SAZ-SENSE, Marine Science Cruise AU0703
 - Oceanographic Field Measurements and Analysis

MARK ROSENBERG
ACE CRC, Hobart, Australia
September, 2007

1 INTRODUCTION

Oceanographic measurements were collected aboard Aurora Australis cruise au0703 (voyage 3 2006/2007, 17th January to 20th February 2007) as part of the "SAZ-SENSE" experiment south of Tasmania, between 43° and 55° south. A total of 109 CTD vertical profile stations were taken to various depths, focussing chiefly on the upper water column. Over 1300 Niskin bottle water samples were collected for the measurement of salinity, dissolved oxygen, nutrients (phosphate, nitrate+nitrite, silicate, ammonia and nitrite), dissolved inorganic carbon, alkalinity, particulate organic carbon/nitrogen/silicate, dissolved and particulate barium, thorium, dissolved organic carbon, ammonium, pigments, phytoplankton, bacteria, viruses, diatoms, amino acids, and other biological parameters (list incomplete), using a 24 bottle rosette sampler. Near surface current profile data were collected by a ship mounted ADCP. Data from the array of ship's underway sensors are included in the data set.

This report describes the processing/calibration of the CTD and ADCP data, and details the data quality. An offset correction is derived for the underway sea surface temperature and salinity data, by comparison with near surface CTD data. CTD station positions are shown in Figure 1, while CTD station information is summarised in Table 1.

During the cruise, various sites were occupied for multiple measurement activities, and these sites were named and referred to as "stations". Note however that in this report "station" refers to a single CTD cast i.e. CTD station 1 to 109 for the cruise.

2 CTD INSTRUMENTATION

SeaBird SBE9plus CTD serial 704, with dual temperature and conductivity sensors and a single SBE43 dissolved oxygen sensor (serial 0178, on the primary sensor pump line), was used for the entire cruise, mounted on a SeaBird 24 bottle rosette frame, together with a SBE32 24 position pylon and 24×10 litre General Oceanics Niskin bottles. The following additional sensors were mounted:

* Tritech 200 kHz and 500 kHz altimeters
* Wetlabs ECO-AFL/FL fluorometer serial 296
* Wetlabs C-star transmissometer serial 899DR
* Biospherical Instruments photosynthetically active radiation (i.e. PAR) sensor
* old Antarctic Division PAR sensor

CTD data were transmitted up a 6 mm seacable to a SBE11plusV2 deck unit, at a rate of 24 Hz , and data were logged simultaneously on 2 PC's using SeaBird data acquisition software "Seasave". The transmissometer was plumbed inline with the main CTD sensors for the first 35 casts, with a closed tube joining the 2 transmissometer windows. The tube and plumbing to the transmissometer were removed after CTD 35.

The CTD deployment method was as follows:

* CTD initially deployed down to $\sim 20 \mathrm{~m}$
* after confirmation of pump operation, CTD returned up to just below the surface (depth dependent on sea state)
* after returning to just below the surface, downcast proper commenced

Cast depths varied according to the sampling requirements at each station, and full depth casts were only taken on 3 occasions.

Pre cruise temperature, conductivity and pressure calibrations were performed by the CSIRO Division of Marine and Atmoshperic Research calibration facility (Table 2) (July to August 2006). Manufacturer supplied calibrations were used for the dissolved oxygen, fluorometer, transmissometer and altimeters. PAR sensors were uncalibrated (raw voltage data only). Final conductivity and dissolved oxygen calibrations derived from in situ Niskin bottle samples are listed later in the report.

For stations 49, 50 and 51, six seal tags (P.I. Judy Horsburgh) were attached to the rosette, to calibrate and check functioning of the tag sensors.

3 CTD DATA PROCESSING AND CALIBRATION

CTD data were processed in Hobart. The first step is application of a suite of the SeaBird "Seasoft" processing programs to the raw data, in order to:

* convert raw data signals to engineering units
* remove the surface pressure offset for each station
* realign the oxygen sensor with respect to time (note that conductivity sensor alignment is done by the deck unit at the time of data logging)
* remove conductivity cell thermal mass effects
* apply a low pass filter to the pressure data
* flag pressure reversals
* search for bad data (e.g. due to sensor fouling)

Further processing and data calibration were done in a UNIX environment, using a suite of fortran programs. Processing steps here include:

* forming upcast burst CTD data for calibration against bottle data, where each upcast burst is the average of 10 seconds of data prior to each Niskin bottle firing
* merging bottle and CTD data, and deriving CTD conductivity calibration coefficients by comparing upcast CTD burst average conductivity data with calculated equivalent bottle sample conductivities
* forming pressure monotonically increasing data, and from there calculating 2 dbar averaged downcast CTD data
* calculating calibrated 2 dbar averaged salinity from the 2 dbar pressure, temperature and conductivity values
* deriving CTD dissolved oxygen calibration coefficients by comparing bottle sample dissolved oxygen values (collected on the upcast) with CTD dissolved oxygen values from the equivalent 2 dbar downcast pressures
* extracting the appropriate fluorescence and transmittance data to assign to each 2 dbar bin

Full details of the data calibration and processing methods are given in Rosenberg et al. (in preparation), referred to hereafter as the CTD methodology. Additional processing steps, in particular for the fluorescence and transmittance data, are discussed below in the results section. For calibration of the CTD oxygen data, whole profile fits were used for each station.

Final station header information, including station positions at the start, bottom and end of each CTD cast, were obtained from underway data for the cruise (see section 6 below). Note the following for the station header information:

* All times are UTC.
* "Start of cast" information is at the commencement of the downcast proper, as described above.
* "Bottom of cast" information is at the maximum pressure value.
* "End of cast" information is when the CTD leaves the water at the end of the cast, as indicated by a drop in salinity values.
* 12 kHz depth sounder data were not processed for this cruise. and all bottom depth information are the values recorded at the time of CTD logging i.e. as read from the "Echogram" display, with sound speed $1500 \mathrm{~m} / \mathrm{s}$. The Echogram display was often difficult to read through the thruster noise, and bottom depth values are mostly approximate only.
* "Bottom of cast" depths for CTD 38 and 43 are calulated from CTD maximum pressure and altimeter value at the bottom of the casts.

Lastly, data were converted to MATLAB format, and final data quality checking was done within MATLAB.

4 CTD AND BOTTLE DATA RESULTS AND DATA QUALITY

Data from the primary CTD sensor pair (temperature and conductivity) were used for this cruise, with the exception of stations 8 and 30 - for these two stations the primary sensors were fouled, and data from the secondary sensor pair were used.

4.1 Conductivity/salinity

The conductivity calibration and equivalent salinity results for the cruise are plotted in Figures 2 and 3, and the derived conductivity calibration coefficients are listed in Tables 3 and 4. Station groupings used for the calibration are included in Table 3. International standard seawater batch numbers used for salinometer standardisation were as follows:

station 1	P146
station 2 to 30	P147
station 31 to 63	P146
station 64 to 104	P147
station 105 to 109	P146

The salinometer (Guildline Autosal serial 62549) used for stations 1 to 104 appeared stable throughout the cruise. Stations 105 to 109 were analysed back in Hobart immediately following the cruise, using salinometer serial 62550. Overall, CTD salinity for the cruise can be considered accurate to better than 0.0015 (PSS78).

Close inspection of the vertical profiles of the bottle-CTD salinity difference values reveals a slight positive biasing of the order 0.001 (PSS78) for station 1, and a slight negative biasing of the same magnitude for station 47 . This is most likely due to salinometer performance and/or bottle samples, and there is no significant diminishing of CTD salinity accuracy.

4.2 Temperature

Primary and secondary CTD temperature data (t_{p} and t_{s} respectively) are compared for the cruise in Figure 4. CTD upcast burst data, obtained at each Niskin bottle stop, are used for the comparison. From previous cruises (e.g. Rosenberg, unpublished report, 2006), a very small pressure dependency of $\mathrm{t}_{\mathrm{p}}-\mathrm{t}_{\mathrm{s}}$ for CTD704 of the order $0.0005^{\circ} \mathrm{C}$ is evident over the full ocean depth range. For cruise au0703, measurements were only taken down to $\sim 2500 \mathrm{dbar}$, and a small pressure dependency similar to previous cruises is evident by the deepest measurements (Figure 4). Note that the magnitude of this pressure dependency lies within the assumed temperature accuracy of $0.001^{\circ} \mathrm{C}$ (i.e. the accredited temperature accuracy of the CSIRO calibration facility). Also note that without some temperature standard for comparison, it cannot be determined whether the 2 temperature sensors have the same or different pressure dependencies.

4.3 Pressure

Surface pressure offsets for each cast (Table 5) were obtained from inspection of the data before the package entered the water. For station 24 , logging commenced when the CTD was already in the water, and the surface pressure offset was estimated from surrounding stations.

4.4 Dissolved oxygen

CTD oxygen data for his cruise were calibrated as whole profile fits - with the limited depth range for the CTD deployments, splitting profiles into separate shallow and deep calibrations was not required. The CTD oxygen calibration results are plotted in Figure 5, and the derived calibration coefficients are listed in Table 6. Overall the calibrated CTD oxygen agrees with the bottle data to well within 1% of full scale (where full scale is $\sim 350 \mu \mathrm{~mol} / \mathrm{l}$ above 750 dbar , and $\sim 240 \mu \mathrm{~mol} / \mathrm{l}$ below 750 dbar).

Reliable calibration of a CTD dissolved oxygen profile is only possible with an adequate profile of bottle oxygen samples. The Niskin bottle sampling scheme for this cruise resulted in many CTD stations with either low numbers of bottle oxygen samples, or none at all. For the former, only that part of the CTD oxygen profile covered by samples was usable; for the latter, CTD oxygen data were not usable. Figure 6 summarizes calibrated CTD oxygen data coverage.

Note that oxygen bottle samples for stations 105 to 109 were analysed back in Hobart, immediately following the cruise.

4.5 Fluorescence, PAR, transmittance

All fluorescence and transmittance data have a calibration, as supplied by the manufacturer (Table 2), applied to the data. PAR sensor data are uncalibrated, and supplied as raw voltages. The data have not been verified by linkage to other data sources (e.g. chlorophyll-a concentration data, particulate data, etc).

In the CTD 2 dbar averaged data files, both downcast and upcast data are supplied for fluorescence, PAR and transmittance. In these files, fluorescence and transmittance data are not in fact averages: fluorescence data are the minimum value within each 2 dbar bin, providing a profile "envelope" which minimizes the spikiness of the data; transmittance data are the maximum value within each 2 dbar bin, again minimizing the spikiness of the data. An additional parameter describing the spikiness of the transmittance data is supplied, calculated as follows. Pressure monotonic data (increasing for downcast, decreasing for upcast) are first formed from the full 24 Hz data, omitting equal pressure points as well as pressure reversals. For each transmittance reading $\operatorname{tr}_{\text {mon }}$ in the montonic data, transmittance "spike size" trsize is given by the deviation from the transmittance maximum envelope, i.e.

$$
\operatorname{trsize}=\operatorname{tr}_{\text {interp }}-\operatorname{tr}_{\text {mon }}
$$

where

$$
\begin{aligned}
& \operatorname{tr}_{\text {interp }}=\operatorname{trmax}_{\text {bin }}+\left[\left(p_{\text {mon }}-p_{\text {bin1 }}\right) /\left(p_{\text {bin2 }}-p_{\text {bin1 }}\right) x\left(\operatorname{trmax}_{\text {bin2 }}-\operatorname{trmax} x_{\text {bin1 }}\right)\right] \\
& \mathrm{p}_{\text {mon }}=\text { the pressure value corresponding with } \operatorname{tr}_{\text {mon }} \\
& p_{\text {bin1 }}=\text { the nearest } 2 \mathrm{dbar} \text { pressure bin less than } \mathrm{p}_{\text {mon }} \\
& p_{\text {bin2 }}=\text { the nearest } 2 \text { dbar pressure bin greater than } p_{\text {mon }} \\
& \operatorname{trmax}_{\mathrm{bin} 1}=\text { the } 2 \mathrm{dbar} \text { maximum transmittance value for pressure bin } \mathrm{p}_{\mathrm{bin} 1} \\
& \operatorname{trmax}_{\mathrm{bin} 2}=\text { the } 2 \mathrm{dbar} \text { maximum transmittance value for pressure bin } \mathrm{p}_{\mathrm{bin} 2}
\end{aligned}
$$

(i.e. $\mathrm{tr}_{\text {interp }}$ is the transmittance value from the 2 dbar transmittance maximum envelope, linearly interpolated to $p_{\text {mon }}$). For a small number of cases in steep vertical gradients, $\mathrm{tr}_{\text {interp }}$ is a small negative value. This is due to the pressure mismatch between the even pressure bin to which $\operatorname{tr}_{\max }$ is assigned, and the actual pressure value at which $\operatorname{tr}_{\max }$ occurs. For these cases, the $\operatorname{tr}_{\text {interp }}$ value is changed to zero. Lastly, the transmittance "spikiness" trspike for each 2 dbar bin is the standard deviation of trsize values in each bin, i.e.

$$
\text { trspike }=\left\{\left[\sum_{i=1}^{n}\left(\text { trsize }_{i}-\text { trsize }_{\text {mean }}\right)^{2}\right] /(n-1)\right\}^{1 / 2}
$$

where
$\mathrm{n}=$ number of trsize values in the 2 dbar bin
trsize $_{\text {mean }}=$ mean of the trsize values in the 2 dbar bin

In the bottle data files, fluorescence and transmittance (and PAR) values are the averages of 10 second bursts of CTD data, and thus include all the data spikes within each 10 second averaging period. For comparison with Niskin bottle data, these 10 second averages best represent (short of referring to the full 24 Hz data) what the Niskin bottle samples as the package moves up and down with the swell prior to bottle closure. Note that these fluorescence and transmittance data are different to the data in the CTD 2 dbar averaged files (described above).

The plumbing arrangement used for the transmissometer during the first 35 stations (mentioned above in section 2) caused bad downcast transmittance data for several stations. These bad data, listed in Table 7, were removed from the data files.

4.6 Nutrients

Nutrients measured on the cruise were phosphate, total nitrate (i.e. nitrate+nitrite), silicate, ammonia, and nitrite (only up to station 86). Appendix 1 (by Neale Johnston) gives some details on analysis methods. Suspect nutrient values not deleted from the bottle data files are listed in Table 8. Nitrate+nitrite versus phosphate data are shown in Figure 7. A group of depressed phosphate values are evident in the figure, around nitrate+nitrite $\approx 5 \mu \mathrm{~mol} / \mathrm{l}$. These values are from the tops of various profiles up to station 32 , and appear to be real features.

Only limited data were available from other cruises for comparison with the au0703 nutrient data, and only very rough comparisons were possible. In general, low level readings from the Lachat autoanalyser, including low level near surface phosphate and nitrate+nitrite data, and all ammonia and nitrite data, should be used with caution. The accuracy for these low level values is unknown.

4.7 Additional CTD data processing/quality notes

* Station 3 - the primary CTD sensors were fouled for part of the downcast profile, and these data were deleted from the 2 dbar averaged file.
* Station 7 - the salinity value flagged as -1 in the bottle data file was due to a CTD data spike in the primary sensor pair.
* Station 26 - after deployment of the CTD, there was no stop to wait for the pumps to come on. Most of the downcast for this very shallow cast was therefore unusable.
* Stations 27, 32, 34, 57 - after waiting for the pumps to come on, the package was not returned to a shallower position to commence the downcast (due to swell). The downcast profile for these stations commences between 20 and 40 dbar.
* Station 61 - top 2 Niskins tripped on the fly, due to heavy rolling of ship.
* Station 86 - the pressure sensor was fouled just prior to firing of bottle 24. Data used for CTD burst averages were shifted forward by 100 scans (i.e. 4.17 seconds).
* Stations 1 and 94 - logging ended before the CTD left the water. The last few bins of upcast fluorescence, PAR and transmittance data are therefore missing.
* Station 96 - the CTD sensor tubes and fluorometer sensor cap were not removed prior to deployment. The only usable profiles for this station are transmittance and PAR.
* For version of WOCE "Exchange" format bottle data file with $\mu \mathrm{mol} / \mathrm{kg}$ units for nutrient data (available on request) - a laboratory temperature of $19^{\circ} \mathrm{C}$ was used for conversion of units from $\mu \mathrm{mol} / \mathrm{l}$ to $\mu \mathrm{mol} / \mathrm{kg}$.

4.8 Additional CTD sensor notes

* The ocean bottom was rarely approached on this cruise, however on both occasion where the bottom was in altimeter range, the 500 kHz altimeter (50 m range) gave reliable readings, while the 200 kHz altimeter (100 m range) did not work.
* The secondary temperature sensor malfunctioned on several occasion during the first 9 stations (possibly due to a bad connector), in turn causing bad secondary conductivity data. When this occured, secondary conductivity data took a while to recover.
* Data from the old Antarctic Division PAR sensor were unusable - not a worry, as good data were obtained from the Biospherical Instruments PAR sensor.

5 ADCP

The hull mounted ADCP on the Aurora Australis is described in Rosenberg (unpublished report, 1999), with the following updates:
(i) There is no longer a Fugro differential GPS system - all GPS data, including heading, come from the Ashtech 3D system.
(ii) Triggering of the 12 kHz sounder and the higher frequency hydroacoustics array are now separate, resulting in a higher ping rate for the ADCP (linked to the higher frequency hydroacoustics array).

Logging parameters and calibration coefficients for the cruise are summarised in Table 9. Current vectors for the cruise are plotted in Figures 8a and b; the apparent vertical current shear error for different ship speed classes is plotted in Figure 9.

In general, ADCP data are contaminated by ship's motion when the ship accelerates i.e. changes direction or speed. Noise and turbulence often diminish ADCP data quality when the ship travels at speeds greater than ~ 13 knots, or during rough sea states. Thus the best quality ADCP data is when the ship is steaming in a straight line at a suitable constant speed, and during milder sea conditions. The most reliable data are collected when the ship is "on station" (on station data is defined here as data where ship speed $\leq 0.35 \mathrm{~m} / \mathrm{s}$).

An erroneous vertical ADCP current shear occurs when the ship is underway. This shear has a magnitude for this cruise of up to $\sim 0.13 \mathrm{~m} / \mathrm{s}$ over the ADCP current profile (Figure 9), although more often $\sim 0.05-0.08 \mathrm{~m} / \mathrm{s}$. A likely cause for this error is acoustic ringing against a small air/water interface inside the transducer seachest. From Figure 9, when the ship is underway the effect is most significant over bins 1 to 10, and data from these bins should be treated with caution. Also from the figure, when the ship is travelling at $\leq 1 \mathrm{~m} / \mathrm{s}$ the effect is no longer significant.

6 UNDERWAY MEASUREMENTS

Underway data were logged to an Oracle database on the ship. Quality control for this cruise was largely automated.

1 minute averaged underway data are contained in the files sazsense.txt (column formatted text file) and sazsenseora.mat (matlab format). Note that the latitude and longitude data in these files are 1 minute instantaneous values (i.e. not averaged).

Bathymetry data for the cruise were not processed, and depths are all null values in the underway data files.

Underway salinity data from the Antarctic Division thermosalinograph (in the oceanographic lab) display a response lag which becomes significant when crossing frontal regions where the horizontal
gradients are high (Bronte Tilbrook, CSIRO, personal communication); these salinity data should not be used. Alternative underway salinity data were obtained from a separate CSIRO thermosalinograph in lab 1 (P.I. Bronte Tilbrook, CSIRO), and these data are considered reliable. Underway temperature data from the Antarctic Division hull mounted temperature sensor near the sea water inlet are good. A correction for the hull mounted temperature sensor and the lab 1 salinity was derived by comparing the underway data to CTD temperature and salinity data at 8 dbar (Figures 10a and b). The following corrections were then applied to the underway data:

$$
\begin{aligned}
& \mathrm{T}=\mathrm{T}_{\mathrm{dls}}-0.022 \\
& \mathrm{~S}=\mathrm{S}_{\mathrm{dls}}+0.077
\end{aligned}
$$

for corrected underway temperature and salinity T and S respectively, and uncorrected values $T_{\text {dls }}$ and $\mathrm{S}_{\mathrm{dls}}$.

REFERENCES

Rosenberg, M., unpublished. Aurora Australis ADCP data status. Antarctic Cooperative Research Centre, unpublished report, November 1999. 51 pp.

Rosenberg, M., unpublished. BROKE West Survey, Marine Science Cruise AU0603- Oceanographic Field Measurements and Analysis. ACE Cooperative Research Centre, unpublished report, July 2006. 24 pp.

Rosenberg, M., Fukamachi, Y., Rintoul, S., Church, J., Curran, C., Helmond, I., Miller, K., McLaughlan, D., Berry, K., Johnston, N. and Richman, J., in preparation. Kerguelen Deep Western Boundary Current Experiment and CLIVAR 19 transect, marine science cruises AU0304 and AU0403 - oceanographic field measurements and analysis. ACE CRC Research Report.

ACKNOWLEDGEMENTS

Thanks to all scientific personnel who participated in the cruise, and to the crew of the RSV Aurora Australis. Special thanks to the oceanography team for a great job collecting the data.

Table 1: Summary of station information for cruise au0703. All times UTC; "TEST" = test cast, "transit" = transit station; "process" = process station; "alt" = minimum altimeter value (m), "maxp" = maximum pressure (dbar).

CTD station 001 TEST 002 transit 003 transit 004 transit 005 transit 006 transit 007 process 1 008 process 1 009 process 1 010 process 1 011 process 1 012 process1 013 process 1 014 process 1 015 process 1 016 process1 017 process 1 018 process 1 019 process 1 020 process 1 021 process1 022 process 1 023 process 1 024 process 1 025 process 1 026 process1 027 process 1 028 process 1 029 process 1 030 process 1 031 process 1 032 process 1 033 process 1 034 process1 035 transi 036 transit 037 process2 038 process2 039 process2

date	time latitude		longitude		depth	
19 Jan 2007	120309	43	50.48	S	14444.11	E

------------------bottom of CTD--------------------
time latitude
\qquad
longitude depth 1239084350.39 S 1635434350.07 S 0145374459.85 S 1125114455.04 S 114455.04 S 14301.69 E 0042104559.75 S 14117.78 E 1053044623.46 S 14039.35 E 15403846 18.95 S 14039.70 E 17545046 19.14 S 14039.04 E 01391046 19.34 S 14036.06 E 10554746 19.33 S 14036.67 E 1909304623.01 S 14028.81 E 3316214624.66 S 14025.21 E 0243044626.07 S 14031.04 E 1217544626.62 S 14030.00 E 1545114627.69 S 14024.65 E 1729304627.37 S 117064627.38 S 14021.16 E 000110462979 S 14018.16 E 2131544633.27 S 14038.54 E 0011194633.22 S 14037.75 E 0312404633.08 S 0605444632.89 S 14039.77 E 0929544633.74 S 14038.02 E 1212584634.13 S 14037.13 E 1504004634.05 S 14039.50 E 1810494634.73 S 2110324635.11 S 4635.11 S 14036.91 E 34.76 S 14038.49 E 4228.47 S 14020.09 E 140344629.61 S 14017.90 E 1427274642.62 S 14011.86 E 1652114639.18 S 14016.88 E 1015344859.97 S 14259.92 E 1323474859.21 S 14300.30 E 1653495359.83 S 14555.19 E 0237225400.28 S 14552.98 E 2779 05292654 00.26S 14552.13 E

\qquad
longitude depth time latitude 1327004350.21 S 14443.51 E - 1503 1717134349.96 S 14440.93 E - 2502 0255264459.59 S 14259.20 E - 2502 1207554454.80 S 14301.42 E - 1004 1456194453.06 S 14302.99 E - $\quad 801$ 0114494559.46 S 14117.82 E \quad - 1001 1159394623.29 S 14039.41 E - - 2504 1557534618.97 S 14039.80 E - - 102 18224946 19.24 S 14039.14 E - 1001 0212434619.53 S 14036.09 E - $\quad 405$ 11384646 19.46 S 14036.53 E - 1002 1931414623.14 S 14028.77 E - - 203 2329594624.73 S 14025.17 E - - 153 0355184626.17 S 14030.58 E - 2509 1302174626.73 S 14029.76 E - \quad - 804 1558164627.67 S 14024.69 E - 101 1758544627.35 S 14023.84 E - 1004 2156454627.46 S 14021.09 E - - 202 0037184629.89 S 14017.98 E - \quad - 804 2214044633.17 S 14038.76 E - $\quad 203$ 0033414633.19 S 14037.78 E - \quad - 201 03244446 33.08 S 14037.72 E - - 100 0633174632.87 S 14039.41 E - 201 0933354633.77 S 14038.02 E \quad - $\quad 37$ 1238254634.15 S 14037.13 E - \quad - 204 1516154634.05 S 14039.56 E - 39 1815594634.74 S 14037.46 E - - 37 2136154635.02 S 14036.82 E - 202 2319434634.62 S 14038.99 E - \quad - 40 0058404634.60 S 14038.47 E \quad - $\quad 1000$

- 1343074628.28 S 14019.28 E - 2504
1550304629.63 S 14017.83 E - - 51 1511394642.55 S 1401140 E - 805 1734344639.25 S 14016.52 E - 1004 1044084859.74 S 14259.80 E \quad - \quad - 402 1427354858.99 S 14300.34 E \quad - 2505 1709035359.74 S 14555.20 E - - 205 0352565400.26 S 14552.80 E - 40.02782 0548575400.33 S 14552.27 E \quad - \quad - 201

Table 1: (cntd)
CTD station 040 process2 041 process 2 042 process 2 043 process2 044 process 2 045 process2 046 process2 047 process2 048 process2 049 process2 050 process2 051 process2 052 process2 053 process2 054 process 2 055 process2 056 process2 057 process2 058 process2 059 process2 060 transit 061 transit 062 transi 063 transit 064 transit 065 transit 066 transit 067 trans 068 transit 069 transit 070 transit 071 transit 072 trans 073 transi 074 transit 075 transit 076 process3 077 process3 078 process3 079 process3 080 process3
date
longitude depth 01 Feb 20070716365400.87 S 14552.06 E 2700 01 Feb 20071012185400.86 S 14551.23 E 2600 01 Feb 20071611115403.13 S 14609.91 E 2500 02 Feb 20070002035401.04 S 14607.65 E 2400 02 Feb 20070328405400.88 S 14607.98 E 2500 02 Feb 20071030125402.66 S 14614.60 E 1500 02 Feb 20071445575407.66 S 146 19.15 E 2500 02 Feb 20071613285407.56 S 14619.40 E 2500 02 Feb 20072141225408.46 S 14617.86 E 2250 3 Feb 20070415365409.10 S 14618.38 E 2200 03 Feb 20070620595408.93 S 14618.88 E 2300 03 Feb 20070750315408.26 S 14618.41 E 2222 03 Feb 20071512275407.96 S 14627.80 E 3500 03 Feb 20072118475409.65 S 14632.99 E 3350 04 Feb 20070314045410.80 S 14630.52 E 3500 04 Feb 20070504245411.15 S 14628.45 E 3500 04 Feb 20070913555411.15 S 14630.57 E 3400 04 Feb 20071550245415.76 S 14643.90 E 3600 05 Feb 20071803275427.53 S 14707.94 E 3400 06 Feb 20070513045426.89 S 14706.25 E 3500 06 Feb 20071516165300.40 S 14650.01 E 4100 06 Feb 20072244105200.59 S 14742.68 E 4000 07 Feb $20070955095059.12 \mathrm{~S} \quad 14834.16 \mathrm{E} 4251$ 07 Feb 20071314485056.28 S 14834.74 E 4200 07 Feb 20072011065052.48 S 14839.04 E 4200 08 Feb 20070232505000.18 S 14926.48 E 3910 08 Feb 20070805434959.30 S 14925.36 E 3900 08 Feb 20071117404959.87 S 14925.20 E 3900 08 Feb 20072106534859.93 S 15020.06 E 1500 09 Feb 20070423224800.41 S 151 13.10 E 4000 09 Feb 20071028374801.63 S 151 13.00 E 4171 09 Feb 20071332274803.50 S 15111.72 E 4300 09 Feb 20072328374659.84 S 15204.43 E 4800 10 Feb 20070612184559.65 S 15254.55 E 4500 10 Feb 20070942064531.31 S 15306.26 E 4700 10 Feb 20071335004559.89 S 15311.81 E 4700 10 Feb 20071846164529.95 S 15311.99 E 4600 11 Feb 20070111094532.91 S 15310.74 E 4500 11 Feb 20070440264532.90 S 15310.58 E 4600 11 Feb 20071104224533.47 S 15310.58 E 4600 11 Feb 20071510364530.77 S 153 13.45 E 4700
----------------bottom of CTD-------------------
time latitude
0735155400.87 S 14552.04 E
1016135400.85 S 14551.25 E 1629475403.17 S 146 10.06 E 0047095401.21 S 14607.65 E 2456 0346035400.88 S 14608.09 E 1034115402.67 S 14614.62 E 1455535407.64 S 14619.19 E 1638085407.54 S 14619.52 E 2146205408.48 S 14617.90 E 04312454 09.08 S 146 18.47 E 0623595408.93 S 146 18.92 E 0806395408.27 S 146 18.51 E 1516325407.97 S 14627.83 E 2123365409.67 S 14633.05 E 0321205410.80 S 14630.51 E 0524405411.27 S 14628.60 E 0919255411.15 S 14630.58 E $1600405415.82 \mathrm{~S} \quad 14644.04 \mathrm{E}$ 1834195427.59 S 14708.46 E 0527205426.96 S 14706.37 E 15275953 00.72 S 14650.27 E 2332465200.56 S 14742.89 E 1042125058.43 S 14834.57 E 1325185056.14 S 14834.87 E 2033505052.27 S 14839.38 E 0241065000.13 S 149 26.53 E 0824544959.24 S 14925.57 E 1201424959.71 S 14925.55 E 2131084859.89 S 15020.21 E 05105448 00.60 S 15113.16 E 1036334801.66 S 151 13.00 E 1351254803.67 S 15111.90 E $2349034659.87 \mathrm{~S} \quad 15204.55 \mathrm{E}$ 0628244559.63 S 15254.60 E 1000274531.28 S 15306.38 E 1356264559.79 S 15311.89 E 1859104529.95 S 15312.11 E 0118534532.88 S 15310.70 E 0459564532.90 S 153 10.61 E 145324533.31 S 153 10.66 E 1518384530.73 S 15313.46 E
-
-
-
-
--------------------end of CTD---------------------time latitude longitude depth
alt maxp 0822315400.91 S 14552.00 E 1001 023154 201 1705535403.23 S 14610.40 E 0153035401.36 S $14607.38 \mathrm{E} \quad$ - $\quad 28.72464$ 0428415400.80 S 14608.33 E 104218540264 S 14614.69 E
1710155407.43 S 14619.73 E - 1004
2210595408.50 S 14618.12 E - 202
- 803
0635475409.04 S 14618.68 E - 14619.02 E

- $\quad 0635475408.95$ S 14619.02 E
- 153
- 1002
$-\quad 203$
$-\quad 202$
- 200
- 1007
- 202
- 202
$-\quad 1000$
$-\quad 827$
- 827
- 402
- 2506
- 403
- 1005

2115055051.98 S 14840.04 E
0307394959.98 S 14926.50 E

0911414959.14 S 14926.00 E \quad - 1003
1301224959.49 S 14926.10 E - 2502

- 1004
- 2506
- 2506
- 402
- 1001
- 1000
- 1002
- 1001
- 401
$-\quad 401$
$-\quad 1002$
- 2502 2502

Table 1: (cntd)

CTD station 081 process3 082 process3 083 process3 084 process 3 085 process3 086 process3 087 transit 088 transit 089 process3 090 process3 091 transit 092 transit 093 transi 094 transit 095 transit 096 process3 097 process3 098 process3 099 process3
100 process3
101 process3
102 process3
103 process3
104 process3
105 transit
106 transit 107 transit
108 trans 109 transit
date
longitude depth 11 Feb 20071611164530.87 S 15313.66 E 4600 11 Feb 20071908324531.01 S 15314.20 E 4600 12 Feb 20070213414526.41 S 15317.37 E 4500 12 Feb 20070732264527.14 S 15316.96 E 4600 12 Feb 20071641514527.13 S 15320.51 E 3700 12 Feb 20072007304527.86 S 15321.01 E 4600 13 Feb 20070205034445.22 S 15300.28 E 4800 13 Feb 20070543384506.40 S 15313.57 E 4750 13 Feb 20071132374526.09 S 15327.28 E 4500 3 Feb 20071505124526.22 S 15328.27 E 4700 13 Feb 20072115364456.41 S 15223.93 E 4700 14 Feb 20070156414456.72 S 15227.95 E 4600 14 Feb 20070350534456.07 S 15229.59 E 4600 14 Feb 20070724164513.50 S 15245.46 E 4600 4 Feb 20071021514516.41 S 15300.79 E 4500 14 Feb 20071710144530.14 S 15337.09 E 4500 14 Feb 20072209404530.47 S 15336.47 E 4500 15 Feb $20070734534530.70 \mathrm{~S} \quad 15338.78 \mathrm{E} 4500$ 15 Feb 20071308454531.40 S 15336.14 E 4400 5 Feb 20071506074532.11 S 153 36.89 E 4600 15 Feb 20071906104532.05 S 15341.98 E 4430 16 Feb 20070104594532.17 S 15339.77 E 4500 16 Feb 20070704504533.33 S 153 40.15 E 4400 16 Feb 20070933084535.42 S 15340.72 E 4400 8 Feb 20070332384414.39 S 15011.81 E 2600 18 Feb 20070704224414.06 S 15012.53 E 2600 19 Feb 20070355014339.42 S 14835.83 E 3700 19 Feb 20070551224341.24 S 14834.87 E 3700 19 Feb 20070905114343.21 S 14833.23 E 3700
-bottom of CT \qquad
itude d
time latitude
15313.67 E 16332645 30.79 S 1912544530.98 S 153 17.35 E 07482345 27.16 S 15317.09 E 1701234527.16 S 2023344527.83 S 1532116 E 0212504445.21 S 15300.38 E 0549544506.38 S 15313.63 E 1134224526.09 S 15327.27 E 15123045 26.31 S 152 23.98 E 0407034456.07 S 15229.79 E 07311545 13.50 S 15245.49 E 10280245 16.43 S -153 00.83 E 1734194530.19 S 15337.19 E 22564845 30.42 S 153 36.68 E 0742284530.76 S 15338.87 E 1316564531.42 S 15336.14 E 15105045 32.14 S 15336.91 E 19131745 32.04 S 15342.00 E 0111594532.15 S 15339.79 E 0711314533.34 S 15340.15 E 0949294535.45 S 15340.79 E 04102244 14.45 S 15011.74 E 0713474414.11 S 15012.61 E 0402484339.52 S 14835.81 E 0609354341.42 S 14834.84 E 09431743 43.27 S 148 33.02 E

time	latitude	longitude	depth		maxp
170144	4530.71 S	15313.72 E	-	-	1001
192747	4530.90 S	15314.24 E	-	-	200
024711	45 26.42 S	15317.10 E	-	-	403
082306	4527.10 S	15317.51 E	-	-	801
173803	4527.28 S	15320.86 E	-	-	1002
210129	4527.66 S	15321.61 E	-	-	902
023931	4445.21 S	15300.74 E	-	-	413
061458	4506.37 S	15314.12 E	-	-	402
114339	4526.10 S	15327.29 E	-	-	101
152502	45 26.32 S	15328.48 E	-	-	207
215058	4456.33 S	15224.26 E	-	-	401
023218	4456.74 S	15228.45 E	-	-	401
044853	4455.87 S	15230.36 E	-	-	1003
080900	4513.53 S	15245.72 E	-	-	400
105139	4516.55 S	15301.16 E	-	-	408
180330	4530.32 S	15337.49 E	-	-	1004
001546	4530.37 S	15336.97 E	-	-	2505
080534	4530.81 S	15339.10 E	-	-	403
134452	4531.53 S	15336.32 E	-	-	438
152320	4532.17 S	15336.85 E	-	-	202
195025	4532.10 S	15342.17 E	-	-	411
013528	4532.20 S	153 39.88 E	-	-	403
073729	4533.19 S	15340.34 E	-	-	403
102401	4535.69 S	15340.99 E	-	-	901
051251	4414.43 S	15011.80 E	-	-	2512
073813	4414.23 S	15012.85 E	-	-	403
042729	43 39.82 S	14835.53 E	-	-	405
064703	4341.88 S	14834.60 E	-	-	1019
104347	4343.27 S	14832.72 E	-	-	2506

Table 2: CTD serial 704 calibration coefficients and calibration dates for cruise au0703. Note that platinum temperature calibrations are for the ITS-90 scale. Pressure slopeloffset, temperature and conductivity values are from the CSIRO Division of Marine and Atmospheric Research calibration facility. Remaining values are manufacturer supplied.

Primary Temperature, serial 4248, 24/07/2006 Secondary Temperature, serial 4246, 24/07/2006

G	$: 4.3872750 \mathrm{e}-003$	G	$: 3.9791760 \mathrm{e}-003$
H	$: 6.5089714 \mathrm{e}-004$	H	$: 6.2178475 \mathrm{e}-004$
I	$: 2.3231241 \mathrm{e}-005$	I	$: 1.8665869 \mathrm{e}-005$
J	$: 1.8524638 \mathrm{e}-006$	J	$: 1.5651022 \mathrm{e}-006$
F0	$: 1000.000$	F0	$: 1000.000$
Slope	$: 1.00000000$	Slope	$: 1.00000000$
Offset	$: 0.0000$	Offset	$: 0.0000$

Primary Conductivity, serial 2977, 24/07/2006
Secondary Conductivity, serial 2808, 24/07/2006
G :-1.0730631e+001
G $:-9.2832718 \mathrm{e}+000$
H : $1.4248306 \mathrm{e}+000$
I :-7.1457502e-005
J : 9.4841234e-005
CTcor : $3.2500 \mathrm{e}-006$
CPcor :-9.57000000e-008
Slope : 1.00000000
Offset : 0.00000
Pressure, serial 89084, 09/08/2006
C1 :-4.989485e+004
Oxygen, serial 0178, 04/11/2006
C2 :-1.030675e+000
C3 : 1.388810e-002
D1 : 3.863300e-002
D2 : 0.000000e+000
T1 : $3.010350 \mathrm{e}+001$
T2 :-5.657137e-004
T3 : 3.998260e-006
T4 : 2.345400e-009
T5 : $0.000000 \mathrm{e}+000$
Slope : 1.000061
Offset : 0.9607
AD590M : 1.276320e-002
Soc :5.6550e-001
Boc : 0.0000
Offset : -0.5039
Tcor : 0.0020
Pcor : 1.350e-004
Tau : 0.0
Fluorometer, serial 296, 23/05/2005
Vblank : 0.12
Scale factor : 7.000e+000
Transmissometer, serial 899DR, 08/11/2005
A0 :-0.0130705
A1 $: 0.214270$

Table 3: CTD conductivity calibration coefficients. F_{1}, F_{2} and F_{3} are respectively conductivity bias, slope and station-dependent correction calibration terms. n is the number of samples retained for calibration in each station grouping; σ is the standard deviation of the conductivity residual for the n samples in the station grouping. Note: these are for the primary sensor pair; for CTD 8 and 30, data from the secondary sensor pair were used, and the coefficients in the table do not apply.

| stn grouping | F_{1} | $\mathrm{~F}_{2}$ | $\mathrm{~F}_{3}$ | n | σ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 001 to 036 | $0.85922478 \mathrm{E}-03$ | $0.99990161 \mathrm{E}-03$ | $0.48370422 \mathrm{E}-09$ | 310 | 0.000742 |
| 037 to 060 | $-0.72274696 \mathrm{E}-02$ | $0.10001739 \mathrm{E}-02$ | $-0.58525107 \mathrm{E}-10$ | 221 | 0.000747 |
| 061 to 080 | $-0.50080844 \mathrm{E}-03$ | $0.10000613 \mathrm{E}-02$ | $-0.16215688 \mathrm{E}-08$ | 213 | 0.000499 |
| 081 to 098 | $0.23089863 \mathrm{E}-02$ | $0.10000102 \mathrm{E}-02$ | $-0.16264460 \mathrm{E}-08$ | 129 | 0.001243 |
| 099 to 104 | $0.29369010 \mathrm{E}-02$ | $0.10000110 \mathrm{E}-02$ | $-0.16673300 \mathrm{E}-08$ | 54 | 0.000812 |
| 105 to 109 | $0.64693695 \mathrm{E}-02$ | $0.99867054 \mathrm{E}-03$ | $0.10596057 \mathrm{E}-07$ | 67 | 0.001205 |

Table 4: Station-dependent-corrected conductivity slope term ($F_{2}+F_{3} . N$), for station number N, and F_{2} and F_{3} the conductivity slope and station-dependent correction calibration terms respectively. Note: for CTD 8 and 30 , the slope term is from the secondary sensor pair.

station num	$\left(F_{2}+F_{3} \cdot N\right)$	station $\left(F_{2}+F_{3} . N\right)$ number		station $\left(F_{2}+F_{3} . N\right)$ number		$\begin{aligned} & \text { station } \\ & \text { number } \end{aligned}\left(\mathrm{F}_{2}+\mathrm{F}_{3} \cdot \mathrm{~N}\right)$	
1	0.99988747E-03	29	0.99990198E-03	57	0.10001614E-02	85	0.99987198E-03
2	0.99988799E-03	30	0.99966276E-03	58	0.10001614E-02	86	0.99987035E-03
3	0.99988851E-03	31	0.99990302E-03	59	0.10001613E-02	87	0.99986872E-03
4	0.99988903E-03	32	0.99990354E-03	60	0.10001613E-02	88	0.99986710E-03
5	0.99988954E-03	33	0.99990406E-03	61	$0.99995909 \mathrm{E}-03$	89	0.99986547E-03
6	0.99989006E-03	34	0.99990457E-03	62	$0.99995752 \mathrm{E}-03$	90	0.99986384E-03
7	$0.99989058 \mathrm{E}-03$	35	0.99990509E-03	63	$0.99995596 \mathrm{E}-03$	91	0.99986222E-03
8	0.99964935E-03	36	0.99990561E-03	64	$0.99995439 \mathrm{E}-03$	92	0.99986059E-03
9	0.99989162E-03	37	0.10001622E-02	65	$0.99995282 \mathrm{E}-03$	93	0.99985896E-03
10	0.99989214E-03	38	0.10001621E-02	66	$0.99995125 \mathrm{E}-03$	94	0.99985734E-03
11	$0.99989265 \mathrm{E}-03$	39	0.10001621E-02	67	$0.99994969 \mathrm{E}-03$	95	0.99985571E-03
12	$0.99989317 \mathrm{E}-03$	40	0.10001620E-02	68	$0.99994812 \mathrm{E}-03$	96	0.99985409E-03
13	0.99989369E-03	41	0.10001620E-02	69	$0.99994655 \mathrm{E}-03$	97	0.99985246E-03
14	0.99989421E-03	42	0.10001620E-02	70	$0.99994498 \mathrm{E}-03$	98	0.99985083E-03
15	0.99989473E-03	43	0.10001619E-02	71	$0.99994342 \mathrm{E}-03$	99	0.99985483E-03
16	0.99989525E-03	44	0.10001619E-02	72	$0.99994185 \mathrm{E}-03$	100	0.99985415E-03
17	0.99989576E-03	45	0.10001619E-02	73	$0.99994028 \mathrm{E}-03$	101	0.99985348E-03
18	0.99989628E-03	46	0.10001618E-02	74	$0.99993872 \mathrm{E}-03$	102	0.99985280E-03
19	0.99989680E-03	47	0.10001618E-02	75	$0.99993715 \mathrm{E}-03$	103	0.99985213E-03
20	0.99989732E-03	48	0.10001617E-02	76	$0.99993558 \mathrm{E}-03$	104	0.99985145E-03
21	0.99989784E-03	49	0.10001617E-02	77	$0.99993401 \mathrm{E}-03$	105	0.99978313E-03
22	0.99989836E-03	50	0.10001617E-02	78	$0.99993245 \mathrm{E}-03$	106	0.99979372E-03
23	0.99989887E-03	51	0.10001616E-02	79	0.99993088E-03	107	0.99980432E-03
24	0.99989939E-03	52	0.10001616E-02	80	$0.99992931 \mathrm{E}-03$	108	0.99981491E-03
25	0.99989991E-03	53	0.10001616E-02	81	$0.99987848 \mathrm{E}-03$	109	0.99982551E-03
26	0.99990043E-03	54	0.10001615E-02	82	$0.99987686 \mathrm{E}-03$		
27	0.99990095E-03	55	0.10001615E-02	83	$0.99987523 \mathrm{E}-03$		
28	0.99990146E-03	56	0.10001614E-02	84	0.99987360E-03		

Table 5: Surface pressure offsets (i.e. poff, in dbar). For each station, these values are subtracted from the pressure calibration "offset" value from Table 2.

stn	poff
..-------	
1	0.95
2	0.63
3	0.58
4	0.58
5	0.47
6	0.60
7	0.61
8	0.67
9	0.68
10	0.65
11	0.66
12	0.70
13	0.57
14	0.53
15	0.69
16	0.65
17	0.61
18	0.68
19	0.65

stn	poff
.-------65	
20	0.65
21	0.60
22	0.62
23	0.63
24	0.60
25	0.64
26	0.56
27	0.58
28	0.51
29	0.58
30	0.59
31	0.61
32	0.61
33	0.64
34	0.64
35	0.52
36	0.44
37	0.80
38	0.75

stn	poff
.-------6	
39	0.56
40	0.65
41	0.61
42	0.71
43	0.63
44	0.44
45	0.55
46	0.64
47	0.67
48	0.67
49	0.69
50	0.62
51	0.62
52	0.72
53	0.72
54	0.74
55	0.71
56	0.60
57	0.50

stn	poff
------.54	
58	0.54
59	0.54
60	0.57
61	0.59
62	0.69
63	0.50
64	0.54
65	0.70
66	0.77
67	0.76
68	0.84
69	0.84
70	0.78
71	0.79
72	0.84
73	0.84
74	0.79
75	0.90
76	0.86

stn	poff
..------	
77	1.04
78	0.93
79	0.88
80	0.86
81	0.91
82	0.81
83	0.96
84	0.90
85	0.89
86	0.86
87	0.85
88	0.81
89	0.83
90	0.82
91	0.83
92	0.87
93	0.73
94	0.85
95	0.77

stn	poff
.-------	
96	0.90
97	0.76
98	0.90
99	0.95
100	0.79
101	0.81
102	0.84
103	0.82
104	0.76
105	0.77
106	0.53
107	0.76
108	0.79
109	0.82

Table 6: CTD dissolved oxygen calibration coefficients for cruise au0703: slope, bias, tcor (= temperature correction term), and pcor (= pressure correction term). dox is equal to 2.8σ, for σ as defined in the CTD Methodology.

	slo	bias	or	pcor	dox		slo	bias	tcor	pcor	dox
1	0.533531	-0.234971	0.009847	0.000092	0.154112	56	0.622789	-0.361141	-0.001078	0.000227	0.0
2	0.611262	-0.311012	0.004876	0.000014	0.127303	57	0.691422	-0.511385	-0.001597	0.000315	0.071593
3	0.502297	-0.212684	0.015264	0.000110	0.139094	58	0.592063	-0.298154	-0.001178	0.000145	0.133685
4	0.395942	-0.035662	0.019290	0.000171	0.114435	59	0.627398	-0.379162	-0.000005	0.000257	0.156463
5	0.596545	-0.307282	0.005942	0.000036	0.054670	60	0.537285	-0.167263	-0.001381	0.000017	0.075782
6	0.555232	-0.283225	0.010671	0.000118	0.056833	61	0.592836	-0.296082	-0.000997	0.000136	0.140805
7	0.579410	-0.288913	0.005531	0.000097	0.188718	62	0.573489	-0.267981	0.000511	0.000132	0.083040
8						63	0.626745	-0.374503	-0.000809	0.000150	0.055658
	0.58793	-0.3039	. 007	0.0000	0.06432	64	0.592590	-0.296243	-0.000576	0.000127	0.155797
10	0.690378	-0.529686	0.005110	0.000117	0.053671	65	0.594490	-0.311868	0.000272	0.000143	0.062669
11	0.534769	-0.235585	0.009539	0.000073	0.033839	66	0.599416	-0.312167	-0.001156	0.000146	0.100290
12	0.691684	-0.520362	0.004331	0.000080	0.054544	67	0.591138	-0.285446	-0.001907	0.000129	0.108693
13	-					68	0.596314	-0.300893	-0.001275	0.000135	0.043119
14	0.547492	-0.281555	0.010657	0.000122	0.162841	69	0.559357	-0.261020	0.002699	0.000141	0.076307
15	0.588812	-0.328808	0.006819	0.000090	0.091898	70	0.594423	-0.311088	0.000173	0.000136	0.029816
16	0.701029	-0.498117	0.000601	0.000083	0.010933	71	0.571187	-0.261287	0.000059	0.000136	0.048912
17	0.568921	-0.268367	0.007028	0.000059	0.14775	72	0.367522	0.040611	0.013573	0.000158	0.062976
18	0.492247	-0.124135	0.008470	0.000001	0.081500	73	0.575099	-0.318771	0.004194	0.000198	0.086627
19	0.495984	-0.165574	0.011230	0.000058	0.074953	74	0.271133	0.206562	0.019226	0.000151	0.135262
20	0.988604	-1.125186	0.000452	0.000260	0.041084	75	0.589002	-0.307428	0.001061	0.000151	0.111337
21	1.215239	-1.407491	-0.013898	0.000062	0.062999	76					
22						77	0.692697	-0.506032	-0.001887	0.000175	0.114969
23	1.29551	-1.8064	00056	0.00065	0.043709	78	0.533933	-0.242146	0.006294	0.000150	0.070821
24						79	0.587948	-0.296134	-0.000795	0.000144	0.104721
25	0.69808	-0.632700	0.0124	0.00032	0.0610	80	0.258611	-0.058892	0.051674	0.000626	0.065325
26						81	0.584883	-0.295841	0.000534	0.000138	0.079591
27						82	0.417304	-0.063277	0.013823	0.000194	0.060979
28	0.654240	-0.46932	. 00742	0.0001	0.02273	83	0.592021	-0.325191	0.001634	0.000147	0.044411
29						84	0.564700	-0.260775	0.001534	0.000124	0.029286
30	0.587822	-0.305774	0.005662	0.000074	0.082830	85	0.520790	-0.199548	0.004848	0.000123	0.056928
31	0.538941	-0.241171	0.008864	0.000088	0.141150	86	0.506763	-0.205110	0.008329	0.000156	0.097307
32						87	0.742160	-0.500716	-0.008640	0.000047	0.078392
33	0.562691	-0.297560	0.00790	0.000117	0.086732	88	0.595524	-0.321156	0.000602	0.000148	0.102217
34	0.607250	-0.302570	0.000088	0.000070	0.042354	89					
35	0.692725	-0.519195	0.000733	0.000132	0.035247	90	1.368823	-1.598109	-0.030197	0.001827	0.170616
36	0.518914	-0.236705	0.011278	0.000122	0.136185	91	0.598403	-0.293218	-0.001425	0.000088	0.099030
37	0.807060	-0.842258	0.008534	0.000828	0.071252	92	0.429604	-0.133461	0.014468	0.000274	0.189154
38	0.583468	-0.312685	0.004795	0.000135	0.194078	93	0.483383	-0.127786	0.004608	0.000082	0.161821
39	0.797739	-0.791190	0.002442	0.000471	0.109049	94	0.687870	-0.523619	0.000190	0.000258	0.053776
40	0.619110	-0.358274	-0.002383	0.000167	0.108540	95	0.433505	-0.140748	0.014328	0.000300	0.091396
41	-					96					
42	0.586868	-0.331813	0.013843	0.000170	0.096752	97	0.513180	-0.227475	0.009967	0.000154	0.088182
43	0.595966	-0.309549	-0.000778	0.000133	0.102832	98	0.392681	-0.014353	0.013457	0.000158	0.048359
44	0.612990	-0.347827	-0.001774	0.000185	0.069648	99	0.492491	-0.129344	0.003370	0.000110	0.047894
45						100	0.419727	-0.439933	0.048293	0.003545	0.030213
46	0.593856	-0.310385	0.000236	0.000164	0.014029	101	0.569750	-0.268069	0.000375	0.000135	0.110373
47	0.607868	-0.325680	-0.000323	0.000158	0.188107	102	0.304088	0.167373	0.014166	0.000145	0.153787
48	0.645221	-0.380577	-0.005803	0.000021	0.169319	103	0.486027	-0.133387	0.004384	0.000142	0.147501
49	0.593216	-0.305578	0.001279	0.000164	0.184688	104	0.524186	-0.189284	0.003669	0.000093	0.111832
50						105	0.507897	-0.234044	0.009710	0.000164	0.118992
51	0.604264	-0.320789	0.001301	0.000171	0.124682	106	0.422287	-0.133685	0.016062	0.000255	0.149169
52	0.602443	-0.310360	-0.001458	0.000136	0.150009	107	0.695041	-0.495762	-0.001376	0.000137	0.105955
53	0.628083	-0.362105	-0.002224	0.000117	0.104327	108	0.527626	-0.252050	0.007658	0.000160	0.066279
54	0.601326	-0.303347	-0.001045	0.000176	0.052867	109	0.549920	-0.269794	0.004601	0.000149	0.158256

Table 7: Bad transmissometer downcast data deleted from the 2 dbar averaged files.

station number	bad transmissometer data (dbar)	station number	bad transmissometer data (dbar)
3	2-50	25	2-94
7	2-398	26	2-38
16	whole station	27	2-22
17	2-14	31	2-104
19	2-6	32	2-48
20	2-148	33	2-158
22	whole station	35	2-210

Table 8: Suspect nutrient sample values (not deleted from bottle data file) for cruise au0703.

PHOSPHATE		NITRATE		SILICATE	
station number	rosette position	station number	rosette position	station number	rosette position
19	7	19	7	19	7
38	12	38	13	38	12
39	8				
42	3	42	3	42	3
		46	19		
50	1,24	50	1,24		
51	whole stn				
		52	23		
62	23				

AMMONIA

station number	rosette position
$------------------------------~$	
20	18
24	22
96	2
103	9
105	12,16

Table 9: ADCP logging and calibration parameters for cruise au0703.

ping parameters
no. of bins: 60
bin length: $\quad 8 \mathrm{~m}$ pulse length: 8 m delay: $\quad 4 \mathrm{~m}$ ping interval: minimum
reference layer averaging:
XROT:
ensemble averaging duration:
bins 8 to 20
822
3 min. (for logged data)
30 min . (for final processed data)
calibration
α (\pm standard deviation) $1+\beta$ (\pm standard deviation) no. of calibration sites
2.507 ± 0.375
1.0388 ± 0.010
62

Figure 1: CTD cast positions and ship's track for cruise au0703.

Figure 2: Conductivity ratio $c_{b t} / c_{\text {cal }}$ versus station number for cruise au0703. The solid line follows the mean of the residuals for each station; the broken lines are \pm the standard deviation of the residuals for each station. $c_{\text {cal }}=$ calibrated CTD conductivity from the CTD upcast burst data; $\mathrm{c}_{\mathrm{btt}}=$ 'in situ' Niskin bottle conductivity, found by using CTD pressure and temperature from the CTD upcast burst data in the conversion of Niskin bottle salinity to conductivity.

Figure 3: Salinity residual ($s_{b t t}-s_{c a l}$) versus station number for cruise au0703. The solid line is the mean of all the residuals; the broken lines are \pm the standard deviation of all the residuals. $s_{\text {cal }}=$ calibrated CTD salinity; $s_{b t l}=$ Niskin bottle salinity value.

Figure 4: Difference between primary and secondary temperature sensor ($t_{p}-t_{s}$) for CTD upcast burst data from Niskin bottle stops, for cruise au0703.

Figure 5: Dissolved oxygen residual ($o_{b t l}-o_{c a l}$) versus station number for cruise au0703. The solid line follows the mean residual for each station; the broken lines are \pm the standard deviation of the residuals for each station. $o_{\text {cal }}=$ calibrated downcast CTD dissolved oxygen; $0_{\mathrm{btt}}=$ Niskin bottle dissolved oxygen value. Note: values outside vertical axes are plotted on axes limits.

Figure 6: CTD dissolved oxygen data coverage for cruise au0703.

Figure 7: Nitrate+nitrite versus phosphate data for cruise au0703.
(a)

(b)

Figure 8a and b: au0703 hull mounted ADCP 30 minute ensemble data, for (a) whole cruise, and (b) "on station" data only.

Figure 9: au0703 apparent ADCP vertical current shear, calculated from uncorrected (i.e. ship speed included) ADCP velocities. The data are divided into different speed classes, according to ship speed during the 30 minute ensembles. For each speed class, the profile is an average over the entire cruise.

Figure 10a and b: au0703 comparison between (a) CTD and underway temperature data (i.e. hull mounted temperature sensor), and (b) CTD and underway salinity data (i.e. Tilbrook's lab 1 SeaBird), including bestfit lines. Note: dls refers to underway data.

APPENDIX 1 NOTES ON NUTRIENT ANALYSES

Neale Johnston (CSIRO Marine and Atmospheric Research, Floreat, Western Australia)

Nutrient samples were run on a Lachat Quickchem series 8000 FIA. Samples were analysed for silicate, phosphate, nitrate+nitrate, nitrite and ammonia.

The following methods were used:

* silicate - Quickchem Method 31-114-27-1-D (i.e. in Lachat manual)
* orthophosphate - Quickchem Method 31-115-01-1-G
* nitrate+nitrite - Quickchem Method 31-107-04-1-A
* ammonia - used an automated method based on the manual method in Watson et al. (2005); a Shimadzu RF - 10Axl fluorescence detector was used in the ammonia analysis.
* nitrite used the same method as nitrate+nitrite, but with the cadmium reduction column removed.

For all analysis, calibration and reference standards were made using nutrient depleted seawater (reference standards from Ocean Scientific International were diluted with nutrient depleted seawater). Calibration standards were run at the start and end of each run. Reference standards were run every 15 samples. The carrier for silicate, phosphate and nitrate+nitrite was artificial seawater (3.6% sodium chloride). This carrier was taken to contain no silicate, nitrate+nitrite or phosphate, and was checked by observing the baseline voltage reading for each channel each time it was prepared. The carrier for ammonia was a $2 \mathrm{ml} / \mathrm{l}$ sulphuric acid solution. The carrier solution was subject to contamination from atmospheric-born contamination. This was checked each run by checking the baseline and by running a known ammonia depleted sample against the carrier.

Baseline voltages changed slightly each time reagents were changed so where possible reagents and carrier were not changed at the same time.

Nutrient depleted seawater was depleted for nitrate+nitrite, phosphate and ammonia, but did often have low silicate values. This was corrected for each run.

REFERENCES

Roslyn J. Watson, Edward C. V. Butler, Lesley A. Clementson and Kate M. Berry, 2005. Flowinjection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater. Journal of Environmental Monitoring, Vol. 7, pp 37-42.

