NetCDF in SeaDataNet
Development Process

Roy Lowry
BODC
Outline

• Objectives
• Methodology
• Progress to Date
• Future Work
Objectives

• Specify a CF 1.6 compliant NetCDF encoding for data delivery following a CDI search

• This will:
 – Provide a NetCDF alternative to ODV ASCII and MEDATLAS
 – Facilitate delivery of data that cannot be encoded into existing formats (e.g. grids, high volume data)

• Maintain the CDI linkage and standardised semantics available in the existing formats

• Take account of interoperability with MyOcean and point data NetCDF in the USA and Australia
Methodology

• Group of experts recruited from
 – SeaDataNet Technical Task Team
 – OceanSITES/MyOcean
 – UNIDATA (including the author of the CF point data conventions)
 – USNODC (USA)
 – IMOS and METOC (Australia)

• Group developed specifications through an e-mail discussion list
Methodology

• Development of SeaDataNet profiles for CF 1.6 feature types such as:
 – Profiles (e.g. CTD)
 – Time series (e.g. sea level)
 – Trajectories (e.g. thermosalinograph)
 – Profile time series (e.g. moored ADCP)
 – Profile trajectories (e.g. vessel-mounted ADCP)
Methodology

• Profiling process involves
 – Imposition of standardised naming conventions (based on MyOcean)
 – Hardening up CF by making more attributes mandatory
 – Inclusion of SeaDataNet namespace variables and attributes
Progress to Date

• SeaDataNet profiles have been designed for:
 – Profiles
 – Time series
 – Trajectories

• Specifications have been written up as draft format documentation
Future Work

• SeaDataNet profiling for remaining feature types
• Consider requirements for gridded data profiling
• Consider profiles for data with a non-spatio-temporal dimension (e.g. wave spectra, spectral light data, etc.)
• Develop a specification for semantically-aware aggregation