Cruise Report: *R/V Oceanus* 417 Woods Hole to Woods Hole October 12 – 18, 2005

Station W: A continuing program of ocean measurements

Background

This cruise was one element of an ongoing observational program – Station W – funded by the U.S. National Science Foundation to investigate the characteristics and consequences of interannual variations in the Northwest Atlantic's deep western boundary current (DWBC). This study is documenting for an initial 4-year period, the temperature, salinity, tracer and velocity variations of the DWBC upstream of its Gulf Stream crossunder point. Station W includes a 5-mooring array of instruments situated in the DWBC flow regime on the continental slope south of Woods Hole and is augmented by twice-yearly occupations of a hydrographic section along this line (Figure 1). A companion research program by U.K. investigators is sampling bottom pressure variability at each of our mooring sites (and an additional site shoreward of the shallowest mooring) plus two additional lines crossing the DWBC to the east of Station W. The moored array, which consists of 3 McLane profilers and 2 moorings of current meters plus T/C sensors, is designed to quantify changes in DWBC water properties, stratification (potential vorticity) and transport. A sixth mooring of current meters, deployed in the mean axis of the Gulf Stream along Line W was added in spring 2005 (This mooring, named GUSTO-05, is maintained by Dr. M. McCartney and funded by WHOI's Ocean and Climate Change Institute.) Shipboard observations using CTD, LADCP and discrete sampling for salinity, oxygen, CFCs and I¹²⁹ measure the water column properties at high spatial resolution to help verify that the array resolves interannual signals.

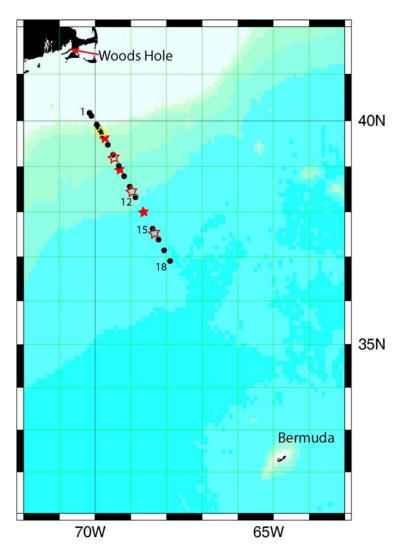
Cruise Summary

R/V Oceanus cruise # 417Departed Woods Hole on 12 October 2005.Returned to Woods Hole on 18 October 2005.Number of CTD/LADCP/Rosette stations occupied: 16 (of 22 planned).Weather was a major factor limiting the ability to acquire data.

Science party

Chief Scientist: Ruth Curry (WHOI)
CTD operations: Terry Joyce, Beatriz Pena-Molino, Jane Dunworth-Baker (WHOI)
LADCP : Dan Torres, Craig Marquette (WHOI)
CFC chemistry: Eugene Gorman, Guy Matthieu (LDEO), Nina Young (MIT undergrad)
Hydrography (salts and oxygens): George Tupper (WHOI)
Observers: Julia Whitty (Author), Tina Bell (Univ. of Georgia graduate student)

Cruise Narrative


The cruise tracked along a line between the continental shelf south of Woods Hole and Bermuda (Figure 1). Of 22 proposed stations, only 16 were successfully occupied (see Table 1). Weather was a limiting factor: a line of stationary low pressures centers dominated the entire northwest Atlantic spawning gale force winds and heavy seas for the duration of the field work. A Seabird 911 CTD system equipped with dual temperature/conductivity sensors and 1- dissolved oxygen sensor was used for all casts. A rosette sampler and 21 four-liter bottles were used to obtain water samples at discrete depths; these were subsequently analyzed for salinity, oxygen and CFC concentrations. Between stations 8-17, one liter samples were collected for shore-based analysis of Iodine-129 in the deep overflow waters. The LADCP consisted of a pair of upward/downward looking, 300 kHz ADCP transducers from RDI. Between casts, data were downloaded from the instruments. Underway ADCP data were collected with an RDI 75 kHz system. No IMET data were available due to equipment problems.

Stations 1-3 were acquired on the continental shelf in water depths < 200 m. Problems arose with the CTD Deck Unit at the start of **Station 5**, and were ultimately resolved after a three hour delay. The north wall of the Gulf Stream was situated at **Station 10** (see Figure 2). Heavy weather forced suspension of operations after **Station 12** (mid Gulf Stream) at which time we steamed southward. Casts were resumed beginning with **Station 18** and steaming northwestward to complete the intervening stations. **Station 18** had to be repeated as a result of the binary data file being corrupted (operator error). Upon completion of **Station 15**, time ran short and weather conditions deteriorated causing a premature end to data acquisition. The southern region of the Gulf Stream, **Stations 13 & 14**, were not occupied.

Acknowledgements

The fact that we successfully completed 16 casts in unrelentingly rough conditions is a tribute to the dedication of both the ship and science crews. We greatly appreciate the Captain (L.T. Bearse) and crew of R/V Oceanus who made every effort to obtain as many casts as possible. Special thanks go to the Bos'n (Leo Byckovas) who personally oversaw deployment and recovery operations for nearly every cast – especially in the heaviest weather – and the Shipboard Tech, Patrick Rowe, who cheerfully fixed equipment when it broke and kept things running in a few truly difficult moments. The science team of Terry Joyce, Beatriz Pena-Molino, Craig Marquette, Jane Dunworth-Baker, Dan Torres, George Tupper, Eugene Gorman, Guy Matthieu, and Nina Young safely deployed, recovered, sampled the CTD/rosette package, and analysed water samples amidst crashing waves, pitching decks, and generally uncomfortable conditions. Thanks to all for their perseverence and good humor in completing this job. Station W is

supported by the National Science Foundation (grant no. OCE-0241354) and contributes to the U.S. CLIVAR and U.K. RAPID programs.

Figure 1.

Locations of CTD stations (black circles and numbers), and Station W moorings: Moored profilers (red filled stars), current meters (red outlined stars), and bottom pressure gauge (yellow star). Bathymetry (1000 meter contours) is depicted by background color.

Figure 2.

SST from AVHRR data for the time interval Oct 13-19, 2005 shows the position of the Gulf Stream and Slope Waters relative to OC417 CTD casts.

Table 1.	List of hydrographic stations occupied on OC417	7

		STN	DATE TIN	1E LAT	LON	DPTH	WIRE OUT		# of X BOTTLES
32OC417	W	1	101305 1352	BE 40 17.07 N	-70 10.68 W GPS	86			
32OC417	W	1	101305 1354	BO 40 17.07 N	-70 10.67 W GPS		-9	79	3
32OC417	W	1	101305 1457	EN 40 17.09 N	-70 10.65 W GPS				
32OC417	W	2	101305 1535	BE 40 08.62 N	-70 06.10 W GPS	115			
32OC417	W	2	101305 1538	BO 40 08.65 N	-70 06.06 W GPS		110	105	3
32OC417	W	2	101305 1543	EN 40 08.71 N	-70 05.99 W GPS				
32OC417	W	3	101305 1822	BE 39 53.99 N	-69 57.13 W GPS	465			
32OC417	W	3	101305 1833	BO 39 54.08 N	-69 57.11 W GPS		462	454	6
32OC417	W	3	101305 1849	EN 39 54.22 N	-69 56.97 W GPS				
32OC417	W	4	101305 2017	BE 39 51.97 N	-69 55.57 W GPS	1100			
32OC417	W	4	101305 2045		-69 55.41 W GPS		1119	1051	12
32OC417	W	4	101305 2116	EN 39 52.99 N	-69 55.15 W GPS				
32OC417	W	5	101405 1311	BE 39 48.12 N	-69 51.57 W GPS	1277			
32OC417	W	5	101405 1333	BO 39 48.49 N	-69 51.66 W GPS		1212	1180	11
32OC417	W	5	101405 1406	EN 39 48.98 N	-69 51.94 W GPS				
32OC417	W	6	101405 1530	BE 39 42.90 N	-69 47.80 W GPS	2026			
32OC417	W	6	101405 1624	BO 39 42.70 N	-69 46.97 W GPS		2272	1180	18
32OC417	W	6	101405 1720	EN 39 43.45 N	-69 46.94 W GPS				
32OC417	W	7	101405 2015	BE 39 28.45 N	-69 38.46 W GPS	2418			
32OC417	W	7	101405 2111		-69 37.50 W GPS		2674	2414	21
32OC417	W	7	101405 2206	EN 39 29.81 N	-69 36.52 W GPS				
32OC417	W	8	101505 0114	BE 39 15.49 N	-69 29.48 W GPS	2650			
32OC417	W	8	101505 0159	BO 39 15.67 N	-69 29.22 W GPS		2652	2657	21
32OC417	W	8	101505 0253	EN 39 15.59 N	-69 29.05 W GPS				
32OC417	W	9	101505 0504	BE 39 01.18 N	-69 19.57 W GPS	3066			
32OC417	W	9	101505 0613	BO 39 01.88 N	-69 18.14 W GPS		3236	3048	21
32OC417	W	9	101505 0719	EN 39 02.18 N	-69 17.04 W GPS				
32OC417	W	10	101505 0919	BE 38 47.64 N	-69 10.35 W GPS	3290			
32OC417	W	10	101505 1035	BO 38 47.40 N	-69 08.69 W GPS		3347	3294	21
32OC417	W	10	101505 1151	EN 38 47.09 N	-69 07.34 W GPS				
32OC417	W	11	101505 1343	BE 38 33.46 N	-69 00.69 W GPS	3733			
32OC417	W	11	101505 1441	BO 38 33.79 N	-68 58.59 W GPS		3753	3503	21
32OC417	W	11	101505 1554	EN 38 34.12 N	-68 56.61 W GPS				
32OC417	W	12	101505 1808	BE 38 19.37 N	-68 52.03 W GPS	3793			
32OC417	W	12	101505 1917	BO 38 18.58 N	-68 50.17 W GPS		4364	3861	21
32OC417	W	12	101505 2046	EN 38 17.78 N	-68 48.38 W GPS				
32OC417	W	15	101705 1048	BE 37 38.23 N	-68 24.88 W GPS	4535			
32OC417	W	15	101705 1243	BO 37 38.74 N	-68 26.47 W GPS		4679	4623	21
32OC417	W	15	101705 1506	EN 37 38.23 N	-68 27.83 W GPS				
32OC417	W	16	101705 0311	BE 37 22.76 N	-68 13.15 W GPS	4709			
32OC417	W	16	101705 0449		-68 14.67 W GPS		5079	4806	21
32OC417	W	16	101705 0644	EN 37 20.38 N	-68 16.25 W GPS				
32OC417	W	17	101605 1418		-68 03.82 W GPS	5 4860			
32OC417	W	17	101605 1541		-68 04.15 W GPS		4984	4978	21
32OC417	W	17	101605 1721		-68 04.58 W GPS				
32OC417	W	18	101605 1913		-67 53.39 W GPS	4892			
32OC417	W	18	101605 2100		-67 52.92 W GPS		5349	5014	21
32OC417	W	18	101605 2240	EN 36 50.81 N	-67 52.73 W GPS				