sensor or Sampling Depth Datum Unspecified -
Sea Floor Depth Datum Unspecified -
 

Parameters

BODC CODERankUnitsTitle
AADYAA011DaysDate (time from 00:00 01/01/1760 to 00:00 UT on day)
AAFDZZ011DaysTime (time between 00:00 UT and timestamp)
ALATGP011DegreesLatitude north relative to WGS84 by unspecified GPS system
ALONGP011DegreesLongitude east relative to WGS84 by unspecified GPS system
AMONAATX1Micromoles per litreConcentration of ammonium {NH4+ CAS 14798-03-9} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis
NTRIAATX1Micromoles per litreConcentration of nitrite {NO2- CAS 14797-65-0} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis
NTRZAATX1Micromoles per litreConcentration of nitrate+nitrite {NO3+NO2} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis
PHOSAATX1Micromoles per litreConcentration of phosphate {PO43- CAS 14265-44-2} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis
SLCAAATX1Micromoles per litreConcentration of silicate {SiO44- CAS 17181-37-2} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

SPX Bran+Luebbe Autoanalyser 3

The instrument uses continuous flow analysis (CFA) with a continuous stream of material divided by air bubbles into discrete segments in which chemical reactions occur. The continuous stream of liquid samples and reagents are combined and transported in tubing and mixing coils. The tubing passes the samples from one apparatus to the other with each apparatus performing different functions, such as distillation, dialysis, extraction, ion exchange, heating, incubation, and subsequent recording of a signal.

An essential principle of the system is the introduction of air bubbles. The air bubbles segment each sample into discrete packets and act as a barrier between packets to prevent cross contamination as they travel down the length of the tubing. The air bubbles also assist mixing by creating turbulent flow (bolus flow), and provide operators with a quick and easy check of the flow characteristics of the liquid.

Samples and standards are treated in an exactly identical manner as they travel the length of the tubing, eliminating the necessity of a steady state signal, however, since the presence of bubbles create an almost square wave profile, bringing the system to steady state does not significantly decrease throughput and is desirable in that steady state signals (chemical equilibrium) are more accurate and reproducible.

The autoanalyzer can consist of different modules including a sampler, pump, mixing coils, optional sample treatments (dialysis, distillation, heating, etc), a detector, and data generator. Most continuous flow analyzers depend on color reactions using a flow through colorimeter, however other methods have been developed that use ISE, flame photometry, ICAP, fluorometry, and so forth.

More details can be found in the manufacturer's introduction to autoanalysers andinstrument description.

Clean pumped sea water supply

The system comprises a precision echosounder (PES) fish attached to a clean, reinforced tube (typically composed of braided polyvinyl chloride (PVC)). The fish is designed to be towed alongside a moving ship at a depth of one to three metres and water is drawn through the system by a clean pump. The tube usually leads to a clean laboratory on board the vessel, inside which samples are drawn for analysis. The system is typically used for continuous, underway, clean sampling (e.g., trace metal studies) of near surface waters.

Inorganic nutrients concentrations (micromolar sensitivity nitrate, nitrite, phosphate, silicate and ammonium) for UK SOLAS cruise Discovery D338 (ICON)

Originator's Data Acquisition and Analysis

Water samples were collected from 60 of the CTD deployments. The 20-litre CTD bottles were subsampled into acid washed 60 ml HDPE (Nalgene) bottles. Surface samples were also taken from the trace metal clean fish deployed over the starboard quarter whenever a mapping exercise of an upwelling filament was carried out. Hence nutrients surface mapping was not performed throughout the duration of the cruise.

Analysis for the nutrient samples was, in most cases, complete within 3-4 hours of sampling. No samples were stored. Analysis was conducted using a Bran and Luebbe AAIII segmented flow colorimetric autoanalyser. Clean handling techniques were employed to avoid any contamination of the samples, particularly ammonium.

BODC Data Processing Procedures

Nutrients data from CTD, underway and incubation sampling were received by BODC as one accession in three separate files: CTD_nutrients_ICON_09.xls,ICON_09_All_Underway_Final.xls, and ICON_09_All_Photo_OX_Final.xls. For profile data, the samples were identified by CTD cast number and approximate bottle firing depth. For underway data sample identifiers and date and time were provided.

Parameter codes defined in the BODC parameter dictionary were mapped to the variables as follows:

Originator's Parameter Units Description BODC Parameter Code Units Comments
Nitrite µmol 1-1 Concentration of nitrite per unit volume of seawater NTRIAATX µmol l-1 none
Nitrite+Nitrate µmol l-1 Concentration of nitrate per unit volume of seawater NTRZAATX µmol l-1 none
Ammonium µmol l-1 Concentration of ammonium per unit volume of seawater AMONAATX µmol l-1 none
Silicate µmol l-1 Concentration of silicate per unit volume of seawater SLCAAATX µmol l-1 none
Phosphate µmol l-1 Concentration of phosphate per unit volume of seawater PHOSAATX µmol l-1 none

The data were banked according to BODC standard procedures for sample data. The data were banked as received, with no averaging or other modifications applied.

Data Quality Report

The quality and accuracy of the analyses of nitrate, phosphate and silicate were checked by the originator using reference materials supplied by Dr Michio Aoyama from the KANSO company in Japan. These reference materials are close to being globally certified and the exercise was part of a global initiative for a nutrient intercomparability study.

Data values which were indicated as below detection limit or suspect by the originator have been flagged using the appropriate flag in the BODC quality flag scheme.


Project Information

UK Surface Ocean Lower Atmosphere Study

The UK Surface Ocean Lower Atmosphere Study (UK SOLAS) is the UK's contribution to the international SOLAS programme.

UK SOLAS formed interdisciplinary teams to address three primary aims

  • To determine the mechanisms controlling rates of chemical transfer and improve estimates of chemical exchanges
  • To evaluate the impact of these exchanges on the biogeochemistry of the surface ocean and lower atmosphere and on feedbacks between the ocean and atmosphere
  • To quantify the impacts of these boundary layer processes on the global climate system

UK SOLAS started in 2003, to run for seven years. The programme was funded by the Natural Environment Research Council.

Funded projects

In total, 19 projects have been funded by UK SOLAS, over four funding rounds.

Project Title Short Title Principal Investigator
Impact of atmospheric dust derived material and nutrient inputs on near-surface plankton microbiota in the tropical North Atlantic Dust Eric Achterberg
The role and effects of photoprotective compounds in marine plankton - Steve Archer
Field observations of sea spray, gas fluxes and whitecaps SEASAW Ian Brooks
Factors influencing the biogeochemistry of iodine in the marine environment - Lucy Carpenter
Global model of aerosol processes - effects of aerosol in the marine atmospheric boundary layer GLOMAP Ken Carslaw
Ecological controls on fluxes of dimethyl sulphide (DMS) to the atmosphere - David Green
Dust outflow and deposition to the ocean DODO Ellie Highwood
Investigation of near surface production of iodocarbons - rates and exchanges INSPIRE Gill Malin
Reactive halogens in the marine boundary layer RHaMBLe Gordon McFiggans
The role of bacterioneuston in determining trace gas exchange rates - Colin Murrell
Measuring methanol in sea water and investigating its sources and sinks in the marine environment - Phil Nightingale
The impact of coastal upwellings on air-sea exchange of climatically important gases ICON Carol Robinson
The Deep Ocean Gas Exchange Experiment DOGEE Rob Upstill-Goddard
High wind air-sea exchanges HiWASE Margaret Yelland
Aerosol characterisation and modelling in the marine environment ACMME James Allan
3D simulation of dimethyl sulphide (DMS) in the north east Atlantic - Icarus Allen
Processes affecting the chemistry and bioavailability of dust borne iron - Michael Krom
The chemical structure of the lowermost atmosphere - Alastair Lewis
Factors influencing the oxidative chemistry of the marine boundary layer - Paul Monks

UK SOLAS has also supported ten tied studentships, and two CASE studentships.

Fieldwork

UK SOLAS fieldwork has included eight dedicated research cruises in the North Atlantic Ocean. Continuous measurements were made aboard aboard the Norwegian weather ship, Polarfront, until her decommission in 2009. Time series have been established at the SOLAS Cape Verde Observatory, and at the Plymouth Marine Laboratory L4 station. Experiments have taken place at the Bergen mesocosm facility.

A series of collaborative aircraft campaigns have added complementary atmospheric data. These campaigns were funded by UK SOLAS, African Monsoon Multidisciplinary Analyses (AMMA-UK), Dust and Biomass Experiment (DABEX) and the Facility for Airborne Atmospheric Measurements (FAAM).

Weblink: http://www.nerc.ac.uk/research/programmes/solas/


Data Activity or Cruise Information

Cruise

Cruise Name D338
Departure Date 2009-04-15
Arrival Date 2009-05-27
Principal Scientist(s)Carol Robinson (University of East Anglia School of Environmental Sciences)
Ship RRS Discovery

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification