Not to be cited without prior reference to Marine Scotland, Marine Laboratory, Aberdeen
MRV Scotia
Survey 1417S

PROGRAMME

6-16 October 2017
Loading: Aberdeen, 28 September 2017
Unloading: Aberdeen, 16 October 2017

> In setting the survey programme and specific objectives, etc. the Scientist-in-Charge needs to be aware of the restrictions on working hours and the need to build in adequate rest days and rest breaks as set out in Marine Scotland's Working Time Policy (Notice $34 / 03$). In addition, the Scientistin-Charge must formally review the risk assessments for the survey with staff on-board before work is commenced.
> In the interest of efficient data management it is now mandatory to return the survey report, to I Gibb and the Survey Summary Report (old ROSCOP form) to M Geldart, within four weeks of a survey ending. In the case of the Survey Summary Report a nil return is required, if appropriate

Personnel
R O'Hara Murray
B Rabe
L Campbell
M Geldart
D Lee
P Diaz
A Mohd Fahmi (Visitor Heriot-Watt University (HWU))
C Nikolova (Visitor Heriot-Watt University (HWU))
J Opher (Visitor Univerisy of East Anglia (UEA))
Out-turn days per project: 11 days: ST05B

Gear

Sea-Bird CTDs, ADCP instrumentation and AL-200 frame, water filtering equipment, bacteria sampling and experimental equipment, including bacterial culture equipment with CO_{2} gas enrichment (HWU), mooring equipment and recovery trawl.

Objectives

1. Test the CTD in the Buchan Deep off Peterhead
2. Perform hydrographic sampling along the JONSIS long term monitoring section in the northern North Sea.
3. Deploy ADCP on JONSIS line in AL-200 frame (AECO).
4. Recover and download the data from a single string ACDP mooring on the Fair Isle Munken section in the FSC (NWS-E).
5. Re-deploy one ADCP mooring at a position on Fair Isle - Munken section.
6. Take surface water samples near FIM 8 location for phytoplankton and bacterial analysis and experimentation (HWU).
7. Perform hydrographic sampling along the long term monitoring Faroe-Shetland Channel Nolso - Flugga (NOL/NWE) section.
8. Perform hydrographic sampling along the long term monitoring Faroe-Shetland Channel Fair Isle - Munken (NWS) section.
9. Take water samples for long term storage on two Fair Isle - Munken or Nolso - Flugga section stations.
10. Take water samples for bacteria analysis at selected stations on the monitoring lines.
11. Recover one ADCP mooring at a position on Faroe-Shetland Channel Faroe - Cape Wrath (FCW/NWZ) section (NWZ-E).
12. Perform hydrographic sampling in the vicinity of the above ADCP mooring in order to calibrate the mooring equipment.
13. Perform a CTD transect along a Stonehaven AlterEco section (going west from $2^{\circ} \mathrm{E}$).

Procedure

On sailing from Aberdeen Scotia will carry out test deployments of the CTD and carousel around the Buchan Deep, using the standard deployment procedures (10 m soak); sampling procedures will also be rehearsed at the test station. Scotia will then make passage to the start of the JONSIS long term monitoring section to carry out sampling with the CTD and carousel water sampler. On completion of the JONSIS section, passage will be made to the mooring location on the JONSIS line, where the ADCP in the AL-200 will be deployed. On completion, passage will be made to the ADCP mooring site on the Fair Isle - Munken (FIM) section, where the ADCP mooring will be recovered and a CTD profile performed. Scotia will then stay on site while the data is downloaded and the mooring refurbished for re-deployment. Scotia will then make her way to FIM-08 for water sampling for phytoplankton and bacteria (time permitting) before sailing to the western end of the Nolso - Flugga (NOL) section. Water samples and CTD profiles will be taken along the NOL section. Scotia will then proceed to the FIM section to carry out standard CTD and water sampling along that line. Along the standard sections water samples will be taken at a subset of stations for bacterial work by HWU visitors. After the FIM section Scotia will sail to the mooring location on the Faroe Cape Wrath (FCW) line (NWZE) where the mooring will be recovered and CTD profile performed. Scotia will then make her way to the eastern end of the Stonehaven CTD line and make her way back west along the line performing CTD profiles.

Mooring Positions (Recovery)

NWSE - 60 ${ }^{\circ} 16.99^{\prime} \mathrm{N} 004^{\circ} 18.03^{\prime} \mathrm{W}(450 \mathrm{~m})$ on FIM
NWZE $-59^{\circ} 54.56^{\prime} \mathrm{N} 006^{\circ} 10.14^{\prime} \mathrm{W}$ (775 m) on FCW

Mooring Positions (Deployment)

AECO - $59^{\circ} 17.00^{\prime} \mathrm{N} \quad 001^{\circ} 15.00^{\prime} \mathrm{W}(115 \mathrm{~m})$ on JONSIS
NWSE - $60^{\circ} 16.98^{\prime} \mathrm{N}$ 004 ${ }^{\circ}$ 18.06' W (450 m) on FIM
(NOTE: The survey will take Scotia into the Foinaven Development Area. This is now standard practice and normal on-site communications will be established with the Foinaven co-
ordinating officer).
Normal contacts will be maintained with the laboratory.

Submitted:
R O'Hara Murray
19 September 2017
Approved:
I Gibb
20 September 2017

JONSIS Line

\#	Name	Latitude	Longitude	Depth	Spacing
01	JO 1	$59^{\circ} 17.00{ }^{\text {N }}$	$02^{\circ} 14.00^{\prime} \mathrm{W}$	75 m	
02	JO 1A	$59^{\circ} 17.00{ }^{\text {N }}$	$02^{\circ} 5.00^{\prime} \mathrm{W}$	90 m	4.59 nm
03	JO 2	$59^{\circ} 17.00{ }^{\prime} \mathrm{N}$	$01^{\circ} 56.00^{\prime} \mathrm{W}$	100 m	4.59 nm
04	JO 3	$59^{\circ} 17.00{ }^{\text {N }}$	$01^{\circ} 48.00^{\prime} \mathrm{W}$	80 m	4.08 nm
05	JO 4	$59^{\circ} 17.00 \mathrm{~N}$	$01^{\circ} 40.00^{\prime} \mathrm{W}$	90 m	4.08 nm
06	JO 5	$59^{\circ} 17.00{ }^{\prime} \mathrm{N}$	$01^{\circ} 30.00^{\prime} \mathrm{W}$	95 m	5.10 nm
07	JO 6	$59^{\circ} 17.00{ }^{\text {N }}$	$01^{\circ} 20.00^{\prime} \mathrm{W}$	110 m	5.10 nm
08	JO 6A	$59^{\circ} 17.00{ }^{\prime} \mathrm{N}$	$01^{\circ} 10.00^{\prime} \mathrm{W}$	120 m	5.10 nm
09	JO 7	$59^{\circ} 17.00{ }^{\prime} \mathrm{N}$	$01^{\circ} 0.00^{\prime} \mathrm{W}$	125 m	5.10 nm
10	JO 8	$59^{\circ} 17.00{ }^{\text {N }}$	$00^{\circ} 40.00^{\prime} \mathrm{W}$	120 m	10.20 nm
11	JO 9	$59^{\circ} 17.00{ }^{\prime} \mathrm{N}$	$00^{\circ} 20.00^{\prime} \mathrm{W}$	140 m	10.20 nm
12	JO10	$59^{\circ} 17.00{ }^{\text {N }}$	$00^{\circ} \quad 0.00^{\prime} \mathrm{W}$	135 m	10.20 nm
Totals				1180 m	68.36 nm

Fair Isle - Munken (Amended for presence of Foinaven oil platform*)

$\#$	Name	Latitude	Longitude	Depth	Spacing
01	FIM-01	$60^{\circ} 10.00^{\prime} \mathrm{N}$	$03^{\circ} 44.00^{\prime} \mathrm{W}$	150 m	
02	SEFF1	$60^{\circ} 13.00^{\prime} \mathrm{N}$	$03^{\circ} 51.50^{\prime} \mathrm{W}$	170 m	4.74 nm
03	FIM-02	$60^{\circ} 16.00^{\prime} \mathrm{N}$	$03^{\circ} 59.00^{\prime} \mathrm{W}$	200 m	4.84 nm
04	SEFF2	$60^{\circ} 18.00^{\prime} \mathrm{N}$	$04^{\circ} 04.50^{\prime} \mathrm{W}$	330 m	3.36 nm
*05	FIM-03	$60^{\circ} 20.00^{\prime} \mathrm{N}$	$04^{\circ} 10.00^{\prime} \mathrm{W}$	390 m	3.03 nm
06	FIM-04	$60^{\circ} 25.00^{\prime} \mathrm{N}$	$04^{\circ} 19.00^{\prime} \mathrm{W}$	655 m	6.88 nm
07	FIM-05	$60^{\circ} 29.00^{\prime} \mathrm{N}$	$04^{\circ} 26.00^{\prime} \mathrm{W}$	995 m	5.45 nm
08	FIM-06	$60^{\circ} 35.00^{\prime} \mathrm{N}$	$04^{\circ} 45.00^{\prime} \mathrm{W}$	1090 m	11.15 nm
09	FIM-6a	$60^{\circ} 38.00^{\prime} \mathrm{N}$	$04^{\circ} 54.00^{\prime} \mathrm{W}$	1030 m	5.33 nm
10	FIM-07	$60^{\circ} 43.00^{\prime} \mathrm{N}$	$05^{\circ} 06.00^{\prime} \mathrm{W}$	915 m	7.70 nm
11	FIM-08	$60^{\circ} 47.00^{\prime} \mathrm{N}$	$05^{\circ} 16.00^{\prime} \mathrm{W}$	830 m	6.34 nm
12	FIM-09	$60^{\circ} 51.00^{\prime} \mathrm{N}$	$05^{\circ} 29.00^{\prime} \mathrm{W}$	600 m	7.36 nm
13	FARF3	$60^{\circ} 56.70^{\prime} \mathrm{N}$	$05^{\circ} 42.80^{\prime} \mathrm{W}$	333 m	8.90 nm
14	FIM-10	$61^{\circ} 02.00^{\prime} \mathrm{N}$	$05^{\circ} 57.00^{\prime} \mathrm{W}$	280 m	8.68 nm
15	FARF2	$61^{\circ} 07.20^{\prime} \mathrm{N}$	$06^{\circ} 09.40^{\prime} \mathrm{W}$	250 m	7.95 nm
16	FIM-11	$61^{\circ} 12.00^{\prime} \mathrm{N}$	$06^{\circ} 22.00^{\prime} \mathrm{W}$	240 m	7.67 nm
17	FARF1	$61^{\circ} 16.40^{\prime} \mathrm{N}$	$06^{\circ} 37.70^{\prime} \mathrm{W}$	100 m	8.80 nm
			Totals	$8,558 \mathrm{~m}$	108.18 nm

Nolso-Flugga

\#	Name	Latitude	Longitude	Depth	Spacing
01	NOL-01	$60^{\circ} 56.00^{\prime} \mathrm{N}$	$01^{\circ} 00.00^{\prime} \mathrm{W}$	110 m	
02	SEFN1	$60^{\circ} 58.70^{\prime} \mathrm{N}$	$01^{\circ} 17.70^{\prime} \mathrm{W}$	125 m	9.00 nm
03	SEFN2	$61^{\circ} 01.40^{\prime} \mathrm{N}$	$01^{\circ} 35.40^{\prime} \mathrm{W}$	155 m	8.99 nm
04	NOL-02	$61^{\circ} 04.00^{\prime} \mathrm{N}$	$01^{\circ} 53.00^{\prime} \mathrm{W}$	270 m	8.91 nm
05	SEFN3	$61^{\circ} 06.00^{\prime} \mathrm{N}$	$02^{\circ} 01.50^{\prime} \mathrm{W}$	440 m	4.57 nm
06	NOL-03	$61^{\circ} 08.00^{\prime} \mathrm{N}$	$02^{\circ} 10.00^{\prime} \mathrm{W}$	550 m	4.57 nm
07	SEFN4	$61^{\circ} 09.30^{\prime} \mathrm{N}$	$02^{\circ} 17.50^{\prime} \mathrm{W}$	630 m	3.85 nm
08	NOL-3a	$61^{\circ} 11.00^{\prime} \mathrm{N}$	$02^{\circ} 25.00^{\prime} \mathrm{W}$	730 m	3.98 nm
09	NOL-04	$61^{\circ} 14.00^{\prime} \mathrm{N}$	$02^{\circ} 40.00^{\prime} \mathrm{W}$	1080 m	7.82 nm
10	NOL-05	$61^{\circ} 21.00^{\prime} \mathrm{N}$	$03^{\circ} 10.00^{\prime} \mathrm{W}$	1370 m	16.03 nm
11	NOL-06	$61^{\circ} 28.00^{\prime} \mathrm{N}$	$03^{\circ} 42.00^{\prime} \mathrm{W}$	1235 m	16.84 nm
12	FARN2	$61^{\circ} 32.00^{\prime} \mathrm{N}$	$03^{\circ} 57.00^{\prime} \mathrm{W}$	1200 m	8.18 nm
13	NOL-07	$61^{\circ} 35.00^{\prime} \mathrm{N}$	$04^{\circ} 15.00^{\prime} \mathrm{W}$	990 m	9.08 nm
14	FARN1	$61^{\circ} 38.00^{\prime} \mathrm{N}$	$04^{\circ} 33.00^{\prime} \mathrm{W}$	530 m	9.07 nm
15	NOL-08	$61^{\circ} 42.00^{\prime} \mathrm{N}$	$04^{\circ} 51.00^{\prime} \mathrm{W}$	235 m	9.44 nm
16	NOL-09	$61^{\circ} 49.00^{\prime} \mathrm{N}$	$05^{\circ} 21.00^{\prime} \mathrm{W}$	180 m	15.84 nm
17	NOL-10	$61^{\circ} 54.00^{\prime} \mathrm{N}$	$05^{\circ} 45.00^{\prime} \mathrm{W}$	290 m	12.37 nm
18	NOL-11	$62^{\circ} 00.00^{\prime} \mathrm{N}$	$06^{\circ} 12.00^{\prime} \mathrm{W}$	125 m	14.04 nm
			Totals	10245 m	162.60 nm

Stonehaven AlterECO

\#	Name	Latitude	Longitude	Depth	Spacing
01	Inner	$56^{\circ} 57.77{ }^{\prime} \mathrm{N}$	0020 08.10' W		
02	Outer	$56^{\circ} 57.77$ ' N	002º 06.77' W		0.73 nm
03	Stonehaven_10	$56^{\circ} 57.77{ }^{\prime} \mathrm{N}$	002 ${ }^{\circ} 00.65^{\prime} \mathrm{W}$		3.35 nm
04	Stonehaven_17	$56^{\circ} 57.77 \times \mathrm{N}$	001 ${ }^{\circ} 50.47^{\prime} \mathrm{W}$		5.57 nm
05	Stonehaven_21	$56^{\circ} 57.77 \times \mathrm{N}$	001² 43.08' W		4.04 nm
06	AlterEco_01	$56^{\circ} 57.77{ }^{\prime} \mathrm{N}$	$001^{\circ} 33.18{ }^{\text {W }}$		5.42 nm
07	AlterEco_02	$56^{\circ} 57.77 \times \mathrm{N}$	001² $23.28{ }^{\text {W }}$		5.42 nm
08	AlterEco_03	$56^{\circ} 57.77 \times \mathrm{N}$	$001^{\circ} 13.39^{\prime} \mathrm{W}$		5.42 nm
09	AlterEco_04	$56^{\circ} 57.77$ ' N	0010 03.49' W		5.42 nm
10	AlterEco_05	$56^{\circ} 57.77 \times \mathrm{N}$	$000^{\circ} 53.59$ W		5.42 nm
11	AlterEco_06	$56^{\circ} 57.77 \times \mathrm{N}$	$000^{\circ} 43.69^{\prime} \mathrm{W}$		5.42 nm
12	AlterEco_07	$56^{\circ} 57.77{ }^{\prime} \mathrm{N}$	$000^{\circ} 33.80{ }^{\prime} \mathrm{W}$		5.42 nm
13	AlterEco_08	$56^{\circ} 57.77$ ' N	$000^{\circ} 23.90^{\prime} \mathrm{W}$		5.42 nm
14	AlterEco_09	$56^{\circ} 57.77{ }^{\prime} \mathrm{N}$	000º 14.00' W		5.42 nm
15	AlterEco_10	$56^{\circ} 57.77{ }^{\prime} \mathrm{N}$	000º 04.10' W		5.42 nm
16	AlterEco_11	$56^{\circ} 57.77^{\prime} \mathrm{N}$	0000.05.79' E		5.42 nm
17	AlterEco_12	$56^{\circ} 57.77{ }^{\prime} \mathrm{N}$	000º 15.69' E		5.42 nm
18	AlterEco_13	$56^{\circ} 57.77 \times \mathrm{N}$	000º 25.59' E		5.42 nm
19	AlterEco_14	$56^{\circ} 57.77^{\prime} \mathrm{N}$	000 ${ }^{\circ} 35.49^{\prime} \mathrm{E}$		5.42 nm
20	AlterEco_15	$56^{\circ} 57.77{ }^{\prime} \mathrm{N}$	000 ${ }^{\circ} 45.38{ }^{\text {E }}$		5.42 nm
21	AlterEco_16	$56^{\circ} 57.77{ }^{\prime} \mathrm{N}$	$000^{\circ} 55.28{ }^{\prime} \mathrm{E}$		5.42 nm
22	AlterEco_17	$56^{\circ} 57.77$ ' N	001º 05.18' E		5.42 nm
23	AlterEco_18	$56^{\circ} 57.77 \times \mathrm{N}$	001${ }^{\circ} 15.08{ }^{\text {E }}$		5.42 nm
24	AlterEco_19	$56^{\circ} 57.77$ ' N	001 ${ }^{\circ} 24.97{ }^{\text {E }}$		5.42 nm
25	AlterEco_20	$56^{\circ} 57.77{ }^{\prime} \mathrm{N}$	$001{ }^{\circ} 34.87{ }^{\prime} \mathrm{E}$		5.42 nm
26	AlterEco_21	$56^{\circ} 57.77{ }^{\prime} \mathrm{N}$	$001^{\circ} 44.77{ }^{\text {E }}$		5.42 nm
27	AlterEco_22	$56^{\circ} 57.77 \times \mathrm{N}$	002 ${ }^{\circ} 00.00{ }^{\text {E } \square ~}$		8.34 nm

