IPY-GEOTRACES: Multi-tracer investigation of the effect of climate change on nutrient and carbon cycles in the Arctic Ocean

ArcticNet 0903 – LEG 3a August 27 – September 12, 2009 Paulatuk - Paulatuk CCGS Amundsen

R. Francois, M. Amini, E. Asher, I. Beveridge, K. Brown, J. Carpenter, J. Cullen, B. De
Baere, C. Guignard, M. Hale, A. Hamilton, M. Hernandez, A. Kobryn, M. Maldonaldo, J. McAllister, K. Orians, C. Payne, R. Ramirez, R. Rivkin, D. Semeniuk, M. Soon, E. Sternberg, N. Sutherland, R. Taylor, D. Varela

Project Leader: Roger Francois

Candian International Polar Year - GEOTTRACES Program

CONTENT

- 1 Summary
- 2 Cruise participants
- 3 Overview
- 4 Research Programs
 - 4.1 Trace metal sample collection and analysis
 - 4.2 Primary Productivity
 - 4.3 Metal-Biota Interactions
 - 4.4 Microbial meditation of carbon and trace element cycling
 - 4.5 Dissolved inorganic carbon, alkalinity, pH.
 - 4.6 Water Column δ^{13} C-DIC & Major/Minor Gas Sampling from the Rosette
 - 4.7 Underway Major & Minor Gas analyses (MIMS)
 - 4.8 Filtration of particles for alkenones and biomarker analysis
 - 4.9 Natural Variations in Silicon Isotopes
 - 4.10 Natural Variations in Nitrogen Isotopes in Nitrate
 - 4.11 Large volume in-situ pumps
 - 4.12 Seawater sample collection for Cr isotopes measurements
 - 4.13 Sampling for Nd Isotope analyses
 - 4.14 Dissolved 230 Th and 231 Pa & 129 I
 - 4.15 Dissolved and particulate ²³⁴Th
 - 4.16 Dissolved 223 Ra, 224 Ra, 226 Ra and 228 Ra
 - 4.17 Sea ice sampling for chemical parameters
- 5 Acknowledgements
- 6 Appendices
 - 6.1 Science log from the bridge
 - 6.2 Log from ArcticNet CTD-rosette
 - 6.3 Preliminary nutrient analysis

1. SUMMARY

The Canadian IPY-GEOTRACES sampling program took place from August 27, 2009 through September 12, 2009. It was part of Leg 3a of the 2009 CCGS Amundsen Expedition in the Arctic Ocean (ArcticNet 0903). Sampling started in the Mackenzie River delta and continued into the Beaufort Sea (Shelf, slope and deep Canada Basin). Various measurements (temperature, salinity, nutrients, alkalinity, pH, primary production, bacterial production) and sampling (seawater, marine particles) were conducted at 10 stations (Fig. 1). Underway measurements (temperature, salinity, trace gases) and sampling (marine particles) were also conducted along the cruise track. Sampling tools on stations were the ship's CTD/rosette (ArcticNet), a Trace-Metal CTD/rosette system (UVic / UBC) and large volume in-situ pumps (UBC).

We conducted measurements and collected samples to document a suite of key physical (temperature, salinity, ice cover, light penetration), chemical (nutrients, trace metals, trace gases, radioisotopes, stable isotopes) and biological (phytoplankton and microbial assemblages, primary and microbial productivity, trace metal phytoplankton quotas) parameters in relation to proximity to the Mackenzie River delta, seafloor bathymetry and ice cover to elucidate the processes influencing phytoplankton growth and carbon cycling in the Arctic Ocean. In particular, we collected samples to elucidate the processes which supply and remove trace metals, nutrients and carbon to and from the upper ocean, and conducted ship-board experiments to study how biological productivity is affected by various chemical and physical conditions. Through a combination of on-board measurements, experiments and subsequent laboratory analysis, our research program aims at: (i) documenting the pathways of addition, removal and cycling of key trace elements which act as biological micronutrients or tracers of carbon and nutrient cycles in the Arctic Ocean; (ii) elucidating the potential effects of changing ice cover and river discharge on productivity, carbon sequestration and trace gas emission in the Arctic Ocean; (iii) developing chemical tracers to establish a historical sedimentary record of Arctic Ocean productivity in relation to long term natural climate change.

This research program is a Canadian contribution to the international GEOTRACES program (<u>http://www.geotraces.org/</u>) and the International Polar Year (<u>http://www.api-ipy.gc.ca/</u>). The results will be integrated in:

- the International GEOTRACES database (<u>http://www.bodc.ac.uk/geotraces/</u>)
- the Polar Data Catalogue (<u>http://www.polardata.ca/</u>)

2. CRUISE PARTICIPANTS

<u>University of Victoria</u> *Cullen, Jay (Principal Investigator)* Beveridge, Ian (technical staff) Ramirez, Elena (Student) *Varela, Diana (Principal Investigator)* Hernandez, Maite (Postdoc) Kobryn, Arielle (Student)

<u>Institute of Ocean Sciences</u> Sutherland, Nes (technical staff)

University of British Columbia

Francois, Roger (Principal Investigator; co-chief scientist) Soon, Maureen (technical staff) De Baere, Bart (Student) Brown, Erika (Student) Maldonado, Maite (Principal Investigator) Payne, Christopher (technical staff) Semeniuk Dave (Student) Taylor, Rebecca (Student) Orians, Kristin (Principal Investigator) McAlister, Jason (Student) Asher, Elizabeth (Student)

<u>University of Saskatchewan</u> Amini, Margheleray (Postdoc)

<u>McGill University</u> Guignard, Constance (Research Associate)

<u>Dalhousie University</u> Bousserez, Erika (Postdoc)

<u>Memorial University</u> *Rivkin, Richard (Principal Investigator)* Tucker Jane (Student) Hamilton, Adam (Student. Joint between University of Portsmouth and Memorial University)

<u>Nunavut Arctic College</u> Carpenter, Jason (Teacher)

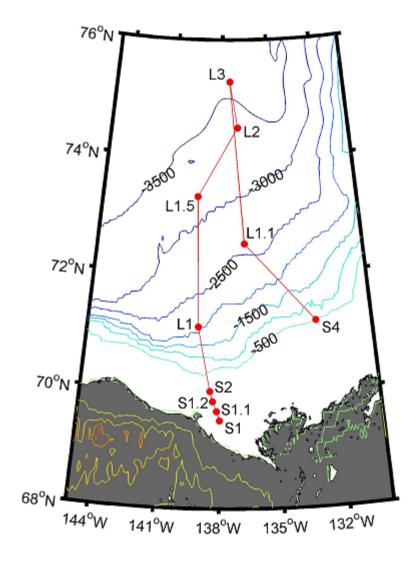
<u>University of Portsmouth</u> Halle, Michelle (Associate Investigator) Hamilton, Adam (Student. Joint between University of Portsmouth and Memorial University)

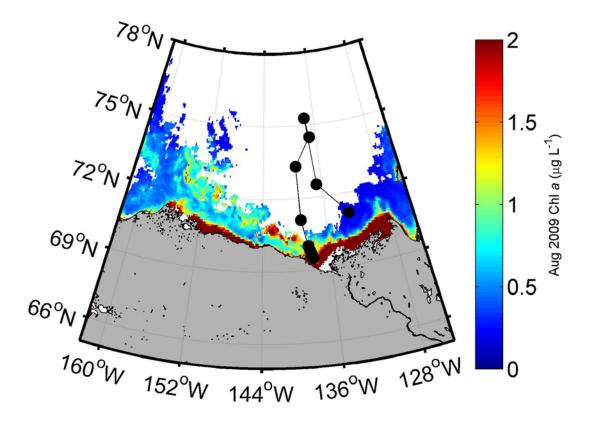
Additional PIs not participating in the cruise

Chris Holmden (U. Saskatchewan); Markus Kienast (Dalhousie University); Lisa Miller (Institute of Ocean Science; Sydney, BC); Alfonso Mucci (McGill University); Philippe Tortell (UBC); Helmuth Thomas (Dalhousie University).

Participating Institutions

University of Victoria	Institute of Ocean Sciences
School of Earth & Ocean Sciences	Centre for Ocean Climate Chemistry
Dept. of Biology	P.O. Box 6000; 9860 West Saanich Rd
Victoria, BC	Sidney, BC
V8W 3N5	V8L 4B2
University of British Columbia	University of Saskatchewan
Department of Earth and Ocean Sciences	Department of Geological Sciences
6270 University Boulevard	114 Science Place
Vancouver, BC	Saskatoon, SK
V6T 1Z4	S7N 5E2
McGill University Dept. of Earth and Planetary Sciences Montreal, Quebec H3A 2A7	Dalhousie University Department of Oceanography 1355 Oxford Street Halifax, NS B3H 4J1
Memorial University of Newfoundland	Nunavut Arctic College
Ocean Sciences Centre	Nunetta Campus
St. John's, Newfoundland	NAC, PO Box 600
A1C 5S7	Iqualuit


X0A 0H0


University of Portsmouth School of Earth and Environmental Sciences Burnaby Building Road Portsmouth PO1 3QL UK

3. OVERVIEW

Sampling has been carried out at 10 stations (Figure 1) chosen to highlight the relative influence of the Mackenzie River and the Pacific Ocean/Chukchi shelf, and to contrast ice-free and ice covered areas. The station depths ranged from 58m on S1 on the shelf to 3485m in the deep ocean basin at L3. A complete list of the stations and casts is given in Table 1. The bridge's science log, which details the timing and exact position of all the activities and reports meteorological and ice conditions is also shown in Appendix 1.

Fig. 1: Sampling locations

		CAS	TS LOG - GEOTRA	CES - LEG 3	a (Aug 28 - Sep 12, 2009)
Event	Mounta	in time	Cast type	Cast depth	Remarks
#	@ s		oust type	oustucpin	Remarks
		-care			
	I		Station S1 (69°)	30'N: 137°59'	W; Depth: 58m)
1	Aug-29	18.00	Rosette	50m	for surface biology
2	7.03 20		In-situ pumps	50m	QMA filters + MnO2 cartridges
3			Rosette	10m	for ²²³ Ra and ²²⁴ Ra
4	Aug-30		Rosette	50m	second cast for surface biology & Nd
5	7.0.9 00		Rosette	50m	for ²²³ Ra and ²²⁴ Ra
- Ŭ		0.00	1000000	00111	
'			Station S1 1 (69°	1 20'N 138⁰09	'W; Depth: 127m)
6	Aug-30	1.12	Rosette	100m	for ²²³ Ra and ²²⁴ Ra
7	Aug-50		Rosette	10m	for ²²³ Ra and ²²⁴ Ra
		0.00	Roselle	TOM	Tor Raland Ra
 			Station S1 2 (69%	50'N: 138°219] "W; Depth: 193m)
8	Aug-30	8.37	Rosette	100m	for ²²³ Ra and ²²⁴ Ra
9	Aug-50		Rosette	10m	for ²²³ Ra and ²²⁴ Ra
9		9:44	Rosette	TUM	
			Station S2 (70%	120°20'	↓ ₩; Depth: 260m)
10	Aug-30	11.06	Rosette	100m	for surface biology
11	Aug-50		Rosette	250m	for deep biogeochemistry
				100m	for ²²³ Ra and ²²⁴ Ra
12 13			Rosette	200m	
	A		In-situ pumps		QMA filters + MnO2 cartridges for ²²³ Ra and ²²⁴ Ra
14 15	Aug-31		Rosette	10m	
15		1.37	Pump on deck		Test pumping from moonpool for trace metals
			Station I 1 (71º0)	S'NE 130º10'\/	↓ √; Depth: 2000m)
16	Aug-31	14.18	Rosette	200m	for surface biology
17	Aug-01		Trace metal rosette		to fill up Go-Flo
18			Rosette	1700m	for deep biogeochemistry
19			Pump on deck	170011	from moon pool for trace metals
	Sep-01		In-situ pumps	1490m	QMA filters + MnO2 cartridges
21			Rosette	1700m	for Nd isotopes
22			In-situ pumps		Supor filters (failed due to winch problem)
23			Rosette	1700m	for ²³⁰ Th, ²³¹ Pa, and ¹²⁹ I
24			Trace metal rosette		for trace metals
25			Rosette	1000m	for microbiology (Rivkin's group)
26			In-situ pumps	800m	for biogenic silica and silicon isotopes
27	Sep-02		Rosette	100m	for Ra-228
28			Trace metal rosette		for Pb isotopes
29		7:07	Rosette	1700m	for Cr and U isotopes
30		10:30	Trace metal rosette	10m	for micrograzer experiment
31		11:21	Rosette	1500m	for Ra-226
32		13:58	Trace metal rosette	1800m	for trace metals
			Station L1.5 (73°1	19'N; 139°23'\	W; Depth: 3250m)
33	Sep-03	8:50	Trace metal rosette	1000m	for trace metals

Table 1: Station List and Cast Log

			Station L2 (74°	30'N; 137°W;	Depth: 3300m)
34	Sep-03	18:09	Rosette	3390m	for ²³⁰ Th, ²³¹ Pa, and ¹²⁹ I
35		21:05	Trace metal rosette	2950m	for trace metals
36	Sep-04	0:23	Rosette	1000m	for Ra-226/228
37		1:46	In-situ pumps	1200m	Supor filters
38		8:14	Rosette	125m	for surface biology
39		10:16	Trace metal rosette	700m	for trace metals
40		12:35	Rosette	1000m	for microbiology (Rivkin's group)
41		15:26	Rosette	3000m	for Nd isotopes & Th-234 calibration
42		21:37	Rosette	10m	Proteomics
43		22:39	Rosette	10m	Genomics
44		23:24	Rosette	59m	Proteomics
45		23:39	Rosette	59m	Genomics
46	Sep-05	2:48	Rosette	1700m	for deep biogeochemistry
47			In-situ pumps	3000m	QMA filters + MnO2 cartridges
48			Trace metal rosette		for Cr and U isotopes
49			Trace metal rosette		for micrograzer experiment
50			In-situ pumps	800m	for biogenic silica and silicon isotopes
	Sep-06		Trace metal rosette		for Pb isotopes
			Station L3 (75°1		· Depth: 3485m)
52	Sep-07	8.04	Rosette		for ²³⁰ Th, ²³¹ Pa, and ¹²⁹ I
53	Ocp-07		In-situ pumps	1300m	Supor filters
54			Rosette	130011	for surface biology
55			Trace metal rosette	1200m	for trace metals
56			Rosette	120011	for deep biogeochemistry
50		10.19	Ruselle		
			Station L1.1 (72°3	11NI 136º41'V	/ /: Denth: 2530m)
57	Sep-08		Trace metal rosette		for micrograzer experiment
58	000 00		Rosette	07111	for 230 Th, 231 Pa, and 129 I + resp
59			Trace metal rosette	360m	for trace metals
60				1000m	Supor filters
			In-situ pumps	100011	for Ra-226/228
61			Rosette	400m	
62 63			Trace metal rosette Rosette	40011	for Maite's cell wash
				2400m	for surface biology
64			Trace metal rosette		for Cr and U isotopes
65			In-situ pumps	1000m	QMA filters + MnO2 cartridges
66 67			Rosette	2400m	for deep biogeochemistry
			Trace metal rosette	240011	for trace metals
68			Rosette		Proteomics
69			Rosette		Genomics
70			Rosette		Proteomics
71			Rosette	1000	Genomics
72			In-situ pumps	1000m	for biogenic silica and silicon isotopes
73			Rosette	1500	for Nd isotopes
74			In-situ pumps	1500m	Supor filters
75			Rosette	75m	Genomics
76			Rosette	75m	Proteomics
			Station S4 (71°1		
78	1		Trace metal rosette	276m	for trace metals

4. RESEARCH PROGRAMS

The overarching goal of our research program is to constrain the effect of climate change on the productivity, carbon sequestration and trace gas emission in the Arctic Ocean by investigating key trace elements and isotopes which act as micronutrients (Fe, Cu, Zn, Cd) or tracers of sources and processes (Al, Ba, Ga, Mn, isotopes of Nd, Cr, Th, Pa) that impact the carbon and nutrient cycles in the Beaufort Sea.

4.1 Trace metal sample collection and analysis

(K. Orians, J. Cullen, I. Beveridge, J. McAlister, R. Ramirez)

Trace metal sampling was performed using a trace metal clean rosette (12 x 12 L Go Flo's on a powder coated frame, equipped with a CTD and O_2 sensor – modified to use Mg anodes instead of Zn anodes). Samples were filtered directly from the Go Flo bottles, using Pall AcroPak 500 0.2µm capsule filters, into pre-cleaned bottles, which were rinsed 3-4 times with sample before filling. Samples for Fe-II were analyzed on board, using a flow injection system (R. Elena Ramirez and Jay Cullen, UVic) – all other analyses will be performed back in shore-based laboratories, at UVic (for total dissolved Fe, Cu, Cd, Zn) and UBC (for total dissolved Al, Mn, Ga, Pb, and for Pb isotopes). Filtered samples to be stored were acidified with 1ml concentrated SeaStar HCl per 500 ml within 12 hours of collection ($\sim pH = 1.7$) with the exception of Fe-II which were preserved with 75 μ l of 6M SeaStar HCl per 250 ml bottle (~pH = 6) at the time of collection. Samples (125 ml) were also collected, unfiltered, for Mak Saito (WHOI, Marine Chemistry and Geochemistry) for subsequent Co analyses. These samples were stored in a 4°C refrigerator. Nutrient samples and salinity samples were also drawn from each GO-Flo (unfiltered) at the end of the sample collection, and analyzed on-board (Salinity by GEOTRACES personnel, nutrients by Johnathan Gagnon (ArcticNet)

The samples collected for analysis at UBC will be concentrated and separated from the seawater matrix using the NOBIAS Chelate-PA1resin (Sohrin et al., 2008) and analyzed by ICP-MS. Pb isotopes will be analyzed on a multi-collector ICP-MS after further purifying the column eluant using an anion exchange resin. Samples will be analyzed at UVic using a combination of methods including multi-element analysis by ICP-MS after preconcentration (Sorhrin et al., 2008), and flow injection analysis with colorimetric and chemiluminescent detection (e.g. Lohan et al., 2008).

A subset of samples were analyzed for Fe(II) immediately (10-15 min) after collection on the ship using chemiluminescent detection with luminol (Hansard and Landing 2009).

Table 2: List of samples collected from trace metal analysis

CTD 02		yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	ves	ves	VPS	,	VBS	and a	950 VBC) ee	yac Mac) co)eo	yes)tto	yes	yes	yes	yes		yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes yes
CTD Sal CTD Temp		yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	ves	ves	VPS	2	VPS	and a	700	VPS	Vac	noc 1	ye b	yes	y eo	yes	yes	yes	yes		yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	ves	yes	yes	yes	yes	yes	yes	yes yes
CTD Sal		yes	yes	yes	yes	yes	ves	yes	ves	Ves	VPS	2	VPS	and a	VDC	VPS	VEC	you	yes	yes	yeb	yes	yes	yes	yes		yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes yes														
CTD pres.		yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	ves	ves	VBK	2	VBK	, and	ADC	Ves	ver	yee	950	yes	yes	yes	yes	yes	yes		yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Sal	umfitered	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	ves	ves	VPS	2															yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Nuts	unfiltered	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes		:	:		:	:	:	•	:	;	•	,																yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes yes
Cr Iso (CH)	(0.45um filt.)																																									5 L										11 L						
Co (MS)	unfiltered	1 x 60ml	1 x 60ml	2 x 60ml	1 x 60ml	1 x 60ml	2 x 60ml	2 x 60ml	1 x 60ml	2 x 60ml	2 x 60ml	2 x 60ml	2 x 60ml																												2 x 60ml	1 x 60ml	1 x 60ml	1 x 60ml	1 x 60ml	1 x 60ml	1 x 60ml	1 x 60ml	1 x 60ml	1 x 60ml	1 x 60ml	1 x 60ml	2 x 60ml	2 x 60ml	2 x 60ml	2 x 60ml	2 X 60MI	2 X 60MI
Pb Iso (UBC)	(0.2um filt.)													1 X 4 L	1 X 4 L	1 X 4 L	1 X 4 L	1 X 4 L	1 X 4 L	1 X 4 L	1 X 4 L	1 X 4 L	1 X 4 L	1 X 4 L	1 2 4 1																																	
Fe II (U VIC) Pb Iso (UBC)	(0.2um filt.)	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes																												yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes yes
TM (UBC)	(0.2um filt.)	4 X 0.5 L	4 X 0.5 L	4 X 0.5 L	4 X 0.5 L	4 x 0.5 L	4 X 0.5 L	4 X 0.5 L	4 X 0.5 L	4 X 0.5 L	4 x 0.5 L	4 X 0.5 L	4 X 0.5 L																					æ							4 X 0.5 L	•	4 x 0.5 L		3 x 0.5 L	3 X 0.5 L	3 X 0.5 L	3 X 0.5 L	3 X 0.5 L	3 X 0.5 L								
TM (U VIC)	(0.2um flt.)	2 X 0.5 L	2 X 0.5 L	2 X 0.5 L	2 X 0.5 L	2 x 0.5 L	2 X 0.5 L	2 x 0.5 L	2 x 0.5 L	2 X 0.5 L	2 x 0.5 L	2 X 0.5 L	2 X 0.5 L																				and the set of the	Bottle triggered but did not close							2 X 0.5 L	•	2 X 0.5 L		2 X 0.5 L	2 X 0.5 L	2 X 0.5 L	2 X 0.5 L	2 X 0.5 L	2 X 0.5 L								
Comments		slow filtering	slow filtering	slow filtering	slow filtering	slow filtering	slow filtering	slow filtering	slow filtering	slow filtering	slow filtering	slow filtering	slow filtering	slow filtering	slow filtering	slow filtering	slow filtering	slow filtering	slow filtering	slow filtering	slow filtering	slow filtering	slow filtering	slow filtering	slow filtering	S								Bottle triggered								for Cr										for Cr						
đ	ê		250.2		175.1					ιņ		14.9	8.5	1749.9	1400.2	1099.7	800.1	599.2		249.9	159.8	0.06	40.2		_	Т	10.0		0.01	00	20	200	Т	8.3	0.01	10.0	10.0	10.0	10.0		1799.8		1499.8	1249.8	8.666	749.0	599.9	500.0	399.9	349.7	299.9	9.6	1001.2	800.4	600.2	450.2	380.3	190.2
Bottle	(position)	-	2	m	4	ŝ	9		œ			11	12	1	2	m	4	9	9	7	œ	9	5				Ŧ			2								11	12		-	2	m	4				œ	6	10		12	1	2	m	4	50	7
Event		24	24	24	24	24	24	24	24	24	24	24	24				28	28	28	28	28	28	28	28	28	1	30		2	DE DE	5	5	3	8	3	30	30	30	30			32	32	32	32	32	32	32	32	32	32	32			33	55	33	33
Long		139 18.25	(from event 23)	_										139 20.623'	nt 27)																									_	139 15.839'	nt 31)											139 23.562	nt 33)				
Lat		71 6.373"	from ever											71 6.268"	(from event																										71 6.218"	(from event 31)											73 19.254' 1	from eve.				
ŝ	T	5			┦	1	1	1	1		1			5	-												Ξ	;	T	T		T		╡	T		1				5	_			1	1	1	1					L1.5		T	T	T	Τ
Time	ЦС	1:07:17												12:56:43													17-33-23					T									21:38:19												16:17:17		Ť		T	
Date	UTC		(TM shallow)											02-Sep-09													02-Sen-09														02-Sep-09	(TM deep)											03-Sep-09	(TM shallow)				

yes	yes	yes	VDC	VES	2	yes	yes	Nes	Nex	NDS	200	yes	yes	yes	Ves	ves	NPS	Ves	ŀ	ves	yes	yes	yes	ves	Ves	VPS	Nex	yee VDC	and a	yeo voc)TS	yes	2011)tto	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	-	920 100	yes	Sev	yes vor	yes	yes	yes	950 VBC	Ves	Ves	yes	yes	yes	yes	yes
yes	yes	yes	VDC	VES	2	yes	Ves	Ves	VPS	VDC) ⁵⁰	yes	yes	yes	Ves	ves	NPS	ves		Ves	yes	yes	yes	ves	ves	VPS	NBS	yee Vac	and a	yes voe	yeo yeo	yes	-	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	ann	yeb Yeb	yes	Ves	yeb vor	yeb	yes	yes	VES	Ves	Ves	yes	yes	yes	yes	yes
yes	yes	Ves	NDC	YE0 VPS	2	yes	ves	Ves	VPS	NDC	yco	yes	yes	yes	ves	ves	Nes	VES		VES	yes	yes	yes	ves	ves	VPS	Nex	yee Vice	2	yes voc	yes	yes	-	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	100	94 1	yes	YES	ACC ACC	yes	yes	yes	VDC VDC	Ves	Ves	yes	yes	yes	yes	yes
yes	yes	yes	Vac	YES VPS	2	yes	yes	Vec	VPS	Vac	100	yes	yes	yes	yes	ves	ves	ves		ves	yes	yes	yes	ves	ves	VPS	Nex	yee	yee	yeo Voc	yes	yes	1000	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	TIME	940	yes	yes	yeb vor	yes	yes	yes	YES VOC	ves	Ves	yes	yes	yes	yes	yes
yes	yes	yes	Vac	yes Vec	2	yes	yes	Nes	NPS	Vac	JC0	yes	yes	yes	ves	ves	Sev	ves	,	ves	yes	yes	yes	ves	ves	VPS	sev	yee Vec	700	yeo	;	;	-	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	- The second	yeb						T					yes	yes	yes	yes
yes	yes	yes	VBC	926 VBS	2	yes	sev	sev	Nas	Vac	100	yes	yes	yes	Nes	ves	sav	Nes		sev	yes	yes	yes	sev	sev	Nas	sav	yee)co	920	926	yes			,				,	,	•	,	;	,	;				T	T			T					yes	yes	yes	yes
																																	44	-		11 L	11 -	11 -	11 L	11 L	11 L	11 L	11 L	11 L	11 L																
2 x 60ml	2 x 60ml	2 x 60ml	2 v 60ml	2 x 60ml		2 x 60ml	2 X 60ml	1 x 60ml	2 x 60ml	2 v 60ml		2 X 60M	2 X 60M	1 x 60ml	2 X 60ml	1 x 60ml	1 x 60ml	1 X 60ml		,	,	;	,	;	,	,	;			,		,																	T				T					2 x 60ml	2 x 60ml	2 x 60ml	2 x 60ml
						1 X 4 L	2 X 1L	1 X 4 L	2 x 11	1 x 4 1		2 X 1L	1 X 4 L	1 X 4 L	2 X 1L	1 X 4 L	2 x 11																													final							T				T	1 X 4 L	2 x 1L	1 X 4 L	2 x 1L
yes	yes	ves	VDC	VES	2	yes	ves	Ves	VPS	VDC) CO	yes	yes	yes	ves	ves	VES	ves		ves	yes	yes	yes	ves	ves	VPS	NBS	VDC	2	yes vec)T5	Ves														for looke Incles	IOL IEGNO - DOWN						T					2 X 1 L for BG)			-
3 X 0.5 L	3 X 0.5 L	3 X 0.5 L	3 4 0 5 1	3×0.51		4 X 0.5 L	4 X 0.5 L	4 X 0.5 L	4 X U 5 I	4 V D 5 I		4 X 0.5 L	4 X 0.5 L	4 x 0 5 1	4 X 0.5 L		4 X 0.5 L	4 X 0.5 L	4 X 0.5 L	4 X 0.5 L	4 X 0.5 L	4 X 0.5 L	4×0.51	4×051	AVDEL	1 4 4 4 4 1	4 4 0.5 1	T C'D Y	4 X 0.5 L														and in shock	CONT IN CITECA						T		cast			3×0.5L (2	3 X 0.5 L		_			
2 X 0.5 L		+	+	╀	-	2 X 0.5 L, 250m	L		L .	2 Y D 5 1 250m		\perp	_	_	2 X 0.5 L. 250m	L	L	2 X 0.5 L. 250m	1	L .	2 X 0.5 L, 250m	L	L	2 X 0.5 L. 250m	L	L	L	1.	1	1.	1	⊥														cliton 1 for inte							+		tion 10 for this						_
2	CI			10	-	2 X 0	2 X 0	2 X D	0 X C	2 4 0		2 X 0	2 X O	2 X O	2 X 0	Bottle leaked? 2 x 0.5 L. 250m	0 X C	2 X 0		2×0	2 X 0	2 X 0	2 X 0	2 X 0	2 X 0	2 X D	0 × 6	0.40	O v d Chodrol off	DOUG REAMENT & X U.S.L. 250M		Leftover to MN2 x 0.5 L, 250m											Looks good!			Ho 40 year is no	DOME TO WAS IN POSITION 1 TO THIS CASE TO CRECK TO REAKS - LOOKS TITLE!						+		Bottle 1 was in position 10 for this cast			Bottle leaked?			_
8 139.8		40.0	-	_	+	1 2949.5	2 2700.5		2300.2	5 2100.2	4.001.4	-	1700.4	8 1500.4	9 1300.0	1094.0	800.2	299.6		1 700.3	2 550.5	_		5 360.2			8 120.1			10.01	n: 	7.9	C 124 3	C.1612								201.1	120.3		6.6	0 101	2.101	_	1.00	7.40	_		7 53.5 53.5	_	52.4	52.0	51.5	1100.5	2 800.4	3 648.4	500.5
33 6		33 10					35			i k					35	-		35 12			39			50					ľ	20 10		39 12	07									48 9			48 12	;	\downarrow		2		1	-	- a		, 6	÷	12			5	
						20.998					+							$\left \right $		137 7.338'										+						+													+	+		+	+	$\left \right $				5 9.5'			
						74 39.755' 137 20.998'	om event 34	╞	Nuch Icel		+									35.62" 131	(from event 38)									+		+					+									+			+	+	+	+	+	+				74 22.9' 136 9.5'	om event 51		_
Н			t	┢		L2 74			ne un thr	-	╎	+					t	╞		L2 74				\vdash	╞		┢	╞	╞	\dagger	+	+	5	ľ	+	\dagger	+	+	+	┥	┥				+	5	Ľ	+	\dagger	\dagger	+	\dagger	$^+$	┢	+	t	╞	L2 74	5		-
				T		4:52:32			Rosette came un through loel		t						T	T		17:35:47								T	T	T			11-00-00	ZU.32.17												+	55/57		T	T	T		t	T			T	7:48:12			
						04-Sep-09	(TM deep)		e e											04-Sep-09	(TM shallow)												00 000 00	+	(CI)												SIGNAL CONTRACTOR	(KIVKIN CAST)										06-Sep-09	(Pb shallow)		

yes	yes	yes	yes	yes	yes	yes	Ves	2	VPS	NDC)co	yes	yes	yes	yes	Ves	Nav	Vac)co)es	yes vor	yeo															yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	700	750) est	ves	Vas	Ves	ves	ves	yes	yes	yes	yes	yes
yes	yes	yes	yes	yes	yes	yes	VeS	100	NPS	VDC) co	yes	yes	yes	yes	Ves	VDC	Vac) 20	yes	yes vor	yes															yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	NDC	yee Voc	VBK	Ves	VPR	Ves	ves	Ves	yes	yes	yes	yes	yes
yes	yes	yes	yes	yes	yes	yes	ves	2	VPS	VDIC	yeo	yes	yes	yes	yes	ves	NDC	NDC N) co	yes	Se v	yeb															yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	VDC	yee Vpc	VES	Ves	VPS	Ves	Ves	ves	yes	yes	yes	yes	yes
yes	yes	yes	yes	yes	yes	yes	Ves	200	Neg	Vac	300	yes	yes	yes	yes	ves	VDC	vor Voc	750	yes	yes vor	yeo					T										yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	Noc	yee Voc	yes Vec	ves	Nex	Ves	ves	ves	yes	yes	yes	yes	yes
yes	yes	yes	yes	yes	yes	yes	Ves	200	Nex	Var	jeo	yes	yes	yes	yes	ves	VDC	vec vec	100	yes	yes vor	yeo	T				T										yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	VOC	yee Voc	yes VBS	ves	Nex	Ves	ves	ves	yes	yes	yes	yes	yes
yes	yes	yes	yes	yes	yes	yes	sev	226	Sev	NBC	950	yes	yes	yes	yes	Nes	Vac	200	920	yes 	Sa in	926	Ī			T											yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes													sev
											T																T																						÷		=	1	1	1	111	11 L	11 L	11 L	11 L	11 L	
1 x 60ml	1 x 60ml	1 x 60ml	2 x 60ml	2 x 60ml	2 x 60ml	2 x 60ml	2 x 60ml	100 0 4	1 x 60ml	1 v 6/Iml		1 X 60MI	1 x 60ml	2 x 60ml	2 x 60ml	2 x 60ml	2 v 6/Iml	2 v Elimi									T										1 x 60ml	1 x 60ml	1 x 60ml	1 x 60ml	2 x 60ml													1 x 60ml							
1 X 4 L	2 X 1L	2 X 1L	2 x 1L	1 X 4 L	2 X 1L	2 X 1L	1 X 4 L				T																											2 x 1L		2 X 1L		2 X 1L		2 x 1L		2 X 1L	+	2 X 1L	T												2 X 1L
								T	2 X	× 6	~ ~	2 X	2 X	2 X	2 X	2 X	× 6	***		× 7	× 7	7 7	T								_						yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes													
					3 X D.5 L				4x051	AVDEL		4 X 0.5 L	4 V D S I	AVDEL		4 X U.5 L	4 X U.5 L	*XU.0L															4 X 0.5 L	4 X 0.5 L	4 X 0.5 L	4 X 0.5 L	4 X 0.5 L	4 X 0.5 L	4 X 0.5 L	4 X 0.5 L	4 X 0.5 L	4 x 0.5 L	4 X 0.5 L	4 X 0.5 L													4 X 0.5 L				
					4 x 250 ml				2×05L	╞	+	2 X 0.5 L	+	2 X 0.5 L	╞	╞	╀	2 4 1 5 1	+	+	2 X 0.5 L	+																				2 X 0.5 L		2 X 0.5 L		-	2 X 0.5 L	+													2 X 0.5 L
					ooks fine! 4	\vdash																	T								_																														
	6 360.4	7 270.6	8 180.5	120.2	-	25.5		_	1 1200.9	0 100 C		3 800.7	4 599.7	5 440.4		7 259.8		0 120 0		_	1 31./	10.1	1 55 5		2 00.4		_	20.7	6 65.5	_	8 65.1	9 64.9	10 64.7	-	12 10.7	_	1 360.6	2 270.3	_	4 169.7	5 130.0	6 110.6	7 90.2	8 75.3	9 60.4		11 20.2		1 2400 1	- 2000 C		4 1000.2	5 599.6	6 400.2	7 300.1	8 250.1	9 200.6	10 100.1	11 50.2	2 10.6	1 2400
		51	51						55										ľ		1 1 00				5									57 11			59				59		59				1		E.									64 1			67
									7 37.9'										t								t										136 36'																								_
									19.24' 13	/from avant 5.21									+				+	+	+		+										72 30' 13										+	+	+												
+							┢	┢	13 75	-		┥	+			\vdash	╞	╀	╋	+	+	+	+ +	-	+	╀	╀	╎	┥				_			\vdash	L 1.1 72		n of L1.1									+			┢			┢	╞						L 1.1
									_	+	T								\uparrow				1 00-10-1	17.42.1			T										4:41:26		Ice in region										ſ												6:22
									7-Sep-09	/TM challout									t				0.00.00		(LINNIL)	Ī	T										09-Sep-09 4:41:26 L 1.1 72	TM shalow)	loted "dirty"										0.000.00		1										10-Sep-09

yes yes yes yes	yes yes	yes	yes yes yes yes	yes yes yes yes			yes yes yes yes	yes yes yes yes yes	yes yes yes	yes yes yes yes yes	yes yes yes yes	yes yes	yes yes yes yes yes	yes	yes yes yes yes	yes	yes yes							
1 x 60ml	1 x 60ml	1 x 60ml	2 x 60ml	2 x 60ml	2 x 60ml	2 x 60ml			1 x 60ml	5L 1 x 60ml	1 x 60ml	1 x 60ml	2 x 60ml	2 x 60ml	2 x 60ml	2 x 60ml	2 x 60ml	2 x 60ml	2 x 60ml					
	2 X 1L		2 X 1L		2 X 1L		2 X 1L		2 X 1L					1x1L + 2x0.5L		2 X 1L		2 X 1L		2 X 1L		2 X 1L		
													yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	
4 X 0.5 L	4 X 0.5 L	4 X 0.5 L	4 x 0.5 L	4 X 0.5 L			4 x 0.5 L	4 x 0.5 L	4 x 0.5 L	4 X 0.5 L	4 X 0.5 L	4 x 0.5 L	4 X 0.5 L	4 x 0.5 L	4 X 0.5 L	4 X 0.5 L	4 X 0.5 L							
2 X 0.5 L	2 X 0.5 L	2 X 0.5 L	2 X 0.5 L	2 X 0.5 L			2 X 0.5 L	2 X 0.5 L	2 X 0.5 L	2 X 0.5 L	2 X 0.5 L	2 X 0.5 L	2 X 0.5 L	2 X 0.5 L	2 X 0.5 L	2 X 0.5 L	2 X 0.5 L							
2250	2000	1750	1500	1250	1000	800	600	500	425	400			275	240	200	150	120	06	20	50	25	17	8	,
2	m	4	5	9	7	80	σ	0	11	12			-	2	m	4	'n	9	2	80	6	₽	11	1
67	67	67	67	67	67	67	67	67	67	67	Cancelled (77)		78											
																								ſ
											3		55											
												-	18:30?											
TM deep)											11-Sep-09	(TM shallow)	11-Sep-09	(TM shallow)										

Table 3: List of samples analyzed for Fe-II??

4.2 Primary Productivity (D. E. Varela, A. Kobryn)

We performed on-deck experiments for the measurement of net and new (NO₃-driven) primary (phytoplankton) productivity and analyzed the composition of the phytoplankton assemblages with the use of a FlowCam. Triplicate samples were obtained at 4 depths in the euphotic zone, at 50, 10, 1 and 0.1% of incident surface irradiance. Water samples were double-labeled with ¹⁵NO₃ and ¹³C-bicarbonate. Subsequently, samples were incubated in on-deck acrylic tanks with flowing surface seawater (to maintain samples at surface water temperatures) for 24 h. Samples were filtered (0.7 μ m GFF), and filters were dried and stored for further analysis ashore. FlowCam analysis of the particle distribution, which included autotrophic and non-autotrophic microorganisms, was performed at the same 4 depths. We size-fractionated the samples at 50% irradiance to determine the contribution of the < and >5 μ m size fraction to primary productivity. We also size-fractionated samples for biogenic silica concentrations at the same depth (50% irradiance).

S1 – Event #1	S2 – Event #10
Depth (m)	Depth (m)
5	3
15	15
35	45
100	75

Table 4: Stations and sampling depth for primary production

L1 – Event # 16	L2 – Event # 38
Depth (m)	Depth (m)
22	10
50	30
85	55
126	100

L3 – Event # 54	L1.1 – Event # 63
Depth (m)	Depth (m)
10	10
32	25
60	70
115	115

4.3 Metal-Biota Interactions

(M. Maldonado, C. Payne, D. Semeniuk, R. Taylor)

1. We established the phytoplankton community composition in the water column at each station [S1 (event #1), S2 (event #10), L1 (event #16), L2 (event #38), L3 (event #54), L1.1 (event # 63)] using a) HPLC pigments & b) phytoplankton microscopic identification, c) flow cytometry phytoplankton & bacteria numbers, and d) total chlorophyll GF/F and size-fractionated chla (5 μ m, at the 50% Io).

2. We established a) the photosynthetic efficiency (Fv/Fm) and b) photosynthesis vs. irradiance curves of Arctic plankton communities in the water column (L1, L2, L3, L1.1) using FiRe. These data will be compared with the primary productivity measurements using C13 spikes (Diana Varela).

3. We measured nutrient concentrations (Si, NO_3^- , NO_2^- and PO_4^{-3-}) in the water column at each station (S1, S2, L1, L2, L3, L1.1)

4. We determined size-fractionated Fe:Cd:C quotas of plankton using radiotracers in the mixed layer [S2 (seawater collected with in-situ trace metal clean pump, event # 15), L1 (seawater collected with in-situ trace metal clean pump, event # 19), & L2 (seawater collected with trace metal rosette, event # 39, mixed seawater from 8, 25 and 40m)].

5. We collected samples to measure trace metal ratios (using ICPMS) in particles, rinsed with or without oxalate wash, from the water column [4 depths (40, 70, 150 and 250m) at L1.1, event #62)

6. We determine whether plankton communities in the Arctic (L1) are co-limited by Fe light and/or nitrate. We set up a grow-out incubation experiment with three light levels (50, 10, 1% Io), 4 Fe levels (1nM Fe additions, + 3 concentrations of the siderophore DFB). The bottles were also enriched with 10 μ M NO₃⁻, given that the in-situ NO₃⁻ concentrations were ~ 0.5 μ M. Control bottles had no NO₃⁻ addition. We sampled on day 0, 2, 4, 6, and 8. The parameters measured were HPLC pigments, Chla GF/F & size-fractionated, flow cytometry bacteria and phytoplankton, nutrients, Fe:Cd:C ratios, Fe uptake rates (FeEDTA & FeDFB), photosynthetic efficiency (Fv/Fm) and photosynthesis vs. irradiance curves. In addition, Rivkin's group measured bacterial productivity on each sampling date.

7. We also took samples (~250 L) for genomics & proteomic analyses from 10 m and 59 m (chla max) at L2 and from 10, 65 (chla max), and 600 m at L1.1. The seawater (prefiltered through a 200 μ m nitex membrane) was filtered, in series, onto Supor -100 membrane filters of 3 and 0.1 μ m porosities. The plankton composition was characterized by measuring the following parameters: HPLC pigments, Chla GF/F & 5 μ m, bacteria and phytoplankton flow cytometry, phytoplankton microscopic identification, nutrients, photosynthetic efficiency (Fv/Fm) and photosynthesis vs. irradiance curves. In addition, Rivkin's group measured bacterial productivity on each sampling date. This work is in collaboration with Richard Rivkin (Memorial University) and Andy Allen (Venter Institute).

 Table 5: List of samples taken for metal-biota interactions.

Station S1

	Biology cast	Depth	Niskin B#	lo %	Chla max	HPLC pigm	chla GF/F	chla 5um	flow Bact	flow phyto	nutrients	phyto ID	Fv/Fm	PE 0-200 uE m-2 s-1
Aug-29-2009	#1	5	21/19	50	60	Х	х	Х	х	Х	х	Х		
18:30		15	15	10		Х	х		х	Х	Х			
		35	9	1		Х	х		х	Х	Х			
		50	3	0.1		Х	х		х	Х	х			

Station S2

	Biology cast	Depth	Niskin B#	lo %	chia max	HPLC	chla GF/F	chla 5um	flow Bact	flow phyto	nutrients	phyto ID	Fv/Fm	PE 0-200 u	E m-2 s-1
Aug-30-2009	#10	3	22/23	50	45	х	Х	Х	х	Х	Х	х			
noon		15	18/19	10		Х	Х		х	Х	Х				
		25	16				Х		х	Х	Х				
		45	14/15	1		Х	X		х	х	Х				
		50	12				Х		х	Х	Х				
		75	10/11	0.1		Х	Х		х	Х	Х				
Aug-31-09	TM pump	29				Х	х	х	х	х	Х	х	х	Х	
1:30	Moon-pool														
	first Fe:Cd:C d	uotas													
	first Fe uptake	es													

Station L1

Date	Biology ca	Depth	Niskin B#	lo %	Chla max	HPLC pigm	chla GF/F	chia 5um	flow Bact	flow phyto	nutrients	phyto ID	Fv/Fm	PE 0-200 ι	JE m-2 s-1
Aug-31-200	9 #14	22	23/24	50	60 m	Х	х	х	х	х	Х	X			
16:00	0	50	18/19	10		Х	х		х	х	Х				
		85	14/15	1		х	Х		Х	х	Х				
		126	10/11	0.1		х	Х		Х	х	Х				
		150	7			Х	Х		х	х	Х				
		200	3			Х	Х		Х	Х	Х				
22:30) TM pump	29				Х	Х	Х	х	х	Х	Х	Х	х	
	Grow-out														
	Duplicates		NO3-, 10%												
			10uM NO3-												
			10uM NO3-												
		Control, +	10uM NO3-	, 1%lo											
		+Fe, + 10u	IM NO3-, 50	0%lo											
		+Fe, + 10u	IM NO3-, 10	0%lo											
		+Fe, + 10u	IM NO3-, 19	%lo											
		+ 1 nM DF	B, + 10 uM	NO3-, 50%	lo										
			B, + 10 uM												
			B, + 10 uM												
		+ 5 nM DFB, + 10 uM NO3-, 10%lo													
		+ 10 nM D	FB, + 10 uN	I NO3-, 109	%lo										

Station L2

Date	Biology cast	Depth	Niskin B#	10 %	Chla max	HPLC	chla GF/F	chia 5um	flow Bact	flow phyto	nutrients	phyto ID	Fv/Fm	PE 0-200 u	JE m-2 s-1
Sep_4_2009	#24	2.7	23/24		55m		X		X	X	X		X	X	
8:30		10		50		Х	Х	Х	Х	X	Х	Х	Х	Х	
		30	14/15	10		Х	Х		Х	Х	Х		Х	х	
		55	10/11	1		Х	Х		Х	Х	Х		Х	х	
		100	7	0.1		Х	х		Х	Х	Х		Х	Х	
		125	3												
	TM shallow														
	quota	40			Mixed all	Х	Х	Х	Х	Х	Х	Х	х	х	
		20	11		bottles										
		8	12	2L											
Sep_4&5_2009	Pgnomics	10		genomics		Х	Х	Х	Х	Х	Х	Х	Х	Х	
22:00-2:00		10		proteomics		Х	Х	х	Х	Х	Х	Х	х	Х	
	chia max	59		genomics		Х	х	х	Х	Х	Х	Х	х	Х	
	chia max	59	Barrel 4	proteomics		Х	Х	Х	Х	Х	Х	Х	х	Х	
	Engine Roon														
В	underway sa	mpling													
С	proteomics														
D	~ 400 L														
E															

Station L3

	Biology cast	Depth	Niskin B#	lo %	Chla max	HPLC	chla GF/F	chla 5um	flow Bact	flow phyto	nutrients	phyto ID	Fv/Fm	PE 0-200 u	IE m-2 s-1
Sep_7_2009		3.1	24		60m	Х	Х		х	Х	Х				
16:00		10	17/20	50		Х	х	х	х	Х	Х	х	х	Х	
		32	14/15	10		х	х		х	Х	Х		х	Х	
		60	10/11	1		Х	Х		Х	Х	Х		Х	Х	
		115	6/7	0.1		Х	Х		х	Х	Х				
A	Engine Room														
	underway sar	npling													
	proteomics														
	~ 400 L														

Station L1.1

Dete	Distance	Denth	NE-Lin D4	1- 0/	Oble man		- LL OF (F	able Com	for Deat	<i>4</i>	and the sector	- hu de UD	E	DE 0.000 -	
Date	Biology cast	Depth	Niskin B#	10 %	Chla max	HPLC	chia GE/F	chia 5um	flow Bact	flow phyto	nutrients	pnyto ID	Fv/Fm	PE 0-200 ι	IE m-2 s-1
Sep_9_2009)														
Sep 10 09	TM shallow	40													
	particulate	70													
	metals	90													
	oxalate vs. no														
	oxalate wash														
	ondiate main	250													
		200													
A	Engine Room														
B	underway sa	l moling													
-		npiing													
C	proteomics														
D	~ 400 L														
E															

4.4 Microbial meditation of carbon and trace element cycling (R. Rivkin, M. Hale, A. Hamilton J. Tucker)

The goal of this project was to characterize the microbial community and determine its role in the cycling of carbon and trace elements. Sampling depths were selected to represent light depths (coordination investigations described in 4.2 above) and with major water mass layers.

Five classes of parameter were measured: 1- Biotic stocks (items 1-7), Biodiversity (items 8-11), Rate processes (items 12-16), Dissolved and particulate organic pools (items 17-20) and Natural abundances of stable isotopes in organic materials (items 21-26).

- 1- Bacterial Abundance by Acridine Orange Direct Count (BA-AO)
- 2- Bacterial Abundance by Flow Cytometry (BA-FCM)
- 3- Pico-Phytoplankton Abundance by Flow Cytometry (PICO)
- 4- Nano-Phytoplankton Abundance by Flow Cytometry (NANO)
- 5- Phytoplankton Abundance by Flow Cytometry (PHYTO)
- 6- Heterotrophic Flagellate Abundance by Microscopy (FLAG)
- 7- Microzooplankton Abundance by Microscopy (MICZ)

8- Bacterial Community Structure by Fluorescence In Situ Hybirdization (FISH)

9- Bacterial Community Structure by Culturing on Media(CULT)

10- Bacterial Community Structure by DNA analysis (DNA)

11- Community Metagenomics by Sequencing (METAGEN)

12- Bacterial Production by Leucine Uptake (BP)

13- Community Respiration by Oxygen Uptake (RESP)

14-Microzooplankton Grazing on Bacteria and Phytoplankton by Dilution Assay ((MICZ-GRAZ)

15- Microzooplankton Mediated Cycling of Fe, Zn, Cu, Cr, Cd, Mn by Modified Dilution Assay (MICZ-CYCL)

16- Effect of Fe, Cu, Zn Enrichment on Growth of Phytoplankton and Bacteria by Dilution Culture (MET-ENRICH)

17- Particulate Organic Carbon by Elemental Analysis (POC)

- 18- Particulate Organic Nitrogen by Elemental Analysis (PON)
- 19- Dissolved Organic Carbon by High Temperature Oxidation (DOC)
- 20- Dissolved Organic Nitrogen by High Temperature Oxidation (DON)

21- Dissolved Organic Carbon-13 by Mass Spectrometry (DOC-13)

22- Dissolved Organic Nitrogen-15 by Mass Spectrometry (DON-15)

23- Particulate Organic Carbon-13 by Mass Spectrometry (POC-13)

24- Particulate Organic Nitrogen 15 by Mass Spectrometry (PON-15)

25- Carbon 13 in Phospho-Lipid Fatty Acids by GC-MS (PLFA)

Measurements for item 13 were made on board and samples for items 9 and 10 were transported back to Memorial University for further study. Items 15 and 16 were returned to the University of Portsmouth for analysis. The remainder of the samples were frozen or preserved and remained on board the Amundsen until it returns to Quebec City in November 2009.

Table 6: List of samples taken for microbial mediation of carbon and trace element cycling.

					METER	96																				T
STATION	DEPTH	BA-AO					FLAG	MICZ	FISH	CULT	DNA	METAGEN	BP	RESP	MICZ-GRAZ	MICZ-CYCL	MICZ-ENRICH	POC	PON	DOC	DON	DOC-13	DON-15	POC-13	PON-15	PLFA
S-1			Х	Х	Х	Х	Х	Х	Х	Х	Х		Х					Х	Х	Х	Х	Х	Х	Х	Х	Х
	15		Х		Х	Х			Х				Х					Х			Х					
	35		Х				Х	Х	Х	Х	Х		Х									Х	Х	Х	Х	х
	50	Х	Х	Х	Х	Х							Х					Х	Х	Х	Х					<u> </u>
6.0	2	v	~	х	v	~	~	~	х				х					х	~	~	~	х	х	~	х	x
S-2	3		X X			X X	Х	Х	^				X					x	X X	Х	X	~	~	х	~	^
	45		x		X		х	х	х				X					x		х	х	х	х	х	х	х
	75		X		X	X	^	~	^				X					X	X	^	~	^	~	^	~	^
	100		X				х	х	х				X					X		Х	х					<u> </u>
	125		Х		Х	Х							Х					Х	Х							-
	150		Х	Х	Х	Х	Х	х	Х				Х					Х	Х	Х	Х					
	175	Х	Х	Х	Х	Х							Х					Х	Х							
	200	Х	Х	Х	Х	Х	х	Х	Х				Х					Х	Х	Х	Х					
L-1	10		Х		Х		Х	X	Х	Х	Х		Х	Х	Х	х						Х	Х	Х	х	х
	22		Х				Х	Х	Х	Х	Х		Х							Х	Х					—
	50		X		Х	Х	v	~	~		~		~	Х				Х	Х		~					
	85 100		X		X		Х	X	Х	Х	Х		X	v				х			X	v	v	×	×	
	100		X X		X	X							X X	^				x	х	Х	X	Х	Х	Х	Х	х
	126		X	~	X	X							X					X		х	x					<u> </u>
	200		x				х	х	х				x								x					t
	250		X		X	X							X	Х				X	X							1
	300		X		Х	X							X													1
	600	Х	Х			Х							Х	Х				Х	Х	Х	Х	Х	Х	Х	х	Х
	800	Х	Х			Х							Х													
	1000		Х		Х	Х							Х	Х				Х	Х							
	1400		Х		Х	Х							Х													\vdash
	1700	Х	Х	Х	Х	Х							Х													—
L-2	3		X			Х	~	~	~		~		Х							Х	Х	Х	Х	Х	Х	Х
	10		X			X X	Х	Х	Х	Х	Х		X X	X				X X	X	~	~					──
	30 55		X X		X X		х	х	х	х	х		X					X	X X	Х	X					──
	60					x	^	^	^	~	^		X	x	Х	х	х	^	^			х	х	х	х	х
	100		X		X	X							X	X	~	^		х	Х	х			X	X	X	X
	125		X				Х	Х	х	Х	Х		X	~				X			X	~	~	~	~	~
	250		X			X								х					X							
	300		Х		Х		Х	х					Х							Х	Х					<u> </u>
	600		Х	Х	Х	Х	Х	Х					Х	Х				Х	Х	Х	Х	Х	Х	Х	Х	Х
	1000		Х	Х	Х	Х	Х	Х					Х					Х	Х	Х	Х					
	1400		Х		Х	Х							Х							Х	Х					
	1800		Х		Х	Х							Х													L
	2250		Х				Х	Х					Х							Х	Х					──
	3000	X	Х	Х	Х	х							Х													──
L-3	3	v	х	х	Х	х							х					х	х							<u> </u>
NOT	10		x				х	х	х				x					x		х	X					├──
COMPLET	32		X		X	X	^	~	^				X					X	X	~	^					-
	60		X		X		х	Х	х				X					x		х	X					<u> </u>
	115					X	-	-					X								X					1
	140		Х				Х	Х	Х				Х					Х			Х					
	200	Х	Х	Х	Х	Х							Х							Х	Х					
	300	х	Х	Х	Х	Х	Х	Х	х				Х							Х	х					
	600		X		X	· ·	X	X	Х				Х								x					1
	1000		X		X	-	X	Х	X				Х							-	X					<u> </u>
	1400		Х		Х	Х							Х								X					
	1800		Х		Х	Х							Х													
	2250	Х	Х	Х	Х		Х	Х	Х				Х							Х	Х					
	3000					Х							Х													
L-1.1	3				Х	Х							Х													-
	10				X		Х	Х	Х	Х	Х			Х					X	Х	Х					+
	25		X		X	X	~	~		v	v		X	<u> </u>				X	X		~					—
	70		X		X		Х	Х	X	Х	Х		X	v				Х	х	Х	Х			-		
	75 100				X	X		1	\vdash				X	X				v	v							<u> </u>
	100		X X	X X	X X	X X			\vdash		<u> </u>		X X	Х				х	Х	х	x					<u> </u>
	115		X		X		х	х	x	х	х		X					х	х		X					<u> </u>
	200	X			X	X	~	^	^	~	^		X					^	^		X					+
	250		X		X	X							X	Х				х	х			<u> </u>				<u> </u>
	300		X		X		Х	Х	Х				X						-	Х	х					+
	600				X		X		X					Х							x					+
	1000				X		X	X	X					X							X					<u> </u>
	1400	Х	Х		Х	Х							Х													
	1800		Х	Х	Х	Х							Х													
	2250				Х	Х							Х													

4.5 Dissolved inorganic carbon, alkalinity, pH. (C. Guignard)

The ocean's exchange of carbon dioxide with the atmosphere is governed by the biogeochemical cycling of carbon and physical processes throughout the water column, which determine the concentration of dissolved CO_2 in surface waters. Of the seven relevant carbon system parameters, a minimum of two are needed to calculate the others and fully describe inorganic carbon chemistry, overdetermination of the system being beneficial.

pH and alkalinity measurements were performed on each sample of the water column at stations S1, S2, L1, L2, L3 and L1.1 right after sampling. DIC samples were also collected for Dr. Helmuth Thomas from Dalhousie University who was absent from the cruise. They were not analyzed on board, but poisoned with mercuric chloride and stored in the refrigerated container at 5 degrees and then stored in the cold room in the aft labs at the end of the cruise. They will remain stored at 4 degrees until the ship is back in Quebec City. pH was measured by spectrophotometry (HP 8453 spectrophotometer) using phenol red and cresol purple as indicators, and alkalinity was measured using a automatic titrator TIM865 titralab from Radiometer Analytical. The samples were titrated with hydrochloric acid 0.03 N. The list of samples analyzed for alkalinity and pH and sampled for DIC are reported in Table 7

4.6 Water Column δ^{13} C-DIC & Major/Minor Gas Sampling from the Rosette (K. Brown; E. Asher)

Samples for major and minor dissolved gases (N_2 , Ar, O_2 , CO_2 , N_2O , CH_4) were collected during the biology and geochemistry casts carried out at each station as outlined in Table 1. Samples will be analyzed for dissolved gas concentrations using the GC-MS at UBC.

Samples for analyses of stable carbon isotopes (13C/12C) in dissolved inorganic carbon (DIC) were collected in conjunction with carbonate system parameters (DIC, TALK, pH) at each of the biological casts and geochemistry casts, as outlined in table 1. Samples will be analyzed for stable carbon isotope signatures at the UQAM-Geotop lab in Montreal.

Station	Event # Hydrocast #	Bottle	Depth (m)	Gases*	13C-DIC	DIC – Alk - pH
S1	1 - 1	24	4	?	?	
	Biology	23	4			ХХ
		17	10	?	?	XX
		11	25	?	?	XX
		5	50	?	?	XX
S2	10 - 10	24	2		xx	XX
	Biology	21	3	х	хх	

Table 7. Water Column Trace Gas, DIC, alkalinity, pH and 13C-DIC Sampling (*random duplicates for trace gases)

		20	10		xx	xx
		17	15	х	xx	
		16	25		xx	ХХ
		13	45	х	xx	
		12	50		xx	ХХ
		6	75	х		
		5	75		xx	ХХ
		2	100	х		
		1	100		xx	XX
S2	11 - 11	11	125	х		
	Geochem	9	150	х	хх	XX
		6	175	х		
		4	200	х	хх	ХХ
L1	16 - 14	21	22	х		
	Biology	20	22		xx	xx
		17	50	х		
		16	50		xx	хх
		13	85	х		
		12	85		xx	хх
		9	126	х		
		8	126		xx	XX
		5	150	х		
		4	150		xx	хх
		3	200		xx	хх
		1	200	х		
L1	18 - 15	24	2		xx	ХХ
	Geochem	22	10		xx	хх
		21	250	х	xx	ХХ
		19	300	х	xx	хх
		17	400	х	xx	ХХ
		15	500	х	xx	хх
		13	600	х	xx	хх
		11	800	х	xx	хх
		9	1000	х	xx	хх
		7	1200		xx	хх
		5	1400	х	xx	хх
		3	1700	х	xx	хх
L2	38 - 24	20	2.7	?	?	XX
	Biology	16	10	?	?	хх
		12	30	?	?	хх
		8	55	?	?	хх

		4	100	?	?	хх
		3	125	?	?	ХХ
L2	46 - 31	24	150	x	хх	хх
	Geochem	22	200	x	хх	хх
		20	250	x	хх	хх
		19	300	x	хх	хх
		17	400	x	хх	хх
		15	500	x	хх	хх
		14	600	х	xx	хх
		12	800	x	xx	хх
		11	1000	x	хх	хх
		9	1200	x	хх	хх
		8	1400	x	хх	хх
		7	1600	x	хх	хх
		6	1800	x	хх	хх
		5	2000	x	хх	хх
		4	2250	x	хх	хх
		3	2500	x	хх	хх
		2	2750	х	хх	хх
		1	3000	х	xx	хх
L3	54 - 33	24	3.1	х		
	Biology	21	3.1		xx	хх
		20	10	х		
		16	10		xx	хх
		15	32	х		
		12	32		xx	хх
		11	60	x		
		8	60		xx	хх
		7	115	x		
		4	115		хх	хх
		3	140	x	хх	хх
L3	56 - 34	24	150	x	хх	хх
	Geochem	22	200	x	хх	хх
		20	250	x	хх	хх
		19	300	х	хх	хх
		17	400	x	хх	хх
		15	500	x	хх	хх
		14	600	х	ХХ	ХХ
		12	800	x	хх	хх
		11	1000	x	хх	хх
		9	1200	х	хх	хх

		8	1400	x	xx	хх
		7	1600	х	XX	хх
		6	1800	х	XX	хх
		5	2000	х	XX	ХХ
		4	2250	х	XX	хх
		3	2500	x	xx	хх
		2	2750	х	xx	хх
		1	3000	х	XX	хх
L1.1	63 - 37	24	3	х		
	Biology	21	3		xx	хх
		20	10	х		
		16	10		XX	ХХ
		15	25	х		
		12	25		xx	ХХ
		11	70	х		
		8	70		xx	ХХ
		7	115	x		
		4	115		xx	ХХ
		3	140	х	xx	ХХ
L1.1	66 - 38	24	175	х	xx	хх
	Geochem	22	200	х	xx	хх
		20	250	х	XX	ХХ
		19	300	х	XX	хх
		17	350	x	XX	ХХ
		16	400	x	xx	хх
		14	450	x	xx	хх
		13	500		xx	хх
		12	600	x	xx	хх
		10	800	х	XX	хх
		9	1000	х	xx	хх
		6	1400	x	xx	ХХ
		5	1600	х	xx	хх
		4	1800	х	xx	хх
		3	2000	x	xx	ХХ
		2	2250	x	xx	ХХ
		1	2500	x	xx	ХХ

4.7 Underway Major & Minor Gas analysis (MIMS) (K. Brown; E. Asher)

Underway data were collected aboard the Amundsen (Leg 3a) as part of the GEOTRACES program from August 30 to September 11, 2009 between $70^{\circ}N$ and $75^{\circ}N$

and between 125°W and 139°W. Samples were taken in transit to L1, from L1 to L2 and from L3 to L4. Due to ice breaking between L2 and L3, underway seawater flows dropped to 0 between ~14:50 UTC and 16:25 UTC and between 1:21 UTC and 12:44 UTC on September 6, and underway data was not collected during these times. Dissolved gasses (H₂O, N₂, O₂, Ar, DMS, CO₂) were measured by a membrane inlet mass spectrometer (MIMS). Gas samples were extracted using a sampling cuvette and silicone membrane and then ionized by the quadrupole mass spectrometer. The mass/charge ratio of each gas was measured every 30 seconds during continuous flow analysis. Ion current measurements were calibrated to absolute concentrations for DMS and an atmospheric saturation ratio of $\Delta O_2/Ar$. During surface sea water sampling the vacuum ranged from ~5e⁻⁶ to ~8e⁻⁶ torr. CO₂ concentrations will later be calibrated against the underway pCO₂ equilibrator aboard the ship.

4.8 Filtration of particles for alkenones and biomarker analysis

(Underway samples collected by M. T. Hernandez Sanchez for M. Kienast on precombusted GFF filters; Large volume in-situ pump samples collected by M. Soon for M. Kienast on pre-combusted QMA filters)

biosynthesized by algae are of the class Haptophyceae/ Alkenones Prymnesiophyceae, and their degree of unsaturation (number of double bonds) depends on the growth temperature of the organism. Numerous studies in culture, sediment traps and sediment core tops have established a robust and linear relationship between the degree of alkenone unsaturation (the UK37 index) and water temperature in the mixed layer. These global calibrations are robust across all major biogeographic zones and cover a temperature range from -1 - 30 °C. However, global compilations have shown the relation between UK37 and SST to be somewhat less robust at both ends of the temperature range ($<5^{\circ}$ and $>25^{\circ}$ C). This scatter reflects a greater influence of nonthermal factors on alkenone saturation near the limits of the temperature range, and has been linked to the increasing dominance of the tetra unsaturated alkenone in cold water. Fresh water inflow, either from large rivers or sea ice is a common feature among environments in which large abundances of the tetra unsaturated alkenone have been detected. This led to the idea that the biosynthesization of C37:4 is related to salinity.

We have collected samples to analyze alkenone abundance and alkenone unsaturation patterns in suspended matter in the photic zone. The objectives are twofold. First, alkenone unsaturation patterns, which have proven reliable paleo proxies for SST over large parts of the global ocean will be analyzed and compared to surface temperature and salinity measurements in order to confirm or refine the applicability of this proxy at the lower end of the temperature range. Secondly, the tetra unsaturated compound will be examined specifically with respect to sea surface salinity, in order to evaluate its potential as a paleo salinity proxy. The Canadian Arctic, with its large seasonal and spatial salinity gradients, is an ideal site to explore the potential of the tetra unsaturated compound as a paleo salinity tracer and to evaluate the impact of salinity on the established relationship between the UK37 index and SST at the low temperature range of the calibration. Water was filtered through combusted GFF filters using an underway pump system, which collects water from 7 m water depth. The system typically ran for 3 hours, filtering between 100 and 400 L (Table 8).

	Table 8. List	of underw	ay samples	taken for	alkenones a	nd biomark	ers analysis	(GFF filters)			
SAMPLE	DATE	LAT.	LONG.	LAT.	LONG.	TIME	TIME	READING	READING	VOL	CONTAMINATION
ID		START	START	END	END	START	END	START	END	FILTERED	
A.1	30/08/2009	69.29N	137.59W	69.50N	138.30W	2:30AM		3000	3076.5	76.5	YES
A.2	30/08/2009	70N	138.30w			10:55AM	1:40PM	3076.5	3102.3	25.8	YES
A.3	31/08/2009	70.43N	138.44W	70.51N	138.41W	7:20AM	08:30AM	3104.5	3136	31.5	YES
A.4	02/09/2009	71.59N	138.48W	72.27N	139.19W	8.14PM	10:50PM	3184.5	3452.6	268.1	NO
A.5	03/09/2009	73.18N	139.23W	73.56N	139.49W	9:10AM	12:30AM	3463.8	3885.6	421.8	NO
A.6	03/09/2009	74.22N	138.28W	74.39N	137.22W	3:35PM	6:35PM	3885.7	4240.5	354.8	NO
A.7	04/09/2009	74.35N	137.07W	74.31N	136.45W	3:20PM	6:35PM	4678.6	4958.6	280	NO
A.8	05/09/2009	74.24N	136.26W	74.27N	136.19W	3:40PM	6:10PM	6037	6375	338	NO
A.9	06/09/2009	74.27N	133.27W	74.26N	133.22W	11PM	2AM	6794.6	7146.5	315.9	NO
A.10	06/09/2009	74.28N	133.06W	74.28N	133.02W	04:20	07:15	7147	7462	315	NO
A.11	06/09/2009	75.16N	137.44W					7462	7768.5	306.5	NO
A.12	07/09/2009	75.12N	137.24W	74.38N	137.06W	9:20PM	12:20PM	8119.5	8429.5	310	NO
A.13	08/09/2009	73.12N	135.28W	72.47N	135.23W	10:20AM	1:20PM	8429.5	8800.6	371.1	NO
A.14	08/08/2009	72.37N	136.50W	72.31N	136.35W			8809.8	9012.5	202.7	NO
A.16	08/09/2009	72.30N	136.35W					9012.5	9350	337.5	NO
A.17	09/09/2009	72.29N	135.45W					9350	9360	280	NO
A.18	10/09/2009	72.29	136.25W	72.27N	136.46W	10PM	1PM	11542.4	12000	457.6	NO
A.19	11/09/2009	72.12N	136.19W	71.51N	135.54W	13:30AM	2:30AM	12000	12339	339	NO
A.20	11/09/2009	71.11N	133.12W	71.06N	131.29W	11:10AM	2:10PM	12339	12728	389	NO
-	Samples have	heen take	n from 7 m	water der	th Note th	at some of t	he filters are	contaminate	1		·

Table 8: List of underway samples taken for alkenones and biomarkers analysis Table 8. List of underway samples taken for alkenones and biomarkers analysis (GFF filters)

Samples have been taken from 7 m water depth. Note that some of the filters are contaminated

Table 9: List of large volume in-situ pump samples collected for alkenones and biomarkers analysis

		Sta	ation S1 (69º30')	<u>N; 137º59'W</u>	; Depth: 58m)							
				Event 2								
PUMP	Depth		Vol. fi	ltered								
#	m	QMA	Flowmeter (L)	Computer (I	L) Analysis/Comments							
1	10	х	0	25.78	sudden flow obstruction							
3	50	Х	47.9	60.4	min flow reached							
For alke	For alkenones only											

		Stat	tion S2 (70	<u>0°00'N; 138°30'</u>	W; Depth: 26	<u>i0m)</u>						
				Event 13								
PUMP	Depth		MnO2	Vol. fi	ltered							
				Flowmeter	Computer							
#	m	QMA	Cart.	(L)	(L)	Analysis/Comments						
1	10	х	Х	0	17.64	sudden flow obstruction						
2	50	х	Х	108.5	495.1	min flow reached						
3	100	х	х	166.5	209.98	min flow reached						
4	150	х	х	946.2	995.49							
5	200	Х	Х	352.6	386.22	sudden pressure release						
For alke	For alkenones and radium isotones only											

For alkenones and radium isotopes only

		<u>Station L1 (71º06'N; 139</u>	^o 10'W; Depth: 2000m)
		Event	<u>t 20</u>
PUMP	Depth	MnO2	Vol. filtered

nts
uction
uction
elease
uction

		Station L2		137 ^o W; Depth:	<u>3300m)</u>	
			Eve	ent 47		
		FILTER				
PUMP	Depth	TYPE	MnO2	Vol. fi	iltered	
				Flowmeter	Computer	
#	m	QMA	Cart.	(L)	(L)	Analysis/Comments
						Sudden flow
1	25	Х	Х	0	3.71	obstruction
2	250	Х	Х	863.73	938.58	
3	400	Х	Х	778.3	862.01	
4	800	Х	Х	686	800.21	low batteries
6	1200	Х	Х	0	1.12	Sudden pressure release
		Station L1.1	<u>(72º31'N; 1</u>	<u>.36°41'W; Dept</u>	<u>h: 2530m)</u>	

Station L1.1 (72º31'N; 136º41'W; Depth: 2530m)
Event 65

				Lvent 05		
		FILTER				
PUMP	Depth	TYPE	MnO2	Vol. fi	ltered	
#	m	QMA	Cart.	Flowmeter (L)	Computer (L)	Analysis/Comments
1	Chl max	Х	Х	531.6	562	min flow reached; filter ripped
2	250	Х	Х	612.36	901	filter ripped
3	400	Х	Х	814.6	879	
4	600	Х	Х	782.8	927	low batteries
5	800	Х	Х	996.1	1020	filter ripped
6	1000	Х	Х	0	0	stopped by user
75.00	مرمعه متعاط					

75m = chloro max

4.9 Natural Variations in Silicon Isotopes

(D. E. Varela, M. T. Hernandez Sanchez)

Our knowledge of the biogeochemistry of marine silicon (Si) lags behind that of other nutrients mainly due to inherent limitations of the methods currently used to measure Si production and dissolution. An alternative for studying Si cycling and silica production over broader spatio-temporal scales is to use the variations in the natural abundance of Si isotopes (δ^{30} Si) in surface waters and suspended diatom silica. Surface water variations of δ^{30} Si are due to the biological fractionation of Si isotopes by diatoms, as diatoms discriminate against the heavy ³⁰Si isotope. Thus, δ^{30} Si in dissolved Si and biogenic silica increases as diatom production intensifies in surface waters. Because diatoms are one of the largest contributors to carbon fixation in most marine systems, it is critical to understand their effects on nutrient biogeochemistry in past and present oceans.

During the GEOTRACES cruise, we obtained water samples for the measurement of δ^{30} Si in dissolved Si (δ^{30} DSi) and particulate (δ^{30} bSiO₂) silica. Water samples for dissolved Si were taken at various depths in the water column with the regular rosette, and particulate samples were taken both with large-volume in-situ pumps at selected stations and with an underway continuous pumping system located in the engine room, which recovered water from 7 m depth; typically filtering 100 to 300 L (Fig. 2 & 3). We also obtained samples for biogenic Si (bSiO₂) and dissolved Si concentrations at the same depths as those sampled for δ^{30} DSi. Water samples for δ^{30} DSi were filtered (0.6 µm PC) and the filtrate was stored for further analysis ashore. Samples for biogenic Si (bSiO₂) concentrations were also filtered (0.6 µm PC) and filters were dried and stored for further analysis ashore. Filters (Supor) from the underwater pumps and underway system were dried and stored for further analysis ashore (Table 11).

Table 10: List of samples taken for the measurement of silicon isotopes in the dissolved fraction (δ^{30} DSi) and biogenic silica concentrations ([bSiO₂]) at each station.

Event # 1. Shahow bloogical rosette					
Depth (m)	$[bSiO_2](L)$	δ^{30} DSi (L)	Bottle		
5	2	4	21/22		
15	2	4	13/14		
35	2	4	8		
100	2	4	2		

Station S1.				
Event # 1. Shallow biological rosette				

Event # . Shallow biological rosette					
Depth (m)	[bSiO ₂] (L)	δ^{30} DSi (L)	Bottle		
3	2	4	22		
15	2	4	18		
45	2	4	14		
75	2	4	10		
100	2	4	3		

Station S2 vent # . Shallow biological rosette

Event # 4. Biogeochemical cast

	Event # 1. Biogeoenenneur eust					
Ē	Depth (m)	[bSiO ₂] (L)	δ^{30} DSi (L)	Bottle		
	125	2	2	11		
ſ	150	2	2	9		
ſ	175	2	2	6		
ſ	200	2	2	4		

Station L1 Event #16. Biology cast

Depth (m)	[bSiO ₂] (L)	δ^{30} DSi (L)	Bottle
22	2	4	22
50	2	4	18
85	2	4	14
126	2	4	10
150	2	4	6
200	2	4	2

Event #18. Biogeochemical cast

Depth (m)	[bSiO ₂] (L)	δ^{30} DSi (L)	Bottle
2	2	4	23
250	2	4	21
300	2	4	19
400	2	4	17
500	2	4	13
800	2	4	11
1000	2	4	9
1200	2	4	7
1399	2	4	5
1699	2	4	3

Event #25

Depth (m)	[bSiO ₂] (L)	δ^{30} DSi (L)	Bottle
10	2	4	21

Stati	on L2
Invent #38	Biology ca

	Envent #38.		
Depth (m)	[bSiO ₂] (L)	δ^{30} DSi (L)	Bottle
2.7	2	4	22
10	2	4	18
30	2	4	14
54.6	2	4	10
100	2	4	6
125	2	4	2

Event# 40

	Дтенк	an 10	
Depth (m)	[bSiO ₂] (L)	δ^{30} DSi (L)	Bottle
10		4	20

Depth (m)	[bSiO ₂] (L)	δ^{30} DSi (L)	Bottle
150	2	2	24
200	2	2	22
250	2	2	20
300	2	2	19

Event #42. Biogeochemical cast

400	2	2	17
500	2	2	15
600	2	2	14
800	2	2	12
1000	2	2	11
1200	2	2	9
1400	2	2	8
1600	2	2	7
1800	2	2	6
2000	2	2	5
2250	2	2	4
2500	2	2	3
2750	2	2	2
3000	2	2	1

Station L3 Event# 52

Depth (m)	[bSiO ₂] (L)	δ^{30} DSi (L)	Bottle
3.1	2	4	23
10	2	4	19
32	2	4	14
60	2	4	10
115	2	4	6
140	2	4	2

Event #56

Depth (m)	[bSiO ₂] (L)	δ^{30} DSi (L)	Bottle
150	2	4	24
200	2	4	22
300	2	4	20
400	2	4	19
500	2	4	17
600	2	4	15
800	2	4	14
1000	2	4	12
1200	2	4	11
1400	2	4	9
1600	2	4	8
1800	2	4	7
2000	2	4	6
2250	2	4	5
2500	2	4	4
2750	2	4	3
3000	2	4	2
			1

	Lven		
Depth (m)	[bSiO ₂] (L)	δ^{30} DSi (L)	Bottle
3	2	4	23
10	2	4	19
25	2	4	14
70	2	4	10
115	2	4	6
140	2	4	2

Station L1.	.1
Event #63	3

Event	#65

	Liten		
Depth (m)	$[bSiO_2](L)$	δ^{30} DSi (L)	Bottle
175	2	2	24
200	2	2	22
250	2	2	20
300	2	2	19
350	2	2	17
400	2	2	16
450	2	2	14
500	2	2	13
600	2	2	12
800	2	2	10
1000	2	2	9
1200	2	2	7
1400	2	2	6
1600	2	2	5
1800	2	2	4
2000	2	2	3
2250	2	2	2
2500	2	2	1

IDSTARTSTARTENDENDSTARTENDSTARTENDSTARTENDFILTEREDATICA129/08/200969.29N137.59W27030030YESA229/08/200969.29N137.59W30034343YESA329/08/200969.5N138.20W70N138.86W8:50AM10:30AM34338037YESA431/08/200970.43N138.44W70.9N138.86W7:45AM11AM403592189NOA531/08/200971.1N138.85W71.04N139.85W10AM11:45AM592.6618.525.9YESA631/08/200971.04N139.07W71.05N138.96W11.45AM1:20PM31867052YES	ΓAMIN N
A129/08/200969.29N137.59W27030030YESA229/08/200969.29N137.59W30034343YESA329/08/200969.5N138.20W70N138.86W8:50AM10:30AM34338037YESA431/08/200970.43N138.44W70.9N138.86W7:45AM11AM403592189NOA531/08/200971.1N138.85W71.04N139.85W10AM11:45AM592.6618.525.9YESA631/08/200971.04N139.07W71.05N138.96W11.45AM1:20PM31867052YES	N
A229/08/200969.29N137.59W30034343YESA329/08/200969.5N138.20W70N138.86W8:50AM10:30AM34338037YESA431/08/200970.43N138.44W70.9N138.86W7:45AM11AM403592189NOA531/08/200971.1N138.85W71.04N139.85W10AM11:45AM592.6618.525.9YESA631/08/200971.04N139.07W71.05N138.96W11.45AM1:20PM31867052YES	
A329/08/200969.5N138.20W70N138.86W8:50AM10:30AM34338037YESA431/08/200970.43N138.44W70.9N138.86W7:45AM11AM403592189NOA531/08/200971.1N138.85W71.04N139.85W10AM11:45AM592.6618.525.9YESA631/08/200971.04N139.07W71.05N138.96W11.45AM1:20PM31867052YES	
A431/08/200970.43N138.44W70.9N138.86W7:45AM11AM403592189NOA531/08/200971.1N138.85W71.04N139.85W10AM11:45AM592.6618.525.9YESA631/08/200971.04N139.07W71.05N138.96W11.45AM1:20PM31867052YES	
A531/08/200971.1N138.85W71.04N139.85W10AM11:45AM592.6618.525.9YESA631/08/200971.04N139.07W71.05N138.96W11.45AM1:20PM31867052YES	
A6 31/08/2009 71.04N 139.07W 71.05N 138.96W 11.45AM 1:20PM 318 670 52 YES	
A7 02/09/2009 71.07N 139.18W 9:45AM 11:40AM 5594.9 5976.4 381.5 NO	
A8 02/09/2009 71.15N 139.11W 71.41N 138.3W 4:20PM 6:40PM 6405 6794.1 389.1 NO	
A9 02/09/2009 72.27N 139.19W 72.50N 139.28W 11PM 1.05AM 6815 7026.4 211.4 NO	
A10 03/09/2009 73.56N 139.40W 74.22N 138.28W 12:55PM 3:15PM 7062.6 7389 326.4 NO	
A11 03/09/2009 74.39N 137.22W 07:05PM 9:10PM 7394.9 7754.4 359.5 NO	
A12 04/09/2009 74.35N 137.07W 12:40 03:15 7758.2 8209.5 451.3 NO	
A13 05/09/2009 74.24N 136.26W 01:30 03:30 8215.8 8595.2 379.4 NO	
A14* 06/09/2009 74.22N 135.59W 74.22N 135.07W 1:45AM 3:20AM 8619 8718.6 99.6 NO	
A15 06/09/2009 75.36N 133.22W 74.28N 133W 2:05PM 4:20PM 8724.5 8999.3 274.8 NO	
A17* 06/09/2009 74.28N 133.36W 74.30N 134.35W 9:30PM 11:30PM 8999.5 9132 132.5 NO	
A18.L3 07/09/2009 75.19N 137.37W 9136.7 9462.2 325.5 NO	
A19.L3 07/09/2009 75.16N 137.44W 2:30PM 4:15PM 9462.3 9802.8 360.5 NO	
A20 08/09/2009 74.29N 136.59W 74.11N 136.44W 9802.5 10163.2 360.7 NO	
A21 08/09/2009 72.47N 135.23W 72.37N 136.50W 1:30PM 3:30PM 10163 10321.2 158.2 NO	
A22 08/09/2009 72.30N 136.35W 10321.2 10726 404.8 NO	
A23 09/09/2009 71.29N 136.35W 10726.8 11031.5 304.7 NO	
A24 09/09/2009 72.80N 136.45W 11031.5 11461.5 430 NO	
A25 10/09/2009 72.27N 136.46W 72.12N 136.19W 10:30PM 12:30AM 11462.2 11754.5 292 NO	
A26 11/09/2009 71.17N 134.33W 71.11N 133.12W 9AM 11AM 11754 12109 355 NO	

Table 11. List of underway samples taken for silicon isotopes measurements in the particulate fraction (δ^{30} bSiO₂).

*Ice clogged the line while filtered. Therefore the volume filtered is smaller than usual

Fig. 2: Underway filtration unit in the engine room

Underway samples for biomarker analysis (GFF filters)

Underway samples for Si isotopes (Supor filters) (Photos taken by M.T. Hernandez Sanchez)

4.10 Natural Variations in Nitrogen Isotopes in Nitrate (Samples collected by J. Gagnon for D. Sigman)

Seawater samples were collected with a syringe and filtered through a GFF filter. These samples were used for nutrient analysis and 60 ml aliquots were stored at -20°C for d15N-nitrate analysis (see appendix for list of nutrient samples)

4.11 Large volume in-situ pumps (R. Francois, M. Soon, B. De Baere; N. Sutherland)

Six large volume in-situ pumps (McLane) were deployed simultaneously at different depths to obtain samples of suspended marine particles. Two types of filters were used:

- Supor $0.8\mu m$ pore size to measure ²³⁰Th, ²³¹Pa, ²³⁴Th, Ca, Al, Si, P.
- QMA 0.8µm pore size to measure POC, PON, ²³⁴Th and alkenones.

Supor: A punch was taken from the filter to measure ²³⁴Th by beta counting on board or later at IOS. The remainder was stored frozen and dried a few days later. The other elements and isotopes will be measured at UBC.

QMA: A punch was taken from the filter to measure 234 Th by beta counting on board or later at IOS. The remainder was stored frozen at – 80° C to measure alkenones (Markus Kienast, Dalhousie U.)

During the QMA casts, two cartridges of MnO2-impregnated fibers were also mounted in series to measure ²²⁸Ra/²²⁶Ra (Erika Bousserez; Dalhousie U.).

We also performed Supor casts to collect particle for silicon isotopes measurements (Diana Varela, U. Victoria)

 Table 12: List of samples obtained with in-situ large volume pump

	<u>Station S1 (69°30'N; 137°59'W; Depth: 58m)</u>							
			Event 2					
PUMP	Depth		Vol. filtered					
#	m	QMA	QMA Flowmeter (L) Computer (L) Analysis/Comments					
1	10	Х	0	25.78	sudden flow obstruction			
3	50	Х	47.9	60.4	min flow reached			
For alkenones only								

<u>Station S2 (70°00'N; 138°30'W; Depth: 260m)</u> Event 13									
PUMP	Depth		MnO2						
				Flowmeter	Computer				
#	m	QMA	Cart.	(L)	(Ľ)	Analysis/Comments			
1	10	Х	Х	0	17.64	sudden flow obstruction			
2	50	Х	Х	108.5	495.1	min flow reached			
3	100	Х	Х	166.5	209.98	min flow reached			
4	150	Х	Х	946.2	995.49				
5	200	х	Х	352.6	386.22	sudden pressure release			
F 11		1 1'	• ,	1		-			

For alkenones and radium isotopes only

<u>Station L1 (71º06'N; 139º10'W; Depth: 2000m)</u> Event 20									
PUMP	Depth		MnO2	Vol. fi					
#	m	QMA	Cart.	Flowmeter (L)	Computer (L)	Analysis/Comments			
1	10	Х	х	0	11.46	sudden flow obstruction			
2	250	Х	х	0	87.9	sudden flow obstruction			
3	500	Х	х	776	857.6				
4	750	Х	х	960.5	1026.49				
5	1000	х	х	170.7	183.69	sudden pressure release			

6	1500	Х	x 53.6		48.84	sudden flow obstruction
PUMP	Depth		Vol.	filtered		
			Flowmeter	Computer		
#	m	SUPOR	(L)	(L)	Analysis/	Comments
						due to winch
1	10	Х	0	0	problems	
2	250	Х	0	0		
3	500	Х	0	0		
4	750	Х	0	0		
5	1000	Х	0	0		
6	1500	Х	0	0		
			Eve	ent 26		
PUMP	Depth		Vol. filtered			
	1		Flowmeter	Computer		
#	m	SUPOR	(L)	(Ĺ)	Analysis/	Comments
1	25	Х	1187.2	1114.34		
2	100	Х	285.3	1089.93		
3	250	Х	1021.3	1044.42		

	4	400	Х	1370.8	1233.52	
	6	800	Х	78.3	832	sudden flow obstruction
Ean al	1:	instance				

For silicon isotopes

<u>Station L2 (74°30'N; 137°W; Depth: 3300m)</u> <u>Event 37</u>

		FILTER			
PUMP	Depth	TYPE	Vol. fi	ltered	
			Flowmeter	Computer	
#	m	SUPOR	(L)	(L)	Analysis/Comments
1	25	Х	211.8	223.29	Sudden pressure release
2	250	Х	1005.1	1039.71	
3	400	Х	1008.3	1036.09	
4	800	Х	822.5	923.99	low batteries
6	1200	Х	1.6	1.59	Sudden pressure release

Event 47

PUMP	Depth	FILTER TYPE	MnO2	Vol. fi	ltered	
	•			Flowmeter	Computer	
#	m	QMA	Cart.	(L)	(L)	Analysis/Comments
1	25	Х	Х	0	3.71	Sudden flow obstruction
2	250	Х	Х	863.73	938.58	

3	400	х	Х	778.3	862.01	
4	800	х	Х	686	800.21	low batteries
6	1200	х	Х	0	1.12	Sudden pressure release

Event 50

		FILTER			
PUMP	Depth	TYPE	Vol. fi	ltered	
			Flowmeter	Computer	
#	m	SUPOR	(L)	(L)	Analysis/Comments
1	25	Х	0	1.42	sudden flow obstruction
2	100	Х	41.58	149.01	sudden pressure release
3	250	Х	923.6	999	
4	400	Х	1030	1098.77	
6	800	Х	45.1	44.44	sudden pressure release

For silicon isotopes

<u>Station L3 (75°17'N; 137°30'W; Depth: 3485m)</u> <u>Event 53</u>

		FILTER			
PUMP	Depth	TYPE	Vol. fi	ltered	
			Flowmeter	Computer	
#	m	SUPOR	(L)	(L)	Analysis/Comments
1	50	Х	797.8	751	
2	250	х	720.09	748	
3	400	Х	759.4	772	
4	700	Х	731.7	774	
5	1000	Х	746.5	761	
					forgot to program
6	1300	Х	0	0	pump

<u>Station L1.1 (72°31'N; 136°41'W; Depth: 2530m)</u> <u>Event 60</u>

		FILTER			
PUMP 1	Depth	TYPE	Vol. fi	ltered	
			Flowmeter	Computer	
#	m	SUPOR	(L)	(L)	Analysis/Comments
1	75	Х	464.4	482	min flow reached
2	250	х	745	770	
3	400	Х	767	779	
4	600	х	746.6	785	
5	800	х	25.3	25.1	sudden pressure release
6	1000	х	17.5	23.74	sudden pressure release
75m - chl	oro may				-

75m = chloro max

				Event 65		
		FILTER				
PUMP	Depth	TYPE	MnO2	Vol. fi	ltered	
#	m	QMA	Cart.	Flowmeter (L)	Computer (L)	Analysis/Comments
1	Chl max	Х	Х	531.6	562	min flow reached; filter ripped
2	250	Х	Х	612.36	901	filter ripped
3	400	Х	Х	814.6	879	
4	600	Х	Х	782.8	927	low batteries
5	800	Х	Х	996.1	1020	filter ripped
6	1000	Х	Х	0	0	stopped by user
75m = chloro max						

			Event 73		
		FILTER			
PUMP	Depth	TYPE	Vol. fi	ltered	
			Flowmeter	Computer	
#	m	SUPOR	(L)	(L)	Analysis/Comments
	Chl max				
1	(75)	Х	558.4	569	
2	100	x	637.7	690	
3	250	х	720.8	749	
4	400	х	732.4	773	
5	800	х	782.1	776	
					sudden flow
6	1000	х	1.1	1.1	obstruction
	nloro max				
For Si iso	otopes				

4.12 Seawater sample collection for Cr isotopes measurements (M. Amini)

Reduction of soluble Cr(VI) to insoluble Cr(III) is associated with mass-dependent isotopic fractionation with the preferential reduction of the lighter isotopes. This might enable isotopic studies to better understand the processes behind Cr redox changes, to improve our understanding of the oceanic Cr cycle and to develop Cr isotopes as an ocean paleo-redox proxy.

During the cruise, a profile from the shelf region to deep open ocean water as well a depth profiles at each station were taken. The samples were taken either from the CTD/rosette or the TM rosette, drawn through 0.45μ m Supor-Filters in precleaned 20L-cubitainers after having rinsed them with the sample itself. The samples were then kept frozen at natural pH (-10°C) until processed in the homelab. For each sample, salinity

had been determined on board using standard method. Sample amount, location and depth are listed in Table 12).

	Station	Event#	Amount [L]	Depth [m]	Rosette
1	S 1	3	10	10	Ship
2		5	10	50	Ship
3	S1.1	6	10	100	Ship
4		7	10	10	Ship
5	S1.2	8	10	100	Ship
6		9	10	10	Ship
7	S2	12	10	100	Ship
8		14	10	10	Ship
9	L1	29	20	10	Ship
10			20	50	Ship
11			20	100	Ship
12			20	200	Ship
13			20	250	Ship
14			20	300	Ship
15			20	400	Ship
16			20	600	Ship
17			20	800	Ship
18			20	1000	Ship
19			20	1500	Ship
20			20	1700	Ship
21			5	1698.5	ТМ
22			11	9.6	ТМ
23	L2	48	11	9.9	ТМ
24			11	50.5	ТМ
25			11	120.3	TM
226			11	201.1	ТМ
27			11	350.2	ТМ
28			11	600.5	ТМ
29			11	999.8	ТМ
30			11	1499.5	ТМ
31			11	2000.1	ТМ
32			11	2500.5	ТМ
33			11	2751.3	ТМ
34	L1.1	64	11	10.6	ТМ
35			11	50.2	ТМ
36			11	100.1	ТМ
37			11	200.6	ТМ
38			11	250.1	ТМ

Table 12: Sample list for Cr isotope analyses. Station and Cast# as referred in Fig. 1, 'Ship' refers to the ship's rosette and TM to the Trace metal rosette.

39	11	300.1	TM
40	11	400.2	ТМ
41	11	599.6	ТМ
42	11	1000.2	ТМ
43	11	1500.5	ТМ
44	11	2000.2	ТМ
45	11	2400.1	TM

4.13 Sampling for Nd Isotope analyses (M. Amini, R. Francois)

The Nd isotope signature of ocean water appears to reflect continental sources without being altered by biological fractionation. If true, Nd isotopic compositions of ocean waters could thus provide a powerful tool as tracer for water masses and ocean circulation. However, to date the application of Nd isotopes as a circulation tracer and paleocirculation proxy has been hindered by a poor understanding of the processes whereby seawater acquires it Nd isotopic composition. Because Pacific and Atlantic seawater have very different Nd isotopic composition, following the Nd isotopic composition of Pacific waters as they transit trough the Arctic could reveal these processes. Water samples were taken by the ship's rosette at 3 stations along the transect at various depths (Tab. 13). About 20L (where available) were drained and filtered through an Acropak cartridge (0.45 μ m) into either cubitainers or jerrycans that were prerinsed by the sample and acidified with HCl (6N or conc.) to pH2.

	Station	Event#	Depth [m]	Amount [L]
1	L1	21	10	20
2			50	20
3			100	20
4			200	20
5			250	20
6			300	20
7			400	20
8			600	20
9			800	20
10			1000	20
11			1500	20
12			1700	20
13	L2	41	10	21
14			50	23
15			100	23
16			180	21
17			250	23
18			350	23

Table 13: Sample list for Nd isotope analyses.

19			600	21
20			1000	23
21			1500	21
22			2000	11.5
23			2500	23
24			3000	11.5
25	L1.1	73	10	23
26			50	23
27			100	23
28			200	23
29			250	23
30			300	23
31			400	23
32			600	23
33			800	11.5
34			1000	23
35			1500	23
36			2000	23

4.14 Dissolved ²³⁰Th and ²³¹Pa & ¹²⁹I (R. Francois, M. Soon, B. De Baere)

Dissolved ²³⁰Th and ²³¹Pa were measured over the entire water column to document recent changes in deep water circulation and particle scavenging. Samples for measuring ¹²⁹I (John N. Smith; BIO) were taken simultaneously to confirm the changes in circulation deduced from dissolved ²³⁰Th and ²³¹Pa.

For dissolved ²³¹Pa and ²³⁰Th, 20L samples were collected by closing two bottles per depth. Seawater was quickly drained from the rosette and brought to the laboratory for filtration through an Acropak cartridge (0.45 μ m) using a peristaltic pump and for storage in a disposable cubitainer. The samples were then acidified to pH 2 with concentrated HCl and spiked with pre-weighed quantities of ²³³Pa, ²²⁹Th and FeCl₃ [aliquots of standard solutions precipitated with Fe hydroxide]. Acidified samples were left to equilibrate for 12 to 24 hours and their pH adjusted to 8-9 to precipitate Fe hydroxide and scavenge ²³¹Pa, ²³³Pa, ²³⁰Th and ²²⁹Th. The precipitates were let to settle to the bottom of the cubitainer over 12 to 24 hours and recovered by suction with a peristaltic pump into a 1L plastic beaker for final settling and centrifugation into a 50 ml centrifuge tube for transport to UBC.

Table 14: Sample list for dissolved ²³⁰Th, ²³¹Pa, and ¹²⁹I

Station L1 (71°06'N; 139°10'W; Depth: 2000m)

Ζ	salinity	I-129	Pa/Th
m		L	L

25	0.5	1	10
25	0.5		10
100	0.5	1	10
100	0.5		10
250	0.5	1	10
250	0.5		10
350	0.5	1	10
350	0.5		10
500	0.5	1	10
500	0.5		10
600	0.5	1	10
600	0.5		10
750	0.5	1	10
750	0.5		10
900	0.5	1	10
900	0.5		10
1000	0.5	1	10
1000	0.5		10
1200	0.5	1	10
1200	0.5		10
1500	0.5	1	10
1500	0.5		10
1700	0.5	1	10
1700	0.5		10

Station L2 (74°30'N; 137°W; Depth: 3300m)

Ζ	salinity	I-129	Pa/Th
m		L	L
50	0.5	1	10
50	0.5		10
250	0.5	1	10
250	0.5		10
400	0.5	1	10
400	0.5		10
700	0.5	1	10
700	0.5		10

1000	0.5	1	10
1000	0.5		10
1300	0.5	1	10
1300	0.5		10
1600	0.5	1	10
1600	0.5		10
1900	0.5	1	10
1900	0.5		10
2200	0.5	1	10
2200	0.5		10
2500	0.5	1	10
2500	0.5		10
3000	0.5	1	10
3000	0.5		10
3390	0.5	1	10
3390	0.5		10

Station L3 (75°17'N; 137°30[']W; Depth: 3485m)

salinity	I-129	Pa/Th
	L	L
0.5	1	10
0.5		10
0.5	1	10
0.5		10
0.5	1	10
0.5		10
0.5	1	10
0.5		10
0.5	1	10
0.5		10
0.5	1	10
0.5		10
0.5	1	10
0.5		7.5
0.5	1	10
0.5		10
	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	L 0.5 1 0.5 1

2200	0.5	1	10
2200	0.5		7.5
2500	0.5	1	10
2500	0.5		10
3000	0.5	1	10
3000	0.5		7.5
3400	0.5	1	10
3400	0.5		10

Station L1.1 (72°31'N; 136°408'W; Depth: 2530m)

salinity	I-129	Pa/Th
	L	L
0.5	1	10
0.5		10
0.5	1	10
0.5		10
0.5	1	10
0.5		10
0.5	1	10
0.5		10
0.5	1	10
0.5		10
0.5	1	10
0.5		10
0.5	1	10
0.5		10
0.5	1	10
0.5		10
0.5	1	10
0.5		10
	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	L 0.5 1 0.5 1

4.15 Dissolved and particulate ²³⁴Th (N. Sutherland)

Dissolved and particulate ²³⁴Th were measured at 4 stations to quantify the export flux of organic carbon from surface to deep water. ²³⁴Th was also measured on punches of filters (QMA and Supor) obtained with the large volume in-situ pumps. Combining ²³⁴Th and ²³⁰Th data provides constraints on particle dynamics in the water column. Comparing

234Th data obtained with different filter types also provide a means of quantifying their relative filtration efficiency

General Comments on the Thorium Program

Sampling went well, although there was some delay in accessing the rosettes while gas sampling was done. Processing samples was generally smooth, although sometimes samples took a long time to filter. A few samples were filtered after hours of delay due to the extreme ship vibration and motion in the container on the foredeck, when icebreaking was underway – with anymore than ~25mL in the towers, the water would often jump out. A few lead bricks around the beta counter also had to be pushed back into place during these conditions. A major potential problem was averted when Sylvain Blondeau most capably created a 5mm lift slide out of Plexiglas for the beta counter, replacing the IOS one that was lost with the missing baggage. Also many thanks to all who helped out with pipettes and gloves etc. to replace my missing gear.

At the end of the cruise, the beta counter was packed for shipping back to Monaco, samples packaged for return to IOS via carry-on baggage, and equipment cleaned and placed into the container for eventual shipment to IOS.

Pump Punch Sample Method:

Pump filters, whether Supor or QMA, were sampled by punching a 25mm hole randomly, except avoiding any torn spots, through the filters. The filters were then placed on filter holders, and with the vacuum on, very gently rinsed with ~20mL DmQ to wash off salts. The filter towers were not used, as the filters did not extend completely to the edges. Once rinsed the filters were placed in a 53°C oven to dry, before mounting and beta counting.

Water Samples Method:

Water for particulate and total thorium samples were collected from Niskin bottles – generally emptying the designated Niskin into a collapsible carboy, about 8-10L per Niskin. This water was then kept cold and dark until separated into particulate and total aliquots.

Particulate Thorium

Four to six litres of water, well shaken, measured by graduated cylinder, one litre at a time, were filtered through a pre-combusted 25mm Tissue Quartz filter, using a vacuum pump with max 5psi suction. At the end, the grad cylinder and filter tower were rinsed with ~50-60mL DmQ water, to wash any stray particles down the sides, and rinse out salts. The filters were then placed in a 53°C oven to dry, before mounting and beta counting.

Total Thorium

Two litres of water, well shaken and measured by grad cylinder, were placed into a clean, pre-rinsed 2L bottle for treatment. Each sample was acidified with 10mL of 1:1 (6M) HCl, environmental grade, then shaken, and a pre-weighed Thorium230 spike (1g of 10dpm) added and allowed to sit for ~12 hours. Room temperature during this time

varied from about 8-20°C. At the end of this time the samples were neutralized to pH 8.1-8.3 (using pH paper) by the addition of ~ 5.6mL of conc NH4OH. 125uL of KMnO₄, 3g/L, was added, mixed, then 125uL of MnCl₂, 8g/L, added and the bottle well shaken. The bottles were then placed in an 80°C water bath for two hours, a maximum of 5 at a time. Afterwards the sample were allowed to come to room temperature, about 4-6 hours, then were filtered through 25mm pre-combusted TQ filters, again max 5psi suction. The bottles and filter towers were rinsed with ~50-60mL DmQ water. The filters were then placed in a 53°C oven to dry, before mounting and beta counting.

Beta Counting

The Malina group graciously left their Riso counter on board, set up in the forward starboard control container, with gases on, and a background already running but without any slides in position. As soon as Sylvain could make up a 5mm lift slide for me, I started a new background with this and the Malina sample holder slide in place, and ran it for about 76 hours before samples came on line. Samples were read to a moderate error level, <5% or $<\pm0.03$ cpm, in order to speed them along. About 40% were read onboard, with the rest transferred to the IOS counter as soon as possible.

At one point the gas line to the beta counter was crimped, which resulted in the program shutting down. Gas flow was restored and the system purged, all ran smoothly again afterwards.

Table 15: Sample list for dissolved and particulate ²³⁴Th (to convert sample ID into water depth, see ArcticNet rosette log files)

List of Th	norium 2	34 Samples T	aken								
		replicates from		e or pump	filter						
	_		-								-
Station	Event#	Sample Type	Source	Sample II		/in# if Dun	np, ID=Pun	on#			Comments
		туре		- II RUSEL	IC, ID-INISP	un π , ir Fun	ip, iD-Fuil	πp#			
L1	16	Total	Niskin	20	16	12	8	4	2		
		Particulate	Niskin	20	16	12	8	4	2		
	40	Tatal	Nielde		00	00	40	40			
	18	Total Particulate	Niskin Niskin	23 23	22	20 20		12 12A,12D			12A&D are doubled up, one to give blank
		i antealate	NIJAII	20	22	20	10	12/1,120			(see under filter blanks below)
											,
	20	QMA punch	Pump	2	3A,3B	4	5	6			#1 not sampled, as no pump flow
L2	38	Total	Niskin	20	16	12	8	4	3		
		Particulate	Niskin	20	16	12	8	4	3		
	41	Total	Niskin	5A,5B	6A,6B	500					1500m calibration cast for Th:U ratio
		Particulate	Niskin	5	6	5&6					5&6 is combination of leftover water
	42	Total	Niskin	23A,23B	21	18	16	13			
		Particulate	Niskin	23	21	18	16	13			
		0		-		-		-			IIC is filter bland
	37	Supor punch	Pump	1	2	3	4	6			#6 is filter blank, as no pump flow
	47	QMA punch	Pump	1A,1B	2	3	4	6		-	#1 are filter blanks, as no pump flow
		ann panon	- unp								
L3	54	Total	Niskin	21	16	12	8	4	3		
		Particulate	Niskin	21	16	12	8	4	3		
	56	Total	Niskin	23	21	18	16	13			
		Particulate	Niskin	23	21	18	16	13			
	53	Supor punch	Pump	1	2	3	4	5	6		#6 is filter blank, as no pump flow
										-	
L1.1	63	Total	Niskin	21	16	12	8	4	3		
		Particulate	Niskin	21	16	12	8	4	3		
	05	Tatal	N Lin Lón		0.1	40	454.450				
	65	Total Particulate	Niskin Niskin	23 23	21 21	18 18	15A,15B 15	11			
		anticulate	NISKII	20	21	10	10				
	60	Supor punch	Pump	1	2	3	4				#5&6 not sample, no pump flow
	64	QMA punch	Pump	1	2	3	4	5	6		#6 is filter blank, as no pump flow
	74	Supor punch	Pump	1	2	4	5	6		-	#6 is filter blank, as no pump flow
		Filler C'	4								
Blanks		Filter Blanks:	d original 2: 060909	5mm TQ fil FB1	ters: FB2					-	
			120909	-1	102					-	
		Filter Blanks:		e TQ filter	as ran ou	t of precut	ones:				
			120909	FB cut 1	FB cut 2	FB cut 3	FB cut 4				
		Particulate Fil	ter Blanks	aka din bla	anks: Filte	rs soaked	overniaht i	n filtered 1	500m SW	the	en rinsed with DmQ as per usual
		. and contract if					PFB41-4			,	
						ilters dout	oled on filte	er tower, h	owever, pa	artic	ulates on upper filter not evenly
		dispersed, an	a so only th	e one blan P1812D	K done.					-	
				F 1012D						-	
		Total Filter Bl	anks: used	2L DmQ p	er blank a	nd followe	d complete	e total Tho	rium metho	od.	
			100909	TB A	TB B						
		0	10 miles		a alta a f	in ali data d					
		Supor and QN often sampled			s above for	Individual	casts. Fo	r numerou	s pumps, i	Ine	e was no flow rate, so these filters were
		onen samplet	i to use as l	Jianns.						1	

4.16 Dissolved ²²³Ra, ²²⁴Ra, ²²⁶Ra and ²²⁸Ra (E. Sternberg-Bousserez)

Helmuth Thomas's group (Dalhousie U.) is interested in carbon exchange between the shelf and the open ocean. In the GEOTRACES program, its aim is to use the radium isotopes to quantify this exchange in the Beaufort Sea. Seawater samples were collected using in-situ pumps and the ship's rosette during the GEOTRACES cruise (leg 3a). The seawater collected with the rosette was filtered onboard the ship on an acrylic fiber coated with MnO₂ and the same fiber was used with the in situ pumps. The fibers will be analyzed in the lab for the long-lived Ra isotopes (²²⁶Ra and ²²⁸Ra) using gamma spectrometry, and when possible for the short-lived Ra isotopes (²²³Ra and ²²⁴Ra) using an alpha counter (see table). Alpha counting of the short-lived isotopes was started during the cruise.

station	S 1	S1.1	S1.2	S2	L1	L2	L1.1
depth	10	10	10	10	10	10	10
(m)	50	100	100	100	100	50	75
				150	250	100	100
				200	500	250	250
					750	400	400
					1000	700	600
					1500	1000	800
							1000

- Samples collected with the rosette

In red: cubitainer leaked, sample lost

In green: samples to be analyzed for ²²³Ra, ²²⁴Ra, ²²⁶Ra and ²²⁸Ra (~ 270 L sampled per depth). A first count with the alpha counter was performed onboard for these samples. In blue: samples to be analyzed for ²²⁶Ra and ²²⁸Ra (100-140 L sampled per depth) In black: samples to be analyzed for ²²⁶Ra (10-12 L sampled per depth)

- Samples collected using the in-situ pumps

station	S2	L1	L2	L1.1
	10	10	25	75
	50	250	250	250
depth	100	500	400	400
(m)	150	750	800	600
	200	1000	1200	800
		1500		1000

In red: pumps did not work

In blue: less than 180L pumped, probably not enough to get a signal

4.17 Sea ice sampling for chemical parameters (K. Brown))

Sampling for inorganic and organic carbon parameters from sea ice was conducted opportunistically as part of a joint Geotraces & ArcticNet effort. When possible, cores of multi-year and 1st year ice were obtained and sectioned for the analyses of chemical tracer concentrations (DIC/TALK, 13C-DIC, 13C-POC, 18O, 13C-TOC, Salinity, & NH4) as per Table 18. Once cores were removed from the ice floe they were cut with a hand saw into 2x10cm sections and placed in gas tight tedlar bags. Once bags were sealed the head space was carefully removed using a Nalgene hand pump. Core sections were left to melt in the dark at room temperature in the Paleolab (~24hrs) and were then sampled through the use of a drawing tube off the side of the tedlar bag.

In addition to the bulk sea ice property samples, a small 230 volt Quiet One 800 aquarium pump was used to draw sea water from the core hole at a depth of 150cm. This water was collected in a clean (3x rinsed) 10L cubetainer and sampled for various chemical parameters once back on the ship (DIC/TALK, 13C-DIC, 13C-POC, 18O, 13C-TOC, Salinity, & NH4) as per table 18. Stations for chemical analyses within multi-year and 1st year ice were occupied adjacent to L1, L2, & L1.1.

Ikaite (CaCO₃·6H₂O) Precipitation in Multi-Year Sea Ice: The temperature core from L1 (Sept 1st) was saved in the -10deg cooler to sample for the presence of Ikaite mineral precipitates ($CaCO_3 \cdot 6H_2O$) in the multi-year pack ice. Looking at the temp/salinity profile from the core it was expected that the ice was too warm to have retained enough brine or even maintain a stable precipitate; however the core was processed anyway to practice the method. Since the core was so warm, it was thought that any dissolved CaCO₃·6H₂O still in the brine (if any brine was left) might re-crystallize at low temperature. The core was therefore left in the -10degC lab for 2.5 days before processing. Seven 10cm sections of the core with highest salinity were chosen and cut from Core 3 in the -10deg cold room and placed in clean (new) 1L plastic beakers and covered in parafilm for melting. The seven selected sections were then taken to the 4degC container on the heli deck (actual temp maintained between 6.5-8 deg) and slowly melted in an open Coleman cooler. After 11 hours of melting, samples were checked for melt progress every 5 hours and then more frequently once melt had progressed to $\sim 90\%$; temperature in the container and in the cooler were both recorded on each check of melt progress. Once samples were virtually completely melted, they were taken down to the filtration set up in the aft labs and evaluated for the presence of ikaite crystals following Dieckmann et al 2008. Although no Ikaite crystals are presumed to have been successfully isolated, samples of the collected particulates from the melts were saved on pre-weighted pre-combusted GF/F filters (ethanol washed) or preserved in 75% ethanol in cryovials in the -80deg freezer for possible analysis (or method tests) later in the lab.

 Table 18: Sea Ice Core & In Situ Pumping Samples

Station	Lat	Lon	Date	Time	Sample	Depth of Sample	13C- POC	DIC/TALK	13C- DIC	13C- TOC	180	salinity	NH4
L1	71.019	139.00458	31-Aug- 09	14:00	T & S Cores	Full Cores						x	
	71 107 10	100.00/00	01-Sep-	7.45	Core Section	07.50							
L1	71.12749	139.20603	09 01-Sep-	7:45	Core Section	37-59cm		X	XX	X	х	×	X
LI	71.12749	139.20603	09 01-Sep-	7:45	2 Core Section	115-135cm		X	XX	X	х	×	XX
L1	71.12749	139.20603	09 01-Sep-	7:45	3 Core Section	172-192cm		X	XX	×	х	×	XX
L1	71.12749	139.20603	09 [°] 01-Sep-	7:45	4 Core Section	240-260cm		x	XX	х	х	×	х
L1	71.12749	139.20603	09	7:45	5	337-357cm		x	xx	x	х	×	х
L1	71.12749	139.20603	01-Sep- 09	7:45	Core Section 6	403-423cm		×	xx	×	x	x	xx
L1	71.12749	139.20603	01-Sep- 09	7:45	Core Section 7	bottom 20		x	xx	×	x	x	x
L1	71.019	139.00458	31-Aug- 09	14:00	PUMP 1	130cm	x	xx	xx		xx	xx	
L1	71.019	139.00458	31-Aug- 09	14:00	PUMP 2	130cm	xx	xx	xx		xx	xx	
L1	71.12749	139.20603	01-Sep- 09	7:45	PUMP 3	150cm	xx	xx	xx		xx	xx	
L2	74 38.793	137 21.128	03-Sep- 09	19:15	Hand picked	surface		x	xx	xx	x	x	xx
L2	74 38.793	137 21.128	03-Sep- 09	19:15	Hand picked	surface		×	xx	xx	x	x	xx
L2	74 38.793	137 21.128	03-Sep- 09	19:15	Hand picked	surface	x		7.01				
L2	74 38.793	137 21.128	03-Sep- 09	19:15	Hand picked	surface							
			04-Sep-		Core Section		x						
L2	74 34.87	137 04.88	09 04-Sep-	11:50	Core Section	20-40cm		x	XX	XX		×	×
L2	74 34.87	137 04.88	09 04-Sep-	11:50	2 Core Section	40-60cm		×	XX	XX	x	X	X
L2	74 34.87	137 04.88	09 04-Sep-	11:50	3 Core Section	60-80cm		x	XX	x		X	x
L2	74 34.87	137 04.88	09 04-Sep-	11:50	4 Core Section	80-97cm		x	xx	XX		x	x
L2	74 34.87	137 04.88	09	11:50	5	100-120cm	1	×	xx	xx	x	×	x
L2	74 34.87	137 04.88	04-Sep- 09	11:50	Core Section 6	bottom 15cm		×	xx	x	×	x	x
L2	74 31.6	135 45.5	04-Sep- 09	18:30	Core Section	bottom 60cm	x				×		
L2	74 31.6	135 45.5	04-Sep- 09	18:30	PUMP 1	105cm	x	×	xx	xx	×	x	xx
L11			10-Sep- 09		Core Bottom	bottom 60cm	x				x		
LII			10-Sep- 09		PUMP 3	150cm		x	~~~	~~~		~	
			10-Sep-		Core Section		X		XX	XX	×	X	XX
L11			09 10-Sep-		I Core Section	20-40cm		X	XX	XX	×	X	X
L11			09 10-Sep-		2 Core Section	51-71cm		×	XX	XX	X	X	X
L11			09 10-Sep-		3 Core Section	96-116cm		x	XX	XX	X	x	XX
L11			09 10-Sep-		4 Core Section	138-158cm		×	XX	XX	×	x	XX
L11			09 10-Sep-		5 Core Section	172-192cm		x	xx	xx	x	x	XX
L11			09		6	bottom 20		х	xx	xx	×	x	x
L11			10-Sep- 09		PUMP 2	150cm	x	xx	xx		xx	x	x
L11			10-Sep- 09		Core Bottom	bottom 60cm	x				×		

5. Acknowledgements

We would like to thank Captain Julien and his crew for their professional support and exceptionally hard work during the cruise, which contributed much to the success of the expedition.

5. Appendices Appendix 1: Science log from the bridge (with associated GEOTRACES event numbers)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Event Locar	lout					~	ŗ	JURN	AL DI	ESAC	ITIVIT	JOURNAL DES ACTIVITÉS SCIENTIFIQUES	NTIFIÇ	UES
190 25 73 7.2 6.2 122.7 97 60 11 343 1.5 3 1006.6 96 58,4 11 341.15 3 1008.6 96 58,4 11 341.15 3 1008.6 96 58,4 11 341.15 3 1008.6 96 58,4 11 340 1 14.0 14.0 14.0 55,4 7 340 1 3 1008.5 94 55,4 7 340 1 14.0 14.0 14.0 55,4 7 340 1 3 14.0 14.0 55,2 10 355 14.0 14.0 14.0 55,2 11 140 2 3 10.0 58,7 11 140 2 3 10.0 58,5 17 14.0 3 10.0 12. 58,5 17 14.0 3 10.0 12. 58,17 14.0 3 14.0 12. 12. 58,17 140 2 3 10.0 58	DATE HEURE LATITUDE	HEURE			LONGITUDE	CAP	Activitês	PROF (M)	VE	NT	T° AIR	T° EAU	<u> </u>	Ним	GLACES
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	28/08 2100 Poo 41,6'N 1	2100 Toº 41,6'N	70° 41,6'N		26° 01,8'W	315	Ballon Meteo	190	25	095					\backslash
60 11 342 1.5 3.5 1006 96 58.4 11 341 1.8 3.7 10066 96 56 10 340 3.7 10085 94 56 10 340 1.9 1.92 90 56 10 340 1.9 1.92 90 55.4 7 340 1.9 1.92 90 55.4 7 340 1.9 1.92 1.92 90 55.4 7 340 1.9 1.92 2.72 2.92 90 52 11 140 2.2 3.7 1002 91 58 11 140 2.7 3.7 10062 91 58 11 140 3.7 10062 91 58 12 1.92 3.5 10062 91 58 17 1.92 3.5 10001 92 92							Tim,								
5&4 11 341 1.8 3.7 10086 94 56 10 340 3.1 3.7 10085 94 55.4 9 340 1.9 1.0 1.92 90 55.4 9 340 1.9 1.0 1.92 90 55.4 9 340 1.9 1.9 1.92 90 55.4 10 355 1.9 1.9 2.8 90 520 11 170 1.9 3.8 126 90 520 11 140 2.2 3.7 1002 91 5815 11 140 2.7 3.7 1056 91 581 11 140 2.7 3.7 1056 91 581 17 1.92 3.7 1006.2 91 91 581 17 1.92 3.7 1000.2 91 91 56 19		1	1		5759, 82W	288	Rosette 4	60	=	342	15	5		96	4
56 10 340 3.7 1008.5 944 55.4 7 340 1.9 140 179.9 90 55.4 7 340 1.9 140 140 188.7 90 520 14 170 1.4 3.8 126.7 90 520 14 170 1.4 3.8 126.7 90 520 11 140 2.7 3.7 1208.7 91 581.7 11 140 2.7 3.7 1208.7 91 581.7 11 140 2.7 3.7 1208.7 91 581.7 11 140 2.7 3.7 1208.7 91 581.7 110 2.7 3.7 1208.7 91 581.7 170 3.7 1208.7 91 581.7 170 3.7 1206.1 91 566 17 155 5.1 12.6 12.6	29-08 1832 69°39, 95N 13	1832 69°39, 95N 13	69°39, 95 N 13	Ξ	7°59,57w			58,4	1	34/	18	3.9	10086	96	¢
55.4 q 340 1.9 4_10 $102, q$ q_0 ϵ 55.0 10 355 1.9 4_10 $102, q$ q_0 50 4 170 1.4 3.8 $126, q_0$ q_1 50 4 170 1.4 3.8 $126, q_0$ q_1 $50, 10$ 252 8 140 1.9 3.8 $126, q_1$ q_1 $58, 7$ 11 140 2.2 3.7 $1026, q_1$ q_1 $58, 51$ 11 140 2.7 3.7 $1026, q_1$ q_1 $58, 51$ 17 140 3.7 $1006, 1$ 91 q_1 56 17 140 3.7 $1006, 1$ 91 q_1 56 19 130 4.8 3.6 $100, 1$ 92 $100, 1$ $100, 1$ $100, 1$ $100, 1$ $100, 1$ $100, 1$ $100, 1$ $100, 1$ $100, 1$ $100, 1$ $100, 1$ $100, 1$ $100, 1$ <th>27-08 1900 69°29,90N 13</th> <td>31900 69029,90N 13</td> <td>69°29,90N 13</td> <td>Ξ.</td> <td>7°59,06W</td> <td>24/</td> <td>thong squar</td> <td>56</td> <td>0</td> <td>340</td> <td>3,1</td> <td>3,9</td> <td>1008.5</td> <td>94</td> <td>þ</td>	27-08 1900 69°29,90N 13	31900 69029,90N 13	69°29,90N 13	Ξ.	7°59,06W	24/	thong squar	56	0	340	3,1	3,9	1008.5	94	þ
 \$\$550\$ 10\$ 355 1.9 \$\$20\$ 14\$ 170 \$\$20\$ 14\$ 170 \$\$20\$ 14\$ 170 \$\$20\$ 14\$ 170 \$\$21\$ 250 \$\$21\$ 11 \$\$140 \$\$22\$ 3.9 \$\$21\$ 12 \$\$140 \$\$22\$ 3.9 \$\$21\$ 1006.2 \$\$12 \$\$140 \$\$12\$ 100.2 \$\$12 \$\$140 \$\$15 \$\$12\$ 100.2 \$\$12 \$\$130 \$\$130 \$\$130 \$\$15 \$\$130 \$\$15 \$\$130 \$\$16 \$\$130 \$\$1000.5 \$\$12 \$\$120 \$\$12 \$\$120 \$\$12 \$\$120 \$\$12 \$\$120 \$\$12 <li< td=""><th>29-00 1948 690 200 N 13</th><td>1948 690 300'N 13</td><td>69° 300'N 13</td><td>ğ</td><td>7°58,9'W</td><td>32)</td><td>Eredect Pump J</td><td>55.4</td><td>9</td><td>340</td><td>1,9</td><td>U,0</td><td>P.CWA</td><td>90</td><td>1</td></li<>	29-00 1948 690 200 N 13	1948 690 300'N 13	69° 300'N 13	ğ	7°58,9'W	32)	Eredect Pump J	55.4	9	340	1,9	U,0	P.CWA	90	1
Rumps T 50 H 170 1.4 3.8 10.872 70 γ T 52 8 140 1.9 3.8 10.855 91 γ T 52 8 140 1.9 3.8 10.855 91 γ T 52 58 11 140 2.2 3.7 10.85 91 γ T 58 12 140 2.7 3.5 10.86 91 γ T 58 17 140 3.7 3.5 10.62 91 γ T 58 17 140 3.7 3.6 91 92 γ T 58 17 140 3.7 3.6 91 92 γ T 56 17 140 3.7 3.6 92 92 γ T 56 130 9.8 3.6 192 92 92 γ T 56 130 9.8 3.6 136 1001 92 γ T 56 130 9.8 3.6 1001 <	29-08 1955 69° 30,0 137	1955 69° 30,0'N 137	690 30,011 137	S	0 Sold W	311	Eredech Rumov 2ª	55,0	10	355	1,9	4.0	1002	8	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	29-08 2228 690 29, 137			137	57,2'W	140	Foredeck Rumos P	20		R	1,4	200	Kr.9.2	ê	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				133	0 58,0 W	280	mobs buoy A		8	140	1.9	3.9	1029S	16	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-			37	° 59,6W	135	Rosether #2 V	53,7		140	22	3,7	tako	9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2908 1147 69029,4 N 137			137	59,6W	134	Rore the #27	S%S		3	2,2	3.7	8200	32	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	70/08 0107 62"29.9" NI			137	w. 4. 65.		Rosette CTD #3 b	58		140	rt. M	3.6	1006.2	15	1
# 53.3 # 4 # 56 19 130 4.8 3.6 100 139 #4 7 56 19 130 4.8 3.6 100 189 #4 7 56 20 135 5.1 3.6 100 189 #4 7 56 20 135 5.1 3.6 100 189 \$21.1 6 136 16 097 4.4 3.9 1001 94 \$4 136 16 096 4.5 4.2 1001 6	30/08 0123 69°29.9'N 137	63°29, 9'W		137	m,0'6.5.1	083	Roselle CTD #37	56		155	3, 9	14	10001	5	
⁴⁴ t ² ⁵⁷ t ⁴ t ² ⁵⁷ 56 19 130 4.8 3.6 1004.1 89 ⁴⁴ t ² 56 20 135 5.1 3.6 1005.1 88 51.1 156 16 097 4.4 3.9 1001.6 94 ↑ 136 16 096 4.5 4.2 1001.6 93							574×50×51.1								
*4 7 56 20 135 5.1 3.6 1003.7 88 51.1 136 16 097 44 3.9 1001. 94 4 136 16 096 45 42 1001. 633	30/08 0306 69.29.9.4 13	N.5'62.69		13	m.58'3.4		Rosette CTD dy V (aioutee à STN "S1")	56	6/		9.7		1004.1	68	
51.1 51.1 51 1001 94 44 3.9 1001 94 94 45 42 1001 69 93	30/08 0318 69°30,1'N 17	69° 30, 1'N		m			Resette CTD 44 P				5.1	_	1003.7	00	
+ 136 16 097 4.4 3.9 1001 94 + 136 16 096 4.5 4.2 1001 8 93							51.			Ħ					
Rosette + 136 16 096 45 4,2 1001 8 93	30-08 0442 69°40.17 N 138°09,13W 101 Rosette.	0442 69°40.17 N	1 N.L. Ot of 1	-	88°09,13W	101				297.	4,4	3.9	1000	94	ġ
	30-08 0456 69°40. 164 138°09,016,1093	0456 69° 40. 16N 13	69° 40. 16N 13	5	8°09,016		4			2%	45	4,2	1001 63	33	d's

3	
''	
S	┝
2	
ē.	ŀ
13	
20	
00	

, ----,

DATE	HEURE	LATITUDE	LONGITUDE	CAP	ACTIVITÉS	PROF (M)	VENT		AIR	EAU	BARO	HUM	GLACES
7 30-08	0090	30-08 0600 69 40. 45 N 138 09, 69 080° Rosette +	138 09.690	080°		128	ΪΨ	080°4.4		43	4,3 1000694	94	Þ
30-08	0614	20-08 0614 69.40,521 138"09.73W078 Roselle A	138"09.73W	078°		130	<i>16</i>	083°4	44 1	4.2	083 4.4 4.3 1000,4 94	94	Ì
30-08	9733	\$ 30-08 0727 69°49, 89N 138°19,57 068 Rosette 4	138°19,57	068	#1	189°	Ŕ	067 3,1	3./	3,6	3.6 1005 96	96	Ø
30-08	0752	30-08 0752 69° 49.8	138° 20, 1 W 053 Rosette F	053	<i>(†)</i>	190	æ	056	80	3.3	056 2.8 3.3 103.6 97	47	φ
30-05	0837	69° 500'U	128° 20,5'W	057	8 20-08 0837 (3° 200'U 128° 20,5'W 057 ROSTE V #2	191	14	50	2,6	3.1	650 2,6 3,1 1003,6	84	110
30-08	0849	30-28 0849 69 20.01	138° 20,6'W CHS	Sto	Restre 1 #2	191	9	OUD ZS	S	3,1	1203,6	dр	1/10
30-08	0944	69° 503'N	138° 21,1'W	036	9 30-08 0944 69° 50341 138° 21,1 W 036 Rosette V #3	19 <i>5</i>	0	040	2.4	3,0	C40 2,4 3,0 1003.7	8	Ì
30-08	30-08 0951	69° 923'N	138° 21,1'W 048	048	Rosette 7 #3	194	1	o43 2,2		3.0	3.0 103.7	99	1
					Station S2								
80-020	106	7° 00,0'N	138° 30,2'U/	020		259	12	062 CS		22	2,2 1003.9	99	\
30-08 1144	1144	70° 00, 2'N 138° 30,8'W	138° 30,8° W	000		260	0	ce os		212	laH2	55	VID
11 30/08 1422	1422	70,00,52'N			- il	260	80	000		1.8	1005.6	99	1/10
30/08	30/08 1445	70°00,5' N	138° 30, 2 'W	109	Ballon Métés Jéploye	261	11	340	0.3	1.8	1005.9	ธีธ	1/10
30/08 1452	1452	70°00,5'N	138"30,2'~	460	Rosette biogeochem 7	260	11	335 6	0.3	1,8	1006,2	96	,/10
30/08 1519	1519	70.00°S'N	138°29,6'W	067	mobs buox V	260	16	335 C	0,3	1.8	1006.3	99	1/10
30-08	1816	V 30-08 1816 6937,621 13829.944 311 Rosette	138°29.74W	31/	4	356	32	319	-0,3	16	319 -0,3 1,6 1008,3 93	93	2
30-05	1833	30-08 1833 69°59,70N 138°30,07W 316	138 50,076	316	Rosette A	356	18	337-	0,0	116	327-0,6 1,6 108,6 93	93	N
30-08	1855	69°59,41.N	138 30, 32 41	344	13 30-08 1855 69 59,41 N 138 30, 32 w 344 deput deployment des prim 257	257	23		SO	319-05 1,5 109.		ß	11
30-08	1916	69°59,34W	138 30, 364	зų	30.08 1916 69°59,341 138°30,3601 341 Fix déployment brodict ours 257 20	257	30	318-05 15	os		1009	B	N
30-05	\$2308	69 58 6'11	122°52.3'W	355	30-08 2308 69 58,611 130032,31 W 355 EDRODER RUMOS A	H	22	310.	Olla	15	352 210 -10 15 1043	944	1/10

,	_
	+ e
	ŝ
	_
1	2
	ş
	2
	STS

L	DATE	HEURE	LATITUDE	LONGITUDE	CAP	P Activités	Prof (m)	VENT	T	T° AIR	T° EAU	P° BARO	HUM	GLACES
140	30/08	30/08 2355	69°54.2 0'N 138°34.71'W	138° 34.71'W	046	046 Récuperature à MOBS	\sim	22	8	-0,6	1,4	ior4.5	RP 72	$\frac{1}{10}$
5	51/08	9400	14 31/08 0048 7001, 41'N 138" 32, 86 W 024" Roselle	138°32,86'~	. 470	Roselle as 1	271	19	305 -1.4	H.I	1.2	1014 J	79	5
10	31/08	31/08 0108	70°01, 50'N	138,33,05'	033°	Rosette # 3 A	171	16	305	-1.6	1.2	1014.8	8£.	ξ
2	51/08	15 37/08 0137	70°01,37'N	138° 32, 31' w	032°	Moorpool Pump &	268	15	295	-1.9	1.1	1014.9	36	2
M	31/08	31/08 0308	70°01,99'N	138" 32,27'W	350°	350° Moonpool Purp 7	269	16	300	-2.0	0.98	1014.6	81	5
<u> </u>					+ -	C+1+1 11								
M	31/08	1418	71°05,55'N	~,65'00,62/	m	metes depluye	1911	Tr-	lio	2.0	0.11	6.6001	3B	01/t
10	16 31/08	1418	71° 05, 55 'N	251 M.65'00,681	352	41 biology cast	1161	ţ,	110	0.5	11'0	6.6001	8t.	01/2
M	31/08	1422	41"05.56 'N	238 m, 20'00.681	352	Ice Term deployee	1909	t.	201	0.5	11.0	6.6001	34	۰/۴
M	30/12	1500	N, 69'50.11	m 71 10,561	353	Helicoptere Septuye (Emtern) 1912	1912	6	100	1.4	0.12	1002.8	トセ	۰ <i>۱</i> ۲،
1.1	31-08 1548	1548	71 05, 83N 13901.41W		356	Rosathe A #1	E191	φ	109°	109 12"	0,12	0,12 1006,9 7S	₹S	810
	31-08	31-08 1617	71°05,95N	139°01, 49 w 357	357	Arriver de l'éclicoter.	igu	<i>j</i> 3	107 07	50	0,13	0,13 1006,3 83	83	B /10
2	31-08	1655	1 31-08 1635 71 06.04W 139 01, 52w	139°01,52w	357	Rosette 4 9N	1911	13	104 0,2		0,13	1006,	81	8/10
	31-08	1747	31-08 1747 71°06.32 N 39° 01.49 W 356 Rose He	139° 01.49W	356	4 out	ЧЧ	0	101	6'0 FOI	0,13	120081	83	1/10
1	31-08	1844	31-08 1844 91 66,41 139° 01,41W	139° 01,4W	336	EN SCAN HElk	619	io-15	iı3	60	0,/3	0,13 1007.1 85	85	8/10
	31-08	1859	31-08 1859 710 06,4 1 139001.4W	139° 01,4W		355 Arrive. EM scan tello 1942	1942	17	3	100-1,601	0,1	100615	88	8/10
-	31-08	ees	# 31-08 CCUS 71° 06,4'N 139° 01,4'W		335	Rosette V	2461	ΕI	6	-1,6 01		loo6.5	23	8/10
4	31-08	2010	\$ 31-08 2010 7,066,4'N 139°01,4'W	139° 01, 4'W	355		246	9	8	51-	0,1	100 -15 0,1 10061S	89	8110
Ċ	31-08	2017	\$31-08 2017 71°06,31 139° B1,5'W 353	139° B1, S'W	353	Rosette V	1913	20	EO EO	LIS	10	la6iS	39	8/10
5	31-08	2141	31-08 2141 71° 06.0'1 129° 02.5'1 352 Posette	11290 00 JUN	35	Rosethe A	1918 22	22	073	093-1,8		OI LOOR	ā	8/12

DES ACTIVITÉS SCIENTIFIQUES

DATE HEURE LATITUDE LONGITUDE CAP ACTIVITÉS $31-68$ 22CS 71° 0.5, 94% 139° 0.3, 4% 354 Mounhoil Pump V $01/09$ 0133 71° 0.5, 94% 139° 0.3, 4% 354 Mounhoil Pump V $01/09$ 0133 71° 0.5, 94% 139° 11, 9% 354 Wennhoil Wennhoil $01/09$ 0131 71° 0.5, 4% 139° 11, 9% 354 Wennhoil Wennhoil $01-09$ 07473 71° 0.5, 4% 139° 11, 9% 354 Wennhoil Wennhoil $01-07$ 0705 7705 7106, 4% 139° 11, 9% 350 Report Mole Mo $01-07$ 11/12 7106, 5% 139° 13, 31< 350 Report Indu Mo $01-07$ 11/12 71° 0.5, 4% 139° 13, 31< 350 Report Indu Mo $01-07$ 11/12 71° 0.5, 4% 139° 13, 53 350 Report Indu Mo $01-07$ 11/12 71° 0.5, 4% 139° 13, 53	1					5	2110 L1 (341R)				ľ				
351 354 354 358 358 358 358 358 358 358 358 358 358		DATE	HEURE	LATITUDE	LONGITUDE	CAP	Activités	PROF (M)	VENT	T	T° AIR	T° EAU	P° BARO	HUM	GLACES
354 354 358 358 359 359 359 359 357 350 350 350 350 357 350 357 357 357 357 357 357 357 357 357 357	0	31-08	2225	71°05,9'N	139° 03,4'W	351		1926	22	550	-1,6	0	laoSil	lβ	8/10
354 358 358 350 350 350 350 350 350 350 350 357 357 357 357 357 357 357 357 357 357	0	11/09		N.46'50,It.	133°08,87'w	354	4	1981	21	- 060	- 1.4	0.1	1004.6	3s	8/10
353 353 350 350 350 350 350 357 357 357 357 357 357 003	2	1/09		11°06,41'N	₩.12 °1 / 37. W	354	14	1982	22	030 -1.1		0.1	1004.1	94	8/10
350 350 350 350 350 350 350 350 357 357 357 357 357 357 357 357 357 357	0	60-10		71°07,64N	139°12,40w	353	≮	1982	18	101 -0,4	0,4	0,08	1002,2 94	94	3/10
350 350 350 350 350 350 350 357 357 357 357 357 357 357 357 357 357	0	1-09	Clos	7.º27.4'W	139° 11,9' W	350	<u>(-</u>	1982	16	697	0	Oil	1001,7	93	7/10
550 350 350 350 350 350 357 357 357 000 003	0	1-09	0912		139° 11,9'W	3S0		1982	ĘI	B	099 0,1 0,1	0,1	1:00Hrz	93	7/10
350 350 350 350 357 357 357 003	5	1-01	CH28	71°07,4'N	139 119W	<u> </u>	Posette Nd V	1990		295	045 01	10	10042	93	7/10
39° 12,51 W 250 39° 12,53 W 250 39° 14,63 W 350 39° 19, 26' W 350 39° 19, 26' W 357 39° 19, 26' W 357 39° 19, 26' W 357 39° 9, 10, 200 39° 19, 26' W 357 39° 9, 10, 200 39° 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	0	1-09	102	71.06.7. N	129.12.5.1	350	Routh nd A	1986	9	094 0.5	0.5	0	1002.35	91	7110
39"13,53" w 350 39"13,53" w 350 39"14.61" w 350 39"19.26" w 353 39"19.26" w 353 39"19.07 w 357 39"19.07 w 357 39"19.07 w 357	0	1-04	1047	1,000,8'N	139° 12,5'W	350	Recover helianter V	1987	8(095 0,5		0,1	loS, I	92	7/10
39"14, 63" w 350 39"14, 63" w 350 39"19, 26" w 353 39"19, 07 w 353 39"19, 07 w 357 39"19, 07 w 357 30"19, 00 w 357 30"	G	60/10			139"13,53' W	350	Scan Start (Kerni Ann)	6861	16	100	0.7	0.1	1005.2	92	71,0
002 m, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19	Ţ	0/10 to	1214		m , 26	350	Scan termine (Kerni Am) N/A	N/N	18	100	0.9	0.1	1005.1	92	3/,0
29°19, 12, 12, 14 29°19, 12, 14 29°19, 12, 14 29°19, 14, 15 29°19, 14, 15 29°29, 14, 10 29°20, 14, 10 20°20, 14, 1	3	60/10	1238	71"06,36"~	139°14,63°W	350	LV pump Maun Pool &	£.661	ť,	100	6.0	0.1.	1. 2001	92	۰1/1
39° 17,93' w 353 18° 18,26' w 353 39° 19,07 w 357 39° 19,07 w 357 39° 20,19,003°	0	50/10	1306		139°15, 26'W		m à bord	6661	16	105	1.1	1.0	1005.2	91	7/10
19"18,12" ~ 353 19"18,26" ~ 354 39"19,07" ~ 357 39"20, Aur 003"	0			71°04, 34° N	W. 26' 17,93'W		LV Pump Muunpool 7 (apération Annulée)	2015	13	10	1.3	0.1	1005.8	91	01/t
19"18.26" ~ 354 3919.07 ~ 357 3929.842 000 3920.122 053"	0				139°18,12°W	353	Photogrammetry debut	2015	/3	110	1.4	0.1	1005.8	16	01/t
39°19,07 w) 357 39°29,84w) 000 39°20,19w) 003°	2		1502		~, 92, 81° 281	354	Resette Th/Pa &	2016	7	011	1.4	0.1	1005.9	9.1	a,/r
3999, 84 w DOD	~	60-10	thgi			357	Photogrammetry fini- Klaus	2021	16	112'	ť	0,1	1006	92	7/10
3920. Au 003'		90-10	1648	71 06 91N	13999, 84W	000		2026 16		116° 1,4	1,4	0,1	1006,1 94	94	7/10
	글	11-09	1757	1002,30N	139°20, PW	003'	Rosette & Atm	2032	i5	1140 15		0/0	1006.00 76	96	3/10
01-09 1819 7100,04N 13930,02W 005 Rosette		60-10	1819	N\$010012	13920,02W	005.	7 ATM	2030 15		115° 1,5	1,5	0,1	1001.23	97	3/10

54

ŝ

									ſ				
	HEURE	LATITUDE	LONGITUDE	CAP	ACTIVITĖS	PROF (M)	VENT	ΥT	T° AIR	T° EAU	P° BARO	HUM	GLACES
	1910	\$ 01-09 1910 7107.63N	139°19,96 W 007	500	Rosette & (Rickin)	3028 13		113	1,3	0	1006,3	98	01/2
	2006		139° 19,4'W COS	800	Scatnometre	2029	01	14	1,4	0,1	lac6,2	9.8	7110
0	2020		139° 19,2'W	800	139° 19,2'W cog Roselle A (RivEin)	2030	1	117 1.2	1,2	0,1	10068	99	7/10
a	2310	71007.0'N	601-09 2310 710020'N 1390177W 016 LV PUMP	010	LV PUMP V	2043	Ñ	126 1,3	1,3	0	lco7.2	ßS	7110
6	02/03 0300	71°06, 28' N	71°06, 28' N 133° 20, 38' W	025	025 LV Runp cast Si A	2044	11	140 1.3	1.3	0.0	1008 2	96	4/10
6	N 0220 0020	71°06, 28'N	139,20,64, w 026	970	Rosette RA-228 V	2048	11	145	1.4	0.0	1008.3	96	°'/t.
~	02-09 0433	71°06,40 N	139"21, 33 W	030	Rosette He RA-228 7	2050	10	148 1.2		0.0	1008.4	tb	3/10
~	1 03-09 0512	71'06,52 N	139°21,49W	031	Rosette 4 (Cullen)	2053	tl	149 1,3	i,3	0.0	1008.5	97	3/10
0		1,00°,76 N	139°21,18 W	033	033 Resofte + (Oullen)	2052	11	137 1,1	1,1	0	1008,9	98	7/10
0	20209 03-09 2		139°20,89 w	034	034 Rosathe cast Cr/u & 2051	2051	10	141 1,3	1,3	Ø	1001,001 97	tb	110
ç	2010	02-09 2010 71° 06,811	139°20,1'W	033	139°20,1'W 033 Scatermetre 10 mins 2048	2048	11	138 1.4	1.4	0	1001.3 96	96	6/10
~	2020		139° 4,8' W	034	O34 sate ometre Fir	2046	11	14 1.5	1,5	Ó	1001,3	96	6/10
0	0%40		139° 9,5'W	034	034 Rosette cast CrIV A	Zerf4	6	139 1.6	1.6	0	1009,6		6/10
5	0847	02-09 0847 71°06,8'V	129° 19, 3'W	035	6	Zoury	0	142 1.7	1,7	0	109.6	95	6/10
0	1012	02-09 1012 71° 06,5'N	139° 13,2'W	036	Deoloy Helicoder (EM Tam)	2038	14	141	1,9	0	Icoll,S	95	6/10
5	1030		139° 121'W	037	139° 181 W 037 Rost Rate Ro 26 V 20 2038	2038	14	139	2:2	0	h'lan	Ьib	6/10
8	1038	~	139° 1800	037	032 Rozelle har 226 7 8V	2037	Ц	NO 2.3	23	0	1009.5	94	6/10
. ~	1048	02-09 1048 7% 26,4N	139° 17,9'W	037	139° 179'W 037 Rethere on ice towed	2025	11	143 2,3	2.3	ତ	too9.5	9t4	6/10
5	3102-09 1121	7106,2'N	139° 17,8'W	037	037 Rosette RA-226 V	2034	0/	133	3,2	0	109.B	Ś	6/10
5	02-09 12 15	71005.521		038	120° 17 16 11 038 0.1. 0.1.	2031	r-1	240	2.1	0.0	1040.5	92	6/10

					STN	STN 11 (suite)								
	DATE	HEURE	LATITUDE	LONGITUDE	CAP	Activitês	PROF (M)	VENT	ΥT	T° AIR	T° EAU	P° BARO	Ним	GLACES
	02/05	1242	H"OS, 64' N	139° 17,66°	039	Rosette Ra-226 7	2025	۶	165	2.9	0.01	1010.6	88	6/10
	02/09	1304	N,64'50,1€	139°17, T, W	040	Équipe eur La glace (Ferur + Mathem) remplacement beneon	2023	٢	150	3.2	0.01	1010.6	91	or/t
	02/09 7314	7314	71,02,43, N	139°17,75'W	040	Equipe à bord (Fever+Matheu) benear remplace	2022	3	130	3.2	0.01	1010.6	91	7/10
30	302/09	1358	N. 41 50, 12	139°18,09°W	042	Rose the TM minogeneers V	1202	6	130	2.2	10.0-	1010,7	95	۰،/۴
	02/09	1523	N. St hoult	139° i9,22°W	240		4202	6	105	· 6 · J	10.0	1010.7	95	o'/t
	02/01	1551	71°06.59 N	139 "17. 99 W 006		Wetter Balloor (Notlew)	2037	12	123°	2.6	0.00	1010:5	8	01/E
						L1.5								
33	03/09	0850	\$ 03/09 0850 73° 19.0'V	139° 23,1'W 215	215	Roselle V	3251	6	30	0,3	-0,2	30 0,3 -0,2 1009,6	99	7/10
	03/09	CAHS	03/09 0945 73 13,81	13% 22,8W 195 Roselle	195	Ŷ	3247	10	200 0.4	210	-0,2	-0,2 1009,9	99	7/10
						Station La"								Bfin In
*	34 03-09 1809		74°39,15 N	137 22, 72 W 133	133	4 Bu/th	3370	15	315	0,5-	0,5	215 0,5 -0,5 1005,1 99	99	8/10
	03-09	03-09 1907	74° 3890'N	124°21.50'W	138	127°21.50' W 138 and montine time 1327		15	326	2,0	-20-	226 D.S -US 1004.3 99	dq	8/10
	03-09	03-07 930	74°38.85 N	74° 38, 81 137° 21, 32'W 142	142	COLE SAMOLING FU		16 16	2,0 GG	SS	-05	-0,5 1004 pg	8	8/16
	03-09	2030	03-07/2030 74038,611 13	137° 20,5W 155	155	Bethe BITH 7	3365	ŧ	12		RO	1003	99	8/10
5	03-09	2105	N, 9820HE	137° 202 W	161	× 03-09 2105 74038,61 1370 292 W 161 Roselk TM cast V	3366	14	223	0,1	-0,4	3366 14 223 0,1 -0,4 10029	99	8/10
•	03-09	2216	740 38, 5'W	137° 19.2'W	28	03-09 2216 740 28, 510 137° 19,2'W 158 Ballon Heted	3373 15	5	220 0	0	-0,4	-0,4 100223	66	9/10
	03-09	2305	03-09 2305 74" 8,51	1370 18,4 W	157	ROSE HE THI Cast J	7369	14	232	232 -0,2		-0,4 1001,8	99	3/10
36	36 04/09 0023		74°38,65 'N	137 + 17,00 W 156		Rosette RA J	3367	-	235	-0.2	-0,4	-0.4 1001.1	66	01/6
	2200 60/40	- 1	N, 59'88, Ht	~,68'71.t El	156	Ballon méléo deploye	3367	12	230	<u>~0.2</u>	- O. 4	1000,9	96	01/0
	4010 60/40	£010	74°38,65'N	137°15,99°W	157	Rosette Ra T	3369	13	240 -0.2		0.36	0.36 1000.7	66	al/s

56

r-

Nov/os 0146 74'38, 63'U 137'U 59'U 50'D 131'H 13'1'H 13'1'H 99'U 13'1'H 13'1'H 99'U 13'1'H <		DATE	HEURE	LATITUDE	LONGITUDE	CAP	Activités	PROF (M)	VENT	TN	T° AIR	T° EAU	P° BARO	Ним	GLACES	-
13778 83.u 163 Rung School deployment Pump School 3339 15 365-14 -0.35 1001.8 94 13707 156.10 156 50.01 Netro 33336 15 365.14 -0.35 1001.8 94 13707 157 50.01 168 Rosche blokes V 33336 15 365.14 -0.35 1001.8 94 1370 05.1 168 Rosche blokes V 33338 26 267-11 -0.4 100.8 93 1370 05.1 160 Rosche blokes 33338 21 266 -0.4 100.16 93 1370 05.1 160 Rosche blokes 33338 21 266 -0.4 100.16 94 1370 05.1 160 Rosche blokes 33338 21 266 -0.4 100.16 93 1370 05.1 158 25338 20 266 -0.4 100.16 93 1370 1370 23321 21 266 0.4 -0.1 <t< th=""><th>4</th><th>50/20</th><th>9410</th><th></th><th></th><th>_</th><th></th><th>3374</th><th>13</th><th>24S</th><th>-0.2</th><th>-0.36</th><th>1000</th><th></th><th>01/6</th><th></th></t<>	4	50/20	9410			_		3374	13	24S	-0.2	-0.36	1000		01/6	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	60-00	0546		137,08,83 w	163	Pump Subor deployement	3339	15	365	-0'H	-0.33	1001,09		8/10	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Po-40	734		137 07,650	156	Fix Dedrewant Pump Suns		15	282		-0,35	100176	90	<u>810</u>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		P0-40	0812	2	137° 073'W	168	Ballon Neto	3334		CH5	-11	4'0-	lcol.8	qų	9/10	
137° 07.1 W 167 Rosethe Dides Y 3338 20 267 -0.4 1001.6 93.2 137° 05.1 W 167 Rosethe Dides Y 3338 24 260 -0.4 1001.6 93.2 137° 04 158 Rosethe TM asct 33331 24 260 -0.4 1001.5 94. 137° 04 158 Rosethe TM asct 33331 21 21 260 -0.4 1001.5 93.2 137° 04 158 Rosethe TWKin 33231 21 21 266 -0.4 1001.5 94 137° 03.36 158 Rosethe TWKin 33231 21 28 264 -0.3 -0.4 1001.5 94 137° 03.36 158 Rosethe TWKin 33231 21 28 264 -0.3 -0.4 1001.5 94 137° 03.36 158 Rosethe Rukin 33231 21 26 263 -0.4 1001.5 94 138° 91.4 158 Rosethe Rukin 33231 21 26 280 -0.1 1001.5 <td< td=""><th>age</th><td>0-00</td><td>0814</td><td></td><td>137° 07.3W</td><td>168</td><td>Ą</td><td></td><td></td><td>273</td><td>-1']-</td><td><i>h'0-</i></td><td>1001.8</td><td>qq</td><td>q_{lio}</td><td>-</td></td<>	age	0-00	0814		137° 07.3W	168	Ą			273	-1']-	<i>h'0-</i>	1001.8	qq	q_{lio}	-
74° 34,91/J137° Obs. (w)16CRisether TM aastV3333124269-0.41001.6933 74° 34,91/J13705.8.41158Rosether TM aastV3333124260-0.14999.294 74° 34,97/J13705.8.41158Rosether runi 7.8° 32.4250-0.41001.673 74° 34.987/J13705.3.364/J58Rosether runi 7.8° 33292726-0.3-0.41001.594 74° 34.857/J13705.3.364/J58Rosether runi $8000000000000000000000000000000000000$		60- HO	9480		1370 OT, 1 W	167	<	3338			-1.1-	-0,4	leol,S	9.3	9/IC	-
$74''$ $34''_{1}$ $137''_{1}$ $05.$ FW_{1} $18.$ $CorrAlt. The corl. The 232021260 - 0.499.29474''_{1}137''_{1}170''_{1}158Forther intervent inter$	5	C4-03			137° 06,6'W	160	↑ +	3331	24	269	9'0-	+0-	1001.6	93	d/D	and the second se
11.4 $74^{\circ}34^{\circ}87^{\circ}N$ $137^{\circ}04^{\circ}88^{\circ}N$ 158° $\frac{1}{680^{\circ}}$ $\frac{1}{12}$ $\frac{1}{232}$ $24^{\circ}32^{\circ}85^{\circ}N$ $137^{\circ}04^{\circ}88^{\circ}N$ 158° $\frac{1}{680^{\circ}}$ $\frac{1}{280^{\circ}}$ <th></th> <td>04-09</td> <td></td> <td>N.672,74</td> <td>137. 05. FW</td> <td>158</td> <td>*</td> <td>3330</td> <td></td> <td>260</td> <td>1-0-4</td> <td>-0.4</td> <td>999.2</td> <td>94</td> <td>0110</td> <td>and the second se</td>		04-09		N.672,74	137. 05. FW	158	*	3330		260	1-0-4	-0.4	999.2	94	0110	and the second se
12.3574°3A.385'N137°03.36'M158Rosette ruxin332927264-0.3-0.410N.349312.1374°34.85'N137°03.36'M158Spurge about turn.33292726-0.3-0.410N.349313.2'74°34.85'N137°03.36'M158South turn.33272623-0.3-0.4810N.349313.2'74°34.80'N137°01.47'N158Rosette RUKIN33272628-0.42100.2394152674°33.47.8'136.4747128Rosette RUKIN33272628-0.42100.2394154074°33.47.8'136.4747190Rosette Lut310932952628-0.421003.591184974°31.6'N136.47470190Rosette Lut180032952628-0.411003.591184974°31.6'N136.47190Rosette Lut180032952628-0.411003.591184074°31.6'N136.44190Rosette Lut32952628-0.1-0.421003.591184074°31.6'N136.44190Rosette Lut1800.532952628-0.1-0.421003.591184074°31.6'N136.45'N190Rosette Lut2800.52828-0.1-0.421003.591184074°31.6'N1		60/20		N.18'48.41	M.88 ho.t	158	La glace	1329	22	265	P.O.	" O. 4	1001.5	93	9/10	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	04109	1235	74°34.85'N	137°03.36W		vkin V	3329	27	264	-0.3	-0-4		93	a/lo	the second s
$74^{\circ}34$, 80° , $137^{\circ}01.47$, 158 Roothe Rivkin $+$ 3327 26 283 -0.38 100.25 94 $74^{\circ}33,47$, $136^{\circ}47$, 410° 172 Roothe Rivkin $+$ 3319 30 270 0.2 -0.42 1000.9 93 $74^{\circ}33,47$, $136^{\circ}47$, 410° 170 $Roothe Rivkin +$ 3303 32 28 -0.1 -0.42 1003.1 87 $74^{\circ}31,6'n$ $136^{\circ}47$, 410° 170 $Roothe Rivkin +$ 3303 32 28 20 -0.1 -0.42 1003.1 87 $74^{\circ}31,6'n$ $136^{\circ}45.5'n$ 190 $Roothe Acher Rivkin +$ 3293 22 28 -0.1 -0.42 1003.5 91 $74^{\circ}31,6'n$ $136^{\circ}45.5'n$ 190 $Roothe Acher Rivkin +$ 3293 22 28 -0.1 -0.42 1003.5 91 $74^{\circ}31,6'n$ $136^{\circ}45.5'n$ 190 $Roothe Acher Rivkin +$ 3293 216 280 -0.1 -0.42 1003.5 91 $74^{\circ}31,6'n$ $136^{\circ}45.5'n$ 190 $Roothe Acher Rivkin +$ 3293 216 280 -0.1 -0.42 1003.5 91 $74^{\circ}31,6'n$ $136^{\circ}45.5'n$ 190 $Roothe Acher Rivkin +$ 3293 216 280 -0.1 -0.42 1003.5 91 $74^{\circ}31,6'n$ $136^{\circ}45.5'n$ 190 $800^{\circ}6^{\circ}6^{\circ}6^{\circ}6^{\circ}6^{\circ}6^{\circ}6^{\circ}6$		ò4109	12 43	74° 34.85 N	137°03.36'w	158	3	3329	17	264	-0.3	-0.4	1001.34	93	9//0	-
$74^{\circ}3u_{1}u_{1}u_{1}u_{1}$ $13u_{1}'3u_{1}u_{1}u_{1}u_{1}$ 3319 30 270 0.2 0.42 000.9 93 $74'3u_{1}u_{1}u_{1}$ $13b''47$ 110 $Rosette biogencham$ 3303 32 32 32 0.2 0.42 1002.9 93 $74'31.b'u$ $13b''47$ 170 $Rosette biogencham$ 3303 32 32 32 32 32 91 0.02 0.012 1002 9103 $74'31.b'u$ $13b''45.b'u$ 190 $Rosette biogencham$ 3205 26 280 0.1 0.42 1003.5 91 $74''31.b'u$ $13b''32''45.b'u$ 190 $Rosette Rule biogencham 3205 26 280 0.1 0.42 1003.5 91 74''32.6'47.6'u 190 Rosette Rule biodete Rule Rule Biodete Rule Biodete Rule 8205 26 280 0.1 0.122 102 1002.5 91 74''32.74'u 13b'''32''''''''''''''''''''''''''''''''$				74°34.80 N		158		3327	26		- 0.3	-0.38	(001.25	94	9/10	The state of the s
$74^{\circ}33,47$ k $136^{\circ}47,44$ k 170 Rosette biograchem T 3303 36 26 -0.42 $1023,5$ 91 $74^{\circ}31.6/n$ $126^{\circ}45.6$ k 190 Rosette biograchem T 3303 36 26 -0.42 $1035,5$ 91 $74^{\circ}31.6/n$ $136^{\circ}45.5'w$ 190 Rosette biograchem T 3295 26 280 -0.1 -0.42 $1035,5$ 91 $74^{\circ}31.6/n$ $136^{\circ}45.5'w$ 190 Rometer Residence and $3290,5$ 26 280 -0.1 -0.42 $1003,5$ 91 $74^{\circ}31.6/n$ $136^{\circ}45.5'w$ 190 Rometer Scan 3295 26 280 -0.1 -0.42 $1003,5$ 91 $74^{\circ}31.6/n$ $136^{\circ}45.5'w$ 190 Rometer Scan 3296 26 280 -0.1 -0.42 $1003,5$ 91 $74^{\circ}31.6/n$ $136^{\circ}47.6/m$ $916^{\circ}6$ $800^{\circ}0.7/m$ 3209 21 $280^{\circ}0.01$ -0.42 $1002,5$ 91 $74^{\circ}30,99,5/m$ $136^{\circ}47.6/m$ 196°	-H	60/ho	1526	74"34,16"N	136 54, 80.		Ļ	33/9	30	270	0.2	- 0.42	1000.9	53	9//o	and the owner where the party of the party o
74°31.6'n 136.45.6'N 190 Rosetta 11'reu J 3295 26 280 -0,1 -0,42 1035 91 71°31.6'N 136°45.5'N 190 Equar Archive Jerrin 3295 26 280 -0,1 -0,42 1003.5 91 74°31.6'N 136°45.5'N 190 Scatterometer Stan 2001 3295 26 280 -0,1 -0,42 1003.5 91 74°31.6'N 136°44.48'N 197 Equipe a glove à bood 3294 31 283 0.0 -0,42 1002.6 87 74°30.74'N 136°44.46'N 194 Rosette X1 N 3296 31 282 0.0 -0,4 1003.1 87 74°30.75'N 136°44.46'N 194 Rosette X1 N 3296 31 282 0.0 -0,4 1003.1 87		04-03	1750	74°33,47N	136 47. 41 2		۲ ۲	3303	36	384	1:0-	-0,42	1003,1	81	3/10	and the second division of the second divisio
71°31.16'N 136°45.5'N 190 Equipo de glacce an le gra 3295 26 280 -0.1 -0.42 1003.5 91 71°31.16'N 136°45.5'N 190 Scatteronneter Scan le gra 2395 26 280 -0.1 -0.42 1002.5 91 74°31.24'N 136°44.68'N 197 Equipe a glave a grad 3294 31 283 0.0 -0.42 1002.6 87 74°30.99'N 136°44.46'N 194 Resche art 7 3096 31 283 0.0 -0.4 1003.1 87 140°20 35'N 136°44.19'N 195 Easter de Aner dischart 2093 31 391 0.0 -0.49 1003.1 87		64/09	1849	74°31.6'N	136 45.6 W		J.	3295	26	280	-0-1			91	9/10	the local division in which the local division in the local divisi
74"31.16" 136" 45.5" 190 Scatter on the Scatter on 2395 26 280 -0.1 -0.42 1002.5 91 74"31.24" 136"44.68" 195 & que a glove a glovee a glove a glovee a glovee a glovee a glovee a glovee a glovee a gl		04/09	1849	7431.6%	136° 45.5' w	190	logua		26	280	-0.1		1002.5	16	a//b	and the second se
74°31.24' 136°44 & 195 & quer & glove & glove & word 3294 31 28 0.0 -0.12 102.6 87 74°309971 136°44,46'W 194 Roselfer and A 2076 31 283 0,0 -0,4 1003,1 87 44°20 45'N 136°44,19'W 195 Earlor do Arredinbur 2073 31 396 0,0 -0,49 1003,1 87		04/09	18 40	71031.6 N	136°45.5'~		Scan		26	280	0	-0.42	1002.5	16	9/0	the second se
74°207951/ 136°44,46'W 194 Rosette and A 3096 31 225 0,0 -0,4 1003,1 87		04/09	1905	74031.24%			guipe de glace à bord	3294	31		0.0	-0.42	1002.6	87	9//b	-
74°20 75'N 136° 44, 19'W 195 Easter de Ance dinher 2373 31 396 0,0 -0,49 1003,1 87		60/ନସ	1921				t to	32%	31	985		5 Q	And in case of the local division of the loc	87	9//o	and the second se
		outbo				95	dace didan	3393	31	396		eh'0-	1003,1	£3	9/m	and the second se

57

œ

_	
Suite,	
72	
STN	

					^	51 N LZ [suite]	suite)			ł					
	DATE	HEURE	LATITUDE	LONGITUDE	САР	AC	Activités	PROF (M)	VENT	F	AR *	T° EAU	P° BARO	HUM	GLACES
3	04/09	1955	1, 20, 100 ASS 74° 30,44' N	136° 43,82	192	Guipe Con	19D Guipe Cage ice de rebur 3270		200	35	-0,3 -0,4		1003 S	83	8/10
- 7	10409	2137	WO4109 2137 74° 26.5/11 136° 28.0'W 205 ROEIE PROMES	136° 280'W	205	Rosette	Paomics V	3242 300		6	10-	-0,5	-0,5 levsil	48	8/10
	Palpo	2152	04/09 2152 74°26,3'N 136° 28,2'W 182 ROSENE PROMICES	136° 23.2 W	182	Rosette 1	<i>(</i>	1428	3	.8	- 80	-o.S	-08 -0.5 100.5	Эр	8/10
5	04/09	2239	WO4109 2239 740 259'N 136° 288'W 182 Roself Bomics V	136° 28,8'W	182	Roselle 1		3240	300 24	24	0,6	SID	-0,6 -0,5 labert	R	8/10
	Dylog	6422	04/09 2249 74°25,8'1 136°	136° 28,9'W/	182	R2 ROSE HE BOMICS	Bomics P	3240 203 25 -0,6 -0,5	202	5	0,6 °		loc6,2	62	8/10
Ţ	cullo9	2324	W CHLOP 2324 74° 25,6'11 136° 29,3'4	136° 29,3'W	25	ROEK BUMES	BUMES V	3240.	320 22 -0,8 -0.5	8	.0,8		kc6r7	ab	2/10
	Cyllo9	2329	0469 2329 74° 255'N 136° 28,4'W		209	Roxle Bomics	BOMES 7	3240 31	31	ß	200	Ś	lade7	SO	8/10
¥	CU109	2339	46 C4169 2339 740 254'N 136° 29,5'W	136° 29,5'W		ROSEHE	200 ROSELA BOMIES V	Seyl	-	23-07	EO	S'O-	toolog	88	8/10
-	101HO	2348	04107 2348 74°2541 136° 29,6'W	1360 29,64	189	189 Roselle Bomics	Somics A	3241 305 21 -08 -05	282	10	80		107	æ	8/60
	05/09	68 Si	05/09 00 85 74 25.15 1/ 136° 30.03'w	136° 30.03' w	207		Konetto Pacinical	3241 306 22	306	22	-0.9	2.0-	-0.5 107.6	9/	8/10
	02/06	05/09 0047	74°25.08 N	74°25.08 N 136° 30.13 N 213		Rosetle	Rosetle Parnies A	3242	302	20	1.1-	-0.5 1027.9	1027.9	R	8/10
	09/06	2472	05/09 0125 74°25.09 N 136° 30.01 W 213	136° 30.01'W		Pesette .)	3341	307	18	. 0.1-	2.0-	18 -1.0 -0.5 1008.12	84	8/10
	05/69	05/69 0136		74° 25,04 1210 29.92 W 213		Resette	Resette Parnies 1	3241	297°	21 -	. a'l-	2.0-	-0.5 10083.26	86	8/10
الأل	05/b9	who 05/69 0248		136°30.06 N	209	Rosetto "	\rightarrow	342	3o)°	16	-1.1	-0.5 1002.2	1001.2	16	#/10
	05/09	0518	05/09 0518 74° 24,801 136° 24,80 100 Roselle out	136° 24,280 W	8	Roselle	*	3228 289	<i>2</i> 89,	2	13	0,6	10 -1,3 -0,5 10103 86		54/10
¥	05-09	<i>D64</i> 3	14°25,20V	136 26,43 12	390	Rumbbuilt	W 05-09 D648 74 25, 204 136 26, 43 W 290 Runt puil de lancement V	32,33	336		-1,8	-0,5	-0,5 1010,4 89		01/t
	05-09	OPHU	05-09 0944 740 24,211 136° 260W 200 Depby ICE Ram.	136° 260'W	8	Depoy 1	\rightarrow	3228 203	203	Ó	-1,3	06	10-1,3-0,6 108,2	9S	7/10
	05-09	0950	05-09 0950 70° 24,010 136° 25, W 198 2 Hobs buor	136° 25, W	861	P. Kolo	5 biloy &	3228 198 10 -1,3 -0,6 1009,1 96	198	0	-1,3	0,0	1006.1		7/10
	05-09	1007	05-09 1007 74° 24,1 1 136° 25,44 187 ADDIENC CTD	136° 25, 4W	187	Roblenc	CTD V	3228 192		5	114	-0,6	-1,4 -0,6 10289	90	7110
	05-09	1106	05-09 1106 740 24,1'N 136° 26,1'W 144	136° 26,1W	144	Made duny	buoy J	3228 187 14 -11 -06 10377	187	さ		9'0-	1007.7	97	7/10
						/									-

DATE HEURE LATITUDE D5/07 1113 74° 24,21 05/07 1237 74° 24,21 05/07 1237 74° 24,21 05/07 1237 74° 24,21 05/09 1313 74° 25, 06'N 05/09 1313 74° 25, 06'N 05/09 1812 74° 25, 06'N 05/09 1820 74° 25, 06'N ×× ×× ×× 05/09 1820 74° 25, 26'N 05/09 1820 74° 27, 26'N 05/09 1828 74° 27, 26'N 05/09 1838 74° 27, 26'N 05/09 1838 74° 26, 81N 05-09 1904 74° 26, 81N 05-09 1946 74° 26, 53'N 05-09 2330 74° 26, 53'N 05-09 2330 74° 26, 53'N		0 25,09 W 26,13 W 26,13 W 19,47 W 19,47 W 19,08 W	CAP 115 083 089 080 295	TIVITÉS Relation P T Cr/U 4 t Cr/U 4 to Cr/U 7 M Cr/U 7	PROF [M]	DIR VENT	EZ.	AIR °	T° EAU	P° BARO	Ним	GLACES
05/09 1113 05/69 1227 05/09 13/3 05/09 1820 ××× ××× 05/09 1828 05/09 1828 05/09 1828		w 25,05, W w 19,02 w 1	115 083 080 080 283 245	The Term 7 The Term 7 1 Cr/U 4 ter deploye	2000	T						
205/69 1227 05/09 13/3 05/09 13/3 05/09 1820 ××× ××× 05/09 1828 05-09 1946 05-09 1946 05-09 1946		W, 126, 132 W, 125, 05, W W, 17, PI W, 17, PI W, 17, PI W, 12, 25, 05 W, 12, 25 W, 12, 25 W	083 283 283 283 285	1 Cr/U t to deploye M Cr/U 7	8	RS 14 .	主	-1,0 -0,6	-0,6	1007S	49	7110
05/09 13/3 05/09 1940 05/09 1820 ××× ××× 05/09 1828 05-09 1828 05-09 1904 05-09 1946	N'82,25°44 N'82,75°44 N'82,75°44 N'83,25°44 N'83,25°44 N'83,25°44 N'83,25°44	26,69 w 25,06 w W 19,47 w M 19,47 w	289 080 245		3231	160	Ģ	2.0	2.0-	1005.1	35,	8/10
05/09 1440 05/09 1820 ××× ××× 05/09 1828 05-09 1994 05-09 1946 05-09 2330	N' 40° 27, 263 W N' 40° 27, 26' W N' 40° 27, 23' N V1° 27, 23' N	W, 12, 25, 26' W W, 17, 10 W, 17, 10 W, 17, 10 W, 17, 10 W, 12, 10	080 245		3236	<i>is</i> 5	12	2.0.2	0.6	ل قرمها	93	8/10
05/09/1820 ××× ××× 05/09 824 05-09 838 05-09 846 05-09 846		W,17,91 W,47,10 P1,42'W		L : J	3236	180	23	0.1	-0. é	1001. 7	46	01/8
x x x x x x x x x x x x x x x x x x x		1,47 W	1	NOSERR IN VIN	3240	690	33	0,5	-0,4	व्हल १९	64	8/16
05/09 824 05/09 828 05-09 1904 05-09 1946	-2 -7	7,47'W 19,08'W		Revole In Annt	XXX	XXX	x x	x xx	XXX	XXX	xxx	XXX
05/09 1828 05-09 1904 05-09 1946 05-09 2330	-7	W,80,91	OHE	t ballow	3240	360	33	0,8	±'0+	વલવ વર્ષ	٩٩	8/10
05-09 1904 05-09 1946 05-09 2330			200	Resette 1 out	3040	360	33	0,8	-0,7	96,9 <i>8</i>	99	8/10
05-09 1946 05-09 2330	74 36, 7 N	136 14.32 W	380	Roselle Dumo 1	3234 285		37	0,7	-0:7	37 0,7 -0,7 1000,6	99	8/10
05-09 2330			280	ĮΞ.	1 3234 225		25 0	017	-6,7	-0,7 100094	8	8/1c
01/00 0010	74/223.3'N	136° 09, 3'W	136	136° D9, 3'W 1 76 Runs RENERY P	3213	28823	23		0,3-0,7	(CPH2)	84	8/10
100 00 more	N.26,22.ht	136,00 SI. ~	461	136 og Si'w 197 RoseHe TM Pb V	3212	280 18	18	6.3	°0.7	10.7 1005. I	84	8/10
8010 60/90		991 M, 50'01,921 N, 12'27,42	166	Rocette TM PL P	3212	265	16	0.6	°0.7	1005.6	83	8/10
5460 0945	740 253N	133°54,3'W	027	06/09 0942 74° 233 N 133° 54, 3'N 027 PEDLOV ICE ROM V	3236 215		9	-0,9	80-	-0.9 -0.8 106.3	9S	01/10
0669 1002	74°25,21N	133° 53.6W	027	06/09 1002 74°25,21 133° 53,64 087 Deoloy helicoph	3109	212	0	-0,6	200	3109 212 10 -0,6 -0,8 1006,1 94		21/10
C609 1010 74°25,11	74°25,1'N	133° 53, 4 W	027	Ϋ́́́	313 212 12 -08 02 1063	212	2	20-	200	10063	95	01/10
06/09 1130	74° 26,4'N	133°21,0'W	22		3045 204 14	Zot	14	80-	-0,0-	lces/6	96	9/10
- 121 E020	N. 58'97. 14	m. 42'12 . 821	242	Deploy helicopter	Jet 212		13	£ 0-	6.0	-0.9 KOSS.7	96	3/6
06/0 1223	71, 20, 35, 10	23, 21, 22, W	316	Recess helispher	1017	120	Ŧ	1.0.	60.	1005-7	96	- 0//
~ ~ ~ ~												

DATE	HEURE	LATITUDE	LONGITUDE	CAP	ACTIVITÉS	PROF (M)	VENT	TN	T.	EAU	P° BARO	HUM	GLACES
			-	5+	5+14 12								
06/90	1432	H. 56, 25 'N	V. 46.22.84	140	and the second	1001	210	×	0.2		N SOOL 20 V-	10	97.
06/09 1435	SEHI	74°26,25' ~ 133	1 .	8£0	14	3051	200	Ī	0.2	10.0	ince L	- 1	6/2
72 HI 60/70	1435-	N, 52'92, HL	133.23,00'W	078	1-3		200	-	20	0.85		24	9/.0
60/90	2444	74°26,26'N	133°23,13°W	tto	tre team sur la stace déployement bearen	3052	210	5	0.2	0.85	loos.	94	9/10
06/00	0341	N, 22, 32. 4t	133 - 23,18 -	tto	1 6 1	1508	205	ĩ	0.2	-o.8 <i>5</i>	1.2001		a/6
01/09	01/09 0015		139°53.9 W	315	Weather Balloon	2464 253	253	29	50	0.1-		82	1/6
07/09	0804		137° 376'W 200 ROSELK	200		3490 284	284	2	-0,9	5'0-		14	100
07109	1040		137°35,0'W	8	280 Rovelle PAITIN P	3420 278	278	19	-1,0	60-	-1,0-0,9 100-0,1-		100 14
07/09	1115	BO7/09/115 75° 16,911	137° 35,2'W	300	132° 35,2'W 300 Pump Sypor V	3482 282	282	3		60-	1009.9	22	3 P
P 221 00/20		N. 66 '91 - 5t	W.65.35.461	313	Helicoptine Seploye (EM Kan) 3 483	3483	270	8/	·0.]	6.0	78 1- 6001		5/t
07/09 1322	1322	75-16, 5B'N	137°35,63°W	340	(EM Scantere à build	3483	290	t.	-1.2	6.0	1009.6		-1/r
1.2H 60/LO		N. 88 t1 . St	m.26'31.281	350	mé'kio	3484 280	280	16	-1.2	0.9			2/10
60/L0	1502	N.68'LI. St.	~, £8 '58 , £8/	010	Pump Super A	3483	275	2	-1.2	0.9	1010.9	30	7/10
50/E0 15	1525	N.62.91, SE	~, 88'EI.	321	2× J	3482	285	2	0.1-	0.9	1.1101	16	7/10
60/to	1548	N. St '91. St	M.06 [[. LEI	208	Ruse He Biclogy # 1	3482	290	ī	-0.9	6.0	1.101	30	/!
\$ 07-09 1619		75' 16, 63 N	13733 44 W	396	Rosette tm V iN	3481	294	t1	1	-0,8 101.5		53	1/10
67/09 1707		N,49 91.5L	137 33.29 W 269			3481	280		-1.0	- 0.8	-		01/E
\$ 07-09 1319	1319		137 28, 75 4)	378	Rosette & in Bioxo	3474	287	Ę	-1-1-	-0,8	10:2,5	92	1/10
	2049	CO49 75° 16,4'N	137°26,7'W	276	137°26,7 W 276 Rosethe & Biosen	2470 276 15 -21 -0.8 m12 1 au	276	<u>S</u>		0.0	MIZ IN	01	7/10

Ξ

-

	DATE	HEURE	LATITUDE	LONGITUDE	САР	ACTIVITÉS	PROF (M)	VENT	F	T° AIR	T° EAU	T° P° EAU BARO	Ним	HUM GLACES
10	2069	0929	73° 16,6'N	1350 34,8'W	165	0369 0729 73° 16,6'N 135° 34,8'W 165 Dr. Oby helizonter (Arson) 3527 000 6	3522	OC		-2,1	6'0-	-211 -09 10185 87		9/10
2	08/09 1505	1505	72040,9 N	72°40.9 " 136°02.6 w	22S	225 Deplay Kiline (45mon) 2858 221 9	2158	221			6.0-	-1.1 -0.9 IDIS.78 84	27	9/10
0	02/09	1stee	72030,52'N		2441	VAR Netreive Helico	2530 033 6	033		-14	0.0	-14 -0.9 1016,05 87	87	9/10
0	08/03 1710	0171	72° 30, 58' N	136,35,13.	304	Scaterometre debut	2527	065	1+	5.0.	-0.3 1018, L	1 CUB, 6	90	8/10
10	08/03	1725	72-30,58'N	~, {1'58.981	304	Scaterometre fin	2527	590	4	- 0.2	6.0	1018.6	βυ	3/10
					ĺ	Heeteans StN L1-1								ĺ
1.0	28-09	08-09 1749	72°30.63 N	136 35, 49 0	329	136 35,49 w 329 1ce team deploy " V	2530 037		9	-1,7-	0.9	6 -1,7-0.9 1018.6 86		8/lo
	08-07 1810	1810	72°30,70 N	136°35,68W 303	303	ice team in t	2532 037	037	N	-1,2	-0,8	-1.3 -0,8 1016,5 83	.	8/10
0	18-09	5 08-09 1818		136 35,750 318	318	Rosette tm V	2533 027		6	61-	9.0-	-1.3 -0.8 1018,5 83		8/10
\sim	78-09	1828		136°35,86w	305	136 35,86 w 305 Rosette tm t	2531 030	030	1+	- 3,0	-0,8	-3,0 -0,8 1018,5 87	18	0/8
	28-09	1903		136°35,95W	358	136 35, 95 W 258 Rosette PA/14 & à léau 2531 018	3531	0(8	œ	+'1-	-0,8	-1.7 -0,8 1018,5 88	88	8/10
	8-04	2059		136° 35,5'w	306	08-09 2059 72° 30640 136° 35,5W 206 Rosette 04/7# 7	2528	2528 050 9	0	-2,2	-0,8	-2,2 -0,8 1URIS 90		8110
2	28-09	2132	59 08-09 2132 72° 20,341 136° 35,240 297 Roselle Tm	136° 35,2 W	297	ROSEHE THU V	2525	1021	_	-2,3	60-	252505111-23-98 1012 90	90	3110
-0	28-09	2155	N1 5 32	136° 35,1W	297	08-09 2155 72° 2014 136° 35,14 297 Roself Tm P	83	061	6	-2,3	200	2525 c61 9 -2,3 -0.81c18.5	S	8/10
3	60/80	2335	72029,51	136,35,040	020	08/09 2335 72°29,511 136°350'W 020 Rumphi Suppr V	2516	2516 093 10	0	1.17	20-	-07 148.7	th	8/10
	60/60	0316	N, 71 62.22	136°40,55°W	2t.0	Paglog 0316 72.29, 16 1/ 136 40,55 w 072 Munhal Runp Supor A		2517 060	ŗ,	+.S-	1.0-	7 -5.4 -0.7 1018.4	96	8/10
	10-66	6 09-09 0414	72°29,50 N	136°43,34 w	858	136 43.34 w 758 Rosette out & Ra	3525 063	063	60	-53	£10-	-53 -0,7 IDIB 2 96	96	6//2
	99.09	0521	72°29,87N	136°44,83 w	084	136°44, 83 w 084 Rosette in T Ra	3539	asa9 058	8	-5,3	10-	-5,3 -0,7 1018,3 96	96	8/10
2	39.09	061	72°30,06N	136 45,89 W	974	W 0709 061 72°30.061 136 45,88 W 074 Rosatte In 1	3538061	190	6	-5,3	£.0-	9 -5,3 -0,7 1018,4 96	96	8%
	60-60	0640	72,30,350	136°46,45W	031	09-09 0640 72:30,35w 13646,45w 031 Rosette Im 1	thse	$\hat{\mathscr{B}}$	00	-5,5	50-	3547 083 8 -5,5 -0,7 1018,5 96 810	96	810

					StN L1-1' (Suite)		OURN/	IL DE	S AC	INTÉ	JOURNAL DES ACTIVITÉS SCIENTIFIQUES	NTIFIC	UES
DATE F	HEURE	LATITUDE	LONGITUDE	CAP	Activitês	PROF (M)	VENT	E	T° AIR	T° EAU	P° BARO	Ним	GLACES
8	\$32	72° 30,9' N	136°47,4'W	245	09/09 2832 72° 30,91 136° 47,4 295 Roce the Bibles V	CEH3	063	20	7'h-	t%-	1018,3	96	9/10
5	0853	N,50 32.11	136° 47,5'W	351	09109 0853 72° 2091 136° 475' W 351 Rox 12 Blogy 9	2542 065	065	4	-4,7	-0,7	-4,7 -0,7 1018,4	96	9/12
. 6	0330	09109 0930 72° 31,1'N 136	136° 47,9'W	340	" 47,9'W S40 DEDBY he lice der ten 2554 064	2554	064	rL.	ビカー	-0,7	-4.7 -0.7 1083	95	9/10
÷	0135	09609 0935 720 31 W	136° 473'W	222	136° 473'W 272 Deploy and active treem, 2533 062 10	2533	062		-4,0	207	-4,0 -0,7 1018,4	96	QI/b
0	i024	72° 307'N	136° 47,0'W	146	09/09 1024 72° 30 7'N 136° 470'W 146 Recover 20130 T	2535 058	Z	\mathbb{S}	2/1/2	40	0,7 1018,3	S	01/6
2	1050	09/04 1050 72° 20,8'N	136° 44,3 10	065	CGS Deploy ICE Rear + HUSKING 2536 071 17	w 2536	140	4	-48 Ort	202	60813	95	η_{lio}
\sim	1130		1360 450'W	Ŗ	30 Recover reliance terms 2534 073 15 -39 -0,7 1012	*) 253H	073	N	-3,9	t'0-	1012.2	36	$\partial _{b}$
6	09/09 1225	N. t. 08. 2t	136° 46.4'W	353	Roselle TM &	2534	080	'S	-4.2	£.0.	10/8.1	96	31,0
୍ତ	0741 60/60	N. E'08. 2L	136°50,4'~	200	Ballon metri depoloye	02540	080	ų.	-3,2	-0.7	1017.9	90	0/10
60/60	1426	V, t '30' 1.N	136°50, 4°W	002	Rose the TM T	2540	080	t.	-3.2	t.'o.	6 ' E la I	06	9/6
~	09109 1513	72 . 30 . 1 /1	136°50.0'N	a59	Receiver Ja Trawn	2533	22	2	-2,8	- 6.67	Ibi7.96	88	a//b
65 Ollou	1530	72°29.6'N	136°55.5 W	047	136°55.5 w 047 Denlay Dump in prenered	2554 285	285	17	-2.9	-0.67	-2.7 -0.67 1018.0	88	q_{lb}
2	Kos	09.09 KOS 72:22.86 N	136 56,294	64	136 56,2941 067 Fin deplementales pumpes \$ 2535 085	V aSES	085	Ы	-275	-0,67	-2,75-0,671012,9	87	2/10
0	1639	T3°30,00 N	136,56,00W	tto	09-09 1639 72,30,00 N 136 56,00 W 077 Recuperer Bouer Mukesh 2537 085 15 - 3,4 - 967 1019	sh assa	085	2	-2,4	-0.67	1014.9	88	110
<u></u>	91829	72 30.91N	136 59,03 W	080	09-09/1829 72 30,91 N 136 59,03 W 080 Helico de retour	254B	088	1	-2,9	-0.6	2543 088 17 -2,9-0,6 1017,9 93	93	1/10
0	1943	09-09 1942 72"31.51 N	13659,650	072	13659, 45w 072 Debut recurrention des pump 3547 084 18 -3:3 -0,6 10173	thse m	оθч	8	-3,3	-0,6	10173	47	210
5	202	CA-C9 2012 72°31,6'N		obS	136° 59,6 W OBS F/N REGIRENALS Rump 2549 076 20 -3,3	1 2549	076	3	-3,3	-06	-06 10177	97	2/100
5	2051	72032,2'N	136° 33'W	083	109-09 2051 72°32,2'N 136° 52,8'N 083 Rove / Biogeochem V 2552 030 16 -3,4 -0,6 107.6	2552	S 8	91	-3,4	200	1017.6	th	No
~	2238	09-09 2238 72° 2 4U 136° 55,5W 080	136° 55,5W	පි	Rojekk Britzecolen A	6583	2553 020 17	17	-3,7	206	-3,7 -0,6 109.7	tь	η_{lc}
8	2300	\$ 000-09 2300 72°32 4'1 126° 554 W	136° 5514 W	080	COC ROSEHE TH V		2551 080 18		-37	20	-06 10977	th	dle
1													

.....

$10/63$ 0031 $12^{-}32, 4'N$ $16^{-}55, 1''$ 082 $R_{1}^{-}4' \circ t_{1}^{-}1'' \circ t_{1}^{-}1'' \circ t_{1}^{-}1''' \circ t_{1}^{-}1'''' \circ t_{1}^{-}1''' \circ t_{1}^{-}1''' \circ t_{1}^{-}1''' \circ t_{1}^{-}1'' \circ t_{1}^{-}1''' \circ t_{1}^{-}1'' \circ t_{1}^{-}1''' \circ t_{1}^{-}1'''' \circ t_{1}^{-}1''' \circ t_{1}^{-}1''' \circ t_{1}^{-}1'''' \circ t_{1}^{-}1''''' \circ t_{1}^{-}1''''' \circ t_{1}^{-}1''''' \circ t_{1}^{-}1''''' \circ t_{1}^{-}1''''' \circ t_{1}^{-}1''''' \circ t_{1}^{-}1'''''' \circ t_{1}^{-}1'''''' \circ t_{1}^{-}1''''''''''''''''''''''''''''''''''''$		DATE	HEURE	LATITUDE	LONGITUDE	CAP	Activitês	Prof (M)	VENT	L,	T° AIR	T° EAU	P° BARO	HUM	GLACES
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	10/05	1500	72°32,4'N	136°55, J' W	082	TM 7	2563	Sto		-3.4	0.6	1017. S	98	01/6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	60/0	0070	72° 32, 6' N	M, 2'65.9E1		Resette protecnies 600m V	2555	080		-3.2	°0. S	in1.4	98	9/1a
0316 72*32.5 'N 13703.1 'N 079 Rockft genemics 600m T 2559 085 18 -2.8 0.5 (on 8) 98 03139 72*32.7 'N 137'03.1 '' 'N 074 Rackft genemics 600m T 2559 085 18 -2.8 0.5 (on 8) 98 19 09111 72*32.41 N 137"05,53 u 074 Rosefft surface 2550 085 20 -3.8 -0.5 (on 8) 98 19 09111 72*33.41 N 137"05,53 u 074 Rosefft surface 2550 085 21 -2.1 -0.5 (nu 8) 98 19 17 09456 72*33.41 N 137"05,63 u 074 Rosefft (Maldonado) 255(20 28 21 -0.5 (nu/6,17 7 05535 72*33.73 N 137"06,77 u 078 Rosefft (Maldonado) 25 25 -3.6 -0.5 (nu/6,17 7 0504 72*53.26 N 137"06,77 u 078 Rosefft (Maldonado) 25 25 -3.6 -0.7 (nu/6,17 7 0504 72*33.13 N 137"06,77 u<	-	60/0	1770	N, L'25 . 2L	2,1	690	Rusetle protecnics 600m 7	£327	085	15			1017. Y	98	9/10
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	69	60/0	0316	72" 32, 5 'N	137°03,2'w	61.0	genemics 600m V	2558	085	2	m	0,5	1016.9	98	9/10
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	~	10/03	0339	72°32,7'N	137°03,4'W	076	4		085		-2.8	20.5		98	5/10
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	10-03	liho	72,32,91 N	130,0403m	098	\rightarrow		085	30	-2,8	-05	1016,8		0/2
137°05,53W 076 Rosetta (Maldonado) 2567 086 21 -2.7 -0.5 1016.15 77 137°05,63W 081 Rosetta (maldonado) 2566 078 21 -0.5 1016.16 77 137°05,63W 080 Rump Si maanpad Lage \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		60.01	6140	12°32,97N	137,04,42,00	079	4	2562	084		-2,8	-0.5	1016.8		210
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	10-09	0456	72°33,26N	137°05,53W	940	Rosette (Maldonodo)	2567	086	31		-0.5	1016,5		9/10
 137°04, 79w 080 Pump Si maanparken \$ 2570 063 33 -3,5 -0,5 1016,1 96 137°06, 79w 093 Findescender pump \$ 3573 080 23 -3,5 -0,5 1016,1 95 137° 09,0 W 080 Pump Si ? 2587 683 21 -2,0 -0,4 1014,5 91 137°05, 6'w 087 Rosethe Nat ? 2594 095 21 -1,7 -0,4 1014,5 91 137°05, 6'w 087 Rosethe Nat ? 2594 095 23 -1,9 -0,4 1014,5 91 137°05, 6'w 087 Rosethe Nat ? 2594 095 24 -1,7 -0,4 1014,5 91 137°05, 6'w 099 Ballon metes deep Super V 2600 095 24 -1,7 -0,4 1014,5 91 137°13, 1'w 099 Ballon metes deep Super V 2600 095 24 -1,7 -0,4 1014,5 91 137°13, 1'w 099 Ballon metes deep Super V 2600 095 24 -1,7 -0,4 1014,5 91 137°13, 1'w 099 Ballon metes deep Super V 2606 095 20 -0,1 -0,1 1014,5 99 137°13, 1'w 100 Resette genemics V 2615 100 25 0,2 -0,3 1012,2 99 137°13, 6'w 100 Resette genemics V 2615 100 25 0,2 -0,3 1012,2 99 137°13, 6'w 100 Resette genemics V 2616 105 27 0,3 1012,2 99 137'13, 6'w 100 Resette genemics V 2615 100 25 0,2 -0,3 1012,2 99 137'13, 6'w 100 Resette genemics V 2615 100 25 0,2 -0,3 1012,2 99 137'13, 6'w 100 Resette genemics V 2615 100 25 0,2 -0,3 1012,2 99 137'13, 6'w 100 Resette genemics V 2615 100 25 0,2 -0,3 1012,2 99 		10-03	0504	72°33,34 W	137.05,63 (081	Resette (mellonado) 1	2566	078	ž	-2,6	-0.5	1016.4		9/10
137°06.79W 093 Firedescender plump V 3573 080 23 -3,5 -0,5 1016.1 75 137°06.79W 080 Runp Si 7 2587 83 21 -2.0 74 1015.2 92 137°09.6W 080 Runp Si 7 2594 035 21 -2.0 74 1015.2 91 137°09.6W 087 Ros 14 V 2594 035 21 -1.7 -0.4 1014.5 91 137°09.6W 087 Ros 035 21 -1.7 -0.4 1014.5 91 137°09.6W 087 Ros 035 21 -1.7 -0.4 1014.5 91 137°09.6W 087 Ros 035 21 -1.7 -0.4 1014.5 91 137°09.6W 087 Ros 035 21 -1.7 -0.4 1014.5 91 137°09.6W 087 Ros 035 21 -1.7 -0.4 1014.5 91 137°09.6W Ros Ros	2	10-03	0535	N-SS'22, 24	137°07,09W	<i>6</i> 80	Pumb Si manind New &	2570	083	33	-3.5	50-		H	2/10
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	~	60.0	0608	72'33,73 N	137:06,990	093		2573	080	53	- 3,5	-0.5	loi6.1		9/10
137*09,6'W C86 Rosethe MJ V 2590 087 20 -0,4 1014,9 91 137*09,6'W 087 Resethe MJ 2<594		10-09	0914	720349'1	137° Or, 0'W	080	4	2587	83	0	-2.0	4'a	10/5.2		q_{lco}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	10-09	1013	N12'932'N	137° 08,6'W	086	ALA V	2390	580	B	-1,7	-0,4	1014.9	91	9/6
 72°35,9·W 137"/2.6'W 087 Margael Rung deep Super V 2600 095 24 -1.7 -0.4 1014.3 99 72°35,3·W 137"/2.1'W 099 Ballen mélée déploye 2606 095 20 °0.1 °0.4 1013.5 99 72°35,3·W 137"/2.4'W 009 Ballen mélée déploye 2606 095 20 °0.1 °0.4 1013.5 99 72°37,1·W 137"/2.6'W 100 New pour Rung deep Super 2615 101 30 01 -013 1012.2 99 72°37,1·W 137"/2.6'W 100 New pour Rung deep Super 2615 100 25 0.2 °0.3 1012.2 99 72°37,3·W 137"/9.6'W 115 Reche geometric V 2615 100 25 0.2 °0.3 1012.2 99 72°37,3·W 137"/9.6'W 100 Recent Republices of 5000 100 100 100 100 100 100 100 100 10	-	50/0	007	72-35.6.10	W,9'60.LEI		N.A. A				-1.9	- 0.4	1014.5	t.6	9/10
 72°36,3'N 137"13,1'W 039 Ballon mélés déployé 2606 035 20 "0.1 "0.4 1013 5 99 20°36,3'N 137"13,1'W 039 Ballon mélés déployé 2606 035 20 "0.1 "0.4 1013 5 99 20°37,2'N 137"15, UN 100 Reconstruction termined 200 2615 100 25 0.2 "0.3 1012.2 93 72°37,3'N 137"19,6'W 115 Recelle generation termined 2005 105 24 0.2 "0.3 1012.2 93 20°34,4'V 137"19,6'W 100 Recent Eleveration termined 700 105 105 27 0.3 1012.2 93 	2		1240	N.632.22	137"10,6'~	£80	Murryal Pune deep Super V	2600	260		t./-	4.0-	lor4.	96	9/6
0 77°37.1 N 137'15. 6'W 104 North Port Der Ser Marine 101 7613 101 70 01 -013 1013,9 94, 1 72'37.1 N 137'15. 6'W 100 Recommendation Remained 2615 100 25 0.2 0.3 1012.2 93 72'37,3'N 137'19,6'W 115 Reache geometric & 2626 105 24 0.2 03 1012.2 93 13'39,4 V 137'19,6'W 100 Reserve EREMONICS & 3635 104 33 03 -035 103,5 99	~		0.51-1	72°36,3 'N	137°13,1'W						1.0-	۰. O , H	1013.5	.66	9/10
 72'37,1'N 137'15, 6'W 100 Muchan formation deep Super 2615 100 25 0.2 -0.3 1012.2 93 72'37,3'N 137'19,6'W 115 Reache geometrics V 2626 105 24 0.2 0.3 1012.2 99 93'44 V 137'19,6'W 100 Reserve FRAUDINIOS A 3695 104 33 0.3 -0.3 (03.5 99 	×	0/06		~ toxat	137°W S W		NORMOOL TOWP THEP SUBRA	Jeiz	101	ç	٥ủ	-013	6,0101	1	9/10
72"37.3'N 137'19,6'W 115 Reache geonemics & 2626 105 24 0.2 "0.3 1012.2 39 B" 29.4 N 137'19, 7W 104 ROSETTE FEAL WINTOS & 9638 104 33 03 "03 1013.5 99	~	60/0	1657	N, 1 . E 2E	137 - 15. 6 . 10	100	p Ocep Super terminec)	2615	100			*0.3	1012.2		9/10
P. 29.4 ~ 137.19.7 w 104 ROSETTE EREMONIOS & 36.38 104 33 03 -03 1013.5 99	3	60/0,		72-37.3'N	137,19,6'~		ionics b	2626	105	42	0.2	<i>'0</i> .3	1012.2	66	01/0
	2	0/09	05.4)		137'19.7W	1040	\$	Seaf	(o4	33	03	2:0-	נפשיב		2/10

Last page for event 76 2 70 misting 14

Appendix 2: Log from ArcticNet CTD-rosette

Cruise		0903											۵	^{uébec} 🍋	
Cruise	e NAME	Geotrac	es											oceai	1
Cast	Station	Date dél	but U	JTC	Heure	UTC	La	at. (N)	Lon	ig. (W)	Fond (m)	Prof. cast (m)	Commentaires	Type	Init
001	S1	30 / 0	8 /	09	00 :	09	69	° 30.050	137 9	59.786	60	54	First cast	Biology	DB
002	S1	30 / 0	8 /	09	05 :	34	69			59.702	59	54	Everything worked well !	Radium	DB
003	S1	30 / 0			07 :		69				58	56	Remake of cast 001	Biology	DB
003	S1	30 / 0			09					° 58.969	56	54	First cast by Veronique	Radium	VD
004	S1.1	30 / 0				40		20.000		9,168	126	120	No comments	Radium	DB
006	S1.1	30 / 0		09	11 :		00	10.111		9.720	128	123	Water mixed by ship	Radium	DB
007	S1.2	30 / 0	1 8	09	13 :	25	69	° 49.888	138	9 19.628	189	181	Mauvaise station	Biogeochem	DB
008	S1.2	30 / 0	8 /	09	14 :	35	69	° 50.058	138	20.616	191	100	Profil incomplet. 24 didn't	Radium	DB
000	01.2	00 / 0	· · ·	00		00	00	00.000	100	20.010	101	100	work	rtadiarri	00
009	S1.2	30 / 0	0 1	09	15 :	42	69	° 50 312	120	21.150	194	10	Profil incomplet. 24 didn't	Radium	DB
003	31.2	30 7 0	0 /	03	15 .	42	03	30.312	150	21.150	134	10	work	Naulum	DB
010	S2	30 / 0	8 /	09	17 :	05	70	° 0.077	138	30.310	242	247	No comments	Biology	VD
011	S2	30 / 0	8 /	09	20 :	23	70	° 0.520	138 9	30.400	260	252	Bouteille 24 ouverte	Biogeochem	VD
012	S2	31 / 0		09		13	69	° 59.681		29.533	256	248	Bouteille 24 ouverte	Radium	VD
013	S2	31 / 0				48				32.870	271	261	Bouteille 24 ferme	Radium	VD
010	02	01 7 0		00		10	00	00.000	100	02.010	2/1	201		rtadiam	.0
014	L1	31 / 0	8 /	00	20 :	17	71	° 5.531	120	0.541	1914	1900	Pas de nitrates. Altimeter not	Biology	DB
014	LI	5170	0 /	03	20 .		<i>'</i> '	0.001	155	0.041	1314	1300	working. Engines running.	Biology	DD
045	1.4	01 1 0		00	02	40	71		420.	1.529	1012	1000	Na aitestas Na DAD		DD
015	L1	01 / 0				13					1913	1906		geochem + O2	
016	L1	01 / 0	19 /	09	15 :	26	71	° 7.154	139	° 11.898	1988	1978	No nitrates. No PAR.	Nd	VD
017	L1	01 / 0	9 /	09	21 :	03	71	° 6.373	139	18.250	2015	2066	Stopped for ice. Altimeter	Th Pa	VD
011	21	0110	· ·	00	2.				100	10.200			working.	mru	
018	L1	02 / 0	9 /	09	01 :	08		° 7.603	139 6	9 19.723	2030	2077	No comments	Rivkin team	DB
019	L1	02 / 0	9 /	09	09 :	19	71	° 6.268	139 9	20.623	2045	2073	No comments	Ra 228	DB
020	L1	02 / 0	9 /	09	13 :	04	71	° 6.802	139 5	20.960	2049	2086	No comments	Cr & U	VD
021	L1	02 / 0	9 /	09	14 :	39	71	° 6.218	139 9	15.839	2034	2059	No comments	Ra 228-226	VD
022	L2	04 / 0	9 /	09	00 :	08	74	° 38.740	137 9	20.890	3000	3000	Stopped for cable problems	Th Pa	VD
023	L2	04 / 0	9 /	09	06 :	23	74	° 38.670	137 9	17.068	3000	1000	No comments	Ra 228-226	VD
024	L2	04 / 0	9 /	09	14 :	12	74	° 35.620	137	7.338	3000	500	No comments	Biology	DB
025	L2	04 / 0			18 :		74		137 9		3000	1000	No comments	Rivkin team	DB
026	L2	04 / 0			21		74			² 54.806	3000	3000	No comments	Nd & O2	DB
027	L2	05 / 0	-	09	03 :			° 26.464		28.141	3000	100	No comments	Pgnomics	VD
028	L2	05 / 0		09	04		74	20.101		28.804	3000	39	No comments	Pgnomics	VD
020		05 7 0	5 /	09			/4		130	20.004		39	No comments	Fynomics	
029	L2	05 / 0	9 /	09	05 :	36	74	° 25.468	136	29.587	3000	99	Rosette remontée et repartie	Pgnomics	VD
030	L2	05 / 0		09	07 :	24	74	° 25.057	100	29.983	3000	59	Voir Operator verbo	Pgnomics	VD
	L2 L2	05 / 0		09			74	20.007			3000	3000			VD
031										30.034			No comments	Biogeochem	
032	L3	07 / 0		09	14 :		10			39.638	3000	3000	Ship moving during upcast	Th Pa	DB
033	L3	07 / 0		09	21 :					33.851	3000	200	No comments	Biology	DB
034	L3	08 / 0		09		17				28.592	3000	3000	No comments	Biogeochem	VD
035	L1.1	09 / 0	1 9	09	01 :	00	72	° 30.827	136 6	35.912	2530	2534	Winch problems	Th Pa	VD
036	L1.1	09 / 0	09 /	09	10	: 22	72	° 29.539	136	° 43.603	2527	1000	Stop to cool winch	Ra	DB
037	L1.1			09	14		72	° 30.950		° 47.402		200	No comments	Biology	DB
038	L1.1	10 / 0				: 48	72	° 32.207		° 56.005		2556	Bottle 7 didn't close	Biogeochem	VD
039	L1.1	10 / 0				: 59	72	° 32.594		° 59.248		600	No comments	Pgnomics	DB
039	L1.1	10 / 0				: 15	72	° 32.552		° 3.226	2558	600	Bottle 23 didn't close	Pgnomics	DB
						: 10	72	° 32.920			2558			•	DB
041	L1.1	10 / 0								° 4.136		10	No comments	Pgnomics	
042	L1.1	10 / 0		09		: 56	72	° 33.266	137		2560	10	No comments	Pgnomics	DB
043	L1.1	10 / 0				: 11	72	° 35.268		° 8.716	2590	2594	Bottle 7 didn't close	Nd	VD
044	L1.1	10 / 0				: 17	72	° 37.316		° 19.655		100	No comments	Pgnomics	VD
045	L1.1	10 / 0	09 /		23	: 52	72	° 37.646	137	° 19.984	2630	80	Last Geotraces	Pgnomics	DB
			'			-		0		•					

Appendix 5: Pren			•		0:	DO4 move	NO2	
ctS1 cost1		NO2	NO3+NO2high	NO3+NO2low	Siraw	PO4 raw	NO3	
stS1 cast1							+	
Event 1								
b1		0.208	0.361	1.194	6.944		0.986	
b7		0.196	-0.36	0.491	4.345	0.706	0.295	
b13		0.185	-0.464	0.351	4.451	0.513	0.166	
b19		0.173	-0.492	0.328	5.913	0.422	0.155	
S1. SHALLOW BIOLOG		ETTE.						
S1 ct1 50m Maite H. 4	50m				10.6	1.015		
	35m				3.737	0.549		
	15m				3.453	0.515		
1	5m				6.205	0.401		
stS2 cast10								
Event 10								
b1		0.232	7.097		17.157	1.399	6.865	
b5		0.237	5.523		14.229	1.338	5.286	
b12		0.254	3.782		11.445	1.216	3.528	
b15		0.25	2.011		8.718	1.042	1.761	
b16		0.196	-0.797	0.463	3.398	0.741	0.267	
b19		0.225	-0.842	0.438	3.17	0.629	0.213	
b24		0.202	-0.915	0.416	4.323	0.46	0.214	
S2. SHALLOW BIOLOG		ETTE						
100m Maite H.	100m				17.472	2.022		
75m	75m				14.128	1.328		
45m	45m				8.946	1.093		
15m	15m				3.217	0.89		
3m	3m				4.513	0.461		
stS2 cast 11								
Event 11								
b4		0.22	15.098		32.435	1.79	14.878	
b6		0.253	12.48		28.729	1.781	12.227	
b9		0.242	9.843		23.58	1.623	9.601	
b11		0.294	7.158		18.259	1.464	6.864	
S2. DEEP CAST. BIOGE	OCHE	М						
200m Maite H.	200m				32.905	1.81		
175m	175m				28.959			
150m	150m				24.252	1.647		
125m	125m				18.403	1.484		
St L1 ct 14								
Event 16								
b1 200m		0.1	13.592		21.164	1.265	13.492	
b7 150m		0.109	16.797		37.823	2.025	16.688	
b11 125m		0.097	15.017		31.551		14.92	
b15 85m		0.108	5.905		12.348		5.797	
b19 50m		0.09	-0.026	0.164	2.674	0.759	0.074	
b24 22m		0.092	0.065	0.134	1.858	0.653	0.042	
		0.032	0.000	0.134	1.000	0.000	0.042	
L1. SHALLOW BIOLOG	CAST	Г					+ +	
L1 ct14 Maite H 200	200m				17.373	1.193		
150m	150m				33.088	1.892		
126m	126m				29.29	1.892		
85m	85m				29.29	1.908		
50m	50m				2.583	0.718		
22m	22m				2.583	0.718		
22111	22111				1.900	0.034		
at L 1 apat 1E							+	
st L1 cast 15 Event 18							+	
		0.470	44.750		10.000	1 000	14.50	
	1	0.176	14.756 14.048		10.862	1.029	14.58	
b3					8.831	0.975	13.874	
b5		0.174					40.504	
b5 b7		0.178	13.762		7.944	0.954	13.584	
b5 b7 b9		0.178 0.176	13.762 13.421		7.944 7.275	0.954 0.943	13.245	
b5 b7		0.178	13.762		7.944	0.954		

Appendix 3: Preliminary nutrient analysis

b15	0.218	13.651		7.359	0.92	13.433
b17	0.214	13.527		7.578	0.923	13.313
b19	0.204	13.738		10.313	1.001	13.534
b21	0.19	12.592		10.493	0.963	12.402
L1. DEEP CAST. BIOGE	CHEM					
	1700m			10.757	1.032	
	1400m			8.799	0.957	
	1200m			7.821	0.92	
	1000m			7.222	0.901	
	300m			7.004	0.885	
	300m			7.139	1.55	
	500m			7.142	0.874	
	400m 300m			7.332	0.885	
	250m			10.068	0.954	
	250m 2m			2.064	0.923	
2m 2	200			2.004	0.528	
Event 19						
L1 nut I1 Maldonado	0.195	-0.075	0.375	1.879	0.675	0.18
L1 nut I2 Maldonado	0.187	0.043	0.405	2.294	0.738	0.218
L1 nut I3 Maldonado	0.206	0.019	0.502	1.86	0.651	0.296
Event 24						
L1 10m shallow 25	0.103	-0.456	0.291	2.69	0.601	0.188
amd09 TM L1						
Event 24						
b1	0.103	13.158		7.165	0.915	13.055
b2	0.091	12.442		10.735	1.046	12.351
b3	0.096	13.849		21.479	1.366	13.753
b4	0.111	16.106		33.206	1.866	15.995
b5	0.106	16.263		34.126	2.044	16.157
b6	0.118	13.549		27.758	1.899	13.431
b7	0.12	7.723		15.583	1.454	7.603
b8	0.163	1.468		5.404	0.968	1.305
b9	0.114	-0.493	0.219	2.438	0.787	0.105
b10	0.099	-0.55	0.127	1.647	0.653	0.028
b11	0.1	-0.528	0.137	1.766	0.605	0.037
b12	0.101	-0.556	0.166	1.704	0.552	0.065
TM L1						
Event 32	0.140	45.000		44.4	1.050	14.000
1	0.149 0.146	15.038 14.653		11.1 10.227	1.059 1.032	14.889 14.507
23	0.146	14.053		9.098	0.996	14.507
4	0.134	14.171		7.589	0.996	
5	0.144	13.425		6.912	0.936	13.294
6	0.131	13.423		6.485	0.935	13.284
7	0.159	13.45		6.703	0.91	13.511
8	0.163	13.562		6.704	0.914	13.399
9	0.158	13.445		6.759	0.916	13.287
10	0.137	13.524		7.07	0.914	13.387
11	0.148	13.601		9.598	0.982	13.453
12	0.146	-0.296	0.3	1.453	0.579	0.154
TM L1.5						
Event 33						
1	0.16	13.289		6.644	0.922	13.129
2 3	0.139	13.353		6.379	0.912	13.214
3	0.142	13.311		6.311	0.902	13.169
4	0.146	13.293		5.887	0.898	13.147
5	0.128	12.904		6.136	0.89	12.776
6	0.151	12.34		8.581	0.928	12.189
6						
7	0.147	16.549		35.703	1.966	16.402
7 8	0.153	13.493		26.37	1.812	13.34
7			0.277			

11	0.116	-0.314	0.255	2.196	0.566	0.139
12	0.123	-0.334	0.232	1.927	0.504	0.109
TM L2						
Event 35	0.470	15 1 10		10 705	1.040	
1	0.172	15.142		12.795	1.043	14.97
2	0.196	16.003		12.954	1.043	15.807
3	0.168	15.502		0	1.043	15.334
4	0.184	15.392		11.324	1.027	15.208
5	0.228 0.166	15.208 14.849		10.532 9.757	1.029 1.002	14.98 14.683
7	0.166	14.849		8.707	0.976	13.862
8	0.174	14.036		8.064	0.976	13.983
9	0.212	13.778		7.176	0.936	13.564
10	0.214	13.34		6.64	0.908	13.304
10	0.202	13.575		6.358	0.899	13.373
12	0.186	13.486		6.143	0.89	13.3
12	0.100	13.400		0.140	0.00	10.0
stn L2 cast 24						
Event 38						
b1	0.141	13.87		27.381	1.845	13.729
b7	0.156	9.989		18.925	1.529	9.833
b11	0.177	0.077	0.638	2.652	0.804	0.461
b15	0.14	-0.282	0.311	1.363	0.634	0.171
b19	0.157	-0.311	0.302	1.433	0.561	0.145
b24	0.139	-0.331	0.284	1.498	0.546	0.145
Day 2 incubation						
Maldonado day2 1	0.133	-0.316	0.251	1.393	0.663	0.118
2	0.158	-0.297	0.336	1.337	0.661	0.178
3	0.166	7.419		1.145	0.652	7.253
4	0.134	7.394		1.085	0.704	7.26
5	0.162	9.516		1.058	0.646	9.354
6	0.138	10.747		1.032	0.644	10.609
7	0.146	10.256		0.944	0.639	10.11
8	0.171	9.267		0.953	0.64	9.096
9	0.149	7.913		1.11	0.644	7.764
10	0.171	7.445		0.509	0.646	7.274
11	0.147	7.835		1.144	0.643	7.688
12	0.172	7.69		1.109	0.644	7.518
13	0.129	6.793		1.325	0.652	6.664
14	0.157	7.053		1.373	0.65	6.896
15	0.18	9.398		1.085	0.633	9.218
16	0.156	10.572		1.116	0.695	10.416
17	0.183	9.673		1.132	0.624	9.49
18	0.15	9.991		1.131	0.634	9.841
19	0.178	9.14		1.099	0.634	8.962
20	0.191 0.162	9.362 8.638		1.103	0.637 0.634	9.171
21 22	0.162	9.397		1.146 1.158	0.634	8.476 9.199
22	0.165	9.649		1.156	0.639	9.199
23	0.165	10.094		1.181	0.632	9.464
27	0.100	10.004			0.002	
st L2 cast 31						
Event 46						
b1	0.127	15.955		13.523	1.085	15.828
2	0.128	15.693		13.501	1.09	15.565
3	0.141	15.633		12.434	1.091	15.492
4	0.143	15.638		11.806	1.089	15.495
5	0.131	15.198		10.818	1.056	15.067
6	0.135	14.82		9.905	1.034	14.685
7	0.15	14.488		8.842	1.005	14.338
8	0.14	14.163		7.903	0.984	14.023
9	0.136	14.056		7.374	0.965	13.92
11	0.166	14.02		6.942	0.941	13.854
12	0.147	13.926		6.888	0.935	13.779
14	0.164	13.704 13.891		6.692 6.374	0.923	13.54
15	0.107	13.891		0.374	0.904	13.724

17		0.143	13.495		6.546	0.901	13.352	_
19		0.166	12.921		7.485	0.895	12.755	
20		0.133	11.612		8.407	0.875	11.479	-
20		0.156	12.962		18.42	1.387	12.806	_
24		0.137	16.292		34.594	2.203	16.155	-
24		0.137	10.232		04.084	2.203	10.100	_
L2. DEEP CAST. BIOGE	OCUE	N.4						
			15 771		12 205	1 252	15.61	
st L2 ct31 Her 3000	3000		15.771		13.295	1.253	15.61	
2750m	2750	0.181	16.282		13.581	1.25	16.101	
2500m	2500	0.139	15.668		12.514	1.246	15.529	
2250m	2250	0.153	15.709		11.965	1.278	15.556	
2000m	2000	0.146	15.345		10.845	1.222	15.199	
1800m	1800	0.143	15.015		9.787	1.188	14.872	
1600m	1600	0.151	14.699		8.918	1.165	14.548	
1400m	1400	0.155	14.537		7.96	1.139	14.382	_
1200m	1200	0.139	14.035		7.361	1.118	13.896	-
1000m	1000	0.173	14.043		6.877	1.148	13.87	-
800m	800	0.161	13.99		6.871	1.475	13.829	_
600m	600	0.181	14.04		8.661	1.196	13.859	
500m	500	0.145	13.698		6.263	1.093	13.553	
400m	400	0.163	13.502		6.517	1.085	13.339	
300m	300	0.177	12.853		7.425	1.085	12.676	
250m	250	0.167	14.078		8.454	1.026	13.911	
150m	150	0.171	15.539		29.741	2.021	15.368	
TM L2								-
Event 39								-
b1		0.156	13.984		6,701	1.11	13.828	_
b2		0.155	13.523		6.221	1.097	13.368	_
b3		0.155			6.305	1.089	13.342	_
			13.495					
b4		0.16	13.425		6.322	0.877	13.265	
b5		0.164	13.336		6.635	0.874	13.172	
b6		0.167	12.37		8.001	0.862	12.203	
b7		0.15	17.199		37.469	1.991	17.049	
b8		0.157	13.201		25.759	1.774	13.044	
b9		0.2	4.181		8.86	1.065	3.981	
b10		0.145	0.004	0.274	1.782	0.692	0.129	
b11		0.168	-0.013	0.333	1.856	0.634	0.165	_
b12		0.147	-0.03	0.267	2.033	0.541	0.12	-
			0.00	0.201	2.000			-
Event 39	Mix va	rious br	ottles from surfac	<u>م</u>				
L2 quot Maldonado	THIN VO	0.153	-0.017	0.247	1.774	0.634	0.094	_
		0.103	-0.017	U.Z47	1.114	0.034	0.094	
EV/ENT #20		12.011		VCACT				
EVENT #38	0.7		ALLOW BIOLOG		4.045	0.500	0.140	
st L2 Hern E1	2.7m	0.159	-0.002	0.272	1.945	0.539	0.113	
E2	10m	0.189	0.011	0.358	1.916	0.552	0.169	
E3	30m	0.169		0.324	1.766			
E4+25	100m		11.077		20.958	1.58	10.902	
E4+50	125m	0.217	14.184		27.999	1.848	13.967	
Day 4 incubation								_
		0.000	0.001	0.404	4.000	0.07/	0.050	
INCUB Maldonado day 4	T	0.203	-0.294	0.461	1.986	0.671	0.258	
23		0.214	-0.167	0.345	1.871	0.676	0.131	
3		0.158	7.512		1.618	0.663	7.354	
4		0.165	7.336		1.551	0.663	7.171	
5		0.159	9.377		1.541	0.653	9.218	_
6		0.166	10.658		1.576	0.656	10.492	_
7		0.151	9.961		1.369	0.652	9.81	-
8		0.184	9.286		1.354	0.651	9.102	-
9		0.169	7.788		1.569	0.662	7.619	_
10		0.182	7.364		1.517	0.653	7.182	
11		0.153	7.519		1.569	0.658	7.366	
12		0.161	7.703		1.509	0.652	7.542	
13		0.158	6.696		1.779	0.667	6.538	
14		0.151	6.63		1.72	0.663	6.479	
		0.167	9.098		1.505	0.648	8.931	
15			0.000					
15 16		0.257	10.534		1.505	0.696	10.277	

18		0.219	9.697		1.441	0.646	9.478
19		0.209	9.103		1.419	0.645	8.894
20		0.183	8.968		1.462	0.647	8.785
21		0.178	8.35		1.567	0.655	8.172
22		0.235	9.268		1.509	0.654	9.033
23		0.266	9.307		1.486	0.647	9.041
24		0.2	9.937		1.455	0.648	9.737
TM L2							
event 51							
1		0.223	13.281		6.819	0.932	13.058
2		0.204	13.391		6.416	0.904	13.187
3		0.239	13.44		6.251	0.904	13.201
4		0.266	18.052		5.961	0.884	17.786
5		0.248	13.027		5.94	0.876	12.779
6		0.26	12.988		6.376	0.878	12.728
7		0.208	11.74		7.743	0.877	11.532
8		0.221	14.88		30.865	1.721	14.659
9		0.244	13.189		26.265	1.86	12.945
10		0.242	-0.103	0.543	2.36	0.767	0.301
11		0.221	-0.145	0.322	1.544	0.646	0.101
12		0.268	-0.091	0.474	1.629	0.561	0.206
st L3 cast 33							
Event 54							
b1		0.215	14.098		29.027	1.881	13.883
b7		0.195	11.097		21.468	1.629	10.902
b11		0.229	0.865	1.037	3.53	0.805	0.808
b15		0.21	0.153	0.304	1.678	0.611	0.094
b17		0.204	0.165	0.252	2.388	0.506	0.048
b24		0.201	0.19	0.257	2.356	0.502	0.056
		0.201		0.201	2.000	0.002	0.000
L3. SHALLOW BIOLOGY	CAS	r					
Maite ev.54 140m	140	0.22	13.934		28.319	1.854	13.714
115m	115	0.229	11.219		21.128	1.606	10.99
60m	60	0.220	0.747	0.95	3.295	0.802	0.69
32m	32	0.223	0.178	0.294	1.688	0.621	0.071
10m	10	0.213	0.171	0.294	2.348	0.501	0.081
3.1m	3.1	0.213	0.196	0.307	2.309	0.587	0.094
5.111	0.1	0.210	0.150	0.007	2.000	0.007	0.004
proteom L2 10m ba.1		0.277	0.005	0.44	1.627	0.552	0.163
proteom L2 ba.2		0.269	-0.139	0.457	1.575	0.55	0.188
proteom L2 ba.2		0.203	0.356	0.848	2.57	0.771	0.56
proteom L2 ba.3		0.302	0.055	0.778	2.475	0.771	0.476
proteom L2 ba.4		0.302	0.000	0.110	2.470	0.771	0.470
TMLO							
TM L3 Event 55							
Event 55		0.114	40.070		7.229	0.040	12.050
1		0.114	13.073 12.811			0.918	12.959
23		0.148 0.114	12.811		6.838 6.503	0.922 0.897	12.663
4							12.88
4		0.145	12.689		6.222	0.89	12.544
5		0.119	12.41		6.123	0.841	12.291
6		0.126	12.463		6.25	0.874	12.337
7		0.135	11.201		7.989	0.849	11.066
8		0.147	15.968		36.129	1.941	15.821
9		0.156	13.845	0.00	28.953	1.918	13.689
10		0.197	0.224	0.46	2.883	0.782	0.263
11		0.125	0.134	0.149	1.76	0.651	0.024
12				0.172	2.483	0.53	0.048
		0.124	0.149	0.172			
			0.149				├
st L3 cast 34			0.149				
Event 56		0.124					
Event 56 1		0.124	14.627		12.976	1.054	14.487
Event 56 1 2		0.124 0.14 0.121	14.627 14.756		13.086	1.058	14.635
Event 56 1 2 3		0.124 0.14 0.121 0.131	14.627 14.756 14.512		13.086 11.735	1.058 1.054	14.635 14.381
Event 56 1 2 3 4		0.124 0.14 0.121 0.131 0.13	14.627 14.756 14.512 14.47		13.086 11.735 11.13	1.058 1.054 1.036	14.635 14.381 14.34
Event 56 1 2 3 4 5		0.124 0.14 0.121 0.131 0.13 0.14	14.627 14.756 14.512 14.47 14.23		13.086 11.735 11.13 10.21	1.058 1.054 1.036 1.012	14.635 14.381 14.34 14.09
Event 56 1 2 3 4		0.124 0.14 0.121 0.131 0.13	14.627 14.756 14.512 14.47		13.086 11.735 11.13	1.058 1.054 1.036	14.635 14.381 14.34

		0.40	40.000		0.000	0.000	40 700
9		0.16	12.923		6.998	0.929	12.763
11		0.13	13.162 12.909		6.543	0.912	13.032
12		0.14	12.909		6.297 6.322	0.906	12.769 12.786
14		0.165	12.951		5.673	0.887	12.780
15		0.135	12.015		5.856	0.850	12.48
19		0.140	12.11		6.989	0.859	11.97
20		0.137	10.946		8.639	0.853	10.809
20		0.153	13.396		24.281	1.402	13.243
24		0.148	14.729		31.12	1.932	14.581
21		0.110	11.720		01.12	1.002	11.001
L3. DEEP CAST. BIOGE	OCHE	М					
Maite ev.56 3000m	3000	0.177	14.568		12.87	1.064	14.391
2500m	2750	0.156	14.72		11.854	1.048	14.564
2750m	2500	0.18	15.514		13.105	1.056	15.334
2250m	2250	0.169	14.996		11.29	1.039	14.827
2000m	2000	0.137	14.397		10.201	1.012	14.26
ev 56 1800m	1800	0.157	14.232		9.353	0.99	14.075
1600m	1600	0.147	13.621		8.292	0.958	13.474
1400m	1400	0.177	13.496		7.465	0.933	13.319
1200m	1200	0.151	13.333		6.932	0.904	13.182
1000m	1000	0.155	13.156		6.49	0.907	13.001
800m	800	0.15	12.887		6.225	0.889	12.737
600m	600	0.18	12.854		6.06	0.851	12.674
500m	500	0.181	12.687		5.746	0.861	12.506
400m	400	0.2	12.652		5.887	0.874	12.452
300m	300	0.173	11.964		6.995	0.864	11.791
250m	250	0.175	11.191		8.529	0.853	11.016
200m	200	0.192	13.405		25.153	1.46	13.213
150m	150	0.184	14.615		31.348	1.955	14.431
Day 6 incubation							
incub Maldon day6 1		0.142	0.171	0.112	1.563	0.645	-0.03
2		0.159	0.142	0.169	1.67	0.643	0.01
3		0.167	7.37	0.100	1.439	0.622	7.203
4		0.16	7.202		1.332	0.628	7.042
5		0.18	9.351		1.248	0.628	9.171
6		0.176	10.348		1.239	0.619	10.172
7		0.223	10,191		1.127	0.618	9.968
8		0.187	9.012		1.169	0.604	8.825
9		0.149	7.625		1.326	0.611	7.476
10		0.183	7.237		1.309	0.623	7.054
11		0.152	7.698		1.324	0.613	7.546
12		0.2	7.642		1.349	0.627	7.442
13		0.191	6.865		1.52	0.632	6.674
14		0.15	6.933		1.511	0.617	6.783
15		0.198	9.193		1.276	0.609	8.995
16		0.174	10.247		1.302	0.593	10.073
17		0.162	9.4		1.334	0.625	9.238
18		0.201	9.697		1.348	0.623	9.496
19		0.164	9.024		1.356	0.618	8.86
20		0.186	9.073		1.348	0.621	8.887
21		0.179	8.293		1.341	0.621	8.114
22		0.201	9.214		1.368	0.622	9.013
23					1.347	0.615	8.77
24		0.162	8.932				
24		0.162 0.189	8.932 9.934		1.351	0.612	9.745
TM L1.1							
TM L1.1 event 59		0.189	9.934		1.351	0.612	9.745
TM L1.1 event 59 1		0.189	9.934		1.351 6.553	0.612	9.745
TM L1.1 event 59 1		0.189 0.174 0.179	9.934 12.786 11.752		1.351 6.553 7.943	0.612 0.861 0.851	9.745 12.612 11.573
TM L1.1 event 59 1 2 3		0.189 0.174 0.179 0.129	9.934 12.786 11.752 12.496		1.351 6.553 7.943 18.467	0.612 0.861 0.851 1.195	9.745 12.612 11.573 12.367
TM L1.1 event 59 1 2 3 4		0.189 0.174 0.179 0.129 0.152	9.934 12.786 11.752 12.496 16.421		1.351 6.553 7.943 18.467 36.433	0.612 0.861 0.851 1.195 2.049	9.745 12.612 11.573 12.367 16.269
TM L1.1 event 59 1 2 3 4 5		0.189 0.174 0.179 0.129 0.152 0.136	9.934 12.786 11.752 12.496 16.421 13.13		1.351 6.553 7.943 18.467 36.433 26.725	0.612 0.861 0.851 1.195 2.049 1.814	9.745 12.612 11.573 12.367 16.269 12.994
TM L1.1 event 59 1 2 3 4 5 6		0.189 0.174 0.179 0.129 0.152 0.136 0.155	9.934 12.786 11.752 12.496 16.421 13.13 9.34		1.351 6.553 7.943 18.467 36.433 26.725 18.342	0.612 0.861 0.851 1.195 2.049 1.814 1.522	9.745 12.612 11.573 12.367 16.269 12.994 9.185
TM L1.1 event 59 1 2 3 4 5 6 7		0.189 0.174 0.179 0.129 0.152 0.136 0.155 0.161	9.934 12.786 11.752 12.496 16.421 13.13 9.34 2.928		1.351 6.553 7.943 18.467 36.433 26.725 18.342 7.56	0.612 0.861 0.851 1.195 2.049 1.814 1.522 1.01	9.745 12.612 11.573 12.367 16.269 12.994 9.185 2.767
TM L1.1 event 59 1 2 3 4 5 6		0.189 0.174 0.179 0.129 0.152 0.136 0.155	9.934 12.786 11.752 12.496 16.421 13.13 9.34	0.802 0.515	1.351 6.553 7.943 18.467 36.433 26.725 18.342	0.612 0.861 0.851 1.195 2.049 1.814 1.522	9.745 12.612 11.573 12.367 16.269 12.994 9.185

10		0.141	-0.35	0.111	1.443	0.664	-0.03	0
11		0.136	-0.385	0.102	2.126	0.566	-0.034	0
12		0.153	-0.364	0.146	1.964	0.495	-0.007	0
-+ 4 4 -+ 07								
st L1.1 ct 37								
Event 63		0.121	14.762		30.036	1.0	14.641	
b1 7		0.121	14.762		22.179	1.9 1.685	11.016	
11		0.142	-0.258	0.641	3.123	0.792	0.424	
15		0.217	-0.238	0.041	2.265	0.792	-0.065	0
15		0.132	-0.282	0.098	2.205	0.48	-0.085	0
24		0.132	-0.382	0.081	2.011	0.489	-0.054	0
27		0.152	-0.502	0.001	2.00	0.400	-0.001	0
L1.1. SHALLOW BIOLOG	SV CA	ST					-	
ev 63 L1.1 3m. HERNAN	3	0.13	-0.38	0.068	2.016	0.491	-0.062	
10m	10	0.143	-0.376	0.000	2.010	0.492	0.002	
25m	25	0.155	-0.38	0.155	2.040	0.452	0.007	
70m	70	0.217	-0.261	0.591	2.004	0.769	0.374	
140m	140	0.169	14.029	0.001	29.292	1.866	13.86	
1 John	140	0.108	14.028		20.202	1.000	10.00	
st L1.1 ct 38								
Event 66								
b1		0.12	14.848		14.096	1.08	14,728	
2		0.12	14.914		12.852	1.087	14.795	
3		0.121	14.563		11.871	1.076	14.442	
4		0.121	14.503		11.014	1.076	14.442	
5		0.121	14.006		9.737	1.040	13.878	
6		0.120	13.834		8.303	0.967	13.694	
9		0.118	13.199		6.934	0.918	13.081	
10		0.135	13.16		6.799	0.92	13.025	
10		0.138	13.268		6.809	0.907	13.13	
13		0.145	13.125		6.43	0.9	12.98	
13		0.143	13.239		6.7	0.892	13.097	
16		0.133	13.115		6.728	0.897	12.982	
17		0.116	12.989		6.778	0.89	12.873	
19		0.128	12.816		8.058	0.912	12.688	
20		0.124	11.674		8.909	0.894	11.55	
20		0.127	15.312		28.834	1.621	15.185	
24		0.12	16.809		36.102	1.997	16.689	_
		0.12	10.000		00.102	1.007	10.000	
L1.1. DEEP CAST. BIOG	EOCH	EM						
ev 66 L1.1 2500m. HERN		0.125	15.389		14,177	1.086	15.264	-
2250m	2250	0.143	15.238		12.896	1.077	15.095	
2000m	2000	0.156	15.022		12.007	1.07	14.866	
1800m	1800	0.131	14.782		11.308	1.037	14.651	
1600m	1600	0.139	14.477		9.911	1.01	14.338	
1400m	1400	0.134	13.73		8.347	0.957	13.596	
1000m	1000		13.465		6.956	0.924	13.342	
800m	800	0.146	13.045		6.735	0.949	12.899	
600m	600	0.149	13.323		6.756	0.895	13.174	
500m	500	0.152	13.118		6.357	0.89	12.966	
450m	450	0.129	13.258		6.701	0.881	13.129	
400m	400	0.156	13.069		6.673	0.881	12.913	
350m	350	0.169	13.075		6.804	0.879	12.906	
300m	300	0.146	12.616		7.967	0.894	12.47	
250m	250	0.152	11.605		8.903	0.877	11.453	
200m	200	0.163	15.149		28.979	1.624	14.986	
175m	175	0.159	16.579		36.129	2.024	16.42	
TM L1.1								
event 67								
1		0.27	14.984		13.868	1.123	14.714	
2		0.182	14.764		13.081	1.095	14.582	
3		0.233	14.78		12.317	1.105	14.547	
4		0.245	14.663		10.875	1.076	14.418	
5		0.225	13.921		9.303	1.027	13.696	
6		0.221	13.414		8.156	0.987	13.193	
7		0.157	13.025		7.169	0.958	12.868	
8		0.213	13.143		6.932	0.943	12.93	

10 0.28 12.915 6.664 0.925 12.855 12 0.297 13.022 7.051 0.93 12.735 Kristina Brown 1 0.154 -0.376 0.164 1.967 0.479 0.011 Kristina Brown 3 0.15 -0.371 0.165 1.929 0.466 0.059 Kristina Brown 4 0.167 -0.388 0.226 1.925 0.466 0.016 Kristina Brown 4 0.167 -0.368 0.228 1.925 0.466 0.059 Day 8 incubation incu Maido. day6 1 0.181 -0.361 0.248 1.86 0.641 0.067 incu Maido. day6 1 0.181 9.0390 1.579 0.596 9.399 1.579 0.596 9.399 1.579 0.596 9.399 1.579 0.596 9.399 1.588 0.614 8.783 1.66 0.204 9.621 1.066 0.002 9.416 1.377 1.687 0.607 10.282 1.5<0.51 1.381 1.919							
11 0.219 12.864 6.672 0.928 12.835 Kristina Brown 1 0.154 -0.376 0.164 1.967 0.479 0.019 Kristina Brown 3 0.15 -0.371 0.163 1.969 0.473 0.029 Kristina Brown 3 0.167 -0.378 0.226 1.929 0.466 0.059 Carl Mathematic Control - <	9	0.205	13.173		7.221	0.939	12.968
12 0.27 13.022 7.051 0.38 12.735 Kristina Brown 1 0.154 -0.376 0.164 1.967 0.473 0.029 Kristina Brown 3 0.15 -0.371 0.185 1.929 0.466 0.015 Kristina Brown 4 0.167 -0.388 0.226 1.925 0.466 0.059 Day 8 incubation incu Maido. day6 1 0.181 -0.361 0.248 1.86 0.641 0.067 incu Maido. day6 1 0.181 -0.361 0.248 1.86 0.641 0.067 4 0.161 9.59 1.579 0.596 9.477 0.9399 5 0.196 8.989 1.588 0.614 8.733 6 0.224 1.606 0.602 9.416 0.617 10.381 7 0.191 9.247 1.463 0.614 9.512 10 0.176 9.688 1.597 0.599 9.512 11 0.505 1.797	10						
Kristina Brown 1 0.154 -0.378 0.164 1967 0.479 0.015 Kristina Brown 3 0.15 -0.371 0.165 1.259 0.465 0.015 Kristina Brown 4 0.167 -0.368 0.222 1.255 0.466 0.059 Day 8 incubation 0.161 -0.361 0.248 1.86 0.441 0.067 Incu Mado. day8 1 0.181 -0.361 0.248 1.86 0.641 0.067 3 0.175 -0.376 0.168 1.866 0.641 0.067 4 0.191 9.59 1.579 0.560 9.399 5 0.196 8.989 1.588 0.614 8.733 6 0.204 9.62 1.606 0.602 9.416 7 0.191 9.6271 1.687 0.689 9.512 10 0.176 9.6865 1.688 0.621 1.381 9 0.219 0.511 1.617 0.608 7.972	11	0.219	12.854		6.572	0.928	
Kristina Brown 2 0.154 0.037 0.183 1956 0.473 0.029 Kristina Brown 4 0.167 -0.368 0.226 1.925 0.466 0.059 Kristina Brown 4 0.167 -0.368 0.226 1.925 0.466 0.059 Day 8 incubation - - - - - - incu Mado. day8 1 0.181 -0.361 0.248 1.86 0.641 0.067 3 0.176 9.653 1.59 0.586 9.477 - - - - - 4 0.191 9.59 1.579 0.586 9.477 -	12	0.287	13.022		7.051	0.93	12.735
Kristina Brown 2 0.154 0.037 0.183 1956 0.473 0.029 Kristina Brown 4 0.167 -0.368 0.226 1.925 0.466 0.059 Kristina Brown 4 0.167 -0.368 0.226 1.925 0.466 0.059 Day 8 incubation - - - - - - incu Mado. day8 1 0.181 -0.361 0.248 1.86 0.641 0.067 3 0.176 9.653 1.59 0.586 9.477 - - - - - 4 0.191 9.59 1.579 0.586 9.477 -							
Kristina Brown 4 0.167 -0.321 0.165 1.925 0.465 0.015 Day 8 incubation 0.015 0.015 <td>Kristina Brown 1</td> <td>0.154</td> <td>-0.378</td> <td>0.164</td> <td>1.967</td> <td>0.479</td> <td>0.01</td>	Kristina Brown 1	0.154	-0.378	0.164	1.967	0.479	0.01
Kristna Brown 4 0.167 -0.328 0.226 1.925 0.466 0.059 Day 8 incubation <t< td=""><td>Kristina Brown 2</td><td>0.154</td><td>-0.37</td><td>0.183</td><td>1.959</td><td>0.473</td><td>0.029</td></t<>	Kristina Brown 2	0.154	-0.37	0.183	1.959	0.473	0.029
Kristina Brown 4 0.167 -0.388 0.226 1.925 0.466 0.059 Day 8 incubation 0.167 -0.361 0.248 1.86 0.641 0.067 incu Mado. day8 1 0.167 9.653 1.59 0.596 9.477 4 0.191 9.59 1.579 0.586 9.477 4 0.191 9.59 1.579 0.586 9.477 4 0.191 9.59 1.579 0.586 9.477 6 0.204 9.62 1.606 0.602 9.416 7 0.191 9.427 1.4433 0.614 9.052 10 0.176 9.688 1.555 0.651 10.381 9 0.219 0.511 1.617 0.608 7.972 11 0.205 8.177 1.687 0.628 1.842 10 0.174 7.631 1.919 0.619 7.447 13 0.174 7.631 1.949 0.628	Kristina Brown 3	0.15	-0.371	0.165	1.929	0.465	0.015
Day 8 incubation Image: Constraint of the second seco	Kristina Brown 4	0.167		0.226	1.925	0.466	0.059
Incu Maldo. day6 1 0.181 -0.361 0.248 1.86 0.641 0.067 3 0.152 -0.376 0.168 1.866 0.643 0.016 4 0.191 9.653 1.579 0.596 9.477 6 0.204 9.62 1.606 0.602 9.416 7 0.191 9.247 1.463 0.614 8.793 8 0.181 10.562 1.5 0.651 10.381 9 0.219 10.511 1.617 0.689 9.572 11 0.205 8.177 1.697 0.694 6.561 13 0.174 7.631 1.919 0.619 7.447 14 0.195 8.657 1.887 0.621 7.441 16 0.217 10.616 1.6449 0.622 7.411 16 0.217 10.616 1.6494 0.624 7.431 19 0.133 7.641 1.694 0.624 7							
Incu Maldo. day6 1 0.181 -0.361 0.248 1.86 0.641 0.067 3 0.152 -0.376 0.168 1.866 0.643 0.016 4 0.191 9.653 1.579 0.596 9.477 6 0.204 9.62 1.606 0.602 9.416 7 0.191 9.247 1.463 0.614 8.793 8 0.181 10.562 1.5 0.651 10.381 9 0.219 10.511 1.617 0.689 9.572 11 0.205 8.177 1.697 0.694 6.561 13 0.174 7.631 1.919 0.619 7.447 14 0.195 8.657 1.887 0.621 7.441 16 0.217 10.616 1.6449 0.622 7.411 16 0.217 10.616 1.6494 0.624 7.431 19 0.133 7.641 1.694 0.624 7	Day 9 incubation						
2 0.152 -0.376 0.168 1.886 0.643 0.016 3 0.176 9.653 1.59 0.596 9.477 4 0.191 9.659 1.579 0.596 9.399 5 0.196 8.989 1.588 0.614 9.62 6 0.204 9.62 1.606 0.602 9.416 7 0.191 9.247 1.463 0.611 10.311 9 0.219 10.511 1.617 0.607 10.292 10 0.176 9.688 1.595 0.599 9.512 11 0.205 8.77 1.697 0.608 7.972 12 0.182 6.733 1.679 0.594 6.551 14 0.195 8.657 1.887 0.621 8.462 15 0.254 7.664 1.631 0.621 7.441 16 0.217 1.616 1.649 0.628 1.741 16 <td></td> <td></td> <td>0.004</td> <td>0.040</td> <td>4.00</td> <td>0.044</td> <td>0.007</td>			0.004	0.040	4.00	0.044	0.007
3 0.176 9.653 1.59 0.596 9.477 4 0.191 9.59 1.579 0.596 9.399 5 0.196 8.989 1.579 0.596 9.399 6 0.204 9.62 1.606 0.602 9.416 7 0.191 9.247 1.463 0.614 8.793 9 0.219 10.511 1.617 0.607 19.922 10 0.176 9.688 1.595 0.599 9.512 11 0.205 8.177 1.697 0.608 7.972 12 0.182 6.733 1.679 0.594 6.551 13 0.174 7.631 1.919 0.618 8.462 14 0.195 8.657 1.887 0.621 7.441 16 0.217 10.616 1.649 0.628 7.441 19 0.183 7.641 1.694 0.624 7.441 19 0.183 </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-						
4 0.191 9.59 1.579 0.596 9.399 5 0.196 8.989 1.588 0.614 8.733 6 0.204 9.62 1.606 0.602 9.416 7 0.191 9.247 1.463 0.614 9.052 9 0.219 10.511 1.617 0.607 10.292 10 0.176 9.688 1.595 0.599 9.512 11 0.205 8.177 1.697 0.608 7.972 12 0.182 6.733 1.679 0.594 6.551 14 0.195 8.657 1.887 0.621 8.462 15 0.254 7.664 1.631 0.62 7.411 18 0.198 7.641 1.664 0.628 10.391 19 0.183 7.641 1.664 0.624 7.458 20 0.145 7.362 1.772 0.61 7.208 22 0.155 </td <td></td> <td></td> <td></td> <td>0.168</td> <td></td> <td></td> <td></td>				0.168			
5 0.196 8.989 1.588 0.614 8.73 6 0.204 9.62 1.606 0.602 9.416 7 0.191 9.247 1.463 0.614 9.066 9 0.219 10.511 1.617 0.607 10.292 10 0.176 9.688 1.595 0.599 9.512 11 0.205 8.177 1.687 0.594 6.551 12 0.182 6.733 1.679 0.594 6.551 13 0.174 7.613 1.919 0.612 7.441 16 0.274 7.664 1.631 0.62 7.41 18 0.198 9.321 1.667 0.618 9.123 19 0.183 7.641 1.669 0.624 7.458 20 0.145 8.022 1.719 0.627 7.877 21 0.155 7.193 1.228 0.626 7.327 23 0.185 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
6 0.204 9.62 1.606 0.602 9.416 7 0.191 9.247 1.463 0.614 9.056 8 0.181 10.562 1.5 0.651 10.381 9 0.219 10.511 1.617 0.608 7.972 11 0.205 8.177 1.697 0.608 7.972 12 0.182 6.733 1.679 0.599 9.512 13 0.174 7.631 1.919 0.619 7.457 14 0.195 8.657 1.887 0.621 8.462 15 0.254 7.664 1.631 0.62 10.399 16 0.217 10.616 1.649 0.628 10.399 19 0.183 7.641 1.694 0.624 7.458 20 0.145 7.362 1.772 0.61 7.208 21 0.155 7.193 1.268 0.626 7.342 10 0.24							
7 0.191 9.247 1.463 0.614 9.061 8 0.181 10.562 1.5 0.651 10.381 9 0.219 10.511 1.617 0.607 10.292 10 0.176 9.688 1.595 0.599 9.512 11 0.205 8.177 1.697 0.608 7.972 12 0.182 6.733 1.679 0.594 6.551 13 0.174 7.631 1.919 0.618 4.622 15 0.254 7.664 1.631 0.62 7.41 16 0.217 7.619 1.749 0.618 9.122 10 0.183 7.641 1.667 0.618 9.123 20 0.145 8.022 1.727 0.61 7.208 21 0.154 7.362 1.727 0.61 7.208 22 0.155 7.193 1.268 0.626 7.342 TM S4 0.9							
8 0.181 10.562 1.5 0.651 10.381 9 0.219 10.511 1.617 0.602 10.292 10 0.176 9.688 1.595 0.599 9.512 11 0.205 8.177 1.697 0.608 7.972 12 0.182 6.733 1.6179 0.698 6.551 13 0.174 7.631 1.919 0.619 7.457 14 0.195 8.657 1.887 0.621 8.462 15 0.254 7.664 1.631 0.62 7.41 16 0.217 10.616 1.649 0.628 10.399 17 0.178 7.619 1.749 0.612 7.441 18 0.198 9.321 1.667 0.618 9.122 0.145 7.362 1.727 0.61 7.208 22 0.155 7.193 1.268 0.626 7.342 23 0.184 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
9 0.219 10.511 1.617 0.607 10.292 10 0.176 9.688 1.595 0.599 9.512 11 0.205 8.177 1.697 0.608 7.972 12 0.182 6.733 1.679 0.594 6.551 13 0.174 7.631 1.919 0.819 7.457 14 0.195 8.657 1.887 0.621 8.462 15 0.254 7.664 1.631 0.62 7.41 18 0.198 9.321 1.667 0.618 9.123 19 0.183 7.641 1.694 0.622 7.458 20 0.145 8.022 1.719 0.623 7.327 21 0.154 7.362 1.727 0.617 7.038 22 0.155 7.193 1.268 0.625 7.038 22 0.155 7.193 1.268 0.625 7.337 24 0.	· · · · · · · · · · · · · · · · · · ·						
10 0.176 9.688 1.595 0.599 9.512 11 0.205 8.177 1.697 0.689 7.972 12 0.182 6.733 1.679 0.594 6.551 13 0.174 7.631 1.919 0.619 7.457 14 0.954 7.664 1.631 0.621 8.467 16 0.217 10.616 1.649 0.622 10.399 17 0.178 7.619 1.749 0.612 7.441 18 0.198 9.321 1.667 0.618 9.123 19 0.154 7.362 1.719 0.629 7.877 21 0.154 7.362 1.727 0.61 7.328 23 0.165 7.512 1.73 0.628 7.327 24 0.194 7.536 1.792 0.626 7.342 TM S4 0.291 1.33606 20.34 1.338 15.413 2		0.181	10.562		1.5	0.651	10.381
11 0.205 8.177 1.697 0.608 7.972 12 0.182 6.733 1.679 0.594 6.551 13 0.174 7.631 1.919 0.619 7.457 14 0.195 8.657 1.887 0.621 8.462 15 0.254 7.644 1.631 0.62 7.41 16 0.217 10.616 1.649 0.628 10.399 17 0.178 7.619 1.749 0.612 7.441 18 0.198 9.321 1.667 0.618 9.123 20 0.145 8.022 1.719 0.629 7.877 21 0.154 7.362 1.727 0.617 7.208 22 0.155 7.193 1.268 0.625 7.327 24 0.194 7.536 1.792 0.626 7.342 TM S4 0.26 13.451 11.049 1.067 13.208 2 <	9	0.219	10.511		1.617	0.607	10.292
12 0.182 6.733 1.679 0.594 6.551 13 0.174 7.631 1.919 0.619 7.457 14 0.195 8.657 1.887 0.621 8.462 15 0.254 7.664 1.631 0.62 7.41 16 0.217 10.616 1.649 0.612 7.41 18 0.198 9.321 1.667 0.618 9.123 19 0.183 7.641 1.667 0.618 9.123 20 0.145 8.022 1.719 0.627 7.381 21 0.155 7.193 1.268 0.625 7.038 23 0.185 7.512 1.73 0.628 7.332 24 0.194 7.536 1.792 0.626 7.342 7 0.628 12.594 3.241 1.049 1.067 13.208 2.0209 12.803 12.271 1.068 12.594 12.594 12.594	10	0.176	9.688		1.595	0.599	9.512
13 0.174 7.631 1.919 0.619 7.457 14 0.195 8.657 1.887 0.621 8.462 15 0.254 7.664 1.631 0.62 7.41 16 0.217 10.616 1.649 0.628 10.399 17 0.178 7.619 1.749 0.612 7.441 18 0.198 9.321 1.667 0.618 9.123 19 0.183 7.641 1.667 0.617 7.458 20 0.145 8.022 1.719 0.627 7.387 21 0.154 7.362 1.727 0.61 7.208 22 0.155 7.193 1.268 0.626 7.332 24 0.194 7.536 1.792 0.626 7.342 1 0.243 13.451 11.049 1.067 13.208 2 0.209 12.803 12.27 1.339 13.413 4	11	0.205	8.177		1.697	0.608	7.972
13 0.174 7.631 1.919 0.619 7.457 14 0.195 8.657 1.887 0.621 8.462 15 0.254 7.064 1.631 0.622 7.41 16 0.217 10.616 1.649 0.628 10.399 17 0.178 7.619 1.749 0.612 7.441 18 0.198 9.321 1.667 0.618 9.123 19 0.183 7.641 1.694 0.624 7.458 20 0.145 8.022 1.719 0.626 7.387 21 0.155 7.193 1.268 0.625 7.038 22 0.155 7.193 1.268 0.626 7.342 74 0.194 7.536 1.792 0.626 7.342 74 0.194 7.536 1.792 0.626 7.342 7 0.266 14.995 31.859 1.84 1.339 13.413	12	0.182	6.733		1.679	0.594	6.551
14 0.195 8.657 1.887 0.621 8.462 15 0.254 7.664 1.631 0.62 7.41 16 0.217 10.616 1.649 0.628 10.399 17 0.178 7.619 1.749 0.612 7.441 18 0.198 9.321 1.667 0.624 7.458 20 0.145 8.022 1.719 0.629 7.877 21 0.155 7.193 1.268 0.625 7.038 23 0.185 7.512 1.73 0.628 7.327 24 0.194 7.536 1.792 0.626 7.342 TM S4	13	0.174			1.919		
16 0.217 10.616 1.649 0.628 10.399 17 0.178 7.619 1.749 0.612 7.441 18 0.198 9.321 1.667 0.618 9.123 19 0.145 8.022 1.719 0.629 7.877 21 0.154 7.362 1.727 0.61 7.208 22 0.155 7.193 1.268 0.625 7.038 22 0.155 7.512 1.73 0.628 7.327 24 0.194 7.536 1.792 0.626 7.342 TM S4 1 0.243 13.451 11.049 1.067 13.208 2 0.209 12.803 12.27 1.068 12.594 3 0.187 15.6 33.241 1.339 13.413 4 0.187 15.6 31.859 1.981 4.735 6 0.22 12.73 26.672 1.848 12.51 <		0.195			1.887		
16 0.217 10.616 1.649 0.628 10.399 17 0.178 7.619 1.749 0.612 7.441 18 0.198 9.321 1.667 0.618 9.123 19 0.145 8.022 1.719 0.629 7.877 21 0.154 7.362 1.727 0.61 7.208 22 0.155 7.193 1.268 0.625 7.038 22 0.155 7.512 1.73 0.628 7.327 24 0.194 7.536 1.792 0.626 7.342 TM S4 1 0.243 13.451 11.049 1.067 13.208 2 0.209 12.803 12.27 1.068 12.594 3 0.187 15.6 33.241 1.339 13.413 4 0.187 15.6 31.859 1.981 4.735 6 0.22 12.73 26.672 1.848 12.51 <	15	0.254	7.664		1.631	0.62	7.41
17 0.178 7.619 1.749 0.612 7.441 18 0.198 9.321 1.667 0.618 9.123 20 0.145 8.022 1.719 0.629 7.877 21 0.154 7.362 1.727 0.61 7.208 22 0.155 7.193 1.268 0.625 7.332 23 0.185 7.512 1.73 0.626 7.342 24 0.194 7.536 1.792 0.626 7.342 24 0.194 7.536 1.792 0.626 7.342 7 0.209 12.803 12.27 1.068 12.594 3 0.193 13.606 20.31 13.413 1.4735 6 0.22 12.73 26.672 1.848 12.51 7 0.266 8.56 18.499 1.54 8.294 8 0.255 0.776 1.262 5.011 0.93 1.007 9<							
18 0.198 9.321 1.667 0.618 9.123 19 0.183 7.641 1.697 0.618 9.123 20 0.145 8.022 1.719 0.624 7.458 21 0.155 7.193 1.268 0.625 7.038 22 0.155 7.193 1.268 0.626 7.327 24 0.194 7.536 1.792 0.626 7.342 TM S4 1 0.243 13.451 11.049 1.067 13.208 2 0.209 12.803 12.27 1.068 12.594 3 0.197 15.6 33.24 1.938 15.413 5 0.26 14.995 31.859 1.98 14.735 6 0.22 12.73 26.672 1.848 12.51 7 0.266 8.56 18.489 1.54 8.294 8 0.255 0.776 1.262 5.011 0.93 1.007							
19 0.183 7.641 1.694 0.624 7.458 20 0.145 8.022 1.719 0.629 7.877 21 0.155 7.193 1.268 0.625 7.038 22 0.155 7.193 1.268 0.625 7.038 23 0.185 7.512 1.73 0.628 7.327 24 0.194 7.536 1.792 0.626 7.342 TM S4 20.209 12.803 12.27 1.068 13.208 2 0.209 12.803 12.27 1.068 12.594 3 0.193 13.606 2.034 1.339 13.413 4 0.187 15.6 33.24 1.938 15.413 5 0.266 14.995 31.859 1.98 1.4735 6 0.22 12.73 26.672 1.848 1.54 8.294 8 0							
20 0.145 8.022 1.719 0.629 7.877 21 0.154 7.362 1.727 0.61 7.208 22 0.155 7.193 1.268 0.625 7.038 23 0.185 7.512 1.73 0.626 7.327 24 0.194 7.536 1.792 0.626 7.342 TM S4							
21 0.154 7.362 1.727 0.61 7.208 22 0.155 7.193 1.268 0.625 7.038 23 0.185 7.512 1.73 0.628 7.327 24 0.194 7.536 1.792 0.626 7.342 TM S4 20.209 12.803 12.27 1.068 12.594 3 0.193 13.606 20.34 1.339 13.413 4 0.187 15.6 33.24 1.938 15.413 5 0.266 14.995 31.859 1.98 1.007 9 0.265 0.076 1.262 5.011 0.93 1.007 9 0.265 -0.09 0.262 2.942 8 0.003 1.007 9 0.225 -0.103 0.228 2.872 0.766 -0.049 10 0.277 -0.103 0.280 0.671 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
22 0.155 7.193 1.268 0.625 7.038 23 0.185 7.512 1.73 0.628 7.327 24 0.194 7.536 1.792 0.626 7.342 TM S4 1 0.243 13.451 11.049 1.067 13.208 2 0.209 12.803 12.27 1.068 12.594 3 3 0.193 13.606 20.34 1.339 13.413 1 5 0.26 14.995 31.859 1.98 15.413 5 0.26 14.995 31.859 1.98 1.4735 6 0.22 12.73 26.672 1.848 1.251 7 0.266 8.56 18.489 1.94 8.294 8 0.255 0.776 1.262 5.011 0.93 1.007 9 0.265 -0.09 0.262 2.942 0.813 -0.034 10 0.277 -0.103 0.2							
23 0.185 7.512 1.73 0.628 7.327 24 0.194 7.536 1.792 0.626 7.342 TM S4 event 78 1 0.243 13.451 11.049 1.067 13.208 2 0.209 12.803 12.27 1.068 12.594 3 0.193 13.606 20.34 13.393 13.413 4 0.187 15.6 33.24 1.938 15.413 5 0.26 14.995 31.859 1.98 14.735 6 0.22 12.73 26.672 1.848 1.54 8 0.255 0.776 1.262 5011 0.93 1.007 9 0.265 -0.09 0.262 2.942 0.813 -0.003 10 0.277 -0.103 0.228 2.872 0.766 -0.049 12 0.207 -0.095 0.195							
24 0.194 7.536 1.792 0.626 7.342 TM S4 event 78 1 0.243 13.451 11.049 1.067 13.208 2 0.209 12.803 12.27 1.068 12.594 3 0.193 13.606 20.34 1.339 13.413 4 0.187 15.6 33.24 1.938 15.413 5 0.26 14.995 31.859 1.98 14.735 6 0.22 12.73 26.672 1.848 12.51 7 0.266 8.56 18.489 1.64 8.294 8 0.255 0.776 1.262 5.011 0.93 1.007 9 0.265 -0.09 0.228 2.872 0.766 -0.049 11 0.225 0.109 0.145 2.808 0.7 -0.08 12 0.209 -0.126 0.195 2.805 0.651 -0.014 K Brown 3-ice 0.181 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
TM S4 event 78 Image: Constraint of the second							
event 78 1 0.243 13.451 11.049 1.067 13.208 2 0.209 12.803 12.27 1.068 12.594 3 0.193 13.606 20.34 1.339 13.413 4 0.187 15.6 33.24 1.938 15.413 5 0.26 14.995 31.859 1.98 14.735 6 0.22 12.73 26.672 1.848 12.51 7 0.266 8.56 18.489 1.54 8.294 8 0.255 0.776 1.262 5.011 0.93 1.007 9 0.265 -0.09 0.262 2.942 0.813 -0.08 10 0.277 -0.103 0.228 2.872 0.766 -0.049 11 0.225 -0.109 0.145 2.805 0.651 -0.08 K Brown 3-ice 0.181 -0.1 0.143 -0.338 -0.034 -0.038 K Brown 7-ice	24	0.194	1.000		1.792	0.620	1.342
event 78 1 0.243 13.451 11.049 1.067 13.208 2 0.209 12.803 12.27 1.068 12.594 3 0.193 13.606 20.34 1.339 13.413 4 0.187 15.6 33.24 1.938 15.413 5 0.26 14.995 31.859 1.98 14.735 6 0.22 12.73 26.672 1.848 12.51 7 0.266 8.56 18.489 1.54 8.294 8 0.255 0.776 1.262 5.011 0.93 1.007 9 0.265 -0.09 0.262 2.942 0.813 -0.08 10 0.277 -0.103 0.228 2.872 0.766 -0.049 11 0.225 -0.109 0.145 2.805 0.651 -0.08 K Brown 3-ice 0.181 -0.1 0.143 -0.338 -0.034 -0.038 K Brown 7-ice	TMCA						
1 0.243 13.451 11.049 1.067 13.208 2 0.209 12.803 12.27 1.068 12.594 3 0.193 13.606 20.34 1.339 13.413 4 0.187 15.6 33.24 1.938 15.413 5 0.26 14.995 31.859 1.98 14.735 6 0.22 12.73 26.672 1.848 12.51 7 0.266 8.56 18.489 1.54 8.294 8 0.255 0.776 1.262 5.011 0.93 1.007 9 0.265 -0.09 0.282 2.942 0.813 -0.008 10 0.277 -0.103 0.228 2.872 0.766 -0.049 11 0.225 -0.109 0.145 2.808 0.7 -0.08 12 0.209 -0.126 0.195 2.805 0.651 -0.014 K Brown 3-ice 0.181 -0.1<							
2 0.209 12.803 12.27 1.068 12.594 3 0.193 13.606 20.34 1.339 13.413 4 0.187 15.6 33.24 1.938 15.413 5 0.26 14.995 31.859 1.98 14.735 6 0.22 12.73 26.672 1.848 1.54 7 0.266 8.56 18.489 1.54 8.294 8 0.255 0.776 1.262 5.011 0.93 1.007 9 0.265 -0.09 0.262 2.942 0.813 -0.003 10 0.277 -0.103 0.228 2.872 0.766 -0.049 11 0.225 -0.109 0.145 2.808 0.7 -0.08 12 0.209 -0.126 0.195 2.805 0.651 -0.014 K Brown 3-ice 0.181 -0.1 0.143 -0.338 -0.036 0.09 K Brown 10-ice		0.040	40.454		44.040	4 007	40.000
3 0.193 13.606 20.34 1.339 13.413 4 0.187 15.6 33.24 1.938 15.413 5 0.26 14.995 31.859 1.98 14.735 6 0.22 12.73 26.672 1.848 12.51 7 0.266 8.56 18.489 1.54 8.294 8 0.255 0.776 1.262 5.011 0.93 1.007 9 0.265 -0.09 0.228 2.872 0.766 -0.049 10 0.277 -0.103 0.228 2.872 0.766 -0.049 11 0.225 -0.109 0.145 2.808 0.7 -0.08 12 0.209 -0.126 0.195 2.805 0.651 -0.014 K Brown 3-ice 0.181 -0.1 0.143 -0.338 -0.036 0.09 K Brown 12-ice 0.181 -0.1 0.143 -0.214 -0.012 -0.008							
4 0.187 15.6 33.24 1.938 15.413 5 0.26 14.995 31.859 1.98 14.735 6 0.22 12.73 26.672 1.848 12.51 7 0.266 8.56 18.489 1.54 8.294 8 0.255 0.776 1.262 5.011 0.93 1.007 9 0.265 -0.09 0.262 2.942 0.813 -0.003 10 0.277 -0.103 0.228 2.872 0.766 -0.049 11 0.225 -0.109 0.145 2.808 0.7 -0.08 12 0.209 -0.126 0.195 2.805 0.651 -0.014 K Brown 3-ice 0.181 -0.1 0.143 -0.338 -0.034 -0.038 K Brown 10-ice 0.152 -0.107 0.134 -0.43 -0.042 -0.018 K Brown 12-ice 0.148 -0.058 0.368 -0.801 -0.083							
5 0.26 14.995 31.859 1.98 14.735 6 0.22 12.73 26.672 1.848 12.51 7 0.266 8.56 18.489 1.54 8.294 8 0.255 0.776 1.262 5.011 0.93 1.007 9 0.265 -0.09 0.262 2.942 0.813 -0.003 10 0.277 -0.103 0.228 2.872 0.766 -0.049 11 0.225 -0.109 0.145 2.808 0.7 -0.08 12 0.209 -0.126 0.195 2.805 0.651 -0.014 K Brown 3-ice 0.181 -0.1 0.143 -0.338 -0.034 -0.038 K Brown 1-ice 0.207 -0.095 0.198 -0.214 -0.012 -0.009 K Brown 12-ice 0.148 -0.058 0.368 -0.801 -0.043 0.222 K Brown 13-ice 0.162 -0.084 0.219 -0	3						
6 0.22 12.73 26.672 1.848 12.51 7 0.266 8.56 18.489 1.54 8.294 8 0.255 0.776 1.262 5.011 0.93 1.007 9 0.265 -0.09 0.262 2.942 0.813 -0.003 10 0.277 -0.103 0.228 2.872 0.766 -0.049 11 0.225 -0.109 0.145 2.808 0.7 -0.08 12 0.209 -0.126 0.195 2.805 0.651 -0.014 K Brown 3-ice 0.181 -0.1 0.143 -0.338 -0.034 -0.038 K Brown 7-ice 0.207 -0.095 0.198 -0.214 -0.012 -0.009 K Brown 10-ice 0.152 -0.107 0.134 -0.43 -0.042 -0.018 K Brown 12-ice 0.148 -0.058 0.368 -0.801 -0.083 0.222 K Brown 13-ice 0.162 -0.084							
7 0.266 8.56 18.489 1.54 8.294 8 0.255 0.776 1.262 5.011 0.93 1.007 9 0.265 -0.09 0.262 2.942 0.813 -0.003 10 0.277 -0.103 0.228 2.872 0.766 -0.049 11 0.225 -0.109 0.145 2.808 0.7 -0.08 12 0.209 -0.126 0.195 2.805 0.651 -0.014 K Brown 3-ice 0.181 -0.1 0.143 -0.338 -0.034 -0.038 K Brown 7-ice 0.207 -0.095 0.198 -0.214 -0.012 -0.009 K Brown 10-ice 0.152 -0.107 0.134 -0.432 -0.042 -0.018 K Brown 12-ice 0.148 -0.058 0.368 -0.801 -0.083 0.222 K Brown 13-ice 0.162 -0.084 0.219 -0.672 -0.063 0.057 Event 75-76 <							
8 0.255 0.776 1.262 5.011 0.93 1.007 9 0.265 -0.09 0.262 2.942 0.813 -0.003 10 0.277 -0.103 0.228 2.872 0.766 -0.049 11 0.225 -0.109 0.145 2.808 0.7 -0.08 12 0.209 -0.126 0.195 2.805 0.651 -0.014 K Brown 3-ice 0.181 -0.1 0.143 -0.338 -0.034 -0.038 K Brown 7-ice 0.207 -0.095 0.198 -0.214 -0.012 -0.009 K Brown 10-ice 0.152 -0.107 0.134 -0.432 -0.042 -0.018 K Brown 12-ice 0.148 -0.058 0.368 -0.801 -0.083 0.222 K Brown 13-ice 0.162 -0.084 0.219 -0.672 -0.063 0.057 Event 75-76							
9 0.265 -0.09 0.262 2.942 0.813 -0.003 10 0.277 -0.103 0.228 2.872 0.766 -0.049 11 0.225 -0.109 0.145 2.808 0.7 -0.08 12 0.209 -0.126 0.195 2.805 0.651 -0.014 K Brown 3-ice 0.181 -0.1 0.143 -0.338 -0.034 -0.038 K Brown 7-ice 0.207 -0.095 0.198 -0.214 -0.012 -0.009 K Brown 9-ice 0.1 -0.105 0.19 -0.492 -0.036 0.09 K Brown 10-ice 0.152 -0.107 0.134 -0.43 -0.042 -0.018 K Brown 12-ice 0.148 -0.058 0.368 -0.801 -0.083 0.22 K Brown 13-ice 0.162 -0.084 0.219 -0.672 -0.063 0.057 Event 75-76 -0.992 0.645 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
10 0.277 -0.103 0.228 2.872 0.766 -0.049 11 0.225 -0.109 0.145 2.808 0.7 -0.08 12 0.209 -0.126 0.195 2.805 0.651 -0.014 K Brown 3-ice 0.181 -0.1 0.143 -0.338 -0.034 -0.038 K Brown 7-ice 0.207 -0.095 0.198 -0.214 -0.012 -0.009 K Brown 9-ice 0.1 -0.105 0.19 -0.432 -0.036 0.09 K Brown 10-ice 0.152 -0.107 0.134 -0.43 -0.042 -0.018 K Brown 12-ice 0.148 -0.058 0.368 -0.801 -0.083 0.22 K Brown 13-ice 0.162 -0.084 0.219 -0.672 -0.063 0.057 Event 75-76	8	0.255	0.776	1.262	5.011	0.93	1.007
11 0.225 -0.109 0.145 2.808 0.7 -0.08 12 0.209 -0.126 0.195 2.805 0.651 -0.014 K Brown 3-ice 0.181 -0.1 0.143 -0.338 -0.034 -0.038 K Brown 7-ice 0.207 -0.095 0.198 -0.214 -0.012 -0.009 K Brown 9-ice 0.1 -0.105 0.19 -0.492 -0.036 0.09 K Brown 10-ice 0.152 -0.107 0.134 -0.43 -0.042 -0.018 K Brown 12-ice 0.148 -0.058 0.368 -0.801 -0.083 0.22 K Brown 13-ice 0.162 -0.084 0.219 -0.672 -0.063 0.057 Event 75-76	9	0.265	-0.09	0.262	2.942	0.813	-0.003 (
12 0.209 -0.126 0.195 2.805 0.651 -0.014 K Brown 3-ice 0.181 -0.1 0.143 -0.338 -0.034 -0.038 K Brown 7-ice 0.207 -0.095 0.198 -0.214 -0.012 -0.009 K Brown 9-ice 0.1 -0.105 0.19 -0.492 -0.036 0.09 K Brown 10-ice 0.152 -0.107 0.134 -0.43 -0.042 -0.018 K Brown 12-ice 0.148 -0.058 0.368 -0.801 -0.083 0.22 K Brown 13-ice 0.162 -0.084 0.219 -0.672 -0.063 0.057 Event 75-76	10		-0.103	0.228		0.766	-0.049 (
K Brown 3-ice 0.181 -0.1 0.143 -0.338 -0.034 -0.038 K Brown 7-ice 0.207 -0.095 0.198 -0.214 -0.012 -0.009 K Brown 9-ice 0.1 -0.105 0.19 -0.492 -0.036 0.09 K Brown 10-ice 0.152 -0.107 0.134 -0.43 -0.042 -0.018 K Brown 12-ice 0.148 -0.058 0.368 -0.801 -0.083 0.22 K Brown 13-ice 0.162 -0.084 0.219 -0.672 -0.063 0.057 Event 75-76	11						
K Brown 7-ice 0.207 -0.095 0.198 -0.214 -0.012 -0.009 K Brown 9-ice 0.1 -0.105 0.19 -0.492 -0.036 0.09 K Brown 10-ice 0.152 -0.107 0.134 -0.43 -0.042 -0.018 K Brown 12-ice 0.148 -0.058 0.368 -0.801 -0.083 0.22 K Brown 13-ice 0.162 -0.084 0.219 -0.672 -0.063 0.057 Event 75-76 -0.948 3.66 0.846 0.637 proteom 100909 ba 9 0.311 0.535 0.948 3.66 0.846 0.637 proteom 100909 ba10 0.338 0.569 0.983 3.807 0.902 0.645 Event 68-71 12.828	12	0.209	-0.126	0.195	2.805	0.651	-0.014 (
K Brown 7-ice 0.207 -0.095 0.198 -0.214 -0.012 -0.009 K Brown 9-ice 0.1 -0.105 0.19 -0.492 -0.036 0.09 K Brown 10-ice 0.152 -0.107 0.134 -0.43 -0.042 -0.018 K Brown 12-ice 0.148 -0.058 0.368 -0.801 -0.083 0.22 K Brown 13-ice 0.162 -0.084 0.219 -0.672 -0.063 0.057 Event 75-76 -0.948 3.66 0.846 0.637 proteom 100909 ba 9 0.311 0.535 0.948 3.66 0.846 0.637 proteom 100909 ba10 0.338 0.569 0.983 3.807 0.902 0.645 Event 68-71 12.828							
K Brown 9-ice 0.1 -0.105 0.19 -0.492 -0.036 0.09 K Brown 10-ice 0.152 -0.107 0.134 -0.43 -0.042 -0.018 K Brown 12-ice 0.148 -0.058 0.368 -0.801 -0.083 0.22 K Brown 13-ice 0.162 -0.084 0.219 -0.672 -0.063 0.057 Event 75-76 Proteom 100909 ba 9 0.311 0.535 0.948 3.66 0.846 0.637 proteom 100909 ba10 0.338 0.569 0.983 3.807 0.902 0.645 Event 68-71 L11 proteo ba 1 0.343 13.171 7.285 0.964 12.828	K Brown 3-ice			0.143		-0.034	-0.038 (
K Brown 10-ice 0.152 -0.107 0.134 -0.43 -0.042 -0.018 K Brown 12-ice 0.148 -0.058 0.368 -0.801 -0.083 0.22 K Brown 13-ice 0.162 -0.084 0.219 -0.672 -0.063 0.057 Event 75-76 Proteom 100909 ba 9 0.311 0.535 0.948 3.66 0.846 0.637 proteom 100909 ba10 0.338 0.569 0.983 3.807 0.902 0.645 Event 68-71 L11 proteo ba 1 0.343 13.171 7.285 0.964 12.828	K Brown 7-ice	0.207	-0.095	0.198	-0.214		
K Brown 10-ice 0.152 -0.107 0.134 -0.43 -0.042 -0.018 K Brown 12-ice 0.148 -0.058 0.368 -0.801 -0.083 0.22 K Brown 13-ice 0.162 -0.084 0.219 -0.672 -0.063 0.057 Event 75-76 Proteom 100909 ba 9 0.311 0.535 0.948 3.66 0.846 0.637 proteom 100909 ba10 0.338 0.569 0.983 3.807 0.902 0.645 Event 68-71 L11 proteo ba 1 0.343 13.171 7.285 0.964 12.828	K Brown 9-ice	0.1	-0.105	0.19	-0.492	-0.036	0.09
K Brown 12-ice 0.148 -0.058 0.368 -0.801 -0.083 0.22 K Brown 13-ice 0.162 -0.084 0.219 -0.672 -0.063 0.057 Event 75-76 Proteom 100909 ba 9 0.311 0.535 0.948 3.66 0.846 0.637 proteom 100909 ba10 0.338 0.569 0.983 3.807 0.902 0.645 Event 68-71 L11 proteo ba 1 0.343 13.171 7.285 0.964 12.828	K Brown 10-ice	0.152	-0.107	0.134	-0.43		
K Brown 13-ice 0.162 -0.084 0.219 -0.672 -0.063 0.057 Event 75-76 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.22</td>							0.22
Event 75-76 0.311 0.535 0.948 3.66 0.846 0.637 Proteom 100909 ba 9 0.311 0.535 0.948 3.66 0.846 0.637 proteom 100909 ba10 0.338 0.569 0.983 3.807 0.902 0.645 Event 68-71 L11 proteo ba 1 0.343 13.171 7.285 0.964 12.828							
Proteom 100909 ba 9 0.311 0.535 0.948 3.66 0.846 0.637 proteom 100909 ba10 0.338 0.569 0.983 3.807 0.902 0.645 Event 68-71 L11 proteo ba 1 0.343 13.171 7.285 0.964 12.828							
Proteom 100909 ba 9 0.311 0.535 0.948 3.66 0.846 0.637 proteom 100909 ba10 0.338 0.569 0.983 3.807 0.902 0.645 Event 68-71 L11 proteo ba 1 0.343 13.171 7.285 0.964 12.828	Event 75-76						
proteom 100909 ba10 0.338 0.569 0.983 3.807 0.902 0.645 Event 68-71		0.311	0.535	0.948	3.66	0.846	0.637
Event 68-71 0.343 13.171 7.285 0.964 12.828							
L11 proteo ba 1 0.343 13.171 7.285 0.964 12.828		5.000	0.000	5.000	2.207	0.002	
L11 proteo ba 1 0.343 13.171 7.285 0.964 12.828	Event 68-71						
		0.343	13 171		7 285	0.964	12 828
ILLIOIOPOTAZZE I LUZUSE ISTKEL IZZISE IZZISTVIZI	L11 proteo ba 2	0.208	13.138		7.203	0.94	12.020
L11 proteo ba 3 0.192 -0.054 0.378 2.263 0.531 0.186				0.279			
L11 proteo ba 3 0.192 -0.054 0.378 2.203 0.331 0.166 L11 proteo ba 4 0.317 0.05 0.514 2.331 0.544 0.197							
0.017 0.00 0.014 2.001 0.044 0.197	ETT proteo ba 4	0.317	CU.U	0.014	∠.001	0.044	0.187

Event 62						
Part TM cast 40m	0.241	-0.065	0.325	1.766	0.712	0.084
part TM cast 70m	0.345	1.795		5.639	0.959	1.45
Part TM cast 90m	0.25	4.046		9.264	1.137	3.796
part TM cast 150m	0.241	15.037		31.8	2.056	14.796
part TM cast 200m	0.262	14.186		26.989	1.585	13.924
part TM cast 250m	0.304	11.73		9.879	0.944	11.426