R1/12

Not to be cited without prior reference to the FRS Marine Laboratory, Aberdeen

FRV Scotia

Cruise 1703S

REPORT

12 November – 4 December 2003

Personnel

A Robb

(In Charge)

J Mills

M Mathewson

H Dobby

T Blasdale

F Burns

(Part 1)

K Coull

(Part 2)

M Robertson

H Fraser

D Lichtman

Fishing Gear

GOV Trawl (BT137) with belly lines and 20 mm cod-end, Ground gear, C and A

Benthic Sampling

Van Veen grab 2 Metre Beam Trawl

Out-turn days per project: MF01To - 20 days, C735 - 3 days

Objectives

- To participate in the ICES co-ordinated Western Division Bottom Trawl Survey.
- To obtain temperature and salinity data at each trawling position.
- To carry out benthic sampling at selected trawling stations.
- To gather and store acoustic data from the EK500 echosounder.

Area

West of Scotland, NW Ireland, Irish Sea

Narrative

Scotia sailed from Aberdeen as scheduled at 1130 on 12 November and proceeded north and west to the study area. The ship arrived on station in rectangle 46E6 around 0100 and the beam trawl and grabs were deployed, followed by the fishing operations at 0715. At this first station, a trawl door and a set of ground gear were lost when the trawl gear snagged on the bottom. Consequently, most of this first day was spent rigging the new trawl and

carrying out repairs to the broken trawl warps. Throughout the rest of the trip, fishing operations generally occurred between 0715 and 2100 with benthic sampling taking place during the night period. To ensure that the trawl gear was kept as standard as possible, maintenance took place whilst steaming between stations, with a thorough overhaul being carried out at the end of each day's operations.

Work progressed westwards without interruption until the evening of 17 November, when the ship had to steam overnight to Oban to land a crew member for family reasons and also to pick up his replacement. Fishing recommenced the next day at 1630 and continued southwards into the Irish Sea. The ship docked in Dublin at 0900 on 22 November for the port call and to allow changes to the scientific staff. *Scotia* sailed at 0900 the following day and completed the Irish sea stations before heading for positions to the west of Ireland. The survey then progressed northwards, up through the Minches and then along the North coast. The last trawling station in rectangle 46E6 was a repeat of the very first station and was completed without any problems at 1100 on 3 December, with the benthic work being finished by 1300. *Scotia* then proceeded to Aberdeen docking at around midnight.

Results

Trawling

Weather conditions were relatively favourable throughout the entire period allowing the survey to be completed successfully. Time also allowed the opportunity to fish at a few additional stations of varying depth strata. In total 83 trawl hauls of 30 minutes duration were carried out with only three being classified as not valid. The scanmar metering system was used to monitor headline height, wing and door spread during each haul. Bottom tide direction and speed was also recorded. Station positions are shown on the attached chart.

Table 1 gives the catch weights and Table 2 gives the provisional indices for the main species caught during the survey. Catches of the main juvenile (0 group) demersal species all showed a decrease from 2002. For haddock, the indication is that the incoming year class is one of the poorest in recent years and for cod there is no significant difference in the catches from previous years. The main pelagic species also showed a decrease in abundance from 2002 but all of these figures will be subject to revision once the complete dataset is available.

Benthic Sampling

A total of 33 stations were occupied during this cruise, of these 21 were successfully sampled. The positions are shown on the attached chart, one station was deemed invalid while 11 were abandoned after repeated failure to collect valid grab samples, generally because of the sediment types encountered.

At each of the 21 stations sampled a 2-metre beam trawl was towed for 5 minutes along the seabed. The epibenthic samples thus obtained were then passed through 2.0 and 5.0 mm mesh sieves. The animals retained on the 5 mm mesh were sorted, identified, measured and weighed as far as possible onboard the vessel. The 2 mm fraction and any organisms from the 5 mm fraction that could not be identified or which were too small to weighed onboard were preserved in 4% formalin and returned to the laboratory for processing.

Samples of the benthic infauna were collected by means of a 0.1 m² vanVeen grab that was deployed five times at every station. Each sample collected was passed through a series of mesh sizes (4.0, 2.0, 1.0 0.5 and 0.25 mm) and the resulting fractions preserved in 4% formalin and returned to the laboratory for processing. Further sediment samples, to be used for sediment particle size and meiofaunal analysis were collected from each station by

means of 25 mm internal diameter core tube, these were preserved onboard the vessel and also returned to the laboratory.

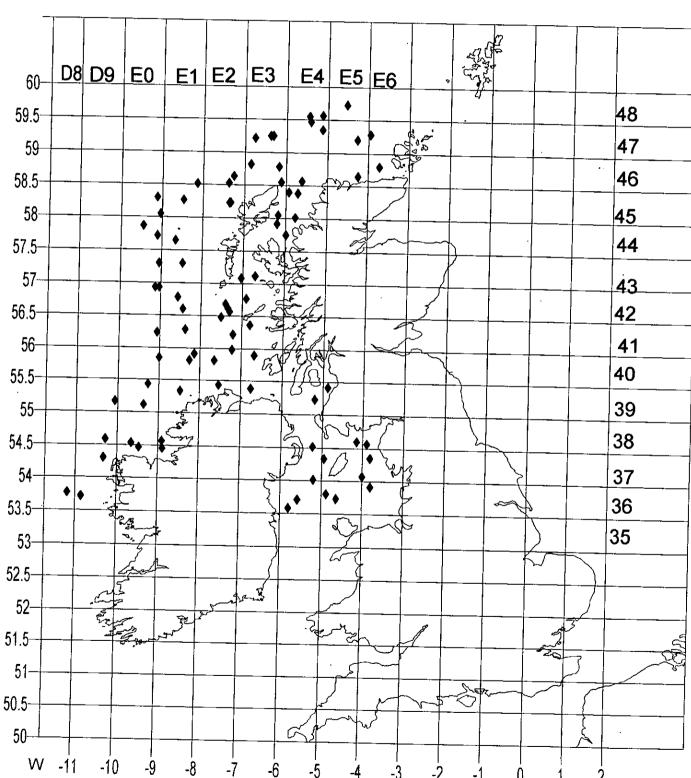
Hydrography

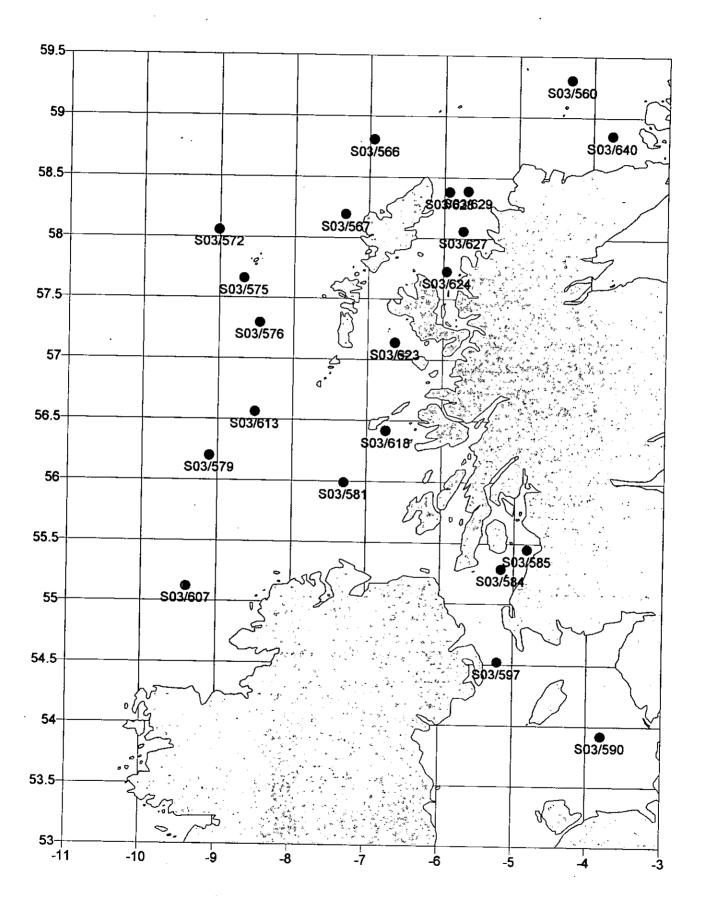
The CTD was deployed at each trawling position and the thermosalinograph run continuously throughout the cruise.

Acoustics

Data from the EK500 was logged on a continuous basis throughout the survey area.

A Robb 19 March 2004


Seen in Draft: Captain P Ramsay, OIC Scotia


Table 1 Scotia West Coast Survey Q4 2003 Catches (kgs)

Haul No	Rect	Depth	Herring	Sprat	Mackerel	Cod	Haddock	Whiting	NPout
*558	46E6	102							
559	47E6	124	0.4		0.4	1.3	48.3	10.0	
560 561	47E5 46E5	93	3.3		0.3	1.1	60.7	0,8	
562	46E4	97 128	0.8 1.0	0.1		1,6	880,6	20.2	0.0
563	46E3	100	0.5	0.1			109.9 132.6	94,1 8.8	41.2
564	46E3	118	6.0	0.1	0.3	1.7	70.9	33.1	1.0
*565	46E3	152			-/-			50. •	1.0
566	46E3	154	15.3		6.1		2.6	33.6	744.6
567	45E2	97	0.9		432.9		235.3	50.6	
568 660	46E2	94	791.9		51.6	4,1	138.4	4.6	
569 570	46E1 45E1	215 170	6.8		7.8	5.9	10.4	0.3	35.9
571	45E0	355	0.0		1.0	14.4	145.7 5.8	23.5	71.1
572	45E0	200	7.0			2.5	31.9	74.4	202.1
573	44E0	305	• • •			7.2	11.9	(7.7	0.2
574	44E0	154	27.8		2.7	1.8	116.5	31.1	2.5
575	44E1	163	277.1		32.0		23.1	21.8	22.6
576 577	43E1	150	262.9		8.6	1.3	141.3	14.6	0.2
578	43E0 42E0	140 144	177.5		5.3	1.7	113.9	3.2	0.5
579	41E0	158				2.8 10.7	128.9 81.9	0.8 0.8	0.0
580	40E3	56	0.4		3.4	10.1	85.5	141,4	2.2
581	40E2	115			3.0		48.9	98.6	
582	39E2	58	2.7			0.6	10.8	0.5	
583	39E3	75 50	0.4			3.4	3.2	36.9	
584 585	39E4 39E5	50 70		0.4			25.2	52.0	0.9
586	38E5	60	0.1	1.4 1.3	0.9	1.4	7.8 24.3	84.9	0.5
587	38⊑6	35	5.5	30.1	0.5	3.1	0.0	47.4 105.5	
588	37 E 6	40	0.8		0.7	U .,	2.0	534.0	
589	37E5	37		0.7			6.1	13.5	
590	36E6	- 38		0.3	0.1		0.2	0.4	
591 592	36E5	64	0.0		1	4.2	26.8	45.2	50.0
593	36E5 37E4	68 80	0.0 0.9	0.7		8.8	19.0	37.1	23.4
594	36E4	100	0.6	0.7 4.9		6.8	0.3	50.4	3.3
595	36E4	74	5.0	0.7		0.0	1.5	37.6 122.9	0.4 0.8
596	37E5	110	1.0	2.1	0.4	5.8	1.5	4.0	3.6
597	38E4	140	0.2	8.0		11,6	2.3	6.4	12.2
598	39E1	92	2.0		0.2		73.7	8.3	·
599 600	38E1	92	30.2	1.2	0,5			78.2	3.8
601	37€0 38€0	90 101	1.6 1.0	0.4	2.3		189.3	128.6	0.7
602	36D9	150	1.2	0.4	8.0 12.7		121.0	110.5 34.2	1.4
603	36D8	195		*	12.2		121.8 115.2	34,2 42.1	9.2 7.7
604	37D9	120	9.2		24.3		231.3	18.2	1.1
605	38D9	117			533.6		107.1	23.0	
606 607	39D9	450							
608	39E0 39E0	160 120	1,2		0.3	2.3	89.5	1.2	
609	40€0	126	0.5		0.9 1.9	1.7 4.9	100.0 81.5	3.2	
610	40E2	120	0.4		0.9	4.3	19.1	27.1 4.7	
611	40E1	150	3790.5	8.5	0.4		5.7	9.2	67.7
612	41E1	150	5.8			2.0	65.8	23.0	16.4
613	42E1	175	3.6		0.2	5.8	2.3	3.0	8.2
614 615	42E1 42E2	116 170	2.3 0.8	0.0	0.3		73.8	3.5	0.4
616	41E2	150	1.9	0.0	0.0 0.2	1.6	0.3 15.7	10.0	5.3
617	41E2	98		0.2	2.0	1.0	9.6	1.8 5.4	9.2 0.0
618	41E3	80	0.2	0.5	0.3		7.5	176.9	8.7
619	42E2	155	1.7				27.4	9.1	2.9
620	42E2	190	0.8	0.3			0.3	13.1	3.4
621	42E3	145	0.1	0.0			0.2	708.0	23.1
622 623	43E2 43E3	145 140	0.3	0.0		8.8	7.8	149.2	18.1
624	44E4	160	0.6 0.7	0,1 1.6		0.6	2.5	215.3	9.8
625	44E3	90	0.6	0.3	0.3	9.0 1.2	6.7 6.4	131.3 186.7	61.5 27.1
626	45E3	108	0.5	0.6	0.3		7.9	195.8	28.7
627	45E4	135	5.0	5.1		6.5	8.3	70.0	37.5
628	45E4	110	4,7	7.1			1.9	148.8	63.5
629 630	45E4 46E4	110	1.4	1.5		45-	20.3	27.4	17.3
631	46E4 47E4	115 80	0.3 0.1			15.2	210.4	38.2	33.0
632	47E3	170	Q. 1		0,9		233.8 12.9	23.2	10.4
633	47E3	150	0.3		92.0	4.8	61.1	0.7 5.0	10.4 0.1
634	47 E 4	104	7.9		0.1	2.0	86.7	5.0 1.1	0.1 0.0
635	48E4	130	104.1		25.6		8.9	3.7	
636 637	47E4	120	0.4				0.3		
637 *638	48⊑4 48 ⊑ 5	120	0.7		2.9		44.6	1.7	0.1
639	48€5 46€5	127 5 5				1.4	44.0		
640	46E6	104	7.3	31.6		1.4	41.8 118.4	2.6	12.1
* Not Valid									, . 1

Cod	Year/Age 1997 1998 1999 2000 2001 2002 2003	0 1 + 2 0 1 1	1 11 15 4 16 2 10 2	2 2 9 6 3 9 3	. 3 1 1 9 0 1 7 3	4 1 0 1 0 1 1 1	5 1 0 0 0 0 0	6 0 0 0 0 0
Haddock	1997 1998 1999 2000 2001 2002 2003	3713 399 4670 2959 3083 2943 293	1359 1640 366 4231 2219 1709 2023	282 486 574 147 3563 1770 965	151 148 267 191 48 2841 1470	25 137 92 59 138 34 639	26 17 68 25 22 50 28	14 33 11 5 12 24
Whiting	1997 1998 1999 2000 2001 2002 2003	8001 1852 8203 4434 9615 14658 9932	2869 2713 2338 4055 1957 1591 3446	951 1124 582 789 1420 621 567	323 149 141 160 155 479 338	160 100 33 9 40 30 83	46 20 24 7 12 9 27	12 1 1 1 2 5
Saithe	1997 1998 1999 2000 2001 2002 2003	0 0 0 0 0	0 1 0 0 0 1	1 2 32 1 50 8 25	3 2 7 1 15 6 5	1 1 0 0 2 1 1	1 0 0 0 0	0 0 0 0
Norway Pout	1997 1998 1999 2000 2001 2002 2003	23730 51210 20784 25311 34355 59207 10549	9594 7874 2295 5984 2498 5842 7715	1131 4226 304 2166 1977 493 2291	808 13 140 302 112 355 108	0 14 0 23 0 8 92	0 0 0 0 0	0 0 0 0 0
Herring	1997 1998 1999 2000 2001 2002 2003	57 86 37 153 223 144 95	82 59 247 208 121 94 8861	382 351 99 242 3335 124 5227	644 522 493 112 1452 230 1124	467 533 277 333 588 18 1251	473 625 285 169 1186 31	20 26 35 15 722 72 194
Mackerel	1997 1998 1999 2000 2001 2002 2003	873 4904 549 102 720 12045 1244	102 54 3631 98 15 270 771	16 11 451 118 58 91 460	4 3 101 47 32 154 72	4 0 3 9 17 42 62	1 1 35 1 1 5	1 0 1 1 1 8 8

Scotia West Coast Survey Q4 2003 Trawl Positions

vanVeen Grab and Beam Trawl Sampling Stations November / December 2003