A. 1 WHP CRUISE SUMMARY INFORMATION

WOCE section designation

Expedition designation (EXPOCODE)

Chief Scientist(s) and their affiliation:

Dates: Shi p:

Ports of call:

Number of stations:

Geographic boundaries of the stations:

Floats and drifters deployed: Moorings deployed or recovered:

Contributing Authors:

I 03

316N145_8

Worth D. Nowlin, Jr./TAMU 1995.04.23 - 1995.06.05

R/V KNORR

Fremantle, Australia; Port Louis, Mauritius

120

19? 58. 77' S

48? 55' E

113? 45.59' E 28? 13.96' S

28 ALACEs

20

Barrie Walden Mike Kosro

WHP CRUISE AND DATA OUTLINE

Cruise Summary Information

Description of scientific program

Geographic boundaries of the survey Cruise track (figure)

Description of stations Description of parameters sampled Bottle depth distributions (figure) Floats and drifters deployed

Moorings deployed or recovered Principal Investigators for all measurements

Cruise Participants Problems and goals not achieved

Other incidents of note

Underway Data Information

Navi gati on Bathymetry

Acoustic Doppler Current Profiler (ADCP) Thermosalinograph and related measurements

XBT and/or XCTD

Meteorological observations Atmospheric chemistry data

Data Status Notes

Hydrographic Measurements

CTD - general CTD - pressure

CTD - temperature

CTD - conductivity/salinity

CTD - dissolved oxygen

Sal i ni ty 0xygen Nutri ents CFCs Helium Tri ti um Radi ocarbon

CO2 system parameters

Other parameters

Acknowl edgments References

DQE Reports

CTD

S/02/nutrients

CFCs 14C

A. 2 Cruise Summary Information

A. 2. a Geographic boundaries

A. 2. b Stations Occupied

SUMMARY INFORMATION

120 full CTD/rosette stations were made (numbers 443-462), including one test station (443). Eleven CTD stations were made (563-573) with lowered ADCP and transmissometer measurements and samples analyzed for dissolved oxygen and salt only. Depths sampled are described in a later section. Parameters measured or for which samples were taken are given in the station summary (-. SUM) file.

A. 2. c Floats and Drifters Deployed

Table 1 gives the positions and dates of deployments of the 28 ALACES, with instrument serial numbers and numbers of CTD stations where depl oyed.

S/N Deployment Date Latitude (S) Longitude (E) CTD Station

			CSR7020_crui s	erep
485	27 04 1995	22 00.00	$112\ 22.88$	450
486	28 04 1995	21 09.09	110 09. 25	454
482	29 04 1995	20 00.19	106 37.00	459
481	01 05 1995	20 00.02	103 06. 79	463
480	02 05 1995	20 00.08	100 27.86	466
479	03 05 1995	20 00.07	96 57.05	470
483	04 05 1995	20 00. 22	94 18.11	473
484	05 05 1995	20 00.49	91 19. 52	478
494	08 05 1995	20 00.03	88 30.80	484
493	08 05 1995	20 00.14	86 53.91	488
492	09 05 1995	19 59.91	85 17.93	491
491	10 05 1995	19 59.93	82 44.02	495
497	11 05 1995	20 00.06	79 48 . 75	499
496	13 05 1995	20 00.03	76 54.49	503
458	17 05 1995	20 00. 19	74 10. 26	507
489	18 05 1995	20 00.14	71 15.07	513
490	19 05 1995	19 59.99	68 13. 11	519
385	20 05 1995	20 00.09	65 26 . 14	524
386	22 05 1995	20 22. 13	62 14. 69	530
487	23 05 1995	20 21.97	59 13. 57	535
488	28 05 1995	20 00.07	56 05.09	545
469	29 05 1995	20 00.09	53 19.62	550
468	30 05 1995	20 00. 267	52 15. 922	552
321	31 05 1995	20 00.01	51 17.90	554
476	31 05 1995	20 00. 20	50 35 . 84	556
431	01 06 1995	20 00. 16	50 04.03	557
478	01 06 1995	20 00.04	49 38.08	558
477	01 06 1995	20 00. 12	49 23.33	559

A. 2. d Moorings deployed or recovered

Twenty moorings were deployed in three arrays with a total of $60\ \mathrm{current}$ meters. Mooring positions are included in the station summary file.

A. 3 List of Principal Investigators

ODF Operations

- Water sampling package (Rosette and CTD)
 CTD data acquisition system
 CTD data Processing

- 4) Bathymetry acquisition and merging
 5) Bottle sampling
 6) Salinity analysis

- 7) Oxygen analysis
- 8) Nutrient analysis

Anal ysi s	Institution	Principal Investigator
CFC	SIO	Ray Weiss
Shallow He/Tr	WHOI	Bill Jenkins
Deep He/Tr	LDEO	Peter Schlosser
AMS 14C and Ra-228	Princeton	Robert Key
TCO2 & Alkalinity	Mi ami	Frank Millero
TC02	SIO	Charles Keeling
Bari um	OSU	Kelly Falkner
Current Meters and Moorings	TAMU	Worth Nowlin
Moori ngs	TAMU	Tom Whitworth
	WHOI	Bruce Warren
	OSU	Dale Pillsbury
Transmi ssometer	TAMU	Wilf Gardner
Underway measurements		
ADCP and LADCP	0SU	Mike Kosro
PC02	Princeton	Robert Key
Air chemistry	SIO	Ray Weiss
Meteorology (IMET)	WHOI	<i>j</i>
Thermosal i nograph	WHOI	
ALACE floats	SIO	Russ Davis

A. 4 Scientific Programme and Methods

A. 4 Scientific Programme and Methods

WOCE Hydrographic Program section IO3 and the deployment phase of

WOCE current meter project ICM3 were carried out aboard the R/V KNORR (call sign KCEJ) on voyage 145_8. This voyage began in Fremantle, Australia on 23 April 1995 and ended in port Louis, Mauritius on 5 June 1995 with one intermediate call in Port Louis from 25 to 28 May. Worth D. Nowlin, Jr. was chief scientist for the voyage.

NARRATI VE

The scientific activities on this voyage were carried out along or near 20 S from Australia to Mauritius to Madagascar. The CTD/rosette stations occupied included the WOCE suite of measurements, as described later, as well as lowered transmissometer and ADCP measurements and sampling for the U.S. Department of Energy's Carbon Dioxide program and for barium samples.

Leaving Fremantle, a test CTD/rosette station was made off the west coast of Australia near 28 S. The cruise then proceeded to the 200-m isobath near 22 S where CTD/rosette stations were made along a line to the west-northwest to 20 S and approximately 108 E. The first seven of those stations bracketed the six Australian moorings of WOCE ICM6 which were in place at the time.

The cruise then proceeded westward along 20 S crossing the West Australian Basin, Ninetyeast Ridge, Central Indian Basin, and Central Indian Ridge. West of the latter, the track veered southward to 22 S around Rodriguez Island to maintain a deep water cruise path to the east coast of Mauritius.

Along the eastern flank of the Ninetyeast Ridge, seven moorings of ICM3 were deployed. The deployments were interspersed with CTD/rosette stations. On the eastern flank of the Central Indian Ridge another seven moorings were deployed. These moorings were deployed first, and then CTD/rosette stations were made between them from east to west.

Leaving Port Louis, Mauritius, where a 2-day port call was made, CTD/rosette stations continued westward along 20 S from the continental shelf of Mauritius to that of Madagascar. Six moorings of ICMB were deployed at the western boundary of the Mascarene Basin, between CTD/rosette stations.

On reaching the eastern shelf of Madagascar, eleven CTD stations with lowered ADCP were made at the locations of earlier CTD/rosette stations bracketing the current meter deployments.

Twenty-eight Autonomous Lagrangian Circulation Explorers (ALACEs) were deployed along the cruise track with special attention to the western boundary region east of Madagascar. An underway program of meteorological, sea surface, and ADCP measurements was carried out along the track described as well as on the eastward return to Port Louis at the end of the voyage.

Continuous southeasterly winds of about 10-20 knots along with 4-6 ft southeasterly swells were the usual conditions for the entire leg. The first and last portions of the cruise were calmer than the rest. Seas turned choppy and stronger winds up to 30 knots in mid-May. This condition moderated somewhat toward the end of the month. Skies were usually partly sunny and fair marked with occasional overcast conditions and an occasional rain squall.

A. 5 Major Problems and Goals not Achieved

A. 6 Other Incidents of Note

Approximately 12 hours after leaving Fremantle at the beginning of voyage 145_8, Rhonda Kelly suffered a burn to her eye caused by a basic solution used in dissolved oxygen analysis. She was treated by the ship's medic and returned to Fremantle for continuing medical attention. Kelly rejoined the voyage in Port Louis.

Early in the voyage one conductor grounded in a new CTD cable installed in Fremantle. The ground was approximately 3000 meters from drum. The cable proved serviceable using the remaining pair of conductors. The second cable on the vessel was old with one broken outer strand about 3945 m from the bitter end. All conductors in that cable were serviceable, and it was used for the remainder of the cruise. This was because we experienced mild weather and wished to save the newer cable for future, perhaps worse, weather conditions.

A. 7 List of Cruise participants

Scientific Personnel

Name	Title	Affiliation	Duti es
Worth D. Nowlin, Jr.	Distinguished Professor	TAMU	Chief Scientist/ CTD Console
Bruce A. Warren	Senior Scientist	WHOI	Co-Chi ef/ Btl data/Rosette
Ann E. Jochens	Assoc. Research Scientis		CTD Console/PDR
Steven B. Rutz Carl W. Mattson	Research Associate Pr. Electronic Tech	TAMU STS/ODF	Rosette TIC/Watch Leader/
John Boaz	Marine Tech	STS/ODF	ET/Rosette Watch Leader/ 02/Rosette/Btl data
Doug M. Masten	SRA	STS/ODF	Nutri ents
Barry Nisly	Dev. Engi neer	STS/ODF	Nutrients/02
Craig M. Hallman	SRA	STS/ODF	
Mary C. Johnson	SRA	STS/ODF	
Jeff Skinner	Dev. Engi neer	STS/SCG	Salt/Rosette
Frederick A. Van Woy		SI O/GRD	CFC
Dongha Min	Research Assistant	SIO/GRD	CFC
Kirk Hargreaves	Oceanographer	PMEL	CFC
P. Michael Kosro	Assoc. Professor	OSU	ADCP
Robert M. Key	Research Oceanographer	PU/OTL	
Peter B. Landry	EA III	WHOI	He/Tr
Daniel Smith	Research Staff Assistant		He/Tr
David G. Purkerson	Research Assistant	U Miami	C02
Christopher Edwards	Lab Tech	U Miami U Miami	C02 C02
Joann Krenisky Jennifer Aicher	Research Assistant Graduate Student	U Miani U Miami	C02 C02
Dennis C. Root	Senior Research Assistan		Moori ngs/LADCP
	Senior Research Assistan		
John Simpkins III Richard Hevner	Research Assistant	OSU	Moorings/Rosette Moorings/Rosette/Salts
Matthew P. Pillsbury	Instrument Tech	OwU	Moori ngs
Michael A. Thatcher	SSSG Tech	WHOI	Res Tech

The following personnel joined the ship in Mauritius 25-27 May

Rhonda M. Kelly SRA II STS/ODF Nutrients
Noasy T. Razakafoniaina Oceanographer Madagascar Observer
Jean Maharavo Oceanographer Madagascar Observer

B. UNDERWAY MEASUREMENTS

B. 1. Navigation and Bathymetry (Barrie Walden 2001.04.06)

KNORR used P-Code GPS for navigation on this cruise and we recorded Position information once per minute onto the Sun Sparcstation.

Navigational data from three GPS receivers was recorded at one-minute time intervals. Two of the receivers were Magnavox MX200s and the third was a Trimble TANS P(Y) running in standard (non P-code) mode. The antennas for all of these receivers were mounted on the ship's mast at approximately mid-ships (frame 63). All position data includes the time and position extracted directly from the NMEA 183 CGS data stream. Additionally, the data provided by the Trimble receiver includes a final "source" indicator as follows: "1"=standard; "2"=diferential, "3"=P-Code.

Depth measurements were made using a hull-mounted 12 kHz echo sounder and a Raytheon recorder. Uncorrected depth (using a sounding speed of 1500 m/sec) was estimated to the nearest meter from the recorder every 5 minutes and manually entered into a data file that was subsequently merged with the 1-minute navigation data. This series of measurements began when the vessel left Fremantle and continued until the completion of the CTD stations, with a break for the intermediate port stop in Mauritius. While on CTD stations, depth measurements were not recorded except as required for the CTD log.

B. 2. Meteorological Observations

The following IMET sensors were installed and in use during IO3.

Туре	Serial Number	Label
Air Temperature	119	TMP
Barometric Pressure	118	PR
Preci pi tati on	113	PRC
Relative Humidity	unknown	HRH
Sea Surface Temperature	108	SST
Short Wave Radiation	003	SWR
Wind Speed and Direction	004	WND

The data were logged to ASCII text files, one containing ship navigational information and the other containing meteorological information.

There were a few large gaps in the data during the cruise. Any gap longer than 15 minutes while underway or longer than one hour while on station are listed below, with a short explanation of each. If only a subset of the data items are missing for the period indicated, the missing items will be listed along with the notes. In the table below OS stands for on station and UW stands for under way.

Date	Start	Stop	Length	UW/OS	Notes (Including data	a affected)
05/11	17: 37	17: 58	25 min. 21 min. 51 min.	UW UW UW	Return to old software (V 4.2B) Data logging computer down Data logging computer down	[all data] [all data] [all data]

NOTE:

No data logged during port stop Mauritius: 05/25, 13:40 GMT to 05/28, 02:42 GMT

In addition, data for 23 April (02:16 - 23:59 GMT) were lost in an attempted software upgrade to Athena V 4.2C. The majority of the missing data were recovered through data logged by the C14 group. The file format is different from that on other days of the cruise and has been given the extension .nav versus .met or .shp. It contains the following information:

GPS_TP	GPS time and position	
GYRO	Shi p's headi ng	(Gyro syncro)
I MET_AI R	Air temperature	(degrees C)
I MET_BPR	Barometric pressure	(miĬlibars)
I MET_SEA	Sea surface temp	(degrees C)
	True wind direction	(THIS IS NOT RELIABLE!)
	Wind direction	(ship relative)
IMET_WNS	Wind speed	(m/s ship relative)
SPDLOG	Shi p' s`speed	(EDO Speedlog)
SSCND	Sea surface conductivity	(mmho/cm)
SSTMP	Sea surface temperature	(degrees C)

B. 3. Acoustic Doppler Current Profiler (Mike Kosro)

```
1995/04/23 01:00:00 - to - 1995/06/05 04:25:00
DATA_DATES
LON_RANGE
LAT_RANGE
                                       48. 90 E - to - 115. 50 E
31. 88 S - to - 19. 62 S
DEPTH_RANGE
                                       17 - to - 489 m
SAC_CRUISE_ID
                                       00373
PLATFORM_NAME
                                       R/V Knorr
PRI NCI PAL_I NVESTI GATOR_NAME
                                       Mike Kosro
PI_INSTITUTION
                                       Oregon State University
PI_COUNTRY
PROJECT
                                       USA 
                                       WOCE (One-time Line)
ship_tag=KN9504
EXPOCODE=316N145_8
CRUI SE_NAME
woce_tag=I03, ICMO3
                                       Fremantle, Australia to
Port Louis, Mauritius
PORTS
GEOGRAPHI C_REGION
                                       South Indian Ocean
PROCESSED_BY
                                       Oregon State University
```

NAVI GATI ON **GPS** QUALI TY_NAV good

GENERAL_I NFORMATI ON

CRUISE NOTES

CHIEF SCIENTIST ON SHIP Worth Nowlin; Bruce Warren* I NSTI TUTE Texas A&M University; *WHOI

COUNTRY USA SIGNIFICANT DATA GAPS none

SPECIAL SHIP TRACK PATTERNS

ADCP INSTRUMENTATION

MANUFACTURER RDI VM150 narrowband

HARDWARE MODEL SERIAL NUMBERS FIRMWARE VERSION

transducer s/n 171 version 17.10

ADCP INSTALLATION

There is a hole in the hull plating slightly larger than the transducer clover leaf. Unfortunately, the hull is not flat and horizontal at the transducer's off-centerline location so the plate is at an angle to the plane of the transducer array. The transducers closest to the centerline are slightly recessed and the outboard pair are approximately flush. The transducer assembly is held in place by bolting its upper flange to the underside of a mounting "top-hat" adapter assembly. Therefore the entire assembly is in water and inspection of the electronics requires pulling the unit.

LOCATION/DEPTH ON HULL:

Transducer is located at frame 39, approximately 6 feet off centerline to the port side, at a depth of 14 feet.

REPEATABLE ATTACHMENT:

< YES > Mounting arrangement has alignment pins intended to allow repeatable installations but this seems to be a continuing problem.

DATE OF MOST RECENT ATTACH.:

COMMENT:

The adcp was removed from the hull earlier in the year in order to try to fix the loss of signal return in the kn9501 cruise. Inadvertently, the adcp was reinstalled with the nominal forward beam facing due aft, rather than 45 to port as it was when it was removed. Due to the lack of background of the tech on the cruise, this was not discovered until about 10 days into the cruise. At that time, the DAS software was adjusted accordingly. crui se.

ADCP INSTRUMENT CONFIGURATION

DEPTH RANGE 17m to 489m (bin centers)

BIN LENGTH 8m NUMBER OF BINS 60 TRANSMIT PULSE LENGTH BLANKING INTERVAL 8m 4m

ENSEMBLE AVERAGING INTERVAL 150 seconds

FUNCTION OF TEMP AT TRANSDUCER SOUND SPEED CALCULATION

BOTTOM TRACKING

limited periods "FH00001" "E0004020099" "B0090001" DIRECT COMMANDS

"CF64"

COMMENTS

ADCP thermistor was bad, so recorded using constant sound speed of 1500 m/s. Used underway thermosalinograph to provide a timevarying sound speed in post-processing.

ADCP DATA ACQUISITION SYSTEM

DATA LOGGER RDI DAS 2.48, HPIB interface

USER BUFFER VERSION 1920 (UE3)

CLOCK PC clock reset if drift greater than 2 sec from

GPS clock by UE3

SHIP HEADING

INSTRUMENT MAKE/MODEL SYNCHRO OR STEPPER Sperry MK37 synchro SYNCHRO RATIO 1:1 COMPENSATION APPLIED No

transducer temperature and ship's T&S

GPS ATTITUDE SYSTEM

LOCATION OF ANTENNAS:

Antennas are aircraft type with 10" dia ground planes, mounted in a rectangular array above the aft deck observational tower. All antennas are at the same height; approximately 5 feet above the tower top, 52 feet above the baseline. One fore/aft pair is spaced at 3 meters, the other pair at 2 meters. There is 2 meter spacing between the pairs (p/s separation). The array center is approximately 2 feet port of ship centerline, at frame 106.

ANCILLARY MEASUREMENTS

SURFACE TEMP AND SALINITY

PITCH/ROLL MEASUREMENTS

not used; statistics from Ashtech attitude data in user buffer Yes

HYDRO CAST MEASUREMENTS BIOMASS DETERMINATION DATE OF LAST CALIBRATION

No unknown

COMMENT

Flagg's agcave used

ADCP DATA PROCESSING/EDITING

PERSONNEL IN CHARGE SOUND SPEED CORRECTIONS DATE OF PROCESSING

ADDED TO NODC DB NOTABLE SCATTERING LAYERS: **COMMENTS:**

Mike Kosro

Applied in post-processing from underway T and S

NAVI GATI ON

GPS MAKE/MODEL

SELECTIVE AVAILABILITY P-CODE DI FFERENTI AL SAMPLE INTERVAL LOCATION OF ANTENNA

TIME OBTAINED RELATIVE TO START/END OF ENSEMBLE AVERAGING/EDITING APPLIED

LOGGED WITH ADCP DATA LOGGED INDEPENDENTLY **COMMENTS**

OTHER

Most recently modified Dec 22 1999

DEC 1999

start and end of ensemble

ensemble position is average of start and end fix for the ensemble

Yes using UE3 (including Ashtech GPS attitude)

No

Yes

No

No

1 Hz

Knorr's P-code receiver was not available for

this cruise (expired key)

bottom tracking available for limited periods

CALI BRATI ON

GYROCOMPASS CORRECTION profile by profile rotation. BOTTOM TRACK METHOD

WATER TRACK METHOD REFERENCE LEVELS USED TIME SLIP APPLIED

TOTAL No. CALIBRATION PTS TOTAL No. AFTER EDITING TIME VARIANT

COMMENT

COMMENTS

Yes using Ashtech heading information,

N No 0 Yes 3 to 10 No 257 173

Yes, based on Ashtech

Corrected for time-dependent error, then computed mean offset below. In addition, there was a -179.9 rotation applied when the data were originally taken, to correct for the rotated

transducer.

AMPLITUDE = 1.007 PHASE = -0.1

Data were processed in 2 parts: before and after port stop starting on 5/28/99 amp/phase were 1.006, -0.3 degrees

NAVIGATION CALCULATION

FINAL SELECTION

NAVIGATION USED

REFERENCE LAYER DEPTH RANGE FILTERING METHOD FOR

SMOOTHING REFERENCE LAYER

VELOCITY (FORM/WIDTH)

bins 3 to 10

GPS

Bl ackman $w(t) = 0.42 - 0.5*\cos(2pi*t/T) + .08*\cos(4pi*t/T)$,

1-hr halfwidth

FINALIZED SHIP VEL/POSITIONS

STORED IN DATABASE

Yes

GENERAL_ASSESSMENT

VECTOR, CONTOUR, STICK PLOTS: ok

REFERENCES (DATA REPORTS, ETC.):

LOWERED ADCP

Profile measurements of quasi-instantaneous horizontal current components were made to full ocean depth during IO3 using a lowered ADCP (LADCP), which was mounted to the rosette system with the CTD. The primary unit was a broadband, self-contained 150 kHz system manufactured by RD Instruments, model BBCS 150, serial no. 1246, firmware version 4.18, with 15 depth cells, depth cell size of 16m and blank-after-transmit interval of 16m. We used single ping ensembles with this instrument. For the first 16 stations (stations 443-458), an older narrowband, self-contained 307 kHz system was used instead (serial no. 447, firmware version 17.10); this instrument was operated with 16m bins, 16m pulse, 8m blanking and 18 pings per ensemble.

With either instrument, vertical shear of horizontal velocity was obtained from each ensemble. These shear estimates were vertically binned and averaged for each cast. By combining the measured velocity of the ocean with respect to the instrument, the measured vertical shear, and accurate shipboard navigation at the start and end of the station, absolute velocity profiles are obtained (Fischer and Visbeck, 1993). Depth can be obtained by integrating the vertical velocity component; a better estimate of the depth coordinate was made by incorporating the preliminary CTD profile data into the LADCP, and data will be reprocessed after final processing of the CTD profile data. The shipboard processing results in vertical profiles of u and v velocity components, from a depth of 60 meters to near the ocean bottom in 20-meter intervals. These data have been computer contoured to produce preliminary plots for analysis and diagnosis.

CTD casts were made at stations 443-573 on the IO3 cruise. LADCP casts were made at all stations. One cast, 444, was too shallow (less than 150 m) to obtain useful results. On one other cast, 550, the BroadBand LADCP turned off prematurely during the downcast. This behavior had been observed infrequently during previous legs and had been reported to the manufacturer; a firmware bug is suspected. The deep casts often have noise problems below 3000 meters or so due to poor instrument range. Interference from the return of the previous ping is often observed 750 m from the bottom.

Example velocity profiles, obtained on stations 566 and 567, are shown in Figures 2 and 3 respectively; U and V are the eastward and northward component of the current profile. The dashed line corresponds to the profile estimated from the downward cast, the dotted line corresponds to the upward cast, and the solid line represents the average over all valid returns, whether up or down. On station 566 (Figure 2), the up-, downand average- profile agree very well with each other, giving confidence in the result. For station 567, however, the up and down profiles are offset from one another by as much as 10-15 cm/s at some depths (Figure 3). Further processing is expected to help eliminate some of the up/down differences, some of which must arise by integrating across large, invalid shears; this interpretation is strengthened by the agreement of many of the small-scale features between the up and down profile, even when the integrating profiles are separated. Figure 3 should serve as a caution against over-interpreting the preliminary results which are included in this report.

Contour plots made from the preliminary average velocity profiles for all stations on 103 are provided as Figure 4; separate plots are provided for each basin.

B. 4 Analyses for CFC-113 and Carbon Tetrachloride

SAMPLE COLLECTION

All water samples were collected from 10 liter Niskin bottles using 100 ml glass syringes. Close ended Luerlock fittings were used to seal filled syringes. Rubber bands were applied to keep the seawater under positive pressure.

EQUIPMENT AND TECHNIQUE

Carbon-tetrachloride, methyl-chloroform, and chlorofluorocarbons CFC-11, CFC-12, and CFC-113 were measured on a total of 31 stations. A complementary analysis of CFC-11 and CFC-12 was performed by SIO as well. The analytical

system was designed by Lamont-Doherty Laboratories and uses a 10 cm, 1/16"
"Carbograph" trap cooled to -60?C. Desorption was with boiling water at 100?C.
Gases were forward flushed into a DB VRX capillary pre-column and column. A 10 cm 1/16" "Carbograph" precolumn which had been inline with the DB VRX pre-column was removed for improved peak sharpness and resolution. Unfortunately, this caused CFC-113 to interfere with methyl iodide and made the CFC-113 measurements more difficult.

Most samples were run within 12 hours of sampling. However, a few were run as late as 48 hours after sampling. This delay does not seem to have had an adverse effect on the samples. Duplicate samples were run for most casts. Air samples were run weekly on average. This was limited by time available.

CALI BRATI ON

All gases were calibrated using a 6 to 10 point calibration curve from an artificial standard calibrated against Weiss SIO standards. A standard intercomparison was also performed at sea, but this shows differences for which there has been no accounting yet. Standard was stored in an "Acculife" cylinder. The gas concentrations in the artificial working standard were chosen to have ratios comparable to that in seawater.

B. 5 Helium and Tritium Sampling

Helium and tritium samples are processed in the Helium Isotope Van on extraction and degassing systems designed by Dr. William Jenkins and Dempsey Lott of the Woods Hole Oceanographic Institute.

The systems each comprise basically of two rough pumps which evacuate the system to 1.0 x 10-3 torr, (one rough pump is used as a fore pump for the diffusion pump) one diffusion pump which reaches a high vacuum of 1.0 x 10-8 torr, a cryotrap chilled to - 132?C to trap water vapors before they reach the vacuum pumps, and a self contained cooling system that services both vacuum lines, keeping the diffusion pumps at 21.5?C for optimum diffusion pump afficiency. Helium samples are drawn from the Pageette in 00 as a cyclinders. That efficiency. Helium samples are drawn from the Rosette in 90 cc cylinders. They are gently tapped to shake loose any air bubbles that may be on the inside cylinder walls that would affect the helium data. The cylinders are mounted on cylinders. They an extraction system but are isolated from the vacuum. After the system has been under vacuum for an hour at approximately 1.0 x 10-7 torr, the vacuum is isolated from it. The samples are then emptied into a holding can. The cans are heated to boil, forcing the gasses out of the sample. The gasses are collected in a glass bulb which sits in an ice bath to attract the gas vapors. After 10 minutes the bulbs are sealed with a torch. The samples are sent back to the lab at Woods Hole where the helium content can be measured on a mass spectrometer.

Tritium samples are drawn from the Rosette in 500 cc cylinders. They do not get tapped since the gasses will be removed by the vacuum system. The sample cylinders are mounted on the degassing system. Below the cylinders is a sled with the glass bulbs that will be used for storing the sample. After the bulbs have been pumped on by the diffusion pump for a half an hour to $1.0 \times 10-7$ torr or less, the sample is placed in the bulb. They then go through a series of shaking and pumping for two and a half hours to remove all of the gasses. The samples will be directly pumped on by the vacuum and sealed at a pressure of approximately $1 \times 10-6$ torr. These samples will be stored for approximately $1 \times 10-6$ torr. These samples will be stored for approximately $1 \times 10-6$ torr. These removes the radioactive element attached 1 year before they can be measured. Tritium, the radioactive element attached to the water molecule breaks down into helium isotope. After 1 year there is enough of the helium isotope to measure on a mass spectrometer and then calculate the amount of tritium that was originally in the sample.

Helium and matching tritium samples are taken from approximately 2000 m to the surface, 16 of each per sampled station.

Deep helium samples 1000m to the bottom and 2000 m to the bottom on matching upper helium/tritium stations are analyzed in Dr. Peter Schlosser's lab at Lamont.

B. 6 Radiocarbon Sampling

A total of 480 samples were collected at 20 stations for radiocarbon analysis using the AMS technique. Ten of the stations were full water column profiles of 32 samples each and the remaining profiles covered the thermocline and had 16 samples each. All of these samples will be returned to the NOSAMS facility at WHOI for analysis. Once analysis is complete the results will be quality controlled and interpreted at Princeton by Ocean Tracer Lab members and other

interested scientists. Princeton is responsible for all of the Indian Ocean WOCE 14C sampling except for legs I8S and I9S. The station layout for the entire basin was designed to be merged with the deep water results from the GEOSECS program. Upper water column results will demonstrate the penetration of bomb radiocarbon since GEOSECS. Some penetration of bomb radiocarbon may be evident in deep and bottom waters of southern origin.

B. 7 Radi um Sampling (Robert Key 2001. 04. 04)

My group collected radium samples on several WOCE legs in the hope of being able to analyze them "in the background". We never received any funding for this work and the analytical capability no longer exists at Princeton. It is safe to assume that nothing will ever come from this effort. For those sample collection efforts currently recorded in WOCE bottle files, the simplest thing would be to drop the column altogether. Lacking that, all recordings on U.S. legs can be flagged 5.

B. 8 CO2 Sampling

SAMPLE COLLECTION

All water samples were collected from 10 liter Niskin bottles using 100 ml glass syringes. Close ended Luerlock fittings were used to seal filled syringes. Rubber bands were applied to keep the seawater under positive pressure.

EQUIPMENT AND TECHNIQUE

Carbon-tetrachloride, methyl-chloroform, and chlorofluorocarbons CFC-11, CFC-12, and CFC-113 were measured on a total of 31 stations. A complementary analysis of CFC-11 and CFC-12 was performed by SIO as well. The analytical system was designed by Lamont-Doherty Laboratories and uses a 10 cm, 1/16" "Carbograph" trap cooled to -60?C. Desorption was with boiling water at 100?C. Gases were forward flushed into a DB VRX capillary pre-column and column. A 10 cm 1/16" "Carbograph" precolumn which had been inline with the DB VRX pre-column was removed for improved peak sharpness and resolution. Unfortunately, this caused CFC-113 to interfere with methyl iodide and made the CFC-113 measurements more difficult. measurements more difficult.

Most samples were run within 12 hours of sampling. However, a few were run as late as '48 hours after sampling. This delay does not seem to have had an adverse effect on the samples. Duplicate samples were run for most casts. Air samples were run weekly on average. This was limited by time available.

CALI BRATI ON

All gases were calibrated using a 6 to 10 point calibration curve from an artificial standard calibrated against Weiss SIO standards. A standard intercomparison was also performed at sea, but this shows differences for which there has been no accounting yet. Standard was stored in an "Acculife" cylinder. The gas concentrations in the artificial working standard were chosen to have ratios comparable to that in seawater.

B. 9 Barium Sampling (Kelly Falkner 2001. 03. 23)

All water samples were collected from 10-liter Niskin bottles into 20-ml polyethylene vials which had been pre-cleaned by acid leaching in 0.2N HCl overnight at 60% followed by rinsing in distilled de-ionized water. The vials were rinsed with sample and then filled directly from the Niskin spigot with no draw tube.

The quality of the Ba data from most WOCE legs in the Indian Ocean turned out to be quite poor; far worse than attainable analytical precision (\pm 0% as opposed to 2%). We recorded many vials which came back with loose caps and evaporation associated with that seems to be the primary problem. The only hope I have of producing a decent data set is to run both Ba and a conservative element simultaneously and then relating that to the original salinity of the sample. We will be taking delivery on a high resolution ICPMS here at OSU sometime this winter which would make the project analytically feasible and economical. I do not presently have the funds in hand to do this and so have archived the samples for the time being. I don't think the WHPO would derive any benefit from the present data set.

B. 10 Current Meter Array ICM3 Deployment

Twenty intermediate, subsurface current meter moorings were deployed during the ICM3 cruise. Recovery of these moorings is expected in about 2 years. Each mooring contains 2, 3, or 4 recording current meters attached to 3/8" dacron rope. Buoyance is provided by clusters 17" Benthos glass spheres at each instrument location. The mooring is attached to the anchor using an EG&G DACS 723A transponding acoustic release. After deployment an acoustics/GPS survey was undertaken to refine the estimate of each mooring's geographic location and bottom depth.

The current meters used are Aanderaa RCM-8, vector averaging, solid state recording instruments. Speed and direction are sampled every 36 seconds to produce a 30 minute vector average. Temperature is sampled at the end of the 30 minute interval. The top instrument on each mooring records pressure in addition to temperature. The instruments have enough power and data capacity for a 3-year deployment.

Acknowl edgments

We acknowledge the outstanding performance of the officers and crew of the R/V KNORR. Special thanks are due to the bosun and other members of the deck force for long hours $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

REFERENCES

- Armstrong, F. A. J., C. R. Stearns, and J. D. H. Strickland. 1967. The measurement of upwelling and subsequent biological processes by means of the Technicon Autoanalyser and associated equipment. Deep-Sea Res., 1144: 381-389.
- Bernhardt, H. and A. Wilhelms. 1967. The continuous determination of low level iron, soluble phosphate and total phosphate with the AutoAnalyzer. Technicon Symposia, Volume I: 385-389.
- Culberson, C. H., R. T. Williams et al. 1991. A comparison of methods for the determination of dissolved oxygen in seawater. WHP Office Report WHPO 91-2.
- Fischer, J. and M. Visbeck. 1993. Deep velocity profiling with $\,$ self-contained ADCPs. J. Atmos. and Ocean. Tech., 10: 764.
- Gordon, L. I., J. C. Jennings, Jr., A. A. Ross, and J. M. Krest. 1992. A suggested protocol for continuous flow automated analysis of seawater nutrients in the WOCE Hydrographic Program and the Joint Global Ocean Fluxes Study. OSU College of Oceanography, Descr. Chem. Oc. Grp. Tech Rpt 92-1.
- IO3 Initial Cruise Rept. WDNJ August 29, 1995 22
- IO3 Initial Cruise Rept. WDNJ August 29, 1995 1

World Ocean Circulation Experiment
Indian Ocean I3
R/V Knorr Voyage 145 Leg 8
23 April 1995 - 5 June 1995
Fremantle, Australia - Port Louis, Mauritius
Expocode: 316N145/8

Chief Scientist: Dr. Worth D. Nowlin, Jr. Texas A&M University

13 Cruise Track

Oceanographic Data Facility (ODF) Final Cruise Report 4 September 1998

CSR7020_crui serep Data Submitted by: Oceanographic Data Facility Scripps Institution of Oceanography La Jolla, CA 92093-0214

DESCRIPTION OF MEASUREMENT TECHNIQUES AND CALIBRATIONS

Basic Hydrography Program

The basic hydrography program consisted of salinity, dissolved oxygen and nutrient (nitrite, nitrate, phosphate and silicate) measurements made from bottles taken on CTD/rosette casts, plus pressure, temperature, salinity and dissolved oxygen from CTD profiles. 131 CTD/rosette casts were made, usually to within 5 10 meters of the bettern. Two additional casts are not usually to within 5-10 meters of the bottom. Two additional casts are not reported: station 498 cast 1 was aborted for signal problems before the cast entered the water, and station 505 cast 1 was a test cast for wire/voltage problems.

Station 443 was completed approximately two days after leaving port, near latitude 28S. Stations 444-539 were completed along a line roughly following latitude 20S from NW Australia to the east coast of Mauritius. Stations 540-562 were done along 20S from the west coast of Mauritius to the east coast of Madagascar, with a 2-day port stop in Port Louis between stations 544-545. Stations 563-573 re-occupied stations 551-561 in reverse order. Salts and oxygen were the only bottle samples taken on this repeated section.

Three sections of current meter moorings (ICMB) were deployed along the I3 line: ICM3 moorings 20-14 were deployed at positions between I3 stations 475-485, moorings 13-7 between stations 506-517, and moorings 6-1 between stations 551-559. There was a 3.25-day delay between the end of station stations 551-559. There was a 3.25-day delay between the end of station 505 and the start of station 506, where moorings 13-7 were placed before back-tracking to the station 506 position for the next CTD cast.

4006 bottles were tripped resulting in 3999 usable bottles. insurmountable problems were encountered during any phase of the operation. The resulting data set met and in many cases exceeded WHP specifications. The distribution of samples is illustrated in Figures 1.0 through 1.1.

Figure 1.0 I3 sample distribution, stas 444-497

Figure 1.1 I3 sample distribution, stas 498-562

2. Water Sampling Package

Hydrographic (rosette) casts were performed with a rosette system consisting of a 36-bottle rosette frame (ODF), a 36-place pylon (General Oceanics 1016) and 36 10-liter PVC bottles (ODF). Underwater electronic components consisted of an ODF-modified NBIS Mark III CTD (ODF #1) and associated sensors, SeaTech transmissometer (TAMU), RDI LADCP (UofH), Benthos altimeter and Benthos pinger. The CTD was mounted horizontally along the bottom of the rosette frame, with the transmissometer, a SensorMedics dissolved oxygen sensor and an FSI secondary PRT sensor deployed next to the CTD. The LADCP was vertically mounted to the frame inside the bottle rings. The altimeter provided distance-above-bottom in the CTD data stream. The pinger was monitored during a cast with a precision depth recorder (PDR) in the ship's laboratory. The rosette system was suspended from a three-conductor 0.322" electro-mechanical cable. Power to the CTD and pylon was provided through the cable from the ship. Separate conductors were used for the CTD and pylon signals. The transmissometer, dissolved oxygen, secondary temperature and altimeter were interfaced with the CTD, and their data were incorporated into the CTD data stream. Deep Sea Reversing Thermometers (DSRTs) were used occasionally on this leg to monitor for CTD pressure or temperature drift.

The deck watch prepared the rosette approximately 45 minutes prior to each cast. All valves, vents and lanyards were checked for proper orientation. The bottles were cocked and all hardware and connections rechecked. arrival on station, time, position and bottom depth were logged by the console operator. The rosette was deployed from a position on the starboard side of the main deck. Each rosette cast was lowered to within 5-10 meters of the bottom, unless the bottom returns from both the pinger and altimeter were extremely poor or the bottom depth exceeded the range of the instrumentation.

Bottles on the rosette were each identified with a unique serial number.

Usually these numbers corresponded to the pylon tripping sequence, 1-36, where the first (deepest) bottle tripped was bottle #1. The only exception was on station 454, where bottle 37 was placed in trip sequence 23 while bottle 23 was being repaired.

Averages of CTD data corresponding to the time of bottle closure were associated with the bottle data during a cast. Pressure, depth, temperature, salinity and density were immediately available to facilitate examination and quality control of the bottle data as the sampling and laboratory analyses progressed.

Recovering the package at the end of deployment was essentially the reverse of the launching with the additional use of air-tuggers for added stabilization. The rosette was moved into the starboard-side (forward) hangar for sampling. The bottles and rosette were examined before samples were taken, and any extraordinary situations or circumstances were noted on the sample log for the cast.

Routine CTD maintenance included soaking the conductivity and CTD 02 sensors in distilled water between casts to maintain sensor stability. The rosette was stored in the rosette room between casts to insure the CTD was not exposed to direct sunlight or wind in order to maintain the internal CTD temperature near ambient air temperature.

Rosette maintenance was performed on a regular basis. 0-rings were changed as necessary and bottle maintenance was performed each day to insure proper closure and sealing. Valves were inspected for leaks and repaired or replaced as needed.

The transmissometer windows were cleaned prior to deployment approximately every 20 casts. The air readings were noted in the TAMU transmissometer log book after each cleaning. Transmissometer data were monitored for potential problems during every cast.

The R/V Knorr's port-side CTD winch was used during stations 443 through 497 and stations 500 through 503. The starboard winch was used on stations 498 (cast 2), 499, and 504 through 573. New ctd wire was installed on the port winch at the start of the leg; however, at the start of station 498, a short developed in one of the conductors about 6000 meters from the termination end. The port wire was reterminated using only two conductors.

The starboard winch and cable were used for stations 498 (cast 2) and 499. There were voltage dropouts and CTD signal noise during station 499; further investigation revealed an intermittent contact problem on the starboard winch slip rings and a broken armor strand on the wire 50m from the termination end. The slip rings were replaced, and the starboard wire was shortened by 100m and reterminated. Stations 500 through 503 used the port winch and wire while the starboard winch problems were being resolved. The starboard winch was then used for the remainder of the leg. The CTD wire on the starboard winch was an older wire that had been on the port winch on the previous legs. A broken armor strand at about 4000m on this wire was inspected on every up-cast deeper than 4000 meters, and re-taped as needed.

3. Underwater Electronics Packages

CTD data were collected with a modified NBIS Mark III CTD (0DF #1). This instrument provided pressure, temperature, conductivity and dissolved 02 channels, and additionally measured a second temperature (FSI temperature module/0TM) as a calibration check. Other data channels included elapsed-time, altimeter, several power supply voltages and transmissometer. The instrument supplied a 15-byte NBIS-format data stream at a data rate of 25 Hz. Modifications to the instrument included revised pressure and dissolved 02 sensor mountings; ODF-designed sensor interfaces for 02, FSI PRT and transmissometer; implementation of 8-bit and 16-bit multiplexer channels; an elapsed-time channel; instrument ID in the polarity byte and power supply voltages channels.

Table 3.0 summarizes the winches and serial numbers of instruments and sensors used during I3.

•	Station(s)	ODF CTD@ I D#	SensorMedics 0xygen Sensor	SeaTech Transmissometer (TAMU)	Wi nch	+
•	443-453	+ 	3-03-10			Ť

454-456	4-05-16		Port		
457-498/1		151D			
498/2-499	5-01-04	1310	Stbd.		
500-503	3-01-04		Port		
504-573			Stbd.		
NOTE: large LADCP stas 443-458, small LADCP from sta 459 (S/Ns unknown)					

@ ODF CTD #1 sensor serial numbers:

	NBIS MKIIIB CTD (ODF-ID#)	Pressure Paine Model 211-35-440-05 strain gage/0-8850psi	Tempera PRT1 Rosemount Model 171BJ	ature PRT2 FSI OTM	Conductivity NBIS Model 09035-00151
-	1	131910	14304	OTM/1322T	5902-F117

Table 3.0 I3 Instrument/Sensor Serial Numbers

The CTD pressure sensor mounting had been modified to reduce the dynamic thermal effects on pressure. The sensor was attached to a section of coiled stainless-steel tubing that was connected to the end-cap pressure port. The transducer was also insulated. The NBIS temperature compensation circuit on the pressure interface was disabled; all thermal response characteristics were modeled and corrected in software.

The 02 sensor was deployed in a pressure-compensated holder assembly mounted separately on the rosette frame and connected to the CTD by an underwater cable. The 02 sensor interface was designed and built by 0DF using an off-the-shelf 12-bit A/D converter. The transmissometer interface was a similar design.

Although the secondary temperature sensor was located within 6 inches of the CTD conductivity sensor, it was not sufficiently close to calculate coherent salinities. It was used as a secondary temperature calibration reference rather than as a redundant sensor, with the intent of eliminating the need for mercury or electronic DSRTs as calibration checks.

The General Oceanics (GO) 1016 36-place pylon was used in conjunction with an ODF-built deck unit and external power supply instead of a GO pylon deck unit. This combination provided generally reliable operation and positive confirmation. The pylon emitted a confirmation message containing its current notion of bottle trip position, which could be useful in sorting out mis-trips. The acquisition software averaged CTD data corresponding to the rosette trip as soon as the trip was initiated until the trip confirmed, typically 3+/-0.5 seconds on I3.

There were 2 random bad trip confirmations during I3, which both succeeded when a re-position/re-trip was attempted. There were voltage dropout problems, especially at bottle trips, during station 499 (see Section 2). The resulting signal noise caused more than 1500 false trip detects by the acquisition software. The initial trip detects at each bottle level were positive confirmations, so the excess trip levels were merely edited out during post-cast processing. Only the surface bottle at station 504 had the same voltage dropout problem, and the trip level was recovered from clean CTD data prior to the dropout. None of bottles 7-36 at station 537 confirmed positively; the pylon had to be re-set/re-positioned manually prior to each trip attempt. 3 of those bottles came up open, as detailed in Appendix D.

4. Navigation and Bathymetry Data Acquisition

Navigation data were acquired from the ship's Magnavox MX GPS receiver via RS-232. Data were logged automatically at one-minute intervals by one of the Sun SPARCstations. Underway bathymetry was logged manually from the 12 kHz Raytheon PDR at five-minute intervals, then corrected according to Carter [Cart80] and merged with the navigation data to provide a timeseries of underway position, course, speed and bathymetry data. These data were used for all station positions, PDR depths and bathymetry on vertical

5. CTD Data Acquisition, Processing and Control System

The CTD data acquisition, processing and control system consisted of a Sun SPARCstation LX computer workstation, ODF-built CTD and pylon deck units, CTD and pylon power supplies, and a VCR recorder for real-time analog backup recording of the sea-cable signal. The Sun system consisted of a color display with trackball and keyboard (the CTD console), 18 RS-232 ports, 2.5 GB disk and 8mm cartridge tape. Two other Sun SPARCstation LX systems were networked to the data acquisition system, as well as to the rest of the networked computers aboard the Knorr. These systems were available for real-time CTD data display and provided for hydrographic data management and backup. Two HP 1200C color inkjet printers provided hardcopy capability from any of the workstations.

The CTD FSK signal was demodulated and converted to a 9600 baud RS-232C binary data stream by the CTD deck unit. This data stream was fed to the Sun SPARCstation. The pylon deck unit was connected to the Sun LX through a bi-directional 300 baud serial line, allowing bottle trips to be initiated and confirmed by the data acquisition software. A bitmapped color display provided interactive graphical display and control of the CTD rosette sampling system, including real-time raw and processed CTD data, navigation, winch and rosette trip displays.

The CTD data acquisition, processing and control system was prepared by the console watch a few minutes before each deployment. A console operations log was maintained for each deployment, containing a record of every attempt to trip a bottle as well as any pertinent comments. Most CTD console control functions, including starting the data acquisition, were initiated by pointing and clicking a trackball cursor on the display at icons representing functions to perform. The system then presented the operator with short dialog prompts with automatically-generated choices that could either be accepted as defaults or overridden. The operator was instructed to turn on the CTD and pylon power supplies, then to examine a real-time CTD data display on the screen for stable voltages from the underwater unit. Once this was accomplished, the data acquisition and processing was begun and a time and position were automatically logged for the beginning of the cast. A backup analog recording of the CTD signal on a VCR tape was started at the same time as the data acquisition. A rosette trip display and pylon control window popped up, giving visual confirmation that the pylon was initializing properly. Various plots and displays were initiated. When all was ready, the console operator informed the deck watch by radio.

Once the deck watch had deployed the rosette and informed the console operator that the rosette was at the surface (also confirmed by the computer displays), the console operator or watch leader provided the winch operator with a target depth (wire-out) and maximum lowering rate, normally 60 meters/minute for this package. The package then began its descent, building up to the maximum rate during the first few hundred meters, then optimally continuing at a steady rate without any stops during the downcast.

The console operator examined the processed CTD data during descent via interactive plot windows on the display, which could also be run at other workstations on the network. Additionally, the operator decided where to trip bottles on the up-cast, noting this on the console log. The PDR was monitored to insure the bottom depth was known at all times.

The deck watch leader assisted the console operator by monitoring the rosette's distance to the bottom using the difference between the rosette's pinger signal and its bottom reflection displayed on the PDR. Around 200 meters above the bottom, depending on bottom conditions, the altimeter typically began signaling a bottom return on the console. The winch speed was usually slowed to $\sim\!30$ meters/minute during the final approach. The winch and altimeter displays allowed the watch leader to refine the target depth relayed to the winch operator and safely approach to within 5-10 meters of the bottom.

Bottles were closed on the up-cast by pointing the console trackball cursor at a graphic firing control and clicking a button. The data acquisition system responded with the CTD rosette trip data and a pylon confirmation message in a window. A bad or suspicious confirmation signal typically resulted in the console operator repositioning the pylon trip arm via software, then re-tripping the bottle, until a good confirmation was received. All tripping attempts were noted on the console log. The

console operator then instructed the winch operator to bring the rosette up to the next bottle depth. The console operator was also responsible for generating the sample log for the cast.

After the last bottle was tripped, the console operator directed the deck watch to bring the rosette on deck. Once the rosette was on deck, the console operator terminated the data acquisition and turned off the CTD, pylon and VCR recording. The VCR tape was filed. Usually the console operator also brought the sample log to the rosette room and served as the sample cop.

CTD Data Processing

ODF CTD processing software consists of over 30 programs running under the Unix operating system. The initial CTD processing program (ctdba) is used either in real-time or with existing raw data sets to:

- o Convert raw CTD scans into scaled engineering units, and assign the data to logical channels;
- o Filter various channels according to specified filtering criteria;
- o Apply sensor- or instrument-specific response-correction models; o Provide periodic averages of the channels corresponding to the
- output time-series interval; and
- o Store the output time-series in a CTD-independent format.

Once the CTD data are reduced to a standard-format time-series, they can be manipulated in various ways. Channels can be additionally filtered. time-series can be split up into shorter time-series or pasted together to form longer time-series. A time-series can be transformed into a pressure-series, or into a larger-interval time-series. The pressure calibration corrections are applied during reduction of the data to time-series. Temperature, conductivity and oxygen corrections to the series are maintained in separate files and are applied whenever the data are accessed.

ODF data acquisition software acquired and processed the CTD data in real-time, providing calibrated, processed data for interactive plotting and reporting during a cast. The 25 Hz data from the CTD were filtered, response-corrected and averaged to a 2 Hz (0.5-second) time-series. correction and calibration models were applied to pressure, temperature, conductivity and 02. Rosette trip data were extracted from this timeseries in response to trip initiation and confirmation signals. The calibrated 2 Hz time-series data, as well as the 25 Hz raw data, were stored on disk and were available in real-time for reporting and graphical display. At the end of the cast, various consistency and calibration checks were performed, and a 2.0-db pressure-series of the down-cast was generated and subsequently used for reports and plots.

CTD plots generated automatically at the completion of deployment were checked daily for potential problems. The two PRT temperature sensors were inter-calibrated and checked for sensor drift. The CTD conductivity sensor was monitored by comparing CTD values to check-sample conductivities, and by deep Theta-Salinity comparisons between down- and up-casts as well as adjacent stations. The CTD 02 sensor was calibrated to check-sample data.

A few casts exhibited conductivity offsets due to biological or particulate artifacts. Some casts were subject to noise in the data stream caused by sea cable or slip-ring problems, or by moisture in the interconnect cables between the CTD and external sensors (i.e. 02). Intermittent noisy data were filtered out of the 2 Hz data using a spike-removal filter. A leastsquares polynomial of specified order was fit to fixed-length segments of data. Points exceeding a specified multiple of the residual standard deviation were replaced by the polynomial value.

Density inversions can be induced in high-gradient regions by shipgenerated vertical motion of the rosette. Detailed examination of the raw data shows significant mixing occurring in these areas because of "ship roll". In order to minimize density inversions, a ship-roll filter was applied to all casts during pressure-sequencing to disallow pressure reversals.

The first few seconds of in-water data were excluded from the pressureseries data, since the sensors were still adjusting to the going-in-water transition. However, some casts exhibited up to a 0.02 sigma theta drop during the top 10 db of the water column. A time-series data check verified these density features were probably real: the data were consistent over many frames of data at the same pressures. Appendi x C

details the magnitude of the larger density drops for the casts affected.

Pressure intervals with no time-series data can optionally be filled by double-quadratic interpolation/extrapolation. The only pressure intervals missing/filled during this leg were at 0 db, caused by chopping off going-in-water transition data at pressure-sequencing.

There is an inherent problem in the internal digitizing circuitry of the NBIS Mark III CTD when the sign bit for temperature flips. Raw temperature can shift 1-2 millidegrees as values cross between positive and negative, a problem avoided by offsetting the raw PRT readings by ~1.5 deg. C. The conductivity channel also can shift by 0.001-0.002 mmho/cm as raw data values change between 32767/32768, where all the bits flip at once. This is typically not a problem in shallow to intermediate depths because such a small shift becomes negligible in higher gradient areas.

Raw CTD conductivity traversed 32767/32768 at $\sim 1300 + /-150$ db ($\sim 3.75 + /-0.15$ deg. C theta) during I3 casts. There is no apparent salinity shift seen during this leg because the +0.001 PSU effect typical of the digitizing problem is lost in the higher gradients at these depths vs deeper water.

A down-cast stop/slowdown nearly always caused a problem in fitting CTD 02 data because the raw oxygen signal shifted as oxygen became depleted in water near the sensor. A small shift was often noted as the winch slowed down for the bottom approach. The signal shift could usually be compensated for by applying a small constant offset to the raw oxygen current values from the stop/slowdown until the bottom of the cast, then re-fitting the oxygen data to the bottles. Raw CTD 02 offsets that resolved shifts at winch stops or slowdowns are noted in Appendix C.

Appendix C contains a table of CTD casts requiring special attention; I3 CTD-related comments, problems and solutions are documented in detail.

7. CTD Laboratory Calibration Procedures

Pre-cruise laboratory calibrations of CTD pressure and temperature sensors were used to generate tables of corrections applied by the CTD data acquisition and processing software at sea. These laboratory calibrations were also performed post-cruise.

Pressure and temperature calibrations were performed on CTD #1 at the ODF Calibration Facility in La Jolla. The pre-cruise calibrations were done in December 1994, before five consecutive ODF WOCE legs in the Indian Ocean, and the post-cruise calibrations were done in September 1995.

The CTD pressure transducer was calibrated in a temperature-controlled water bath to a Ruska Model 2400 Piston Gage pressure reference. Calibration data were measured pre-/post-cruise at -1.42/+0.01 deg. C to a maximum loading pressure of 6080 db, and 30.41/31.24 deg. C to 1400/1190 db. Figures 7.0 and 7.1 summarize the CTD #1 laboratory pressure calibrations performed in December 1994 and September 1995.

Figure 7.0 Pressure calibration for ODF CTD #1, December 1994.

Figure 7.1 Pressure calibration for ODF CTD #1, September 1995.

Additionally, dynamic thermal-response step tests were conducted on the pressure transducer to calibrate dynamic thermal effects. These results were combined with the static temperature calibrations to optimally correct the CTD pressure.

CTD PRT temperatures were calibrated to an NBIS ATB-1250 resistance bridge and Rosemount standard PRT in a temperature-controlled bath. The primary and secondary CTD temperatures were offset by $\sim\!1.5$ deg. C to avoid the 0-point discontinuity inherent in the internal digitizing circuitry. Standard and PRT temperatures were measured at 9 or more different bath temperatures between -1.5 and 31.3 deg. C, both pre- and post-cruise. Figures 7.2 and 7.3 summarize the laboratory calibrations performed on the CTD #1 primary PRT during December 1994 and September 1995.

Figure 7.2 Primary PRT Temperature Calibration for ODF CTD #1, 12/94.

Figure 7.3 Primary PRT Temperature Calibration for ODF CTD #1, 9/95.

These laboratory temperature calibrations were referenced to an ITS-90 standard. Temperatures were converted to the IPTS-68 standard during processing in order to calculate other parameters, including salinity and

density, which are currently defined in terms of that standard only. Final calibrated CTD temperatures were reported using the ITS-90 standard.

8. CTD Calibration Procedures

This cruise was the third of five consecutive Indian Ocean WOCE legs using ODF CTD #1 exclusively. A redundant PRT sensor was used as a temperature calibration check while at sea. CTD conductivity and dissolved O2 were calibrated to in-situ check samples collected during each rosette cast.

Final pressure, temperature, conductivity and oxygen corrections were determined during post-cruise processing.

8.1. CTD #1 Pressure

There was a pre- to post-cruise (5 legs over 7.5 months) shift of -2.4 db at shallow and deep pressures in the cold-bath laboratory calibrations for pressure. The warm-bath pressure correction shifted by -1.8 db. Half of the closure between warm/cold calibrations can be accounted for by different temperatures of the pre-/post-cruise calibrations. There were no significant slope differences between pre- and post-cruise pressure calibrations.

In order to determine when the pressure shift occurred, start-of-cast out-of-water pressure and temperature data from the 5 consecutive ODF legs were compared with similar data from the pre- and post-cruise laboratory calibrations for temperature. The pressure data from the I3 leg shifted $\sim\!0.8$ db compared to pre-cruise laboratory data at all temperatures. A -0.8 db offset was applied to the entire pre-cruise pressure calibration. These revised calibration data, plus the dynamic thermal-response correction, were applied to I3 CTD #1 pressures.

Down-cast surface pressures were automatically adjusted to 0 db as the CTD entered the water; any difference between this value and the calibration value was automatically adjusted during the top 50 decibars. Residual pressure offsets at the end of each up-cast (the difference between the last corrected pressure in-water and 0 db) averaged 0.05 db, thus indicating no problems with the final pressure corrections. Figure 8.1.0 shows the offset pre-cruise laboratory calibration used to correct I3 CTD #1 pressure data.

Figure 8.1.0 I3 Pressure correction for ODF CTD #1: December 1994 calibration offset by -0.8 db.

The entire 10-month pre- to post-cruise laboratory calibration shift for the pressure sensor on CTD #1 was less than half the magnitude of the WOCE accuracy specification of 3 db. I3 CTD pressures should be well within the desired standards.

8.2. CTD #1 Temperature

An FSI PRT sensor (PRT2) was deployed as a second temperature channel and compared with the primary PRT channel (PRT1) on all casts to monitor for drift. The response times of the primary and secondary PRT sensors were matched, then preliminary corrected temperatures were compared for a series of standard depths from each CTD down-cast.

The FSI PRT used during the last half of I9N and all of I8N/I5E was deployed as the secondary PRT during the entire I3 leg. The differences between the CTD #1 primary PRT and the FSI PRT drifted slowly during I9N, then stabilized at about -0.01 deg. C by the end of that first leg. The non-zero difference was attributed to drift in the FSI PRT sensor, since a stable conductivity correction indicated no shift in the primary PRT. There was no drift noted in the PRT1-PRT2 differences during I8N/I5E or I3; the differences remained stable near the value observed at the end of I9N. Figure 8.2.0 summarizes the comparison between the primary and secondary PRT temperatures.

Figure 8.2.0 I3 Shipboard comparison of CTD #1 primary/secondary PRT temperatures, pressure > 1000 db.

The primary temperature sensor laboratory calibrations indicated a -0.001 deg. C shift at 0 deg. C, a -0.0006 deg. C shift at mid-range temperatures, and a -0.0014 deg. C shift at 32 deg. C from pre- to post-cruise. The pre- and post-cruise temperature calibrations were equally weighted and combined

to generate an average temperature correction, which was applied to all CTD casts done during the 5 legs between calibrations. Figure 8.2.1 summarizes the average of the pre-/post-cruise laboratory temperature calibrations for CTD #1.

Figure 8.2.1 WOCE95 Primary temperature correction for ODF CTD #1, Dec. 94/Sept. 95 equally weighted average.

The 10-month pre- to post-cruise laboratory calibration shift for the primary temperature sensor on CTD #1 was less than half the magnitude of the WOCE accuracy standard of 0.002 deg. C. Since an average of the two calibrations was applied to the data, 13 CTD temperatures should be well within the WOCE accuracy specifications.

The secondary FSI temperature sensors either failed or drifted during I9N, the first leg of the 5 consecutive ODF legs, far more than the primary sensor drifted during the 10 months between laboratory calibrations. The FSI PRT sensors seemed to monitor their own drift better than that of the primary temperature sensor mounted permanently on CTD #1. Any comparison of their pre- and post-cruise calibrations was deemed pointless.

8. 3. CTD #1 Conductivity

The corrected CTD rosette trip pressure and temperature were used with the bottle salinity to calculate a bottle conductivity. Differences between the bottle and CTD conductivities were then used to derive a conductivity correction. This correction is normally linear for the 3-cm conductivity cell used in the Mark III CTD.

Due to small shifting in CTD conductivity, probably caused by organic matter, the conductivity sensor was swabbed with distilled water prior to station 269 during I9N, then remained stable thereafter. Cast-by-cast comparisons showed minimal conductivity sensor drift during I8N/I5E and I3.

Conductivity differences above and below the thermocline were fit to CTD conductivity for all 5 legs together to determine the conductivity slope. The conductivity slope gradually increased from stations 148 (I9N) to 800 (I7N), after which the conductivity sensor was swabbed with alcohol. Figure 8.3.0 shows the individual preliminary conductivity slopes for stations 148-800.

Figure 8.3.0 CTD #1 prelim conductivity slopes for WOCE95 stations 148(I9N) through 800(I7N).

The conductivity slopes for stations 148-800 were fit to station number, with outlying values (4,2) standard deviations) rejected. Conductivity slopes were calculated from the first-order fit and applied to each 13 cast

Once the conductivity slopes were applied, residual CTD conductivity offset values were calculated for each cast using bottle conductivities deeper than 1400 db. Figure 8.3.1 illustrates the I3 preliminary conductivity offset residual values.

Figure 8.3.1 I3 CTD #1 preliminary conductivity offsets by station number.

Casts were grouped together based on drift and/or known CTD conductivity shifts to determine average offsets. This also smoothed the effect of any cast-to-cast bottle salinity variation, typically on the order of +/-0.001 PSU. 12 casts were omitted from the groups because they were shallower than 1400 db, or had too few bottles deeper than 1400 db to calculate a usable offset. Smoothed offsets were applied to each cast, then some offsets were manually adjusted to account for discontinuous shifts in the conductivity transducer response or bottle salinities, or to maintain deep theta-salinity consistency from cast to cast.

There was at least one CTD cast sandwiched in between each mooring deployment for the first and third groups of moorings, causing a typical 6 to 8.5-hour delay between the end of one CTD cast and the start of the next. Mooring 6 required two attempts, causing a 13.5-hour gap between CTD casts. There was no apparent effect on conductivity offsets from these delays or the 3.5-day and 2-day gaps between stations 505/506 (7 consecutive mooring deployments) and stations 544/545 (mid-leg port stop).

After applying the conductivity slopes and offsets to each cast, it was determined that surface salinity differences were ~0.008 PSU high compared

to intermediate and deep differences. After the offset adjustments were made, a mean second-order conductivity correction was calculated for stations 148-800. Figure 8.3.2 shows the residual conductivity differences used for determining this correction.

- Figure 8.3.2 CTD #1 residual non-linear conductivity slope (WOCE95 stations 148 through 800).
- A 4,2-standard deviation rejection of the second-order fit was performed on these differences, then the remaining values were fit to conductivity. This non-linear correction, added to the linear corrections for each cast, effectively pulled in surface differences while having minimal effect on differences below the thermocline/halocline.

The final I3 conductivity slopes, a combination of the linear coefficients from the preliminary and second-order fits, are summarized in Figure 8.3.3. Figure 8.3.4 summarizes the final combined conductivity offsets by station number.

- Figure 8.3.3 I3 CTD #1 conductivity slope corrections by station number.
- Figure 8.3.4 I3 CTD #1 conductivity offsets by station number.
- I3 temperature and conductivity correction coefficients are also tabulated in Appendix A.

Summary of Residual Salinity Differences

- Figures 8.3.5, 8.3.6 and 8.3.7 summarize the I3 residual differences between bottle and CTD salinities after applying the conductivity corrections. Only CTD and bottle salinities with (final) quality code 2 were used to generate these figures.
- Figure 8.3.5 I3 Salinity residual differences vs pressure (after correction). Figure 8.3.6 I3 Salinity residual differences vs station # (after correction). Figure 8.3.7 I3 Deep salinity residual differences vs station # (after correction).

The CTD conductivity calibration represents a best estimate of the conductivity field throughout the water column. 3-sigma from the mean residual in Figures 8.3.6 and 8.3.7, or +/-0.0048 PSU for all salinities and +/-0.0007 PSU for deep salinities, represents the limit of repeatability of the bottle salinities (Autosal, rosette, operators and samplers). This limit agrees with station overlays of deep Theta-Salinity. Within most casts (a single salinometer run), the precision of bottle salinities appears to be better than 0.001 PSU. The precision of the CTD salinities appears to be better than 0.0005 PSU.

Final calibrated CTD data from WOCE95 I9N, I8N, I4 and I10 legs were compared with I3 data. Deep Theta-Salinity comparisons for casts at four positions where the WOCE lines crossed showed less than 0.001 PSU difference for each group of casts. GEOSECS station 452 was compared with I3 station 499, casts taken at nearly the same positions. The GEOSECS data were +0.001 to +0.002 PSU compared to I3 data, the same difference seen on multiple casts comparing GEOSECS to I9N and I8N/I5E data. WOCE95 I3 data were also compared with final data from the 37 positions repeated during WOCE97 ICM3. Deep CTD Theta-Salinity data showed less than a 0.001 PSU difference for most casts; the difference increased half again as much as cast positions approached the Madagascar coast.

The WOCE95 minus GEOSECS average difference becomes closer to -0.0005 PSU if GEOSECS salinity values are corrected for Standard Seawater batch (P-63) differences [Mant87]. The Standard Seawater batches from the five consecutive WOCE95 ODF legs (P-126) and from WOCE97 ICM3 (P-125) have not been compared to other batches. A cross-calibration is planned for late 1998; however, recent batches from OSI have been quite reliable, requiring, at worst, a \pm 0.001 PSU correction [Mant97].

8. 4. CTD Dissolved Oxygen

The same oxygen sensor used on I9N and I8N/I5E was used on the first 11 casts of I3. The first sensor was switched out for a used spare sensor for stations 454-456, during which there were excessive CTD 02 noise and offsetting problems. An apparently new oxygen sensor was installed beginning station 457: there were extremely noisy large sections, both

down- and up-cast, on this station. After station 457, the cable/connectors between the sensor and the CTD were reseated, and the noise problems disappeared. This third sensor was used for the remainder of the I3 leg.

There are a number of problems with the response characteristics of the SensorMedics 02 sensor used in the NBIS Mark III CTD, the major ones being a secondary thermal response and a sensitivity to profiling velocity. Stopping the rosette for as little as half a minute, or slowing down for a bottom approach, can cause shifts in the CTD 02 profile. Such shifts could usually be corrected by offsetting the raw oxygen data from the stop or slow-down area to the bottom of the cast. All offset sections, winch stops or slow-downs that affected CTD oxygen data are documented in Appendix C.

Because of these same stop/slow-down problems, up-cast CTD rosette trip data cannot be optimally calibrated to 02 check samples. Instead, down-cast CTD 02 data are derived by matching the up-cast rosette trips along isopycnal surfaces. The differences between CTD 02 data modeled from these derived values and check samples are then minimized using a non-linear least-squares fitting procedure.

Figures 8.4.0 and 8.4.1 show the residual differences between the corrected CTD 02 and the bottle 02 $(ml\,/l)$ for each station.

Figure 8.4.0 I3 02 residual differences vs station # (after correction).

Figure 8.4.1 I3 Deep 02 residual differences vs station # (after correction).

The standard deviations of 0.06 ml/l for all oxygens and 0.02 ml/l for deep oxygens are only intended as metrics of the goodness of the fits. 0DF makes no claims regarding the precision or accuracy of CTD dissolved 02 data.

The general form of the ODF 02 conversion equation follows Brown and Morrison [Brow78] and Millard [Mill82], [Owen85]. ODF does not use a digitized 02 sensor temperature to model the secondary thermal response but instead models membrane and sensor temperatures by low-pass filtering the PRT temperature. In-situ pressure and temperature are filtered to match the sensor response. Time-constants for the pressure response Taup, and two temperature responses TauTs and TauTf are fitting parameters. The Oc gradient, dOc/dt, is approximated by low-pass filtering 1st-order Oc differences. This gradient term attempts to correct for reduction of species other than 02 at the cathode. The time-constant for this filter, Tauog, is a fitting parameter. Oxygen partial-pressure is then calculated:

```
0pp = [c1*0c+c2]*fsat(S, T, P)*e**(c3*Pl+c4*Tf+c5*Ts+c6*d0c/dt)  (8. 4. 0)
```

where:

13 CTD 02 correction coefficients (c1 - c6) are tabulated in Appendix B.

9. Bottle Sampling

At the end of each rosette deployment water samples were drawn from the bottles in the following order:

```
o CFCs;
o 3He;
o 02;
o Total C02;
o Alkalinity;
o AMS 14C;
o Tritium;
```

o Nutrients;

o Salinity; o Barium.

The correspondence between individual sample containers and the rosette bottle from which the sample was drawn was recorded on the sample log for the cast. This log also included any comments or anomalous conditions noted about the rosette and bottles. One member of the sampling team was designated the sample cop, whose sole responsibility was to maintain this log and insure that sampling progressed in the proper drawing order.

Normal sampling practice included opening the drain valve before opening the air vent on the bottle, indicating an air leak if water escaped. This observation together with other diagnostic comments (e.g., "lanyard caught in lid", "valve left open") that might later prove useful in determining sample integrity were routinely noted on the sample log.

Drawing oxygen samples also involved taking the sample draw temperature from the bottle. The temperature was noted on the sample log and was sometimes useful in determining leaking or mis-tripped bottles.

Once individual samples had been drawn and properly prepared, they were distributed to their respective laboratories for analysis. Oxygen, nutrients and salinity analyses were performed on computer-assisted (PC) analytical equipment networked to Sun SPARCstations for centralized data analysis. The analysts for each specific property were responsible for insuring that their results were updated into the cruise database.

10. Bottle Data Processing

Bottle data processing began with sample drawing, and continued until the data were considered to be final. One of the most important pieces of information, the sample log sheet, was filled out during the drawing of the many different samples, and was useful both as a sample inventory, and as a guide for the technicians in carrying out their analyses. Any problems observed with the rosette before or during the sample drawing were noted on this form, including indications of bottle leaks, out-of-order drawing, etc. Oxygen draw temperatures recorded on this form were at times the first indicator of rosette bottle-tripping problems. Additional clues regarding bottle tripping or leak problems were found by individual analysts as the samples were analyzed and the resulting data were processed and checked by those personnel.

The next stage of processing was accomplished after the individual parameter files were merged into a common station file, along with CTD-derived parameters (pressure, temperature, conductivity, etc.). The rosette cast and bottle numbers were the primary identification for all ODF-analyzed samples taken from the bottle, and were used to merge the analytical results with the CTD data associated with the bottle. At this stage, bottle tripping problems were usually resolved, sometimes resulting in changes to the pressure, temperature and other CTD properties associated with the bottle. All CTD information from each bottle trip (confirmed or not) was retained in a file, so resolving bottle tripping problems consisted of correlating CTD trip data with the rosette bottles.

Diagnostic comments from the sample log, and notes from analysts and/or bottle data processors were entered into a computer file associated with each station (the "quality" file) as part of the quality control procedure. Sample data from bottles suspected of leaking were checked to see if the properties were consistent with the profile for the cast, with adjacent stations, and, where applicable, with the CTD data. Various property-property plots and vertical sections were examined for both consistency within a cast and consistency with adjacent stations by data processors, who advised analysts of possible errors or irregularities. The analysts reviewed and sometimes revised their data as additional calibration or diagnostic results became available.

Based on the outcome of investigations of the various comments in the quality files, WHP water sample codes were selected to indicate the reliability of the individual parameters affected by the comments. WHP bottle codes were assigned where evidence showed the entire bottle was affected, as in the case of a leak, or a bottle trip at other than the intended depth.

WHP water bottle quality codes were assigned as defined in the WOCE Operations Manual [Joyc94] with the following additional interpretations:

2 | No problems noted.

- An air leak large enough to produce an observable effect on a sample is identified by a code of 3 on the bottle and a code of 4 on the oxygen. (Small air leaks may have no observable effect, or may only affect gas samples.)
- Did not trip correctly. Bottles tripped at other than the intended depth were assigned a code of 4. There may 4
- be no problems with the associated water sample data.

 Not reported. No water sample data reported. This is a representative level derived from the CTD data for reporting purposes. range of 80-99. The sample number should be in the
- The samples were not drawn from this bottle.

WHP water sample quality flags were assigned using the following criteria:

- The sample for this measurement was drawn from the water 1 bottle, but the results of the analysis were not (yet) recei ved.
- Acceptable measurement.
- Questionable measurement. The data did not fit the station profile or adjacent station comparisons (or possibly CTD data comparisons). No notes from the analyst indicated a problem. The data could be
- acceptable, but are open to interpretation.

 Bad measurement. The data did not fit the station 4 profile, adjacent stations or CTD data. There were analytical notes indicating a problem, but data values were reported. Sampling and analytical errors were also coded as 4.
- Not reported. There should always be a reason 5 associated with a code of 5, usually that the sample was lost, contaminated or rendered unusable.
- The sample for this measurement was not drawn.

WHP water sample quality flags were assigned to the CTDSAL (CTD salinity) parameter as follows:

- Acceptable measurement.
- 3 The data did not fit the Questionable measurement. bottle data, or there was a CTD conductivity calibration
- shift during the up-cast. Bad measurement. The CTD up-cast data were determined to be unusable for calculating a salinity
- Despi ked. The CTD data have been filtered to eliminate a spike or offset.

WHP water sample quality flags were assigned to the CTDOXY (CTD 02) parameter as follows:

- Not calibrated. Data are uncalibrated.
- 2 Acceptable measurement.
- 3
- Questionable measurement. Bad measurement. The CTD data were determined to be 4 unusable for calculating a dissolved oxygen concentration.
- 5
- Not reported. The CTD data could not be reported, typically when CTD salinity is coded 3 or 4.

 Despiked. The CTD data have been filtered to eliminate 7 a spike or offset.
- No operational CTD 02 sensor was present Not sampled. on this cast.

Note that all CTDOXY values were derived from the down-cast pressure-series CTD data. CTD data were matched to the up-cast bottle data along isopycnal If the CTD salinity was footnoted as bad or questionable, the surfaces. CTD 02 was not reported.

Table 10.0 shows the number of samples drawn and the number of times each WHP sample quality flag was assigned for each basic hydrographic property:

Rosette Samples Stations 443-573 _______

1	CSR7020_crui serep Reported WHP Quality Codes							
	Levels	1	2	3	4	5	7	9
Bottle	4006	0	3994	4	1	0	0	7
CTD Salt	4006	0	4006	0	0	0	0	0
CTD Oxy	4006	0	3936	66	4	0	0	0
Salinity	3996	0	3942	46	8	1	0	9
0xvgen	3990	0	3930	43	17	6	0	10
Silicate	3872	0	3866	0	6	1	0	133
Nitrate	3872	0	3834	32	6	1	0	133
Nitrite	3872	0	3866	0	6	1	0	133
Phosphate	3872	0	3849	17	6	1	0	133

Table 10.0 Frequency of WHP quality flag assignments for I3.

Additionally, all WHP water bottle/sample quality code comments are presented in Appendix D.

11. Pressure and Temperatures

All pressures and temperatures for the bottle data tabulations on the rosette casts were obtained by averaging CTD data for a brief interval at the time the bottle was closed on the rosette, then correcting the data based on CTD laboratory calibrations.

The temperatures are reported using the International Temperature Scale of 1990.

12. Salinity Analysis

Equipment and Techniques

Two Guildline Autosal Model 8400A salinometers were available for measuring salinities. The salinometers were modified by ODF and contained interfaces for computer-aided measurement. Autosal #55-654 was used to measure salinity on all the stations; its water bath was set at 24 deg. C for stations 443-461. The bath temperature was lowered to 21 deg. C for stations 462-573 after the lab air temperature cooled. Autosal #57-396 was set at 24 deg. C as a backup unit but was never used. The salinity analyses were performed when samples had equilibrated to laboratory temperature, usually within 7-24 hours after collection. The salinometer was standardized for each group of analyses (typically one cast, usually 36 samples) using at least one fresh vial of standard per cast. A computer (PC) prompted the analyst for control functions such as changing sample, flushing, or switching to "read" mode. At the correct time, the computer acquired conductivity ratio measurements, and logged results. The salinometer cell was flushed until two groups of readings met software criteria for consistency, both within and between groups; the two averages of the groups of measurements were then averaged for a final result.

Sampling and Data Processing

Salinity samples were drawn into 200 ml Kimax high-alumina borosilicate bottles, which were rinsed three times with sample prior to filling. The bottles were sealed with custom-made plastic insert thimbles and Nalgene screw caps. This assembly provides very low container dissolution and sample evaporation. Prior to collecting each sample, inserts were inspected for proper fit and loose inserts were replaced to insure an airtight seal. The draw time and equilibration time were logged for all casts. Laboratory temperatures were logged at the beginning and end of each run.

PSS-78 salinity [UNES81] was calculated for each sample from the measured conductivity ratios. The difference (if any) between the initial vial of standard water and one run at the end as an unknown was applied linearly to the data to account for any drift. The data were added to the cruise database. 3996 salinity measurements were made and 265 vials of standard water were used. The estimated accuracy of bottle salinities run at sea is usually better than 0.002 PSU relative to the particular Standard Seawater batch used.

Laboratory Temperature

The temperature stability in the salinometer laboratory was good, with the

lab temperature generally 1-2 deg. C lower than the Autosal bath temperature.

Standards

IAPSO Standard Seawater (SSW) Batch P-126 was used to standardize the salinometers.

13. Oxygen Analysis

Equipment and Techniques

Dissolved oxygen analyses were performed with an ODF-designed automated oxygen titrator using photometric end-point detection based on the absorption of 365nm wavelength ultra-violet light. The titration of the samples and the data logging were controlled by PC software. Thiosulfate was dispensed by a Dosimat 665 buret driver fitted with a 1.0 ml buret. ODF used a whole-bottle modified-Winkler titration following the technique of Carpenter [Carp65] with modifications by Culberson et al. [Culb91], but with higher concentrations of potassium iodate standard (approximately 0.012N) and thiosulfate solution (50 gm/l). Standard solutions prepared from pre-weighed potassium iodate crystals were run at the beginning of each session of analyses, which typically included from 1 to 3 stations. Several standards were made up during the cruise and compared to assure that the results were reproducible, and to preclude the possibility of a weighing or dilution error. Reagent/distilled water blanks were determined, to account for presence of oxidizing or reducing materials.

Sampling and Data Processing

Samples were collected for dissolved oxygen analyses soon after the rosette sampler was brought on board, and after samples for CFC and helium were drawn. Using a Tygon drawing tube, nominal 125ml volume-calibrated iodine flasks were rinsed twice with minimal agitation, then filled and allowed to overflow for at least 3 flask volumes. The sample temperature was measured with a small platinum resistance thermometer embedded in the drawing tube. Reagents were added to fix the oxygen before stoppering. The flasks were shaken twice to assure thorough dispersion of the precipitate, once immediately after drawing, and then again after about 20 minutes. The samples were analyzed within 2-18 hours of collection, usually within 10 hours, and the data were then merged with the cruise database.

Thiosulfate normalities were calculated from each standardization and corrected to 20 deg.C. The 20 deg.C normalities and the blanks were plotted versus time and were reviewed for possible problems. New thiosulfate normalities were recalculated after the blanks had been smoothed as a function of time, if warranted. These normalities were then smoothed, and the oxygen data were recalculated.

Oxygens were converted from milliliters per liter to micromoles per kilogram using the in-situ temperature. Ideally, for whole-bottle titrations, the conversion temperature should be the temperature of the water issuing from the bottle spigot. The sample temperatures were measured at the time the samples were drawn from the bottle, but were not used in the conversion from milliliters per liter to micromoles per kilogram because the software for this calculation was not available. Aberrant drawing temperatures provided an additional flag indicating that a bottle may not have tripped properly.

3990 oxygen measurements were made, with no major problems with the analyses. The auto-titrator generally performed very well. One minor problem noted on the expedition was that there was a gradual decrease in the UV detector output voltage. It was discovered later that the window material between the lamp and detector was slowly becoming opaque. At the time, the oxygen analysts were able to overcome the voltage drop by increasing a gain control.

Volumetric Calibration

Oxygen flask volumes were determined gravimetrically with degassed deionized water to determine flask volumes at ODF's chemistry laboratory. This is done once before using flasks for the first time and periodically thereafter when a suspect bottle volume is detected. The volumetric flasks used in preparing standards were volume-calibrated by the same method, as was the 10 ml Dosimat buret used to dispense standard iodate solution.

Standards

Potassium iodate standards, nominally 0.44 gram, were pre-weighed in ODF's chemistry laboratory to +/-0.0001 grams. The exact normality was calculated at sea after the volumetric flask volume and dilution temperature were known. Potassium iodate was obtained from Johnson Matthey Chemical Co. and was reported by the supplier to be >99.4% pure. All other reagents are "reagent grade" and are tested for levels of oxidizing and reducing impurities prior to use.

14. Nutrient Analysis

Equipment and Techniques

Nutrient analyses (phosphate, silicate, nitrate and nitrite) were performed on an ODF-modified 4-channel Technicon AutoAnalyzer II, generally within a few hours after sample collection. Occasionally samples were refrigerated up to 6 hours at 2-6 deg. C. All samples were brought to room temperature prior to analysis.

The methods used are described by Gordon et al. [Gord92], Hager et al. [Hage72], Atlas et al. [Atla71]. The analog outputs from each of the four channels were digitized and logged automatically by computer (PC) at 2-second intervals.

Silicate was analyzed using the technique of Armstrong et al. [Arms67]. An acidic solution of ammonium molybdate was added to a seawater sample to produce silicomolybdic acid which was then reduced to silicomolybdous acid (a blue compound) following the addition of stannous chloride. Tartaric acid was also added to impede P04 color development. The sample was passed through a 15mm flowcell and the absorbance measured at 820nm. ODF's methodology is known to be non-linear at high silicate concentrations (>120 uM); a correction for this non-linearity is applied through ODF's software.

A modification of the Armstrong et al. [Arms67] procedure was used for the analysis of nitrate and nitrite. For the nitrate analysis, the seawater sample was passed through a cadmium reduction column where nitrate was quantitatively reduced to nitrite. Sulfanilamide was introduced to the sample stream followed by N-(1-naphthyl)ethylenediamine dihydrochloride which coupled to form a red azo dye. The stream was then passed through a 15mm flowcell and the absorbance measured at 540nm. The same technique was employed for nitrite analysis, except the cadmium column was not present, and a 50mm flowcell was used for measurement.

Phosphate was analyzed using a modification of the Bernhardt and Wilhelms [Bern67] technique. An acidic solution of ammonium molybdate was added to the sample to produce phosphomolybdic acid, then reduced to phosphomolybdous acid (a blue compound) following the addition of dihydrazine sulfate. The reaction product was heated to ~ 55 deg. C to enhance color development, then passed through a 50mm flowcell and the absorbance measured at 820m.

Sampling and Data Processing

Nutrient samples were drawn into 40 ml polypropylene, screw-capped centrifuge tubes. The tubes were cleaned with 10% HCl and rinsed with sample twice before filling. Standardizations were performed at the beginning and end of each group of analyses (typically one cast, usually 36 samples) with an intermediate concentration mixed nutrient standard prepared prior to each run from a secondary standard in a low-nutrient seawater matrix. The secondary standards were prepared aboard ship by dilution from dry, pre-weighed primary standards. Sets of 5-6 different standard concentrations were analyzed periodically to determine the deviation from linearity as a function of concentration for each nutrient.

After each group of samples was analyzed, the raw data file was processed to produce another file of response factors, baseline values, and absorbances. Computer-produced absorbance readings were checked for accuracy against values taken from a strip chart recording. The data were then added to the cruise database. 3872 nutrient samples were analyzed. No major problems were encountered with the measurements, other than a continuing difficulty in holding the lab temperature constant. The pump tubing was changed one time. An aliquot from a large volume of stored deep seawater was run with each set of samples as a substandard. The efficiency of the cadmium column used for nitrate reduction was monitored throughout the cruise and ranged from 99.8-100.0%.

Nutrients, reported in micromoles per kilogram, were converted from

micromoles per liter by dividing by sample density calculated at 1 atm pressure (0 db), in-situ salinity, and an assumed laboratory temperature of 25 deg. $\rm C$.

Standards

Na2SiF6, the silicate primary standard, was obtained from Fluka Chemical Company and Fisher Scientific and was reported by the suppliers to be >98% pure. Primary standards for nitrate (KNO3), nitrite (NaNO2), and phosphate (KH2PO4) were obtained from Johnson Matthey Chemical Co. and the supplier reported purities of 99.999%, 97%, and 99.999%, respectively.

REFERENCES

Arms67.

Armstrong, F. A. J., Stearns, C. R., and Strickland, J. D. H., "The measurement of upwelling and subsequent biological processes by means of the Technicon Autoanalyzer and associated equipment," Deep-Sea Research, 14, pp. 381-389 (1967).

Atla71.

Atlas, E. L., Hager, S. W., Gordon, L. I., and Park, P. K., "A Practical Manual for Use of the Technicon AutoAnalyzer(R) in Seawater Nutrient Analyses Revised," Technical Report 215, Reference 71-22, p. 49, Oregon State University, Department of Oceanography (1971).

Bern67.

Bernhardt, H. and Wilhelms, A., "The continuous determination of low level iron, soluble phosphate and total phosphate with the AutoAnalyzer," Technicon Symposia, I, pp. 385-389 (1967).

Brow78.

Brown, N. L. and Morrison, G. K., "WHOI/Brown conductivity, temperature and depth microprofiler," Technical Report No. 78-23, Woods Hole Oceanographic Institution (1978).

Carp65.

Carpenter, J. H., "The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method," Limnology and Oceanography, 10, pp. 141-143 (1965).

Cart80.

Carter, D. J. T., "Computerised Version of Echo-sounding Correction Tables (Third Edition)," Marine Information and Advisory Service, Institute of Oceanographic Sciences, Wormley, Godalming, Surrey. GU8 5UB. U.K. (1980).

Cul b91.

Culberson, C. H., Knapp, G., Stalcup, M., Williams, R. T., and Zemlyak, F., "A comparison of methods for the determination of dissolved oxygen in seawater," Report WHPO 91-2, WOCE Hydrographic Programme Office (Aug 1991).

Gord92.

Gordon, L. I., Jennings, J. C., Jr., Ross, A. A., and Krest, J. M., "A suggested Protocol for Continuous Flow Automated Analysis of Seawater Nutrients in the WOCE Hydrographic Program and the Joint Global Ocean Fluxes Study," Grp. Tech Rpt 92-1, OSU College of Oceanography Descr. Chem Oc. (1992).

Hage72.

Hager, S. W., Atlas, E. L., Gordon, L. D., Mantyla, A. W., and Park, P. K., "A comparison at sea of manual and autoanalyzer analyses of phosphate, nitrate, and silicate," Limmology and Oceanography, 17, pp. 931-937 (1972).

Joyc94.

Joyce, T., ed. and Corry, C., ed., "Requirements for WOCE Hydrographic Programme Data Reporting," Report WHPO 90-1, WOCE Report No. 67/91, pp. 52-55, WOCE Hydrographic Programme Office, Woods Hole, MA, USA (May 1994, Rev. 2). UNPUBLISHED MANUSCRIPT.

Mant87.

Mantyla, A. W., "Standard Seawater Comparisons Updated," Journal of Physical Oceanography, 17.4, p. 547 (1987).

Mant 97.

Mantyla, A. W. (1997). Private communication.

Mi 1182.

Millard, R. C., Jr., "CTD calibration and data processing techniques at WHOI using the practical salinity scale," Proc. Int. STD Conference and Workshop, p. 19, Mar. Tech. Soc., La Jolla, Ca. (1982).

0wen85.

Owens, W. B. and Millard, R. C., Jr., "A new algorithm for CTD oxygen calibration," Journ. of Am. Meteorological Soc., 15, p. 621 (1985).

UNES81.

UNESCO, "Background papers and supporting data on the Practical Salinity Scale, 1978," UNESCO Technical Papers in Marine Science, No. 37, p. 144 (1981).

APPENDIX A

WOCE95-I3: CTD Temperature and Conductivity Corrections Summary

PRT	ITS-90 Temp	erature Coeff	Conductivity		
Coefficients Sta/ Response c0	corT = t	2*T**2 + t1*T	+ t0	corC = c	2*C**2 + c1*C +
Cast Time (secs	s) t2	t1	t0	c2	c1
443/01 . 34 0. 01101	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 85295 e- 03
444/01 . 34 0. 01105	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 85268e- 03
445/01 . 34 0. 01110	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 85240e- 03
446/01 . 34 0. 01115	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 85212e- 03
447/01 . 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 85184e- 03
0. 01119 448/01 . 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 85157e- 03
0. 01124 449/01 . 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 85129e- 03
0. 01128 450/01 . 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 85101e- 03
0. 01133 451/01 . 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 85074e- 03
0. 01137 452/01 . 34 0. 01142	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e- 05	- 1. 85046e- 03
453/01 . 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 85018e- 03
0. 01147 454/01 . 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 84990e- 03
0. 01151 455/01 . 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 84963e- 03
0. 01156 456/01 . 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 84935e- 03
0. 01160 457/01 . 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 84907e- 03
0. 01165 458/01 . 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 84879e- 03
0. 01170 459/01 . 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 84852e- 03
0. 01174 460/01 . 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 84824e- 03
0. 01179 461/01 . 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 84796e- 03
0. 01183 462/01 . 34 0. 01188	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 84768e- 03
463/01 . 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 84741e- 03
0. 01192 464/01 . 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 84713e- 03
0. 01197 465/01 . 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 84685e- 03

0.04000			CSR70	020_cru1 s	erep	
0. 01202 466/01	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 84658e- 03
0. 01206 467/01	. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e- 05	- 1. 84630e- 03
0.01211 $468/01$. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e- 05	- 1. 84602e- 03
0. 01215						
469/01 0. 01220	. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e- 05	- 1. 84574e- 03
470/01 0. 01225	. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e- 05	- 1. 84547e- 03
471/01 0. 01229	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 84519e- 03
472/01 0. 01234	. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 84491e- 03
473/01	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 84463e- 03
$0.01238 \\ 474/01$. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 84436e- 03
0. 01243 475/01	. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e- 05	- 1. 84408e- 03
0.01247 $476/01$. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e- 05	- 1. 84380e- 03
0.01252 $477/01$. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 84352e- 03
0.01257		1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	
478/01 0. 01261	. 34					- 1. 84325e- 03
479/01 0. 01266	. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e- 05	- 1. 84297e- 03
480/01 0. 01270	. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e- 05	- 1. 84269e- 03
481/01 0. 01275	. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e- 05	- 1. 84242e- 03
482/01 0. 01279	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e- 05	- 1. 84214e- 03
483/01	. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 84186e- 03
0.01284 $484/01$. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 84158e- 03
$0.01289 \\ 485/01$. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 84131e- 03
0.01513 $486/01$. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 84103e- 03
0. 01363 487/01	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e- 05	- 1. 84075e- 03
0. 01363 488/01	. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e- 05	- 1. 84047e- 03
0. 01363 489/01	. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e- 05	- 1. 84020e- 03
0.01363 $490/01$. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83992e- 03
0.01363 $491/01$. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e- 05	- 1. 83964e- 03
0. 01363						
492/01 0. 01363	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83936e- 03
493/01	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83909e- 03
0.01363 $494/01$. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83881e- 03
0.01363 $495/01$. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83853e- 03
$0.01363 \\ 496/01$. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83825e- 03
0. 01363 497/01	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83798e- 03
0.01363 $498/02$. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83770e- 03
0.01363 $499/01$. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83742e- 03
0. 01363 500/01	. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83715e- 03
0. 01363 501/01	. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e- 05	- 1. 83687e- 03
$0.01363 \\ 502/01$. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e- 05	- 1. 83659e- 03
0. 01363	. • •		2.302.0 01	1500	10000 00	

C - CC! -!	PRT	ITS-90 Temp	erature Coeff	i ci ents	Conducti	vi ty
Coeffici Sta/	Response	corT = t	2*T**2 + t1*T	+ t0	corC = c	2*C**2 + c1*C +
c0 Cast 1 c0	Time (secs) t2	t1	t0	c 2	c1
503/01 0. 01363	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83631e- 03
504/01 0. 01413	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83604e- 03
505/02 0. 01425	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83576e- 03
506/01 0. 01518	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83548e- 03
507/01	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83520e- 03
0. 01460 508/01	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83493e- 03
0. 01453 509/01	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83465e- 03
0.01363 $510/01$. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83437e- 03
0.01363 $511/01$. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83409e- 03
0. 01363 512/01 0. 01363	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e- 05	- 1. 83382e- 03
513/01	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83354e- 03
0.01516 $514/01$. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83326e- 03
0. 01509 515/01	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83299e- 03
0.01502 $516/01$. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83271e- 03
0. 01395 517/01	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83243e- 03
0. 01387 518/01	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83215e- 03
0.01380 $519/01$. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83188e- 03
0. 01373 520/01 0. 01365	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83160e- 03
521/01	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83132e- 03
0. 01358 522/01 0. 01351	. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83104e- 03
523/01 0. 01343	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83077e- 03
524/01 0. 01336	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83049e- 03
525/01 0. 01329	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 83021e- 03
526/01 0. 01321	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 82993e- 03
527/01 0. 01314	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 82966e- 03
528/01 0. 01307	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 82938e- 03
529/01 0. 01199	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 82910e- 03
530/01 0. 01192	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 82882e- 03
531/01 0. 01285	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 82855e- 03
532/01 0. 01277	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 82827e- 03
533/01 0. 01270	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 82799e- 03
534/01 0. 01263	. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 82772e- 03
535/01 0. 01256	. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	-1.82744e-03

CSR7020_crui serep . 34 1.9889e-05 -6.2817e-04 - 1. 4986 1. 14690e-05 -1.82716e-03 536/01 0.01248 537/01 . 34 1.9889e-05 -6.2817e-04 -1.4986 -1.82688e-03 1. 14690e-05 0.01141 538/01 . 34 1.9889e-05 -6.2817e-04 -1.4986 1. 14690e-05 -1.82661e-03 0.01234 539/01 . 34 1. 9889e-05 -6. 2817e-04 - 1. 4986 1. 14690e-05 -1.82633e-03 0.01226 540/01 . 34 1.9889e-05 -6. 2817e-04 - 1. 4986 1. 14690e-05 - 1. 82605e- 03 0.01219 541/01 . 34 1.9889e-05 -6.2817e-04 -1.4986 1. 14690e-05 -1.82577e-03 0.01212 542/01 . 34 1. 9889e-05 -6. 2817e-04 - 1. 4986 1. 14690e-05 - 1. 82550e- 03 0.01204 1.14690e-05 543/01 . 34 1.9889e-05 -6. 2817e-04 -1.4986 -1.82522e-03 0.01197 . 34 544/01 1.9889e-05 -6.2817e-04 -1.4986 1. 14690e-05 -1.82494e-03 0.01190 . 34 545/01 1.9889e-05 -6.2817e-04 -1.4986 1. 14690e-05 -1.82466e-03 0.01289 546/01 . 34 1.9889e-05 -6.2817e-04 -1.4986 1. 14690e-05 -1.82439e-03 0.01289547/01 . 34 1.9889e-05 -6.2817e-04 -1.4986 1. 14690e-05 -1.82411e-03 0.01289 548/01 . 34 1. 9889e-05 -6. 2817e-04 - 1. 4986 1. 14690e-05 - 1. 82383e- 03 0.01289549/01 1.9889e-05 -6.2817e-04 -1.4986 1. 14690e-05 -1.82356e-03 . 34 0.01289 550/01 . 34 1.9889e-05 -6.2817e-04 -1.4986 1. 14690e-05 -1.82328e-03 0.01289 551/01 . 34 1.9889e-05 -6.2817e-04 -1.4986 1. 14690e-05 -1.82300e-03 0.01289552/01 . 34 1. 9889e-05 -6. 2817e-04 - 1. 4986 1. 14690e-05 - 1. 82272e- 03 0.01289 553/01 . 34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.82245e-03 0.01289 554/01 . 34 1.9889e-05 -6.2817e-04 -1.4986 1. 14690e-05 -1.82217e-03 0.01289 555/01 . 34 1.9889e-05 -6.2817e-04 -1.4986 1. 14690e-05 -1.82189e-03 0.01289556/01 . 34 1.9889e-05 -6.2817e-04 -1.4986 1. 14690e-05 -1.82161e-03 0.01289557/01 . 34 1.9889e-05 -6.2817e-04 -1.4986 1. 14690e-05 -1.82134e-03 0.01289 558/01 . 34 1.9889e-05 -6.2817e-04 -1.4986 1. 14690e-05 -1.82106e-03 0.01289 559/01 . 34 1.9889e-05 -6.2817e-04 -1.4986 1. 14690e-05 -1.82078e-03 0.01289 560/01 . 34 1.9889e-05 -6.2817e-04 -1.4986 1. 14690e-05 -1.82050e-03 0.01289 561/01 . 34 1. 9889e-05 -6. 2817e-04 - 1. 4986 1. 14690e-05 - 1. 82023e- 03 0.01289 562/01 . 34 1. 9889e-05 -6. 2817e-04 - 1. 4986 1. 14690e-05 - 1. 81995e- 03 0.01289 563/01 . 34 1.9889e-05 -6.2817e-04 -1.4986 1. 14690e-05 -1.81967e-03 0.01289 564/01 . 34 1.9889e-05 -6.2817e-04 -1.4986 1. 14690e-05 -1.81940e-03 0. 01289 1. 14690e-05 565/01 . 34 1. 9889e-05 - 6. 2817e- 04 - 1. 4986 - 1. 81912e- 03 0.01289 PRT ITS-90 Temperature Coefficients Conducti vi ty Coeffi ci ents Sta/ corT = t2*T**2 + t1*T + t0corC = c2*C**2 + c1*C +Response c0Cast Time (secs) t2 t1 t0 c2c1c0. 34 566/01 1.9889e-05 -6.2817e-04 -1.4986 1. 14690e-05 -1.81884e-03 0.01289 . 34 567/01 1.9889e-05 -6.2817e-04 -1.4986 1. 14690e-05 -1.81856e-03 0.01289 568/01 . 34 1.9889e-05 -6. 2817e-04 - 1. 4986 1. 14690e-05 -1.81829e-03 0.01289

569/01 0. 01289	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e- 05	- 1. 81801e- 03
570/01	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 81773e- 03
0. 01289 571/01	. 34	1. 9889e- 05	- 6. 2817e- 04	- 1. 4986	1. 14690e- 05	- 1. 81745e- 03
$0.01289 \\ 572/01$. 34	1 9889e-05	- 6 2817e- 04	- 1 4986	1 14690e-05	- 1. 81718e- 03
0. 01289	. 01	1. 00000 00	0. 20176 04	1. 4000	1. 140000 00	1.017100 00
573/01 0. 01289	. 34	1. 9889e-05	- 6. 2817e- 04	- 1. 4986	1. 14690e-05	- 1. 81690e- 03

 $\label{eq:APPENDIX B} \mbox{Summary of WOCE95-I3 CTD Oxygen Time Constants}$

Temper	rature	Pressure	02 Gradi ent
Fast(TauTf)	Slow(TauTs)	(Taup)	(Tauog)
1.0	400. 0	24. 0	16. 0

WOCE95-I3: Conversion Equation Coefficients for CTD Oxygen (refer to Equation 8.4.0)

Tfcoeff

Tscoeff

Pl coeff

Sta/

0cSl ope

0ffset

011300	1100011	ITCOCIT	1300011	
(62)	(63)	(64)	(65)	
(CL)	(63)	(64)	(63)	
5. 08875e-01	- 1. 28008e- 04	- 1, 43647e- 03	- 1. 78811e- 02	
0.000.00 01	1.200000 01	1. 1001.0 00	1	
5.82154e-01	- 1. 93546e- 03	- 1. 94793e- 02	- 6. 24300e- 02	
- 4. 13140e- 01	- 2. 41892e- 04	- 1. 11285e- 02	- 3. 15643e- 02	
- 1. 40451e- 01	- 7. 63024e- 05	3. 03338e-03	- 5. 26259e- 02	
- 2. 34407e- 02	2. 14854e-04	1. 64348e- 03	- 2. 97044e- 02	
7 FO77F 00	0.07000 05	4 10040 00	4 50000 00	
- 7. 59775e-02	2. 07696e-05	4. 19242e-03	- 4. 56202e- 02	
1 040300 09	1 544780 04	4 30120a 03	2 205100 02	
- 1. 343336-02	1. 344766-04	4. 331206-03	- 3. 23310e- 02	
6. 12081e-03	1. 47661e- 04	2. 41014e-04	- 2. 96147e- 02	
0.120010 00	20 20 0020 02	AV 110110 01	2,0011,0 02	
- 1. 74535e- 02	1. 57855e-04	2. 07253e-03	- 3. 25091e- 02	
- 4. 57847e- 02	1. 64979e-04	3. 69554e-03	- 3. 51764e- 02	
0 00000 00	1 50000 04	0 00004 00	0 00077 00	
- 3. 30893e- 02	1. 59866e- 04	2. 60034e-03	- 3. 32375e- 02	
0 909010 04	1 440616 04	9 414740 09	2 270600 02	
3. 63231e-04	1. 440016-04	- 2. 414746-03	- 2. 37000e- 02	
1 48810e-02	1 38342e-04	1 05087e-04	- 2 70563e- 02	
1. 100100 02	1.000120 01	1.000076 01	2.700000 02	
1. 02616e-02	1. 40971e-04	2. 74715e-03	- 2. 84619e- 02	
- 5. 61964e- 03	1. 52594e-04	4. 95375e-03	- 3. 35657e- 02	-
1. 66512e-02	1. 42948e- 04	- 2. 22013e- 03	- 2. 99718e- 02	-
0 07054- 00	1 55004 - 04	r 00100 - 00	0 07017- 00	
- 2. 3/854e- UZ	1. 55684e-04	5. 89182e- 03	- 3. 3/31/e- UZ	-
2 140500 02	1 427120 04	2 03038° 03	2 021000 02	
۵. 140556- ۵۵	1. 43/126-04	£. 33330E- 03	- 2. 321000- 02	
7. 86400e- 03	1. 45260e- 04	- 9, 93293e- 04	- 3, 03536e- 02	_
	2. 102000 01	5. 00 2 000 01	5. 000000 0m	
2.83447e-03	1. 45293e-04	1. 86379e-03	- 3. 11622e- 02	-
	-			
1. 14055e-02	1. 43492e- 04	2. 22981e-03	- 3. 08549e- 02	
	Dago	29		
	(c2) 5. 08875e-01 5. 82154e-01 -4. 13140e-01 -1. 40451e-01 -2. 34407e-02 -7. 59775e-02 -1. 94939e-02 6. 12081e-03 -1. 74535e-02 -4. 57847e-02 -3. 30893e-02 9. 89291e-04 1. 48810e-02 1. 02616e-02 -5. 61964e-03 1. 66512e-02 -2. 37854e-02 2. 14059e-02 7. 86400e-03 2. 83447e-03	(c2) (c3) 5. 08875e-01 -1. 28008e-04 5. 82154e-01 -1. 93546e-03 -4. 13140e-01 -2. 41892e-04 -1. 40451e-01 -7. 63024e-05 -2. 34407e-02 2. 14854e-04 -7. 59775e-02 2. 07696e-05 -1. 94939e-02 1. 54478e-04 6. 12081e-03 1. 47661e-04 -1. 74535e-02 1. 57855e-04 -4. 57847e-02 1. 64979e-04 -3. 30893e-02 1. 59866e-04 9. 89291e-04 1. 44061e-04 1. 48810e-02 1. 38342e-04 1. 02616e-02 1. 40971e-04 -5. 61964e-03 1. 52594e-04 1. 66512e-02 1. 42948e-04 2. 37854e-02 1. 55684e-04 2. 14059e-02 1. 43712e-04 7. 86400e-03 1. 45260e-04 2. 83447e-03 1. 43492e-04	(c2) (c3) (c4) 5. 08875e-01 -1. 28008e-04 -1. 43647e-03 5. 82154e-01 -1. 93546e-03 -1. 94793e-02 -4. 13140e-01 -2. 41892e-04 -1. 11285e-02 -1. 40451e-01 -7. 63024e-05 3. 03338e-03 -2. 34407e-02 2. 14854e-04 1. 64348e-03 -7. 59775e-02 2. 07696e-05 4. 19242e-03 -1. 94939e-02 1. 54478e-04 4. 39120e-03 6. 12081e-03 1. 47661e-04 2. 41014e-04 -1. 74535e-02 1. 57855e-04 2. 07253e-03 -4. 57847e-02 1. 64979e-04 3. 69554e-03 -3. 30893e-02 1. 59866e-04 2. 60034e-03 9. 89291e-04 1. 44061e-04 -2. 41474e-03 1. 48810e-02 1. 38342e-04 1. 05087e-04 1. 02616e-02 1. 40971e-04 2. 74715e-03 -5. 61964e-03 1. 52594e-04 4. 95375e-03 1. 66512e-02 1. 42948e-04 -2. 22013e-03 -2. 37854e-02 1. 55684e-04 5. 89182e-03 2. 14059e-02 1. 43712e-04 2. 93938e-03 7. 86400e-03 1. 45260e-04 -9. 932	(c2) (c3) (c4) (c5) 5. 08875e-01 -1. 28008e-04 -1. 43647e-03 -1. 78811e-02 5. 82154e-01 -1. 93546e-03 -1. 94793e-02 -6. 24300e-02 -4. 13140e-01 -2. 41892e-04 -1. 11285e-02 -3. 15643e-02 -1. 40451e-01 -7. 63024e-05 3. 03338e-03 -5. 26259e-02 -2. 34407e-02 2. 14854e-04 1. 64348e-03 -2. 97044e-02 -7. 59775e-02 2. 07696e-05 4. 19242e-03 -4. 56202e-02 -1. 94939e-02 1. 54478e-04 4. 39120e-03 -3. 29510e-02 6. 12081e-03 1. 47661e-04 2. 41014e-04 -2. 96147e-02 -1. 74535e-02 1. 57855e-04 2. 07253e-03 -3. 25091e-02 -4. 57847e-02 1. 64979e-04 3. 69554e-03 -3. 51764e-02 -3. 30893e-02 1. 59866e-04 2. 60034e-03 -3. 32375e-02 9. 89291e-04 1. 44061e-04 -2. 41474e-03 -2. 37060e-02 1. 48810e-02 1. 38342e-04 1. 05087e-04 -2. 70563e-02 1. 66512e-02 1. 42948e-04 -2. 22013e-03

4 00000 00		CSR7020_cr	ui serep		
1. 20690e-06 464/01 1. 10582e-03	4. 51199e-03	1. 45531e-04	- 4. 22755e- 03	- 2. 88840e- 02	-
1. 04423e-06 465/01 1. 12088e-03	- 1. 99721e- 03	1. 47229e- 04	2. 23455e-03	- 3. 18809e- 02	
4. 69823e-07 466/01 1. 11800e-03 5. 93234e-06	5. 20052e-03	1. 42536e-04	3. 02798e-03	- 3. 16855e- 02	
3. 93234e-06 467/01 1. 11800e-03 1. 30588e-06	4. 05728e- 03	1. 45664e- 04	- 5. 65006e- 03	- 2. 91712e- 02	-
468/01 1. 12315e- 03 1. 39097e- 05	4. 85684e-04	1. 45213e- 04	1. 89116e-03	- 3. 17920e- 02	
469/01 1. 09730e-03 5. 84872e-07	1. 06015e-02	1. 43196e-04	2. 91867e-04	- 3. 02902e- 02	
470/01 1. 07515e- 03 4. 50950e- 07	1. 78781e-02	1. 44219e-04	-4.86181e-03	- 2. 78690e- 02	
4. 30330e-07 471/01 1. 11919e-03 5. 21759e-07	6. 69558e-05	1. 46331e-04	- 5. 62501e- 05	- 3. 06127e- 02	-
472/01 1. 05730e-03 5. 06567e-06	2. 47007e-02	1. 40302e-04	3. 86527e-03	- 3. 07740e- 02	
473/01 1. 09273e- 03	1. 51423e- 02	1. 42724e- 04	- 3. 96151e- 03	- 3. 01607e- 02	-
1. 49672e-06 474/01 1. 07705e-03	1. 94738e- 02	1. 41408e- 04	3. 57593e-03	- 3. 18829e- 02	
4. 30401e-06 475/01 1. 11120e-03	7. 05685e-03	1. 41939e- 04	4. 55625e- 03	- 3. 23268e- 02	
2. 25701e-06 476/01 1. 10488e-03	5. 46969e-03	1. 46118e- 04	- 3. 14273e- 03	- 2. 92413e- 02	
3. 64184e-08 477/01 1. 06173e-03 5. 44719e-06	1. 61171e-02	1. 45385e- 04	2. 81088e-03	- 3. 03922e- 02	
478/01 1.06976e-03 1.05523e-05	1. 52997e-02	1. 43564e-04	3. 11059e-03	- 3. 08673e- 02	
479/01 1. 10651e- 03 2. 59808e- 06	4. 07324e- 03	1. 45971e-04	- 3. 00065e- 03	- 2. 94177e- 02	
480/01 1. 09731e-03 2. 79816e-06	6. 78862e-03	1. 45741e-04	- 9. 58801e- 04	- 2. 96328e- 02	
2. 79810e-00 481/01 1. 07996e-03 2. 45226e-06	1. 02816e-02	1. 45970e- 04	5. 35777e-03	- 3. 22206e- 02	-
482/01 1.07370e-03 7.96268e-07	8. 95338e-03	1. 48622e-04	8. 95965e-04	- 2. 87555e- 02	
483/01 1. 09691e- 03 6. 58897e- 06	1. 16333e-04	1. 49939e- 04	3. 68823e-03	- 3. 13551e- 02	
6. 38897e-06 484/01	1. 23952e-02	1. 46032e-04	5. 72961e-03	- 3. 21447e- 02	-
2. 43500e-00 485/01 9. 86263e-04 1. 02526e-07	2. 65290e-02	1. 56047e-04	1. 10657e-03	- 2. 62662e- 02	
1. 02320e-07 486/01 1. 05008e-03 1. 05829e-06	2. 52799e-02	1. 30258e- 04	1. 44535e-03	- 2. 87977e- 02	
487/01 1. 07630e-03 1. 04639e-06	2. 05947e-02	1. 13947e-04	3. 48840e-03	- 3. 05074e- 02	-
488/01 1. 01111e-03 5. 02050e-06	9. 30096e-03	1. 61887e-04	2. 09861e-03	- 2. 76433e- 02	
489/01 1. 07688e-03 6. 23783e-06	2. 74815e-03	1. 50703e- 04	4. 59180e-03	- 3. 06524e- 02	-
490/01 1.06172e-03 2.33969e-06	9. 16137e-03	1. 49042e-04	2. 86919e-03	- 3. 04415e- 02	
491/01 1. 08989e-03 2. 26998e-06	7. 37636e-03	1. 44957e-04	2. 07593e-03	- 3. 11475e- 02	
492/01 1. 09439e- 03 2. 68545e- 06	- 2. 30557e- 03	1. 49705e- 04	8. 02575e- 03	-3.54601e-02	
Sta/ OcSlope				Tscoeff	
dOc/dtcoeff '	0ffset	Plcoeff	Tfcoeff	Iscoerr	
d0c/dtcoeff Cast (c1)	0ffset (c2)	Pl coeff (c3)	Tfcoeff (c4)	(c5)	
d0c/dtcoeff Cast (c1) (c6) 493/01 1.10072e-03					_
d0c/dtcoeff Cast (c1) (c6) 493/01 1.10072e-03 8.42091e-07 494/01 1.09194e-03	(c2)	(c3)	(c4)	(c5)	-
d0c/dtcoeff Cast (c1) (c6) 493/01 1.10072e-03 8.42091e-07 494/01 1.09194e-03 1.21770e-06 495/01 1.11509e-03	(c2) - 2. 86152e- 03	(c3) 1. 48369e- 04	(c4) 4. 71987e- 03	(c5) - 3. 25191e- 02	-
d0c/dtcoeff Cast (c1) (c6) 493/01 1.10072e-03 8.42091e-07 494/01 1.09194e-03 1.21770e-06 495/01 1.11509e-03 2.67995e-07 496/01 1.09827e-03	(c2) -2. 86152e-03 2. 63569e-03	(c3) 1. 48369e- 04 1. 46867e- 04	(c4) 4. 71987e- 03 - 1. 06389e- 03	(c5) - 3. 25191e- 02 - 3. 00606e- 02	-
d0c/dtcoeff Cast (c1) (c6) 493/01 1.10072e-03 8.42091e-07 494/01 1.09194e-03 1.21770e-06 495/01 1.11509e-03 2.67995e-07	(c2) -2. 86152e-03 2. 63569e-03 -4. 98955e-03	(c3) 1. 48369e- 04 1. 46867e- 04 1. 46086e- 04	(c4) 4. 71987e- 03 - 1. 06389e- 03 5. 52357e- 03	(c5) - 3. 25191e- 02 - 3. 00606e- 02 - 3. 29908e- 02	-

		CSR7020_cr			
498/02 1. 07191e- 03 1. 44469e- 06	6. 72747e-03	1. 47424e- 04	- 1. 15187e- 03	- 2. 94050e- 02	
499/01 1.06803e-03 1.95392e-07	1. 05282e- 02	1. 43874e- 04	5. 53977e-03	- 3. 23868e- 02	-
500/01 1.07797e-03 2.77988e-06	1. 14175e- 02	1. 43025e- 04	- 3. 31482e- 03	- 2. 89639e- 02	-
501/01 1.07320e-03 1.16771e-06	1. 50740e-02	1. 40856e- 04	2. 49790e-03	- 3. 13063e- 02	
502/01 1.11952e-03 3.55006e-06	- 3. 81513e- 03	1. 44491e-04	2. 03978e-03	- 3. 13867e- 02	-
503/01 1. 08890e- 03	3. 25107e- 03	1. 44930e- 04	4. 45852e- 03	- 3. 19118e- 02	
3. 57650e-06 504/01 1. 09072e-03	5. 10271e- 03	1. 45306e- 04	4. 90155e- 04	- 3. 01307e- 02	
1. 68524e-07 505/02 1. 06466e-03	7. 80966e- 03	1. 47582e- 04	1. 04091e- 04	- 2. 91506e- 02	
4. 30725e- 06 506/01 1. 09763e- 03	3. 08555e-03	1. 44119e- 04	1. 24315e-03	- 3. 27067e- 02	
3. 26401e-07 507/01 1. 08357e-03	5. 23438e-03	1. 44586e- 04	- 3. 15323e- 04	- 3. 07945e- 02	
1. 43540e- 06 508/01 1. 06556e- 03	1. 36354e-02	1. 41739e- 04	3. 59388e-03	- 3. 36870e- 02	
3. 29657e-06 509/01 1. 07267e-03	- 5. 09354e- 03	1. 54707e-04	8. 78140e-03	- 3. 58642e- 02	_
4. 00924e- 06 510/01 1. 05016e- 03	7. 18126e-03	1. 49676e- 04	6. 84311e-03	- 3. 47527e- 02	
5. 91472e- 06 511/01 1. 04414e- 03	- 4. 30573e- 04	1. 57538e- 04	5. 43559e-03	- 3. 33926e- 02	_
9. 30481e-07 512/01 1. 02777e-03	8. 90130e-03	1. 55921e- 04	1. 35290e- 03	- 3. 06702e- 02	-
4. 39226e-06					
513/01 1. 08604e-03 6. 11307e-06	- 4. 53306e- 03	1. 50887e-04	9. 03041e-03	- 3. 73435e- 02	
514/01 1. 08330e-03 7. 36763e-07	- 4. 92620e- 03	1. 50389e- 04	1. 30966e- 02	-4. 01073e-02	
515/01 1. 07295e-03 1. 28165e-07	- 5. 43946e- 03	1. 53426e- 04	7. 68342e- 03	- 3. 50948e- 02	
516/01 1. 07262e-03 6. 73634e-07	5. 41963e- 03	1. 45492e- 04	4. 14298e- 03	- 3. 33916e- 02	-
517/01 1. 08530e-03 2. 03003e-07	9. 91808e-04	1. 45906e- 04	-1. 79845e-04	- 3. 14865e- 02	
518/01 1.05328e-03 5.64098e-06	6. 39805e-03	1. 48215e-04	6. 27946e-03	- 3. 39373e- 02	
519/01 1. 09566e-03 4. 61836e-06	- 1. 58465e- 02	1. 52540e-04	8. 85351e-03	- 3. 66697e- 02	
520/01 1. 09815e-03 4. 16464e-07	- 2. 81835e- 03	1. 41541e- 04	5. 34060e- 03	- 3. 38047e- 02	-
521/01 1.05331e-03 2.97739e-06	6. 18857e- 03	1. 50910e- 04	4. 01803e- 03	- 3. 15793e- 02	-
522/01 1. 02115e-03 3. 85834e-06	8. 17092e- 03	1. 57619e- 04	9. 03984e- 04	- 2. 92108e- 02	
523/01 1. 09873e-03	- 4. 87389e- 03	1. 44302e-04	3. 38773e-03	- 3. 29384e- 02	
6. 09634e-06 524/01 9. 96859e-04	1. 96654e- 02	1. 52379e- 04	1. 79464e- 03	- 2. 77111e- 02	
3. 26357e-06 525/01 1. 11127e-03	- 1. 73699e- 02	1. 50513e- 04	2. 41111e-03	- 3. 30414e- 02	
6. 16169e-06 526/01 1. 07151e-03 1. 28185e-05	9. 23713e-04	1. 44564e-04	3. 99663e-03	- 3. 28863e- 02	
527/01 1. 04474e- 03 9. 97883e- 07	5. 85622e- 03	1. 45923e- 04	4. 29580e-03	- 3. 15578e- 02	
528/01 1.11547e-03 1.12387e-05	- 1. 48611e- 02	1. 41128e- 04	5. 51463e-03	- 3. 51246e- 02	
529/01 1. 04619e-03 2. 88649e-06	6. 02644e-03	1. 44130e-04	3. 54593e-03	- 3. 11027e- 02	
530/01 1. 08311e-03 2. 34701e-06	- 1. 83239e- 02	1. 54307e-04	1. 43582e-03	- 3. 17420e- 02	-
531/01 1. 05156e-03 2. 29673e-06	- 5. 14630e- 03	1. 49243e- 04	4. 26948e-03	- 3. 29268e- 02	
532/01 1. 02171e-03 1. 80699e-07	- 1. 59140e- 02	1. 69613e-04	4. 82534e-03	- 3. 15460e- 02	-
533/01 1. 07187e-03	- 2. 54663e- 02	1. 64638e-04	8. 25539e-03	- 3. 71143e- 02	
3. 35437e- 06 534/01 1. 07659e- 03 2. 20294e- 07	- 1. 79196e- 02	1. 59640e-04	- 2. 75467e- 03	- 3. 15689e- 02	
a. auad4e-u/		_			

535/01 1.16725e-03	- 6. 53292e- 02	CSR7020_crt 1. 74434e- 04	ui serep 5. 96083e- 03	- 3. 96295e- 02	
3. 11800e-07 536/01 1. 08642e-03	- 3. 05928e- 02	1. 64550e-04	8. 53337e-03	- 3. 70283e- 02	
1. 46029e-06 537/01 1. 07519e-03	- 2. 70075e- 02	1. 65035e-04	9. 15048e-03	- 3. 74040e- 02	
4. 50782e- 06 538/01 9. 95882e- 04 3. 72223e- 06	- 8. 64931e- 03	1. 78136e-04	2. 01006e-03	- 2. 94659e- 02	-
539/01 1.11024e-03 1.16543e-06	- 1. 59356e- 02	1. 50837e-04	6. 64321e-03	- 3. 70566e- 02	-
540/01 1. 09450e-03 1. 97302e-06	- 3. 26538e- 02	1. 69930e- 04	8. 00364e-03	- 3. 78710e- 02	
541/01 1. 09414e- 03 1. 60395e- 06	- 2. 07201e- 02	1. 54305e- 04	5. 04929e- 03	- 3. 49309e- 02	-
542/01 1.06024e-03 1.57558e-07	- 1. 40187e- 02	1. 54613e-04	8. 12216e-03	- 3. 56530e- 02	
543/01 1.07760e-03	- 2. 17304e- 02	1. 57772e- 04	6. 66478e-03	- 3. 48579e- 02	-
1. 72881e-06 544/01 1. 07140e-03	- 2. 68877e- 02	1. 61482e- 04	3. 51692e-03	- 3. 29937e- 02	
2. 94126e- 06 545/01 1. 05908e- 03	- 4. 82464e- 02	1. 76031e-04	- 5. 02270e- 03	- 3. 09428e- 02	
1. 58515e-06 546/01 1. 06188e-03	- 4. 73697e- 02	1. 66534e-04	5. 25464e- 03	- 3. 40723e- 02	-
2. 75824e- 06 547/01 9. 55558e- 04 1. 41211e- 06	- 3. 65329e- 03	1. 58976e-04	3. 17996e- 03	- 2. 82568e- 02	
548/01 1.12039e-03 2.26415e-05	- 6. 04212e- 02	1. 62686e-04	1. 09729e- 02	- 3. 93283e- 02	
549/01 9.51792e-04 1.97001e-06	2. 34797e-04	1. 67501e-04	5. 92366e-03	- 3. 16345e- 02	-
550/01 1.01453e-03 2.36647e-06	- 3. 05633e- 02	1. 74864e- 04	4. 05916e- 03	- 2. 90084e- 02	
551/01 1.02587e-03 2.28662e-06	8. 88221e-03	1. 49679e-04	7. 00149e-03	- 3. 18196e- 02	
552/01 1.13572e-03 5.46748e-06	- 1. 98346e- 02	1. 52351e-04	3. 48093e-03	- 3. 64251e- 02	
553/01 1. 03818e- 03 4. 49451e- 07	9. 01354e-03	1. 52433e- 04	2. 41897e-03	- 2. 95076e- 02	
554/01 1.05541e-03 1.84304e-06	5. 99117e-03	1. 52033e- 04	6. 02580e-03	- 3. 29286e- 02	-
555/01 1.07183e-03 1.37593e-06	5. 29849e-03	1. 49138e- 04	4. 77424e- 03	-3. 17941e-02	-
556/01 9. 88458e-04 2. 38202e-06	3. 50818e-02	1. 46486e-04	- 2. 56890e- 03	- 2. 45470e- 02	
Sta/ OcSl ope	0ffset	Plcoeff	Tfcoeff	Tscoeff	
d0c/dtcoeff Cast (c1)	(c2)	(c3)	(c4)	(c5)	
(c6)	(02)	(60)	(02)	(60)	
557/01 1.08896e-03 4.07773e-06	- 4. 02204e- 03	1. 53635e- 04	6. 80873e-03	- 3. 35474e- 02	
558/01 1.08855e-03 4.03612e-06	- 4. 77789e- 03	1. 56112e- 04	2. 80255e-03	- 3. 12183e- 02	
559/01 1.00705e-03 6.32199e-06	4. 50188e- 02	1. 28043e- 04	4. 44313e- 03	- 2. 99470e- 02	-
560/01 1.08880e-03 1.23149e-06	2. 55284e-02	1. 17350e- 04	7. 69731e-03	- 3. 44170e- 02	
561/01 2. 45956e-03 4. 12439e-07	- 1. 51572e- 01	- 2. 20226e- 04	1. 80822e- 02	- 7. 08182e- 02	
562/01 4. 88292e- 03 1. 70071e- 06	1. 96746e+00	- 1. 21707e- 03	1. 18110e-03	- 9. 23659e- 02	-
563/01 1.51430e-03 5.10982e-06	- 2. 50586e- 02	- 6. 12079e- 06	1. 04577e-02	- 4. 96638e- 02	
564/01 1.10530e-03 1.92829e-06	1. 97035e- 02	1. 20248e- 04	5. 82152e-03	- 3. 48037e- 02	
565/01 1. 12199e- 03 3. 61991e- 07	- 1. 79821e- 02	1. 56740e- 04	4. 70891e-03	- 3. 25363e- 02	
5. 61991e-07 566/01 9. 52398e-04 9. 52886e-06	3. 87832e-02	1. 51030e- 04	2. 99126e-03	-2. 56889e-02	
567/01 1. 09868e- 03 4. 93335e- 06	- 3. 72498e- 03	1. 51283e- 04	2. 57322e-03	- 3. 13183e- 02	
4. 95355e-06 568/01 1. 02120e-03 3. 97245e-06	1. 94125e- 02	1. 48774e- 04	5. 64466e-04	- 2. 73593e- 02	
J. 3124JE- UU					

		CS	R7020_crui s	erep		
569/01 1.05	607e-03 1. 12009				- 3. 36722e- 02	
2. 26436e-06						
570/01 1.05	474e-03 1. 12820	De- 02 1. 47	7429e-04 4	l. 90640e-03	- 3. 25805e- 02	-
3. 69710e-08						
571/01 9.66	3484e- 04 4. 13831	le-02 1.42	2545e-04 4	l. 12208e-03	- 2. 82877e- 02	
4. 37037e-06						
572/01 9.88	3. 42355 3. 42355	5e-02 1.42	2888e- 04 7	7. 12805e-03	- 3. 17597e- 02	
4. 76619e-07						
573/01 9.86	6600e- 04 3. 67297	7e-02 1.41	1692e- 04 4	l. 73807e-03	- 2. 92275e- 02	_
1. 48253e-07						

APPENDIX C

WOCE95-I3: CTD Shipboard and Processing Comments

	Key to Problem/Comment Abbreviations
BQ	bottle oxygen value(s) questionable/missing, need to estimate for ctdoxy fit
CO	conductivity offset
DI	density inversion: data consistent/smooth in time- series CTD, possibly real
OB	bottom ctdoxy signal shift coincides with slowdown for bottom approach
0F	ctdoxy fit off 0.02 ml/l or more compared to bottle data (plus nearby and/or duplicate-position ctd casts)
OK	ctdoxy data consistent with nearby and/or repeat cast(s) (+/-0.02 ml/l) after offset/despiking; may be coded 3 anyways because of extensive despiking or multiple offsets
0L	ctdoxy fit low near surface: either slow cast start or low ctdoxy signal
ON	ctdoxy signal unusually noisy
0S	raw ctdoxy signal shifts
SS WS	probable sea slime on conductivity sensor winch slowdown/stop, potential shift in ctdoxy signal (also, see "OB")
	Key to Solution/Action Abbreviations
DO	despiked raw ctdoxy, despiked data ok unless otherwise indicated
DS	despiked salinity, changed temperature and/or conductivity - see .ctd file codes
EB	used nearby bottles and/or casts to estimate bottle oxygen value for ctdoxy fit
NA	no action taken, used default quality code 2
NR	cast not processed, not reported with final data
03/04	quality code 3/4 oxygen in .ctd file for pressures specified
OC	offset conductivity channel to account for shift/offset
RO	offset raw ctdoxy data to account for signal shift caused by slowdown/stop/yoyo; usually "DO" in transition area near offset

Cast	Problem/Comment	Sol uti on/Acti on
443/01	start with ctdoxy sensor	
444/01	0B	RO +10/126-154db(btm)
445/01	WS/0.6 mins. at 354db,	R0 +10/408-410db,
	OB/ON/consistently noisy+low	<u> </u>
	at bottom: matches bottles	R0 + 20/412 - 414db(btm),
	after despiking, not comparable	D0/03/348-414db(btm)
	to nearby casts	,
446/01	ON/OL/OK	D0/0-48db
447/01	OS/OL/OK	RO +100/0-58db, DO

	CSICION	_cruiscrep
448/01	OL/ctdoxy bulges low relative	D0/03/0-40db
	to nearby casts	
449/01	,	NA
	- 0. 017/0-6db	
450/01	BQ/2018-4326db, 10 consecutive	EB/sta 451 deep bottle
	bottle oxys	values used to fit ctdoxy
451/01	DI -0.021/0-2db;	NA; D0/280-540db
	ON/i ntermi ttent	
	BQ/5020db bottom bottle	EB
	4	L

Cast	Problem/Comment	Solution/Action
	DI - 0. 022/0-6db;	NA; D0/160-520db
	ON/i ntermi ttent OB	R0 +2/5030-5134db(btm)
454/01	spare ctdoxy sensor 4-05-16	D0/4722-4998db
	installed prior to cast:	
450/01	ON/intermittent	DO / 4000 4070 JL
456/01	OS/unknown cause; last cast for this ctdoxy sensor	D0/4320-4378db
	WS/0. 6 mi ns. at 5082db, unusual	D0/03/5112-5138db(btm)
	rise in ctdoxy at bottom	, ,
457/01	spare ctdoxy sensor 5-01-04 installed prior to cast;	
	ON/constant, extreme noise in	
	ctdoxy signal over large area:	
	OK	dawn and munnered for
	up-cast reported shipboard despite noisy section	down-cast processed for final data
	(despiked) in high-gradient	That data
450/04	area	
458/01	ctdoxy sensor connections reseated prior to cast: signal	
	looks fine now	
459/01	OB	R0 + 1/5592 - 5622 db (btm)
461/01	BQ/5860db bottom bottle; odd	EB; NA/matches bottle and
	~0.03 ml/l drop at 5562-5862db(btm)	nearby stas
463/01	BQ/5810db bottom bottle	EB
464/01	OF: 0.02 ml/l low	03/4570-5182db
	end cast at 5990m (wire-out) to keep press within laboratory	
	calibration range	
465/01	OF: 0.02 ml/l low compared to	NA/3636-4570db
	bottles, ok compared to nearby	
467/01	BQ/5926db bottom bottle; ctdoxy	EB; 03/5686-5928db(btm)
	bulges ~0.03 ml/l high compared	
	to nearby casts, no bottles to compare with	
468/01	OL/ctdoxy bulges low relative	D0/03/0-50db
	to nearby casts	
470 /01	BQ/6088db bottom bottle	EB 02/5079 5494 lb (b+)
470/01	ctdoxy bulges ~0.03 ml/l high compared to nearby casts,	03/5072-5424db(btm)
	bottom bottle	
471/01	ON, very high ctdoxy: OK	R0 - 30/2-12db, R0
		- 20/14-28db, R0 - 10/30-38db,
		D0/03/0-50db
	OB	R0 +1/5182-5192db,
473/01	BQ/5179db bottom bottle	RO +2/5194-5198db(btm) EB
474/01	OB	RO +1/5376-5388db(btm)
477/01	SS/C0 - 0. 0025 mmho/cm	0C/DS/2252-2408db
478/01	OL/OF: 0.10 ml/l low	D0/03/0-24db
	OF: 0.02 ml/l low, then high at bottom	03/3702-4868db(btm)
480/01	OF: 0.02 ml/l low, drops before	03/5444-5480db(btm)
	slowdown; bottom bottle also	

481/01	low, no nearby casts this deep: possibly real? WS/0.7 mins. at 0-4db; DI -0.019/0-6db BQ/12db surface bottle; ON/OL/OK pdr bottom ~500m shallower than wire out or CTD depth: ok, 400+m dropoff 10 mins after leaving station	NA EB; DO/0-76db
--------	---	---------------------

Cast	Problem/Comment	Sol uti on/Acti on
483/01	ON/OL/~0.05 ml/l low compared to bottle, nearby casts OB	D0/03/0-22db R0 +1/5058-5066db, R0 +2/5068-5070db,
484/01 485/01	OB SS/CO -0.005 mmho/cm unusual ~0.03 ml/l drop in ctdoxy at bottom, no slowdown; matches 4 of 5 bottles but not	R0 +3/5072-5074db(btm) R0 +2/3156-3196db(btm) OC/DS/1658-1700db NA/2014-2328db
487/01	previous cast WS/1.3 mins. at 518db to reposition ship: wire against the hull	NA/any ctdoxy effect lost in background noise
489/01	OB/OF: to 0.03 ml/l low at bottom, slowdowns at 1842/1860db DI -0.017/0-10db OS/OL/~0.08 ml/l low after offset compared to stas 487+488, ok compared to	R0 +2/2024-2034db(btm), 03/1844-2034db(btm) NA R0 +120/2-24db, R0 +100/26-36db, R0 +70/38-42db,
491/01	bottle and sta 490 WS/0.8 mins. at 0-4db; DI -0.016/0-10db	D0/03/0-42db NA
492/01 493/01	ON/OL/OK ON/OL/OK BQ/7db surface bottle OB	D0/0-68db D0/R0 +20/0-24db EB R0 -1/4870-4884db(btm)
496/01 498/01 498/02	ON/OL/OK ABORT - wire trouble: no signal after acquisition started, before cast in water switch to stbd winch w/broken-	D0/2-70db NR
	strand wire prior to cast C-sensor cover empty/dry prior to cast ON/OL/still ~0.05 ml/l low compared to nearby casts after despiking, but matches own 2	NA/signal looks ok D0/2-68db
499/01	bottles this area=ok? 0S/0L/0K WS/1.3 mins. at 48db to check winch noises BQ/4920db bottom bottle; OB	RO +60/2-18db NA/no apparent effect on ctdoxy signal EB; RO -1/4918-4924db(btm)
	major signal noise/all channels/after bottom trip: jumpy/unstable voltage to ~ 1000m up; signal went crazy again when stopped to tape broken strand on wire ~50m up	cut off ~100m (stbd) wire after cast, reterminated
500/01	switch back to port winch with new termination using 2 conductors	DO 1/4004 4000 H (1 :)
502/01	0B BQ/7db surface bottle	R0 +1/4924-4938db(btm) EB age 38

	CONTOR	_cruiscrep
	OB	R0 + 1/5202 - 5214db(btm)
504/01	switch to stbd winch prior to	
	cast	
	cast position data missing,	
	recovered from ship's computer	
505/01	TEST cast to check out	NR
	potential wire/voltage problem	
	voltage drops at every test	crank up volts/current
	trip, sometimes sticks low even	and continue to use stbd
	after winch starts moving: one	winch on cast 2
	of two conductors tied together	
	staying open	
+	+	++

Cast	Problem/Comment	
505/02	WS/1.2 mins. at 3380-3390db, winch op. heard wrong target depth: inversion in ctdoxy near	D0/3386-3400db
506/01	stop 0B (stbd) sliprings replaced/repaired	RO -1/4434-4448db(btm)
	WS/1.4 mins. at 0-6db; choppy seas/20-30 knot winds; 0L/very low raw ctdoxy: 0K	D0/0-10db
509/01	conductivity signal noisy: +/-0.002 mmho/cm	DS/2500-4694db
	ON/much signal oscillation compared to upcast, nearby casts	03/2500-4694db(btm)
515/01	WS/1.0 mins. at 0-6db, 0N BQ/6db surface bottle OF: 0.02 ml/l low	D0/0-78db EB
520/01	0N/0S/0L/overlays surface bottle and sta 519 after offset	03/3116-3350db(btm) D0, R0 +40/2-64db
521/01	WS/0.8 mins. at 2830db 0B 0B/0F: 0.03 ml/l high	D0/2830-2842db R0 +3/2964-2970db(btm) 03/2408-2478db(btm)
524/01	wind 20 knots; 0S/0L/0K	R0 +60/2-18db
525/01	OS/OL/OK	R0 +100/2-32db, R0 +40/34-48db, D0/0-48db
526/01	OL/OF: 0.10 ml/l low WS/1.8 mins. at 1752-1766db: "wobble" in the wire	D0/03/0-54db NA/ctdoxy effect on the order of background noise
528/01	DI -0.015/0-6db; OL/0F: 0.10 ml/l low	D0/03/0-16db
530/01	SS/CO - 0. 16 to - 0. 47 mmho/cm wind 13 knots; OS/OL/OK	DS/544- 558db R0 +40/8- 30db
531/01	BQ/3439+3607db, bottom two bottles	EB
532/01	OS/OK	R0 +60/2-18db, R0 +20/20-28db
533/01	OB OS/OK	R0 +1/3710-3726db(btm) R0 +20/2-24db, R0 -40/26-44db
535/01	0B 0N/0S/0L/0F: nearly 0.10 ml/l	RO -1/3944-3952db(btm) RO +30/16-40db,
536/01	low wind 15 knots; OS/OL/OK	D0/03/0-84db R0 +60/2-26db
537/01	DI -0.016/0-10db; OS/OL/OK	R0 +20/2-26db
538/01 539/01	DI -0.017/0-6db; OS/OL/OK OS/OK	D0, R0 +60/2-16db R0 +80/12-20db, R0 +40/22-28db
	DI -0.012/850-854db, +0.09 deg.C temp. is real: LADCP noted unusual 1-kt. current 735-870db; bottom of	NA/inversion probably real
541/01	shear/probable mixing here OS/OL/OK	R0 +50/0-12db, R0
341/01	OS/ OL/ OR	NO FOU/ U- 1&UD, NO

	CSRTOR	o_ci ui sci cp
		+20/14-20db, $D0/0-20$
1	OB	R0 + 3/2606 - 2628 db(btm)
543/0	1 OS/OL/OK	R0 +20/0-18db, R0
1		+50/20-52db,
		R0 +20/54-70db, D0/0-70db
544/0	1 OL/OK	R0 + 80/2 - 8db, $R0$
		+40/10-52db, D0/0-52db
545/0		NA/no apparent effect on
	stop to pick up observers	sensors
	OF: up to 0.15 ml/l low	03/474-656db
547/0		R0 + 70/2 - 38db, $R0$
İ		+40/40-46db, D0/2-46db
548/0	1 OL/OF: 0.10 to 0.15 ml/l low	D0/03/0-54db
	0F: 0.02 ml/l low, then high	03/3070-4222db(btm)
	or. o. o. mi/r row, enem might	007 0070 4222db (bein)
+	+	+

Cast		Sol uti on/Acti on
549/01	slowed at 4800m (wire-out) on down; OF: to 0.10 ml/l high at	04 4364-4946db
551/01	bottom OS/OL/OK	D0/R0/0-26db
331/01	OS OL OR	R0 +50/0-10db
	0S	R0 +40/12-26db
552/01	0S	R0 +20/0-24db
002, 01	BQ/5017db bottom bottle	EB
553/01	0F: to 0.02ml/l high near	03/4942-4990db
	bottom, matches better after OB	
554/01	08	R0 +60/2-34db
	BQ/4978db bottom bottle	EB
555/01	BQ/4925db bottom bottle	EB
556/01	0L/0F: 0.15 ml/l low	D0/03/0-60db
	OF: 0.03 ml/l low compared to	NA/3550-4226db
	bottles, ok compared to sta 555	
	and sta 568 (same position)	
	OF: 0.02 ml/l high by bottom	03/4284-4830db(btm)
	OB	R0 - 1/4814-4830db(btm)
557/01	OS/OL/OK	R0 +80/2-20db, R0
~ ~ · · · · · · · · · · · · · · · · · ·	00/01/07 0 40 1/11	+40/22-24db, D0/0-24db
558/01	0S/0L/0F: 0.10 ml/l low	R0 +60/2-26db,
550 (01	01 /07 0 10 1/1 1	D0/03/0-64db
559/01	0L/0F: 0.10+ ml/l low	D0/03/0-50db
560/01	OS/OK	R0 +40/0-44db
562/01 564/01	winch speed 45m/min. max BQ/8db surface bottle	EB
565/01	OB OB	R0 +2/2928-2936db(btm)
566/01	OS/OK	RO +2/2928-2936db(btm) RO +30/2-14db
300/01	OF: 0.05+ ml/l high; bottle	03/3080-3564db
	suspiciously high, no other	03/ 3080- 3304ub
	bottles to rely on	
569/01	OS/OK	R0 +90/14-26db
570/01	OB	R0 +2/4960-4978db(btm)
573/01	RO/2dh surface bottle	FR
+	+	+

APPENDIX D

WOCE95-I3: Bottle Quality Comments

Remarks for deleted samples, missing samples, PI data comments, and WOCE codes other than 2 from WOCE IO3/ICM3 KN-145.8. Investigation of data may include comparison of bottle salinity and oxygen data with CTD data, review of data plots of the station profile and adjoining stations, and rereading of charts (i.e., nutrients). Comments from the Sample Logs and the results of ODF's investigations are included in this report. Units stated in these comments are degrees Celsius for temperature, Practical Salinity Units for

CSR7020_cruiserep salinity, and unless otherwise noted, milliliters per liter for oxygen and micromoles per liter for Silicate, Nitrate, Nitrite, and Phosphate. The first number before the comment is the cast number (CASTNO) times 100 plus the bottle number (BTLNBR).

STATION 443

STATION 443	
Cast 1	TIC: "Salinometers are not performing well. Electronics in both instruments need to be adjusted and air temp in room fluctuating badly."
136	Oxygen value 0.04 ml/l high compared to CTD oxygen and NB35 at same level. Footnote oxygen questionable.
133	Oxygen value 0.30 ml/l low compared to CTD oxygen. Small feature (low value) in salinity and nutrients all high. Couldn't be leaking bottle, though, since this is lowest oxygen value in water column. Footnote oxygen questionable.
131-136	Footnote salinity questionable. See Cast 1 salinity comment.
130	Sample Log: "spigot in open position." Oxygen low; NO2, silicate, PO4 all high. Footnote all bottle parameters bad.
129	Sample Log: "bottom end-cap leak (C. H. reseated cap.)" Sample values appear to be OK.
117	Sample Log: "Oxygen on NB17 redrawn; stopper on flask defective. So flask replaced."
121	Sample Log: "bottom end-cap leak". Other than salinity, sample values appear to be OK.
110	Several bottles tripped together. Oxygen value 2.0 ml/l too low. Footnote oxygen bad.
101-129	Footnote salinity questionable. See Cast 1 salinity comment.
STATION 444	
102	Oxygen comments: "Thio shaken/ $x5$ " No apparent affect on oxygen values.
101	Oxygen comments: "No flush thio" No apparent affect on oxygen values.
STATION 445	
101-102	CTD processor: "CTD oxy consistently noisy, low at bottom: matches btls after despiking." Footnote CTD oxy questionable.
STATION 446	
112	Sample Log indicates salinity sample drawn, but sample not analyzed. No reason noted. Footnote salinity value not reported.
103	Sample Log: "NB3 slight drip on bottom cap, adjusted cap stopped drip." No apparent affect on bottle values.
STATION 447	
121	Surface oxygen values on stations 447 and 448 are 0.10 ml/l higher than stations 444-446 and stations 449-450 and CTD oxygen values. Analyst notes there was a bubble in station

oxygen values. Analyst notes there was a bubble in station 447 flask; there may have been similar problem in station 448 also. Footnote oxygen questionable.

Sample Log: "Bottom end-cap leaking". No apparent affect on bottle parameters. 115

STATION 448

	CSR7020_crui serep
121	Surface oxygen values on stations 447 and 448 are 0.10 ml/l higher than stations 444-446 and stations 449-450 and CTD oxygen values. Analyst notes there was a bubble in station 447 flask; there may have been similar problem in station 448 also. Footnote oxygen questionable.
120- 121	CTD processor: "CTD oxy bulges low relative to nearby casts." Footnote CTD oxy questionable.
118	Sample log: "Top end-cap leaking." No apparent affect on data.
103	Oxygen Printout: "stir-bar late". Value close to 0.0, clearly a bad value compared to adjacent stations. Footnote oxygen bad.
STATION 449	
Cast 1	Salinity analyst's log: "Salinity samples allowed to equilibrate for only 2 hours before run on salinometer." No apparent affect on data.
101-131	Nutrient Analyst notes: "NO3 F1s questionable due to Cadmium Column Change." NO3 values appear 0.5 um/l high. Footnote all nitrate values uncertain. Salinity samples allowed to equilibrate for only 2 hours before run on salinometer. However, bottle salinity values compare well with ctd salinities and adjacent stations. Salinity values OK.
STATION 450	
Cast 1	Sample log: "02 first draw from NB1 to NB22 had wrong amount of reagents added. Resampled w/ correct amount of reagent." Oxygen value OK unless otherwise noted.
119-120	Footnote oxygen questionable. NB19 to NB20 (at a Oxy minimum) look too high compared to both nearby casts and CTDOXY even though this is the middle of the Leeuwin current with a lot of variability. PI agrees.
102-111	Footnote oxygen questionable. Refer to cast 1 Sample Log oxygen comment. Oxygen values look 0.1 ml/l high compared to down and up traces on CTDOXY and station 451.
STATION 451	
Cast 1	Standard Dial on salinometer was adjusted by 16 units downward from previous station. Suspect bad wormly standard at beginning of run. All sample values off by about 0.0026. That offset was applied and plots with ctd salinity agree.
123	Sample Log: "Bottom cap leaking". No apparent affect on data.
101	PI: "Oxygen value too low." Oxygen value appears 0.08ml/llow. Footnote oxygen questionable.
STATION 452	
127	Oxygen sample mistakenly not drawn on NB27. Part of a systematic drawing error involving NB27 through NB31. Errors corrected except no value to report on NB27.

- Sample Log: "Bottom cap leaks". No apparent affect on bottle values when compared to adjacent stations and CTD salinity.
- Sample Log: "NB22 leaks at petcock (petcock open, vent closed)." No apparent affect on bottle values when compared to adjacent stations and CTD salinity.

	CSR/020_Crui Serep
132	Sample log: "bottom end-cap leaking (maybe)". Salinity value consistent with CTD and adjacent stations.
127	Sample log: "bottom end-cap leaking". Salinity value consistent with CTD and adjacent stations.
123	Sample log: "bottom end-cap leaking". Salinity value consistent with CTD and adjacent stations.
STATION 454	
127	Sample log: "Small bottom cap leak". No apparent affect on
	bottle values.
125	Sample log: "Bottom cap leaks w/ vent open - small leak." No apparent affect on bottle values.
115	Analyst note: "Oxygen sample lost during analysis."
109-116	Nutrient Analyst: "Possible temperature stability problem in lab." Phosphate value 0.1 um/l high compared adjacent stations, Silicate a little low but within WOCE standards. Other bottle parameters unaffected. Footnote Phosphate questionable.
STATION 456	
136	Sample log: "No nuts, Salinity, or Ba samples from NB36- H20 exhausted". Nutrient and salinity samples not drawn.
127	Sample log: "NB27 may be leaking from bottom end-cap." No apparent affect on bottle data.
119-120	All nutrient values from NB19 seem to indicate samples were switched with NB20. Other bottle parameters OK. Could be drawing error. PI agrees. Error corrected, nutrient values appear consistent with adjacent stations.
101	CTD processor: "Unusual rise in CTD oxy at bottom." Footnote CTD oxy questionable.
STATION 457	
120-124	CTD processor: "Constant, extreme noise in CTD oxy signal over large area. Looks OK after extensive despike (new ctdoxy sensor)." Footnote CTD oxy questionable.
119	Oxygen value 0.10 ml/l high compared to adjacent stations and CTD oxy value. No analyst notes. Footnote oxygen questionable.
116	Oxygen value 1.5 ml/l too high compared to adjacent stations. No analyst notes. Recommend deletion. Footnote oxygen value bad.
111	Salinity value is slightly off compared to adjacent stations and CTD value. Footnote salinity questionable.
109	Value is slightly off compared to adjacent stations and CTD value. Footnote salinity questionable.
STATION 458	
115	Sample log: "Top cap leaked air - repositioning stopped leak." No apparent affect on data.
STATION 459	
124	Oxygen values from NB23 through NB35 to not compare well with CTDOXY and values from adjacent stations. Suspect flask intended for NB23 was drawn on NB24 and all following draws were then one off, till two flasks were mistakenly

Corrections were made, data fits profiles of drawn on NB35. adjacent stations and plots of Silicate vs Oxygen. Oxygen values now OK. PI agrees.

123 Oxygen sample mistakenly not drawn on NB23. See comments on

NO-confirm from pylon at first trip attempt. 106

initialized, second trip confirmed ok. All bottles appear

to have tripped at correct depths.

Sample log: "NB3 bottom end-cap leaking; small twist corrected it." No apparent affect on data. 103

STATION 460

Oxygen value 0.10 ml/l low compared to CTD oxy. Nearly same oxy value and draw temperature as NB33, could be duplicate 132 draw. Footnote oxygen questionable.

125 Sample log: "NB25 bottom end-cap leak." No apparent affect

on bottle data.

119 Oxygen values from NB18 through NB23 do not compare well with CTDOXY and values from adjacent stations. Suspect flask intended for NB18 was drawn on NB19 and all following draws were then one off, till two flasks were mistakenly drawn on NB23. Corrections were made to Oxygen File, data fits profiles of adjacent stations and plots of Silicate vs Oxygen. PI agrees. After changes oxygen values OK.

118 Oxygen sample mistakenly not drawn from NB18. See comments

on 119. Footnote Oxygen not drawn.

Sample log: "NB3 bottom end-cap leaking; small twist corrected it." Delta-S -0.0022 PSU. Salinity value a little low compared to CTD salinity and adjacent stations. 103

Footnote salinity questionable.

STATION 461

Sample log: "Lanyard caught, bottom end-cap failed to close". No samples drawn from NB31. 131

Bottle oxygen value 0.03 ml/l low when plotted against 101

adjacent stations and CTD oxy value. Footnote questionable.

STATION 462

Sample log: "NB35 leaking; end caps OK, top valve presumed not completely closed." No apparent affect on data. 135

PI: "02 number 114 looks high to me by about 0.1ml/l; mark it '3'.BW'. Footnote oxygen questionable.

STATION 463

114

Oxygen Analyst notes he lost sample during analysis. 126

Footnote oxygen not reported.

Nutrient Analyst: "Nutrients: No samples - Timer messed up 116

and went to sw. " No nutrient values reported.

Sample log: "NB4 leaking from bottom end-cap." No apparent 104

affect to data.

101 PI: "Bottom 02 looks low to me by 0.08ml/l; mark it '3'.BW."

Footnote oxygen questionable.

STATION 464

125 Sample Log: "Slight leak at bottom cap - adjusted cap stopped leak." No apparent affect on data.

${\tt CSR7020_crui\,serep}$

	C5k7020_Crurserep
108	Oxygen value 0.3ml/l too low compared to adjacent stations. Footnote oxygen value bad.
107	Sample log: "Slight leak at bottom cap - adjusted cap stopped leak." No apparent affect on data.
104- 106	CTD processor: "CTD oxy looks about 0.02 ml/l low compared to bottles and nearby casts." Footnote CTD oxy questionable.
STATION 465	
105-108	CTD processor: "CTD oxygen looks about 0.02 ml/l low compared to to bottle values, OK compared to nearby casts."
STATION 466	
116-117	Sample log: "NB16 and NB17 failed to close." No bottle samples. Console Log: "Odd-confirm on NB16, NB17 - both came up open. Pylon manually re-posn'd prior to tripping NB18. Btl pressures for NB18 - NB36 look OK based on oxy fits."
STATION 467	
121	Silicate value looks 2uM too high compared to adjacent stations. However, there is a small feature at that depth in CTDO, oxygen, CTD salinity and bottle salinity. Silicate value OK. PI agrees.
110	Sample Log: "NB10 leaked at petcock - repositioned top cap stopped leak." No apparent affect on data.
101	Bottle oxygen value 0.05 ml/l low when plotted against adjacent stations and CTD oxy value. Footnote questionable.
STATION 468	
136	CTD processor: "CTD oxy bulges low relative to nearby casts." Footnote CTD oxy questionable.
125	Delta-S at 711db is -0.0105 PSU, salinity is 34.492 PSU. CTD trace shows complex salinity structure in this area. By comparison of adjacent stations, data OK. PI agrees.
124	Delta-S at 812db is -0.0112 PSU, salinity is 34.509 PSU. CTD trace shows complex salinity structure in this area. By comparison of adjacent stations, data OK. PI agrees.
101	Bottle oxygen value 0.03 ml/l low when plotted against adjacent stations and CTD oxy value. Footnote questionable.
STATI ON 469	
130	Delta-S at 310db is -0.0279 PSU, salinity is 35.348 PSU. Area of steep salinity gradient. Salinity value OK. PI agrees.
122	Nutrient Analyst note: "NB22 nitrate value slightly high, looks real. Matches station 460." PI agrees.
112	Delta-S at 2831db is 0.0020 PSU. This slight difference is within guidelines. Footnote salinity OK.
STATION 470	
128	Sample log: "Oxygen on NB28 was resampled after improper reagent addition." No affect on data.
109	Oxygen analyst note: "109 lost, hit escape while titrating." Footnote oxygen value not reported.

CSR7020_crui serep 105 Sample log: "NB5 slight leak at bottom cap". No apparent affect on bottle samples. CTD processor: "CTD oxy bulges 0.03 ml/l high compared to to nearby casts." Footnote CTD oxy questionable. 101 STATION 471 CTD processor: "Very high raw CTD oxy, better after despiking." Footnote CTD oxy questionable. 136 PI: "Oxygen looks too low to me - suspiciously like a repeated sampling of NB23. I think it should be rejected.BW" 124 Footnote oxygen value bad. STATION 472 102 Analyst notes: "PO4 looks high; no analytical problems." Phosphate value looks 0.01uM high compared to adjacent stations. Footnote phosphate questionable. STATION 473 136 Sample Log: "NB36 ran out of water for salt." Footnote salinity not reported. Sample Log: "Slight leak from bottom cap - stopped after cap adjusted." No apparent affect on data. 129 Sample Log: "Slight leak from bottom cap - stopped after cap adjusted." No apparent affect on data. 125 Oxygen value appears 0.4ml/l too high. No notes of any problems. PI: "Code should be a 4." Footnote oxygen bad. 101 STATION 474 Nitrate, phosphate and silicate all appear low compared to station 473. However, there is a feature seen in oxygen and 131 salinity at this level. Data OK. PI agrees. Sample log: "Slight leak - stopped after top cap adjusted." 107 No apparent affect in data. **STATION 475** Delta-S at 209db is 0.0261 PSU, salinity is 35.690 PSU. 132 Small feature in profile at this level with steep gradient. Footnote salinity OK. Oxygen analyst note: "Found with wrong stopper in flask." PI: "This value looks just fine on the theta - oxygen plot. I don't think it deserves a finger of scorn. BW." Oxygen 110 value OK. Analyst note: "Nitrate looks high - no analytical problem."
NO3 value OK. Oxygen analyst note: "Found with wrong
stopper in flask." Oxygen value compares well with adjacent
stations when plotted vs potential temp. Oxygen value OK.
PI: "Nitrate and silicate both relatively high on theta 109 plots, but oxygen is consistent in being relatively low. Salinity seems anomalous too (smidgen low). So these observations seem to hang together, and I think they are OK. BW. " STATION 476 Sample log: "Vent was open." No apparent affect on data 133

Delta-S at 2712db is 0.0023 PSU, salinity is 34.727 PSU.

compared to adjacent stations.

PI: "This value looks fine on the theta - salinity plot, so I think it's OK. BW"

STATI ON	478

136	Sample log: "Leaks – bit of lanyard in top half." No
	apparent affect on data. CTD processor: "CTD oxy bulges low
	relative to nearby casts." Footnote CTD oxy questionable.

- Sample log: "Leaking slightly from bottom end cap when valve open." No apparent affect on data.
- 101-105 CTD processor: "CTD oxy looks 0.02 ml/l low (high at bottom) compared to bottles and nearby casts." Footnote CTD oxy questionable.

STATION 479

- Sample log: "Leak at bottom cap." No apparent affect on data.
- Sample log: "Slight leak at bottom end cap stopped after adjusted bottom cap." No apparent affect on data.
- 114 Sample log: "Oxygen temp was interpolated after draw."

STATION 480

- Nutrient Analyst: "Nutrients: Sample tube empty." By mistake, no nutrient samples drawn on NB31.
- Salinity value doesn't compare well with CTD salinity or adjacent stations. No log entries. Footnote salinity questionable. Delta-S at 2022db is -0.0073 PSU, salinity is 34.713 PSU.
- Sample log: "Bottom end cap leaks". No apparent affect on
- Sample log: "Bottom end cap leaks". No apparent affect on
- 101 CTD processor: "Unusual 0.02 ml/l drop in CTD oxy near, bottom bottle also low; no nearby casts this deep; could be real?" Footnote CTD oxy questionable.

STATION 481

- Sample log: "Maybe suspect because brought out of water at surface check." Delta-S is small, -0.0006 PSU. and nutrient measurements look OK. However, oxygen value may be 0.05 ml/l high compared to CTD oxygen and values at adjacent stations. Footnote oxygen questionable.
- Sample log: "Leaking a little at bottom." No apparent affect on data.

STATION 482

- 129 Sample log: "Bottom cap leak slight." No apparent affect on data.
- Sample log: "Bottom cap leak." No apparent affect on data.
- Delta-S at 1012db is 0.0075 PSU, salinity is 34.600 PSU. No analyst note, only two runs on salinometer. Footnote salinity questionable.
- 115 Sample log: "Bottom cap leak." No apparent affect on data.
- Sample log: "NB1 redrawn after oxygen reagent bottle fixed."
 No apparent affect on oxygen sample. Delta-S is -0.0022
 PSU. Salinity value a little low compared to CTD salinity

$\begin{array}{c} \text{CSR7020_crui\,serep}\\ \text{and adj\,acent stations.} & \text{Footnote salinity questionabl}\,e. \end{array}$

STATI ON 483	
Cast 1	PI: "I am uneasy about the phosphates on stations 483 and 484: at theta 1.5 - 4.5 C, they are high by about 0.1 uM/L compared with other stations. On Sta 484 oxygen is high in this temperature range and silica is correspondingly low (NO3 is ho-hum), so phosphate "ought" to have been low as well. But it's the other way around BW. "Nutrient Analyst note: "Bubble stuck in PO4 flowcell from peak 21 through end of run, these peaks were 0.030 units too high. Peaks corrected, factors and baselines adjusted." Phosphate values now acceptable.
136	CTD processor: "CTD oxy 0.05 ml/l low compared to bottle value and nearby casts." Footnote CTD oxy questionable.
117	Delta-S at 1818db is -0.029 PSU, salinity is 34.680 PSU. No analyst notes. Could be drawing error. PI: "This seems almost certainly to be a duplicate of the one from the NB above. I agree that it should be rejected. BW" Footnote salinity value bad.
115	Sample log: "Bottom cap leak - slight." No apparent affect on data.
STATION 484	
Cast 1	PI: "I am uneasy about the phosphates on sta's 483 and 484: at theta 1.5 - 4.5 C, they are high by about 0.1 uM/L compared with other stations. On Sta 484 oxygen is high in this temperature range and silica is correspondingly low (NO3 is ho-hum), so phosphate "ought" to have been low as well. But it's the other way around BW' Nutrient Analyst note: "Bubble stuck in PO4 flowcell during run. PO4 factors and baselines adjusted." Phosphate values now comparable to adjacent stations.
116	Analyst note: "Lost Oxygen Sample". Footnote oxygen not reported.
115	Sample log: "Has a little drip." No apparent affect on data.
112	Sample log: "Leaks - some (?) end cap." No apparent affect on data.
107	Oxygen analyst note: "Forgot acid, retitrated." Value looks 0.05 ml/l low. Footnote oxygen bad.
STATION 485	
129	Sample log: "Leak from bottom cap." No apparent affect on data.
123	Sample log: "Slight leak from bottom cap." No apparent affect on data.
116	NO-confirm from pylon at first trip attempt. Reinitialized, second trip confirmed ok. All bottles appear to have tripped at correct depths.

STATION 486

Sample log: "Bottom cap leak." No apparent affect on data. 115

Salinity value off compared to CTD salinity. Delta-S at 907db is -0.0623 PSU. Could be duplicate draw. Footnote salinity bad. 110

STATION 487

115	CSR7020_cruiserep Sample log: 'Bottom cap leaks - stopped after cap adjusted." No apparent affect on data.				
101-102	CTD processor: "0.03 ml/l drop in CTD oxy at bottom; low compared to nearby casts and bottle value after despiking. Footnote CTD oxy questionable.				
STATION 488					
128	Phosphate value appears 0.2uM high. No analyst notes. Footnote phosphate value questionable. PI: "I agree with "3". BW"				
STATION 489					
136	CTD processor: "CTD oxy 0.08 ml/l low compared to station 487 and 488, but 0K compare to station 490." Footnote CTD oxy questionable.				
127	PI: "Salinity wildly off - sample almost certainly drawn from NB below - give it the finger of scorn (4).BW' Footnote salinity value bad.				
115	Sample log: "Bottom end leak." No apparent affect on data.				
102	Sample log: "Top end-cap leak." No apparent affect on data.				
STATION 490					
135	Sample log: "Spigot leaks - stopped after bottom cap adjusted." No apparent affect on data.				
123	Sample log: "Bottom cap leak." No apparent affect on data.				
115	Sample log: "Bottom cap and spigot leak." No apparent affect on data.				
112	Sample log: "Bottom cap leaked - stopped after adjusted."				
109	Sample log: "Top cap leaked air - stopped after cap adjusted."				
103	Sample log: "Bottom cap leak - stopped after cap adjusted." Salinity value looks about 0.0028 high compared to adjacent stations. Oxygen and nutrients look OK. Footnote salinity questionable.				
STATION 491					
135	Sample Log: "Top cap leaked air - stopped after cap adjusted." No affect on data.				
121	Sample Log: "Slight leak from bottom cap." No affect on data.				
105- 109	Phosphate values a little high (0.03 uM/L) when compared with adjacent stations. Analyst's calculations 0K. Footnote phosphate uncertain.				
STATION 492					
125	Sample log: "bottom end-cap leak, as usual." No affect on data.				
123	Sample log: "leaking out of bottom." No affect on data.				

STATION 493

Bottle oxygen value 0.10 ml/l high compared to CTD oxygen and adjacent stations. No analyst notes of problems. Footnote oxygen value questionable.

Salinity analyst note: "Low water sample, made manual entry." Salinity value compares well to CTD value and adjacent stations. Salinity value OK. 131

STATION 494

Sample log: "Lanyard caught in top cap." Footnote all bottle 121 sample values bad, bottle leaking.

Bottle oxygen value appears 0.02 ml/l lower than CTD oxygen 102 Nearly same value as NB3, could be double draw.

Footnote oxygen questionable.

Oxygen appears 0.03 ml/l high when compared to adjacent stations. However, looks 0K compared to CTD oxy value. 101 When adjacent stations overlaid on plots of potential temperature, NO3 or salinity vs oxygen there may be indications of interleaving of water masses. Oxygen value acceptable.

STATION 495

Sample log: "Top leaked air - stopped when cap adjusted." 126 No apparent affect on data.

117 Sample log: "Bottom cap leak - stopped when cap adjusted." No apparent affect on data.

STATION 496

Sample log: "Big leak when spigot opened - top end cap." No 135 apparent affect on data.

Phosphate value a little high (0.02uM). No analytical problems. PI: "Yes, but it satisfies the 1% dictum a '2' would be 0K. BW" $\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{$ 106 I think

Phosphate value a little high (0.04uM). No analytical problems. Footnote phosphate questionable. 105

STATION 497

Oxygen value looks too low, same value as NB33. May be double draw. Footnote oxygen value bad. PI: "I agree. NO corresponding anomalies in slt or nuts. Give it the finger of scorn (4). BW' Footnote oxygen bad. 134

129 Sample log: "Bottom cap leaks." No apparent affect on data.

Analyst note: "Low detector voltage." No affect on data. 124

Sample log: "Top cap leaked air - stopped after cap adjusted." No affect on data. 115

Silicate, nitrate and phosphate appear a little low. Oxyger and salinity look OK. PI: "All these nuts are bang on the theta plots for sta 499, and the high values just above are on the theta plots for stations just to the east. Moreover, the theta - oxygen plot for this station shows a jerk toward higher values at sample 107, consistent with lower nuts there. Relatively strong horizontal gradations in oxygen and nuts are to be expected at these levels because of the current patterns and I think that we are just seeing interleaving of 'eastern' and 'western' water here. I think these 107 nuts deserve a '2'. BW'

STATION 498

107

Sample log: "Thermometer used during oxygen draw giving Cast 2 erratic readings.

227 02 analyst note: "Flask broken during titration, sample lost.

	CSR/020_CFu1Serep
212	Sample log: "Top cap leaked air - reseated." No apparent affect on data.
201	Bottle oxygen appears 0.02 ml/l low compared to CTD oxygen value and nearby station 497. Next station, 499, has similar offset. No problems with titrations, could be problem with Niskin. Footnote oxygen questionable.
STATION 499	
Cast 1	Multiple excess CTD trip levels and CTD signal noise caused by voltage dropouts; CTD trip data edited down to 36 levels based on trip numbers, time and confirmation number. CTD trip data should match actual trip times now.
136	Sample log: "Leaked out of bottom until bottom end-cap reseated." Delta-S is 0.0007 PSU but oxygen value looks 0.07 ml/l high compared to adjacent stations and CTD oxygen. Footnote oxygen questionable.
101	Oxygen value appears 0.05 ml/l low when compared to adjacent stations. Footnote oxygen questionable.
STATION 500	
129	Sample log: "Bottom cap leaking - reseated." No affect on bottle data.
115	Sample log: "Leaking from top end cap." No apparent affect on data.
103	Delta-S is -0.0024 PSU. Salinity value is a little low compared to CTD salinity and adjacent stations. Footnote salinity questionable.
STATION 501	
135	Sample log: "Top cap leaked air - reseated." No apparent affect on data.
131	Oxygen value looks 0.7ml/l too low when compared to CTDO and adjacent stations. No analyst notes. Footnote oxygen bad.
128	Sample log: "Bottom cap leaked - reseated." No apparent affect on data.
105	Bottle oxygen value 0.02 ml/l higher than CTD oxygen. Variability in oxygen values at adjacent stations for this depth make difficult to compare. Footnote oxygen questionable.
STATION 502	
136	Bottle oxygen value 0.06 ml/l higher than CTD oxygen value. Also higher than surface value for adjacent stations, but in situ temperature is about 1 degC cooler. Footnote oxygen questionable.
115	Sample log: "A top-leaker." No affect on bottle data.
101	Sample log: "02 sample redrawn." Oxygen values OK, consistent with adjacent stations.
STATION 503	
129	Sample log: "Bottom end-cap leaking, reset." No affect on bottle Data.
STATION 504	
136	CTD voltage dropped during surface trip; CTD trip data

Page 51

generated using CTD values immediately prior to actual trip

Sample log: "Bottom cap leak - reseated." No apparent 129

affect on bottle data.

114 Sample log: "Slight leak from bottom cap." No apparent

affect on bottle data.

STATION 505

230

Sample log: "NB30 temp was low." Nutrient values all very high, oxygen and salinity values very low. Bottle tripped at wrong depth. Footnote all bottle samples bad, bottle did

not trip correctly.

STATION 506

Sample log: "Slight bottom end-cap leak." No apparent 127

affect on data.

Phosphate value looks 0.03uM high compared to adjacent 108

stations. Analyst notes no problems. PI: "02 looks correspondingly low here, I don't think I would question the P04. BW." P04 value acceptable.

Sample log: "02 sample redrawn." No apparent affect on 105

data.

STATION 507

133 Sample log: "Slight leak around spigot." No apparent affect

on data.

Sample log: "Slight bottom cap leak - reseated." Si03 and 110

NO3 values look a little low, salinity and oxygen values are at a local maximum. Salinity and oxygen values track CTD

values at this depth. Data OK.

STATION 508

Sample log: "Slight bottom cap leak - reseated." Data 126

compares well with CTD parameters and adjacent stations.

Bottle data OK.

Sample log: "Slight bottom cap leak." Data compares well 123

with CTD parameters and adjacent stations. Bottle data OK.

Sample log: "Bottom cap leaked -reseated." Data compares 117

well with CTD parameters and adjacent stations. Bottle data

OK.

STATION 509

Sample Log: "Top end-cap leaks." No apparent affect on data. 120

Oxygen analyst note: "Bubble." No apparent affect on data. 101

101-111

CTD processor: "A large signal oscillation compared to upcast and nearby casts, look suspicious." Footnote CTD oxy

questi onabl e.

STATION 510

Sample log: "Lanyard hooked on recovery, much water lost." 0xygen and salinity values compare well with CTD parameters. Bottle data 0K. 128

No apparent affect on 117 Sample log: "Wimpy bottom end-cap."

109 Oxygen analyst note: "Forgot acid." Oxygen value less than

Page 52

zero. Footnote oxygen value bad.

101 Oxygen analyst note: "Low voltage." No affect on oxygen

data.

STATION 511

126 Salinity value low compared to CTDSAL and adjacent stations.

Delta S = -0.0976 PSU. Footnote salinity questionable.

103 Delta-S is 0.006 PSU. Salinity value high compared to CTD

value and adjacent stations. Footnote salinity

questi onabl e.

STATION 512

Sample log: "Leaking top end cap." No apparent affect on 120

data.

103 Sample log: "Bottom cap leak." No apparent affect on data.

STATION 513

110 Oxygen value appears low compared to adjacent stations.

However, value corresponds to local maximum values in

nutrients. Data OK, Pl agrees.

STATION 514

Phosphate, nitrate and silicate appear high, salinity high, corresponding oxygen a little low. Data OK, PI agrees. 110

STATION 515

Oxygen value appears 0.1 ml/l high compared to adjacent 128

stations and CTD oxy value. Footnote oxygen questionable.

112 Sample log: "Top end-cap leak." No apparent affect on data.

109 Sample log: "Top end-cap leak." No apparent affect on data.

CTD processor: " $0.02\ ml\,/l$ drop in CTD oxy; low compared to nearby casts and bottle values." Footnote CTD oxy 101-103

questi onabl e.

STATION 516

126 Sample log: "Slight leak from bottom cap." No apparent

affect on data.

STATION 517

Sample log: "Bottom end-cap leak." No apparent affect on 122

datā.

103 Sample log: "Bottom cap bumped open during nut sampling." No

apparent affect on data.

101 Phosphate values in this range appear about 0.03uM high.

Analyst notes no problems. Peaks and calculations OK. PI: "These look OK to me in comparison with stas. 518, 519, 520.

BW. "

STATION 518

103

Footnote all bottle samples bad. Sample log: "Bottom cap leaked - reseated." Salinity value appears 0.006 higher than adjacent stations and CTDSAL. Oxygen may be 0.01ml/l high. Nutrient values also high. Recommend deletion of all values. PI: "I agree - looks like the NB was was

STATION 521	
126	Sample log: "NB26 is a bottom leaker!" No apparent affect on data.
113	Sample log: "Spigot on 13 still sucks." No apparent affect on data.
101	CTD processor: "CTD oxy signal rises until 0.03 ml/l high compared to bottle and nearby casts at bottom." Footnote CTD oxy questionable.
STATION 522	
124	Delta-S is 0.081 PSU. Salinity value high compared to CTD value and adjacent stations. Footnote salinity questionable.
122	Sample log: "Bottom cap leak - stopped when reseated." No apparent affect on data.
113	Sample log: "Lanyard caught in hose clamp - bottom didn't close - empty bottle." No samples for NB13.
103	Sample log: "Bottom cap leak - stopped when reseated." No apparent affect on data.
STATION 523	
103	Sample log: "Bottom cap leak - reseated." No apparent affect on data.
STATION 526	
131	CTD processor: "CTD oxy 0.10 ml/l low compared to bottle and nearby casts." Footnote CTD oxy questionable.
127	Sample log: "NB27 slight bottom end-cap leak, OK after reseating." No apparent affect on data.
117	Sample log: "Spigot on 17 sucks." No apparent affect on data. NB17 and NB18 have same oxygen value, but are consistent with CTDOXY.
STATION 528	
128	CTD processor: "CTD oxy 0.10 ml/l low compared to bottle and nearby casts." Footnote CTD oxy questionable.
STATION 529	
130	Bottle oxygen appears 0.04 ml/l high compared to surface bottles in adjacent stations and to CTD oxygen value. Footnote oxygen questionable.
STATION 530	
126	Sample log: "Slight leak from bottom cap -reseated." No apparent affect on data.
122	Sample log: "Slight leak from bottom cap -reseated." No apparent affect on data.
STATION 531	
130	Sample log: "Slight bottom cap leak -reseated." No apparent affect on data.

128 Sample log: "Slight bottom cap leak -reseated." No apparent

affect on data.

Oxygen value appears 0.03 ml/l high compared to adjacent 102

stations and CTD oxygen. Footnote oxygen value questionable.

0xygen value appears 0.5ml/l low compared to adjacent stations and CTD0XY. Draw temp high. Salinity and 101

nutrients OK. Footnote oxygen value bad.

STATION 532

114 Sample log: "Bottom end-cap needed reseating." No apparent

affect on data.

STATION 533

Sample log: "Bottom end-cap reseated to stop leak." No 128

apparent affect on data.

STATION 534

Sample log: "02 flask 840 cap doesn't fit tight into flask." 114

Oxygen data OK.

Nitrate value appears 0.1 uM/L low compared to adjacent 102

stations. Analyst notes no problems. Value within

specifications.

STATION 535

Sample log: "Slight top cap leak -reseated." No apparent 135

affect on bottle data.

CTD processor: "CTD oxy still nearly 0.10 ml/l low compared to nearby casts and 58 db bottle after offset." Footnote 135-136

CTD oxy questionable.

128 Sample log: "Slight bottom leak -reseated." No apparent

affect on data.

Sample log: "Slight top cap leak -reseated." No apparent 126

affect on data.

STATION 536

128 Sample log: "Usual bottom end-cap complaint." No apparent

affect on data.

STATION 537

Cast 1

Console Log: "NO-confirm on every trip, NB7 - NB36: reinitialized/manually repositioned pylon for each bottle. At surface, btls 10, 11, 28 open: 10, 11 not repositioned after re-initialization, 28 probably wrong bottle number entered when repositioning. Bottles tripped probably match planned denth; now pylon repositioning installed after cost."

depth; new pylon power supply installed after cast.

128 Sample log: "Open at retrieval." No samples.

Sample log: "Leaks from spigot when vent opened." No affect on bottle data. 126

111 Sample log: "Open at retrieval." No samples.

Sample log: "Open at retrieval." No samples. 110

PI: "The deep nutrients (101-109) are striking, but they are 101-109

so chemically and regionally consistent with the equally striking, and independently measured, salinity and oxygen, that I think the measurements are rock solid, and not to be

doubted. "

STATION 538

Analyst notes oxygen sample missing, not reported. 126

123 Sample log: "Bottom cap leaks." No apparent affect on data.

STATION 541

Sample log: "Bottom cap leaked -reseated." No affect on 105

STATION 542

Analyst note: "Over titrated." Oxygen value appears 0.1ml/l high compared to CTDOXY and adjacent stations. Footnote 122

oxygen sample bad.

Phosphate value appears 0.03uM high, nitrate 0.3uM low when compared to adjacent stations. Analyst notes peaks and calcs 103

OK. Footnote phosphate and nitrate uncertain.

STATION 543

Sample log: "Leaks, looks like bad o-ring seal on top." No 135

affect on data.

STATION 544

Salinity analyst's log: "Salinity samples allowed to Cast 1

equilibrate for 3 days before run on salinometer." No

apparent affect on data.

Bottle oxygen value appears $0.02\ ml/l$ high on overlays with 108

adjacent stations and CTD oxygen. No analyst notes.

Footnote oxygen questionable.

STATION 545

Sample log: "Leaky bottles." No apparent affect on data. 135

CTD processor: "CTD oxy up to 0.15 ml/l lower than bottles, nearby casts." Footnote CTD oxy questionable. 125-126

124 Sample log: "Bottom cap leaks." No apparent affect on data.

Sample log: "Bottom cap leaks -reseated." No apparent 122

affect on data.

110

Oxygen value appears 0.07ml/l low compared to CTDOXY PI: "Yes, but it's right on the temp. vs oxygen plot for stations 546 - 548." But when overlaid with station 544 at this depth, a progression from higher oxygen to lower is sequentially seen, with 545 having an intermediate value. Therefore NB10 should be a little higher, more in agreement

with CTD oxygen. Footnote oxygen questionable.

STATION 546

Sample log: "Slight bottom cap leak -reseated." No apparent 114

affect on data.

110 Sample log: "Top cap leaked air -reseated." No apparent

affect on data.

STATION 547

Sample log: "Slight end-cap leak." No apparent affect on 122

data.

	CSR7020_crui serep
114	Sample log: "Slight end-cap leak." No apparent affect on data.
STATION 548	
136	CTD processor: "CTD oxy 0.10 to 0.15 ml/l low relative to nearby casts." Footnote CTD oxy questionable.
133	Sample log: "Slight end-cap leak." No apparent affect on data.
129	Sample log: "Slight end-cap leak." No apparent affect on data.
114	Sample log: "Slight end-cap leak." No apparent affect on data.
101-106	CTD processor: "CTD oxy 0.02 ml/l low, then high, compared to bottles and nearby casts." Footnote CTD oxy questionable.
STATION 549	
133	Sample log: "Bottom cap leaks badly -reseated." No apparent affect on data.
126	Sample log: "Bottom cap leaks -reseated." No apparent affect on data.
123	PI: "Anomalously low salinity matched by anomalously high 02-just a lump of 'newer' Antarctic Intermediate Water."
114	Sample log: "Bottom cap leaks -reseated." No apparent affect on data.
110	Sample log: "Slight top cap leak." No apparent affect on data.
109	Sample log: "Bottom cap leaks -reseated." No apparent affect on data.
101-104	CTD processor: "CTD oxy signal rises until 0.10 ml/l high compared to bottle oxygen." Footnote CTD oxy bad.
STATION 550	
131	PI: "Here I think that we are seeing again that shallow, fresh, oxygen-poor, nutrient-rich tropical water from the S. Equatorial Current that caught our attention much farther east. BW."
122	Sample log: "Bottom cap leaks -reseated." No apparent affect on data.
112	Sample log: "Top cap leaks -reseated." No apparent affect on data.
STATION 551	
121	Sample log: "Lanyard hung up, top cap open." All sample values look bad. Footnote all samples bad, bottle leaking.
STATION 552	
122	Sample log: "Bottom cap leaks." No apparent affect on data.
101	Oxygen value appears 0.02 ml/l low when compared to CTD oxygen and stations 551 and 553 on potential temperature vs oxy overlays. However, value is within 0.01 ml/l on the reoccupation station, 572. Footnote oxygen questionable.

STATION 553

- Sample log: "NB31 leaking ever so slightly." No apparent affect on data.
- 101 CTD processor: "CTD oxy bulges 0.02 ml/l high near bottom compared to nearby casts and station 571 (at same location)." Footnote CTD oxy questionable.

STATION 554

- Sample log: "Leaking out bottom -wouldn't stop." No apparent affect on data.
- 0xygen value appears 0.02 ml/l low compared to CTD oxygen value and stations 553 and 556. Overlays of pot temp vs oxygen show a similar shaped curve, and divergence from CTD oxygen, on stations 552, 554 and 555. On station 570, a reoccupation of the same location, the oxygen value is 0.01 ml/l higher. No analyst notes and titrations look good. Footnote oxygen questionable.

STATION 555

- 126 Sample log: "Bottom cap leaks." No apparent affect on data.
- 0xygen value appears 0.02 ml/l low compared to CTD oxygen value and stations 553 and 556. Overlays of pot temp vs oxygen show a similar shaped curve, and divergence from CTD oxygen, on stations 552, 554 and 555. However, oxygen value on station 569, a reoccupation of the location, is within 0.001 ml/l. No analyst notes and titrations look good. Footnote oxygen questionable.

STATION 556

- 135-136 CTD processor: "CTD oxy bulges low relative to nearby casts and sta 568 (same position)." Footnote CTD oxy questionable.
- 126 Sample log: "Bottom cap leaks -reseated." No apparent affect on data.
- Sample log: "Vent open." No apparent affect on data. Oxygen value OK compared to adjacent stations, but a little high (0.02 ml/l) compared to CTD oxy.
- Sample log: "Vent open." No apparent affect on data. Oxygen value OK compared to adjacent stations, but a little high (0.02 ml/l) compared to CTD oxy.
- 105-107 CTD processor: "CTD oxy fits 0.03 ml/l low compared to bottles, OK compared to sta 555 and sta 568." Footnote CTD oxy OK.
- 101-103 CTD processor: "CTD oxy fits 0.02 ml/l high at bottom compared to bottle values, station 555 and station 568 (at the same position)." Footnote CTD oxy questionable.

STATION 558

- 130-131 CTD processor: "CTD oxy bulges low relative to nearby casts and station 566 (at same position)." Footnote CTD oxy questionable.
- 101-114 PI: "On theta plot the nitrates look a touch low (but not out by > 1%); might some adjustment to the standardization be in order? BW. " Nitrate values within WOCE specifications, data 0K.

STATION 559

126-127 CTD processor: "CTD oxy bulges low relative to nearby casts and station 565 (at same position)." Footnote CTD oxy

questi onabl e.

111 Sample log: "Bottom cap leaks." No apparent affect on data.

STATION 560

122 Sample log: "Leaking from bottom end-cap." Small delta-s,

leak caused no apparent affect on data.

STATION 562

All nutrient samples look high compared to adjacent

stations. Values are same as NB4, could be a accidental double draw. Footnote nitrate, nitrite, phosphate and

silicate bad.

STATION 563

Cast 1 Sample log: "Oxygen and salinity only samples drawn."

107 Sample log: "Leaking from top -pretty big air leak." Small

delta-s, no apparent affect on data.

STATION 564

Cast 1 Sample log: "Oxygen and salinity only samples drawn."

Bottle oxygen appears 0.1 ml/l high compared to CTD oxy

value and surface values from nearby stations. Footnote

oxygen questionable.

STATION 565

Cast 1 Sample log: "Oxygen and salinity only samples drawn."

STATION 566

Cast 1 Sample log: "Oxygen and salinity only samples drawn."

0xygen value appears 0.04 ml/l high compared to CTD oxygen.

overlays with adjacent stations not helpful but comparison with station 558, the reoccupation twin station, is even more divergent. CTD oxy value from 3080 db to 3564 db also appears higher than station 558 but with few bottles, fit is uncertain. Footnote CTD oxy and bottle oxy questionable.

STATION 567

Cast 1 Sample log: "Oxygen and salinity only samples drawn."

STATION 568

Cast 1 Sample log: "Oxygen and salinity only samples drawn."

STATION 569

Cast 1 Sample log: "Oxygen and salinity only samples drawn."

STATION 570

Cast 1 Sample log: "Oxygen and salinity only samples drawn."

STATION 571

Cast 1 Sample log: "Oxygen and salinity only samples drawn."

106-107 Oxygen Analyst note: "Bubble in sample." No apparent affect

Page 59

on oxygen data.

Oxygen Analyst note: "Bubble in sample." 101-103 No apparent affect

on oxygen data.

STATION 572

Sample log: "Oxygen and salinity only samples drawn." Cast 1

STATION 573

Kozyr

11/8/99

Cast 1 Sample log: "Oxygen and salinity only samples drawn."

Bottle oxygen is 0.02 ml/l high when compared to CTD oxygen value, stations 551, 571 and 572. Footnote oxygen 112

questi onabl e.

WHPO DATA PROCESSING:

Date	Contact	Data Type	Data Status Summary
8/15/97	Uribe File contain is online.	DOC ned here is a CR	Submitted See Note: 2000.12.11 KJU UISE SUMMARY and NOT sumfile. Documentation
	2000.10.11 KJU Files were found in incoming directory under whp_reports. This directory was zipped, files were separated and placed under proper cruise. All of them are sum files. Received 1997 August 15th.		
1/23/98	Rutz	SUM/SEA/CT	Preliminary, not for DQE
7/29/98	Johnson Est. date of	CTD ODF processing	Data with ODF 8/98
12/22/98	Nowlin, Jr.	CTD/BTL	Data are Public
1/15/99	Muus	SUM	Data Update
1/22/99	Nowlin, Jr.	CTD/BTL/TRA	Data are Public
3/2/99	merged updat	CFC-11:12 ed cfc-11/12 va ottle data file,	Data Merged/OnLine I've lues (from Ray Weiss) into the i03 and updated the table accordingly.
3/3/99	Diggs units are PM units are PM	CFCs DL/KG (instead DL/KG (instead	Data Update see note: of PMOL/L) Header now indicates that the of PMOL/L).
4/23/99	Nowlin, Jr. (e-version o	DOC of 12/95 or late	Data Requested by Linda Huyhn r doc)
9/29/99	Falkner BA Data Update See note: The quality of the Ba data from most WOCE legs in the Indian Ocean turned out to be quite poor; far worse than attainable analytical precision (+/-20% as opposed to 2%). We recorded many vials which came back with loose caps and evaporation associated with that seems to be the primary problem.		
	The only hope I have of producing a decent data set is to run both Ba and a conservative element simultaneously and then relating that to the original salinity of the sample. We will be taking delivery on a high resolution ICPMS here at OSU sometime this winter which would make the project analytically feasible and economical. I do not presently have the funds in hand to do this and so have archived the samples for the time being. I don't think the WHPO would derive any benefit from the present data set.		

I have put the final CO2-related data file for the Indian Ocean WOCE Section I3 to the WHPO ftp INCOMING area. There are two CO2 parameters: Total CO2 and alkalinity with quality flags.

2/14/00 Kozyr TCARBN/ALKALI DQE Complete
I've just put a total of 13 files [carbon data measured in Indian (6 files) and Atlantic (7 files) oceans] to the WHPO ftp area. Please let me know if you get data okay.

- 6/2/00 Uri be HELIUM/NEON Final Data Rcvd @ WHPO Files received were i 3HeNe. DOC* i 3HeNe. SEA*. Files contain no header, No related email was found. Could not determine who sent these files.
- 7/21/00 Bartolacci CFCs/CO2 Website Updated cfc data merged into online file The IO3 bottle file from ODF has been remerged with existing cfc data and carbon data from Alex Kozyr. New file has passed diagnostic formatting routiness and has replaced the current online bottle file. ODF sum file has also replaced current online sumfile. Table and index refs have been edited to reflect this change.
- 7/27/00 Diggs CTD Website Updated
 Final data online CTD online and on CD2.0 site have been replaced
 with FINAL data from ODF (M. Johnson Sept. 1998) All expocodes are
 now in the new format (without
 '/') and all tables and files have been updated.

8/1/00 Huynh DOC Website Updated pdf, txt docs online

8/1/00 Kappa DOC Doc Update pdf, txt versions created pdf needs reformatting, txt needs odf report inserted.

10/17/00 Jenkins TRITUM Submitted Preliminary *Files for Tritium Data:

WOCE Indian Ocean = WITrit.dat Contains all legs
WOCE Pacific P10 = WP10Trit.dat
WOCE Pacific P13 = WP13Trit.dat
WOCE Pacific P14c = WP14cTrit.dat
WOCE Pacific P18 = WP18Trit.dat
WOCE Pacific P19 = WP19Trit.dat
WOCE Pacific P21 = WP21Trit.dat
SAVE South Atlnt = SAVETrit.dat

*Column Layout as follows: Station, Cast, Bottle, Pressure, Tritium, ErrTritium

*Units as follows: Tritium and ErrTritium in T. U.

*All data are unfortunately still preliminary until we have completed the laboratory intercomparision and intercalibration that is still underway.

10/17/00 Jenkins HELIUM/DELHE3 Submitted Preliminary HELIUM, DELHE3, NEON *Files for Helium and Neon Data:

WOCE Indian Ocean = WIHe.dat Contains all legs WOCE Pacific P10 = WP10He.dat WOCE Pacific P18 = WP18He.dat WOCE Pacific P19 = WP19He.dat WOCE Pacific P21 = WP21He.dat

*Column Layout as follows:

Station, Cast, Bottle, Pressure, Delta3He, ErrDelta3He, ConcHelium, ErrConcHelium, ConcNeon, ErrConcNeon

*Units as follows:

Delta3He and ErrDelta3He in % ConcHelium, ErrConcHelium, ConcNeon, and ErrConcNeon in nmol/kg

*Null values (for ConcNeon and ErrConcNeon only) = -9.000

*All data are unfortunately still preliminary until we have completed

the laboratory intercomparision and intercalibration that is still underway.

- Anderson HELIUM/NEON Reformatted by WHPO See Note: I have put the Jenkins helium and neon in WOCE format. There were no quality codes so I set the HELIUM, DELHE3, and NEON to 2.

- 2/26/01 Schlosser Helium Deep Data are Public minor corrections may be needed post-intercal. effort following up on bill jenkins's message, i would like to ask you to make public all ldeo woce tritium/he data that have been submitted to you. because the tritium/he community has not yet finished the final calibration of the data, i might have to apply minor corrections to these data once the intercal. effort has been completed. our acce work was funded over a 5-year period that ended in 2000. consequently, this data set is further behind in quality control before submission, but i expect that we will get these data ready soon.

SR3 was never funded in a 'regular' fashion, but i used noaa corc funds to keep the measurements of this sample set moving. i expect to finish the analyses this summer and submit them in fall. 2/26/01 Jenkins He/Tr/Ne Data are Public See Note: It was brought to my attention that the WOCE Pacific/Indian He-Tr data was not as yet made public. After submitting it to you last year, I had intended on going through it one more time to ensure there were no problems with it. Unfortunately, I have not had the time to do this. Is it possible, therefore, to release it as public data, and if there are any subsequent minor revisions, to make changes? I suspect there might be a few samples in the set that might have got through our initial quality control.

- 3/20/01 Key RADIUM DQE Pending Not likely to happen,
 My group collected radium samples on several WOCE legs in the hope
 of being able to analyze them "in the background". We never received
 any funding for this work and the analytical capability no longer
 exists at P'ton. It is safe to assume that nothing will ever come from
 this effort. For those sample collection efforts currently recorded in
 WOCE bottle files, the simplest thing would be to drop the column
 altogether. Lacking that, all recordings on U.S. legs can be flagged
- 3/23/01 Falkner BA No Data Submitted See Note: The quote of mine (9/29/99) about the Ba WOCE data summarizes the present status. I have not received supplementary funding to re-run the samples in a manner that includes an index element that could be related to the original salinity values. They are all archived here with the hope that it could happen at some point. It's a hard sell the funding agents unfortunately.
- 4/5/01 Walden DOC Data Request Navigation Report
- 4/5/01 Caldwell DOC Submitted ADCP Report
- 6/19/01 Swift CTDTMP Update Needed See Note:
 An oceanographically-insignificant error in CTDTMP data for this cruise has been found (ca. -0.00024*T 0.00036 degC). A data update is forthcoming.
- 6/21/01 Uribe CTD/BTL Website Updated CSV File Added CTD and bottle exchange files were put online. These are NOT the Updated CTD files referred to by J Swift on 6/19/01.
- 7/12/01 Kappa DOC Updated PDF Cruise Report
 Added sections on Navigation/Bathometry and Hull Mounted ADCP; added
 figures, linked index page to locations in text, linked figures
 to locations in text, added WHPO data history record.
- 7/13/01 Kappa DOC Updated TXT Cruise Report Added sections on Navigation/Bathymetry, ADCP and Meteorological