Metadata Report for BODC Series Reference Number 932104


Metadata Summary

Data Description

Data Category Meteorology -unspecified
Instrument Type
NameCategories
Vaisala HMP temperature and humidity sensor  meteorological packages
Skye Instruments SKS1110 pyranometer  radiometers
Druck RPT 301 barometer  meteorological packages
Gill Windsonic anemometer  anemometers
Instrument Mounting research vessel
Originating Country United Kingdom
Originator Dr Alex Souza
Originating Organization Proudman Oceanographic Laboratory (now National Oceanography Centre, Liverpool)
Processing Status banked
Project(s) Oceans 2025
Oceans 2025 Theme 3
Oceans 2025 Theme 3 WP3.3
POL Dee Experiment
 

Data Identifiers

Originator's Identifier PD04_08_PRODQXF_MET
BODC Series Reference 932104
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2008-02-12 09:11
End Time (yyyy-mm-dd hh:mm) 2008-02-15 17:00
Nominal Cycle Interval 60.0 seconds
 

Spatial Co-ordinates

Southernmost Latitude 53.32183 N ( 53° 19.3' N )
Northernmost Latitude 53.51717 N ( 53° 31.0' N )
Westernmost Longitude 4.03333 W ( 4° 2.0' W )
Easternmost Longitude 3.21317 W ( 3° 12.8' W )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor Depth -10.5 m
Maximum Sensor Depth -9.6 m
Minimum Sensor Height -
Maximum Sensor Height -
Sea Floor Depth -
Sensor Distribution Scattered at fixed depths - The sensors are scattered with respect to depth but each remains effectively at the same depth for the duration of the series
Sensor Depth Datum Approximate - Depth is only approximate
Sea Floor Depth Datum -
 

Parameters

BODC CODE Rank Units Title
AADYAA01 1 Days Date (time from 00:00 01/01/1760 to 00:00 UT on day)
AAFDZZ01 1 Days Time (time between 00:00 UT and timestamp)
ALATGP01 1 Degrees Latitude north (WGS84) by unspecified GPS system
ALONGP01 1 Degrees Longitude east (WGS84) by unspecified GPS system
CAPHZZ01 1 Millibars Pressure (measured variable) exerted by the atmosphere
CDTASS01 1 Degrees Celsius Temperature of the atmosphere by dry bulb thermometer
CRELSS01 1 Percent Relative humidity of the atmosphere by humidity sensor
CSLRR101 1 Watts per square metre Downwelling vector irradiance as energy (solar (300-3000nm) wavelengths) in the atmosphere by pyranometer
EWDASS01 1 Degrees True Wind from direction in the atmosphere by in-situ anemometer
EWSBSS01 1 Metres per second Wind speed in the atmosphere by in-situ anemometer
 

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database


Data Access Policy

Public domain data

These data have no specific confidentiality restrictions for users. However, users must acknowledge data sources as it is not ethical to publish data without proper attribution. Any publication or other output resulting from usage of the data should include an acknowledgment.

The recommended acknowledgment is

"This study uses data from the data source/organisation/programme, provided by the British Oceanographic Data Centre and funded by the funding body."


Narrative Documents

Druck Resonant Pressure Transducer RPT 301

The Druck Resonant Pressure Transducer is a barometer with a multi-layer construction including a resonator and a pressure sensitive diaphragm micro-machined from one piece of silicon. The resonator is bonded to a second silicon wafer containing the drive and pick-up system under vacuum. This isolates the resonator from the pressure media, thereby ensuring that the accuracy is maintained regardless of the pressure media density. Pressure is measured from the frequency output of the sensor over a fixed number of cycles.

The RPT 301 is ideal for weather stations monitoring atmospheric trends, engine test cells or as a highly stable pressure reference transfer standard.

Specifications

Pressure range (psia) 0.5 to 50
Overpressure 1.25 x calibrated full scale
Pressure containment (psia) 75
Excitation voltage (Vdc) 4.5 to 32
Accuracy ± 0.02% of full scale (standard)
Stability (ppm year-1) < 159 (standard)

Further details can be found in the manufacturer's specification sheet or the manual.

Gill Instruments Windsonic Anemometer

The Gill Windsonic is a 2-axis ultrasonic wind sensor that monitors wind speed and direction using four transducers. The time taken for an ultrasonic pulse to travel from the North to the South transducers is measured and compared with the time for a pulse to travel from South to North. Travel times between the East and West transducers are similarly compared. The wind speed and direction are calculated from the differences in the times of flight along each axis. This calculation is independent of environmental factors such as temperature.

Specifications

Ultrasonic output rate 0.25, 0.5, 1, 2 or 4 Hz
Operating Temperature -35 to 70°C
Operating Humidity < 5 to 100% RH
Anemometer start up time < 5 s
Wind speed
Range 0 to 60 m s-1
Accuracy ± 2% at 2 m s-1
Resolution 0.01 m s-1
Response time 0.25 s
Threshold 0.01 m s-1
Wind direction
Range 0 to 359°
Accuracy ± 3° at 12 m s-1
Resolution
Response time 0.25 s

Further details can be found in the manufacturer's specification sheet.

Skye SKS 1110 Pyranometer

The SKS 1110 is a cosine-corrected pyranometer that uses a silicon photocell detector to measure solar energy over the spectral range 400 - 1100 nm. The maximum cosine error to 80° is typically 5%. The instrument is only suitable for measurements in natural light conditions.

Specifications

Temperature range -30 to 75°C
Sensitivity

5 µA/100 W m-2
1 mV/100 W m-2

Working range 0 to 5000 W m-2
Linearity error < 0.2%
Absolute calibration error

< 3% (typical)
5% (maximum)

Cosine error 3%
Azimuth error < 1%
Temperature coefficient ± 0.2% °C-1
Long term stability ± 2%
Response time 10 ns
Humidity range 0 to 100% RH

Further details can be found in the manufacturer's specification sheet.

Vaisala Temperature and Relative Humidity HMP Sensors

A family of sensors and instruments (sensors plus integral displays or loggers) for the measurement of air temperature and relative humidity. All are based on a probe containing a patent (HUMICAP) capacitive thin polymer film capacitanece humidity sensor and a Pt100 platinum resistance thermometer. The probes are available with a wide range of packaging, cabling and interface options all of which have designations of the form HMPnn or HMPnnn such as HMP45 and HMP230. Vaisala sensors are incorporated into weather stations and marketed by Campbell Scientific.

All versions operate at up to 100% humidity. Operating temperature ranges vary between models, allowing users to select the version best suited to their requirements.

Further details can be found in the manufacturer's specification sheets for the HMP 45 series, HMP 70 series and HMP 230 series.

PD04_08 Meteorology instrument details

Instrument type Make and model Serial number Height on mast Manufacturer's details available?
Solar radiation Skye Instruments High Output Pyranometer Sensor KL2650 1097 15778 10.1 m Yes
Barometer Druck RPT 301 - - Yes
Air temperature sensor Campbell Scientific HMP45C - 9.6 m Yes
Relative humidity sensor Campbell Scientific HMP45C - 9.6 m Yes
Wind anemometer WindSonic by Gill - 10.5 m Yes

Prince Madog Cruise PD04_08 Meteorology Series

Meteorology Processing Notes

Prince Madog Cruise PD04_08 Sea Surface Hydrography, Meteorology and Navigation Series

Data acquisition

Surface hydrographic (ship's intake 3 m below surface), meteorology measurements and supplementary navigation data, including ship heading and bathymetric depth were time stamped and logged to a central logging system. The data underwent conversion from raw counts into engineering units and were submitted as daily text files to BODC, at 60 second resolution, for further processing.

BODC underway data processing procedures

All underway sea surface hydrography, meteorology and ship's navigation data were merged into a common QXF file. Navigation was checked for improbable speeds and gaps, visual screening was done for each channel and any additional data calibrations were applied as appropriate.

The QXF file then underwent a further step. This involved using Matlab transfer 378 to split the underway QXF file into three separate QXF files. One contained data for sea surface hydrography, one for meteorological data and the final QXF file held the navigation data.

Each data channel was visually inspected on a graphics workstation and any spikes or periods of dubious data were flagged as suspect. The capabilities of the workstation screening software allows all possible comparative screening checks between channels (e.g. to ensure corrected wind data have not been influenced by changes in ship's heading). The system also has the facility of simultaneously displaying the data and the ship's position on a map to enable data screening to take oceanographic climatology into account.


Project Information

Oceans 2025 - The NERC Marine Centres' Strategic Research Programme 2007-2012

Who funds the programme?

The Natural Environment Research Council (NERC) funds the Oceans 2025 programme, which was originally planned in the context of NERC's 2002-2007 strategy and later realigned to NERC's subsequent strategy (Next Generation Science for Planet Earth; NERC 2007).

Who is involved in the programme?

The Oceans 2025 programme was designed by and is to be implemented through seven leading UK marine centres. The marine centres work together in coordination and are also supported by cooperation and input from government bodies, universities and other partners. The seven marine centres are:

Oceans2025 provides funding to three national marine facilities, which provide services to the wider UK marine community, in addition to the Oceans 2025 community. These facilities are:

The NERC-run Strategic Ocean Funding Initiative (SOFI) provides additional support to the programme by funding additional research projects and studentships that closely complement the Oceans 2025 programme, primarily through universities.

What is the programme about?

Oceans 2025 sets out to address some key challenges that face the UK as a result of a changing marine environment. The research funded through the programme sets out to increase understanding of the size, nature and impacts of these changes, with the aim to:

In order to address these aims there are nine science themes supported by the Oceans 2025 programme:

In the original programme proposal there was a theme on health and human impacts (Theme 7). The elements of this Theme have subsequently been included in Themes 3 and 9.

When is the programme active?

The programme started in April 2007 with funding for 5 years.

Brief summary of the programme fieldwork/data

Programme fieldwork and data collection are to be achieved through:

The data is to be fed into models for validation and future projections. Greater detail can be found in the Theme documents.


Oceans 2025 Theme 3: Shelf and Coastal Processes

Over the next 20 years, UK local marine environments are predicted to experience ever-increasing rates of change - including increased temperature and seawater acidity, changing freshwater run-off, changes in sea level, and a likely increase in flooding events - causing great concern for those charged with their management and protection. The future quality, health and sustainability of UK marine waters require improved appreciation of the complex interactions that occur not only within the coastal and shelf environment, but also between the environment and human actions. This knowledge must primarily be provided by whole-system operational numerical models, able to provide reliable predictions of short and long-term system responses to change.

However, such tools are only viable if scientists understand the underlying processes they are attempting to model and can interpret the resulting data. Many fundamental processes in shelf edge, shelf, coastal and estuarine systems, particularly across key interfaces in the environment, are not fully understood.

Theme 3 addresses the following broad questions:

Within Oceans 2025, Theme 3 will develop the necessary understanding of interacting processes to enable the consequences of environmental and anthropogenic change on UK shelf seas, coasts and estuaries to be predicted. Theme 3 will also provide knowledge that can improve the forecasting capability of models being used for the operational management of human activities in the coastal marine environment. Theme 3 is therefore directly relevant to all three of NERC's current strategic priorities; Earth's Life-Support Systems, Climate Change, and Sustainable Economies

The official Oceans 2025 documentation for this Theme is available from the following link: Oceans 2025 Theme 3

Weblink: http://www.oceans2025.org/


Oceans 2025 Theme 3, Work Package 3.3: Bottom Boundary Layer, Optics and Suspended Sediments Processes

This Work Package (WP) is a combination of Work Package 3.3 and 3.4 as proposed in the original Oceans 2025 proposal. It continues and expands the research undertaken in the Proudman Oceanographic Laboratory Dee Experiment project.

Sediment transport process models underpin scientific ability to predict the entrainment of sediments into the water column and the transport of sediments for forecasting seabed and coastal morphodynamic evolution. The difficulty in achieving accurate process models lies with the complex inter-dependence of sediment processes in the bottom boundary layer. Near the bed, the fundamentals of sediment transport are governed by interactions between the sediment transport triad; the bed, the hydrodynamics and the mobile sediments. These three components interrelate, being mutually interactive and interdependent.

POL aim to use a combination of high-frequency underwater acoustics and laser optical measurements to make co-located simultaneous measurements of the triad. These measurements provide an observational framework capable of assessing and advancing the latest sediment transport models available. These measurements will be made in a range of environments, with the objective of achieving significant advances in understanding and modelling capability in coastal sediment transport. POL will also address the dynamics of suspended sediment behaviour in the context of sediment supply to the coastal zone from estuaries, and of coastal water column optical properties. Ths will allow improvement of the modelling accuracy of coastal suspended sediment transport and enable development of a new description of sediment suspension and water opacity that will improve simulation of coastal primary productivity.

The specific objectives are:

Fieldwork

The study site chosen by POL for this research was the Dee Estuary, Liverpool Bay. POL performed fieldwork in the Hilbre Channel on the eastern side of the Estuary and the Welsh Channel on the western exit of the Estuary, with emphasis placed on two repeat stations, HC and WC. The fieldwork under Work Package 3.3 commenced in April 2007 and has been summarised below:

Cruise Dates Hilbre Channel Welsh Channel
PD06_07 2007-04-16 to 2007-04-19 18 hour CTD station
Mooring recovery
15 hour CTD station
Mooring recovery
PD04_08 2008-02-12 to 2008-02-15 25 hour CTD station
2 x mooring deployment
19 hour CTD station
1 x mooring deployment
PD02_09A 2009-02-02 to 2009-02-04 25 hour CTD station
1 x mooring deployment
22 hour CTD station
1 mooring deployment
PD06_09 2009-03-03 to 2009-03-05 25 hour CTD station
Mooring recovery
18 hour CTD station
Mooring recovery

More detailed information on this Work Package is available at pages 8 - 9 and 9-10 of the official Oceans 2025 Theme 3 document: Oceans 2025 Theme 3

Weblink: http://www.oceans2025.org/


Proudman Oceanographic Laboratory Dee Experiment

Introduction

Sediment transport process models are a vital tool in allowing scientists to predict sediment transport and forecast seabed and coastal morphodynamic evolution. It is however, difficult to obtain accurate models due to the complex inter-dependence of sediment processes in the bottom boundary layer. This inter-dependence is governed by interactions between the sediment transport triad; the bed, the hydrodynamics and the mobile sediments.

Scientific Objectives

Fieldwork

The study site chosen by POL for this research was the Dee Estuary, Liverpool Bay. POL performed fieldwork in the Hilbre Channel on the eastern side of the Estuary and the Welsh Channel on the western exit of the Estuary, with emphasis placed on two repeat stations, HC and WC. The fieldwork started in February 2005 and has been summarised below:

Cruise Dates Hilbre Channel Welsh Channel
PD03_05 2005-02-03 to 2005-02-04 25 hour CTD station
3 x mooring deployments
13 hour CTD station
1 mooring deployment
PD07_05 2005-03-03 to 2005-03-04 23 hour CTD station
Mooring recovery
19 hour CTD station
Mooring recovery
PD05_06 2006-02-08 to 2006-02-10 24 hour CTD station
2 x mooring deployment
22 hour CTD station
1 mooring deployment
PD09_06 2006-03-06 to 2006-03-09 23 hour CTD station
Mooring recovery
25 hour CTD station
Mooring recovery
PD04_07 2007-03-13 to 2007-03-16 25 hour CTD station
2 x mooring deployment
25 hour CTD station
1 mooring deployment

Funding

The Dee Experiment project was core funded by POL under Programme 2 (Shallow coastal seas) Theme 5 (Coastal and sediment processes) of POL's Science Programme 2001 - 2006. From March 2007 onwards, this core funding was replaced by funding from NERC's Oceans 2025 programme and the Dee Experiment research continued as part of Oceans 2025 Work Package 3.3.


Data Activity or Cruise Information

Cruise

Cruise Name PD04/08
Departure Date 2008-02-12
Arrival Date 2008-02-15
Principal Scientist(s)Alejandro J Souza (Proudman Oceanographic Laboratory)
Ship RV Prince Madog

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference