Doppler Current Meter
RCM 11

A state-of-the-art Recording Current Meter designed for deep sea operation down to 6000 meters

Measuring:
• Current Speed
• Current Direction
• Temperature

Optional:
• Conductivity
• Instrument Depth
• Turbidity and Oxygen

Features:
- No offset
- Low noise
- Forward pinging algorithm improves accuracy
- Insensitive to fouling
- No moving parts
- Easy installation and handling
- Easy functional verification using an external Test Unit

Stores data internally in the standard Data Storage Unit DSU 2990 or transmits data in real-time via cable.

Specially well suited for:
- Operation down to 6000 m depth
- Monitoring Low Current Speeds in very clear water
FIELDS OF APPLICATIONS
The instrument can be used in the sea, in oceans, in lakes and in rivers and its special technical features, such as the narrow beam, compact design and type of integration makes it especially well suited for deep sea operation in very clear waters. An arctic temperature range ensures proper operation in the Polar Regions.

In-line Mooring
The most common way to use the RCM 11 is in an in-line mooring configuration as shown to the left. As it operates under a tilt up to 35° from vertical, it has a variety of in-line mooring applications by use of surface buoy or sub surface buoy. The instrument is installed in a mooring frame that allows easy installation and removal of the instrument without disassembly of the mooring line. The illustration shows an anchoring where retrieval of the instrument is done simply by activating the acoustic release. The glass float will bring the mooring line and the instrument package to the surface.

Comparing the RCM 11 with the RCM 7
Often measurements are performed repetitively to track changes in the sea current situation at the same location. For these applications, it is important that new measurements may be compared with older measurements. The two graphs below are the result of a comparison test between the RCM 11 and the RCM 7. The deployment took place in the open sea at approximately 15 meters depth. The distance between the RCM 7 and the RCM 11 was 1.5m, and the deployment duration was almost one day. The test arrangement is shown below.

The upper graph shows the current speed for the two instruments and the lower shows the current direction. The two graphs show unprocessed data exactly as they were read from the Data Storage Unit. The test shows also that the RCM 11 and the RCM 7 produced data that were almost replicas of each other and that the RCM-11 may replace the RCM 7 (and thereby the RCM 8) in most application areas.

In deployments where the current speed is expected to be very low, the RCM 11 will achieve improved performance when compared to the RCM 7 or RCM 8. Another interesting observation from the comparison test is the lack of noise generally associated with backscatter based Doppler Current Meters.

A series of measurements were taken by one of our customers in august 2000.
The graph to the right shows the current speed measured with an RCM 11 over a 3 day period at 1400 meters depth.

The measured values, between 0,5 and 12cm/s, are almost without any noise even though the current speed was only a fraction of RCM 11’s capability. Notice also the tidal influence on the measurements even at 1400 meters depth.
The development of a small, low power doppler current sensors that has taken place in recent years, opens for many interesting applications. One of these is the RCM 11, a unique new self-contained instrument that can be moored in the sea for long periods of time. In standard version it measures the horizontal current speed and direction, as well as temperature. Optional sensors for measuring conductivity, turbidity of the water, dissolved oxygen as well as instrument depth are also available.

The instrument can operate continuously or in eight intervals from 1 to 120 minutes. At 60-minute recording interval the operating time is more than two years.

The RCM Doppler Current Sensor is furnished with a new Hall effect compass and a two-axis tilt sensor that compensates for the effect of inclination. This feature allows the instrument to be used in a mooring line with an inclination up to 35° from vertical. The instrument has a depth capacity of 6000 meters. The current speed and direction are averaged over the measuring interval.

The RCM Doppler Current Sensor on the instrument sends out 600 pings during each recording interval. The pings are normally distributed equally in time over the whole measuring interval but it is also possible to select a Burst Mode.

When the instrument is moored near the sea surface, the Burst Mode will reduce the influence of waves. In this mode the 600 pings are executed in the last minute of the measuring interval.

Among the advantages of the RCM 11 are its ease of deployment and that it has no moving parts. Even though the measuring window of the DCS is between 0.4 to 2.2 meters from the sensor itself, which minimizes the effect of marine fouling and local turbulence, the current in the wake of the sensor will be lower than the actual current. To avoid the impact this will have on the current measurement, a so-called «Forward Pinging Algorithm» has been introduced.

The RCM 11 belongs to a family of well proven oceanographic instruments that share a set of common features:

- Simple and Sturdy Design
- Low Power Consumption
- Potted Electronic Circuits
- Well proven Pressure Case and Data Storage Units.

The number of sensors to be scanned can be set by a selector switch inside the instrument. One can choose between 4, 5, 6, 7, or 8 channels. The fewer channels selected increases available DSU memory for long deployments.

The standard sensors for this instrument are:

- Current Speed/Direction Sensor
- Water Temperature Sensor

Optional sensors are:

- Depth Sensor
- Conductivity Sensor
- Turbidity Sensor
- Oxygen Sensor

The latter two sensors can only be used in depth down to 2000 meters.

Mooring Frame

A special mooring frame is made to facilitate easy installation and removal of the instrument by use of 2 knobs. The mooring frame is made of stainless steel and has a breaking load of 8000 Kg. The frame is equipped with a Sensor Protecting Ring. Additional protecting rods can be installed if required.
Doppler Current Sensor 3820
The sensor utilizes the well-known Doppler Shift principle as the basis for its measurements. The sensor transmits acoustic pulses of 2MHz into the water in sequence. As the sound propagates, small particles or air bubbles in the water reflect a portion of the energy. The back-scattered energy from the area between 0.4 to 2.2 meters from the sensor is picked up by the transducers and analyzed to find any change in frequency. The DCS 3820 employs state-of-the-art signal-processing and computer tuned electronics. The unit achieves low static noise even in waters with scarcely any backscatters. As such the DCS 3820 is well suited for deep sea measurements when the sea current is expected to be low. The current direction is found by taking the measurements along two orthogonal axes, x and y. These measurements are compensated for tilt by use of an electrolytic tilt sensor and referred to magnetic North by means of an internal Hall-effect compass. A microprocessor computes vector averaged current speed and direction over the last sampling interval. The sensor output is the Aanderaa standard SR10. The sensor has an OD of 120mm, is 100mm thick and has a 10-pin receptacle at its lower end. The sensor is fastened to the instrument by an 86 mm high sensor foot. Four piezoceramic acoustic transducers are placed 90° apart around the circumference of the sensor that is molded in a polyurethane material.

Conductivity Sensor 3619
This sensor measures the conductivity in the water by use of an inductive cell made of two toroids. The primary toroid induces a loop current through the bore of the cell. This again induces a voltage over the secondary toroid. A compensating current through a compensating winding creates a loop current in the opposite direction. This current is balanced until the resultant loop current and the voltage over the secondary winding equals zero. The current in the compensating winding is a measure of the conductivity of the water. The Conductivity Cell and the electronics are molded in a polyurethane material.

Turbidity Sensor 3612
This sensor measures the turbidity of the water by use of back-scattered infrared light. This measurement is known to have good correlation to the amount of suspended matters and can be used to monitor sediments, algae, or particle pollution. Three light emitting diodes and a photo diode are pointing to a common center at an angle of 15°. Once every measuring cycle the light emitting diodes send out light and the reflected light from particles in the water is picked up by the photodiode. The sensor is shaped as a small cylinder molded in polyurethane material. Depth capacity: 2000m.

Pressure Sensor 3815
The sensor is shaped as a small cylinder molded in Durotong polyurethane. It measures the absolute pressure by means of a piezoresistive bridge. One measurement is taken for every measurement cycle. This is an analog sensor, and the output is the Aanderaa standard VR22 signal.

Oxygen Sensor 3675 measures the dissolved oxygen in the water. The sensor is based upon an oxygen probe from Oxyguard, which is adapted to the instrument by a special converter. The sensor is specially designed for the RCM 11. The upper part is the probe and the lower part is the converter with the installation stud molded on to the probe. The range is 0-20 mg/l with an accuracy of ±0.8 mg/l. The output from the sensor is an SR 10 signal. Depth capacity: 2000m.
SPECIFICATIONS FOR RECORDING CURRENT METER RCM 11

AANDERAA INSTRUMENTS

Measuring system: A self balancing bridge with sequential measurement of 8 channels and solid state memory. 10-bit binary word for each channel. The channels are:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Sensor Type</th>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Statistic precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT67-MT111</td>
<td>Doppler Current Sensor 3820</td>
<td>0 to 300 cm/s</td>
<td>0.3 cm/s</td>
<td>±0.15 cm/s</td>
<td>< 0.45 cm/s (standard deviation)</td>
</tr>
<tr>
<td>MT110-MT116</td>
<td>Magnetic compass, Hall effect type</td>
<td>0.35°</td>
<td>±5° for 0-15° tilt and ±7.5° for 15-35° tilt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT108-MT111</td>
<td>Acoustic Frequency: 2 MHz</td>
<td>Power: 25 Watt in 1 ms pulses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT117</td>
<td>Beam Angle: ±1° (Main Lobe)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT100</td>
<td>Installation distance: Minimum 0.5 m from the bottom</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT101-MT117</td>
<td>Minimum 0.75 m from the surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ch.1 Reference

is a fixed reading to check the RCM’s performance and to identify individual instruments.

Ch.2 and Ch.3, Current Speed and Direction:

Speed Sensor Type: Doppler Current Sensor 3820

Range: 0 to 300 cm/s

Resolution: 0.3 cm/s

Accuracy:

- Absolute: ±0.15 cm/s
- Relative: ±1% of reading
- Statistic precision: < 0.45 cm/s (standard deviation)

Direction Sensor: Magnetic compass, Hall effect type

Resolution: 0.35°

Accuracy:

- ±5° for 0-15° tilt and ±7.5° for 15-35° tilt

Acoustic Frequency: 2 MHz

Power: 25 Watt in 1 ms pulses

Beam Angle: ±1° (Main Lobe)

Installation distance:

- Minimum 0.5 m from the bottom
- Minimum 0.75 m from the surface

Ch.4 Temperature

Sensor type: Thermistor (Fenwall GB32JM19)

Resolution: ±0.05°C

Response time: 12 seconds (63%)

Selectable Ranges:

- Wide range: −0.64 to 32.87°C
- Low range: −2.70 to 21.77°C
- High range: +9.81 to 36.66°C
- Arctic range: −3.01 to 5.92°C

Ch.5 Conductivity (Optional): Conductivity Sensor 3619

Sensor Type: Inductive Cell

Selectable ranges: 0 – 74 mS/cm or 24 – 38 mS/cm

Accuracy: ±0.2% of range

Resolution: 0.1% of range

Depth capacity: 2000 meters

Ch.6 Pressure (Optional): Pressure Sensor 3815

Sensor Type: Silicon piezoresistive bridge

Available ranges: 0 - 700 kPa, 0 - 3500 kPa, 0 - 7000 kPa, 0 - 20 MPa, 0 - 60 MPa

Resolution: 0.1% of range

Accuracy: ±0.25% of range

Ch.7 Turbidity (Optional): Turbidity Sensor 3612

Sensor type: Optical Back-scatter Sensor

Available ranges: 0-20, 0-100, 0-500 NTU

Resolution: 0.1% of full scale

Accuracy: 2% of full scale

Depth capacity: 2000 meters

Ch.8: Oxygen (Optional): Oxygen Sensor 3675

Sensor Type: Oxyguard

Range: 0-20 mg/l

Resolution: 0.025 mg/l

Accuracy: ± 0.8 mg/l

Response time: 1 minute (63%)

Depth capacity: 2000 m

Watertight Receptacle:*

PIN CONFIGURATION

- Receptacle, exterior view: pin = •; bushing = □

9Volt input

- 1, 2, 5, 10, 20, 30, 60, and 120 minutes

- Continuous (4 s x no. of ch. + 2 s) and Remote Start only

Recording System: Data Storage Unit 2990 or 2990E

Battery:

- Alkaline Battery 3614, 9 V 15 Ah or Lithium Battery 3677, 7.2 V 30 Ah for 1 year and 3 months, respectively
- 2 years and 6 months operation at one hour interval, or 110, respectively 220 days at 10 minute interval

Average Current Consumption (mA):

0.50 + (50 divided by the recording interval in minutes)

Depth Capability: 6000 meters

Weight (kg):

- In air: 26.5
- In water: 18.0

Packaging:

- Plywood case: 190x 250x650 mm

External Materials:

- Stainless acid proof steel, OSNISIL, Titanium, Durotong DT 322 polyurethane

Accessories:

- Mooring Frame 3824 with Sensor Protecting Ring 966278
- Base Brackets 3627(2) for Frame
- Additional Protecting Rods 3783
- Vane Plate 3681
- DCS Test Unit 3731

Spares:

- A set of recommended spares is delivered free of charge with each instrument (o-rings, sealing plugs, tools, cotter pins etc)

Warranty:

- Two years against faulty materials and workmanship. For subsurface cables contact factory

- Assumes speed of sound is 1500 m/s. Actual speed of sound can be corrected for using the 5059 program.
Data Storage Units DSU 2990 and 2990E
are standard data storage devices for Aanderaa data collecting instruments. They are rugged, water-proof and have an LCD that shows the total number of data word stored. The 2990 version can store 65 000 10-bit data words and the 2990 E version can store 262000 data words. A built-in quartz clock allows the time of the first measurement to be recorded in the DSU as well as every first measurement after midnight.

Reading of Stored Data
Data can be transferred from the DSU to a PC using the DSU Reader 2995 and a suitable communication program. The reader is an RS 232 interface between the PC and the DSU.

Data Reading Program 5059
is a new software program from Aanderaa used to download DSU 2990 data to a Personal Computer. The program is based on the latest software technology and is designed for use with Windows 95, Windows 98 and Windows NT. In addition to downloading and exporting of DSU data, it can also be used for data analysis. The 5059 includes extensive charting and analysis facilities, and the resulting analysis graphs may be exported to programs such as Microsoft Word and Excel. The modern user interface, including drag & drop facilities, and an extensive built-in Help system makes the 5059 easy to use. A sensor, station and instrument library allows you to build up a library holding configuration and calibration sets for all your Aanderaa instruments. A limited version of this program is supplied free of charge. The full version is available at a moderate cost. Please contact the factory or visit our web site to obtain a 30 day fully functional trial version. The program is delivered on a CD with a comprehensive operating manual.