Metadata Report for BODC Series Reference Number 945194


Metadata Summary

Data Description

Data Category CTD or STD cast
Instrument Type
NameCategories
Sea-Bird SBE 43 Dissolved Oxygen Sensor  dissolved gas sensors
Chelsea Technologies Group Aquatracka fluorometer  fluorometers
Sea-Bird SBE 911plus CTD  CTD; water temperature sensor; salinity sensor
Tritech PA-200 Altimeter  altimeters
Instrument Mounting lowered unmanned submersible
Originating Country United Kingdom
Originator Dr Graham Quartly
Originating Organization National Oceanography Centre, Southampton
Processing Status banked
Project(s) Oceans 2025
Oceans 2025 Theme 10 SO6
 

Data Identifiers

Originator's Identifier CTD_JR193_002_2DB
BODC Series Reference 945194
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2007-11-30 06:07
End Time (yyyy-mm-dd hh:mm) 2007-11-30 06:48
Nominal Cycle Interval 2.0 decibars
 

Spatial Co-ordinates

Latitude 53.50660 S ( 53° 30.4' S )
Longitude 58.18330 W ( 58° 11.0' W )
Positional Uncertainty Unspecified
Minimum Sensor Depth 0.99 m
Maximum Sensor Depth 2309.28 m
Minimum Sensor Height 10.11 m
Maximum Sensor Height 2318.41 m
Sea Floor Depth 2319.4 m
Sensor Distribution Variable common depth - All sensors are grouped effectively at the same depth, but this depth varies significantly during the series
Sensor Depth Datum Approximate - Depth is only approximate
Sea Floor Depth Datum Approximate - Depth is only approximate
 

Parameters

BODC CODE Rank Units Title
ACYCAA01 1 Dimensionless Sequence number
AHSFZZ01 1 Metres Height above bed in the water body
CNCLCCI1 1 Siemens per metre Electrical conductivity of the water body by in-situ conductivity cell and calibration against independent measurements
CNDCST02 1 Siemens per metre Electrical conductivity of the water body by CTD (sensor 2)
CPHLPM01 1 Milligrams per cubic metre Concentration of chlorophyll-a {chl-a} per unit volume of the water body [particulate phase] by in-situ chlorophyll fluorometer and manufacturer's calibration applied
DEPHPR01 1 Metres Depth below surface of the water body by profiling pressure sensor and converted to seawater depth using UNESCO algorithm
DOXYSU01 1 Micromoles per litre Concentration of oxygen {O2} per unit volume of the water body [dissolved phase] by Sea-Bird SBE 43 sensor and no calibration against sample data
PRESPR01 1 Decibars Pressure (spatial co-ordinate) exerted by the water body by profiling pressure sensor and corrected to read zero at sea level
PSALCC01 1 Dimensionless Practical salinity of the water body by CTD and computation using UNESCO 1983 algorithm and calibration against independent measurements
PSALCU02 1 Dimensionless Practical salinity of the water body by CTD and computation using UNESCO 1983 algorithm and NO calibration against independent measurements
TEMPCU01 1 Degrees Celsius Temperature of the water body by CTD and NO verification against independent measurements
TEMPCU02 1 Degrees Celsius Temperature of the water body by CTD and NO verification against independent measurements
 

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

Chlorophyll data in JR193 CTD datasets

In the transferred qxf files, it is noted that the chlorophyll channel (parameter code: CPHLPM01 units: mg/m3) contains negative values which have been automatically flagged 'M' during BODC processing. This is because the lower limit for that parameter code is 0 so any value below that will be flagged as suspect. In the cruise report, the manufacturer's calibration for the Chelsea Aqua 3 fluorometer was last applied on 22/06/2006. In the absence of any further information in the cruise report, it is suggested that in the 28 months from the calibration date to the start of the cruise (approximately) the instrument may have drifted to give a small negative reading instead of 0, thus producing apparently negative chlorophyll values.


Data Access Policy

Public domain data

These data have no specific confidentiality restrictions for users. However, users must acknowledge data sources as it is not ethical to publish data without proper attribution. Any publication or other output resulting from usage of the data should include an acknowledgment.

The recommended acknowledgment is

"This study uses data from the data source/organisation/programme, provided by the British Oceanographic Data Centre and funded by the funding body."


Narrative Documents

Sea-Bird Dissolved Oxygen Sensor SBE 43 and SBE 43F

The SBE 43 is a dissolved oxygen sensor designed for marine applications. It incorporates a high-performance Clark polarographic membrane with a pump that continuously plumbs water through it, preventing algal growth and the development of anoxic conditions when the sensor is taking measurements.

Two configurations are available: SBE 43 produces a voltage output and can be incorporated with any Sea-Bird CTD that accepts input from a 0-5 volt auxiliary sensor, while the SBE 43F produces a frequency output and can be integrated with an SBE 52-MP (Moored Profiler CTD) or used for OEM applications. The specifications below are common to both.

Specifications

Housing Plastic or titanium
Membrane

0.5 mil- fast response, typical for profile applications

1 mil- slower response, typical for moored applications

Depth rating

600 m (plastic) or 7000 m (titanium)

10500 m titanium housing available on request

Measurement range 120% of surface saturation
Initial accuracy 2% of saturation
Typical stability 0.5% per 1000 h

Further details can be found in the manufacturer's specification sheet.

Instrument Description

CTD Unit and Auxiliary Sensors

One CTD package was used during RRS James Clark Ross cruise 193 (JR193) comprising a Sea-Bird 911plus CTD system, auxiliary sensors and Sea-Bird SBE 24 carousel with 12 bottles fitted to a stainless steel frame.

Instrument/Sensor Serial Number Manufacturer's
Calibration Date
Comments
Sea-Bird SBE 9plus underwater unit (aluminium) 09P-30856-0707   Pressure sensor SN: 89973. Unit used until 14/12/2007, then replaced.
Sea-Bird SBE 9plus underwater unit (aluminium) 09P-20391-0541   Pressure sensor SN: 75429. Unit used from 14/12/2007.
Sea-Bird SBE 11plus deck unit 11P-20391-0502    
Sea-Bird SBE 3P temperature sensor (aluminium) 03P-2307 20/07/2007 Secondary
Sea-Bird SBE 4C conductivity sensor (titanium) 04C-2222(T) 17/07/2007 Secondary
Sea-Bird SBE 3P temperature sensor (aluminium) 03P-2366 18/07/2007 Primary
Sea-Bird SBE 4C conductivity sensor (titanium) 04C-2289(T) 17/07/2007 Primary
Sea-Bird SBE 32 24-way carousel      
Sea-Bird SBE 43 dissolved oxygen sensor (titanium) 43-0245 12/06/2007  
Chelsea MKIII Aquatracka fluorometer (titanium) 088216 22/06/2006 configured for chl-a
Biospherical QCD-905L underwater PAR sensor 7274 26/07/2007 Data not supplied in originator's files
Tritech PA-200 altimeter 2130.26993    
Sea-Bird SBE 5T submersible pump (titanium) 05T-4488   primary
Sea-Bird SBE 5T submersible pump (titanium) 05T-4458   secondary

Sea-Bird Electronics SBE 911 and SBE 917 series CTD profilers

The SBE 911 and SBE 917 series of conductivity-temperature-depth (CTD) units are used to collect hydrographic profiles, including temperature, conductivity and pressure as standard. Each profiler consists of an underwater unit and deck unit or SEARAM. Auxiliary sensors, such as fluorometers, dissolved oxygen sensors and transmissometers, and carousel water samplers are commonly added to the underwater unit.

Underwater unit

The CTD underwater unit (SBE 9 or SBE 9 plus) comprises a protective cage (usually with a carousel water sampler), including a main pressure housing containing power supplies, acquisition electronics, telemetry circuitry, and a suite of modular sensors. The original SBE 9 incorporated Sea-Bird's standard modular SBE 3 temperature sensor and SBE 4 conductivity sensor, and a Paroscientific Digiquartz pressure sensor. The conductivity cell was connected to a pump-fed plastic tubing circuit that could include auxiliary sensors. Each SBE 9 unit was custom built to individual specification. The SBE 9 was replaced in 1997 by an off-the-shelf version, termed the SBE 9 plus, that incorporated the SBE 3 plus (or SBE 3P) temperature sensor, SBE 4C conductivity sensor and a Paroscientific Digiquartz pressure sensor. Sensors could be connected to a pump-fed plastic tubing circuit or stand-alone.

Temperature, conductivity and pressure sensors

The conductivity, temperature, and pressure sensors supplied with Sea-Bird CTD systems have outputs in the form of variable frequencies, which are measured using high-speed parallel counters. The resulting count totals are converted to numeric representations of the original frequencies, which bear a direct relationship to temperature, conductivity or pressure. Sampling frequencies for these sensors are typically set at 24 Hz.

The temperature sensing element is a glass-coated thermistor bead, pressure-protected inside a stainless steel tube, while the conductivity sensing element is a cylindrical, flow-through, borosilicate glass cell with three internal platinum electrodes. Thermistor resistance or conductivity cell resistance, respectively, is the controlling element in an optimized Wien Bridge oscillator circuit, which produces a frequency output that can be converted to a temperature or conductivity reading. These sensors are available with depth ratings of 6800 m (aluminium housing) or 10500 m (titanium housing). The Paroscientific Digiquartz pressure sensor comprises a quartz crystal resonator that responds to pressure-induced stress, and temperature is measured for thermal compensation of the calculated pressure.

Additional sensors

Optional sensors for dissolved oxygen, pH, light transmission, fluorescence and others do not require the very high levels of resolution needed in the primary CTD channels, nor do these sensors generally offer variable frequency outputs. Accordingly, signals from the auxiliary sensors are acquired using a conventional voltage-input multiplexed A/D converter (optional). Some Sea-Bird CTDs use a strain gauge pressure sensor (Senso-Metrics) in which case their pressure output data is in the same form as that from the auxiliary sensors as described above.

Deck unit or SEARAM

Each underwater unit is connected to a power supply and data logging system: the SBE 11 (or SBE 11 plus) deck unit allows real-time interfacing between the deck and the underwater unit via a conductive wire, while the submersible SBE 17 (or SBE 17 plus) SEARAM plugs directly into the underwater unit and data are downloaded on recovery of the CTD. The combination of SBE 9 and SBE 17 or SBE 11 are termed SBE 917 or SBE 911, respectively, while the combinations of SBE 9 plus and SBE 17 plus or SBE 11 plus are termed SBE 917 plus or SBE 911 plus.

Specifications

Specifications for the SBE 9 plus underwater unit are listed below:

Parameter Range Initial accuracy Resolution at 24 Hz Response time
Temperature -5 to 35°C 0.001°C 0.0002°C 0.065 sec
Conductivity 0 to 7 S m-1 0.0003 S m-1 0.00004 S m-1 0.065 sec (pumped)
Pressure 0 to full scale (1400, 2000, 4200, 6800 or 10500 m) 0.015% of full scale 0.001% of full scale 0.015 sec

Further details can be found in the manufacturer's specification sheet.

Aquatracka fluorometer

The Chelsea Instruments Aquatracka is a logarithmic response fluorometer. It uses a pulsed (5.5 Hz) xenon light source discharging between 320 and 800 nm through a blue filter with a peak transmission of 420 nm and a bandwidth at half maximum of 100 nm. A red filter with sharp cut off, 10% transmission at 664 nm and 678 nm, is used to pass chlorophyll-a fluorescence to the sample photodiode.

The instrument may be deployed either in a through-flow tank, on a CTD frame or moored with a data logging package.

Further details can be found in the manufacturer's specification sheet.

Tritech Digital Precision Altimeter PA200

This altimeter is a sonar ranging device that gives the height above the sea bed when mounted vertically. When mounted in any other attitude the sensor provides a subsea distance. It can be configured to operate on its own or under control from an external unit and can be supplied with simultaneous analogue and digital outputs, allowing them to interface to PC devices, data loggers, telemetry systems and multiplexers.

These instruments can be supplied with different housings, stainless steel, plastic and aluminum, which will limit the depth rating. There are three models available: the PA200-20S, PA200-10L and the PA500-6S, whose transducer options differ slightly.

Specifications

Transducer options PA200-20S P200-10L PA500-6S
Frequency (kHz) 200 200 500
Beamwidth (°) 20 Conical 10 included conical beam 6 Conical
Operating range

1 to 100 m

0.7 to 50 m

-

0.3 to 50 m

0.1 to 10 m

Common specifications are presented below

Digital resolution 1 mm
Analogue resolution 0.25% of range
Depth rating 700 , 2000, 4000 and 6800 m
Operating temperature -10 to 40°C

Further details can be found in the manufacturer's specification sheet.

BODC Processing

The data arrived at BODC in 32 MSTAR NetCDF format files. These represented all of the CTD casts taken during the cruise. The files were reformatted to the internal QXF format using transfer function 445. The following table shows how the variables were mapped to appropriate BODC parameter codes:

Originator's Variable Units Description BODC Parameter Code Units Comment
scan number - - - Not transferred - not environmental variable
time sec - - - Not transferred
press decibar Pressure sensor PRESPR01 decibar -
pressure_temp deg C (ITS-90) pressure sensor electronics temperature ZZZZZZ01 - Not transferred- not environmental variable.
temp deg C (ITS-90) primary temperature sensor (frame-mounted) TEMPCU01 deg C (ITS-90) -
cond S/m primary conductivity sensor CNCLCCI1 S/m -
temp2 deg C (ITS-90) secondary temperature sensor TEMPCU02 deg C (ITS-90) -
cond2 S/m secondary conductivity sensor CNDCST02 S/m -
altimeter metres depth from sea floor AHSFZZ01 metres -
oxygen ml/L dissolved oxygen sensor DOXYSU01 µmol/l Originator's variable multiplied by 44.66 in mapper file during transfer to convert units.
fluor µg/l chlorophyll-a concentration CPHLPM01 mg/m3 1 µg/l = 1 mg/m3
psal pss-78 practical salinity derived from press, cond and temp PSALCC01 pss-78 -
psal2 pss-78 practical salinity derived from press, cond2 and temp2 PSALCU02 pss-78 -
depth metres depth of CTD DEPHTC01 metres -
potemp deg C (ITS-90) potential temperature derived from press, psal and temp POTMCV01 deg C (ITS-90) Not transferred. Value has been re-derived separately for consistency
potemp2 deg c (ITS-90) potential temperature derived from press, psal2 and temp2 POTMCV02 deg C (ITS-90) Not transferred. Value has been re-derived separately for consistency

Originator's Data Processing

Sampling Strategy

A Conductivity-Temperature-Depth (CTD) unit was used on JR193 to produce vertical profiles of the temperature and salinity of the water column. Thirty-two stations were occupied across the Drake Passage SR1b transect, nine in Marguerite Trough and one in front of Rothera Base giving 42 casts in total.

A full-sized SBE 24 carousel water sampler, holding 12 bottles, connected to an SBE 9 plus CTD and an SBE 11 plus deck unit were used to collect vertical profiles of the water column. The deck unit provides power, real-time data acquisition and control. The underwater SBE 9 plus unit featured dual temperature and conductivity (SBE 4) sensors, and a Paroscientific pressure sensor. A T-C (temperature-conductivity) duct and a pump-controlled flow system ensure that the flow through the T-C duct is constant to minimize salinity spiking. Files containing the data are saved in binary and ASCII format. In addition, an altimeter, a fluorometer, an oxygen sensor and a PAR/Irradiance sensor were attached to the carousel. The altimeter gave real-time accurate measurements of height off the sea-bed once the instrument package was within approximately 100 m of the bottom. The Simrad EA600 system would sometimes lose the bottom or give erroneous readings on station, so care was needed to interpret these digitised records. The oxygen sensor SBE 43 had six seconds delay relative to the pressure sensor to account for the water transit time trough instrument. For all stations two UKORS LADCPs (one upward-looking, the other downward-looking) were attached to the main CTD frame and a fin was also added to the frame to reduce rotation of the package underwater.

Data Processing

The CTD data were logged via the deck unit to a 1.4 GHz P4 PC, running Seasave Win32 version 5.28e (Sea-Bird Electronics Inc.). This new software allows numerical data to be listed to the screen in real time, together with several graphs of various parameters.

Four files were created by the Seasave Win32 version 5.28e module for each station: a binary data file, an ASCII configuration file containing calibration information, an ASCII header file containing the sensor information and a file containing the data cycles at which a bottle was closed on the rosette where nn refers to the CTD cast number.

The CTD data were converted to ASCII and calibrated by running the Sea-Bird Electronics Inc. Data Processing software version 5.37b Data Conversion module. This program was used only to convert the data from binary, although it can be used to derive variables. This output an ASCII file 193ctdnn.cnv to match the names from previous cruises. The Sea-Bird Electronics Inc. Data Processing software version 5.37b was then used to apply a cell thermal mass correction. This correction takes the output from the data conversion program and re-derives the pressure and conductivity to take into account the temperature of the pressure sensor and the action of pressure on the conductivity cell. The final ASCII output file is of the form 193ctdnn_ctm.cnv. For further calibration details, see JR193 cruise report.

Post-cruise calibration

Sally Close and Brian King carried out calibration of the CTD data for JR193 at NOCS after completion of the cruise. The raw CTD data and sample data were used as input files and the data were processed using the NOCS in-house mstar processing routines. Corrections were calculated and applied to conductivity values, which were then reprocessed to provide corrected salinity values. Conductivity data for CTD sensors 1 and 2 were examined, and a slight pressure effect was noted for sensor 2. It was hence decided to correct the sensor 1 data for the calibration. Conductivity bottle and CTD sensor values were compared and residuals were examined with respect to station number. Suspected bad bottles were marked in the final data file using a quality flag, and a final correction was calculated using only data deeper than 900dbar, to remove surface variability.A single uniform correction of +3.4*10-5 ± 3.4*10-5 was applied to the conductivity values of sensor 1 in the original 24Hz mstar files, corresponding to an approximate correction of +0.001 ± 0.001 in salinity. After correction, the mean value of the residuals was -1.1745*10-6, with a median of -1.4545*10-7 and an interquartile range of 3.3093*10-5. 72% of the values lie within 1 standard deviation of the mean, with 95% lying within 2 standard deviations.


Project Information

Oceans 2025 - The NERC Marine Centres' Strategic Research Programme 2007-2012

Who funds the programme?

The Natural Environment Research Council (NERC) funds the Oceans 2025 programme, which was originally planned in the context of NERC's 2002-2007 strategy and later realigned to NERC's subsequent strategy (Next Generation Science for Planet Earth; NERC 2007).

Who is involved in the programme?

The Oceans 2025 programme was designed by and is to be implemented through seven leading UK marine centres. The marine centres work together in coordination and are also supported by cooperation and input from government bodies, universities and other partners. The seven marine centres are:

Oceans2025 provides funding to three national marine facilities, which provide services to the wider UK marine community, in addition to the Oceans 2025 community. These facilities are:

The NERC-run Strategic Ocean Funding Initiative (SOFI) provides additional support to the programme by funding additional research projects and studentships that closely complement the Oceans 2025 programme, primarily through universities.

What is the programme about?

Oceans 2025 sets out to address some key challenges that face the UK as a result of a changing marine environment. The research funded through the programme sets out to increase understanding of the size, nature and impacts of these changes, with the aim to:

In order to address these aims there are nine science themes supported by the Oceans 2025 programme:

In the original programme proposal there was a theme on health and human impacts (Theme 7). The elements of this Theme have subsequently been included in Themes 3 and 9.

When is the programme active?

The programme started in April 2007 with funding for 5 years.

Brief summary of the programme fieldwork/data

Programme fieldwork and data collection are to be achieved through:

The data is to be fed into models for validation and future projections. Greater detail can be found in the Theme documents.


Oceans 2025 Theme 10, Sustained Observation Activity 6: Antarctic Circumpolar Current: Transport and Properties

Sustained Observation Activity (SO) 6 continues measurements started in 1993 of the transport of the Antarctic Circumpolar Current (ACC) in the Drake Passage, a strategic choke point for the global ocean circulation which impacts on the North Atlantic and the Meridional Overturning Circulation (MOC).

This SO contains two elements. SO 6.1. relates to the hydrographic sections and is supported by the National Oceanography Centre, Southampton (NOCS). SO 6.2. concerns bottom pressure recorders and is supported by the Proudman Oceanographic Laboratory (POL).

Aims and purpose of SO 6.1.

Aims and purpose of SO 6.2.

More detailed information on this Work Package is available at pages 18 - 21 of the official Oceans 2025 Theme 10 document: Oceans 2025 Theme 10

Weblink: http://www.oceans2025.org/


Data Activity or Cruise Information

Cruise

Cruise Name JR20071129 (JR171, JR193, JR196, JR212)
Departure Date 2007-11-29
Arrival Date 2007-12-09
Principal Scientist(s)Graham D Quartly (National Oceanography Centre, Southampton), Hugh Venables (British Antarctic Survey), Miguel Angel Morales Maqueda (Proudman Oceanographic Laboratory)
Ship RRS James Clark Ross

Complete Cruise Metadata Report is available here


Fixed Station Information

Fixed Station Information

Station NameDrake Passage - WOCE SR1b
CategoryOffshore route/traverse

World Ocean Circulation Experiment (WOCE) Southern Repeat Section 1B - Falkland Islands to Elephant Island

WOCE Southern Repeat Section 1B is a section across Drake Passage in the South Atlantic Ocean. The nominal end points of the section (to date) are at 52° 55.74' S, 58° 00.00' W (at the south of the Falkland Islands) and 61° 03.05' S, 54° 33.10' W (off Elephant Island at the north end of the Antarctic Peninsula).

The section was first occupied by the R/V Polarstern in 1992 (Gersonde, 1993). The first UK occupation of SR1b followed on RRS Discovery later the same year. The National Oceanography Centre, Southampton (formerly known as Southampton Oceanography Centre), in collaboration with the British Antarctic Survey, have occupied the section most years since 1993 on the RRS James Clark Ross. Additionally, there were three Spanish occupations on R/V Hespérides in February 1995, 1996 and 1998 (Garcia et al., 2002). A Drake Passage summary report for RRS James Clark Ross cruises between 1993 - 2000 has been produced.

A table of cruises which occupied SR1b is presented below with links to the relevant cruise reports (were available).

Cruise Country Start Date End Date
R/V Polarstern ANT 10-5 Germany 08-08-1992 26-09-1992
RRS Discovery D198 United Kingdom 11-11-1992 17-12-1992
RRS James Clark Ross JR0a United Kingdom 20-11-1993 18-12-1993
RRS James Clark Ross JR0b United Kingdom 13-11-1994 30-11-1994
R/V Hespérides 29HE19951203 Spain 03-12-1995 06-01-1996
R/V Hespérides 29HE19960117 Spain 17-01-1996 05-02-1996
RRS James Clark Ross JR16 United Kingdom 13-11-1996 07-12-1996
RRS James Clark Ross JR27 United Kingdom 17-12-1997 08-01-1998
R/V Hespérides 29HE19980730 Spain 27-07-1998 27-08-1998
RRS James Clark Ross JR47 United Kingdom 13-01-2000 17-02-2000
RRS James Clark Ross JR55 United Kingdom 21-11-2000 14-12-2000
RRS James Clark Ross JR67 United Kingdom 19-11-2001 17-12-2001
RRS James Clark Ross JR81 United Kingdom 18-12-2002 02-01-2003
RRS James Clark Ross JR94 United Kingdom 28-11-2003 16-12-2003
RRS James Clark Ross JR115 United Kingdom 01-12-2004 19-12-2004
RRS James Clark Ross JR139 United Kingdom 05-12-2005 12-12-2005
RRS James Clark Ross JR163 United Kingdom 06-12-2006 15-12-2006
RRS James Clark Ross JR193 United Kingdom 29-11-2007 08-12-2007
RRS James Clark Ross JR194 United Kingdom 12-12-2008 20-12-2008
RRS James Cook JC031 United Kingdom 03-02-2009 03-03-2009
RRS James Clark Ross JR195 United Kingdom 19-11-2009 26-11-2009
RRS James Clark Ross JR242 United Kingdom 06-12-2010 18-12-2000
RRS James Clark Ross JR276 United Kingdom 09-04-2011 26-04-2011
RRS James Clark Ross JR265 and JR254D United Kingdom 27-11-2011 24-12-2011

References

García, M. A., I. Bladé, A. Cruzado, Z. Velásquez, H. García, J. Puigdefàbregas and J. Sospedra, 2002: Observed variability of water properties and transports on the World Ocean Circulation Experiment SR1b section across the Antarctic Circumpolar Current. J. Geophys. Res. 107 (C10) 3162, 10.1029/2000JC000277.

Gersonde, R., 1993: The Expedition Antarktis X/5 of RV Polarstern in 1992. Berichte zur Polarforschung, 131, 167 pp.

Other Series linked to this Fixed Station for this cruise - 945182 945201 945213 945225 945237 945249 945250 945262 945274 945286 945298 945305 945317 945329 945330 945342 945354 945366 945378 945391 945409 945410 945422 945434 945446 945458 945471 945483 945495 945502 945514

Other Cruises linked to this Fixed Station (with the number of series) - JC031 (105) JR19931120 (JR00a) (30) JR19941113 (JR0B) (29) JR19961128 (JR16) (29) JR19971217 (JR27) (54) JR20000113 (JR47) (29) JR20001121 (JR55) (31) JR20021224 (JR81) (32) JR20031211 (JR94) (30) JR20041201 (JR111, JR115) (35) JR20071129 (JR171, JR193, JR196, JR212) (31) JR20081212 (JR194, JR197) (30) JR20091118 (JR195, JR198) (33) JR20101205 (JR242) (9) JR20110409 (JR276) (15)

Fixed Station Information

Station NameDrake Passage
CategoryOffshore area
Latitude59° 0.00' S
Longitude62° 0.00' W
Water depth below MSL

Drake Passage

The World Ocean Circulation Experiment (WOCE, 1990-1998) was a major international experiment which made measurements and undertook modelling studies of the deep oceans in order to provide a much improved understanding of the role of ocean circulation in changing and ameliorating the Earth's climate.

The Drake Passage is the narrowest constriction of the Antarctic Circumpolar Current (ACC) - the largest current in the world and connects all three major oceanic basins both horizontally and vertically, thus being a key control in the global overturning circulation.Within the Drake Passage, two repeat hydrographic sections (SR1 and SR1b) were established by WOCE. These were designed to extend measurements collected earlier by the International Southern Ocean Studies (ISOS) programme and have continued beyond the WOCE time-frame.

The original section was SR1 (which also covers part of the A21 one time survey track). Subsequently, the section was shifted to the east (and designated SR1b) in order for it to lie on a satellite ground track as illustrated in the image below.

BODC image

In addition to the hydrographic measurements, UK research in Drake Passage also includes a network of coastal and deep tide gauges, analysis of satellite altimeter data, and state-of-the-art global numerical modeling.

Other Series linked to this Fixed Station for this cruise - 945182 945201 945213 945225 945237 945249 945250 945262 945274 945286 945298 945305 945317 945329 945330 945342 945354 945366 945378 945391 945409 945410 945422 945434 945446 945458 945471 945483 945495 945502 945514

Other Cruises linked to this Fixed Station (with the number of series) - JC031 (247) JC054 (18) JR19931120 (JR00a) (30) JR19941113 (JR0B) (29) JR19961128 (JR16) (29) JR20000113 (JR47) (29) JR20001121 (JR55) (32) JR20021224 (JR81) (32) JR20031211 (JR94) (30) JR20041201 (JR111, JR115) (35) JR20050124 (JR112, JR113) (13) JR20060216 (JR136, JR137) (6) JR20071129 (JR171, JR193, JR196, JR212) (31) JR20091118 (JR195, JR198) (33) JR20101205 (JR242) (9) JR20110409 (JR276) (15) RATS/CTD100 (1) RATS/CTD103 (1) RATS/CTD106 (1) RATS/CTD108 (1) RATS/CTD111 (1) RATS/CTD113 (1) RATS/CTD115 (1) RATS/CTD120 (1) RATS/CTD122 (1) RATS/CTD124 (1) RATS/CTD126 (1) RATS/CTD129 (1) RATS/CTD131 (1) RATS/CTD133 (1) RATS/CTD136 (1) RATS/CTD138 (1) RATS/CTD140 (1) RATS/CTD142 (1) RATS/CTD145 (1) RATS/CTD147 (1) RATS/CTD150 (1) RATS/CTD151 (1) RATS/CTD153 (1) RATS/CTD154 (1) RATS/CTD156 (1) RATS/CTD157 (1) RATS/CTD160 (1) RATS/CTD163 (1) RATS/CTD164 (1) RATS/CTD166 (1) RATS/CTD167 (1) RATS/CTD169 (1) RATS/CTD170 (1) RATS/CTD173 (1) RATS/CTD175 (1) RATS/CTD177 (1) RATS/CTD180 (1) RATS/CTD182 (1) RATS/CTD184 (1) RATS/CTD186 (1) RATS/CTD189 (1) RATS/CTD191 (1) RATS/CTD193 (1) RATS/CTD195 (1) RATS/CTD198 (1) RATS/CTD200 (1) RATS/CTD202 (1) RATS/CTD204 (1) RATS/CTD206 (1) RATS/CTD208 (1) RATS/CTD210 (1) RATS/CTD214 (1) RATS/CTD217 (1) RATS/CTD219 (1) RATS/CTD221 (1) RATS/CTD223 (1) RATS/CTD225 (1) RATS/CTD227 (1) RATS/CTD230 (1) RATS/CTD232 (1) RATS/CTD234 (1) RATS/CTD237 (1) RATS/CTD239 (1) RATS/CTD241 (1) RATS/CTD243 (1) RATS/CTD245 (1) RATS/CTD247 (1) RATS/CTD249 (1) RATS/CTD251 (1) RATS/CTD254 (1) RATS/CTD256 (1) RATS/CTD258 (1) RATS/CTD260 (1) RATS/CTD262 (1) RATS/CTD265 (1) RATS/CTD267 (1) RATS/CTD269 (1) RATS/CTD271 (1) RATS/CTD273 (1) RATS/CTD275 (1) RATS/CTD277 (1) RATS/CTD281 (1) RATS/CTD283 (1) RATS/CTD285 (1) RATS/CTD287 (1) RATS/CTD289 (1) RATS/CTD291 (1) RATS/CTD293 (1) RATS/CTD295 (1) RATS/CTD297 (1) RATS/CTD301 (1) RATS/CTD305 (1) RATS/CTD307 (1) RATS/CTD309 (1) RATS/CTD311 (1) RATS/CTD313 (1) RATS/CTD315 (1) RATS/CTD317 (1) RATS/CTD319 (1) RATS/CTD321 (1) RATS/CTD323 (1) RATS/CTD325 (1) RATS/CTD327 (1) RATS/CTD329 (1) RATS/CTD331 (1) RATS/CTD335 (1) RATS/CTD337 (1) RATS/CTD341 (1) RATS/CTD343 (1) RATS/CTD345 (1) RATS/CTD347 (1) RATS/CTD351 (1) RATS/CTD353 (1) RATS/CTD355 (1) RATS/CTD357 (1) RATS/CTD361 (1) RATS/CTD363 (1) RATS/CTD365 (1) RATS/CTD373 (1) RATS/CTD375 (1) RATS/CTD377 (1) RATS/CTD379 (1) RATS/CTD381 (1) RATS/CTD383 (1) RATS/CTD385 (1) RATS/CTD387 (1) RATS/CTD389 (1) RATS/CTD395 (1) RATS/CTD397 (1) RATS/CTD399 (1) RATS/CTD401 (1) RATS/CTD403 (1) RATS/CTD405 (1) RATS/CTD407 (1) RATS/CTD409 (1) RATS/CTD411 (1) RATS/CTD415 (1) RATS/CTD417 (1) RATS/CTD419 (1) RATS/CTD423 (1) RATS/CTD425 (1) RATS/CTD427 (1) RATS/CTD429 (1) RATS/CTD43 (1) RATS/CTD431 (1) RATS/CTD433 (1) RATS/CTD437 (1) RATS/CTD439 (1) RATS/CTD443 (1) RATS/CTD445 (1) RATS/CTD461 (1) RATS/CTD463 (1) RATS/CTD465 (1) RATS/CTD467 (1) RATS/CTD469 (1) RATS/CTD471 (1) RATS/CTD473 (1) RATS/CTD475 (1) RATS/CTD477 (1) RATS/CTD479 (1) RATS/CTD481 (1) RATS/CTD483 (1) RATS/CTD485 (1) RATS/CTD487 (1) RATS/CTD489 (1) RATS/CTD49 (1) RATS/CTD491 (1) RATS/CTD493 (1) RATS/CTD495 (1) RATS/CTD497 (1) RATS/CTD499 (1) RATS/CTD501 (1) RATS/CTD503 (1) RATS/CTD505 (1) RATS/CTD507 (1) RATS/CTD509 (1) RATS/CTD51 (1) RATS/CTD511 (1) RATS/CTD513 (1) RATS/CTD515 (1) RATS/CTD517 (1) RATS/CTD519 (1) RATS/CTD521 (1) RATS/CTD523 (1) RATS/CTD525 (1) RATS/CTD527 (1) RATS/CTD529 (1) RATS/CTD53 (1) RATS/CTD531 (1) RATS/CTD534 (1) RATS/CTD536 (1) RATS/CTD538 (1) RATS/CTD540 (1) RATS/CTD542 (1) RATS/CTD545 (1) RATS/CTD547 (1) RATS/CTD549 (1) RATS/CTD55 (1) RATS/CTD551 (1) RATS/CTD553 (1) RATS/CTD555 (1) RATS/CTD557 (1) RATS/CTD559 (1) RATS/CTD561 (1) RATS/CTD563 (1) RATS/CTD565 (1) RATS/CTD567 (1) RATS/CTD569 (1) RATS/CTD571 (1) RATS/CTD573 (1) RATS/CTD575 (1) RATS/CTD577 (1) RATS/CTD579 (1) RATS/CTD58 (1) RATS/CTD581 (1) RATS/CTD583 (1) RATS/CTD585 (1) RATS/CTD587 (1) RATS/CTD589 (1) RATS/CTD591 (1) RATS/CTD593 (1) RATS/CTD595 (1) RATS/CTD597 (1) RATS/CTD599 (1) RATS/CTD60 (1) RATS/CTD601 (1) RATS/CTD603 (1) RATS/CTD605 (1) RATS/CTD607 (1) RATS/CTD609 (1) RATS/CTD611 (1) RATS/CTD613 (1) RATS/CTD615 (1) RATS/CTD617 (1) RATS/CTD619 (1) RATS/CTD62 (1) RATS/CTD621 (1) RATS/CTD623 (1) RATS/CTD625 (1) RATS/CTD627 (1) RATS/CTD629 (1) RATS/CTD631 (1) RATS/CTD633 (1) RATS/CTD635 (1) RATS/CTD637 (1) RATS/CTD639 (1) RATS/CTD64 (1) RATS/CTD654 (1) RATS/CTD66 (1) RATS/CTD669 (1) RATS/CTD678 (1) RATS/CTD68 (1) RATS/CTD687 (1) RATS/CTD695 (1) RATS/CTD70 (1) RATS/CTD705 (1) RATS/CTD72 (1) RATS/CTD722 (1) RATS/CTD724 (1) RATS/CTD727 (1) RATS/CTD729 (1) RATS/CTD731 (1) RATS/CTD733 (1) RATS/CTD735 (1) RATS/CTD737 (1) RATS/CTD739 (1) RATS/CTD74 (1) RATS/CTD741 (1) RATS/CTD743 (1) RATS/CTD745 (1) RATS/CTD747 (1) RATS/CTD749 (1) RATS/CTD751 (1) RATS/CTD753 (1) RATS/CTD755 (1) RATS/CTD757 (1) RATS/CTD759 (1) RATS/CTD761 (1) RATS/CTD763 (1) RATS/CTD765 (1) RATS/CTD767 (1) RATS/CTD77 (1) RATS/CTD771 (1) RATS/CTD773 (1) RATS/CTD775 (1) RATS/CTD777 (1) RATS/CTD779 (1) RATS/CTD781 (1) RATS/CTD783 (1) RATS/CTD785 (1) RATS/CTD787 (1) RATS/CTD789 (1) RATS/CTD795 (1) RATS/CTD797 (1) RATS/CTD799 (1) RATS/CTD80 (1) RATS/CTD801 (1) RATS/CTD803 (1) RATS/CTD805 (1) RATS/CTD807 (1) RATS/CTD809 (1) RATS/CTD811 (1) RATS/CTD813 (1) RATS/CTD817 (1) RATS/CTD819 (1) RATS/CTD82 (1) RATS/CTD821 (1) RATS/CTD823 (1) RATS/CTD825 (1) RATS/CTD827 (1) RATS/CTD829 (1) RATS/CTD831 (1) RATS/CTD833 (1) RATS/CTD837 (1) RATS/CTD839 (1) RATS/CTD84 (1) RATS/CTD841 (1) RATS/CTD843 (1) RATS/CTD845 (1) RATS/CTD847 (1) RATS/CTD849 (1) RATS/CTD851 (1) RATS/CTD853 (1) RATS/CTD855 (1) RATS/CTD857 (1) RATS/CTD859 (1) RATS/CTD861 (1) RATS/CTD863 (1) RATS/CTD865 (1) RATS/CTD867 (1) RATS/CTD869 (1) RATS/CTD87 (1) RATS/CTD871 (1) RATS/CTD873 (1) RATS/CTD879 (1) RATS/CTD881 (1) RATS/CTD883 (1) RATS/CTD885 (1) RATS/CTD887 (1) RATS/CTD889 (1) RATS/CTD89 (1) RATS/CTD891 (1) RATS/CTD893 (1) RATS/CTD895 (1) RATS/CTD897 (1) RATS/CTD899 (1) RATS/CTD901 (1) RATS/CTD903 (1) RATS/CTD905 (1) RATS/CTD907 (1) RATS/CTD909 (1) RATS/CTD91 (1) RATS/CTD913 (1) RATS/CTD915 (1) RATS/CTD917 (1) RATS/CTD919 (1) RATS/CTD921 (1) RATS/CTD923 (1) RATS/CTD925 (1) RATS/CTD927 (1) RATS/CTD929 (1) RATS/CTD93 (1) RATS/CTD931 (1) RATS/CTD933 (1) RATS/CTD935 (1) RATS/CTD937 (1) RATS/CTD939 (1) RATS/CTD941 (1) RATS/CTD943 (1) RATS/CTD945 (1) RATS/CTD947 (1) RATS/CTD949 (1) RATS/CTD951 (1) RATS/CTD953 (1) RATS/CTD955 (1) RATS/CTD957 (1) RATS/CTD959 (1) RATS/CTD96 (1) RATS/CTD961 (1) RATS/CTD963 (1) RATS/CTD965 (1) RATS/CTD967 (1) RATS/CTD969 (1) RATS/CTD971 (1) RATS/CTD973 (1) RATS/CTD975 (1) RATS/CTD977 (1) RATS/CTD979 (1) RATS/CTD98 (1) RATS/CTD981 (1) RATS/CTD983 (1) RATS/CTD985 (1) RATS/CTD987 (1) RATS/CTD989 (1) RATS/CTD991 (1)


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference