

QUEEN MARY UNIVERSITY OF LONDON SCHOOL OF BIOLOGICAL AND CHEMICAL SCIENCES

RRS DISCOVERY- CRUISE D373 ETNP (Eastern Tropical North Pacific); December 2011- January 2012

Title: Nitrous oxide and nitrogen gas production in the ETNP – a process and community based study.

Cruise Report (6 months)

Principal Scientist: Mark Trimmer

September 2012

Nitrous oxide and nitrogen gas production in the ETNP – a process and community based study.

Authors: Myrsini Chronopoulou¹, Simon Williams², Susanna Maanoja¹, Laura Bristow³, Ian Sanders¹, Bo Thamdrup³, Kevin Purdy², Mark Trimmer³

Reference: Queen Mary University of London; School of Biological and Chemical Sciences; D373 Cruise Report

Abstract: With this research cruise we aim to study N cycle in a non- yet characterized OMZ, the OMZ of Eastern Tropical North Pacific (ETNP). The overall aim of this project is to link N cycling processes to bacterial gene diversity and expression across a gradient of OMZ intensity in the (ETNP), firstly by characterization of the water column (e.g. N₂O, CO₂, CH₄ profiles) and then experimental manipulations to test if the ratio of N₂ to N₂O production is fixed' or 'flexible', screening for N₂ production coupled to ¹⁵N organic-N and a molecular analysis of the active communities involved in the metabolism of these gases. In order to determine the extent of variation and potential within the water column, we performed experiments at 6 different sites, outside, on the edge and within the core OMZ. Understanding this response will help us to predict the conditions under which N₂O accumulates and will further clarify the mechanisms of fine-tuning of the nitrogen cycle in the global ocean. In addition, we set up experiments for the measurement of anaerobic methane oxidation, aerobic methane oxidation, methane production, and tracing of the oxidised carbon into end products of methane oxidation by ¹³C-labelling in seawater samples. This will offer insights into carbon cycling in this area of the ocean.

Keywords: OMZ, ETNP, D373 research cruise, nitrous oxide, 15N-nitrogen, organic nitrogen, methane oxidation, anaerobic methane oxidation, methane production, N cvcle, C cvcle

Issuing organization: QMUL

Correspondence: M.Trimmer School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK Tel: +44 20 7882 3007 E-mail: m.trimmer@qmul.ac.uk

¹ School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK ² School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK

³ Institute of Biology, University of Southern Denmark, Campusvei 55, Dk-5230 Odense M, Denmark

Table of Contents

1. Cruise personnel
2. Scientific objectives
2.1. Background rationale6
2.2. Cruise specific objectives
3. Cruise overview
4. Diary cruise narrative
5. Station/activities log
6. Operations
6.1. Vertical water profiles
6.2. Measuring rates of nitrous oxide production in ocean water using stable isotope ¹⁵ N-NO ₂
6.3. Measuring the production of N_2 using organic N stable isotopes
6.4. Molecular characterization of the microbial community involved in N cycle processes
6.5. Determination of nitrite oxidation rates using stable isotopes and measurement of natural abundance isotopic composition of nitrite and nitrate
6.6. Measurement of methane oxidation rates and tracing of the oxidised carbon into end products of methane oxidation by ¹³ C-labelling in seawater samples
6.7. Methane production
6.8. Anaerobic Methane Oxidation (AOM)
6.9. Zooplankton, phytoplankton and bacterioplankton analysis
References
Appendix 1
Appendix 2

List of Figures

Figure 1. D373 ship track, including port of departure and sampling sites. Numbers in red correspond to CTD stations
Figure 2. 85°W transect (chart provided by B. Thamdrup). Across this transect there is available data on oxygen and nitrite concentrations
Figure 3. 88°W transect. Adapted from a paper by (Tsuchiya and Talley, 1998), which gives oxygen data for stations indicated by the dotted line 25
Figure 4. Concentrations of NO_3^- , NO_2^- , PO_4^{3-} and N deficit in the water column at all stations. All measurements were made using a Skalar flow auto-analyser
Figure 5. Profiles of NH4+ across various depths of four stations. Measurements were made using a Turner fluorimeter. Four or two replicate samples were measured at station 1, and only one at the other stations 27
Figure 6. Concentrations of gases at various depths of all stations. Numbers are the mean of duplicate samples, measured on GC
Figure 7. Oxygen saturation (%) profiles at 6 different stations. Measurements were made by CTD deployments

List of Tables

Table 1. List of cruise personnel.	5
Table 2. Sampling stations across 92W.	8
Table 3. Transects across 92W.	8
Table 4. Activities log- Station 1.	16
Table 5. Activities log- Station 2.	17
Table 6. Activities log- Station 3	
Table 7. Activities log- Station 4.	19
Table 8. Activities log- Station 5.	21
Table 9. Activities log- Station 4.5.	22
Table 10. Activities log- Station 6	23

1. Cruise personnel

The list of the ships crew and scientific personnel is given in the table below.

Name	Role	Organisation
Mark Trimmer	PSO	Queen Mary University of London
lan Andrew Sanders	technician	Queen Mary University of London
Panagiota-Myrsini	scientist	Queen Mary University of London
Chronopoulou		
Susanna Tuulia	scientist	Queen Mary University of London
Maanoja		
Simon Williams	scientist	University of Warwick
Laura Anne Bristow	scientist	University of Southern Denmark
		(SDU)
		NOO
Dougai Mountfield	NOC technician	NOC
Darren Young	NOC technician	NOC
Zoltan Nemeth	II support	
Peter Charles Sarjeant	Master Chief Officer	
Molecular Harold Croves	Chief Officer	
Nigol Corpott	2rd Officer	
Edward McLaughlin	Chief Engineer	
Combell Morrison	2 nd Engineer	
John Robert Harnett	3 rd Engineer	NERC
Edin Silaidzic	3 rd Engineer	NERC
Philip Mathews	FTO	NERC
David Ralph Hartshorne	PCO	NERC
Stuart Clive Cook	CPOD	NERC
Martin Andrew Harrison	CPOS	NERC
Steven Duncan	POD	NERC
Mark Stephen Moore	SG1A	NERC
John Brodowski	SG1A	NERC
Steven Gallagher	SG1A	NERC
Richard Deal	SG1A	NERC
Emlyn Gordon Williams	MM1A	NERC
Peter Anthony Lynch	H/Chef	NERC
Dean Anthony Hope	Chef	NERC
Jacqueline Waterhouse	STWD	NERC

 Table 1. List of cruise personnel.

2. Scientific objectives

2.1. Background rationale

Oxygen minimum zones (OMZs), which are characterized as O_2 deficient layers in the ocean water column, are known for their key role in global nitrogen (N) cycling and for being the main areas of nitrogen loss (as N_2 and N_2O) to the atmosphere (Paulmier and Ruiz-Pino, 2009). Hence, they have dual links to the atmosphere through the warming potential of N_2O and the effects of N regulation on carbon fixation. Until recently, however, the microbial metabolisms responsible for this flux of N_2O and N_2 remained unclear. Previously N_2O production had been ascribed to either nitrification in the oxycline, denitrification deeper in the OMZ or a coupling of both (Codispoti and Christensen, 1985; Dore et al., 1998; Naqvi et al., 1998). Using high-resolution profiles and ¹⁵N isotope tracers we were the first to actually measure N₂O production in the central Arabian Sea and demonstrated that most (>95 %) of the N2O produced could be explained by nitrite (NO_2) reduction to N₂O (Nicholls et al., 2007a, b). However, it is not as simple as this. One pathway of N₂O formation requires some complexity to generate the high and low concentrations of N₂O characteristic of the OMZ in the central Arabian Sea. Again, our ¹⁵N tracers uncovered some of this by showing that the ratio of N₂ to N₂O production during the reduction of NO₂ (NO₂ \rightarrow NO \rightarrow N₂O \rightarrow N₂) is not fixed and appears to be 'flexible'. For example, where water column N2O concentration is high, we measured a low ratio of N₂ to N₂O production and vice versa where water column N₂O concentration was low. Although this 'flexible' ratio explains the majority of N₂O and helps redefine our understanding of N₂O production in oxygen minimum zones, why this ratio should change is unknown. In addition, despite anaerobic ammonium oxidation (anammox) accounting for a large proportion of N removal (as N₂) in other anoxic water basins (Dalsgaard et al., 2003; Kuypers et al., 2005; Thamdrup et al., 2006) neither anammox nor classic denitrification could fully account for the N₂ production we measured in the Arabian Sea: our data suggest an alternative coupling potentially via organic N (Nicholls et al., 2007; Trimmer and Purdy, 2012).

2.2. Cruise specific objectives

With this research cruise we aim to take our previous knowledge further and study N cycle in a non- yet characterized OMZ, the Eastern Tropical North Pacific (ETNP). The overall aim of this project is to link N cycling to bacterial gene diversity and expression across a gradient of OMZ intensity in the Eastern Tropical North Pacific (ETNP). The cruise objectives are summarized below.

- Characterization of the water column (e.g. N₂O, CH₄, CO₂ profiles)
- Experimental manipulations of O₂ and N₂O concentrations in the water column across the OMZ of ETNP to test if the ratio of N₂ to N₂O production is 'fixed' or 'flexible'.
- Screening for N₂ production coupled to ¹⁵N organic-N. This is to test a newly proposed pathway of N cycle, whereby the oxidation of organic-N is coupled to the reduction of NO₂⁻ directly to the formation of N₂ gas. The use of dual labelled isotopes will enable to trace the metabolism of ¹³C and ¹⁵N through both dissimilative and assimilative pathways (including SIP of nucleic acids).
- Molecular analysis of the active communities involved in the metabolism of the above mentioned gases.
- Analysis of zooplankton, phytoplankton and bacterioplankton collected with SAPs filters at each site.

- Analysis of NO₃, NO₂ & NH₄⁺ after addition of ¹⁵NO₃ or ¹⁵NO₂ to discrete seawater samples with a view to determining N cycling pathways.
- Analysis of natural abundance isotopes of NO₃ and NO₂ from selected samples

In order to determine the extent of variation and potential within the water column, we have performed experiments at sites outside, on the edge and within the core OMZ. Understanding these processes will help us to predict the conditions under which N_2O accumulates and will further clarify the mechanisms of fine tuning of the nitrogen cycle in the global ocean.

In addition to N cycle, we also set up experiments to investigate aspects of the C cycle, such as methane oxidation and production processes. These are summarized below.

- Measurement of the rates of aerobic methane oxidation in ETNP, after addition of 12CH4 in seawater from various depths across the OMZ.
- Monitoring methane production in selected depths from 3 different sites.
- Measuring production of ¹³CO₂ from added ¹³CH₄ gas to water samples.
- Tracing of the oxidised ¹³CH₄ in bacterial biomass.
- Measurement of nitrite-driven Anaerobic Methane Oxidation (AMO), following addition of ¹⁵NO₂⁻ and ¹³CH₄ in seawater of selected depths from 5 different sites.

3. Cruise overview

D373 took place between 07/12/2011 and 28/01/2012 in the waters of ETNP. The port of departure was Panama Balboa and the return port was Salina Cruz, Mexico (NB disembarkation was originally planned to take place in Panama Balboa, on 20th December but due to unforeseen circumstances- see section 4- this had to change). The ship track from the port of departure and CTD stations are shown in Figure 1. Scientific work was conducted at 6 sites across longitude 92° 30W with latitudes as shown in Table 2. In addition, there were transects in between sites in order to collect oxygen data across this uncharacterized OMZ (Table 3).

GMD 2012 Jan 18 01:52:03 JD340-018

Figure 1. D373 ship track, including port of departure and sampling sites. Numbers in red correspond to CTD stations.

Station	Lat	CTD casts	# CTDs
1	12N	1 to 7	7
2	13N	8 to 16	9
3	11N	33 to 43	11
4	10N	55 to 66	12
4.5*	9.5N	86 to 87	2
5	9N	75 to 85	11
6	8N	95 to 102	8

Table 2. Sampling stations across 92W.

* At station 4.5 SAPs were attached on the CTD wire and the only sampling activity was the collection of plankton on SAPs filters.

Т	able	3.	Transects	across	92W.
---	------	----	-----------	--------	------

Transect	Lat	CTD casts	# CTDs
1	13 to 11N	17 to 32	16
2	11 to 10N	44 to 54	11
3	10 to 9N	67 to 74	8
4	9 to 8N	88 to 94	7

4. Diary cruise narrative

The following diary is based on scientific rough log sheets provided by the bridge.

07.12.11

At Panama Balboa port, preparing for outbound passage

08-11.12.11

Passage towards the first station. On 10.12.12 (24:00) clocks were retarded 1h to UTC.

<u>11.11.11</u>

V/L arrived at Station 1. CTD001- no bottles fired; to be repeated CTD002- to 800 m, back on deck, scientists sampling- vertical profiles CTD003- to 400 m, back on deck, scientists sampling- vertical profiles

<u>12.12.12</u>

CTD004- to 3893 m, back on deck, scientists sampling- vertical profiles CTD005- to 700 m, back on deck, scientists sampling- targeted depths

13.12.12

CTD006- to 264 m, back on deck, scientists sampling- targeted depths CTD007- to 264 m, back on deck, scientists sampling- targeted depths SAPs in water; SAPs back on deck

<u>14.12.12</u>

SAPs in water, starboard A-Frame; SAPs back on deck Reload SAPs on board V/L approaching on port quarter (claimed to be fishing boat)- Keep clear in Spanish on VHF Science differed to ensure fishing v/l intention is to keep clear SAPs in water, starboard A-Frame; SAPs back on deck

<u>15.12.11</u>

Stopped for scanfish deployment. V/L at 4 Kts, scanfish in water V/L increased speed to 6 Kts; cable out to 1000 m; Delays due to technical issues with winch. Scanfish not fully deployed due to delays. V/L at 8 Kts, 1000 m tow astern; steering following survey track Complete turn to starboard to avoid net; completed turn End of scanfish survey, scanfish on deck.

<u>16.12.11</u>

V/L slow steaming, towards survey start position Scanfish deployment, V/L at 4 Kts Increase speed to 6 Kts, cable out to 1100 m. Increase speed to 8 Kts Commenced port turn; turn completed. Scanfish reported lost; V/L turning on reciprocal track; efforts to locate scanfish in the water. V/L heading towards station 2

<u>17.12.11</u>

Passage; arrived at Station 2.

CTD008- to 1200 m, sampling complete at 540 m, back on deck, scientists sampling- vertical profiles

CTD009- to 520 m, back on deck, scientists sampling- vertical profiles

CTD010- to 60 m, back on deck, scientists sampling- vertical profiles

<u>18.12.11</u>

CTD011- to 4040 m, back on deck, scientists sampling- vertical profiles CTD012- to 1000 m, back on deck, scientists sampling- targeted depths

<u>19.12.11</u>

CTD013- to 200 m, back on deck, scientists sampling- targeted depths CTD014- to 200 m, back on deck, scientists sampling- targeted depths CTD015- to 4030 m, back on deck, scientists sampling- targeted depths

20.12.11

Heading at SAPs station

SAPs 1 in water to 1250 m, SAPs back on board and secure

Manoeuver to reposition for next SAPs

SAPs in water to 15 m, SAPs recovered for adjustments, SAPs deployed to 35 m, SAPs back on deck

<u>21.12.11</u>

CTD016- to 1020 m, back on deck, scientists sampling- targeted depths Heading south full speed for CTD station CTD017- to 150 m (transect), back on deck CTD018- to 150 m (transect), back on deck CTD019- to 150 m (transect), back on deck CTD020- to 150 m (transect), back on deck CTD021- to 150 m (transect), back on deck, set onto next transect station V/L hove to on station and CTD022 in water - to 150 m (transect), back on deck, set onto next transect station CTD023- to 150 m (transect), back on deck Slow steaming through night

<u>22.11.11</u>

CTD024- to 150 m (transect), back on deck, secure and commence steaming CTD025- to 150 m (transect), back on deck, secure and commence steaming CTD026- to 150 m (transect), back on deck, secure and commence steaming CTD027- to 150 m (transect), back on deck, secure and commence steaming CTD028- to 150 m (transect), back on deck, secure and commence steaming CTD029- to 150 m (transect), back on deck, secure and commence steaming CTD030- to 150 m (transect), back on deck, secure and commence steaming CTD030- to 150 m (transect), back on deck, secure and commence steaming CTD031- to 150 m (transect), back on deck, secure and commence steaming CTD031- to 150 m (transect), back on deck, secure and commence steaming CTD032- to 150 m (transect), back on deck, secure and commence steaming CTD032- to 150 m (transect), back on deck, secure and commence steaming CTD032- to 150 m (transect), back on deck, secure and commence steaming CTD032- to 150 m (transect), back on deck, secure and commence steaming CTD032- to 150 m (transect), back on deck, secure and commence steaming CTD032- to 150 m (transect), back on deck, secure and commence steaming CTD032- to 150 m (transect), back on deck, secure and commence steaming CTD032- to 150 m (transect), back on deck, secure and commence steaming CTD032- to 150 m (transect), back on deck, secure and commence steaming CTD032- to 150 m (transect), back on deck, secure and commence steaming CTD032- to 150 m (transect), back on deck, secure and commence steaming CTD032- to 150 m (transect), back on deck, secure and commence steaming CTD032- to 150 m (transect), back on deck, secure and commence steaming CTD032- to 150 m (transect), back on deck, secure and commence steaming CTD032- to 150 m (transect), back on deck, secure and commence steaming CTD032- to 150 m (transect), back on deck, secure and commence steaming CTD032- to 150 m (transect), back on deck, secure and commence steaming CTD032- to 150 m (transect), back on deck, secure and commence steaming CTD032- to 150 m (transect), b

<u>23.12.11</u>

Arrived at Station 3

CTD033- to 1000 m (sampling started at 900 m up to 440 m), back on deck, scientists sampling- vertical profiles

CTD034- to 420 m, back on deck, scientists sampling- vertical profiles

Emergency drill

CTD035- to 180 m, back on deck, scientists sampling- vertical profiles

<u>24.12.11</u>

CTD036- to 2635 m, back on deck, scientists sampling- vertical profiles CTD037- to 650 m, back on deck, scientists sampling- targeted depths CTD038- to 650 m, back on deck, scientists sampling- targeted depths

<u>25.12.11</u>

No deployments conducted on this day; Christmas celebrations V/L lying ahull Slow steaming towards Station 3

<u>26.12.11</u>

CTD039- to 200 m, back on deck, scientists sampling- targeted depths CTD040- to 200 m, back on deck, scientists sampling- targeted depths CTD041- to 2910 m, back on deck, scientists sampling- targeted depths

<u>27.12.11</u>

SAPs in water to 1130 m, SAPs back on board and secure Manoeuver to reposition for next SAPs SAPs in water to 45 m, filtering at 32 m and 45 m, SAPs back on deck

<u>28.12.11</u>

CTD042- to 650 m, back on deck, scientists sampling- targeted depths CTD043- to 800 m, back on deck, scientists sampling- targeted depths V/L preparing for CTD-transects

CTD044- to 150 m (transect), back on deck, secure and commence steaming CTD045- to 150 m (transect), back on deck, secure and commence steaming CTD046- to 150 m (transect), back on deck, secure and commence steaming CTD047- to 150 m (transect), back on deck, secure and commence steaming

<u>29.12.11</u>

V/L hoving to into current, stemming current

CTD048- to 300 m (transect), back on deck, secure and commence steaming CTD049- to 300 m (transect), back on deck, secure and commence steaming CTD050- to 300 m (transect), back on deck, secure and commence steaming CTD051- to 300 m (transect), back on deck, secure and commence steaming CTD052- to 300 m (transect), back on deck, secure and commence steaming CTD053- to 300 m (transect), back on deck, secure and commence steaming CTD054- to 300 m (transect), back on deck, secure and commence steaming CTD054- to 300 m (transect), back on deck, secure and commence steaming CTD054- to 300 m (transect), back on deck, secure and commence steaming

V/L move to preventing unwanted drift south

<u>30.12.11</u>

At Station 4

CTD055- to 900 m (sampling started at 860 m up to 584 m), back on deck, scientists sampling- vertical profiles

CTD056- to 568 m (sampling up to 292 m), back on deck, scientists sampling- vertical profiles CTD057- to 280 m (sampling up to 148m), back on deck, scientists sampling- vertical profiles

<u>31.12.11</u>

Radar performances of both radars tested and were satisfactory CTD058- to 3710 m, back on deck, scientists sampling- vertical profiles CTD059- to 860 m, back on deck, scientists sampling- targeted depths CTD060- to 700 m, back on deck, scientists sampling- targeted depths

01.01.12

CTD061- to 200 m, back on deck, scientists sampling- targeted depths CTD062- to 250 m, back on deck, scientists sampling- targeted depths CTD063- to 3702 m, back on deck, scientists sampling- targeted depths Fire system reset, all investigated, clear V/L hove to overnight

02.01.12

SAPs to 1080 m, back on board Both SAPs in water to 50 m (filtering from 38 m and 50 m), SAPs recovered

03.01.12

V/L hove to in vicinity of site

CTD064- to 700 m, back on deck, scientists sampling- targeted depths CTD065- to 250 m, back on deck, scientists sampling- targeted depths CTD066- to 860 m, back on deck, scientists sampling- targeted depths CTD066- to 860 m, back on deck, scientists sampling- targeted depths V/L preparing for CTD-transect

CTD067- to 500 m (transect), back on deck, secure and commence steaming CTD068- to 500 m (transect), back on deck, secure and commence steaming Slow steaming to next transect station

04.01.12

CTD069- to 500 m (transect), back on deck, secure and commence steaming CTD070- to 500 m (transect), back on deck, secure and commence steaming V/L hove to on station for CTD

CTD071- to 500 m (transect), back on deck, secure and commence steaming V/L hove to on station for CTD

CTD072- to 500 m (transect), back on deck, secure and commence steaming CTD073- to 500 m (transect), back on deck, secure and commence steaming CTD074- to 500 m (transect), back on deck, secure and commence steaming

05.01.12

Passage towards Station 5

At Station 5

CTD075- to 800 m (sampling up to 558 m), back on deck, scientists sampling- vertical profiles CTD076- to 568 m (sampling started at 558 m up to 294 m), back on deck, scientists sampling- vertical profiles

CTD077- to 283 m (sampling up to 7 m), back on deck, scientists sampling- vertical profiles

06.01.12

CTD078- to 3603 m (sampling up to 43 m), back on deck, scientists sampling- vertical profiles CTD079- to 800m, back on deck, scientists sampling- targeted depths CTD080- to 600m, back on deck, scientists sampling- targeted depths

07.01.12

CTD081- to 67 m, back on deck, scientists sampling- targeted depths CTD082- to 200 m, back on deck, scientists sampling- targeted depths CTD083- to 3600 m, back on deck, scientists sampling- targeted depths

08.01.12

At site for SAPs

SAPs in water, pump at 650 m, Back on board

 $1^{\rm st}$ SAPs deployed to 20 m, $2^{\rm nd}$ SAPs in water, SAPs fully deployed to 55 m (filtering at 28 m and 55 m), back on deck

Move on site for CTD

09.01.12

CTD084- to 550 m, back on deck, scientists sampling- targeted depths CTD085- to 718 m, back on deck, scientists sampling- targeted depths V/L in station for SAPs (Station 4.5) CTD086 at 20 m and connecting SAPs 1st SAPs in water, veered to 700 m, hauled to 645 m 1st SAPs at surface, exchange of pumps, CTD087 deployed to 340 m, stopped at 300 m 2nd SAPs in water Station 4.5 completed

10.01.12

V/L at CTD position

CTD088- to 650 m (transect), back on deck, secure and commence steaming CTD089- to 650 m (transect), back on deck, secure and commence steaming CTD090- to 650 m (transect), back on deck, secure and commence steaming

V/L hove to on station for CTD

CTD091- to 698 m (transect), back on deck, secure and commence steaming

V/L hove to on station for CTD

CTD092- to 650 m (transect), back on deck, secure and commence steaming

V/L hove to on station for CTD

CTD093- to 650 m (transect), back on deck, secure and commence steaming

CTD094- to 650 m (transect), back on deck, secure and commence steaming

<u>11.01.12</u>

At Station 6, V/L lying ahull

CTD095- to 683 m (sampling started at 640 m up to 443 m), back on deck, scientists sampling- vertical profiles

CTD096- to 424 m (sampling up to 217 m), back on deck, scientists sampling- vertical profiles

CTD097- to 208 m (sampling up to 5 m), back on deck, scientists sampling- vertical profiles

<u>12.01.12</u>

CTD098- to 3000 m (sampling up to 82 m), back on deck, scientists sampling- vertical profiles and targeted depths

CTD099- to 640 m, back on deck, scientists sampling- targeted depths

CTD0100- to 540 m, back on deck, scientists sampling- targeted depths

13.01.12

CTD101- to 82 m, back on deck, scientists sampling- targeted depths

Sternline/propeller to recover fouled lines

Science operations suspended until further notice

V/L on station for CTD

CTD102- to 200 m, back on deck, scientists sampling- targeted depths

Sampling completed- end of science

Problem: Loss of engine lubricant started on the night of 12.01.12. This resulted to an early end of sampling activities and heading back to the planned disembarkation port (Panama Balboa). However, due to legal issues related to sailing through the Costa-Rican EEZ while pouring oil in the seawater, RRS Discovery had to stop in international waters outside Costa-Rica's EEZ. RRS Discovery had to wait for a tag vessel for about 5 days. This was followed by a tag operation (lasting approximately 1 week) with the involvement of two tag vessels, which brought RRS Discovery in the port of Salina Cruz/ Mexico (final disembarkation port) on 28.01.12.

5. Station/activities log

A detailed list of all the CTD casts throughout the cruise in given in Appendix 1, and a list of all the surface meteorology activities in

Below is a log of all the sampling activities per station.

Station 1

The activities that took place at station 1, and the exact co-ordinates and times are shown in Table 4.

Table 4. Activities log- Station 1.

Date	Lat(N)	Long(W)	Activity ID	Start time	Bottom time	End Time	Description
11.12.11	12 0.346	92 30.220	CTD002	16:04	16:28	17:51	Vertical seawater profiles, 432-800 m, Gases (CO2, CH4, N2O) GC analysis, DIN skalar analysis, NH4 fluorometric analysis, samples taken for onshore DON skalar analysis, δ13C sample of CH4/IRMS analysis onshore, samples for onshore analysis of natural abundance isotopes of NO3 and NO2
11.12.11	12 0.388	92 30.304	CTD003	21:07	21:20	22:40	Vertical seawater profiles, 9-400 m, Gases (CO2, CH4, N2O) GC analysis, DIN skalar analysis, NH4 fluorometric analysis, Samples taken for onshore DON skalar analysis, δ13C samples of CH4/IRMS analysis onshore, samples for onshore analysis of natural abundance isotopes of NO3 and NO2
12.12.11	12 0.024	92 29.972	CTD004	14:05	15:26	17:44	Vertical seawater profiles, 5-3893 m, Gases (CO2, CH4, N2O) GC analysis onboard, DIN skalar analysis onboard, samples collected from certain depths (30, 2618, 3893 m) and spiked with 12CH4 and 13CH4 for CH4 oxidation experiment on board measured with GC, isotopic values of CO2 and biomass to be measured onshore, samples taken for onshore DON skalar analysis, δ13C samples of CH4/IRMS analysis onshore, samples for onshore analysis of natural abundance isotopes of NO3 and NO2
12.12.11	11 59.883	92 29.913	CTD005	20:41	21:01	21:35	Targeted depths (180, 390, 700) m, Isotopes added to seawater samples/ samples incubated onboard/ to be analysed by mass spectometry in the lab for N2 and N2O gases, samples collected from 180 m and spiked with 12CH4 and 13CH4 for CH4 oxidation experiment on board measured with GC, isotopic values of CO2 and biomass to be measured onshore, 513C samples of CH4/IRMS analysis onshore, 15NO3- or 15NO2- stable isotope additions to seawater samples and incubation onboard/discrete samples returned for onshore analysis of NO3-, NO2- & NH4+ by IRMS, seawater filtered at 390 and 700 m for onshore DNA and RNA extraction and analysis
13.12.11	11 59.980	92 30.106	CTD006	14:15	14:32	14:58	Targeted depths (12, 46, 264) m, Isotopes added to seawater samples/ samples incubated onboard/ to be analysed by mass spectometry in the lab for N2 and N2O gases, seawater filtered at 12, 46 and 264 m for onshore DNA and RNA extraction and analysis
13.12.11	12 0.224	92 30.048	CTD007	18:05	18:16	18:50	Targeted depths (12, 46, 264) m, Isotopes added to seawater samples/ samples incubated onboard/ to be analysed by mass spectometry in the lab for N2O gas, 15NO3- or 15NO2- stable isotope additions to seawater samples and incubation onboard/discrete samples returned for onshore analysis of NO3-, NO2- & NH4+ by IRMS
14.12.11 14.12.11	12 0.00 12 0.00	92 30.00 92 30.00	SAP-1-30m SAP-1-180m	16:47 16:40		19:00 19:05	SAPs at 30 m, filters to be analysed in the lab SAPs at 180 m, filters to be analysed in the lab

16.12.11 between sites, NB Scanfish was lost in the	14.12.11 14.12.11 14-	12 0.00 12 0.00 12 0.00	92 30.00 92 30.00 92 30.00	SAP-2-30m SAP-2-180m Scanfish	23:00 22:50	00:48 00:55	SAPs at 30 m, filters to be analysed in the lab SAPs at 180 m, filters to be analysed in the lab Scanfish deployment to obtain oxygen data in
	16.12.11						between sites, NB Scanfish was lost in the

Station 2

The activities that took place at station 2, and the exact co-ordinates and times are shown in Table 5.

Table 5. Activities log- Station 2.

Date	Lat(N)	Long(W)	Activity ID	Start time	Bottom time	End Time	Description
17.12.11	13 0.019	92 30.138	CTD008	14:06	14:32	16:04	Vertical seawater profiles, 540-1000 m, Gases (CO2, CH4, N2O) GC analysis, DIN skalar analysis, NH4 fluorometric analysis, samples taken for onshore DON skalar analysis, õ13C samples of CH4/IRMS analysis onshore, samples for onshore analysis of natural abundance isotopes of NO3 and NO2, sewater filtered at 1000, 840, 700 and 540 m for onshore DNA extraction and analysis
17.12.11	12 59.881	92 30.193	CTD009	18:24	18:41	19:53	Vertical seawater profiles, 60-520 m, Gases (CO2, CH4, N2O) GC analysis, DIN skalar analysis, NH4 fluorometric analysis, samples taken for onshore DON skalar analysis, δ13C samples of CH4/IRMS analysis onshore, samples for onshore analysis of natural abundance isotopes of NO3 and NO2 sewater filtered at 400, 240, 100 and 60 m for onshore DNA extraction and analysis
17.12.11	13 0.031	92 29.954	CTD010	21:59	22:06	22:36	Vertical seawater profiles, 5-60 m, Gases (CO2, CH4, N2O) GC analysis, DIN skalar analysis, NH4 fluorometric analysis, samples taken for onshore DON skalar analysis, 513C samples of CH4/IRMS analysis onshore, samples for onshore analysis of natural abundance isotopes of NO3 and NO2
18.12.11	13 0.126	92 30.021	CTD011	14:06	15:29	17:20	Vertical seawater profiles, 5-4055 m, Gases (CO2, CH4, N2O) GC analysis, DIN skalar analysis, NH4 fluorometric analysis, samples taken for onshore DON skalar analysis, õ13C samples of CH4/IRMS analysis onshore, samples for onshore analysis of natural abundance isotopes of NO3 and NO2
18.12.11	13 0.029	92 29.913	CTD012	19:18	19:54	20:37	Targeted depths (540, 750, 1000) m, NH4 fluorometric analysis (540 m), Isotopes added to seawater samples/ samples incubated onboard/ to be analysed by mass spectometry in the lab for N2 and N2O gases, 13CH4+ and 15NO2- istotope additions to seawater samples/ onboard incunbation and IRMS analysis onshore, 15NO3- or 15NO2- stable isotope additions to seawater samples and incubation onboard/discrete samples returned for onshore analysis of NO3-, NO2- & NH4+ by IRMS, seawater filtered at 750 and 540 m for onshore DNA and RNA extraction and analysis
19.12.11	12 59.938	92 29.932	CTD013	14:07	14:20	14:49	Targeted depths (40, 100, 200) m, Isotopes added to seawater samples/ samples incubated onboard/ to be analysed by mass spectometry in the lab for N2 and N2O gases
19.12.11	12 59.885	92 29.932	CTD014	16:20	16:31	16:57	Targeted depths (40, 100, 200) m, lsotopes added to seawater samples/ samples incubated onboard/ to be analysed by mass spectometry in the lab for N2O gas, 15NO3- or 15NO2- stable isotope additions to seawater samples and incubation onboard/discrete samples returned for onshore analysis of NO3-, NO2- & NH4+ by IRMS, seawater filtered at 200 and 100 m for onshore DNA and RNA extraction and analysis
19.12.11	12 54.852	92 30.243	CTD015	18:25	19:47	21:36	Targeted depths (25, 35, 100, 540, 1250, 4030 m), Isotopes added to seawater samples/

20.12.11 20.12.11 20.12.11 20.12.11 21.12.11	13 0.00 13 0.00 13 0.00 13 0.00 12 59.999	92 30.00 92 30.00 92 30.00 92 30.00 92 29.999	SAP-3-1250m SAP-4-23m SAP-4-35m CTD016	14:41 20:15 20:07 14:06	14:31	17:43 21:59 22:01 15:35	samples incubated onboard/ to be analysed by mass spectometry in the lab for N2O gas, samples collected from targeted depths and spiked with 12CH4 and 13CH4 for CH4 oxidation experiment on board measured with GC, isotopic values of CO2 and biomass to be measured onshore SAPs at 1250 m, filters to be analysed in the lab SAPs at 23 m, filters to be analysed in the lab SAPs at 35 m, filters to be analysed in the lab Targeted depths (40, 100, 540) m, NH4 fluorometric analysis (560-1020 m), lsotopes added to seawater samples/ samples incubated opboard(to be analysed hy mass spectometry in
							added to seawater samples/ samples incubated onboard/ to be analysed by mass spectometry in the lab for N2 and N2O gases, 13CH4+ and 15NO2- istotope additions to seawater samples/ onboard incunbation and IRMS analysis onshore, seawater samples collected at 100 m and 540 m for incubation using 13C-labelled TMA and Urea and firstion of cells for fluorescent in-situ
							hybridisation (FISH)

Station 3

The activities that took place at station 3, and the exact co-ordinates and times are shown in Table 6.

Table 6. Activities log- Station 3.

Date	Lat(N)	Long(W)	Activity ID	Start time	Bottom time	End Time	Description
23.12.11	10 59.954	92 29.985	CTD033	14:03	14:30	15:50	Vertical seawater profiles, 440-900 m, Gases (CO2, CH4, N2O) GC analysis, DIN skalar analysis, NH4 fluorometric analysis, samples taken for onshore DON skalar analysis, õ13C samples of CH4/IRMS analysis onshore, samples for onshore analysis of natural abundance isotopes of NO3 and NO2
23.12.11	11 0.000	92 29.863	CTD034	18:28	18:41	19:39	Vertical seawater profiles, 190-420 m, Gases (CO2, CH4, N2O) GC analysis, DIN skalar analysis, NH4 fluorometric analysis, samples taken for onshore DON skalar analysis, δ13C samples of CH4/IRMS analysis onshore, samples for onshore analysis of natural abundance isotopes of NO3 and NO2
23.12.11	11 0.000	92 30.067	CTD035	22:51	22:59	00:00	Vertical seawater profiles, 7-180 m, Gases (CO2, CH4, N2O) GC analysis, DIN skalar analysis, NH4 fluorometric analysis, samples taken for onshore DON skalar analysis, δ13C samples of CH4/IRMS analysis onshore, samples for onshore analysis of natural abundance isotopes of NO3 and NO2
24.12.11	10 59.989	92 29.909	CTD036	14:11	15:06	16:29	Vertical seawater profiles, 31-2635 m, Gases (CO2, CH4, N2O) GC analysis, DIN skalar analysis, NH4 fluorometric analysis, samples taken for onshore DON skalar analysis, δ13C samples of CH4/IRMS analysis onshore, samples for onshore analysis of natural abundance isotopes of NO3 and NO2
24.12.11	10 59.898	92 30.023	CTD037	18:54	19:11	19:39	Targeted depths (420, 650) m, Isotopes added to seawater samples/ samples incubated onboard/ to be analysed by mass spectometry in the lab for N2 and N2O gases
24.12.11	10 59.982	92 30.054	CTD038	20:50	21:06	21:32	Targeted depths (420, 650) m, 15NO3- or 15NO2- stable isotope additions to seawater samples and incubation onboard/discrete samples returned for onshore analysis of NO3-,

							NO2- & NH4+ by IRMS, seawater filtered at both depths for onshore DNA and RNA extraction and analysis
26.12.11	10 59.755	92 29.683	CTD039	15:31	15:41	16:12	Targeted depths (39, 100, 200) m, Isotopes added to seawater samples/ samples incubated onboard/ to be analysed by mass spectometry in the lab for N2 and N2O gases
26.12.11	10 59.781	92 29.771	CTD040	18:19	18:28	18:50	Targeted depths (39,100,200) m, 15NO3- or 15NO2- stable isotope additions to seawater samples and incubation onboard/discrete samples returned for onshore analysis of NO3-, NO2- & NH4+ by IRMS, seawater filtered at 100 and 200 m for onshore DNA and RNA extraction and analysis
26.12.11	10 59.960	92 29.840	CTD041	20:50	22:14	23:35	Targeted depths (39, 300, 1130, 1360, 2760, 2910 m), Gases (CO2, CH4, N2O) GC analysis, δ 13C samples of CH4/IRMS analysis onshore, samples collected from depths 39, 300, 1130 and 2910 m and spiked with 12CH4 and 13CH4 for CH4 oxidation experiment on board measured with GC, isotopic values of CO2 and biomass to be measured onshore
27.12.11	11 0.00	92 30.00	SAP-5-1130m	14:49		17:49	SAPs at 1130 m, filters to be analysed in the lab
27.12.11	11 0.00	92 30.00	SAP-6-32m	20:00		21:38	SAPs at 32 m, filters to be analysed in the lab
27.12.11	11 0.00	92 30.00	SAP-6-45m	17:58		21:40	SAPs at 45 m, filters to be analysed in the lab
28.12.11	10 59.997	92 29.844	CTD042	14:03	14:21	14:56	Targeted depths (100, 200, 420, 250) m; Organic N isotopes added to seawater samples/filtered onboard/ filters transferred to the lab for molecular analysis, 13CH4+ and 15NO2- istotope additions to seawater samples/ onboard incunbation and IRMS analysis onshore
28.12.11	11 0.024	92 29.860	CTD043	16:09	16:29	17:02	Targeted depths (39,800) m, seawater filtered at both depths for onshore DNA and RNA extraction and analysis

Station 4

The activities that took place at station 4, and the exact co-ordinates and times are shown in Table 7.

Table 7. Activities log- Station 4.

Date	Lat(N)	Long(W)	Activity ID	Start time	Bottom time	End Time	Description
30.12.11	9 59.880	92 30.068	CTD055	14:04	14:38	15:55	Vertical seawater profiles, 584-860 m, Gases (CO2, CH4, N2O) GC analysis, DIN skalar analysis, NH4 fluorometric analysis, samples taken for onshore DON skalar analysis, õ13C samples of CH4/IRMS analysis onshore, samples for onshore analysis of natural abundance isotopes of NO3 and NO2
30.12.11	10 0.170	92 29.913	CTD056	18:08	18:23	19:32	Vertical seawater profiles, 292-568 m, Gases (CO2, CH4, N2O) GC analysis, DIN skalar analysis, NH4 fluorometric analysis, samples taken for onshore DON skalar analysis, δ13C samples of CH4/IRMS analysis onshore, samples for onshore analysis of natural abundance isotopes of NO3 and NO2

30.12.11	10 0.012	92 30.007	CTD057	22:51	23:02	23:45	Vertical seawater profiles, 148-280 m, Gases (CO2, CH4, N2O) GC analysis, DIN skalar analysis, NH4 fluorometric analysis, samples taken for onshore DON skalar analysis, δ 13C samples of CH4/IRMS analysis onshore, samples for onshore analysis of natural abundance isotopes of NO3 and NO2
31.12.11	10 0.004	92 30.037	CTD058	14:01	15:13	17:23	Vertical seawater profiles, 4-3710 m, Gases (CO2, CH4, N2O) GC analysis, DIN skalar analysis, NH4 fluorometric analysis, samples taken for onshore DON skalar analysis, δ13C samples of CH4/IRMS analysis onshore, samples for onshore analysis of natural abundance isotopes of NO3 and NO2
31.12.11	10 0.094	92 30.074	CTD059	20:05	20:25	21:05	Targeted depths (436, 700, 860) m, 15NO3- or 15NO2- stable isotope additions to seawater samples and incubation onboard/discrete samples returned for onshore analysis of NO3-, NO2- & NH4+ by IRMS, water samples collected from depth 436 m and sealed for measuring methane production onshore seawater filtered at 436 and 700 m for onshore DNA and RNA extraction and analysis
31.12.11	10 0.063	92 29.976	CTD060	22:42	22:56	23:25	Targeted depths (436, 700) m, Isotopes added to seawater samples/ samples incubated onboard/ to be analysed by mass spectometry in the lab for N2 and N2O gases
01.01.12	9 59.983	92 30.027	CTD061	14:05	14:16	14:43	Targeted depths (40, 60, 200) m, Isotopes added to seawater samples/ samples incubated onboard/ to be analysed by mass spectometry in the lab for N2O gas
01.01.12	10 0.001	92 30.033	CTD062	16:12	16:23	16:50	Targeted depths (40, 60, 250) m, Isotopes added to seawater samples/ samples incubated onboard/ to be analysed by mass spectometry in the lab for N2 and N2O gases, 15NO3- or 15NO2- stable isotope additions to seawater samples and incubation onboard/discrete samples returned for onshore analysis of NO3-, NO2- & NH4+ by IRMS, seawater filtered at 60 and 250 m for onshore DNA and RNA extraction and analysis
01.01.12	10 0.012	92 30.001	CTD063	18:01	19:18	20:46	Targeted depths (37, 268, 1080, 1155, 2435, 3710 m), Gases (CO2, CH4, N2O) GC analysis, δ13C samples of CH4/IRMS analysis onshore, samples collected from depths 37, 268, 1080 and 3710 m and spiked with 12CH4 and 13CH4 for CH4 oxidation experiment on board measured with GC, isotopic values of CO2 and biomass to be measured onshore
02.01.12	10 0.00	92 30.00	SAP-7-1080m	14:54		17:24	SAPs at 1080 m, filters to be analysed in the lab
02.01.12	10 0.00	92 30.00	SAP-8-50m	20:09		21:46	SAPs at 50 m, filters to be analysed in the lab
02.01.12	10 0.00	92 30.00	SAP-8-38m	20:12		21:44	SAPs at 38 m, filters to be analysed in the lab
03.01.12	10 0.026	92 30.177	CTD064	14:03	14:24	15:12	Targeted depths (45, 60, 436, 700) m, Organic N isotopes added to seawater samples/filtered onboard/ filters transferred to the lab for molecular analysis, 13CH4+ and 15NO2- istotope additions to seawater samples/ onboard incunbation and IRMS analysis onshore
03.01.12	9 59.942	92 29.904	CTD065	16:03	16:15	16:34	Targeted depth 250 m, Organic N isotopes added to seawater samples/filtered onboard/ filters transferred to the lab for molecular analysis
03.01.12	9 59.944	92 29.887	CTD066	17:09	17:32	18:16	Targeted depths (50, 436, 700, 860) m, 13CH4+ and 15NO2- istotope additions to seawater samples/ onboard incunbation and IRMS analysis onshore , seawater filtered 50 and 860 m depths for onshore DNA and RNA extraction and analysis, seawater samples collected at 436 m and 700 m for incubation using 13C-labelled TMA and Urea and fixation of cells for fluorescent in-

Station 5

The activities that took place at station 5, and the exact co-ordinates and times are shown in Table 8.

Table	8.	Activities	log-	Station	5.
-------	----	------------	------	---------	----

Date	Lat(N)	Long(W)	Activity ID	Start time	Bottom time	End Time	Description
05.01.12	8 59.983	92 29.980	CTD075	14:01	14:24	15:46	Vertical seawater profiles, 558-800 m, Gases (CO2, CH4, N2O) GC analysis, DIN skalar analysis, NH4 fluorometric analysis, samples taken for onshore DON skalar analysis, õ13C samples of CH4/IRMS analysis onshore, samples for onshore analysis of natural abundance isotopes of NO3 and NO2
05.01.12	8 59.970	92 30.014	CTD076	17:24	17:43	18:02	Vertical seawater profiles, 294-558 m, Gases (CO2, CH4, N2O) GC analysis, DIN skalar analysis, NH4 fluorometric analysis, samples taken for onshore DON skalar analysis, 513C samples of CH4/IRMS analysis onshore, samples for onshore analysis of natural abundance isotopes of NO3 and NO2
05.01.12	9 00.020	92 29.959	CTD077	21:05	21:18	22:29	Vertical seawater profiles, 7-283 m, Gases (CO2, CH4, N2O) GC analysis, DIN skalar analysis, NH4 fluorometric analysis, samples taken for onshore DON skalar analysis, ō13C samples of CH4/IRMS analysis onshore, samples for onshore analysis of natural abundance isotopes of NO3 and NO2
06.01.12	8 59.967	92 30.020	CTD078	14:04	15:22	17:43	Vertical seawater profiles, 43-3603 m, Gases (CO2, CH4, N2O) GC analysis, DIN skalar analysis, NH4 fluorometric analysis, samples taken for onshore DON skalar analysis, 513C samples of CH4/IRMS analysis onshore, samples for onshore analysis of natural abundance isotopes of NO3 and NO2
06.01.12	8 59.995	92 32.003	CTD079	19:17	19:38	20:15	Targeted depths (450, 600, 800) m, Isotopes added to seawater samples/ samples incubated onboard/ to be analysed by mass spectometry in the lab for N2 and N2O gases, 15NO3- or 15NO2- stable isotope additions to seawater samples and incubation onboard/discrete samples returned for onshore analysis of NO3-, NO2- & NH4+ by IRMS, seawater filtered at 450 and 600 m for onshore DNA and RNA extraction and analysis
06.01.12	8 59.987	92 29.961	CTD080	21:30	21:47	22:20	Targeted depths (450, 600) m, Organic N isotopes added to seawater samples/filtered onboard/ filters transferred to the lab for molecular analysis
07.01.12	8 59.937	92 30.018	CTD081	14:02	14:10	14:30	Targeted depths (30, 67) m, Isotopes added to seawater samples/ samples incubated onboard/ to be analysed by mass spectometry in the lab for N2O gas

07.01.12	8 59.966	92 30.100	CTD082	15:55	16:06	16:28	Targeted depths (67, 200) m, Isotopes added to seawater samples/ samples incubated onboard/ to be analysed by mass spectometry in the lab for N2 and N2O gases, 15NO3- or 15NO2- stable isotope additions to seawater samples and incubation onboard/discrete samples returned for onshore analysis of NO3-, NO2- & NH4+ by IRMS, seawater filtered at 67 and 200 m for onshore DNA and RNA extraction and analysis
07.01.12	8 59.948	92 30.064	CTD083	17:40	18:52	20:26	Targeted depths (31, 290, 640, 1048, 3600 m), δ 13C samples of CH4/IRMS analysis onshore (1048 m), samples collected from depths 37, 268, 1080 and 3710 m and spiked with 12CH4 and 13CH4 for CH4 oxidation experiment on board measured with GC, isotopic values of CO2 and biomass to be measured onshore
08.01.12	9 0.00	92 30.00	SAP-9-640m	14:31		16:36	SAPs at 640 m, filters to be analysed in the lab
08.01.12	9 0.00	92 30.00	SAP-10-28m	18:57		20:28	SAPs at 28 m, filters to be analysed in the lab
08.01.12	9 0.00	92 30.00	SAP-10-55m	18:54		20:30	SAPs at 55 m, filters to be analysed in the lab
09.01.12	9 00.081	92 30.032	CTD084	14:03	14:24	15:05	Targeted depths (67, 200, 450, 550) m, Organic N isotopes added to seawater samples/filtered onboard/ filters transferred to the lab for molecular analysis, 13CH4+ and 15NO2- istotope additions to seawater samples/ onboard incunbation and IRMS analysis onshore
09.01.12	9 00.007	92 30.071	CTD085	16:03	16:25	17:02	Targeted depths (40, 450, 600, 718) m, water samples collected from depth 450 m and sealed for measuring methane production onshore, seawater filtered 40 and 718 m depths for onshore DNA and RNA extraction and analysis, seawater samples collected at 450 m and 600 m for incubation using 13C-labelled TMA and Urea and fixation of cells for fluorescent in-situ hybridisation (FISH)

Station 4.5

The activities that took place at station 4.5, and the exact co-ordinates and times are shown in Table 9. At this station there were only SAPs deployments.

Table 9. Activities log- Station 4.5.

Date	Lat(N)	Long(W)	Activity ID	Start time	Bottom time	End Time	Description
09.01.12	9 30.030	92 30.118	SAP-11-290m	23:55		01:15	SAPs at 290 m, filters to be analysed in the lab
09.01.12	9 30.028	92 30.631	SAP-11-645m	21:32		23:28	SAPs at 645 m, filters to be analysed in the lab

Station 6

The activities that took place at station 6, and the exact co-ordinates and times are shown in Table 10.

Table 10. Activities log- Station 6.

Date	Lat(N)	Long(W)	Activity ID	Start time	Bottom time	End Time	Description
11.01.12	7 59.975	92 30.019	CTD095	13:59	14:18	15:45	Vertical seawater profiles, 433-640 m, Gases (CO2, CH4, N2O) GC analysis, DIN skalar analysis, samples taken for onshore DON skalar analysis, õ13C samples of CH4/IRMS analysis onshore, samples for onshore analysis of natural abundance isotopes of NO3 and NO2
11.01.12	8 00.009	92 30.020	CTD096	18:03	18:15	19:27	Vertical seawater profiles, 217-424 m, Gases (CO2, CH4, N2O) GC analysis, DIN skalar analysis, samples taken for onshore DON skalar analysis, õ13C samples of CH4/IRMS analysis onshore, samples for onshore analysis of natural abundance isotopes of NO3 and NO2
11.01.12	7 39.988	92 30.004	CTD097	21:24	21:34	22:35	Vertical seawater profiles, 5-208 m, Gases (CO2, CH4, N2O) GC analysis, DIN skalar analysis, samples taken for onshore DON skalar analysis, δ 13C samples of CH4/IRMS analysis onshore, samples for onshore analysis of natural abundance isotopes of NO3 and NO2
12.01.12	8 00.005	92 30.002	CTD098	13:58	15:00	16:47	Vertical seawater profiles, 82-3000 m, Gases (CO2, CH4, N2O) GC analysis, DIN skalar analysis, samples taken for onshore DON skalar analysis, Isotopes added to seawater samples/ samples incubated onboard/ to be analysed by mass spectometry in the lab for N2 and N2O gases (388, 540) m, õ13C samples of CH4/IRMS analysis onshore, samples for onshore analysis of natural abundance isotopes of NO3 and NO2
12.01.12	8 00.024	92 29.882	CTD099	18:32	18:49	19:25	Targeted depths (388, 540, 640 m), 13CH4+ and 15NO2- istotope additions to seawater samples/ onboard incunbation and IRMS analysis onshore, water samples collected from depth 388 m and sealed for measuring methane production onshore, 15NO3- or 15NO2- stable isotope additions to seawater samples and incubation onboard/discrete samples returned for onshore analysis of NO3-, NO2- & NH4+ by IRMS, seawater filtered 388 and 540 m depths for onshore DNA and RNA extraction and analysis
12.01.12	7 59.941	92 29.964	CTD100	20:47	21:03	21:31	Targeted depths (388, 540) m, Organic N isotopes added to seawater samples/filtered onboard/ filters transferred to the lab for molecular analysis
13.01.12	07 59.993	92 29.972	CTD101	14:02	14:08	14:33	Targeted depths (33, 82) m, Isotopes added to seawater samples/ samples incubated onboard/ to be analysed by mass spectometry in the lab for N2 and N2O gases
13.01.12	7 59.961	92 29.987	CTD102	17:25	17:38	18:09	Targeted depths (55, 82, 185 m), Isotopes added to seawater samples/ samples incubated onboard/ to be analysed by mass spectometry in the lab for N2 gas, samples collected from depths 55 and 185 m and spiked with 12CH4 and 13CH4 for CH4 oxidation experiment on board measured with GC, isotopic values of CO2 and biomass to be measured onshore, 15NO3- or 15NO2- stable isotope additions to seawater samples and incubation onboard/discrete samples returned for onshore analysis of NO3-, NO2- & NH4+ by IRMS, seawater filtered 82 and 185 m depths for onshore DNA and RNA extraction and analysis

6. Operations

All samples mentioned in this section derived from deployments of 20 L Niskin bottles on a CTD rosette Sea-Bird 24. All sensors were calibrated and maintained by the responsible NOC technicians (Dougal Mountfield and Darren Young), and log sheets with all the relevant details are available.

6.1. Vertical water profiles

Introduction

For the purposes of the current project it was essential to have a good knowledge of how the concentrations of oxygen, DIN and DIC change at the various depths and across the width of the area under investigation. However, the OMZ of ETNP is a largely uncharacterised area of the global ocean and very little has been published. To the best of our knowledge, the only available data (as to oxygen and nitrite concentrations) comes from transects shown in figure 2 (85°W transect) and 3 (88°W transect). For this reason, the first CTD casts of each site were carried out with a view to gaining insights into the water characteristics of the area. This allowed us to have an overview of the concentrations of O_2 , $PO_4^{3^\circ}$, NO_2° , NO_3° , NH_4^+ , CO_2 , CH_4 , N_2O from the surface to the bottom of each station, and based on these profiles we decided the exact depths from which we sampled for the planned experimental manipulations.

Figure 2. 85^oW transect (chart provided by B. Thamdrup). Across this transect there is available data on oxygen and nitrite concentrations.

Figure 3. 88°W transect. Adapted from a paper by (Tsuchiya and Talley, 1998), which gives oxygen data for stations indicated by the dotted line.

Materials & Methods

Concentrations of NO₃⁻, NO₂⁻, PO₄³⁻ and NH₄⁺ were measured using a segmented flow auto analyser (Skalar, Netherlands) and standard colorimetric techniques in samples of unfiltered water (60 mL), collected in PTFE bottles directly from the Niskin bottles (after overfilling the former 3 times). In addition, water samples (15 ml) were collected for determination of bulk DON (potassium persulphate coupled to UV oxidation) offshore. Sub-micro molar NH₄⁺ measurements were made in 80 ml water sample, using a Turner Designs TD-700 fluorimeter and the method of (Holmes et al., 1999).

The distribution of N_2O , CH_4 and CO_2 in the water column was determined by sub-sampling water from a Niskin bottle into the bottom of a serum bottle (125 mL) and allowing it to overflow at least three times before sealing. Headspace concentrations were measured after equilibration with analytical grade helium and injection into an Agilent 6890 gas chromatograph equipped with parallel μ ECD and FID (Nicholls *et al.* 2007).

For the O_2 profiles the data derived from all the CTD deployments at each depth/ station have been compiled using Matlab.

Preliminary Results

The concentrations of DIN (NO₃⁻ and NO₂⁻), PO₄³⁻ and the N deficit are shown in figure 4. N deficit (representing the amount of fixed nitrogen that has been removed, i.e. due to denitrification) was calculated according to the equation $[(NO_3^- + NO_2^-)] - 16 \times PO_4^{3-}$ (Gruber and Sarmiento, 1997; Chang et al., 2010). However, $[NH_4^+]$ should be added to calculations.

All measurements were made on single samples using a Skalar auto-analyser. Calibration of the instrument was conducted based on known amount of standard solutions. Measurements of NH_4^+ concentration were conducted using both Skalar and a Turner fluorimeter. Figure 5 shows measurements of the Turner fluorimeter for stations 1-4 (NB the fluorimeter was not functioning properly after station 5).

The concentrations of gases (N₂O, CH₄ and CO₂) were measured using a GC/ECD (for N₂O) or GC/FID (for CH₄ and CO₂). Calculations were based on the concentrations of a standard gas mixture (supplied by BOC), containing a known amount of all the analysed gases. A standard gas sample was run with each batch of samples to be measured. Results are shown in figure 6.

Oxygen saturation (%) for each station is shown in figure 7. Additional oxygen data was obtained in between the sampling stations, using the CTD sensors. Compilation of this data should provide us a detailed map of oxygen concentration of this previously uncharacterised area of the ocean.

Figure 4. Concentrations of NO_3^- , NO_2^- , PO_4^{3-} and N deficit in the water column at all stations. All measurements were made using a Skalar flow auto-analyser.

Figure 5. Profiles of NH4+ across various depths of four stations. Measurements were made using a Turner fluorimeter. Four or two replicate samples were measured at station 1, and only one at the other stations.

Figure 6. Concentrations of gases at various depths of all stations. Numbers are the mean of duplicate samples, measured on GC.

% Oxygen Saturation

Figure 7. Oxygen saturation (%) profiles at 6 different stations. Measurements were made by CTD deployments.

6.2. Measuring rates of nitrous oxide production in ocean water using stable isotope ¹⁵N-NO₂⁻

Introduction

The peaks and troughs in N₂O that we detected in the OMZ of the Arabian Sea (Nicholls et al., 2007) indicate that the production and reduction of N₂O are not occurring at the same rates at all depths. Examination of the ratio of ³⁰N₂ to ⁴⁶N₂O produced from experiments with ¹⁵N-NO₂⁻ showed that the ratio of N₂ to N₂O production was not constant and there was a significant negative correlation with the ambient concentration of N₂O (r = 0.97, p = 0.03), i.e., where *in situ* N₂O concentrations were high, there was a relatively low ratio of N₂ to N₂O produced. Hence, whilst the reduction of NO₂⁻ has long been hypothesised as a source of N₂O deep in the OMZ – previous results from the Arabian Sea suggest that NO₂⁻ reduction can explain N₂O production that generates peaks and troughs in N₂O. Our aim is to measure N₂O production in another OMZ, namely ETNP, and investigate how this is modulated throughout the OMZ.

Materials & Methods

The procedure follows Nicholls et al. (2007) with one major modification. Water samples from 5 depths per station were collected from the CTD into 4 Litre polypropylene Nalgene bottles and additional samples were collected using 1 Litre glass serum bottles to act as references for the natural 15N abundance of nitrous oxide in the water. The Nalgenes were then gently degassed (1 Bar) for 20 minutes with a variety of non-toxic gases, namely: oxygen and nitrogen (0.75% and 99.25%, respectively); nitrous oxide and nitrogen (0.0002% and 99.999%, respectively); oxygen, nitrous oxide and nitrogen (as before) or helium (99.999%). Once degassed, the water was then dispensed under pressure (1 Bar) into 1 litre glass serum bottles, 1 mL of ¹⁵N-NO₂⁻ (1mM) stable isotope tracer was then added to give a final concentration of 10 μ M. The oxygen concentration was measured in each serum bottle using a calibrated electrode, the bottle sealed and then incubated for 72 h. Subsequently, microbial activity was stopped by injecting formaldehyde (6 mL of 37% solution CH2O) through the septa (with venting) in the fume hood to give a final solution for formaldehyde of 0.2%. The bottles were then safely stowed for transport back to the home port.

All samples are to be analysed on a continuous flow isotope ratio mass spectrometer (IRMS) (Finnigan MAT DeltaPlus,Thermo-Finnigan) and the mass charge ratios for m/z 44,m/z 45, and m/z 46 (44N2O, 45N2O, and 46N2O) measured, using a trace gas preconcentrator unit (PreCon, Thermo-Finnigan).

6.3. Measuring the production of N₂ using organic N stable isotopes.

Introduction

The last couple of years our knowledge of the N cycle is continuously enriched. Evidence from the Arabian Sea suggests a direct coupling of ¹⁴N from organic nitrogen and ¹⁵NO₂, that is, potentially, a form of heterotrophic anammox - completely separate to the production of N₂ from the reduction of N₂O (Trimmer and Purdy, 2012). With this experiment we aim to further investigate our hypothesis, using a range of labelled and dual labelled organic substances (i.e. ¹⁵N- urea, ¹⁵N(¹³C) –urea, ¹⁵N (¹³C)-TMA) as well as the classic anammox reactions (¹⁴NO₂⁻ + ¹⁵NH₄⁺ or ¹⁵NO₂⁻ + ¹⁴NH₄⁺). This should allow us to trace the metabolism of ¹³C and ¹⁵N through both dissimilative and assimilative pathways.

Materials & Methods

This experiment was conducted at four selected depths at each station. Seawater was collected from the CTD into 1 L glass (serum) bottles. Subsequently, bottles were pressurised under helium (1 bar) and 12 ml of seawater was transferred into exetainers (gas-tight vials). Exetainers were injected with 50 ul of stable isotopes to a final concentration of 10 μ M (for ¹⁵NO₂⁻, ¹⁴NO₂⁻, ¹⁵NH₄⁺) or 50 μ M (for ¹⁵N- urea, ¹⁴N- urea, ¹⁵N (¹³C)-TMA, ¹⁴N-TMA) and incubate for a pre-defined time period. Finally, microbial activity was stopped by injecting 50 μ I of ZnCl₂ (50%). Exetainers were stored safely in designated carton boxes.

Samples are currently being analysed for N_2 gas production using an IRMS, and measured for ${}^{28}N_2$, ${}^{29}N_2$ and ${}^{30}N_2$.

6.4. Molecular characterization of the microbial community involved in N cycle processes.

Introduction

Apart from looking at the processes of N cycle, it is equally important to gain good insights into the microorganisms involved. For this purpose, bacterial cells were collected from the same samples used for the experiments described in paragraphs 6.2 and 6.3. Following the chemical analysis of these samples, there will be molecular analysis of selected samples from the most active depths/ sites, with a view to target 16S and functional genes (i.e. *nirS*, *nirK* and *nosZ* genes). Our hypothesis is that there will be changes in expression where the reduction of N₂O is either stimulated or inhibited.

As we have used ¹³C-labelled organic-N compounds there will also be Stable Isotope Probing (SIP) experiments to separate the extracted nucleic acids for analysis with bacterial and archaeal specific PCR to identify the organisms involved in the degradation of added organic-N compounds. In addition to this, samples of water from selected depths will be analysed with FISH probes for a range of known anammox organisms (Schmid et al., 2005) and for members of the communities identified as potential partners in the SIP analysis.

Materials & Methods

Water samples were collected from the CTD/Niskin rig and transported into the ship's lab for filtration through 0.2 µM polycarbonate filters using a gentle vacuum or via CellTraps[™] via a peristaltic pump. Volume of water may vary but did not exceed 10 L. Water was transported in 10-20 L Carboys/Nalgene bottles before being filtered small volumes (250 ml) at a time. CellTraps[™] will filter about 2 L at a time or be filtered directly from the sampling vessel and required no pouring into a smaller container. In between sites sampling vessels were washed with 10% hydrochloric acid (HCI). After filtration samples were stored in 2 ml plastic vials and flash frozen (using liquid nitrogen) before being stored at -80 °C for transport back to England. Nucleic acids (DNA and RNA) will be extracted and subjected to pyrosequencing and/or quantitative PCR to target functional genes of N cycle.

For the FISH (Fluorescence In-Situ Hybridisation) experiment seawater samples from two selected depths of stations 2, 4 and 5 were transferred to the ship's main lab from the CTD in small volumes (~200 ml) and 4% Paraformaldehyde added (final concentration 1%) and stored overnight at 4°C before freezing at -20°C. Bacterial cells are to be observed using a fluorescence microscope in the lab.

6.5. Determination of nitrite oxidation rates using stable isotopes and measurement of

natural abundance isotopic composition of nitrite and nitrate

Introduction

The overal purpose of this experiment is the determination of nitrite oxidation rates, which will elucidate further our knowledge of the N cycling pathways in the OMZ of ETNP. This will be measured and compared in ambient conditions and after addition of ${}^{15}NO_3^-$ or ${}^{15}NO_2^-$ to discrete seawater samples.

Materials & Methods

For the determination of nitrite oxidation rates, 150ml water samples were collected directly from the CTD and a 15N nitrite (stable isotope) spike was added; to a single sample from each depth 1.6ml of 37% formaldehyde was added to stop microbial activity. Samples were subsequently drawn from these spiked samples and filtered through a 0.22µm filter and frozen, samples were taken immediately after the spike was added and then after 6, 12 and 24 hours. After each sample was taken the headspace in the sample bottle was degassed with helium and an injection of air made where necessary to amend the oxygen concentration in the sample. In order to determine the rates of nitrite oxidation it is important to know the isotopic composition of the ambient pool of nitrite and nitrate. For this purpose, samples were collected directly from the CTD and filtered through a GF/F, an aliquot of this sample is preserved with 6M sodium hydroxide as in (Casciotti and McIlvin, 2007) and frozen.

6.6. Measurement of methane oxidation rates and tracing of the oxidised carbon into

end products of methane oxidation by ¹³C-labelling in seawater samples

Introduction

Along with N cycle procedures, we aim to investigate aspects of the C cycle. For this purpose we set up experiments to measure methane oxidation rates, as well as trace the final products of methane oxidation.

Materials & Methods

The procedure follows (Kelley, 2003) with minor modifications. Water samples were collected from the CTD. A headspace of helium was inserted to sample vials and the ambient concentration of CH4 and CO₂ was measured with a GC-FID using a standard gas mixture for calibration. A headspace of helium and oxygen mixture is inserted in incubation samples and the samples for measuring methane oxidation rates were spiked with 180 – 220 μ l of 0.2 – 1 % ¹²CH₄ gas. Samples for stable isotope labelling were spiked with 900 μ l of 5 % ¹³CH₄ gas or with 300 μ l of supersaturated ¹³CH₄ solution. Control samples were treated with 25 – 550 μ l of concentrated (37 %) HCl and all samples were incubated at 10oC. Samples spiked with ¹²CH₄ were measured with the GC-FID every 48 h or less frequently until the methane was been used up. These samples were used as a reference for 13C-labelled samples, which were killed with concentrated HCl when the methane was assumed to be used up. Labelled samples were stored for stable isotope analysis in England. In addition, there were samples collected from each station and spiked with ¹³CH₄ with a view to trace the oxidised ¹³CH₄ to ¹³CO₂ in the bacterial cell biomass.

When back in UK, all samples were killed with concentrated HCL (marking the last time point of the experiments). Samples spiked with $^{12}CH_4$ gas have already been processed, using GC-FID. Samples spiked with $^{13}CH_4$ will be analysed using IRMS. Samples for the measurement of assimilated $^{13}CO_2$ in the bacterial biomass, were filtered through GF/C filters (0.2 μm pore size) and filters stored in -20oC.

6.7. Methane production

Anoxic water of selected depths at 3 stations was sampled from the Niskin bottles into 125 of 150 ml serum bottles (after 3 times overflow). Control samples were treated with 1 ml of 37% formaldehyde, in order to stop microbial activity. The rest of the samples were incubated until arrival in England, where they were all treated with 37% formaldehyde. After helium headspacing (16% of final volume), samples were measured for methane production using GC-FID. Initial analysis of the results does not reveal obvious methane production, but we need to analyse the data in more detail.

6.8. Anaerobic Methane Oxidation (AOM)

Introduction

The aim of this experiment was to target any occurring nitrite driven anaerobic methane oxidation processes in the OMZ of ETNP. A new pathway of oxygen production that couples anaerobic oxidation of methane with the reduction of nitrite to dinitrogen has recently been suggested (Ettwig et al., 2010). We therefore, set up an experiment to check for the occurrence of such process in our samples.

Materials & Methods

Seawater samples were collected from two selected depths at four stations. Seawater was sampled from the CTD into 1 L serum bottles and subsampled (under He pressure) in exetainers. Subsequently, exetainers were spiked with ¹⁵NO₂⁻ and ¹³CH₄ and after a predefined incubation period, microbial activity was stopped with the addition of 37% formaldehyde. Samples were transferred back in the UK and will be analysed using IRMS.

6.9. Zooplankton, phytoplankton and bacterioplankton analysis

Introduction

Along with the investigation of processes involved in the N and C cycles we took the opportunity to collect planktonic cells of all sizes, with a view to investigate how these organisms are involved in N and C cycling.

Materials & Methods

Large volumes of seawater from selected depths of all stations were filtered using Stand Alone Pumps (SAPs). For the collection of zooplankton cells mesh ø293 mm disk filters of 200 µm pore size were used, for phytoplankton cells ø293 mm disk filters of 20 µm pore size (both supplied by SEFAR NITEX), and bacterioplankton cells were collected on ø293 mm polycarbonate filters, 0.2 µm pore size. All filters were immediately frozen (in liquid nitrogen) after collection and stored at -80 °C. Zooplankton and phytoplankton will be analysed for ¹³C assimilation using IRMS. Bacterial cells will be used for DNA extraction and subsequent analysis.

References

Casciotti, K.L., and McIlvin, M.R. (2007) Isotopic analyses of nitrate and nitrite from reference mixtures and application to Eastern Tropical North Pacific waters. *Marine Chemistry* **107**: 184-201.

Chang, B.X., Devol, A.H., and Emerson, S.R. (2010) Denitrification and the nitrogen gas excess in the eastern tropical South Pacific oxygen deficient zone. *Deep-Sea Research Part I-Oceanographic Research Papers* **57**: 1092-1101.

Codispoti, L.A., and Christensen, J.P. (1985) Nitrification, denitrification and nitrous oxide cycling in the eastern tropical South Pacific ocean. *Marine Chemistry* **16**: 277-300.

Dalsgaard, T., Canfield, D.E., Petersen, J., Thamdrup, B., and Acuna-Gonzalez, J. (2003) N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. *Nature* **422**: 606-608.

Dore, J.E., Popp, B.N., Karl, D.M., and Sansone, F.J. (1998) A large source of atmospheric nitrous oxide from subtropical North Pacific surface waters. *Nature* **396**: 63-66.

Ettwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M.M. et al. (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. *Nature* **464**: 543-548.

Gruber, N., and Sarmiento, J.L. (1997) Global patterns of marine nitrogen fixation and denitrification. *Global Biogeochem Cycles* **11**: 235-266.

Holmes, R.M., Aminot, A., Kerouel, R., Hooker, B.A., and Peterson, B.J. (1999) A simple and precise method for measuring ammonium in marine and freshwater ecosystems. *Canadian Journal of Fisheries and Aquatic Sciences* **56**: 1801-1808.

Kelley, C. (2003) Methane oxidation potential in the water column of two diverse coastal marine sites. *Biogeochemistry* **65**: 105-120.

Kuypers, M.M.M., Lavik, G., Woebken, D., Schmid, M., Fuchs, B.M., Amann, R. et al. (2005) Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. *Proceedings of the National Academy of Sciences of the United States of America* **102**: 6478-6483.

Naqvi, S.W.A., Yoshinari, T., Jayakumar, D.A., Altabet, M.A., Narvekar, P.V., Devol, A.H. et al. (1998) Budgetary and biogeochemical implications of N2O isotope signatures in the Arabian Sea. *Nature* **394**: 462-464.

Nicholls, J.C., Davies, C.A., and Trimmer, M. (2007) High-resolution profiles and nitrogen isotope tracing reveal a dominant source of nitrous oxide and multiple pathways of nitrogen gas formation in the central Arabian Sea. *Limnology and Oceanography* **52**: 156-168.

Paulmier, A., and Ruiz-Pino, D. (2009) Oxygen minimum zones (OMZs) in the modern ocean. *Progress In Oceanography* **80**: 113-128.

Schmid, M.C., Maas, B., Dapena, A., van de Pas-Schoonen, K., van de Vossenberg, J., Kartal, B. et al. (2005) Biomarkers for In Situ Detection of Anaerobic Ammonium-Oxidizing (Anammox) Bacteria. *Appl Environ Microbiol* **71**: 1677-1684.

Thamdrup, B., Dalsgaard, T., Jensen, M.M., Ulloa, O., Farias, L., and Escribano, R. (2006) Anaerobic ammonium oxidation in the oxygen-deficient waters off northern Chile. *Limnology and Oceanography* **51**: 2145-2156.

Trimmer, M., and Purdy, K.J. (2012) Evidence for the direct oxidation of organic nitrogen to N2 gas in the Arabian Sea. *ISME J* **6**: 1798-1800.

Tsuchiya, M., and Talley, L.D. (1998) A Pacific hydrographic section at 88 degrees W: Waterproperty distribution. *Journal of Geophysical Research-Oceans* **103**: 12899-12918.

Appendix 1.

Below is a detailed list of all the CTD casts, with exact co-ordinates and times.

stn	Nm	lat	lon	day	start	cast	end	depth	start lat	start lon	cast lat	cast lon
1	CTD001	12 00.21N	92 30.19W	345	14:40	15:10	15:35	1284	12.00358	-92.50322	12.00416	-92.50383
1	CTD002	12 00.34N	92 30.22W	345	16:02	16:27	17:48	900	12.00568	-92.50372	12.00674	-92.50426
1	CTD003	12 00.38N	92 30.30W	345	21:06	21:19	22:36	400	12.00631	-92.50499	12.00736	-92.50512
1	CTD004	12 00.02N	92 29.97W	346	14:06	15:26	17:36	3893	12.00062	-92.49954	12.00062	-92.50049
1	CTD005	11 59.88N	92 29.92W	346	20:40	21:00	21:33	700	11.99800	-92.49859	11.99852	-92.49902
1	CTD006	12 00.02N	92 30.13W	347	14:21	14:31	14:55	264	12.00031	-92.50216	12.00162	-92.50329
1	CTD007	12 00.22N	92 30.05W	347	18:04	18:16	18:47	264	12.00368	-92.50079	12.00435	-92.50056
2	CTD008	13 00.02N	92 30.12W	351	14:06	14:32	16:00	1200	13.00036	-92.50208	12.99890	-92.50391
2	CTD009	12 59.84N	92 30.21W	351	18:28	18:40	19:50	520	12.99800	-92.50319	12.99731	-92.50539
2	CTD010	13 00.03N	92 29.95W	351	21:59	22:05	22:34	60	13.00555	-92.53600	13.00071	-92.49942
2	CTD011	13 00.11N	92 30.01W	352	14:05	15:29	17:15	4055	13.00188	-92.50018	13.00416	-92.50139
2	CTD012	13 00.03N	92 29.92W	352	19:18	19:54	20:35	1000	13.00050	-92.49866	13.00353	-92.49553
2	CTD013	12 59.93N	92 29.93W	353	14:13	14:20	14:45	200	12.99888	-92.49884	12.99916	-92.49880
2	CTD014	12 59.88N	92 29.93W	353	16:23	16:30	16:55	200	12.99801	-92.49882	12.99820	-92.49914
2	CTD015	12 59.85N	92 30.25W	353	18:28	19:47	21:40	4030	12.99757	-92.50414	12.99725	-92.50731
2	CTD016	13 00.00N	92 30.00W	355	14:10	14:31	15:32	1020	13.00006	-92.50004	13.00021	-92.49956
T1	CTD017	12 53.17N	92 29.96W	355	17:31	17:38	17:43	150	12.88613	-92.49938	12.88598	-92.49972
Т2	CTD018	12 46.60N	92 30.08W	355	18:39	18:46	18:53	150	12.77663	-92.50138	12.77679	-92.50161
тз	CTD019	12 40.01N	92 30.04W	355	20:01	20:08	20:14	150	12.66677	-92.50068	12.66640	-92.50105
Т4	CTD020	12 33.29N	92 30.04W	355	21:23	21:27	21:33	150	12.55478	-92.50070	12.55500	-92.50091
Т5	CTD021	12 26.68N	92 30.03W	355	22:39	22:46	22:52	150	12.44474	-92.50052	12.44481	-92.50062
Т6	CTD022	12 20.01N	92 29.99W	355	23:59	00:05	00:13	150	12.33343	-92.49982	12.33334	-92.49957
Т7	CTD023	12 13.34N	92 30.02W	356	01:14	01:22	01:30	150	12.22239	-92.50026	12.22211	-92.49985
Т8	CTD024	12 06.65N	92 30.04W	356	13:59	14:06	14:12	150	12.11090	-92.50069	12.11047	-92.50102
Т9	CTD025	11 53.29N	92 30.06W	356	15:54	16:02	16:07	150	11.88824	-92.50093	11.88800	-92.50247
T10	CTD026	11 46.74N	92 30.33W	356	17:11	17:19	17:25	150	11.77902	-92.50552	11.77881	-92.50573
T11	CTD027	11 39.92N	92 30.16W	356	18:27	18:34	18:41	150	11.66538	-92.50268	11.66545	-92.50297
T12	CTD028	11 33.30N	92 30.06W	356	19:42	19:49	19:54	150	11.55504	-92.50098	11.55546	-92.50133
T13	CTD029	11 26.65N	92 30.06W	356	20:54	21:01	21:07	150	11.44411	-92.50104	11.44460	-92.50101
T14	CTD030	11 19.96N	92 30.13W	356	22:10	22:17	22:21	150	11.33274	-92.50211	11.33252	-92.50380
T15	CTD031	11 13.42N	92 30.09W	356	23:22	23:29	23:33	150	11.22362	-92.50148	11.22313	-92.50371
T16	CTD032	11 06.64N	92 30.04W	357	00:38	00:42	00:48	150	11.11069	-92.80077	11.11054	-92.50201
3	CTD033	10 59.96N	92 29.98W	357	14:04	14:28	15:49	1000	10.99925	-92.49947	10.99928	-92.49947
3	CTD034	11 00.01N	92 29.87W	357	18:28	18:41	19:39	420	11.00009	-92.49778	10.99827	-92.49793
3	CTD035	11 00.01N	92 30.06W	357	22:51	22:59	00:00	180	11.00010	-92.50096	10.99973	-92.50132
3	CTD036	10 59.99N	92 29.91W	358	14:11	15:06	16:29	2635	10.99983	-92.49850	10.99904	-92.49968
3	CTD037	10 59.90N	92 30.02W	358	18:55	19:11	19:39	650	10.99828	-92.50038	10.99760	-92.50132
3	CTD038	10 59.98N	92 30.05W	358	20:50	21:06	21:32	650	10.99972	-92.50084	10.99954	-92.50164

3 CTOM 109.00 129.200 120 120 120 120 120 12000 120000	3	CTD039	10 59.74N	92 29.66W	360	15:31	15:41	16:12	200	10.99571	-92.49429	10.99692	-92.49653
3CIDM109.0M22.9.4.73010.021.0.2.410.0.2.410.0.2.410.0.2.422.9.2.410.0.210.0.2.4 </th <th>3</th> <th>CTD040</th> <th>10 59.78N</th> <th>92 29.77W</th> <th>360</th> <th>18:19</th> <th>18:28</th> <th>18:50</th> <th>200</th> <th>10.99635</th> <th>-92.49614</th> <th>10.99663</th> <th>-92.49706</th>	3	CTD040	10 59.78N	92 29.77W	360	18:19	18:28	18:50	200	10.99635	-92.49614	10.99663	-92.49706
3CF02010920012920001200120001200001200000 <th>3</th> <th>CTD041</th> <th>10 59.96N</th> <th>92 29.84W</th> <th>360</th> <th>20:50</th> <th>22:14</th> <th>23:35</th> <th>2910</th> <th>10.99936</th> <th>-92.49732</th> <th>10.99412</th> <th>-92.50226</th>	3	CTD041	10 59.96N	92 29.84W	360	20:50	22:14	23:35	2910	10.99936	-92.49732	10.99412	-92.50226
S CTOMA CTOMA <thctoma< th=""> CTOMA CTOM</thctoma<>	3	CTD042	10 59.99N	92 29.82W	362	14:02	14:21	14:56	650	10.99991	-92.49696	11.00045	-92.49884
NH <th>3</th> <th>CTD043</th> <th>11 00.02N</th> <th>92 29.84W</th> <th>362</th> <th>16:09</th> <th>16:29</th> <th>17:02</th> <th>800</th> <th>11.00038</th> <th>-92.49727</th> <th>11.00049</th> <th>-92.49875</th>	3	CTD043	11 00.02N	92 29.84W	362	16:09	16:29	17:02	800	11.00038	-92.49727	11.00049	-92.49875
N2C10454C10400C104000C2040	W1	CTD044	10 55.11N	92 30.02W	362	18:28	18:32	18:38	150	10.91853	-92.50028	10.91876	-92.50098
W4CTD04610.45.05N92.29.29V36221.3421.1015.0010.75.0892.49.29710.75.1892.5012W4CTD04710.40.01N92.30.69V36221.2121.2112.0010.58.3392.49.49110.38.2092.5012W5CTD04910.23.53N92.30.69V36315.1315.1315.1530010.4988792.5014510.38.20804.20.091W6CTD05110.4151N92.20.01V36317.3217.3417.5430010.325492.500910.3121692.5007W9CTD05210.51.1N92.20.37V36317.3217.3117.5130010.325492.498010.1612292.4980W10CTD05310.01.51N92.29.37V36317.3217.1417.1510.0010.4280992.498010.606292.4980W11CTD05410.01.61N92.93.9V36312.6112.1213.0210.00.3492.498410.006292.4980W11CTD05510.01.61N92.93.9V36.412.6113.1213.1213.1213.0214.0210.001492.498410.006292.4989W11CTD05710.00.02N92.93.9V36.516.4017.2017.2017.0010.00.3092.498992.492W11CTD05710.00.02N92.93.0316.4116.2017.2010.00.3192.494510.00.6292.4939W11CTD05710.00.02N	W2	CTD045	10 50.06N	92 29.99W	362	19:40	19:46	19:51	150	10.83434	-92.49990	10.83518	-92.50022
W4CTD04710.40.01N92.30.5W36221.4121.2715.010.6686192.5005510.667992.5015W5CTD04810.35.0N92.30.8W36.31.5131.5231.533010.4988792.5015110.322392.50161W7CTD05010.19.5N92.30.0W36.31.5131.5271.7411.61592.000610.3244192.5007610.3245192.5007610.3245192.5007610.3245192.5007610.3245192.5007610.3245192.5007610.510792.4987610.4987792.5016510.4978792.5017610.500792.4986510.245792.49876W10CTD05110.01.7W92.29.37W3632.6141.5151.9071.00.83492.498410.602692.69039.5985692.502144CTD05510.00.1W92.29.37W3642.5511.5151.001.00.83492.49841.0002792.50269.502144CTD05710.00.0W92.30.3W3651.6171.72317401.00.01492.50021.0001492.50029.502144CTD0510.00.0W92.30.3W3651.6171.72317401.00.01492.50021.0001392.50029.502144CTD0510.00.0W92.30.3W3651.6171.7231.7401.00.01492.50021.0001492.50021.0001492.50021.0001492.50021.0001492.50021.00014<	W3	CTD046	10 45.05N	92 29.97W	362	20:59	21:04	21:10	150	10.75083	-92.49957	10.75116	-92.50004
WeCTD04410.5500N92.930W36313.5414.1414.2430010.583292.940M10.582992.5014WeCTD05910.251N92.303W36316.2516.3716.4430010.4151592.500410.342492.5014WeCTD05110.151N92.303W36316.2516.3716.4430010.4151592.500610.414992.5070WiCTD05110.51N92.303W36320.3420.3520.2530010.617892.499010.162292.4990WiCTD05210.51N92.393W36321.3021.3021.359009.982392.50039.986292.50039	W4	CTD047	10 40.01N	92 30.05W	362	22:14	22:21	22:27	150	10.66681	-92.50055	10.66679	-92.50123
WeCTD04010.29.3N92.30.0W36.315.1315.2315.3530010.448792.50.4K10.4416192.500.4KWBCTD05110.94.5HN92.30.0W36.317.3217.4317.4430010.322492.500010.321492.5007WBCTD05210.15.7M92.29.2W36.317.3217.4517.5430010.5250992.4968410.2860292.49894V10CTD05310.07N92.29.3W36.314.0417.3217.3017.3010.301492.4948410.808692.4989440CTD05310.04.5HN92.39.2W36.414.0415.3530010.030492.4948410.808692.504441CTD05410.04.1M92.30.3W36414.0415.3517.3217.0010.003492.4948410.808692.504442CTD05710.00.01N92.30.3W36516.4015.1517.2017.0010.001492.504210.006492.504240CTD05910.00.01N92.30.3W36516.4016.4327.0010.001492.5004210.001492.500441CTD05910.00.01N92.30.3W6016.1416.4327.0010.001492.5004210.001492.500442CTD06110.00.01N92.30.3W6016.1416.4320.010.001492.5004210.001492.500443CTD06410.00.01N92.30.3W6	W5	CTD048	10 35.00N	92 29.98W	363	13:58	14:11	14:24	300	10.58332	-92.49961	10.58229	-92.50015
W7CT005010 24 9119 2 30.3036316.3716.4330010.41519 2.5085010.414919 2.50870W8CT005210 15.119 2 39.3036316.4317.4317.4510.0010.325419 2.5080010.322619 2.5080010.322619 2.5080010.322619 2.5080010.322619 2.5080010.322619 2.5080010.32269 2.5080010.32269 2.5080010.32269 2.5080010.32269 2.5080010.32269 2.50800<	W6	CTD049	10 29.93N	92 30.09W	363	15:13	15:23	15:35	300	10.49887	-92.50145	10.49851	-92.50204
W1CT00511019.59N92.30.1W36317.3417.4430010.332492.500010.321492.5007W9CT00521016.1N92.29.2W36316.4615.7710.0710.462092.4984510.462292.49845W11CT005410.04.8N92.29.3W36321.4021.5121.5230010.678892.4994010.1682292.4994041CT005510.90.4N92.30.6M36314.0411.3815.5590.09.902992.500319.902009.25003141CT005610.00.4N92.30.6M36412.4011.3317.3237.0010.001492.4994010.90209.25004141CT005710.00.2N92.30.6M36520.5221.5521.5010.001492.5049210.00249.25094110.002492.504210.002	W7	CTD050	10 24.91N	92 30.03W	363	16:25	16:37	16:48	300	10.41515	-92.50056	10.41469	-92.50071
W10CTD0521015.01192.29.2903313.6010.57030.010.210092.4986510.249792.49876W11CTD05410.44.8992.29.3903321.3021.4021.5030.010.0167892.4984410.022092.498454CTD05510.49.8992.30.6003231.6011.6219.3230.010.002492.4984510.022092.600092.600092.500144CTD05710.002722.30.90092.30.6003212.6112.3213.2313.2010.001492.504049.990292.5040492.504144CTD05710.002792.30.6003512.6112.5112.5213.0010.001492.5040410.002492.504049.990792.5040410.002492.50404 </th <th>W8</th> <th>CTD051</th> <th>10 19.95N</th> <th>92 30.01W</th> <th>363</th> <th>17:32</th> <th>17:43</th> <th>17:54</th> <th>300</th> <th>10.33254</th> <th>-92.50009</th> <th>10.33216</th> <th>-92.50087</th>	W8	CTD051	10 19.95N	92 30.01W	363	17:32	17:43	17:54	300	10.33254	-92.50009	10.33216	-92.50087
VTD06CTD0530101.07N92.9.9.9V36320.3021.3020.117820.24.997U10.162292.4984110.0026092.49841VT1CTD05410.9.5.9N92.9.9.7V36421.3021.3021.5130010.0030492.9494410.0026092.500314CTD05510.00.1N92.2.9.1V36418.3018.2318.2428.0010.001492.9494410.0026492.500414CTD05710.00.2N92.2.9.9V36421.5123.0223.1223.0110.001492.5004410.0026492.500444CTD05810.00.1N92.30.3W36524.222.5222.5023.010.001492.5004410.002792.500714CTD05110.00.2N92.30.3W03524.2222.5223.570010.001492.5004410.002792.500714CTD05110.00.1N92.30.3W03514.1014.1314.4320.9.997792.500410.002792.500714CTD06109.59.8N92.30.3W00116.1216.1216.1216.1210.00192.50039.996222.50734CTD06109.59.8N92.30.3W00116.1216.1216.1216.1210.001992.50039.996222.50734CTD06109.59.8N92.30.3W00116.1216.1216.1216.2310.001992.50039.996222.50734 <t< th=""><th>W9</th><th>CTD052</th><th>10 15.01N</th><th>92 29.92W</th><th>363</th><th>18:48</th><th>18:57</th><th>19:07</th><th>300</th><th>10.25009</th><th>-92.49865</th><th>10.24975</th><th>-92.49798</th></t<>	W9	CTD052	10 15.01N	92 29.92W	363	18:48	18:57	19:07	300	10.25009	-92.49865	10.24975	-92.49798
VIICTD05410 04.98N92 9.97N36321.3021.4021.5130010.0304-92.494410.0226-92.50034CTD05509 59.90N92 30.06W36414.0414.3815.559009.39629-92.50033.99666-22.50144CTD05710.00.2N92.29.9W36421.5121.3228.6410.003442.498449.99902-22.50144CTD05810.00.0N92.30.9W36521.5221.5221.5237.010.0014-92.504210.00267-22.50174CTD05010.00.7N92.30.9W36520.5221.6221.6230.010.0014-92.50429.9997-22.50144CTD06110.90.7N92.30.3W36524.5221.6210.009.99977-25.20029.99977-25.50514CTD06110.90.0N92.30.3W00116.1216.1216.1216.1210.0019-92.500310.0013-22.50144CTD06110.90.0N92.30.3W00116.1216.1216.1210.0019-92.500310.0019-92.50034CTD06110.90.0N92.30.3W00116.1216.1216.1210.0019-92.500310.0019-92.50034CTD06110.90.0N92.30.3W00116.1216.1216.1210.0019-92.501310.0026-92.50154CTD06110.90.3N92.30.3W00110.20	W10	CTD053	10 10.07N	92 29.98W	363	20:04	20:15	20:25	300	10.16788	-92.49970	10.16822	-92.49980
4CTD05509<	W11	CTD054	10 04.98N	92 29.97W	363	21:30	21:40	21:51	300	10.08304	-92.49944	10.08260	-92.49899
4CTD05610 00.16N92 29.31W36418-2018-2318-2356810.002492.4948410.000692.50444CTD05710.00.2N92 30.30W36514:0115:1317:23371010.001492.501210.002492.50134CTD05810 00.0N92 30.30W36521:0221:5521:0566010.011492.502410.002692.50244CTD06109 0.007N92 30.30W65021:4222:5623:2570010.001092.504410.002792.50274CTD06109 0.007N92 30.30W01014:0514:1614:432009.999792.505010.001092.50044CTD06110 0.00192 30.30W01016:1216:1216:1270010.000492.507310.002092.50514CTD06410 0.00192 30.30W0116:1316:1316:1417010.000492.507310.001992.50034CTD06509 50.3N92 30.3W0316:0316:1516:1516:1617029.998792.491510.001992.50027CTD06709 50.3N92 30.5W0317:9316:1516:1516:1617229.988792.491510.001992.50167CTD06709 50.3N92 30.5W0415:0516:1516:1616:1616:169.51619.521629.216159.26175	4	CTD055	09 59.90N	92 30.06W	364	14:04	14:38	15:55	900	9.99829	-92.50093	9.99686	-92.50231
4CTD05710.002N92 29.9W36422.5123.0223.4526010.003492.49849.990292.50144CTD05810 0.01N92 30.3W36514.0115.1317.23371010.0014192.504210.0024192.50324CTD05010 0.07N92 30.3W36524.2221.5632.5570010.012092.504410.026792.50274CTD0610 59.9N92 30.3W0114.1514.1614.432009.997592.500510.001392.50054CTD0610 59.9N92 30.3W00116.1216.1216.1210.001492.500710.001092.500710.00144CTD06110 0.0.1N92 30.3W00116.1216.1216.1210.1210.001492.500710.002092.50174CTD06310 0.0.1N92 30.3W00116.1216.1216.1210.1210.001492.500710.002092.50174CTD06410 0.0.2N92 30.3W00316.1316.1415.1270010.001492.501710.002392.50164CTD06509 59.3N92 30.5W00317.0917.3218.1617.329.998792.491510.001992.50167CTD06409 50.3N92 30.5W00317.0917.3218.1615.34509.817892.501769.825392.50157CTD06709 5	4	CTD056	10 00.18N	92 29.91W	364	18:08	18:23	19:32	568	10.00294	-92.49845	10.00066	-92.50044
4CTD05810 0.01N92 30.3W36514.0115.1317.2371010.0014192.504210.004492.503814CTD05910 0.07N92 30.3W36522.4222.5623.2570010.012092.504410.026792.507314CTD06109 59.9N92 30.3W00114.1514.1614.332009.997592.50429.994492.50554CTD06210 0.0N92 30.3W00116.1216.2316.5025.09.999792.505010.001392.50034CTD06310 0.01N92 30.0W00118.1019.1820.46370210.001492.50339.999292.50534CTD06410 0.02N92 30.1W00314.2314.2415.1270010.001492.50339.999292.505310.001992.50234CTD06509 59.3N92 30.1W00314.2315.1216.3425.09.9989792.4981510.001992.50234CTD06409 59.3N92 30.8W00316.1516.3415.129.9989792.491510.003392.50257CTD06709 59.3N92 30.8W00317.3218.1617.329.9899792.491510.003892.50164CTD06709 50.7N92 30.8W00316.1516.3415.09.0178992.49159.895792.50267OTD06709 50.7N92 30.1W	4	CTD057	10.00.02N	92 29.99W	364	22:51	23:02	23:45	280	10.00034	-92.49984	9.99902	-92.50149
4CTD05910 0.0.9N92 3.0.6W36520:0520:0221:0586010.014192.509810.025892.50274CTD06010 0.0.0TN92 3.0.3W01014:0522:1623:2570010.012092.500410.002792.50374CTD06210 0.0.0N92 3.0.3W01114:0514:1614:432009.999792.500510.001392.50054CTD06210 0.0.0N92 3.0.3W00116:1216:2316:502509.999792.50039.996292.50514CTD06310 0.0.1N92 3.0.3W00116:1216:2316:5027010.001092.50039.996292.50514CTD06410 0.0.2N92 3.0.6W00316:0316:1516:3427010.004092.502710.001392.50264CTD06509 59.3N92 2.9.5W00317:0917:3218:1617329.98679.2497510.003892.50267CTD06709 50.6N92 3.0.1W00407:1002:260.99.91789.2497510.003892.50267CTD06709 50.6N92 3.0.1W00416:1516:1616:285009.842892.50179.836392.50267OTD06909 4.487N92 3.0.1W00415:5016:1516:285009.842892.50179.69049.250577CTD07009 4.0.1N92 3.0.0W <th>4</th> <th>CTD058</th> <th>10 00.01N</th> <th>92 30.03W</th> <th>365</th> <th>14:01</th> <th>15:13</th> <th>17:23</th> <th>3710</th> <th>10.00014</th> <th>-92.50042</th> <th>10.00044</th> <th>-92.50305</th>	4	CTD058	10 00.01N	92 30.03W	365	14:01	15:13	17:23	3710	10.00014	-92.50042	10.00044	-92.50305
4CTD06010 0.0.07N92 3.0.3W36522.4222.5623.2570010.012192.504410.026792.50724CTD06109 59.98N92 3.0.3W00114.0514.1614.432009.999792.50029.9994992.50054CTD06210 0.0.0N92 3.0.3W00116.1216.2216.502509.999792.50039.992292.50154CTD06310 0.0.1N92 3.0.0W00116.1119.1820.46370210.001492.502310.002092.50514CTD06410 0.0.2N92 3.016W00314.3314.2415.1270010.004092.5027310.002092.50514CTD06509 5.9.3M92 9.8.9W00316.3316.1516.342509.9.989792.4.981510.001992.50167CTD07609 5.0.7N92 3.0.3W0037.7.917.3218.1617.329.998792.4.975710.003892.50167CTD07009 5.0.7N92 3.0.3W00322.3.222.442.3.15009.178892.50159.365392.50157CTD07009 40.10N92 3.0.1W00414.2614.2614.145009.7478692.50179.469492.50177CTD07009 40.1M92 3.0.1W00415.5016.1516.285009.345592.49979.370692.50157CTD07109 4	4	CTD059	10 00.09N	92 30.06W	365	20:05	20:25	21:05	860	10.00143	-92.50098	10.00258	-92.50273
4CTD06109 59.98N92 30.03W00114.0514.1614.432009.99975-92.50059.9949-92.500514CTD06210 00.01N92 30.03W00116.1216.2216.502509.99977-92.500510.0013-92.500514CTD06310 00.01N92 30.03W00118.0119.1220.46570210.00101-92.50029.99962-92.505114CTD06410 00.02N92 30.16W00316.1316.1415.1270010.0040-92.502710.002092.502314CTD06509 59.34N92 29.85W00316.1316.1416.342509.99897-92.498710.0019-92.502671CTD06609 59.37N92 30.08W00322.3022.40110.10192.50129.92150-92.505272CTD06709 50.07N92 30.08W00322.3022.4023.1110.1091.25079.83423-92.50129.92150-92.505274CTD06899 50.06N92 30.11W00410.1211.1211.1210.109.9178-92.50129.921509.2505775CTD07109 40.10N92 30.07W00414.1614.2614.145009.4631-92.50129.46319.2501276CTD07209 40.4N92 30.10W00421.3722.5121.125009.41519.50179.66949.2501776CTD073 </th <th>4</th> <th>CTD060</th> <th>10 00.07N</th> <th>92 30.03W</th> <th>365</th> <th>22:42</th> <th>22:56</th> <th>23:25</th> <th>700</th> <th>10.00120</th> <th>-92.50044</th> <th>10.00267</th> <th>-92.50277</th>	4	CTD060	10 00.07N	92 30.03W	365	22:42	22:56	23:25	700	10.00120	-92.50044	10.00267	-92.50277
4CTD06210 00.00N92 30.03W00116:1216:2316:502509.9997-92.500510.0013.92.50044CTD06310 00.01N92 30.00W00118:0119:1820:46370210.0010-92.50039.9982-92.50514CTD06410 00.02N92 30.16W00316:0316:1516:342509.99897-92.4981510.0019-92.500234CTD06609 59.34N92 29.85W00317:0917:3218:1617229.99887-92.4975710.0038-92.50268P1CTD06709 55.07N92 30.68W00322:3622:4623:015009.91799-92.501269.92150-92.50568P2CTD06809 50.66N92 30.11W00401:1001:260.0405009.83428-92.501759.83653-92.50578P3CTD07009 40.10N92 30.09W0414:2614:415009.74786-92.501269.74823-92.50175P4CTD07009 40.10N92 30.09W0418:1618:4216:565009.53455-92.499519.53706-92.49851P5CTD07109 40.4N92 9.99W0050:3701:5111:625009.26713-92.501269.26755-92.50175P6CTD07209 6.4N92 9.99W0050:3701:5111:625009.26173-92.499509.250179.2501759.250176 <tr< th=""><th>4</th><th>CTD061</th><th>09 59.98N</th><th>92 30.03W</th><th>001</th><th>14:05</th><th>14:16</th><th>14:43</th><th>200</th><th>9.99975</th><th>-92.50042</th><th>9.99949</th><th>-92.50055</th></tr<>	4	CTD061	09 59.98N	92 30.03W	001	14:05	14:16	14:43	200	9.99975	-92.50042	9.99949	-92.50055
4CTD6310 00.01N92 30.00W00118:0119:1820:46370210.0019-92.50039.9962-92.50514CTD6410 00.2N92 30.16W00314:0314:2415:1270010.0040-92.5027310.0022-92.505614CTD6609 59.93N92 29.85W00317:0917:3218:1617329.9887-92.4975710.0038-92.50562P1CTD66709 55.07N92 30.68W00322:3022:4623:015009.91789-92.501269.921509.925072P2CTD66809 50.06N92 30.11W00400:1000:2600:405009.31789-92.501269.921509.32656P3CTD6909 41.87N92 30.15W00414:0614:2614:115009.74766-92.502589.74823-92.50351P4CTD67009 40.10N92 30.09W00415:5016:1516:285009.66831-92.51759.66904-92.50275P5CTD07109 40.0N92 30.0W00415:5016:1516:285009.40154-92.501769.4031-92.50464P6CTD07209 40.4N92 30.0W00417:2317:4318:025009.40154-92.499599.2617692.499599.26176P6CTD07309 6.0A192 9.9W00501.3705:5116:065009.39974-92.499509.260179.249959<	4	CTD062	10 00.00N	92 30.03W	001	16:12	16:23	16:50	250	9.99997	-92.50050	10.00013	-92.50049
4CTD06410 00.02N92 30.16W00314:0314:2415:1270010.0040-92.5027310.0020-92.50814CTD06509 59.93N92 29.89W00316:0316:1516:342509.99897-92.4981510.001992.50021P1CTD06709 55.07N92 30.08W00322:3022:4623:015009.91789-92.501269.92150-92.50562P2CTD06809 50.06N92 30.11W00400:1000:2600:405009.83428-92.501759.83653-92.50573P3CTD06909 44.87N92 30.15W00414:0614:2614:415009.74786-92.501759.66904-92.5028P4CTD07009 40.10N92 30.09W00418:1818:4118:565009.53455-92.499519.53706-92.49837P5CTD07109 32.07N92 29.97W00418:1818:4118:565009.53455-92.499519.40311-92.50472P6CTD07209 24.09N92 30.10W00501:3702:5121:125009.40154-92.501709.40311-92.50464P7CTD07508 59.98N92 30.10W00517:2417:4318:025009.40154-92.501738.99997-92.49853P6CTD07508 59.98N92 30.01W00517:2417:4318:025009.4015492.501738.99997-92.50164 <th>4</th> <th>CTD063</th> <th>10 00.01N</th> <th>92 30.00W</th> <th>001</th> <th>18:01</th> <th>19:18</th> <th>20:46</th> <th>3702</th> <th>10.00019</th> <th>-92.50003</th> <th>9.99962</th> <th>-92.50051</th>	4	CTD063	10 00.01N	92 30.00W	001	18:01	19:18	20:46	3702	10.00019	-92.50003	9.99962	-92.50051
4CTD06509 59.94N92 29.89W00316:0316:1516:342509.9999-92.4981510.0019-92.50234CTD06609 59.93N92 29.85W00317:0917:3218:1617329.9987-92.4975710.00389.250621P1CTD06709 55.07N92 30.08W00322:3022:4623:015009.91789-92.501269.921509.925052P2CTD06809 50.06N92 30.11W00400:1000:2600:405009.83428-92.501759.83653-92.50571P3CTD07009 41.87N92 30.15W00414:0614:2614:415009.74786-92.502589.748239.250266P5CTD07109 32.07N92 29.97W00418:1818:4118:565009.53455-92.499519.5370692.50276P6CTD07209 24.09N92 30.10W00420:2720:4821:035009.40154-92.501709.40311-92.50475P7CTD07309 16.03N92 29.98W00514:0114:2415:468008.9974-92.499508.999992.49950P3CTD07409 8.04N92 29.98W00514:0114:2415:468008.9974-92.50138.99902-92.50146P5CTD07508 59.98N92 30.01W00517:2417:4318:02588.9963-92.50118.999392.49959 <th< th=""><th>4</th><th>CTD064</th><th>10 00.02N</th><th>92 30.16W</th><th>003</th><th>14:03</th><th>14:24</th><th>15:12</th><th>700</th><th>10.00040</th><th>-92.50273</th><th>10.00220</th><th>-92.50561</th></th<>	4	CTD064	10 00.02N	92 30.16W	003	14:03	14:24	15:12	700	10.00040	-92.50273	10.00220	-92.50561
4 CTD066 99 59.3N 92 29.85W 003 17:09 17:32 18:16 1732 9.99877 -92.49757 10.0038 -92.50126 9.92150 -92.50126 9.92150 -92.5052 P2 CTD068 09 50.06N 92 30.11W 004 00:10 00:26 00:40 500 9.83428 -92.50175 9.83653 -92.50378 P3 CTD069 09 44.87N 92 30.15W 004 14:60 14:26 14:41 500 9.74786 -92.50175 9.83653 -92.50258 P4 CTD070 09 40.10N 92 30.9W 004 15:50 16:15 16:28 500 9.66831 -92.50175 9.66904 -92.50176 9.40311 -92.50176 P5 CTD071 09 40.40N 92.997W 004 18:18 18:41 18:56 500 9.51451 -92.49951 9.53766 -92.49957 9.40151 -92.49957 9.40311 -92.50176 P6 CTD073 09 6.04N 92 9.98W 005	4	CTD065	09 59.94N	92 29.89W	003	16:03	16:15	16:34	250	9.99899	-92.49815	10.00019	-92.50023
P1 CT0067 99 55.07N 92 30.08W 003 22:30 22:46 23:01 500 9.91789 -92.50126 9.91501 -92.50326 P2 CTD068 09 50.06N 92 30.11W 004 00:10 00:26 00:40 500 9.83428 -92.50175 9.83653 -92.50358 P3 CTD069 09 44.87N 92 30.15W 004 14:06 14:26 14:41 500 9.74786 -92.50157 9.66904 -92.50358 P4 CTD070 09 40.10N 92 30.09W 004 18:18 18:41 18:56 500 9.66831 -92.50170 9.40311 -92.50472 P5 CTD071 09 30.01N 92 29.97W 004 20:27 20:48 21:03 500 9.6631 -92.50170 9.40311 -92.50472 P6 CTD073 09 16.03N 92 29.98W 004 22:37 22:54 23:12 500 9.26713 -92.49962 9.26755 -92.50107 P7 CTD074	4	CTD066	09 59.93N	92 29.85W	003	17:09	17:32	18:16	1732	9.99887	-92.49757	10.00038	-92.50021
P2 CTD068 09 50.06N 92 30.11W 004 00:10 00:26 00:40 500 9.83428 -92.50175 9.83653 -92.50358 P3 CTD069 09 44.87N 92 30.15W 004 14:06 14:26 14:41 500 9.74786 -92.50258 9.74823 -92.50358 P4 CTD070 09 40.10N 92 30.09W 004 15:50 16:15 16:28 500 9.66831 -92.50157 9.66904 -92.50296 P5 CTD071 09 32.07N 92 29.97W 004 18:18 18:41 18:56 500 9.53455 -92.49951 9.33706 -92.49830 P6 CTD073 09 16.03N 92 29.98W 004 22:37 22:44 21:03 500 9.40154 -92.49967 9.13446 -92.50176 P7 CTD074 09 08.04N 92 29.98W 005 17:24 17:43 18:02 558 8.99971 92.49907 9.13446 -92.50101 8.99993 -92.50163 <th< th=""><th>P1</th><th>CTD067</th><th>09 55.07N</th><th>92 30.08W</th><th>003</th><th>22:30</th><th>22:46</th><th>23:01</th><th>500</th><th>9.91789</th><th>-92.50126</th><th>9.92150</th><th>-92.50562</th></th<>	P1	CTD067	09 55.07N	92 30.08W	003	22:30	22:46	23:01	500	9.91789	-92.50126	9.92150	-92.50562
P3 CTD069 09 44.87N 92 30.15W 004 14:06 14:26 14:41 500 9.74786 -92.50258 9.74823 -92.50258 P4 CTD070 09 40.10N 92 30.09W 004 15:50 16:15 16:28 500 9.66831 -92.50157 9.66904 -92.50296 P5 CTD071 09 32.07N 92 29.97W 004 18:18 18:41 18:56 500 9.53455 -92.49951 9.53766 -92.49951 9.53765 -92.49951 9.53765 -92.49951 9.53756 92.49971 9.53756	P2	CTD068	09 50.06N	92 30.11W	004	00:10	00:26	00:40	500	9.83428	-92.50175	9.83653	-92.50571
P4 CTD070 09 40.10N 92 30.09W 004 15:50 16:15 16:28 500 9.66831 -92.50157 9.66904 -92.50261 P5 CTD071 09 32.07N 92 29.97W 004 18:18 18:41 18:56 500 9.53455 -92.49951 9.53760 -92.49830 P6 CTD072 09 24.09N 92 30.10W 004 20:27 20:48 21:03 500 9.40154 -92.49951 9.40311 -92.50472 P7 CTD073 09 16.03N 92 29.98W 005 00:37 00:51 01:06 500 9.13393 -92.49962 9.26755 -92.50170 P8 CTD074 09 08.04N 92 29.98W 005 14:01 14:24 15:46 800 8.9974 -92.49959 8.9999 -92.49959 8.99992 -92.50013 8.9992 -92.50013 8.9992 -92.50014 90.00.01 92.49959 8.9991 -92.49959 8.9991 -92.50013 8.9991 -92.50013 8.9991 -	P3	CTD069	09 44.87N	92 30.15W	004	14:06	14:26	14:41	500	9.74786	-92.50258	9.74823	-92.50358
P5 CTD071 09 32.07N 92 29.97W 004 18:18 18:41 18:56 500 9.53455 -92.49951 9.53706 -92.49830 P6 CTD072 09 24.09N 92 30.10W 004 20:27 20:48 21:03 500 9.40154 -92.50170 9.40311 -92.50472 P7 CTD073 09 16.03N 92 29.98W 004 22:37 22:54 23:12 500 9.26713 -92.49962 9.26755 -92.50170 P8 CTD074 09 08.04N 92 29.98W 005 14:01 14:24 15:46 800 8.99974 -92.49959 8.99999 -92.49959 5 CTD076 08 59.98N 92 30.01W 005 17:24 17:43 18:02 558 8.9963 -92.50013 8.99972 -92.49959 5 CTD077 09 00.03N 92 30.01W 006 14:04 15:22 17:43 3603 8.9963 -92.50011 8.99973 -92.49959 5 CTD078 08 59.98N 92 30.01W 006 14:04 15:22 17:43 3603	P4	CTD070	09 40.10N	92 30.09W	004	15:50	16:15	16:28	500	9.66831	-92.50157	9.66904	-92.50296
P6 CTD072 09 24.09N 92 30.10W 004 20:27 20:48 21:03 500 9.40154 -92.50170 9.40311 -92.50472 P7 CTD073 09 16.03N 92 29.98W 004 22:37 22:54 23:12 500 9.26713 -92.49962 9.26755 -92.50107 P8 CTD074 09 08.04N 92 29.98W 005 00:37 00:51 01:06 500 9.13393 -92.49907 9.13446 -92.50147 5 CTD075 08 59.98N 92 29.98W 005 14:01 14:24 15:46 800 8.99974 -92.49959 8.99992 -92.49959 5 CTD076 08 59.98N 92 30.01W 005 17:24 17:43 18:02 558 8.99963 -92.49917 8.99975 -92.49963 5 CTD077 09 00.03N 92 30.01W 006 14:04 15:22 17:43 3603 8.99968 -92.50011 8.90903 -92.50102 5 CTD078 08 59.98N 92 30.00W 006 19:17 19:38 20:15 800	P5	CTD071	09 32.07N	92 29.97W	004	18:18	18:41	18:56	500	9.53455	-92.49951	9.53706	-92.49830
P7CTD07309 16.03N92 29.98W00422:3722:5423:125009.26713-92.499629.26755-92.50107P8CTD07409 08.04N92 29.99W00500:3700:5101:065009.13333-92.499079.13446-92.501465CTD07508 59.98N92 29.98W00514:0114:2415:468008.99974-92.499598.99999-92.499595CTD07608 59.98N92 30.01W00517:2417:4318:025588.99963-92.50138.99902-92.500455CTD07709 00.03N92 29.95W00521:0521:1822:292839.0044-92.499178.99975-92.501075CTD07808 59.98N92 30.01W00614:0415:2217:4336038.9968-92.500119.0030-92.501025CTD07909 00.00N92 30.01W00614:1719:3820:158009.0001-92.500118.9993-92.501205CTD08008 59.98N92 30.01W00621:3021:4722:206008.99988-92.499298.9824-92.500205CTD08108 59.98N92 30.01W00714:0214:1014:30678.99961-92.501518.99891-92.502295CTD08208 59.98N92 30.09W00715:5516:0616:282008.99961-92.501518.99891-92.50259 <tr< th=""><th>P6</th><th>CTD072</th><th>09 24.09N</th><th>92 30.10W</th><th>004</th><th>20:27</th><th>20:48</th><th>21:03</th><th>500</th><th>9.40154</th><th>-92.50170</th><th>9.40311</th><th>-92.50472</th></tr<>	P6	CTD072	09 24.09N	92 30.10W	004	20:27	20:48	21:03	500	9.40154	-92.50170	9.40311	-92.50472
P8 CTD074 09 08.04N 92 29.99W 005 00:37 00:51 01:06 500 9.13393 -92.49907 9.13446 -92.50146 5 CTD075 08 59.98N 92 29.98W 005 14:01 14:24 15:46 800 8.99974 -92.49959 8.99999 -92.49959 5 CTD076 08 59.98N 92 30.01W 005 17:24 17:43 18:02 558 8.99963 -92.50013 8.99902 -92.49959 5 CTD077 09 00.03N 92 29.95W 005 21:05 21:18 22:29 283 9.00044 -92.49917 8.99975 -92.49963 5 CTD078 08 59.98N 92 30.01W 006 14:04 15:22 17:43 3603 8.9968 -92.50011 9.0030 -92.50102 5 CTD079 09 00.00N 92 30.01W 006 14:04 15:22 17:43 3603 8.9968 -92.50011 8.9033 -92.50102 5 CTD079 09 00.00N 92 30.01W 006 21:30 21:47 22:20 600	P7	CTD073	09 16.03N	92 29.98W	004	22:37	22:54	23:12	500	9.26713	-92.49962	9.26755	-92.50107
5 CTD075 08 59.98N 92 29.98W 005 14:01 14:24 15:46 800 8.99974 -92.49959 8.99999 -92.49959 5 CTD076 08 59.98N 92 30.01W 005 17:24 17:43 18:02 558 8.99963 -92.49959 8.99902 -92.50045 5 CTD077 09 00.03N 92 29.95W 005 21:05 21:18 22:29 283 9.00044 -92.49917 8.99975 -92.50103 5 CTD078 08 59.98N 92 30.01W 006 14:04 15:22 17:43 3603 8.9968 -92.50011 9.0030 -92.50102 5 CTD079 09 00.00N 92 30.00W 006 19:17 19:38 20:15 800 9.0001 -92.50011 8.99933 -92.50020 5 CTD080 08 59.98N 92 30.01W 006 21:30 21:47 22:20 600 8.99988 -92.49292 8.9824 -92.50020 5 CTD081 08 59.94N 92 30.01W 007 14:02 14:10 14:30 67 <td< th=""><th>P8</th><th>CTD074</th><th>09 08.04N</th><th>92 29.99W</th><th>005</th><th>00:37</th><th>00:51</th><th>01:06</th><th>500</th><th>9.13393</th><th>-92.49907</th><th>9.13446</th><th>-92.50146</th></td<>	P8	CTD074	09 08.04N	92 29.99W	005	00:37	00:51	01:06	500	9.13393	-92.49907	9.13446	-92.50146
5 CTD076 08 59.98N 92 30.01W 005 17:24 17:43 18:02 558 8.99963 -92.50013 8.9902 -92.50045 5 CTD077 09 00.03N 92 29.95W 005 21:05 21:18 22:29 283 9.00044 -92.49917 8.99975 -92.49963 5 CTD078 08 59.98N 92 30.01W 006 14:04 15:22 17:43 3603 8.9968 -92.50011 9.0030 -92.50100 5 CTD079 09 00.00N 92 30.01W 006 19:17 19:38 20:15 800 9.0001 -92.50011 8.99903 -92.50102 5 CTD080 08 59.99N 92 29.96W 006 21:30 21:47 22:20 600 8.9988 -92.49929 8.9824 -92.50020 5 CTD081 08 59.94N 92 30.01W 007 14:02 14:10 14:30 67 8.99961 -92.50120 8.99797 -92.50124 5 CTD082 08 59.94N 92 30.09W 007 15:55 16:06 16:28 200 8	5	CTD075	08 59.98N	92 29.98W	005	14:01	14:24	15:46	800	8.99974	-92.49959	8.99999	-92.49959
5 CTD077 09 00.03N 92 29.95W 005 21:05 21:18 22:29 283 9.00044 -92.49917 8.9975 -92.49963 5 CTD078 08 59.98N 92 30.01W 006 14:04 15:22 17:43 3603 8.9968 -92.50011 9.0030 -92.50100 5 CTD079 09 00.00N 92 30.00W 006 19:17 19:38 20:15 800 9.0001 -92.50011 8.9993 -92.50102 5 CTD080 08 59.99N 92 29.96W 006 21:30 21:47 22:20 600 8.9988 -92.49929 8.99824 -92.50020 5 CTD081 08 59.94N 92 30.01W 007 14:02 14:10 14:30 67 8.99966 -92.50120 8.99797 -92.50124 5 CTD082 08 59.98N 92 30.09W 007 15:55 16:06 16:28 200 8.99961 -92.50151 8.99891 -92.50229 5 CTD083 08 59.95N 92 30.06W 007 17:40 18:52 20:26 3600	5	CTD076	08 59.98N	92 30.01W	005	17:24	17:43	18:02	558	8.99963	-92.50013	8.99902	-92.50045
5 CTD078 08 59.98N 92 30.01W 006 14:04 15:22 17:43 3603 8.99968 -92.50011 9.0030 -92.50100 5 CTD079 09 00.00N 92 30.00W 006 19:17 19:38 20:15 800 9.0001 -92.50011 8.99903 -92.50102 5 CTD080 08 59.99N 92 29.96W 006 21:30 21:47 22:20 600 8.99988 -92.49929 8.99824 -92.50020 5 CTD081 08 59.94N 92 30.01W 007 14:02 14:10 14:30 67 8.99966 -92.50120 8.99797 -92.50124 5 CTD082 08 59.98N 92 30.09W 007 15:55 16:06 16:28 200 8.99961 -92.50151 8.99891 -92.50229 5 CTD083 08 59.95N 92 30.06W 007 17:40 18:52 20:26 3600 8.99918 -92.50099 8.99961 -92.50099 8.99961 -92.50044 9.00269 -92.50278 5 CTD084 09 00.07N 92 30.03W 0	5	CTD077	09 00.03N	92 29.95W	005	21:05	21:18	22:29	283	9.00044	-92.49917	8.99975	-92.49963
5 CTD079 09 00.00N 92 30.00W 006 19:17 19:38 20:15 800 9.00001 -92.50001 8.99903 -92.50102 5 CTD080 08 59.99N 92 29.96W 006 21:30 21:47 22:20 600 8.99988 -92.49929 8.99824 -92.50020 5 CTD081 08 59.94N 92 30.01W 007 14:02 14:10 14:30 67 8.99906 -92.50020 8.99797 -92.50124 5 CTD082 08 59.98N 92 30.01W 007 15:55 16:06 16:28 200 8.99961 -92.50151 8.99891 -92.50229 5 CTD083 08 59.95N 92 30.06W 007 17:40 18:52 20:26 3600 8.99918 -92.50099 8.99961 -92.50055 5 CTD084 09 00.07N 92 30.03W 009 14:03 14:24 15:05 550 9.00125 -92.50044 9.00269 -92.50278	5	CTD078	08 59.98N	92 30.01W	006	14:04	15:22	17:43	3603	8.99968	-92.50011	9.00030	-92.50100
5 CTD080 08 59.99N 92 29.96W 006 21:30 21:47 22:20 600 8.99988 -92.49929 8.99824 -92.50020 5 CTD081 08 59.94N 92 30.01W 007 14:02 14:10 14:30 67 8.99966 -92.50020 8.99797 -92.50124 5 CTD082 08 59.98N 92 30.09W 007 15:55 16:06 16:28 200 8.99961 -92.50151 8.99891 -92.50229 5 CTD083 08 59.95N 92 30.06W 007 17:40 18:52 20:26 3600 8.9918 -92.50099 8.99961 -92.50055 5 CTD084 09 00.07N 92 30.03W 009 14:03 14:24 15:05 550 9.00125 -92.50044 9.00269 -92.50278	5	CTD079	09 00.00N	92 30.00W	006	19:17	19:38	20:15	800	9.00001	-92.50001	8.99903	-92.50102
5 CTD081 08 59.94N 92 30.01W 007 14:02 14:10 14:30 67 8.99906 -92.50020 8.99797 -92.50124 5 CTD082 08 59.98N 92 30.09W 007 15:55 16:06 16:28 200 8.99961 -92.50151 8.99891 -92.50229 5 CTD083 08 59.95N 92 30.06W 007 17:40 18:52 20:26 3600 8.99918 -92.50099 8.99961 -92.50055 5 CTD084 09 00.07N 92 30.03W 009 14:03 14:24 15:05 550 9.00125 -92.50044 9.00269 -92.50278	5	CTD080	08 59.99N	92 29.96W	006	21:30	21:47	22:20	600	8.99988	-92.49929	8.99824	-92.50020
5 CTD082 08 59.98N 92 30.09W 007 15:55 16:06 16:28 200 8.99961 -92.50151 8.99891 -92.50229 5 CTD083 08 59.95N 92 30.06W 007 17:40 18:52 20:26 3600 8.99918 -92.50099 8.99961 -92.50055 5 CTD084 09 00.07N 92 30.03W 009 14:03 14:24 15:05 550 9.00125 -92.50044 9.00269 -92.50278	5	CTD081	08 59.94N	92 30.01W	007	14:02	14:10	14:30	67	8.99906	-92.50020	8.99797	-92.50124
5 CTD083 08 59.95N 92 30.06W 007 17:40 18:52 20:26 3600 8.99918 -92.50099 8.99961 -92.50055 5 CTD084 09 00.07N 92 30.03W 009 14:03 14:24 15:05 550 9.00125 -92.50044 9.00269 -92.50278	5	CTD082	08 59.98N	92 30.09W	007	15:55	16:06	16:28	200	8.99961	-92.50151	8.99891	-92.50229
5 CTD084 09 00.07N 92 30.03W 009 14:03 14:24 15:05 550 9.00125 -92.50044 9.00269 -92.50278	5	CTD083	08 59.95N	92 30.06W	007	17:40	18:52	20:26	3600	8.99918	-92.50099	8.99961	-92.50055
	5	CTD084	09 00.07N	92 30.03W	009	14:03	14:24	15:05	550	9.00125	-92.50044	9.00269	-92.50278

5	CTD085	09 00.00N	92 30.04W	009	16:03	16:25	17:02	718	8.99998	-92.50060	9.00048	-92.50230
4.5	CTD086	09 30.03N	92 30.11W	009	21:24	21:53	23:29	700	9.50045	-92.50189	9.50124	-92.50473
4.5	CTD087	09 30.03N	92 30.65W	009	23:31	23:45	01:19	340	9.50055	-92.51075	9.50095	-92.51190
W1	CTD088	08 52.52N	92 30.01W	010	14:01	14:20	14:31	650	8.87540	-92.50022	8.87505	-92.50128
W2	CTD089	08 44.89N	92 30.10W	010	15:39	15:58	16:15	650	8.74822	-92.50163	8.74712	-92.50246
W3	CTD090	08 37.45N	92 30.00W	010	17:13	17:32	17:47	650	8.62410	-92.49998	8.62316	-92.50039
W4	CTD091	08 29.91N	92 30.00W	010	18:48	19:05	19:24	650	8.49858	-92.49993	8.49813	-92.49869
W5	CTD092	08 22.41N	92 30.00W	010	20:21	20:38	20:56	650	8.37354	-92.49998	8.37264	-92.49980
W6	CTD093	08 14.92N	92 30.04W	010	21:57	22:13	22:29	650	8.24865	-92.50072	8.24751	-92.50098
W7	CTD094	08 07.53N	92 30.01W	010	23:31	23:49	00:06	650	8.12549	-92.50017	8.12472	-92.50103
6	CTD095	07 59.97N	92 30.02W	011	13:59	14:18	15:45	683	7.99957	-92.50031	7.99946	-92.50103
6	CTD096	08 00.01N	92 30.01W	011	18:03	18:15	19:27	424	8.00018	-92.50023	7.99951	-92.50087
6	CTD097	07 59.99N	92 30.00W	011	21:24	21:34	22:35	208	7.99980	-92.50001	7.99971	-92.50036
6	CTD098	08 00.01N	92 30.00W	012	13:58	15:00	16:47	3000	8.00011	-92.50008	8.00052	-92.49967
6	CTD099	08 00.02N	92 29.98W	012	18:32	18:49	19:25	640	8.00036	-92.49817	8.00010	-92.49748
6	CTD100	07 59.94N	92 29.97W	012	20:47	21:03	21:31	540	7.99903	-92.49943	7.99914	-92.49875
6	CTD101	07 59.99N	92 29.97W	013	14:02	14:08	14:33	82	7.99987	-92.49955	7.99982	-92.49964
6	CTD102	07 59.96N	92 29.99W	013	17:25	17:38	18:09	185	7.99937	-92.49976	7.99911	-92.50000

Letters T, W and P indicate transects, i.e. CTD used only to get oxygen data in between sites.

Appendix 2.

Below is a detailed list of all the surface meteorology activities.

Julian	Time	Activity	Crate	Bottle	Lat	Lon	Salin			
Day 343	01:00	Wetsensors cleaned	-	-	7.438098	-82.540314	29.1976			
345	09:00	salinity sample	121-144	121	11.606422	-91.634423	33.3205			
345	21:00	salinity sample	121-144	122	12.005766	-92.504961	33.1547			
346	09:00	salinity sample	121-144	123	12.202474	-92.631505	33.1034			
346	21:00	salinity sample	121-144	124	11.998521	-92.499022	33.1399			
347	09:00	salinity sample	121-144	125	12.175046	-92.653779	33.1399			
347	21:00	salinity sample	121-144	126	12.021022	-92.502236	33.0896			
348	09:00	salinity sample	121-144	127	12.065431	-92.478299	33.6595			
348	21:00	salinity sample	121-144	128	12.004811	-92.480020	33.0842			
348	21:00-21:03	Transm. & Fluorimeter cleaned								
349	09:00	salinity sample	121-144	129	11.840847	-92.440283	33.1039			
349	21:00	salinity sample	121-144	130	11.789299	-92.024179	33.4212			
350	09:00	salinity sample	121-144	131	11.930006	-92.480764	33.1499			
350	21:00	salinity sample	121-144	132	11.854723	-92.898125	33.4192			
351	09:00	salinity sample	121-144	133	12.614873	-92.581991	33.3804			
351	21:00	salinity sample	121-144	134	13.005746	-92.536335	33.3727			
352	09:00	salinity sample	121-144	135	12.927101	-92.504818	33.4486			
352	13:50-14:10	Transm. & Fluorimeter of	leaned							
352	21:00	salinity sample	121-144	136	13.011346	-92.493059	33.4169			
353	09:00	salinity sample	121-144	137	13.070555	-92.546184	33.6276			
353	21:00	salinity sample	121-144	138	12.994725	-92.513497	33.3649			
354	09:00	salinity sample	121-144	139	12.981590	-92.628032	33.3991			
354	09:01-09:04	Transm. & Fluorimeter cleaned								
354	21:00	salinity sample	121-144	140	13.005057	-92.497279	33.4518			
355	09:00	salinity sample	121-144	141	12.968843	-92.382508	33.5385			
355	21:00	salinity sample	121-144	142	12.576844	-92.499058	33.3714			
356	09:00	salinity sample	121-144	143	12.153960	-92.442537	33.3017			
356	21:00	salinity sample	121-144	144	11.444539	-92.501036	33.3435			
357	14:00	salinity sample	73-96	73	10.999479	-92.499279	33.5538			
358	02:00	salinity sample	73-96	74	11.025632	-92.478840	33.6023			
358	14:00	salinity sample	73-96	75	10.999635	-92.499075	33.6002			
359	01:50	salinity sample	73-96	76	11.042645	-92.538597	33.5838			
359	13:50	salinity sample	73-96	77	10.997518	-92.758919	33.6423			
360	02:27	salinity sample	73-96	78	11.000596	-92.775576	33.6351			
360	14:00	salinity sample	73-96	79	11.002752	-92.502755	33.9539			
361	01:50	salinity sample	73-96	80	10.963166	-92.476817	34.1356			

361	13:50	salinity sample	73-96	81	11.001033	-92.499130	34.0915					
62	01:50	salinity sample	73-96	82	10.951041	-92.472692	34.1003					
62	13:50	salinity sample	73-96	83	10.999897	-92.596059	34.0333					
62	13:50-13:57	Transm. & Fluorimeter cleaned										
63	01:50	salinity sample	73-96	84	10.644516	-92.494857	34.1003					
63	14:00	salinity sample	73-96	85	10.583175	-92.499544	33.9974					
64	01:50	salinity sample	73-96	86	10.040088	-92.457990	34.1598					
64	13:50	salinity sample	73-96	87	9.998839	-92.501098	34.1718					
65	02:00	salinity sample	73-96	88	10.005058	-92.502407	34.1422					
65	13:45	salinity sample	73-96	89	9.998675	-92.507167	34.0455					
35	22:48-23:10	Transm. & Fluorimeter cleaned										
)1	02:00	salinity sample	73-96	90	10.008042	-92.480218	33.9832					
)1	13:50	salinity sample	73-96	91	10.000158	-92.499873	33.9808					
)2	01:50	salinity sample	73-96	92	10.000573	-92.461120	34.0504					
)2	14:00	salinity sample	73-96	93	10.000326	-92.500137	33.9837					
03	01:50	salinity sample	73-96	94	10.003954	-92.528247	34.1159					
)3	12:50-13:01	Transmissometer Optics Cleaned										
03	13:50	salinity sample	73-96	95	9.998520	-92.499781	33.62229					
04	01:50	salinity sample	73-96	96	9.851130	-92.511505	33.6913					
04	14:00	salinity sample	25-48	25	9.747849	-92.500912	33.7733					
05	01:50	salinity sample	25-48	26	9.141392	-92.495228	34.2779					
)5	13:50	salinity sample	25-48	27	8.999848	-92.500440	34.0871					
05	13:51-13:58	Transm. & Fluorimeter cleaned										
)6	01:50	salinity sample	25-48	28	9.023254	-92.528326	34.099					
)6	13:50	salinity sample	25-48	29	8.999570	-92.501278	34.0685					
)7	01:50	salinity sample	25-48	30	9.013964	-92.552002	34.112					
07	14:05	salinity sample	25-48	31	8.998648	-92.500569	34.002					
08	01:50	salinity sample	25-48	32	8.948691	-92.602872	33.9824					
08	13:50	salinity sample	25-48	33	9.000112	-92.500629	33.8176					
08	13:50-14:10	TSG, Transm. & Fluorimeter cleaned										
08	16:42-16:58	Non-Toxic tap closed	I (plumbing worl	<s)< td=""><td></td><td></td><td></td></s)<>								
09	01:50	salinity sample	25-48	34	9.008046	-92.499718	33.9285					
009	13:50	salinity sample	25-48	35	8.999913	-92.500190	33.9771					
10	01:58	salinity sample	25-48	36	9.477794	-92.530974	34.161					
010	14:00	salinity sample	25-48	37	8.875445	-92.500009	34.0024					
)11	01:50	salinity sample	25-48	38	8.035913	-92.508463	33.9502					
)11	13:50	salinity sample	25-48	39	7.999658	-92.499759	33.9197					
11	13:52	Transm. & Fluorimeter cleaned										
)12	01:50	salinity sample	25-48	40	8.000198	-92.516938	33.8112					
12	13:50	salinity sample	25-48	41	7.999515	-92.502701	33.7939					
13	01:50	salinity sample	25-48	42	7.995008	-92.506347	33.8231					
13	13:50	salinity sample	25-48	43	7.999986	-92.499948	33.8317					
)14	01:50	salinity sample	25-48	44	8.202622	-92.848423	33.7991					
)14	14:00	salinity sample	25-48	45	8.556995	-92.125959	34.0098					
	01:50	solipity somplo	25-48	46	8 549022	-89 000115	34 276					
115	01.50	samily sample	23-40	40	0.040022	00.000110	01.210					