CCGS HUDSON FALL CRUISE 2011, HUD1143 REPORT ON THE RECOVERY AND DEPLOYMENT OF RAPID-WAVE MOORINGS IN THE SCOTIAN SLOPE-RISE 23 SEPTEMBER-1 OCTOBER 2011

MIGUEL ÁNGEL MORALES MAQUEDA AND JEFFREY PUGH NATIONAL OCEANOGRAPHY CENTRE

Table of Contents

INTRODUCTION	3
RS ARRAY RECOVERY	4
Notes on recovered instruments	7
1. Bottom pressure recorders	7
2. RDI Workhorse ADCPs	7
3. SBE37 Microcats	9
4. CTD data	9
RS ARRAY REDEPLOYMENT	10
Preparation of BPRs for deployment	10
Preparation of microCATs for deployment (calibration dips)	11
APPENDIX. MOORING DIAGRAMS	16
Recoveries 2011	16
Deployments 2011	
1 2	

INTRODUCTION

This is the first leg of the annual CCGS Hudson Fall cruise, which combines work for the Canadian AZMP (Atlantic Zone Monitoring Program) and the UK funded Western Atlantic Variability Experiment (WAVE), which is part of the RAPID-WATCH¹ Program. The objective of this cruise is to recover 6 moorings deployed in December 2010 (see cruise report HUD2010049) and redeploy them for a period of 18 months (September 2011-May 2013). the moorings record bottom pressure, currents, temperature, and salinity (conductivity) at various depths. The scientific purpose of these moorings is to measure bottom pressure changes in the western Atlantic and, in this way, infer the variability of the Atlantic Meridional Overturning Circulation, which, to leading order, is governed by variability on the western ocean boundary.

In all previous RAPID-WAVE missions, moorings were deployed for one year. This is the first time that the mooring line is deployed for 18 months. If this deployment proves successful, subsequent deployments will also be made for a duration of 18 months. This will significantly reduce the costs of maintaining the line without, it is expected, significantly endangering it.

¹ WATCH stands for "Will the Atlantic Thermohaline Circulation Halt?"

RS ARRAY RECOVERY

Recovery work was carried out throughout 24-09-2011 and 25-09-2011. The moorings at RS1 to RS5 were recovered without incidents, although work was made difficult by persistent, thick fog. The mooring at RS6 could not be released on 25-09-2011, presumably because the release mechanism failed or because the BPR came out of its holder at some point during deployment and the chain joined the BPR to the release got entangled with the anchor chain. Dragging for the mooring lead to the top part of the mooring (including a syntactic foam float, a Casabel Iridium beacon, a RCM11 and a SBE37) to be severed by the dragging wire. The severed elements drifted away in the fog while the dragging wire was being paid in, but they were tracked regularly thanks to the positions provided by the Iridium beacon on the float (e-mails were received on board at 15-minute intervals reporting the GPS position of the beacon). The package was finally recovered on 26-09-2011. Dragging for the remaining part of the RS6 mooring was resumed on 27-09-2011 but was unsuccessful. An opportunity for dragging during the second leg of the cruise (after the NOC personal had disembarked) allowed us to recover three additional SBE37s (see also BIO cruise report 2011-043).

Calibration dips for all the microCAT recovered were carried out on the nights of 27 and 28 September 2011. The microCATs were clamped to the CTD rosette and submerged to 3300 m. As the rosette was being brought up to the surface, five 15-minute stops were made to allow the microcats to record at reasonably constant and uniform conditions. The microCAT sampling rate was set to 15 seconds for this calibration dip, thus affording about 90 samples per rosette stop. The nominal sampling depths were: 3300 m, 2700 m, 2200 m, 1600 m and 1000 m. Results from these calibration casts will be used, in combination with dips done on the previous cruise, HUD2010049, to correct raw temperature, conductivity and pressure data from the microCATs. Yuri Geshelin, from BIO, will carry out the calibration. The ADCP data, which is typically more difficult to calibrate than CTD or BPR data, will be calibrated first. After this, a preliminary calibration of the microCAT data will be performed using the raw CTD cast data as truth. Subsequently, once the CTD data has been calibrated itself using the bottle samples, a final slope and offset correction will be applied to the SBE37 microCAT measurements.

Site	LATITUDE (N)	LONGITUDE (W)	DATE RECOVERED	Depth (m)	MOORING TYPE
RS1	42 51.1856	61 37.9276	24-09-2011	1108 (cor.)	Short
RS2	42 44.3552	61 34.4191	24-09-2011	1725 (cor.)	Short
RS3	42 39.3148	61 27.3821	24-09-2011	2313.5 (cor.)	Short
RS4	42 33.3851	61 22.2472	24-09-2011	2777 (cor.)	Short
RS5	42 23.5292	61 16.6110	24-09-2011	3418.2 (cor.)	Short
RS6	42 09.6849	61 04.2094	25/26-09-2011	3880 (cor.)	Long

The following four tables summarise relevant information for all recoveries.

Notes. Positions were calculated during the previous cruise HUD10049 using M-Cal triangulations (see SEANAV's website http://www.seanav.com/).

 Table 1: Moorings recovered. RS1 to RS5 were successfully recovered. Only the top part of RS6 was salvaged after dragging.

Instrument	RS1	RS2	RS3	RS4	RS5	RS6
Casabel Iridium beacon	300034012408360	300034012155420	300034012612500	300034012722800	300034012190230	300034012126050
Aanderaa RCM11 ¹						679
SBE37 MicroCAT	6433					8110
SBE37 MicroCAT		8263				1785
SBE37 MicroCAT			8264			8111 ²
SBE37 MicroCAT				8265		6436 ²
SBE37 MicroCAT					8109	6467 ²
SBE37 MicroCAT						6468
WHADCP	13592	13873	13874	10941	13983	10942
Aanderaa RCM11 ¹	678					
SBE37 MicroCAT with Oxygen Sensor	9021					
Benthos 965-A acoustic release	40081 8.5 kHz D/-/E	890 10.5 kHz A/B/C	40083 9 kHz E/-/H	40047 8.0 kHz A/-/B	44302 13.5 kHz C/-/D	809 9.5 kHz E/F/D
SBE53 BPR	50	45	48	66	49	51

These current meters are BIO's and not part of the RAPID-WAVE project. 2 Recovered on 12-10-2011 after dragging for mooring at RS6.

1. 2.

Table 2: Summary of equipment recovered.

Instrument	Site	Sampling interval (seconds)	Averaging interval (seconds)	Number of bins/ bin size (m)	Time of first record (Z)	Time of last record (Z)
SBE37-SM 1785	RS6	1200	-	-	13 Dec 2010, 11:00:01	-
SBE37-SM 6433	RS1	1200	-	-	18 Dec 2010, 20:40:01	24 Sep 2011, 11:40:01
SBE37-SM 6436	RS6	1200	-	-	19 Dec 2010, 11:00:01	-
SBE37-SM 6467	RS6	1200	-	-	19 Dec 2010, 11:00:01	-
SBE37-SM 6468	RS6	1200	-	-	19 Dec 2010, 11:00:01	-
SBE37-SM 8263	RS2	1200	-	-	18 Dec 2010, 20:20:01	24 Sep 2011, 14:00:01
SBE37-SM 8264	RS3	1200	-	-	18 Dec 2010, 20:00:01	24 Sep 2011, 15:40:01
SBE37-SM 8265	RS4	1200	-	-	18 Dec 2010, 17:20:01	24 Sep 2011, 18:00:01
SBE37-SM 8109	RS5	1200	-	-	18 Dec 2010, 14:00:01	24 Sep 2011, 21:20:01
SBE37-SM 9021	RS1	3600	-	-	19 Dec 2010, 01:00:51	24 Sep 2011, 12:00:50
SBE37-SM 8110	RS6	1200	-	-	19 Dec 2010, 11:00:01	27 Sep 2011, 11:40:01
SBE37-SM 8111	RS6	1200	-	-	19 Dec 2010, 11:00:01	-
WHADP Sentinel 10941	RS4	3600	-	30/4	13 Dec 2010, 1:00:00	24 Sep 2011, 10:00:00
WHADP Sentinel 10942	RS6	3600	-	30/4	13 Dec 2010, 19:00:00	-
WHADP Sentinel 13592	RS1	3600	-	30/4	13 Dec 2010, 19:00.00	24 Sep 2011, 10:00:00
WHADP Sentinel 13873	RS2	3600	-	30/4	13 Dec 2010, 19:00.00	24 Sep 2011, 10:00:00
WHADP Sentinel 13874	RS3	3600	-	30/4	13 Dec 2010, 19:00:00	24 Sep 2011, 10:00:00
WHADP Sentinel 13893	RS1	3600	-	30/4	13 Dec 2010, 19:00:00	24 Sep 2011, 10:00:00
SBE53 45	RS2	1200	300 ¹	-	15 Dec 2010, 20:20:00	26 Sep 2011, 17:40:00
SBE53 48	RS3	1200	300 ¹	-	15 Dec 2010, 16:20:00	26 Sep 2011, 16:40:00
SBE53 49	RS5	1200	300 ¹	-	15 Dec 2010, 17:00:00	26 Sep 2011, 16:00:00
SBE53 50	RS1	1200	300 ¹	-	15 Dec 2010, 17:20:00	26 Sep 2011, 17:20:00
SBE53 51	RS6	1200	300 ¹	-	18 Dec 2010, 23:40:00	-
SBE53 66	RS4	1200	3001	-	15 Dec 2010, 20:00:00	26 Sep 2011, 15:20:00

1. Sensor warming up period was set to 300 seconds too. The time stamp for SBE53 samples corresponds to the beginning of each 300- second averaging interval

Table 3: Summary of instrument setup.

SBE37 serial number	Date of calibration cast	Sensors	Pump	Depth rating (m)	Notes
6433	27 Sept. 2011	CTD	Yes	3500	Good
8109	28 Sept. 2011	CTD	Yes	7000	Good
8110	28 Sept. 2011	CTD	Yes	7000	Good
8263	27 Sept. 2011	CTD	Yes	3500	Good
8264	27 Sept. 2011	CTD	Yes	3500	Good
8265	27 Sept. 2011	CTD	Yes	3500	Good
9021	27 Sept. 2011	CTD-Oxygen	Yes	3500	Good

Table 4: Summary of calibration dips for recoveries. Note: stops at 2700, 2200, 1600, 1000, 400 m for the 3500-m rated SBE37s; stops at 3300, 2700, 2200, 1600, 1000 m for the 7000-m rated SBE37s.

Notes on recovered instruments

1. Bottom pressure recorders

SBE53s. All the recovered SBE53s performed very well. Pressure ranges in all 5 recovered sites were approximately 2 decibars, with trends over the period of measurement of less than ~ 0.1 decibars per year. The BPRs will be returned to Sea Bird for refit and calibration.

Figure 1: Time series of bottom pressures from recovered SBE53s. The blue line traces the raw data and the red line depicts a moving averaged version of the data calculated with a 1 day and 20 minutes averaging window.

2. RDI Workhorse ADCPs

All ADCPs provided fairly good data, and none of them run out of batteries prematurely, as happened in the 2008-2009 deployment. The effective ADCP range decreases with depth, presumably as a result of fewer scatterers. The presence of the mooring float 50-55 m above the ADCP causes contamination of the bins in the range >50 m. This is a problem that we hope to have solved this year by putting the mooring's float higher up in the water column (see mooring diagrams in the Appendix). In all sites, the measured velocities are very coherent in the vertical (see figure below). However, it might be possible to exploit the vertical uniformity of the currents to extrapolate velocity values into those bins. At all sites, the vertical profile of the current appears to be somewhat distorted at a range of ~50 m. This is possible due to the presence of a float and microcat at that depth.

Figure 1: Zonal current component from ADCP measurements at RS1(top) through RS5 (bottom).

3. SBE37 Microcats

The mooring microCAT data was summarily examined soon after recovery. All data seemed of acceptable quality. Drift of the strain gauge sensors amounted to ± 0.2 decibars or less in all instruments, except SBE37-8110, the sole microCAT recovered at RS6, which exhibited a drift of allmost – 2 decibars.

4. CTD data

CTD casts were made adjacent to all six RS mooring sites. BIO are currently performing quality control and calibration of these CTD data.

RS ARRAY REDEPLOYMENT

Preparation of BPRs for deployment

Six Sea Bird 53 BPRs were made available for deployment in the line. Of these, 5 were old BPRs that had been deployed previously either in the RS line or in line W. One of them was brand new. The five old BPRs were sent to Sea Bird for recalibration and recertification in August 2008. Upon return to BIO, the boxes containing the BPRs must have been dropped from a height or badly bashed around, as they all showed evidence of strong impacts. All six instruments were tested at atmospheric pressure before deployment (see below). The accompanying table summarises relevant data about these instruments.

Part #	Serial #	Batteries	Notes
5349607	5349607-0023	New alkaline batteries	Brought from Woods Hole Oceanographic Institution (WHOI). Previously deployed in Endeavor 2008 EN454 cruise). Pressure sensor probe slightly off-centre, probably as a result of the instrument having been dropped while in transit from Sea Bird to BIO (see Figure). BPR box shows evidence of impact.
5349607	5349607-0024	New alkaline batteries	Sent from WHOI. Previously deployed in HUD2009048. BPR box shows evidence of impact.
5349607	5349607-0025	New alkaline batteries	Previously deployed in HUD2009048. BPR box shows evidence of impact.
5340415	5340415-0047	New alkaline batteries	Previously deployed in HUD2009048. BPR box shows evidence of impact.
5353201	5353201-0052	New alkaline batteries	Previously deployed in HUD2009048. BPR box shows evidence of impact.
5353201B	5353201-0073	New alkaline batteries	Newly bought BPR (May 2011).

Table 5: Summary of SBE53 BPRs ready for deployment.

а

b

Figure 2: a) Thermistor probe in SBE53-0023 (the bright pin surrounded by a dark circle to the right of the white plastic bar and above the oil bladder protective cap). This BPR was probably dropped or hit in transit from Sea Bird to BIO. Note that the probe is markedly off-centre. b) Thermistor probe in a BPR that has not suffered damage.

All 6 BPRs were turned on in the laboratory on 22nd September 2011 and left recording in air for

approximately 20 hours. For this dry test, the BPRs were left standing, as this is the sole position that ensures good contact between the pressure sensor oil and the pressure sensor itself (see SBE53 manual). Instrument SBE53-0023 was accidentally placed upside down, and so its recorded dry pressure is very different (lower) than that of the other sensors. Figure 3 Shows the pressures and temperatures recorded by all the instruments. The disagreement in pressure between the BPRs is consistent with the accuracy of the instruments (0.0001 times full scale = 0.6885 m). However, the disagreement in temperature is somewhat puzzling given that the nominal accuracy of the thermistors is 0.002 C. The cause of this discrepancy must be discussed with the manufacturer. It is also evident that the temperature, like the pressure, is sensitive to the orientation of the instrument, which requires an explanation as well.

Figure 3: Pressures (left panel) and temperatures (right panel) measured in dry tests by the SBE53s that were deployed in HUD2011043.

Preparation of microCATs for deployment (calibration dips)

Prior to deployment all microCATs were clamped to the CTD rosette and dipped to 3300 m. On its ascent, the rosette was stopped for 15 minutes at 3300 m, 2700 m, 2200, 1600 m and 1000 m. The microCAT sampling period was 15 seconds. The objective of this calibration dip is to obtain simultaneous conductivity, temperature and pressure data from both the microCAT and the CTD system. The CTD system is frequently calibrated against standards and, therefore, its data is of high accuracy and precision. The CTD data area used to calibrate the microCAT measurements. Combining a pre-deployment calibration dip, such as the one described here, with a post-deployment one, it is possible to calibrate the microCAT data to an accuracy comparable to that of the ship's CTD system. A summary of the calibration dips carried out can be found in Table 6.

The agreement in temperature between microCATs is very good, with a temperature spread that is not larger than 0.004 °C at any depth. Excluding microCAT SBE37-1696, the spread in conductivity is 0.001 S/m, and that in pressure in 30 dbar. The SBE37-1696 had a conductivity that is \sim 0.004

SBE37 serial number	Date of calibration cast	Sensors	Pump	Depth rating (m)	Notes
1696	24-25 Sept. 2011	CTD	No	7000	Bad conductivity and pressure
2165	24-25 Sept. 2011	CTD	No	3500	Good
3675	24-25 Sept. 2011	СТ	Yes	7000	Good
3680	24-25 Sept. 2011	СТ	Yes	7000	Good
3681	24-25 Sept. 2011	CTD	Yes	7000	Good
3682	28 Sept. 2011	CTD	Yes	7000	Good
3709	24-25 Sept. 2011	CTD	Yes	7000	Good
3710	24-25 Sept. 2011	CTD	Yes	7000	Good
3713	24-25 Sept. 2011	CTD	Yes	7000	Good
3714	24-25 Sept. 2011	CTD	Yes	7000	Good
4028		CTD	Yes	2000	Not calibrated
4614	24-25 Sept. 2011	CTD	No	3500	Good
4617	24-25 Sept. 2011	CTD	No	3500	Good
6432	24-25 Sept. 2011	CTD	No	3500	Good
6434	24-25 Sept. 2011	CTD	No	3500	Good
6435	24-25 Sept. 2011	CTD	No	3500	Good
6437	24-25 Sept. 2011	CTD	No	3500	Good
7647	28 Sept. 2011	CTD	No	7000	Good

S/m smaller than that of any other microCAT and its pressure sensor was not working.

Table 6: Summary of calibration dips for deployments. Note: stops at 3300, 2700, 2200, 1600, 1000 m.

Figure 4: Results from the calibrations dip done between the 24th and 25th September 2011. Each panel includes data from all the microCATs (left: temperature; centre: conductivity; right: pressure). The red curve corresponds to microCAT SBE37-1696, whose pressure sensor was not working and whose conductivity cell gave readings systematically lower than those of the other conductivity sensors.

SITE	Latitude (N)	Longitude (W)	DATE & TIME AT BOTTOM	Depth (m)	MOORING TYPE
RS1	42 51.1523	61 38.1068	29-09-2011, 11:41 Z	1106	Short
RS2	42 44.3020	61 34.4829	29-09-2011, 13:39 Z	1718	Short
RS3	42 39.3558	61 27.3860	29-09-2011, 16:24 Z	2325	Short
RS4	42 33.4337	61 22.2630	26-09-2011, 18:57 Z	2783	Short
RS5	42 23.3777	61 16.8417	26-09-2011, 14:48 Z	3428	Short
RS6	42 10.8283	61 00.3925	28-09-2011, 17:27 Z	3836	Long
RS6A	42 12.3469	61 09.1772	28-09-2011, 20:22 Z	3873	Short

Note. Positions were calculated from M-Cal triangulations (see SEANAV's website http://www.seanav.com/). All times record the moment when the mooring anchor hit bottom (except for RS6, for which the bridge position for anchor on water is given). Echo sounder depths with assumed sound velocity of 1500 m/s.

Table 7: Moorings deployed.

Figure 5: Location of moorings deployed in 2009. The blue lines correspond to the bathymetric contours: 500 m, 1000 m, 2000 m, 3000 m and 4000 m.

The following table includes the serial number of all the instruments, beacons and releases deployed in the line. Mooring schematics can be found in the Appendix.

	RS1	RS2	RS3	RS4	RS5	RS6
Casabel Irid. beacon	X	X				RS6: 300034012152420
						RS6A: 300034012153420
Sable Iridum beacon			x	х	x	
Aanderaa RCM11 ¹	595					594
SBE37 MicroCAT	6437					
SBE37 MicroCAT	3682					4614
SBE37 MicroCAT		3709				6435
SBE37 MicroCAT			6434			
SBE37 MicroCAT			3681			4617
SBE37 MicroCAT				3710		6432
SBE37 MicroCAT					2165	
SBE37 MicroCAT					3713	3675
SBE37 MicroCAT						3680
SBE37 MicroCAT						3714
WHADCP	11432	11433	13153	12455	11089	16405
Aanderaa RCM11 ¹	595					
Benthos 865-A acoustic release	47462 13.0 kHz, R:D/E:G	40082 8.75 kHz; R:G	53468 8.5 kHz; R:B	47464 14.0 kHz; R:A/E:F	51819 14.5 kHz; R:H/E:A/D:G 40080 8.25 kHz; R:C/E:B	RS6: 805 11.25 kHz; R:D/E:E 889 9.25 kHz; R:C/E:A RS6A: 47463 13.5 kHz; R:G
SBE53 BPR	24	52	73	47	23	25

1. This current meter is BIO's and not part of the RAPID-WAVE project.

Table 8: Summary of equipment deployed

Instrument	Site	Sampling (ensemble) interval (seconds)	Averaging interval	Number of bins/ bin size (m)	Time of first record (Z)	Time of last record (Z)
SBE37-SM 2165 CTD/3500 m	RS5	1800	Note 1	-	26/09/2011 14:00:01	
SBE37-SMP 3675 CT/7000 m	RS6	1800	Note 1	-		
SBE37-SMP 3680 CT/7000 m	RS6	1800	Note 1	-		
SBE37-SMP 3681 CTD/7000 m	RS3	1800	Note 1	-	29/09/2011 16:00:01	
SBE37-SMP 3682 CTD/7000 m	RS1	1800	Note 1	-	29/09/2011 11:00:01	
SBE37-SMP 3709 CTD/7000 m	RS2	1800	Note 1	-	29/09/2011 13:00:01	
SBE37-SMP 3710 CTD/7000 m	RS4	1800	Note 1	-	26/09/2011 18:00:01	
SBE37-SMP 3713 CTD/7000 m	RS5	1800	Note 1	-	26/09/2011 14:00:01	
SBE37-SMP 3714 CTD/7000 m	RS6	1800	Note 1	-		
SBE37-SM 4614 CTD/3500 m	RS6	1800	Note 1	-		
SBE37-SM 4617 CTD/3500 m	RS6	1800	Note 1	-		
SBE37-SM 6432 CTD/3500 m	RS6	1800	Note 1	-		
SBE37-SM 6434 CTD/3500 m	RS3	1800	Note 1	-	29/09/2011 16:00:01	
SBE37-SM 6435 CTD/3500 m	RS6	1800	Note 1	-		
SBE37-SM 6437 CTD/3500 m	RS1	1800	Note 1	-	29/09/2011 11:00:01	
WHADP Sentinel 11089	RS5	3600	50 pings/ensemble 1 ping/36 s	30/4/50	26/09/2011 14:00:00	
WHADP Sentinel 11432	RS1	3600	50 pings/ensemble 1 ping/36 s	30/4/50	29/09/2011 10:00:00	
WHADP Sentinel 11433	RS2	3600	50 pings/ensemble 1 ping/36 s	30/4/50	29/09/2011 13:00:00	
WHADP Sentinel 12455	RS4	3600	50 pings/ensemble 1 ping/36 s	30/4/50	26/09/2011 19:00:00	
WHADP Sentinel 13153	RS3	3600	50 pings/ensemble 1 ping/36 s	30/4/50	29/09/2011 16:00:00	
WHADP Sentinel 16405	RS6	3600	50 pings/ensemble 1 ping/36 s	30/4/50	28/09/2011 12:00:00	
SBE53 23	RS5	1200	300 s ²	-	23/09/2011 17:50:00	
SBE53 24	RS1	1200	300 s ²	-	23/09/2011 17:20:00	
SBE53 25	RS6	1200	300 s ²	-	23/09/2011 21:20:00	
SBE53 47	RS4	1200	300 s ²	-	23/09/2011 20:00:00	
SBE53 52	RS2	1200	300 s ²	-	23/09/2011 20:00:00	
SBE53 73	RS3	1200	300 s ²	-	23/09/2011 21:40:00	

1. The most recent SBE73s no longer have a tunable averaging option: each sample is calculated as the average of 4 consecutive measurements (because of this, the fastest possible sampling rate is about 15 seconds).

2. Sensor warming up period was set to 300 seconds too. The time stamp for SBE53 samples correspond to the beginning of each 300- second averaging interval. The reference frequency measurement was set to once per week. With these settings, and taking into account that all SBE53s were fitted with alkaline batteries, the estimated maximum battery endurance should be 805.6 days.

Table 9: Summary of instrument set up.

APPENDIX. MOORING DIAGRAMS

Recoveries 2011

IRIDIUM CASABEL BEACON 1 HIBERNIA PACKAGE WITH PICK-UP ROPE SWIVEL 1000 METERS 50 METERS OF 3/16" JACKETED WIRE WITH SBE37 MICROCAT S/N CLAMPED ON 1 METER BELOW BUB Ц WHADCP S/N 1050 METERS 11 METERS OF 3/16" JACKETED WIRE 1 GLASS BUB PACKAGE 12 METERS OF 3/16" JACKETED WIRE AANDERAA RCM11 WITH OPTODE 1075 METERS SBE37 MICROCAT WITH OXYEN ATTACHED JUST BELOW RCM11 18 METERS OF 3/16" JACKETED WIRE A SWIVEL 1 GLASS BUB PACKAGE 1 GLASS BUB PACKAGE 1 GLASS BUB PACKAGE BENTHOS 965-A ACOUSTIC RELEASE S/N BIO BPR ANCHOR ASSEMBLY WITH SBE-BPR S/N and 1 METER 5/8" CHAIN 1100 METERS ************* ********************** 1-WHEEL ANCHOR

MOORING # 1777 RS1 LODER/POL SCOTIAN SLOPE DEC 2010

MOORING # 1778 RS2 LODER/POL SCOTIAN SLOPE DEC 2010

MOORING # 1779 RS3 LODER/POL SCOTIAN SLOPE DEC 2010

MOORING # 1780 RS4 LODER/POL SCOTIAN SLOPE DEC 2010

MOORING # 1781 RS5 LODER/POL SCOTIAN SLOPE DEC 2010

MOORING # 1782 RS6 LODER/POL SCOTIAN SLOPE DEC 2010

Deployments 2011

MOORING # 1804 RS1 LODER/POL SCOTIAN SLOPE OCT 2011

MOORING # 1805 RS2 LODER/POL SCOTIAN SLOPE OCT 2011

MOORING # 1806 RS3 LODER/POL SCOTIAN SLOPE OCT 2011

MOORING # 1807 RS4 LODER/POL SCOTIAN SLOPE OCT 2011

IRIDIUM SABLE BEACON S/N 300034012484560

MOORING # 1808 RS5 LODER/POL SCOTIAN SLOPE OCT 2011

MOORING # 1809 RS6 LODER/POL SCOTIAN SLOPE OCT 2011

MOORING # 1810 RS6A LODER/POL SCOTIAN SLOPE OCT 2011

3900 METERS