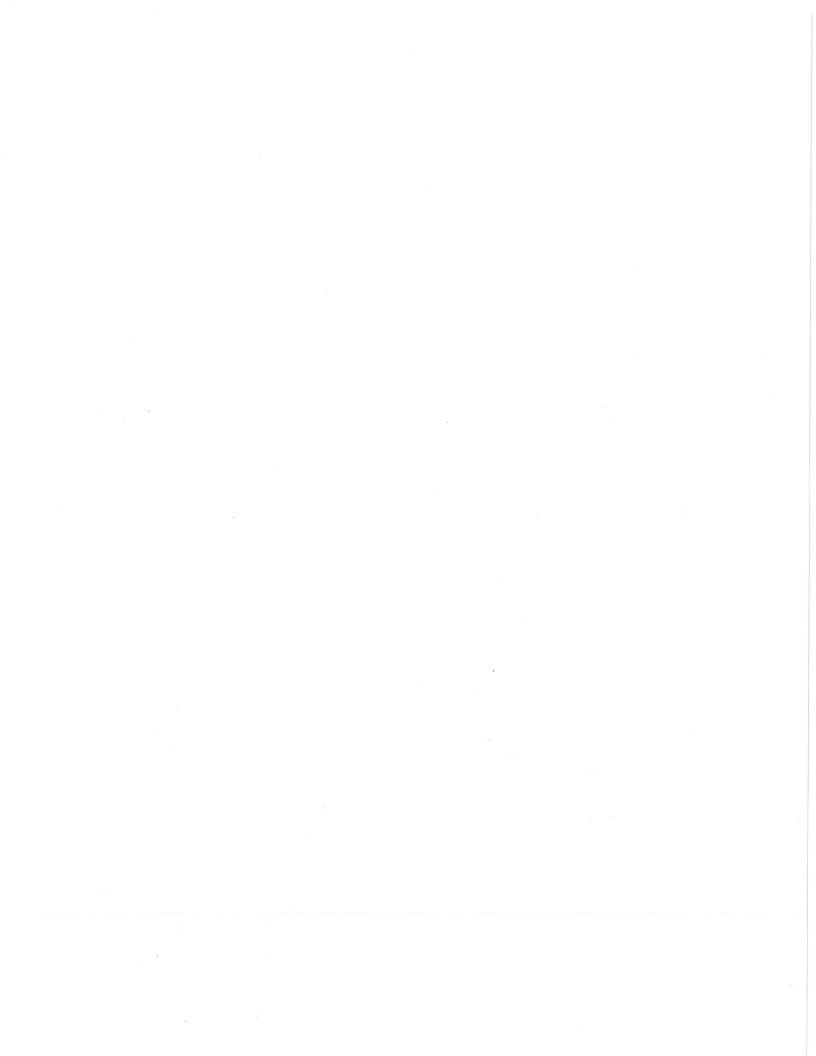
CRUISE REPORT C240

Scientific data collected aboard SSV Corwith Cramer


Key West, Florida, USA – St Georges, Bermuda – Portsmouth, Dominica – Christiansted, St. Croix, USVI

31 March 2012 - 08 May, 2012

Extensive windrows of Sargassum greeted us on Earth Day. Photo by Jeff Schell

Sea Education Association Woods Hole, Massachusetts

Contact Information:

Dr. Jeffrey M. Schell Sea Education Association P.O. Box 6 Woods Hole, MA 02543

508-540-3954 (phone) 800-552-3633 (phone) 508-457-4673 (fax) www.sea.edu

Table of Contents C240

Table 1	Ship's Company	3
	Cruise Data Description	4-5
Figure 1 Table 2	Cruise track Summary of oceanographic sampling stations	6 7-9
Figure 2a-c Table 3	Sea Surface conditions: temperature, salinity, chlorophyll- <i>a</i> fluorescence Surface Station data	10-12 13-16
Figure 4a-d	Sub-Surface current cross-sections for the Gulf Stream, western Sargasso Sea, eastern Sargasso Sea, and Eastern Caribbean regions	17-20
Table 4 Table 5	Hydrocast station data CTD station data	21-22 22
Figure 6a-b Table 6	CTD section plots: temperature, salinity, chlorophyll- <i>a</i> fluorescence Neuston net station data	23 24-28
Table 7 Table 8	Tucker Trawl station data Zooplankton 100 count data	29-32 33-37
Table 9 Table 10	Dip net station data Phytoplankton net station data	38-42 43-44
Table 11 Table 12	Shipek station data Secchi disc station data	45 46
Table 13	Student Research Topics	47

Table 1. C240 Ship's crew and student participants

Nautical Staff

Tom Sullivan Caroline Smith Ryan Shamburger Mackenzie Haberman Pete West Charlie Seibel Nate DeBrule Laura Hansen Patsy Detweiler Jonathan Bickford

Scientific Staff

Jeff Schell Mitch Schrimpf Chrissy Dykeman Carla Scocchi

Students

Max Abrahamson Kathryn Carria Brian Crowley Crystal Hartley Kayla Lubold Terese Mayerle Norris Mears Donald Melvin Kimberley Noonan Victoria Pinheiro Dawn Rivera James Rohman Matthew Scheuer Peter Wu Anna Yoors Captain Chief Mate 2nd Mate 3rd Mate Engineer Steward Asst Steward Sailing Intern Sailing Intern Sailing Intern

Chief Scientist 1st Scientist 2nd Scientist 3rd Scientist

College of St. Scholastica University Of Rhode Island St. Michael's College Gonzaga University Eckerd College College of St. Scholastica University of Texas at Austin Cornell University University of South Carolina, Columbia Boston University Cornell University Bowdoin College Mamaroneck Hig School Harvard University Hampshire College

Cruise Data Description C240

The cruise track for C-240 (Figure 1) departed from Key West, FL, USA and finished in Christiansted, St. Croix, USVI. During the nearly six-week voyage we had two port stops; the first in St. Georges, Bermuda and the second in Portsmouth, Dominica.

Our cruise track traversed several major oceanographic provinces (Figure 1): a) Florida shelf and Gulf Stream waters, b) the Blake Plateau, c) the western North Atlantic Ocean or Sargasso Sea, d) and the territorial waters of the northern Lesser Antilles (Antigua, Guadeloupe, Dominica, Montserrat, Saba, and the British Virgin Islands) including more 'tropical' waters to the east and the Caribbean Sea to the west. Comparison of the physical, chemical, biologic and geologic features of these regions represented the major oceanographic themes of this Sea Semester. A total of 79 scientific stations and 109 individual deployments (Table 2) were completed in pursuit of the following investigations:

- 1. Physical oceanographic studies focused on identification of surface fronts and associated mesoscale eddy features along the Gulf Stream eastern edge and the sub-tropical convergence zone. Sub-surface features examined were the depth of the surface, mixed layer and geographic extent of North Atlantic sub-tropical mode water (18° mode water).
- 2. Chemical oceanographic studies focused on surface patterns in nutrient (PO4, SiO2), pH, and chlorophyll-a concentration. Patterns in physio-chemical properties were then correlated with numerous biological components.
- 3. Biological studies focused on the geographic distribution of zooplankton, *Sargassum* weed and associated fauna, several meroplanktonic larvae including lobster (phyllosoma), eel larvae (leptocephali) and scombrid fish larvae, as well as the lantern fish (Myctophidae), the marine insect *Halobates*, and finally the abundance and taxonomic composition of gelatinous (cnidarian, ctenophore, salp) micronekton (>2cm length).
- 4. Pollution studies examined the geographic distribution of floating plastics (pellets and pieces) and tar balls. In addition, select pieces of plastic (> 2cm in length) were processed using the EPA Coliquant bacteria culture kit to test for the presence/absence of various coliform bacteria colonies including *Escherichia coli*.
- 5. Geological samples were collected along the Florida Shelf and Blake Plateau and sieved to isolate pteropod shells from the sediment. Collected pteropod shells were used in an ocean acidification experiment. No further quantitative analysis of sediments was conducted.

Sea surface temperature, salinity, fluorescence (chlorophyll-*a* and CDOM) and tranmissivity levels; along with barometric pressure, winds, bathymetry, currents (to 600m), and geographic position were recorded continuously along the cruise track. Large scale surface hydrography is summarized with surface plots for some parameters (Figure 2 a-c) while other data is available upon request. Surface samples (49) of nutrients (phosphate and silicate), pH, and chlorophyll-*a* were collected routinely along the cruise track (Table 3).

But for the occasional eddy and our crossing of the Gulf Stream, ocean currents throughout the C240 cruise track were weak (< 500mm/s, or 1.0 knot) and variable in direction. Regional views of sub-surface currents highlight the presence of eddies and meanders associated with the Gulf Stream, the sub-tropical convergence zone, the Antilles Current, and near constricted island passages (Figures 4a-d).

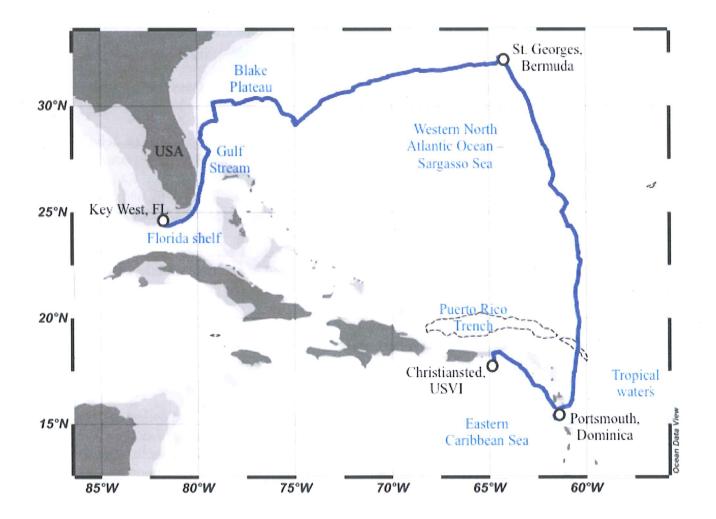
The density structure and dissolved oxygen, nutrient (phosphate), chlorophyll-*a* and pH profiles of the water column (maximum depth 600m) were determined using a 12 bottle carousel package with attached CTD sensor (6 stations, Table 4). Additional *in situ* sensors included dissolved oxygen, CDOM, transmissivity and PAR. A single deep CTD cast (1125m) was conducted as part of routine equipment maintenance, no additional sensors participated (Table 5). Sub-surface water masses are revealed with a cross-section plot along the cruise track (Figure 6a-b).

Surface plankton assemblages along with the floating macrophyte *Sargassum* spp., marine debris and tar balls were sampled regularly with a neuston net (32 stations, 335 μ m mesh, Table 6). Plankton assemblages at discrete depths were collected using a Tucker Trawl net (8 stations, 1m² frame, 3 nets, 335 μ m mesh, Table 7). Tow depths were as follows: Net 1 – 0-300m, Net 2 – 300-100m, and Net 3 – 100-0m. Identification and counts of numerous zooplankton taxa were conducted for all net tows (Table 8).

Discrete samples of *Sargassum* clumps were collected with a dip net (11 stations, 335 μ m mesh) and assessed for color, epibiont community structure and abundance and diversity of mobile, macrofauna (Table 9).

Phytoplankton assemblages were collected from the sub-surface using drift nets (30cm diameter frame, 63 um) at three depths (25m, 50m, 1% light level) from six stations; while surface phytoplankton assemblages were collected using a seawater flow thru system and a 63 µm sieve from 19 stations (Table 10).

Six sediment samples (Florida shelf n=2, Blake Plateau n=2, Saba Bank n=2) were collected using a shipek grab. Minimal qualitative descriptions were performed (Table 11). Collected samples were sieved through 1000um mesh to separate larger pteropod shells from the sediment. These shells were used in an ocean acidification experiment conducted in the onboard laboratory. Data available upon request.


Periodically during the cruise, in conjunction with sub-surface phytoplankton collections, 6 secchi disc deployments were conducted to assess water transparency (Table 12).

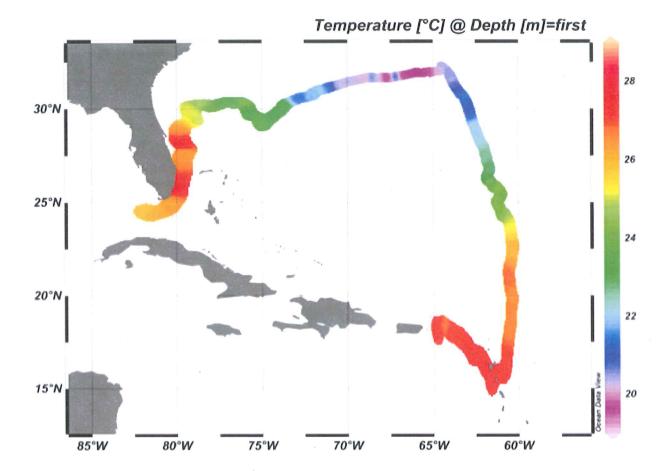
Additional CTD, CHIRP, ADCP and biological data not reported here are available on request through Sea Education Association (SEA) and the Chief Scientist. The information in this report is not intended to represent final interpretation of the data and should not be excerpted or cited without written permission from SEA.

As part of SEA's educational program, undergraduates conducted independent oceanographic research during the cruise. Projects explored regionally, relevant topics in the disciplines of physical, chemical, and biological oceanography (Table 13). Student research efforts culminated in a written report and public presentation to the ship's company. These papers are available on request from SEA.

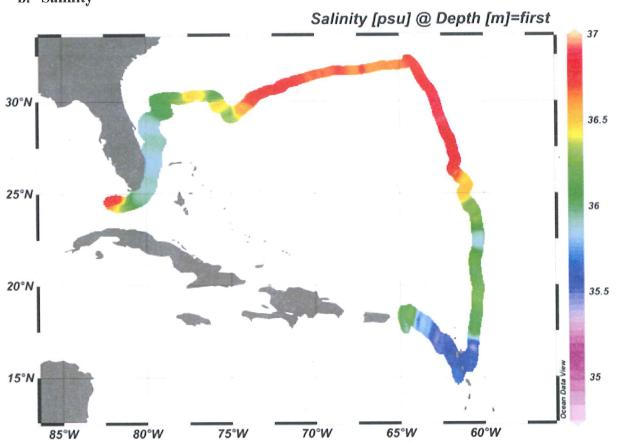
Jeff Schell, Chief Scientist, C240

Figure 1. Final cruise track for C240 based on hourly (local time) positions. Regional oceanographic biomes (Gulf Stream, Sargasso Sea, Tropical Waters, and Eastern Caribbean,), interesting bathymetric features (Florida Shelf, Blake Plateau, and Puerto Rico Trench),.

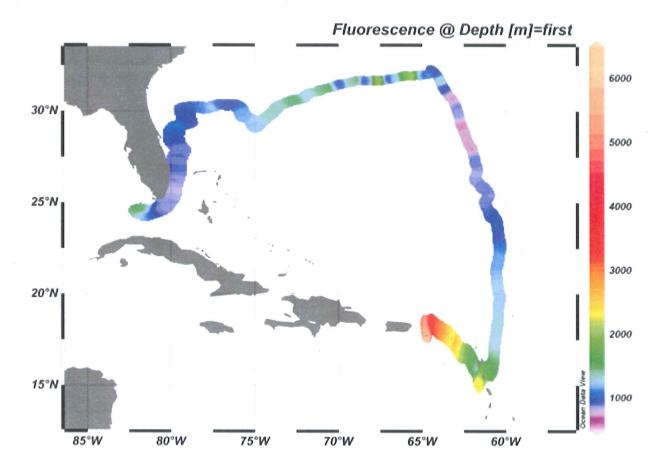
Station # (C240-)	Date (2012)	Time (local +4 GMT)	Log (nm)	Lat (dec Deg N)	Lon (dec Deg W)	Location	Station Type
001	01-Apr	1101	0.0	24.53	-81.81	Florida Shelf	SG
002	01-Apr	1419	0.0	24.53	-81.83	Florida Shelf	NT
003	02-Apr	0347	61.1	24.64	-80.70	Florida Shelf	PN
004	02-Apr	0936	101.3	25.20	-80.12	Florida Shelf	SG
004	02-Apr	1018	101.3	25.22	-80.11	Florida Shelf	NT
004	02-Apr	1020	101.4	25.22	-80.11	Florida Shelf	DN
005	02-Apr	2203	140.0	26.46	-79.74	Florida Shelf	NT
006	03-Apr	0321	169.2	27.19	-79.67	Gulf Stream	PN
007	03-Apr	0922	186.5	27.72	-79.47	Gulf Stream	SD
007	03-Apr	0941	186.5	27.72	-79.46	Gulf Stream	PN
007	03-Apr	0943	186.5	27.72	-79.46	Gulf Stream	PN
007	03-Apr	0945	186.5	27.72	-79.46	Gulf Stream	PN
007	03-Apr	1054	186.5	27.76	-79.46	Gulf Stream	НС
008	03-Apr	1816	220.5	28.36	-79.78	Gulf Stream	DN
009	03-Apr	2159	232.2	28.69	-79.82	Gulf Stream	NT
010	04-Apr	0430	258.3	29.23	-79.46	Gulf Stream	PN
011	04-Apr	0956	280.8	29.33	-79.01	Blake Plateau	SG a-b
011	04-Apr	1051	280.8	29.34	-79.00	Blake Plateau	SG
011	04-Apr	1139	280.8	29.36	-79.00	Blake Plateau	NT
012	04-Apr	2151	323.5	30.10	-79.20	Blake Plateau	NT
013	05-Apr	0426	362.0	30.24	-78.50	Blake Plateau	PN
014	05-Apr	0937	388.0	30.12	-78.07	Blake Plateau	SD
014	05-Apr	0948	388.0	30.13	-78.08	Blake Plateau	PN
014	05-Apr	0951	388.0	30.13	-78.08	Blake Plateau	PN
014	05-Apr	0954	388.0	30.13	-78.08	Blake Plateau	PN
014	05-Apr	1123	388.0	30.12	-78.08	Blake Plateau	HC
016	05-Apr	1842	408.5	30.15	-77.77	Blake Plateau	DN
017	05-Apr	2200	417.0	30.24	-77.53	Blake Plateau	NT
018	06-Apr	0436	431.5	30.37	-77.02	Sargasso Sea	PN
019	06-Apr	0856	447.3	30.28	-76.62	Sargasso Sea	TT
020	07-Apr	0318	498.0	29.72	-75.66	Sargasso Sea	PN
021	07-Apr	2215	508.4	29.41	-75.01	Sargasso Sea	NT
022	08-Apr	0450	514.9	29.25	-75.04	Sargasso Sea	PN
023	08-Apr	0717	516.5	29.17	-75.00	Sargasso Sea	DN
023	08-Apr		523.5	29.13	-74.93	Sargasso Sea	NT
025	08-Apr		563.5	29.59	-74.38	Sargasso Sea	TT
026	09-Apr	0517	593.8	29.99	-73.81	Sargasso Sea	PN
020	09-Apr	1000	610.5	30.24	-73.62	Sargasso Sea	SD
027	09-Apr	1021	610.5	30.25	-73.62	Sargasso Sea	PN
027	09-Apr	1021	610.5	30.25	-73.61	Sargasso Sea	PN
027	09-Apr	1020	610.5	30.25	-73.61	Sargasso Sea	PN
027	09-Apr		610.5	30.27	-73.59	Sargasso Sea	НС
027	09-Apr		622.0	30.41	-73.24	Sargasso Sea	DN
028	09-Apr			30.56	-72.83	Sargasso Sea	NT
029	10-Apr		656.5	30.50	-72.44	Sargasso Sea	PN
030				30.79		Sargasso Sea	TT
031	10-Apr 10-Apr			31.04	-71.38	Sargasso Sea	DN
032				31.04		Sargasso Sea	TT
	10-Apr			31.09	-70.52	Sargasso Sea	PN
034	11-Apr	0000	103.5	31.28	-70.52	Sargasso Sca	1 18


Table 2. Summary of oceanographic sampling stations for C240.

Station # (C240-)	Date (2012)	Time (local +4 GMT)	Log (nm)	Lat (dec Deg N)	Lon (dec Deg W)	Location	Station Type
035	11-Apr	0930	783.6	31.36	-70.19	Sargasso Sea	NT
036	11-Apr	2155	843.0	31.58	-69.17	Sargasso Sea	NT
037	12-Apr	0450	863.4	31.68	-68.84	Sargasso Sea	PN
038	12-Apr	0947	878.3	31.67	-68.54	Sargasso Sea	PN
038	12-Apr	0951	878.3	31.67	-68.54	Sargasso Sea	PN
038	12-Apr	0957	878.3	31.67	-68.53	Sargasso Sea	PN
038	12-Apr	1029	878.3	31.68	-68.54	Sargasso Sea	SD
038	12-Apr	1110	878.3	31.65	-68.52	Sargasso Sea	HC
039	12-Apr	2218	924.3	31.67	-67.69	Sargasso Sea	NT
040	13-Apr	0411	945.5	31.69	-67.29	Sargasso Sea	PN
041	13-Apr	0930	964.6	31.75	-66.90	Sargasso Sea	NT
042	14-Apr	0420	1042.6	31.94	-65.39	Sargasso Sea	PN
043	14-Apr	0939	1058.8	31.88	-65.19	Plantagenet Bank	SG a-c
043	14-Apr	1120		31.94	-65.15	Plantagenet Bank	NT
044	14-Apr	2158	1096.1	32.10	-64.47	Sargasso Sea (Offshore Bermuda)	NT
045	18-Apr	2149	1180.2	31.61	-63.90	Sargasso Sea	NT
046	19-Apr	0408	1212.0	31.13	-63.62	Sargasso Sea	PN
047	19-Apr	0932	1237.5	30.80	-63.37	Sargasso Sea	SD
047	19-Apr	0952	1237.5	30.80	-63.36	Sargasso Sea	PN
047	19-Apr	0955	1237.5	30.80	-63.36	Sargasso Sea	PN
047	19-Apr	0959	1237.5	30.80	-63.36	Sargasso Sea	PN
047	19-Apr	1105	1237.5	30.78	-63.34	Sargasso Sea	HC
048	19-Apr	2205	1285.1	30.01	-62.89	Sargasso Sea	NT
049	20-Apr	0307	1305.5	29.68	-62.79	Sargasso Sea	PN
050	20-Apr	0750	1324.3	29.40	-62.71	Sargasso Sea	DN
050	20-Apr	0939	1328.5	29.33	-62.70	Sargasso Sea	TT
052	20-Apr	2100	1361.7	28.81	-62.46	Sargasso Sea	TT
052	20 Apr	0543	1389.9	28.30	-62.26	Sargasso Sea	DN
054	21-Apr	0932	1406.8	28.03	-62.07	Sargasso Sea	NT
055	21-Apr	1730	1437.6	27.57	-61.91	Sargasso Sea	DN
056	21-Apr	2225	1454.6	27.31	-61.84	Sargasso Sea	NT
057	22-Apr	0436	1472.3	27.00	-61.74	Sargasso Sea	PN
058	22-Apr	0621	1479.2	26.89	-61.71	Sargasso Sea	DN
059	22-Apr	0953	1490.5	26.69	-61.70	Sargasso Sea	NT
060	22-Apr	2201	1537.3	25.94	-61.51	Sargasso Sea	NT
061	22-Apr 23-Apr	0306	1558.2	25.73	-61.22	Sargasso Sea	PN
062	23-Apr	0300	1579.6	25.41	-60.99	Sargasso Sea	SD
062	23-Apr	1000		25.41			
062	23-Apr	1000	1579.6		-61.00	Sargasso Sea	PN
062			1579.6	25.42	-61.00	Sargasso Sea	PN
	23-Apr	1008	1579.6	25.42	-61.00	Sargasso Sea	PN
062	23-Apr	1111	1579.6	25.42	-61.02	Sargasso Sea	HC
063	23-Apr	2157	1604.2	25.06	-61.26	Sargasso Sea	NT
064	24-Apr	0316	1621.0	24.81	-61.14	Sargasso Sea	PN
065	24-Apr	0605	1630.5	24.62	-61.06	Sargasso Sea	DN
065	24-Apr	0930	1642.2	24.37	-60.96	Sargasso Sea	NT
066	24-Apr	2207	1681.8	23.91	-60.53	Sargasso Sea	NT
067	25-Apr	0450	1705.8	23.33	-60.46	Sargasso Sea	PN
068	25-Apr	0937	1725.0	23.05	-60.41	Tropical Waters	TT
069	25-Apr	2100	1766.7	22.48	-60.36	Sargasso Sea	TT
070	26-Apr	0950	1831.5	21.57	-60.52	Tropical Waters	NT
071	26-Apr	2155	1896.9	20.62	-60.52	Tropical Waters	NT


Station #	Date	Time (local	Log (nm)	Lat (dec	Lon (dec	Location	Station
(C240-)	(2012)	+4 GMT)		Deg N)	Deg W)		Туре
072	27-Apr	0931	1967.8	19.52	-60.43	Tropical Waters	NT
073	27-Apr	2243	2047.5	18.35	-60.52	Tropical Waters	NT
074	28-Apr	0932	2100.0	17.47	-60.64	Tropical Waters	NT
075	29-Apr	0148	2190.2	16.01	-60.83	Tropical Waters	NT
076	29-Apr	1143	2229.0	15.73	-61.44	Tropical Waters	NT
077	05-May	0818	2367.7	16.69	-62.26	Eastern Caribbean Sea	SG
078	05-May	1444	2392.1	16.83	-62.69	Eastern Caribbean Sea	CTD
079	06-May	0756	2450.2	17.66	-63.36	Saba Bank	SD
079	06-May	0812	2450.2	17.66	-63.36	Saba Bank	SG

Duplicate station numbers indicate multiple oceanographic deployments that either occurred concurrently in the same location or were deployed sequentially (lettered) in the same general location after the vessel was hove to. General Locations are categorized by traditional oceanic biomes or significant geologic feature. Abbreviations for oceanographic equipment deployed are: NT – neuston tow, DN – dip net, MN – meter net, TT – tucker trawl Net, PN – phytoplankton net, CTD – conductivity, temperature and depth profiler, HC – hydrocast with 12 Niskin bottles and CTD, SG – shipek grab, and SD – secchi disc. Blanks spaces indicate when no data is available.


Figure 2a-c. Surface water hydrography for C240.

a. Temperature (seawater flow thru system with in-line thermistor)

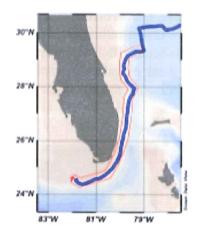
c. Chlorophyll-a fluorescence

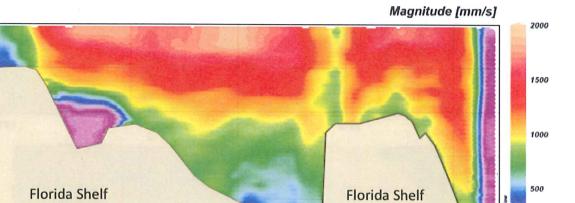
C240.
l for
data
sensor
surface
and
station location and surface sensor data
station
e 3. Surface
Table 3.

Xmiss (volts)		3307.5	3737.4	3748.7	3754.6	3755.4	3719.7	3712.4	3657.2	3593.1	3597.7	3507.8	3468.4	3417.2	3641.5	3512.4	3691.8	3711.7	3710.0	3713.0	3692.7	3707.4	3772.2	3767.5	3763.3	3758.8	3711.1	3783.9	3733.4	3766.5	3799.8	3787.7	3755.1
CDOM Fluor (volts)		120.3	89.2	89.3	88.5	88.3	86.6	88.8	85.3	81.8	84.0	89.5	85.0	85.1	82.7	84.9	89.4	86.5	86.2	84.0	85.5	81.1	85.4	85.1	85.3	85.4	84.9	84.2	85.7	85.5	87.9	83.1	85.4
chl-a Fluor (volts)		1286.6	892.9	872.9	847.7	823.6	848.9	879.1	1005.5	1109.2	922.2	996.5	1128.9	1284.4	970.0	1165.8	1158.7	1197.8	1213.8	1356.6	1469.6	1465.3	1586.9	1056.8	1327.1	1501.4	1937.9	1019.5	1193.8	1662.2	1088.4	1067.1	1284.5
Salinity (ppt)		36.497	36.020	36.049	35.971	35.896	35.842	35.901	35.858	36.080	36.078	36.200	36.180	36.550	36.410	36.457	36.250	36.250	36.400	36.703	36.796	36.847	36.680	36.662	36.647	36.659	36.595	36.680	36.591	36.599	36.625	36.708	36.698
Temp (°C)		26.5	26.2	25.7	26.4	26.6	27.6	26.6	26.7	25.5	24.8	25.1	24.4	23.5	23.8	23.6	23.8	23.8	23.6	23.2	21.7	21.9	20.4	20.3	20.2	20.1	19.6	20.8	19.6	19.6	19.8	20.3	20.4
Water Source		flow-thru																															
Lon (dec Deg W)	West, FL	-81.83	-81.57	-80.98	-80.66	-80.09	-79.76	-79.66	-79.83	-79.42	-79.01	-79.20	-78.50	-77.53	-77.03	-75.65	-75.00	-76.12	-74.92	-75.77	-72.83	-72.43	-70.52	-70.20	-69.18	-68.74	-67.68	-67.29	-66.90	-65.37	-65.16	-67.45	-63.89
Lat (dec Deg N)	Point beach - Key V	24.51	24.36	24.56	24.66	25.25	26.48	27.23	28.70	29.25	29.38	30.11	30.24	30.25	30.39	29.71	29.39	29.27	29.14	29.99	30.57	30.64	31.28	31.38	31.59	31.69	31.67	31.69	31.75	31.95	31.95	32.09	31.60
Log (nm)	Trumbo Point b	0.0	12.5	45.6	62.3	101.4	141.0	170.2	232.5	262.5	282.1	323.8	362.0	417.5	431.5	498.0	509.9	515.0	524.4	593.7	636.9	657.5	763.5	784.4	843.3	868.9	925.0	945.3	964.6	1044.0	1057.6	1097.0	1180.6
Time (local +4 GMT)	1500	1504	2035	0140	0405	1040	2237	0338	2214	0454	1200	2208	0426	2220	0431	0402	2235	0500	1022	0512	2219	0342	0090	0953	2212	0625	2238	0911	0944	0445	1100	2225	2206
Date (2012)	31-Mar	01-Apr	01-Apr	02-Apr	02-Apr	02-Apr	02-Apr	03-Apr	03-Apr	04-Apr	04-Apr	04-Apr	05-Apr	05-Apr	06-Apr	07-Apr	07-Apr	08-Apr	08-Apr	09-Apr	09-Apr	10-Apr	11-Apr	11-Apr	11-Apr	12-Apr	12-Apr	13-Apr	13-Apr	14-Apr	14-Apr	14-Apr	18-Apr
Station # (C240-)	001	002	003	004	005	006	007	008	600	010	011	012	013	014	015	016	017	018	019	020	021	022	023	024	025	026	027	028	029	030	031	032	033

Xmiss	(volts)		3773.1	3797.1	3797.4	3802.5	3796.1	3798.3	3808.0	3805.2	3805.4	3811.5	3810.7	3809.7	3805.3	3164.8	3808.2	3804.8
CDOM	Fluor	(volts)	85.4	. 84.4	83.7	84.5	84.6	80.4	80.5	79.7	79.1	78.7	78.3	79.0	78.8	84.7		80.7
chl-a	Fluor	(volts)	932.4	827.3	864.5	727.1	882.4	851.4	805.3	862.5	885.0	882.8	884.4	959.1	1015.4	1025.2	1135.6	1246.6
Salinity	(ppt)		36.751	36.856	36.846	36.844	36.860	36.817	36.862	36.753	36.428	36.505	36.455	36.244	36.316	36.210	36.160	36.046
Temp	(0°)		20.6	21.2	21.1	22.3	22.7	23.1	22.7	23.5	24.4	24.3	24.3	24.1	25.1	25.2	26.7	26.9
Water	Source		flow-thru															
Lon (dec	Deg W)	1	-63.61	-62.88	-62.78	-62.09	-61.85	-61.73	-61.70	-61.51	-61.19	-61.27	-61.13	-60.97	-60.53	-60.45	-60.54	-60.52
Lat (dec	Deg N)	i I	31.12	30.00	29.66	28.02	27.31	26.99	26.68	25.94	25.70	25.06	24.78	24.36	23.90	23.32	21.57	20.62
Log (nm)			1212.0	1285.3	1306.8	1407.3	1454.6	1473.5	1491.0	1537.5	1560.5	1605.0	1623.1	1642.5	1681.8	1706.7	1832.0	1897.5
Time	(local +4	GMT)	0419	2216	0322	1023	2241	0452	1005	2209	0341	2217	0350	0952	2218	0459	1012	2207
Date	(2012)	×	19-Apr	19-Apr	20-Apr	21-Apr	21-Apr	22-Apr	22-Apr	22-Apr	23-Apr	23-Apr	24-Apr	24-Apr	24-Apr	25-Apr	26-Apr	26-Apr
Station #	(C240-)		034	035	036	037	038	039	040	041	042	043	044	045	046	047	048	049

1	_		
1	7	т	
		-	
1	_	-	٩.


Notes	Trumbo Point Beach					pH from probe; temp 26.2	pH from probe; temp 26.0						3																					
Hd .				7.990				8.004	8.004	8.011	7.980	8.029	8.005	8.013			8.100				8.052			7.964	8.048		8.066		8.053		8.014	7.997		
SiO ₂ (µM)			8.942	8.049	8.793			15.788		12.225			6.788		7.217	10.273		3.882		3.645		7.357	7.244			8.084		7.804	7.655	7.769		8.084		30.204
PO4 (µM)	0.019	0.078	0.078	0.316	0.078	0.032	0.151	0.051	0.398	0.169	0.380	0.014	0.041	0.046	0.142	0.000	0.019	0.009	0.032	0.009	0.156	0.119	0.041	0.005	0.211	0.115	0.014	0.110	0.110	0.023	0.037	0.128	0.049	0.000
Chl-a (µg/l)		0.542	0.130	0.180	0.140	0.301	0.107	0.132	0.093	060.0	0.116	0.105	0.096	0.084	0.081	0.072	0.141	0.120	0.170	0.117	0.071	0.058	0.058	0.322	0.307	0.273	0.408	0.134	0.503	0.342	0.278	0.145	0.190	0.062
Water Source	bucket	bucket	flow-thru	flow-thru	flow-thru	bucket	bucket	flow-thru	bucket	flow-thru	bucket	bucket	flow-thru	bucket	flow-thru	flow-thru	bucket	flow-thru	bucket	flow-thru	bucket	flow-thru	flow-thru	bucket	bucket	flow-thru	bucket	flow-thru	bucket	flow-thru	bucket	bucket	bucket	flow-thru
Station # (C240-)	001	002	003	004	005	006	007	008	600	010	011	012	013	014	015	016	017	018	019	020	021	022	023	024	025	026	027	028	029	030	031	032	033	034


Table 3 continued. Surface station water chemistry and surface sensor data for C240.

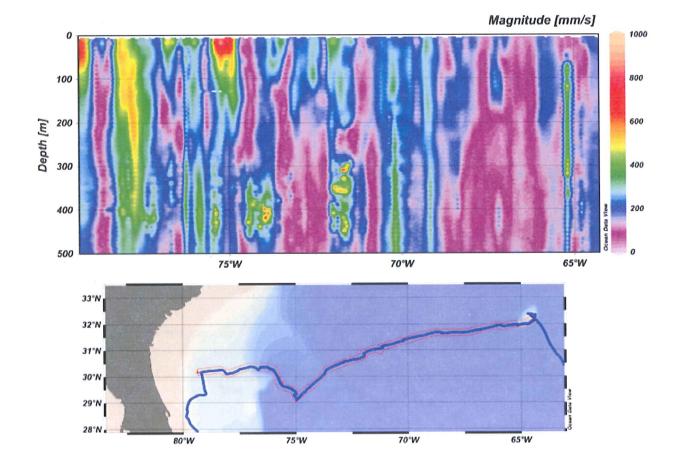
Notes															
μd	8.070		8.060	8.060		8.050	8.020		8.030		8.040	8.030			8.030
SiO ₂ (µM)		18.820	29.473		26.548		35.739	36.470		37.410			29.995		
PO4 (µM)	0.030	0.002	0.035	0.002	0.000	0.002	0.072	0.000	0.000	0.044	0.000	0.021	0.077	0.091	0.021
Chl-a (µg/l)	0.097	0.083	0.032	0.045	0.050	0.040	0.049	0.048	0.045	0.048	0.087	0.188	0.086	0.106	0.144
Water Source	bucket	flow-thru	bucket	bucket	flow-thru	bucket	bucket	flow-thru	bucket	flow-thru	bucket	bucket	flow-thru	bucket	bucket
Station # (C240-)	035	036	037	038	039	040	041	042	043	044	045	046	047	048	049

was measured by colorimetric analysis with an Ocean Optics Chem2000 digital spectrophotometer. Extracted chlorophyll-a (Chl-a) concentration was measured Seawater Analysis, Pergamon Press 1984. Chlorophyll-a samples were filtered through 0.45 µm filters. Seawater pH was determined using the indicator dye m-Sea surface temperature, salinity, *in vivo* chlorophyll-*a* fluorescence, and transmissivity were measured from a seawater flow-thru system (intake $\sim 1-3m$ depth) seawater flow-thru system. Discrete water samples were collected for phosphate (PO4), silicate (SiO2), pH and extracted chlorophyll-a. Phosphate and silicate with a Turner Designs Model 10-AU Fluorometer following methods outlined in Parsons, Maita and Lalli, A Manual of Chemical and Biological Methods for using in-line sensors. Discrete surface water samples were collected two different ways either from the surface using a standard rubber bucket, or from the cresol purple and spectrophotometric measurement. A blank space indicates that no sample was collected for that analysis.

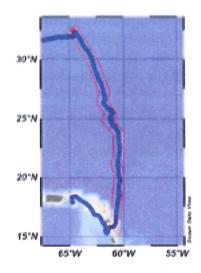
Figure 4a. Gulf Stream sub-surface current cross-section during C240. Note 2000 mm/s is approximately 4.0 knots.

500 25°N 26°N 27°N 28°N 29°N

100


200

300


400

Depth [m]

Figure 4b. Western Sargasso Sea sub-surface current cross-section during C240. Note 500 mm/s is approximately 1.0 knot. Variability in near-surface current direction is suggestive of meso-scale (10-100s nm radii) eddies and meanders associated with remnant Gulf Stream eddies and weak circulation associated with the sub-tropical convergent zone frontal boundary. Sub-surface currents are weak to negligible throughout these regions.

Figure 4c. Western Sargasso Sea sub-surface current cross-section during C240. Note 500 mm/s is approximately 1.0 knot. Variability in near-surface current direction is suggestive of meso-scale (10-100s nm radii) eddies associated with the Antilles Current extension of the North Equatorial Current. Sub-surface currents were surprisingly vigorous and suggest confluence of flow nearing the Lesser Antilles Islands.

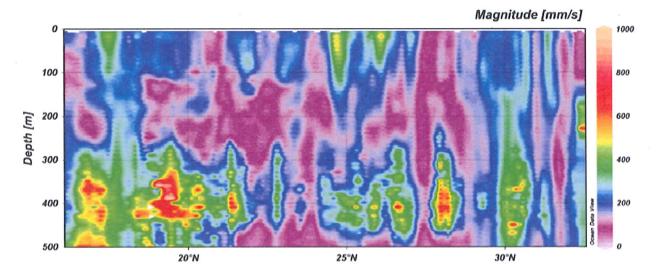
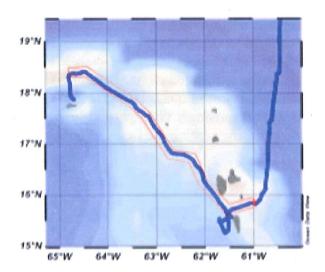
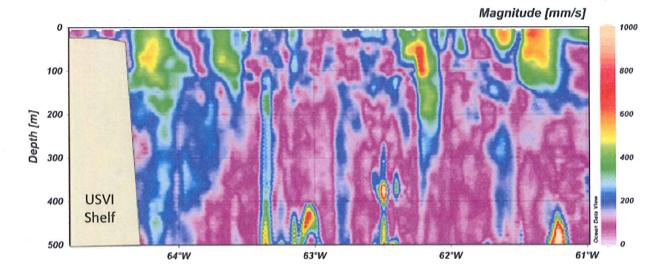
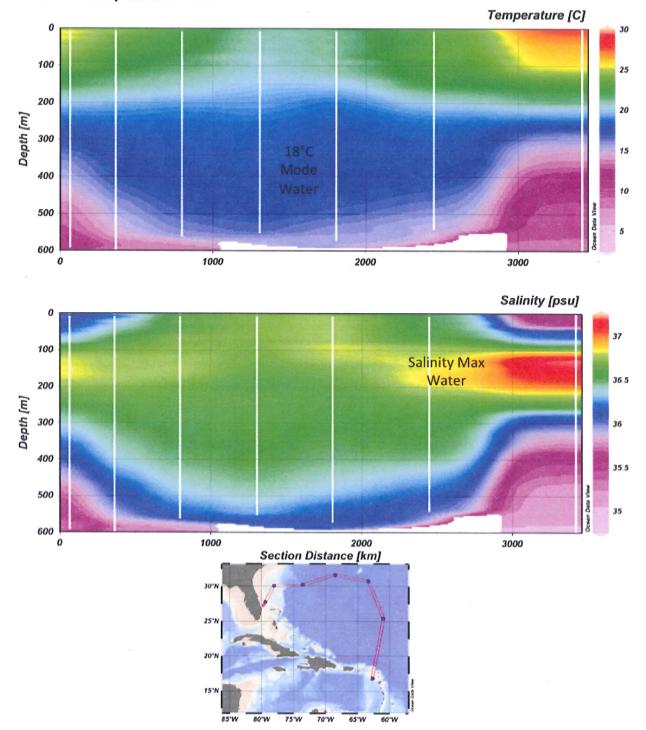




Figure 4d. Surface current vector plot for the Florida Straits during C240.

Note 500 mm/s is approximately 1.0 knot. Current magnitudes greater than 1 knot were consistently associated with some bathymetric constriction such as an island passage, shelf or shallow bank suggestive of either wind-driven circulation dominating the event or tidal flow.

Table 4. Hydrocast station data for C240. Physical characteristics of the water column were measured with a Seabird SEACAT Profiler Model SBE 19plus Conductivity-Temperature-Depth unit and four attached sensors: transmissivity (SN- CST-143PR), chlorophyll-*a* fluorescence (SN-2105), dissolved oxygen (SN-1120) and PAR (SN-70187). Water samples were collected from indicated depths.

Station # (C240-) General Locale Date	Bottle #	Depth (m)	O _{2 SBE-43} (umol/Kg)	O _{2 Winkle} (mL/L)	ΡΟ ₄ (μΜ)	SiO ₂ (μΜ)	Chl-a (µg/l)	рН
Time	1	589	114.73	3.31	1.770	18.563		
007 Gulf Stream	1 2	300	149.93	5.51	0.558	9.327		
	2	150	149.93		0.338	9.521		
3-Apr-12 1054	4	149	148.48				0.053	
1034	4	99	157.92				0.368	
	6	98	159.44				0.500	
Cast Depth	7	98 97	161.94					
709m	8	50	193.71		0.055	8.644	0.200	
709111	9	50	193.71		0.055	0.044	0.200	
CTD Unit #	10	26	194.57		0.046	8.207	0.104	
4447	11	20	195.73		0.040	0.207	0.104	
4447	11	11	195.86		0.023		0.072	
	12	0	195.00		0.023	9.388	0.072	
014		593	144.05		0.124	10.387	0.072	
014	1	393 297	144.05		0.124	6.613		
Blake Plateau	2	149	200.10		0.320	3.558		
5-Apr-12	3	149	200.10		0.192	5.550	0.135	
1123	4 5	93	202.33		0.046	9.476	0.133	
	6	93 92	205.06		0.040	9.470	0.500	
Coat Donth	0 7	92 91	205.00					
Cast Depth 596m	8	50	206.70		0.096	10.474	0.093	
390III	8 9	49	206.70		0.070	10.474	0.075	
CTD Unit #	10	24	200.55		0.060	5.563	0.003	
4447	10	24	203.08		0.000	5.505	0.005	
/	12	10	200.25		0.019	7.375	0.075	
	12	0	200.25		0.055	6.228	0.088	
027	13	553	170.23	4.99	0.513	8.592	0.000	7.886
Sargasso Sea	2	298	194.91	ч.))	0.169	6.736		7.000
9-Apr-12	3	150	180.29		0.307	7.900		
1138	4	148	180.09		0.507	7.900	0.063	
1150	5	99	203.05		0.051	5.396	0.572	k.
	6	98	203.03	5.76	0.001	01070	01012	8.044
Cast Depth	7	98	202.49	5.70				0.011
560m	8	50	202.49		0.041	6.972	0.077	
50011	9	49	206.79		0.041	0.972	0.077	
CTD Unit #	10	25	200.79		0.041	7.655	0.068	
4447	11	23	205.97		0.041	1.000	0.000	
444/	12	10	203.97	5.53	0.051	6.499	0.057	
	12	0	207.71	5.55	0.028	6.298	0.051	8.052
038	15	545	179.71	5.58	0.320	10.649	0.001	0.002
US8 Sargasso Sea	2	299	191.96	5.50	0.179	3.243		
	3	149	211.75		0.069	4.608		
		147	411.15		0.009	1.000		
12-Apr-12 1110	4	148	211.93				0.267	


Station # (C240-) General Locale Date	Bottle #	Depth (m)	O _{2 SBE-43} (umol/Kg)	O _{2 Winkle} (mL/L)	ΡΟ ₄ (μΜ)	SiO2 (μΜ)	Chl- <i>a</i> (µg/l)	рН
Time	2							
	6	77	214.05	6.25				
Cast Depth	7	76	214.60					
551m	8	49	213.11		0.051	6.499	0.258	
	9	49	213.32					
CTD Unit #	10	25	213.48		0.055	6.640	0.266	
4447	11	23	212.91					
	12	11	212.93	6.07	0.115	6.009	0.250	
	13	0			0.000	11.516	0.199	
047	1	566	177.71	5.75	0.288	37.828		7.995
Sargasso Sea	2	298	194.09		0.199	29.786		
19-Apr-12	3	149	189.81		0.000	26.235		
1105	4	147	189.80				0.392	
	5	91	210.45		0.000	18.193	0.174	
	6	90	211.45	6.09				8.107
Cast Depth	7	89	211.12					
571m	8	50	211.84		0.000	23.311	0.088	
	9	50	211.79					
CTD Unit #	10	25	212.17		0.016	13.285	0.090	
4447	11	25	212.12					
	12	11	212.56	6.13	0.007	11.718	0.072	
	13	0			0.000	22.684	0.064	8.073
062	1	534	157.78		0.710	58.089		
Sargasso Sea	2	298	192.44		0.232	19.029		
23-Apr-12	3	150	205.65		0.152	21.535		
1111	4	150	206.12				0.252	
	5	78	203.98		0.086	19.551	0.130	
	6	77	204.52					
Cast Depth	7	76	204.39					
541m	8	50	202.39		0.133	28.219	0.080	
	9	50	202.61					
CTD Unit #	10	25	202.45		0.166	22.997	0.067	
4447	11	25	203.15					
	12	10	203.12		0.077	24.355	0.052	
	13	0			0.058	30.413	0.059	

Discrete water samples were collected for dissolved oxygen, phosphate (PO₄), silicate (SiO2), pH and extracted chlorophyll-*a*. Dissolved oxygen was measured using the Winkler titration method. Phosphate and silicate was measured by colorimetric analysis with an Ocean Optics Chem2000 digital spectrophotometer. Extracted chlorophyll-*a* (Chl-*a*) concentration was measured with a Turner Designs Model 10-AU Fluorometer following methods outlined in Parsons, Maita and Lalli, *A Manual of Chemical and Biological Methods for Seawater Analysis*, Pergamon Press 1984. Chlorophyll-*a* samples were filtered through 0.45 µm filters. Seawater pH was determined using the indicator dye *m*-cresol purple and spectrophotometric measurement. A blank space indicates that no sample was collected for that analysis.

 Table 5. Free - CTD station data for C240. Physical characteristics of the water column were measured with a Seabird SEACAT Profiler Model SBE 19plus Conductivity-Temperature-Depth unit.

Station # (C240-)	Date (2012)	Time (local +4 GMT)	Cast Depth (m)	Locale	Notes
078	05-May	1444	1118.0	Eastern Caribbean Sea	Styrocast

Figure 6a-b. CTD cross-section plots for C240. Water column structure of temperature and salinity. VG gridding: X-axis 100, Y-axis 20. Location of North Atlantic Mode water (18°C) is indicated as well as summer formation of salinity maximum water.

lle		elf	elf	elf	п	sau	sau	sau	ea	t Bank	ea	ea	ea	ea	ea	Sea	ea	ea	ea	ea	/aters												
Locale		Florida Shelf	Florida Shelf	Florida Shelf	Gulf Stream	Blake Plateau	Blake Plateau	Blake Plateau	Sargasso Sea	Plantagenet Bank	Sargasso Sea	Sargasso S	Sargasso Sea	Sargasso Sea	Sargasso Sea	Sargasso Sea	Tropical Waters																
Tow Area	(_m)	2173	3158	2172	3630	2368	3559	1871	3296	1744	1653	1852	1657	1650	1876	1975	2448	2387	2226	2285	1609	2455	1889	2161	2498	1959	1840	1634	1078	1110	3552	876	1544
chl-a Fluor	(X011S)	1417	850	843	166	925	1020	1294	1196	1234	1528	1145	1319	2012	1143	1103	1112	1270	848	740	882	811	873	884	954	1025	1174	1231	1207	1293	1255	1579	1760
Salinity	(ndd)	36.63	35.80	35.85	35.90	36.08	36.10	36.50	36.26	36.41	36.80	36.66	36.65	36.60	36.59	36.62	36.66	36.70	36.86	36.85	36.86	36.86	36.76	36.50	36.14	36.32	36.19	36.05	36.21	36.07	36.07	35.69	35.53
Temp	()_) ()_)	26.3	26.4	27.2	26.7	24.9	25.1	23.5	23.7	23.5	21.6	20.2	20.2	19.7	19.6	19.8	20.1	20.4	21.2	22.2	22.7	22.7	23.5	24.3	24.1	25.1	26.7	26.9	26.6	26.6	26.8	27.5	27.5
Wind	UIF (deg)	328	337	160	202	302	275	340	30	10	202	247	225	10	340	350	35	55	70	154	101	90	65	160	130	160	130	101	90	95	80	75	95
Wind	speed (knots)	ю	ω	4	5	12	11	12	8	6	5	20	21	18	18	17	8	18	10	2	6	11	15	14	10	10	11	15	18	18	18	16	13
Cloud	Cover (%)	80%	2%	15%	2%	20%	0%0	1%	50%	30%	0%0	1%	30%	50%	45%	%06	25%	10%	20%	80%	2%	13%	%06	%06	100%	18%	75%	10%	10%	20%	30%	80%	88%
Moon	(Kisen or Set)	risen	set	risen	risen	set	risen	risen	risen	set	set	risen	set	set	set	risen	set	risen	set	risen	set	risen	set	set	risen	set	risen	risen	set	risen	set	risen	set
Moon	Phase (%)	67%	76%	76%	85%	92%	92%	97%	%66	96%	89%	71%	71%	60%	50%	%09	39%	7%	3%	0%0	%0	1%	1%	4%	%6	6%6	23%	23%	31%	41%	41%	41%	41%
Time	(local +4 GMT)	1419	1018	2203	2159	1139	2151	2200	2215	1006	2159	0630	2155	2218	0630	1120	2158	2149	2205	0932	2225	0953	2201	2157	0630	2207	0950	2155	0931	2243	0932	0148	1143
Date	(2012)	01-Apr	02-Apr	02-Apr	03-Apr	04-Apr	04-Apr	05-Apr	07-Apr	08-Apr	09-Apr	11-Apr	11-Apr	12-Apr	13-Apr	14-Apr	14-Apr	18-Apr	19-Apr	21-Apr	21-Apr	22-Apr	22-Apr	23-Apr	24-Apr	24-Apr	26-Apr	26-Apr	27-Apr	27-Apr	28-Apr	29-Apr	29-Apr
Station #	(C240-)	002	004	005	600	011	012	017	021	024	029	035	036	039	041	043	044	045	048	054	056	059	090	063	065	066	070	071	072	073	074	075	076

Table 6. Neuston station data for C240.

	Gelatinous >2cm (#)		0	0	38	0	0	0	0	1	0	1	0	8	11	0	0	ŝ	1	4	0	1	0	0	0	0	1	0	7	0	0	0	1	0
	Halo (#))	0	1	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	34	3	11	9	3	2	7	5	9	1
	Tar (#)		0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	21	1	0	1	0	0	0	1	0	0	0	0	0	0
	Plastic Pieces	(#)	5	12	5	40	8	4	40	34	4	35	6	24	5	11	6	16	19	53	311	73	56	166	1	104	16	15	8	5	5	1	0	0
	Plastic Pellets	(#)	0	0.	0	0	0	0	Э	0	0	1	0	0	0	0	0	0	0	0	0.	0	0	ŝ	0	0	0	0	0	0	0	0	0	0
	S fluitans	(g)	285	29	16	2920	332	380	265	46	0	21	0	0	$\overline{\nabla}$	0	0	0	0	705	0	5	75	0	25	24	1034	280	75	53	10	954	225	4541
	S natans	(g)	0	\sim	0	320	121	1785	1790	290	45	65	0	0	<u>-</u>	0	0	0	0	0	47	5	20	185	37	20	228	0	0	0	0	0	0	0
	Other Nekton	(#)	9	0	Π	25	9	12	15	4	0	9	0	5	94	2	0	7	19	4	0	6	Э	S	ŝ	0	11	4	5	0	Э	5	1	6
	Ceph (#)		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	1	0	0	0
C240.	Mycto (#)		0	0	1	0	0	4	7	7	0	13	0	8	6	0	0	14	2	5	0	17	0	7	ю	0	11	0	5	0	10	0	1	0
for (Lepto (#)		0	0	0	0	0	0	0	0	0	1	0	1	7	0	0	5	ю	8	0	19	0	0	0	0	32	0	0	0	0	0	11	0
tation d	Phyllo (#)		0	0	0	0	0	0	0	0	0	1	0	0		0	0	0	0	5	0	14	0	0	0	0	ω	0	0	0	1	0	0	0
Table 6 continued. Neuston station data	Zoop Den	(ml/m ²)	0.018	0.016	0.016	0.048	0.008	0:007	0.007	0.002	0.005	0.015	0.001	0.021	0.030	0.020	0.025	0.009	0.013	0.009	0.010	0.014	0.003	0.003	0.010	0.003	0.052	0.003	0.145	0.005	0.006	0.009	0.029	0.150
ontinued.	Zoop Biomass	(ml)	39.0	52.0	34.0	176.0	19.0	24.0	13.0	6.0	9.0	24.0	1.5	34.0	49.0	37.0	49.0	21.0	30.0	19.0	22.0	22.0	8.0	5.0	22.0	8.0	101.0	5.0	237.0	5.0	7.0	32.0	25.0	232.0
Table 6 c	Station #	(C240-)	002	004	005	600	011	012	017	021	024	029	035	036	039	041	043	044	045	048	054	056	059	090	063	065	066	070	071	072	073	074	075	076

ion Tow Description and Notes			 very large plastic piece with gooseneck barnacles growing on it. Found small pelagic crab and many gelatinous organisms- mostly small siphonophores. 	Cod end lost on first attempt upon net retrieval (collar fell off). Significant amount of gelatinous and blue copepods in 2nd attempt, lots of tube worms and bottom paitn because net went under the hull. Piece of terrestrial plant matter as well.	Lots of myctophids, small gelatinous material. Orange biomass, one long orange fish, several floating leptocephali. Many stomatopods also present	Very bioluminescent, black small copepods, small shrimp. Cool blue shrimp. Few gelatinous creatures, and a few fish	Clump of S. fluitans. Large variety of organisms; 1 large flying fish and several leptos and phyllosoma, few myctophids and fish larvae. Many small plastic pieces	Lots of plastic and monofilament as well as gelatinous organisms. Some S. natans. 2 squid found less than 2 cm. Tar present- shiny and very sticky, seems very fresh. 11 fish larvae less than 2 cm	Bioluminescent. Lots of phyllosoma and leptocephali	Tow containing both S fluitans and S natans with many blue organisms. Many fish larvae, few crabs, and many small shrimp. Several plastics also present	Bioluminescent tow, juvenile crabs, lots of plastic pieces Lots of sargassum, lots of fish including one large flying fish. Sargassum crab larvae, many halobates, hyperiid amphipods. 2 hundred count scoops taken due to sargassum floats	Lots of blue copepods and Porpita porpita present with a large number of plastic pieces too. 5 fish larvae less than 2 cm
Gelatinous >2cm Description	3 siphonophores (3.5 ml), 5 salps (2ml)	2 heteropods (0.5ml), 7 salps (3.2 ml), 2 siphonophores (0.5 ml)	None	None	1 siphonophore and 2 salps	1 salp (0.1 ml)	4 siphonophores	None	1 salp (<1ml)	None	None None	None
Nekton >2cm Description	3 flying fish (1.5 ml), 1 octopus (<1ml)	92 stomatopods (6 ml), 1 unkown elongated fish (0.5 ml), 1 shrimp (0.2 ml)	1 stomatopod (0.1ml), 1 chaetognath (0.1 ml)	None	5 stomatopods (< 1 ml, 3 lost during biovolume), 1 elongated orange fish (<1 ml), 1 silvery fish (0.2 ml, possibly juvenile barracuda)	11 chaetognaths (1 ml), 1 flying fish (1ml), 3 stomatopods (1 ml), 2 viper fish (2 ml), 1 pelagic fish (0.5 ml), 1 polychaete (0.6ml)	1 flying fish, 1 shrimp, 1 stomatopod, 1 nudibranch	None	1 chaetognath (<1 ml), 5 stomatopods (1 ml), 3 shrimp (<1 ml)	1 shrimp (0.5 ml), 1 flying fish (0.5ml), 1 crab (1 ml)	2 shrimp, 1 crab 1 flying fîsh (11 cm, 4 ml), 2 shrimp (0.4 ml)	None
Station # (C240-)	036	039	041	043	044	045	048	054	056	059	060 063	065

Tow Description and Notes	Lots of sargassum, leptos, myctophids, copepods, shrimp. Light gray/yellow biomass. Many small gelatinous organisms, Fish larvae (3) saved for project	Lots of S. fluitans, some plastic and tar, halobates, a large tiger crab. Copepods, some shrimp, weathered tar visible. Also saved 9 fish larvae	Dominated by sargassum floats. Also had many larval fish (<2 cm) saved for project.	Plenty of sargassum, Porpita porpita, halobates, shrimp. Light in color, lots of gelatinous and many myctophids	Big swells during tow, net skipped out a few times. Many clumps and fragments of S. fluitans. Small yellowish biomass with several (14) larval fish. 2 scoops taken for 100 count due to Sargassum leaves	Towed for only 9 min due to weather/squalls, Bioluminescent, epiphyletic algae growing on sargassum, pteropods, shrimp	Hauled back early to prevent damage to the net from Sargassum, lots of shrimp, several fish larvae	Tow area was calculated using distance in meters between successive (every minute) GPS positions. Net opening was 1.0 m wide by 0.5 m tall with a net mesh of 335 µm. Zooplankton density is recorded as wet volume displacement per tow area (ml/m ²). <i>Halobates</i> sp., eel larvae (leptocephali), spiny lobster larvae (phyllosoma), and Lantern fish (Family Myctophidae), were sorted from net contents and recorded as numbers caught per tow.	Micronekton and gelatinous organisms >2cm in length, and plant and algae material was removed using a 1 cm mesh sieve and biomass (ml) or length (cm) was recorded. Floating plastic was also removed from net contents, sorted as pellets or pieces and recorded as numbers collected per tow. Floating tar was sorted from the nets contents and recorded as numbers collected per tow. Floating a species and recorded as numbers collected per tow. Floating a species and recorded as removed, identified to species and measured in grams using a spring scale. Qualitative description of micronekton and gelatinous organisms removed from the zooplankton biomass is available upon request.
Gelatinous >2cm Description	1 salp (1ml)	None	2 cnidarians	None 2 ctenophora	None	l siphonophore, 1ml	none	ween successive (every minute) GPS olume displacement per tow area (m), were sorted from net contents and	h, and plant and algae material was contents, sorted as pellets or pieces cted per tow. Floating <i>Sargassum</i> w and gelatinous organisms removed f
Nekton >2cm Description	2 sargassum crabs (3 ml), 5 shrimp (2.5ml), 2 fish (0.5ml), 1 heteropod (0.5ml), 1 polychaete (<1 cm)	l tiger crab (1.5 ml), 3 shrimp (0.5 ml)	1 un-Ided fish, 1 cowfish, 1 sargassum shrimp, 1 red shrimp, 1	sargssum vrao None 2 chrimn	4 shrimp (1 ml), 1 sargassum crab (2 ml)	1 flying fish (3cm), 4 mL	4 sargassum fish (4ml); 5 shrimp (2ml)	Tow area was calculated using distance in meters betw of 335 µm. Zooplankton density is recorded as wet vo (phyllosoma), and Lantern fish (Family Myctophidae),	and gelatinous organisms >2cm in lengt pating plastic was also removed from net s contents and recorded as numbers colle Qualitative description of micronekton a
Station # (C240-)	066	070	071	072	074	075	076	Tow area wa of 335 μm. 3 (phyllosoma)	Micronekton recorded. Flc from the nets spring scale.

Locale	Sargasso Sea			Sargasso Sea			Sargasso Sea			Sargasso Sea			Sargasso Sea			Sargasso Sea			Tropical Waters			Sargasso Sea		
Tow Volume (m3)	2503	2684	1822	1777	1651	1239	3416	1948	2010	2092	1635	1702	2554	1835		2328	1102	1067	2969	831	1287	3851		1431
Tow Depth (m)	0 - 167	167 - 48	48 - 0	0 - 211	211 - 105	105 - 0	0 - 229	229 - 99	0 - 66	0 - 301 - 200	200 - 85	85 - 0	0 - 136	136 - 0	Net 3 never opened.	0 - 354 - 279	279 - 129	129 - 0	0 - 272	272-115	115-0	0 - 250 - 126	Net 2 never opened.	126 - 0
Tow Type (Oblique / Discrete)	Oblique	Oblique	Oblique	Oblique	Oblique	Oblique	Oblique	Oblique	Oblique	Oblique	Oblique	Oblique	Oblique	Oblique	Oblique	Oblique	Oblique	Oblique	Oblique	Oblique	Oblique	Oblique	Oblique	Oblique
Net # (1,2,3)	-	7	б	1	7	б	1	7	С	1	7	С	1	2	ю	1	0	С	1	7	ю	1	6	ω
Time (local +4 GMT)	0856	0924	0956	2111	2140	2212	1005	1105	1205	2037	2115	2147	0939	1018	1040	2100	2150	2211	0937	1022	1041	2100		2212
Date (2012)	06-Apr	06-Apr	06-Apr	08-Apr	08-Apr	08-Apr	10-Apr	10-Apr	10-Apr	10-Apr	10-Apr	10-Apr	20-Apr	20-Apr	20-Apr	20-Apr	20-Apr	20-Apr	25-Apr	25-Apr	25-Apr	25-Apr	25-Apr	25-Apr
Station # (C240-)	019	019	019	025	025	025	031	031	031	033	033	033	051	051	051	052	052	052	068	068	068	069	069	069

Table 7. Tucker Trawl station data for C240.

continued.
C240
for
data
station
Trawl
Tucker
Table 7.

(#)										-														
Gelatinous >2cm (#)	0.0	0.0	2.0	1.0	1.0	7.0	0.0	0.0	3.0	11.0	11.0	4.0	0.0	0.0		0.0	3.0	1.0	0.0	0.0	0.0	0.0		1.0
Halo (#)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		1.0
Tar (#)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
Plastic Pieces (#)	4.0	21.0	0.0	0.0	0.0	0.0	2.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
Plastic Pellets (#)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
Other Nekton (#)	1	0	0	6	5	5	4	0	2	8	11	10	0	2		0	8	9	2	0	0	10		7
Ceph (#)	0	1	0	0	0	1	0	0	0	0	0	1	I	0		0	0	0	0	1	0	0		0
Mycto (#)	0	0	0	0	7	0	0	0	0	1	ŝ	1	0	0		0	0	0	0	0	0	1	×	1
Lepto (#)	2	9	0	7	5	7	0	1	0	1	0	1	1	0		С	0	2	0	0	0	0		0
Phyllo (#)	0	0	0	0	0	0	0	0	0	0	0	0	0	0		1	0	0	0	0	0	1		0
Zoop Den (ml/m²)	0.021	0.004	0.012	0.010	0.006	0.022	0.005	0.010	0.011	0.007	0.017	0.027	0.011	0.020		0.004	0.010	0.017	0.004	0.008	0.013	0.006		0.025
Zoop Biomass (ml)	52	11	22	18	10	27	17	19	23	14	27	46	29	37	ver opened.	8.5	11	18	11.5	7	17	1 22	ver opened.	36
Net # (1,2,3)	1	0	m	Γ	0	ŝ	Γ	0	ω	1	0	б	I	7	Net 3 nev	1	0	б	1	0	С	1	Net 2 nev	С
Station # (C240-)																						069		

Table 7.	Tucker Trawl	Table 7. Tucker Trawl station data for C240 continued		
Station # (C240-)	Net # (1,2,3)	Nekton >2cm Description	Gelatinous >2cm Description	Tow Description and Notes
019	-	1 fīsh larvae, 1 leptocephali		gelatinous matter, tan biomass, several crab larvae and fish larvae
019	2	6 fīsh larvae, 6 leptocephali, l cephalopod		Gelatinous, less biomass than Net 1. Copepods visibly swimming, fish larvae present
019	£	none	2 siphonophores	lots of paint fragments, tube worms from hull. Intermediate biomass level, less fish larvae
025	1	7 shrimp (3.3ml), 2 unknown deep water fish (0.5 ml)	1 siphonophore (<1ml)	present Mix of zooplankton, many shrimp including 1 very large one, siphonophore, larval fish
025	2	5 shrimp	1 siphonophore (<1ml)	Less biovolume, few gelatinous organisms, some myctophids
025	ε	5 shrimp (1 ml)	5 siphonophores, 2 medusa	Two clumps of sargassum with shrimp, gelatinous organisms, some fish larvae
031	1	4 shrimp (0.1 ml), 4 fīsh larvae	None	Pink biomass, mostly small organisms and gelatinous. Few organisms >2cm.
031	2	6 fîsh larvae (< 1 ml)	None	Pink biomass, small organisms . Sargassum clump found.
031	m	5 fish larvae (<1ml), 2 heteropods, 1 gooseneck barnacle from hull	3 siphonophores (0.4 ml)	Pink/light brown biomass, mostly small gelatinous organisms. Paint chips and barnacle from hull in tow contents.
033		3 shrimp (2.5 ml), 5 fish larvae (0.2 ml)	None	Tow contained a few large shrimp, several gelatinous organisms with a single leptocephali
033	7	5 shrimp (2 ml), 6 fish larvae (1.5 ml)	None	tow contained several varieties of larval fish. Fair amount of gelatinous organisms presetn
033	ω	9 shrimp (2ml), 1 cephalopod (< 1 ml)	1 salp and 3 unidentified (2.5 ml total)	Pink biomass, a few large shrimp. Lots of small shrimp and gelatinous. Many fish larvae (124 less than 2 cm; not biovolumed to preserve integrity for project) and 1 myctophid
051	1	1 lepto (0.5ml), 1 cephalopod (0.5ml)	None	Net I had a lepto, squid and two large amphipods
051	7	1 Phronemid amphipod (0.25ml), 1 heteropod (0.25ml)	None	Net 2 had some sargassum floats present. Combined with Net 3 because of a failure of the release mechanism.

Table 7. Tucker Trawl station data for C240 continued.

Station # (C240-)	Net # (1,2,3)	Nekton >2cm Description	Gelatinous >2cm Description	Tow Description and Notes
051	Net 3 never opened.			
052	1	1 phylosoma (0.5ml), and 3 lepto (1ml)	None	Net 1 had three leptos, one lobster larvae, gelatinous organisms (siphonophores and ctinophores) and shrimp
052	0	5 shrimp (1.25ml), 1 phronemid amphipod (.2ml), 2 fish larvae (.1ml)	1 ctenophore (0.4ml), 1 salp (0.4ml), 1 heteropod (6.5ml)	Net 2 had pinkish biomass, many gelatinious organisms, shrimp, larval fish
052	ε	1 shrimp (0.5ml), 1 heteropod (2ml), 4 fish larvae (1ml)	1 salp (1.5ml)	Net 3 had a pink shrimp, pteropods, leptos, small plankton
068	1	2 chaetognath	None	Many iridescent copepods, many pteropods and gelatinous critters <2 cm
068	5	none	None	Squid < 2 cm saved. Light colored biomass, not many critteres
068	Э	none	None	Many pteropods and critters <2cm
0690	-	1 fish larvae and 1 fish (1ml), 3 heteropods (<.1 ml), 5 shrimp (2 ml)	None	Contained 1 myctophid and 10 other nekton
690	Net 2 never opened.			
069	ς	3 shrimp (0.2ml), 3 fish (0.3 ml), 1 euphausid (0.2 ml)	1 unidentified jelly (0.4ml)	Contained 1 myctophid, 1 jelly, and 6 other nekton
Tucker Trav distance cal	wl nets (1m ² frame, 3 lculated using distanc	Tucker Trawl nets $(1m^2$ frame, 335µm mesh net) were towed obliquely distance calculated using distance (meters) between successive (every	through targeted depth ranges for $\sim 30^{\circ}$ minute) GPS positions and net area base	Tucker Trawl nets $(1m^2$ frame, 335µm mesh net) were towed obliquely through targeted depth ranges for ~ 30° at 2 knots. Tow volume was calculated using tow distance calculated using distance (meters) between successive (every minute) GPS positions and net area based on net frame dimensions. Zooplankton density

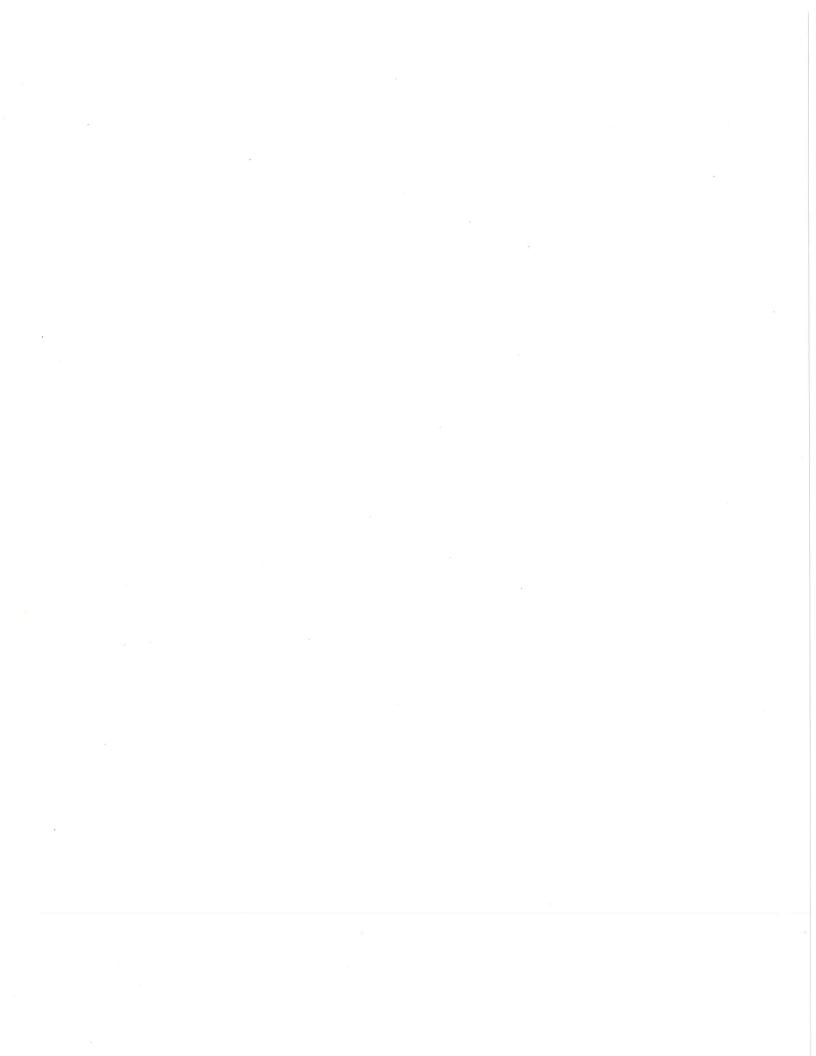
is recorded as wet volume displacement per tow volume (ml/m^3) . *Halobates* sp., eel larvae (leptocephali), spiny lobster larvae (phyllosoma), and Lantern fish (Family Myctophidae), were sorted from net contents and recorded as numbers caught per tow. Blank spaces represents stations were no data was collected for that parameter. Qualitative description of micronekton and gelatinous organisms removed from the zooplankton biomass is available upon request.

Table 8.	Table 8. Zooplankton 100 count station data for	ton 100 col	unt sta	tion di	ata for	C240.												
Station # (240-)	Date (2012)	Time (local +4 GMT)	Cnid	Siph	Cten	Salp	Pter	Nud	Hete	Snai	Squi	Poly	Chae	Cop	Gam	Ham	Cmeg	Czoe
Neuston Tows								÷										
002	01-Apr	1419	0	0	0	0	0	0	0) 0	0	1	0	4	7	0	0	36
004	02-Apr	1018	0	1	0	1	0	0	0	I	0	0	1	33	I	I	0	1
005	02-Apr	2203	ŝ	2	0	7	4	0	-	0	0	1	4	46	0	10	0	0
600	03-Apr	2159	0	0	0	0	1	0		0	0	0	0	35	0	8	0	0
011	03-Apr	1139	0	0	0	5	0	0	0	0	0	0	7	17	0	0	0	0
012	04-Apr	2151	0	2	0	0	1	0	0	0	0	0	0	11	1	35	0	1
017	05-Apr	2200	10	2	0	1	0	0	2	ю	0	0	7	55	0	4	0	0
021	07-Apr	2215	7	1	0	2	1	0	0	7	0	0	4	61	8	7	0	0
024	08-Apr	1006	0	11	0	0	2	0	0	1	0	0	0	22	1	0	0	0
029	09-Apr	2159	0	2	0	0	0	0	0	0	0	0	0	45	10	1	0	0
035	11-Apr	0630	0	42	0	0	0	0	1	0	0	0	8	39	0	0	0	0
036	11-Apr	2150	0	7	0	0	0	0	0	0	0	0	с	57	0	б	2	1
039	12-Apr	2218	0	5	0	0	0	0	0	0	0	0	2	70	0	7	1	0
041	13-Apr	0630	0	11	0	1	Э	0	0	0	0	0	9	76	0	0	0	0
043	14-Apr	1120	0	7	0	1	2	0	1	0	0	1	7	81	0	0	0	0
044	14-Apr	2158	0	0	0	0	0	0	7	ю	0	0	Э	76	0	1	1	0
045	18-Apr	2149	0	5	0	0	4	0	0	0	0	0	7	51	0	16	0	0
048	19-Apr	2205	0	0	0	0	1	0	7	0	0	0	7	65	0	21	0	0
054	21-Apr	0932	0	0	0	0	0	0	0	0	0	20	4	46	0	0	0	0
056	21-Apr	2225	0	0	I	0	1	0	0	1	0	0	1	21	0	I	1	0
059	22-Apr	0953	0	З	0	0	1	0	0	0	0	0	0	63	٢	I	0	1
090	22-Apr	2201	0	9	0	5	0	0	0	0	0	0	0	48	I	14	1	0
063	23-Apr	2157	0	1	0	0	2	0	1	0	0	0	0	62	7	9	0	0

p Pter Nud H
0 0
1 0
3 0
1 0
1 0
1143 14 0 0 0 0 0 0
0
0924 0 2 0 0 3 0 2
6 0
0 0
0
0 0
0 0
0 0
0 0
0 0
0 0 0 0
1 0
1 0
1 0
Net not
0 4 0

Czoe	0	0	0	0		0																	
Cmeg C	0	0	0	0		0		Shannon-Weiner Diversity Index															
Ham C	3	I	0	1		5		Shannon Diversit		0.68	0.75	0.77	0.43	0.57	0.78	0.61	0.70	0.73	0.69	0.53	0.63	0.48	0.42
H								•1															
Gam	0	0	0	0		0		Total #		89	100	100	100	100	100	114	100	75	100	100	100	96	103
Cop	85	87	88	78		76		Other		0	0	0	0	0	0	0	0	I	0	0	0	1	0
Chae	5	б	9	5		5		Fegg (2	27	0	0	55	1	0	5	26	13	0	10	5	0
Poly	0	0	0	0		0		Flar I		3	0	0	0	1	0	0	1	0	0	0	0	0	0
Squi	0	0	0	0		0		Iso]		0	0	0	0	0	1	0	0	0	0	0	0	0	0
Snai	0	0	0	0		0		Clad		0	2	1	0	0	0	0	0	0	0	0	0	0	0
Hete	0	0	0	0		0		Ostr O		1	1	1	0	3	1	0	4	1	0	0	0	7	5
Nud	0	0	0	0		0	C240.	Stom (28	1	0	0	0	2	0	0	0	0	0	1	0	0
Pter	1	7	0	1		0	for (
Salp	1	0	1	0		0	n data	Euph		0	7	5	1	0	29	0	Ι	7	15	0	15	2	0
Cten	0	0	0	0		0	statio	Mysi		1	0	0	0	0	8	0		0	12	0	1	1	0
Siph	0	0	ю	0		-	count	Lobs		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cnid	0	0	0	0		1	on 100	Shrm		11	22	20	55	17	7	35	5	8	7	10	0	0	1
Time (local +4 GMT)	0937	1022	1041	2100	Net not	open 2212	Table 8 continued. Zooplankton 100 count station data for C240	Time (local +4 GMT)	č	1419	1018	2203	2159	1139	2151	2200	2215	1006	2159	0630	2150	2218	0630
Date (2012)	25-Apr	25-Apr	25-Apr	25-Apr	25-Apr	25-Apr	ntinued.	Date (2012)		01-Apr	02-Apr	02-Apr	03-Apr	03-Apr	04-Apr	05-Apr	07-Apr	08-Apr	09-Apr	11-Apr	11-Apr	12-Apr	13-Apr
Station # (240-)	068 net-1	068 net-2	068 net-3	069 net-1	069 net-2	069 net-3	Table 8 cc	Station # (240-)	Neuston Tows	002	004	005	600	011	012	017	021	024	029	035	036	039	041

L																											
Shannon-Weiner Diversity Index	0.33	0.44	0.72	0.47	0.72	0.69	0.60	0.74	0.57	0.54	0.40	0.52	0.53	0.51	0.52	0.48	0.44	0.68		0.52	0.39	0.67	0.51	0.40	0.51	0.66	0.48
Total #	100	57	101	100	100	72	102	100	100	106	100	100	100	104	100	78	108	114		100	100	101	103	105	100	96	101
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	45		0	0	0	0	0	1	0	0
Fegg	0	0	2	0	1	0	1	0	0	1	0	14	0	1	0	0	0	1		2	5	14	0	1	0	2	11
Flar	0	0	0	0	0	0	Г	0	0	1	0	0	0	0	0	1	0	0		1	0	0	0	0	7	0	0
Iso	0	1	0	0	9	1	0	9	0	0	0	0	0	0	0	0	0	2		0	1	7	0	0	0	0	0
Clad	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1		0	0	0	0	1	0	0	0
Ostr	0	2	С	0	9	0	4	0	I	0	0	с	7	б	0	I	10	1		5	2	0	1	6	11	12	7
Stom	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	1	10	7	0	0	С	1
Euph	0	ю	10	5	10	1	0	5	1	1	0	0	1	0	0	0	0	0		1	0	1	4	0	0	I	0
Mysi	0	0	4	0	5	14	9	С	16	3	0	0	I	0	15	0	I	0		1	0	7	2	0	6	2	0
Lobs	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
Shrm	0	б	4	4	1	28	14	11	б	1	10	25	12	31	0	42	6	33		9	1	0	8	2	З	0	0
Time (local +4 GMT)	1120	2158	2149	2205	0932	2225	0953	2201	2157	0630	2207	0500	2155	0931	2243	0932	0148	1143		0856	0924	0956	2111	2140	2212	1005	1105
Date (2012)	14-Apr	14-Apr	18-Apr	19-Apr	21-Apr	21-Apr	22-Apr	22-Apr	23-Apr	24-Apr	24-Apr	26-Apr	26-Apr	27-Apr	27-Apr	28-Apr	29-Apr	29-Apr	vl Tows	06-Apr	06-Apr	06-Apr	08-Apr	08-Apr	08-Apr	10-Apr	10-Apr
Station # (240-)	043	044	045	048	054	056	059	090	063	065	066	070	071	072	073	074	075	076	Tucker Trawl Tows	019 net-1	019 net-2	019 net-3	025 net-1	025 net-2	025 net-3	031 net-1	031 net-2


Shannon-Weiner Diversity Index	0.78	0.71	0.76	0.55	0.65	0.74			0.34	0.31	0.33	0.40	0.25	0.33	0.41			0.45	
Total #	100	100	100	100	100	95			66	100	101	100	100	106	101			102	
Other	0	0	0	0	0	0			0	2	0	0	0	0	0			1	
Fegg	20	4	23	7	7	0			0	0	0	0	0	0	0			0	
Flar	I	0	4	0	0	0			0	0	5	0	0	0	Π			б	
Iso	10	ю	0	0	7	٢			0	9	7	0	0	0	2			0	
Clad	2	0	0	0	0	0			0	0	0	0	0	1	0			0	
Ostr	9	0	4	11	9	7			10	9	14	С	4	7	8			S	
Stom	0	1	0	0	0	2			1	0	2	0	0	0	0			0	
Euph	0	8	б	0	0	7			ю	1	0	1	0	0	1			0	
Mysi	2	б	9	0	2	1			6	1	0	0	0	1	0			0	
Lobs	0	0	0	0	Э	0			1	0	0	0	0	0	0			0	
Shrm Lobs	0	0	1	0	0	0			4	9	8	4	ю	4	4			8	
Time (local +4 GMT)	1205	2037	2115	2147	0939	1018	Net not	open	2100	2150	2211	0937	1022	1041	2100	Net not	open	2212	
Date (2012)	10-Apr	10-Apr	10-Apr	10-Apr	20-Apr	20-Apr	20-Apr		20-Apr	20-Apr	20-Apr	25-Apr	25-Apr	25-Apr	25-Apr	25-Apr		25-Apr	
Station # (240-)	031 net-3	033 net-1	033 net-2	033 net-3	051 net-1	051 net-2	051 net-3		052 net-1	052 net-2	052 net-3	068 net-1	068 net-2	068 net-3	069 net-1	069 net-2		069 net-3	

Abbreviations for zooplankton categories:

heteropods, OSna – pelagic snails, Ceph – cephalopods, Poly – polychaetes, Chae – chaetognaths Cop – copepods, Gam – gammarid amphipods, Hyp – hyperiid amphipods, Mega – Crab megalopae, Zoea – Crab zoea, Shri – Shrimp larval stage, Lobs – lobster larval stage, Mys – mysids, Euph – euphausiids, Stom – Stomatopod larval stage, Ost – ostracods, Clad – cladocerans, Iso – isopods, larval fish and fish eggs, Oth – unidentified plankton categories, SWDI – Shannon-Cnid med - cnidarian medusa, Siph - siphonophore bracts and floats, Cten - ctenophores, Salp - salps and doliolids, Pter - pteropods, Nudi - nudibranch, Het -Weiner Diversity Index

Station # (C240-)	Date (2012)	Time (local +4 GMT)	Temp (deg C)	Salinity (psu)	chl-a Fluor (volts x30)	Wind Sea Conditions
004	02-Apr	1020	26.4	35.80	850.4	NNW force 2 on port tack for NT
008	03-Apr	1816	27.9	35.87	972.3	SxE wind F2; seas <1 ft
016	05-Apr	1842	23.8	36.44	1232.7	Heading 090, winds SxW F3
023	08-Apr	0717	23.7	36.26	1233.6	Winds F2, 085 deg; Seas 4.5 ft
028	09-Apr	1642	21.8	36.80	1419.8	Wind F3 SW; seas 2-3 ft, SW
032	10-Apr	1734	22.0	36.85	1354.3	Wind F3 240; seas 5 ft
050	20-Apr	0750	21.5	36.88	753.2	Wind F3 NE; seas 4 ft
				÷		Wind E2 Er goog 2.2 ft
053	21-Apr	0543	22.2	36.80	750.7	Wind F2, E; seas 2-3 ft, E
055	21-Apr	1730	22.5	36.78	877.2	
058	22-Apr	0621	23.0	36.83	855.1	Wind F4 113; Seas 4-5ft, 118
065	24-Apr	0605	24.3	36.46	889.9	Wind SExE F4, Seas SExE 4 ft

Table 9. Dip net station data for C240.

													ed	,	eq													
Munsell Color Code	5vr 4 8		5y 5 6		2.5g 3 4		5g48		10r 3 2		2.5yr 3 4		not recorded		not recorded		2.5y 5 6		5yr 4 8		10r 3 2		5yr 3 2		9 2 2 C	0 6 166.7	2.5yr 3 4	
Decline Region	10%		15%		10%		5%		20%	22 51	50%		50%		30%		40%		60%		50%		50%		/00/	0/00	30%	
Munsell Color Code	2 5v 8 8	006.17	2.5gy 8 10	and and and	7.5gy 8 8		2.5gy 7 6		5y 7 10		2.5y 6 8		not recorded		not recorded		5y 7 4	3	5y 8 4		7.5yr 5 8		7.5yr 5 8			0 0 Jýc./	2.5y 7 8	
Succession Region	(%) 70%	0/0/	75%		80%		85%		75%		40%		30%		55%		50%		20%		35%		40%		.000	0/00	%09	
Munsell Color Code	25V76	0 / 60.7	2.5gy 8 8		2.5gy 8 6		2.5gy 8.4		5y 8 4		2.5y 8 6		not recorded		not recorded		5y 8 4		5y 8 4		2.5y 6 6		7.5yr 7 8	î.		5y & 4	5y 8 4	
Growth region	(%)	70.70	10%		10%		10%		5%		10%		20%		15%		10%		20%		15%		10%			40%	10%	
Mass (g)	0 00	0.00	30.0		41.0		19.0		not	recorded	not	recorded	79.0		95.0		19.0		20.0		15.0		20.0			33.0	70.0	
Species: Sargassum	C Autono	S.IIUItans	S.fluitans		S.fluitans		S.fluitans		S.natans		S.natans		S.natans		S.natans		S.natans		S.fluitans		Mixed,	S.fluitans	Mixed.	S.fluitans	nommant	S.natans	Mixed,	S.fluitans dominant
Collection Conditions	Laclad	Isolated	ciump Isolated	Clump	Isolated	clump	Isolated	Clump	Isolated	clump	Windrow	clump	Isolated	clump	Isolated	clump	Windrow	clump	Windrow	clump	Isolated	fragments	Isolated	fragments		Isolated clump and fraoments	Windrow	clump and fragments
Replicate		А	В		A		В		A		В		A		В		А		В		A		В	l		A	В	
Station # (C240-)	100	004			008				016				023				028		,		032					050		

Table 9 continued. Dip net station data for C240.

Station # (C240-)	Replicate	Station # Replicate Collection (C240-) Conditions	Species: Sargassum	Mass (g)	Growth region	Munsell Color Code	Succession Region	Munsell Color Code	Decline Region	Munsell Color Code
)		(<u>%</u>)		(%)		(%)	
053	A	Isolated	S.natans	65.0	20%	5y 8 6	30%	5y 7 8	50%	7.5yr 4 4
		clump								
	В	Isolated	S.natans	50.0	50%	5y 8 6	30%	2.5y 6 6	20%	5yr 4 6
		clump								
055	А	Isolated	Mixed	85.0	10%	2.5y 8 6	30%	5yr 6 8	60%	10r 3 2
		fragments								
	В	Isolated	S.natans	105.0	20%	2.5y 7 6	60%	5yr 5 8	10%	10r 3 6
		clump								
058	A	Isolated	S.natans	65.0	20%	2.5y 8 8	50%	2.5gy 7 8	30%	5y 5 6
		clump								
	В	Isolated	S.natans	55.0	30%	2.5y 8 6	50%	5yr 5 8	20%	5yr 3 2
		clump								
065	A	Isolated	S.fluitans	30.0	35%	2.5y 7 6	25%	5yr 5 4	40%	5yr 3 2
		fragments								
	В	Isolated	S.fluitans	60.0	10%	2.5y 6 6	70%	7.5yr 6 6	20%	5yr 3 2
		fragments								

Station # (C240-)	Rep- licate	Fish #	Fish (mL)	Crab #	Crab (mL)	Shrimp #	Shrimp (mL)	Snail #	Snail (mL)	Nudi- branch #	Nudi- branch (mL)
004	Α	0	0.0	2	0.2	147	1.7	2	bd	0	0
	В	0	0.0	1	0.2	44	0.8	0	0	0	0
008	А	0	0.0	3	0.2	73	0.9	0	0	0	0
	В	0	0.0	1	0.1	17	0.2	0	0	0	0
016	А	0	0.0	1	bd	31	bd	0	0	1	2
	В	1	1.0	0	0.0	7	bd	0	0	0	0
023	А	0	0.0	0	0.0	14	bd	0	0	0	0
	В	0	0.0	0	0.0	5	bd	0	0	0	0
028	А	0	0.0	1	bd	24	bd	0	0	0	0
	В	0	0.0	0	0.0	11	bd	0	0	0	0
032	А	0	0.0	0	0.0	0	0.0	0	0	0	0
	В	0	0.0	2	bd	0	0.0	0	0	0	0
050	Α	0	0.0	0	0.0	29	1.5	0	0	0	0
	В	1	0.2	4	0.4	34	0.5	0	0	0	0
053	А	0	0.0	3	0.5	25	1.5	0	0	0	0
	B	0	0.0	0	0.0	2	0.5	0	0	0	0
055	А	0	0.0	0	0.0	38	1.0	0	0	0	0
	В	0	0.0	0	0.0	84	2.0	0	0	0	0
058	А	0	0.0	0	0.0	30	1.1	0	0	0	0
	В	0	0.0	0	0.0	19	1.0	0	0	0	0
065	А	0	0.0	2	1.0	5	1.0	0	0	0	0
	В	0	0.0	2	0.2	2	bd	0	0	0	0

Table 9 continued. Dip net station data for C240.

Station # (C240-)	Replicate	Hydroid %	Bryozoan %	Worm Tube #	Barnacle #	Anemone #	Notes
004	A	coverage 20%	coverage 25%	0	0	0	
	В	80%	15%	0	0	0	
008	А	85%	10%	2	0	0	
	В	90%	10%	0	0	0	
016	А	20%	15%	0	0	3	
	В	60%	20%	6	8	0	
023	А	35%	40%	44	0	29	
	В	60%	15%	52	0	15	
028	А	20%	5%	50	0	0	
	В	40%	5%	25	0	0	
032	А	50%	20%	40	0	0	
	В	80%	15%	20	0	0	
050	А	40%	40%	75	0	9	
	В	60%	20%	110	0	2	
053	А	30%	40%	65	0	5	
	В	40%	30%	100	0	0	
055	А	50%	40%	17	0	12	
	В	50%	50%	110	0	4	
058	А	40%	30%	240	0	8	
×	В	30%	55%	245	0	1 ,	
065	А	85%	10%	18	0	0	
	В	90%	0%	0	0	0	14 amphipods collected

Table 9 continued. Dip net station data for C240.

GMT) 1-3m Florida Sheff 1 0347 Flow thru (63um mesh sieve) 1-3m Florida Sheff 1 0321 Flow thru (63um mesh sieve) 1-3m Florida Sheff 1 0321 Flow thru (63um mesh sieve) 1-3m Florida Sheff 1 031 Flow thru (63um mesh sieve) 1-3m Gulf Stream 031 Flow thru (63um mesh sieve) 1-3m Gulf Stream 0430 Flow thru (63um mesh sieve) 1-3m Gulf Stream 0436 Flow thru (63um mesh sieve) 1-3m Blake Plateau 0117 Net (30cm diameter - 63um mesh net) 0 9m - 1% 9m - 1% 0436 Flow thru (63um mesh sieve) 1-3m Stream 2mg stream 0318 Flow thru (63um mesh sieve) 1-3m Stream 2mg stream 0318 Flow thru (63um mesh sieve) 1-3m Stream 2mg stream 0318 Flow thru (63um mesh sieve) 1-3m Stream stream 2mg stream 0317 Flow thru (63um mesh sieve) 1-3m Streagstos Sea 2mg stream 0318 Flow thru (6	Date (2012)	Time (local +4	Collection Method (Flow-Thru or Drift Net)	Net # (a, b, c)	Tow Depth (m)	Locale	Diatoms (%)	Dinoflagellates (%)
0347 Flow thru (63um mesh sieve) 1-3m Flow thru (63um mesh sieve) 0321 Flow thru (63um mesh sieve) 1-3m Gulf Stream 0321 Flow thru (63um mesh sieve) 9)m - 1% 9)m - 1% 0321 Flow thru (63um mesh sieve) 1-3m Gulf Stream 031 Flow thru (63um mesh sieve) 1-3m Gulf Stream 0430 Flow thru (63um mesh sieve) 1-3m Blake Plateau 0431 Flow thru (63um mesh sieve) 1-3m Blake Plateau 0435 Flow thru (63um mesh sieve) 1-3m Suff Stream 0436 Flow thru (63um mesh sieve) 1-3m Suff Stream 0318 Flow thru (63um mesh sieve) 25m Blake Plateau 0318 Flow thru (63um mesh sieve) 25m Blake Plateau 0318 Flow thru (63um mesh sieve) 25m Sargasso Sea 0318 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0318 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0318 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0318 Flow thru (63um mesh sieve)		(TMD)						
0941 Drift Net (30cm diameter - 63um mesh net) b 50m Gulf Stream 0430 Flow thru (63um mesh sieve) b 50m Gulf Stream 0430 Flow thru (63um mesh sieve) 0.1-3m Blake Plateau 1-3m 0430 Flow thru (63um mesh sieve) 0.3m 19% Gulf Stream 0426 Flow thru (63um mesh sieve) 0.3m 19% Blake Plateau 1-3m 0430 Drift Net (30cm diameter - 63um mesh net) b 50m Blake Plateau 1-3m 0436 Flow thru (63um mesh sieve) 0.43 Flow thru (63um mesh sieve) 0.43 0318 Flow thru (63um mesh sieve) 0.43 Flow thru (63um mesh sieve) 0.43 0517 Flow thru (63um mesh sieve) 0.43 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0318 Flow thru (63um mesh sieve) 0.43 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0317 Flow thru (63um mesh sieve) 0.43 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0318 Flow thru (63um mesh sieve) 0.5m Sargasso Sea 1-3m Sargasso Sea	2-Apr 3-Apr				1-3m 1-3m 99m - 1%	Florida Shelf Gulf Stream	100.0%	%0.0
Drift Net (30cm diameter - 6.3um mesh net)b50mGulf StreamDrift Net (30cm diameter - 6.3um mesh net) $2.3m$ Gulf Stream0430Flow thru (63um mesh sieve) $1.3m$ Gulf Stream04436Flow thru (63um mesh sieve) $1.3m$ Gulf Stream0436Flow thru (63um mesh sieve) $33m - 1\%$ Gulf Stream0436Flow thru (63um mesh sieve) $33m - 1\%$ Blake Plateau0436Flow thru (63um mesh sieve) $33m - 1\%$ Blake Plateau0436Flow thru (63um mesh sieve) $1.3m$ Sargasso Sea0437Flow thru (63um mesh sieve) $1.3m$ Sargasso Sea0438Flow thru (63um mesh sieve) $1.3m$ Sargasso Sea0437Flow thru (63um mesh sieve) $1.3m$ Sargasso Sea0438Flow thru (63um mesh sieve) $1.3m$ Sargasso Sea0437Drift Net (30cm diameter - 63um mesh net) b $50m$ Sargasso Sea0446Drift Net (30cm diameter - 63um mesh net) b $50m$ Sargasso Sea0333Flow thru (63um mesh sieve) $1.3m$ Sargasso Sea0450Drift Net (30cm diameter - 63um mesh net) b $50m$ Sargasso Sea0333Flow thru (63um mesh sieve) $1.3m$ Sargasso Sea0450Flow thru (63um mesh sieve) $1.3m$ Sargasso Sea0517Prift Net (30cm diameter - 63um mesh net) b $50m$ 0533Flow thru (63um mesh sieve) $1.3m$ Sargasso Sea0450Flow thru (63um mesh sieve)	2 Anr	0041	Drift Net (30cm diameter - 63um mesh net)	а	light level	Gulf Stream	94.0%	6.0%
Drift Net (30cm diameter - 6.3um mesh net) c 25m Gulf Stream 0430 Flow thru (63um mesh sieve) 1-3m Gulf Stream 0430 Flow thru (63um mesh sieve) 93m 1% 0430 Flow thru (63um mesh sieve) 93m 1% 0431 Flow thru (63um mesh sieve) 93m 1% 07436 Flow thru (63um mesh sieve) 93m 1% 0431 Flow thru (63um mesh sieve) 50m Blake Plateau 0436 Flow thru (63um mesh sieve) 50m Blake Plateau 0318 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0318 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0317 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0318 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0317 Pith Net (30cm diameter - 63um mesh net) 1-3m Sargasso Sea 031 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 031 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 031 Flow thru (63um mesh sieve) 1-3m Sargas	idv-c	1400	Drift Net (30cm diameter - 63um mesh net)	þ	50m	Gulf Stream	81.0%	19.0%
0430 Flow thru (63um mesh sieve) 1-3m Utf Stream 0426 Flow thru (63um mesh sieve) 0.3m - 1% Blake Plateau 0948 Drift Net (30cm diameter - 63um mesh net) b 50m Blake Plateau 0138 Flow thru (63um mesh sieve) 0.3m - 1% Blake Plateau 1-3m 0318 Flow thru (63um mesh sieve) 0.43 Flow thru (63um mesh sieve) 0.43 0436 Flow thru (63um mesh sieve) 0.43 Else Plateau 1-3m 0436 Flow thru (63um mesh sieve) 0.43 Else Plateau 1-3m 0436 Flow thru (63um mesh sieve) 0.43 Else Plateau 1-3m 0318 Flow thru (63um mesh sieve) 0.43 Else Plateau 1-3m 0318 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 1-3m 0318 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 1-3m 0317 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0.9m 0317 Net (30cm diameter - 63um mesh net) b 50m Sargasso Sea 0317 Net (30cm diameter - 63um mesh net)			Drift Net (30cm diameter - 63um mesh net)	U	25m	Gulf Stream	74.0%	26.0%
0426Flow thru (63um mesh sieve)1-3mBlake Plateau10426Flow thru (63um mesh sieve) $93m - 1\%$ Blake Plateau1Drift Net (30cm diameter - 63um mesh net) 5 mBlake Plateau1Drift Net (30cm diameter - 63um mesh net) 5 mBlake Plateau1Drift Net (30cm diameter - 63um mesh net) 5 mBlake Plateau10436Flow thru (63um mesh sieve) $1-3m$ Sargasso Sea10436Flow thru (63um mesh sieve) $1-3m$ Sargasso Sea10318Flow thru (63um mesh sieve) $1-3m$ Sargasso Sea10337Flow thru (63um mesh sieve) $1-3m$ Sargasso Sea10333Flow thru (63um mesh net) b $50m$ Sargasso Sea10333Flow thru (63um mesh sieve) $1-3m$ Sargasso Sea20333Flow thru (63um mesh sieve) $1-3m$ Sargasso Sea20410Flow thru (63um mesh sieve) $1-3m$ Sargasso Sea20420Flow thru (63um mesh sieve) $1-3m$ Sargasso Sea20430Flow thru (63um mesh sieve) $1-3m$ Sargasso Sea20441Flow thru (63um mesh sieve) $1-3m$ Sargasso Sea20441Flow thru (63um mesh sie	V V	0270	Elow then (63mm mesh sieve)		1-3m	Gulf Stream	64.0%	36.0%
93m - 1% 93m - 1% 0948 Drifh Net (30cm diameter - 63um mesh net) b 50m Blake Plateau Drifh Net (30cm diameter - 63um mesh net) b 50m Blake Plateau 0436 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0436 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0436 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0318 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0318 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0317 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0318 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0517 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0333 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0333 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0333 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0500 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0517 Flow thru (63um mesh sieve) 1-3m Sar	4-Apr 5-Anr		Flow thru (63um mesh sieve)		1-3m	Blake Plateau	100.0%	0.0%
0948 Drift Net (30cm diameter - 63um mesh net) b 50m Blake Plateau Drift Net (30cm diameter - 63um mesh net) b 50m Blake Plateau Drift Net (30cm diameter - 63um mesh net) c 25m Blake Plateau Drift Net (30cm diameter - 63um mesh net) c 25m Blake Plateau 0436 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0318 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0317 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0317 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0317 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0313 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0333 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0333 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0333 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0333 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0333 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0	idv-c				93m - 1%			
Drift Net (30cm diameter - 63um mesh net)b50mBlake PlateauDrift Net (30cm diameter - 63um mesh net)c25mBlake Plateau0436<	S Anr			9	light level	Blake Plateau	75.0%	25.0%
Drift Net (30cm diameter - 63um mesh net)c25mBlake Plateau0436<	idv-c			þ	50m	Blake Plateau	30.0%	70.0%
0436Flow thru (63um mesh sieve)1-3mSargasso Sea0318Flow thru (63um mesh sieve)1-3mSargasso Sea0318Flow thru (63um mesh sieve)1-3mSargasso Sea0450Flow thru (63um mesh sieve)1-3mSargasso Sea0517Flow thru (63um mesh sieve)1-3mSargasso Sea0517Flow thru (63um mesh sieve)99m - 1%Sargasso Sea0517Drift Net (30cm diameter - 63um mesh net)b50mSargasso Sea0333Flow thru (63um mesh sieve)01-3mSargasso Sea0333Flow thru (63um mesh sieve)c25mSargasso Sea0450Flow thru (63um mesh sieve)1-3mSargasso Sea0450Flow thru (63um mesh sieve)1-3mSargasso Sea0470Flow thru (63um mesh sieve)1-3mSargasso Sea0471Flow thru (63um mesh sieve)02.5mSargasso Sea0472Flow thru (63um mesh sieve)1-3mSargasso Sea0473Flow thru (63um mesh sieve) </td <td></td> <td></td> <td></td> <td>ပ</td> <td>25m</td> <td>Blake Plateau</td> <td>65.0%</td> <td>35.0%</td>				ပ	25m	Blake Plateau	65.0%	35.0%
0318 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0317 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0317 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0317 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0317 Drift Net (30m mesh sieve) 1-3m Sargasso Sea 0517 Drift Net (30m diameter - 63um mesh net) b 50m Sargasso Sea 0513 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 1-3m 0500 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 1-3m 0500 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 1-3m 0500 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 1-3m 0501 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 1-3m 0947 Drift Net (30cm diameter - 63um mesh net) b 50m Sargasso Sea 0141 Flow thru (63um mesh sieve) 1-3m Sargasso Sea 0411 01420 Flow thru (63um mesh sieve) b 50m Sargasso Sea	Anr	0436			1-3m	Sargasso Sea		
0.517Flow thru (63um mesh sieve)1-3mSargasso Sea0.517Flow thru (63um mesh sieve)1-3mSargasso Sea0.517Flow thru (63um mesh sieve)1-3mSargasso Sea0.517Drift Net (30cm diameter - 63um mesh net)b50mSargasso Sea0.518Drift Net (30cm diameter - 63um mesh net)b50mSargasso Sea0.333Flow thru (63um mesh sieve)b50mSargasso Sea0.333Flow thru (63um mesh sieve)1-3mSargasso Sea0.333Flow thru (63um mesh sieve)1-3mSargasso Sea0.450Flow thru (63um mesh net)c2.5mSargasso Sea0.450Flow thru (63um mesh sieve)1-3mSargasso Sea0.47Drift Net (30cm diameter - 63um mesh net)b50mSargasso Sea0.411Flow thru (63um mesh sieve)1-3mSargasso Sea0.412Flow thru (63um mesh sieve)1-3mSargasso Sea0.420Flow thru (63um mesh sieve)1-3mSargasso Sea0.421Flow thru (63um mesh sieve)1-3mSargasso Sea0.422Flow thru (63um mesh sieve)1-3mSargasso Sea0.423Flow thru (63um mesh sieve)1-3mSargasso Sea0.424Flow thru (63um mesh sieve)1-3mSargasso Sea0.425Drift Net (30cm diameter - 63um mesh net)c25m0.428Flow thru (63um mesh sieve)1-3mSargasso Sea0.429Flow thru (63um mesh sieve)1-3m25m <td< td=""><td>Idv-0</td><td></td><td>Flow thru (63um mesh sieve)</td><td></td><td>1-3m</td><td>Sargasso Sea</td><td>100.0%</td><td>0.0%</td></td<>	Idv-0		Flow thru (63um mesh sieve)		1-3m	Sargasso Sea	100.0%	0.0%
0517Flow thru (63um mesh sieve)1-3mSargasso Sea0517Flow thru (63um mesh sieve)99m - 1%99m - 1%1021Drift Net (30cm diameter - 63um mesh net)b50mSargasso SeaDrift Net (30cm diameter - 63um mesh net)b50mSargasso SeaDrift Net (30cm diameter - 63um mesh net)b50mSargasso SeaDrift Net (30cm diameter - 63um mesh net)c25mSargasso Sea0333Flow thru (63um mesh sieve)1-3mSargasso Sea0450Flow thru (63um mesh sieve)1-3mSargasso Sea0450Plow thru (63um mesh sieve)1-3mSargasso Sea0450Plow thru (63um mesh sieve)1-3mSargasso Sea0450Plow thru (63um mesh sieve)1-3mSargasso Sea0440Drift Net (30cm diameter - 63um mesh net)c25mSargasso Sea0411Flow thru (63um mesh sieve)b50mSargasso Sea0411Flow thru (63um mesh sieve)c25mSargasso Sea0411Flow thru (63um mesh sieve)b50mSargasso Sea0411Flow thru (63um mesh sieve)c25mSargasso Sea0411Flow thru (63um mesh sieve)b50mSargasso Sea0411Flow thru (63um mesh sieve)b50mSargasso Sea0411Flow thru (63um mesh sieve)c25mSargasso Sea0420Flow thru (63um mesh sieve)c25mSargasso Sea0408Flow thru (63um mesh net) <td>IdA-1</td> <td></td> <td></td> <td></td> <td>1-3m</td> <td>Sargasso Sea</td> <td>45.0%</td> <td>55.0%</td>	IdA-1				1-3m	Sargasso Sea	45.0%	55.0%
1021Drift Net (30cm diameter - 63um mesh net)99m - 1%1021Drift Net (30cm diameter - 63um mesh net)b50mSargasso SeaDrift Net (30cm diameter - 63um mesh net)b50mSargasso Sea0333Flow thru (63um mesh sieve)1-3mSargasso Sea0450Flow thru (63um mesh sieve)1-3mSargasso Sea0450Flow thru (63um mesh sieve)1-3mSargasso Sea0450Flow thru (63um mesh sieve)1-3mSargasso Sea047Drift Net (30cm diameter - 63um mesh net)c25mSargasso Sea0947Drift Net (30cm diameter - 63um mesh net)b50mSargasso Sea0411Flow thru (63um mesh sieve)1-3mSargasso Sea0420Flow thru (63um mesh sieve)1-3mSargasso Sea0552Drift Net (30cm diameter - 63um mesh net)c25m0552Drift Ne	0 A nr				1-3m	Sargasso Sea		
1021Drift Net (30cm diameter - 63um mesh net)alight levelSargasso SeaDrift Net (30cm diameter - 63um mesh net)b50mSargasso SeaDrift Net (30cm diameter - 63um mesh net)c25mSargasso SeaDrift Net (30cm diameter - 63um mesh net)c25mSargasso Sea0333Flow thru (63um mesh sieve)1-3mSargasso Sea0450Flow thru (63um mesh sieve)1-3mSargasso Sea0470Drift Net (30cm diameter - 63um mesh net)c25mSargasso Sea0947Drift Net (30cm diameter - 63um mesh net)b50mSargasso Sea0947Drift Net (30cm diameter - 63um mesh net)b50mSargasso Sea0411Flow thru (63um mesh sieve)1-3mSargasso Sea0411Flow thru (63um mesh sieve)1-3mSargasso Sea0420Flow thru (63um mesh sieve)1-3m <t< td=""><td>idv-c</td><td></td><td></td><td></td><td>99m - 1%</td><td></td><td></td><td></td></t<>	idv-c				99m - 1%			
Drift Net (30cm diameter - 63um mesh net)b50mSargasso SeaDrift Net (30cm diameter - 63um mesh net)c25mSargasso Sea0333Flow thru (63um mesh sieve)1-3mSargasso Sea0450Flow thru (63um mesh sieve)1-3mSargasso Sea0450Flow thru (63um mesh sieve)1-3mSargasso Sea047Drift Net (30cm diameter - 63um mesh net)a16ht level0947Drift Net (30cm diameter - 63um mesh net)b50mSargasso Sea0947Drift Net (30cm diameter - 63um mesh net)b50mSargasso Sea0111Flow thru (63um mesh sieve)c25mSargasso Sea0411Flow thru (63um mesh net)b50mSargasso Sea0420Flow thru (63um mesh sieve)1-3mSargasso Sea0522Drift Net (30cm diameter - 63um mesh net)c25m0522Drift Net (30cm diameter - 63um mesh net)c25m0522Drift Net (30cm diameter - 63um mesh net)c25m0523Drift Net (30cm diameter - 63um mesh net)c25m	U Anr			а	light level	Sargasso Sea	78.0%	22.0%
Drift Net (30cm diameter - 63um mesh net)c25mSargasso Sea0333Flow thru (63um mesh sieve)1-3mSargasso Sea0600Flow thru (63um mesh sieve)1-3mSargasso Sea0450Flow thru (63um mesh sieve)1-3mSargasso Sea047Drift Net (30cm diameter - 63um mesh net)a11-3mSargasso Sea0947Drift Net (30cm diameter - 63um mesh net)b50mSargasso Sea0941Drift Net (30cm diameter - 63um mesh net)b50mSargasso Sea0411Flow thru (63um mesh sieve)b50mSargasso Sea0420Flow thru (63um mesh sieve)1-3mSargasso Sea0952Drift Net (30cm diameter - 63um mesh net)c25m0952 <td>idA-e</td> <td></td> <td></td> <td>þ</td> <td>50m</td> <td>Sargasso Sea</td> <td>47.0%</td> <td>53.0%</td>	idA-e			þ	50m	Sargasso Sea	47.0%	53.0%
0333Flow thru (63um mesh sieve)1-3mSargasso Sea0600Flow thru (63um mesh sieve)1-3mSargasso Sea0450Flow thru (63um mesh sieve)1-3mSargasso Sea047Drift Net (30cm diameter - 63um mesh net)b79m - 1%0947Drift Net (30cm diameter - 63um mesh net)b50m011Flow thru (63um mesh sieve)c25m0411Flow thru (63um mesh sieve)1-3mSargasso Sea0411Flow thru (63um mesh sieve)1-3mSargasso Sea0420Flow thru (63um mesh sieve)1-3mSargasso Sea0952Drift Net (30cm diameter - 63um mesh net)c25mDrift Net			Drift Net (30cm diameter - 63um mesh net)	U	25m	Sargasso Sea	29.0%	71.0%
0.000Flow thru (63um mesh sieve)1-3mSargasso Sea0.450Flow thru (63um mesh sieve)1-3mSargasso Sea0.947Drift Net (30cm diameter - 63um mesh net)b79m - 1%0.947Drift Net (30cm diameter - 63um mesh net)b50mSargasso Sea0.911Flow thru (63um mesh sieve)b50mSargasso Sea0.411Flow thru (63um mesh sieve)1-3mSargasso Sea0.411Flow thru (63um mesh sieve)1-3mSargasso Sea0.420Flow thru (63um mesh sieve)0,02,00.420Flow thru (63um mesh sieve)0,01-3m0.420Flow thru (63um mesh sieve)0,00,00.420Flow thru (63um mesh sieve)0,00,00.420Flow thru (63um mesh sieve)0,00,00.421Flow thru (63um mesh sieve)0,00,00.422Drift Net (30cm diameter - 63um mesh net)0,00.423Drift Net (30cm diameter - 63um mesh net)0,00.424Sargasso Sea0,00.425Drift Net (30cm diameter - 63um mesh net) </td <td></td> <td></td> <td>Flow thru (63um mesh sieve)</td> <td></td> <td>1-3m</td> <td>Sargasso Sea</td> <td>38.0%</td> <td>62.0%</td>			Flow thru (63um mesh sieve)		1-3m	Sargasso Sea	38.0%	62.0%
0450Flow thru (63um mesh sieve)1-3mSargasso Sea0947Drift Net (30cm diameter - 63um mesh net)alight levelSargasso Sea0947Drift Net (30cm diameter - 63um mesh net)b50mSargasso Sea011Flow thru (63um mesh sieve)b50mSargasso Sea0411Flow thru (63um mesh sieve)c25mSargasso Sea0411Flow thru (63um mesh sieve)1-3mSargasso Sea0420Flow thru (63um mesh sieve)1-3mSargasso Sea0421Flow thru (63um mesh net)c25m1%0952Drift Net (30cm diameter - 63um mesh net)b50mSargasso Sea0952Drift Net (30cm diameter - 63um mesh net)c25mSargasso Sea0952Drift Net (30cm diameter - 63um mesh net)c25mSargasso Sea0952Drift Net (30cm diameter - 63um mesh net	1 Anr				1-3m	Sargasso Sea	60.0%	40.0%
79m - 1%0947Drift Net (30cm diameter - 63um mesh net)alight levelSargasso SeaDrift Net (30cm diameter - 63um mesh net)b50mSargasso SeaDrift Net (30cm diameter - 63um mesh net)b50mSargasso Sea0411Flow thru (63um mesh sieve)1-3mSargasso Sea0420Flow thru (63um mesh sieve)1-3mSargasso Sea0421Flow thru (63um mesh sieve)1-3mSargasso Sea0422Drift Net (30cm diameter - 63um mesh net)alight level0952Drift Net (30cm diameter - 63um mesh net)b50mSargasso Sea0952Drift Net (30cm diameter - 63um mesh net)c25mSargasso SeaDrift Net (30cm diameter - 63um mesh net)c25mSargasso Sea	2-Anr				1-3m	Sargasso Sea		
0947Drift Net (30cm diameter - 63um mesh net)alight levelSargasso SeaDrift Net (30cm diameter - 63um mesh net)b50mSargasso SeaDrift Net (30cm diameter - 63um mesh net)b50mSargasso Sea0411Flow thru (63um mesh sieve)1-3mSargasso Sea0420Flow thru (63um mesh sieve)1-3mSargasso Sea0420Flow thru (63um mesh sieve)1-3mSargasso Sea0408Flow thru (63um mesh sieve)1-3mSargasso Sea0410Flow thru (63um mesh sieve)1-3mSargasso Sea0420Flow thru (63um mesh sieve)0,00,00408Flow thru (63um mesh sieve)1-3mSargasso Sea0952Drift Net (30cm diameter - 63um mesh net)a1ght level0952Drift Net (30cm diameter - 63um mesh net)b50mSargasso SeaDrift Net (30cm diameter - 63um mesh net)c25mSargasso SeaDrift Net (30cm diameter - 63um mesh net)c25mSargasso Sea					79m - 1%			
Drift Net (30cm diameter - 63um mesh net)b50mSargasso SeaDrift Net (30cm diameter - 63um mesh net)c25mSargasso Sea0411Flow thru (63um mesh sieve)1-3mSargasso Sea0420Flow thru (63um mesh sieve)1-3mSargasso Sea0408Flow thru (63um mesh sieve)1-3mSargasso Sea0408Flow thru (63um mesh sieve)92m - 1%92m - 1%0952Drift Net (30cm diameter - 63um mesh net)alight levelSargasso SeaDrift Net (30cm diameter - 63um mesh net)b50mSargasso SeaDrift Net (30cm diameter - 63um mesh net)c25mSargasso SeaDrift Net (30cm diameter - 63um mesh net)c25mSargasso Sea	12-Anr		Drift Net (30cm diameter - 63um mesh net)	а	light level	Sargasso Sea	30.0%	70.0%
Drift Net (30cm diameter - 63um mesh net)c25mSargasso Sea0411Flow thru (63um mesh sieve)1-3mSargasso Sea0420Flow thru (63um mesh sieve)1-3mSargasso Sea0408Flow thru (63um mesh sieve)1-3mSargasso Sea0408Flow thru (63um mesh sieve)92m - 1%92m - 1%0952Drift Net (30cm diameter - 63um mesh net)alight levelSargasso Sea0951Drift Net (30cm diameter - 63um mesh net)b50mSargasso Sea0951Drift Net (30cm diameter - 63um mesh net)b50mSargasso Sea	nder e r		Drift Net (30cm diameter - 63um mesh net)	p	50m	Sargasso Sea	59.0%	41.0%
0411Flow thru (63um mesh sieve)1-3mSargasso Sea0420Flow thru (63um mesh sieve)1-3mSargasso Sea0408Flow thru (63um mesh sieve)92m - 1%92m - 1%0952Drift Net (30cm diameter - 63um mesh net)alight levelSargasso SeaDrift Net (30cm diameter - 63um mesh net)b50mSargasso SeaDrift Net (30cm diameter - 63um mesh net)c25mSargasso Sea			Drift Net (30cm diameter - 63um mesh net)	J	25m	Sargasso Sea	56.0%	44.0%
0420Flow thru (63um mesh sieve)1-3mSargasso Sea0428Flow thru (63um mesh sieve)1-3mSargasso Sea0408Flow thru (63um mesh sieve)92m - 1%92m - 1%0952Drift Net (30cm diameter - 63um mesh net)b50mSargasso SeaDrift Net (30cm diameter - 63um mesh net)b50mSargasso SeaDrift Net (30cm diameter - 63um mesh net)c25mSargasso Sea	12 1.00		Elow then (63m mech sieve)		1-3m	Sargasso Sea	60.0%	40.0%
0408Flow thru (63um mesh sieve)1-3mSargasso Sea0408Flow thru (63um mesh sieve)92m - 1%92m - 1%0952Drift Net (30cm diameter - 63um mesh net)alight levelSargasso SeaDrift Net (30cm diameter - 63um mesh net)b50mSargasso SeaDrift Net (30cm diameter - 63um mesh net)c25mSargasso Sea	144-61				1-3m	Sargasso Sea	56.0%	44.0%
0952Drift Net (30cm diameter - 63um mesh net)92m - 1%0952Drift Net (30cm diameter - 63um mesh net)alight levelSargasso SeaDrift Net (30cm diameter - 63um mesh net)b50mSargasso SeaDrift Net (30cm diameter - 63um mesh net)c25mSargasso Sea	10 V 1				1-3m	Sargasso Sea	42.0%	58.0%
0952Drift Net (30cm diameter - 63um mesh net)alight levelSargasso SeaDrift Net (30cm diameter - 63um mesh net)b50mSargasso SeaDrift Net (30cm diameter - 63um mesh net)c25mSargasso Sea	19-Api				92m - 1%)		
Drift Net (30cm diameter - 63um mesh net) b 50m Sargasso Sea Drift Net (30cm diameter - 63um mesh net) c 25m Sargasso Sea	1 9- A nr		Drift Net (30cm	а	light level	Sargasso Sea	65.0%	35.0%
diameter - 63um mesh net) c 25m			Drift Net (30cm	p	50m	Sargasso Sea	53.0%	47.0%
				ပ	25m	Sargasso Sea		

Table 10. Phytoplankton Net station data for C240.

.

Dinoflagellates (%)	50.0%	47.0%	74.0%		45.0%	22.0%	24.0%		74.0%	
Diatoms (%)	50.0%	53.0%	26.0%		55.0%	78.0%	76.0%		26.0%	
Locale	Sargasso Sea	Sargasso Sea	Sargasso Sea		Sargasso Sea	Sargasso Sea	Sargasso Sea	Sargasso Sea	Sargasso Sea	
Tow Depth (m)	1-3m	l-3m	1-3m	78m - 1%	light level	50m	25m	1-3m	1-3m	
Net # (a, b, c)					а	p	U			
Time Collection Method (Flow-Thru or Drift Net) cal +4 GMT)	0307 Flow thru (63um mesh sieve)	Flow thru (63um mesh sieve)	0306 Flow thru (63um mesh sieve)		1000 Drift Net (30cm diameter - 63um mesh net)	Drift Net (30cm diameter - 63um mesh net)	Drift Net (30cm diameter - 63um mesh net)	Flow thru (63um mesh sieve)	Flow thru (63um mesh sieve)	
Date Time (2012) (local +4 GMT)	0307	0436	0306		1000			0316	0450	
Date (2012)	20-Apr	22-Apr	23-Apr		062 23-Apr			24-Apr	25-Apr	
Station Date # (2012) (C240-)	049	057	061		062			064	067	

sink for 30° during station. Phytoplankton samples were preserved in dilute Lugols solution prior to microscope identification. Drift Flow-thru phytoplankton samples were collected using the seawater intake (~1-3m) and collected on a 63 µm sieve resting in the lab net samples were collected using a standard phytoplankton net attached to the hydrographic wire with a wire clamp and deployed to zooplankton from the sample and remaining contents collected on the same 63um sieve used for flow-thru samples. Phytoplankton each target depth and allowed to drift while hove-to for 30'. Net contents were sieved through a 335 µm sieve to separate larger samples were then preserved in dilute Lugols solution prior to microscope identification. Table 11. Qualitative description of sediment samples from C240.

	Comments	Sieved through 1000 micron sieve for pteropod shell project	lst two shipeks (A&B) yielded no sediment, third (C) did.	Off Montserrat	First attempt unsuccessful, second attempt small amount of sediment			
	Organics	No	No	No	No	Red coral present, algae; 1 crab larvae	No, but smells burnt	calcareous red algae (Hallimeda discordea), 1 brittle star
	Sediment Shape	Mostly angular	curvy, pointy	Angular	Angular	well rounded	angular	angular
	General size	Mixed- silty, granular, and pebbly	Small, pebbly	Sandy	sandy, silty	12 large coral/rock rubble with sandy; largest chunk 6x4x7 cm to smallest 1x1x0.5 cm	Sandy, silty, some rocky pebbles	Sandy
	Color Description	N5/Medium Gray	10YR/Pale Yellowish; 6/2 Brown	10YR 8/2 Very Pale Orange	5YR 6/4 Light Brown	10YR 8/2 Very Pale Orange	5Y 4/1, Olive Grey	5Y 6/4, Dusky Yellow
	Sample Depth (m)	20	155	789	788	57	606	72
	Location	Florida Shelf	Florida Shelf	Blake	Blake Plateau	Plantagenet Bank	Eastern Caribbean Sea	Saba Bank
	Time (local +4 GMT)	1101	0936	0956	1051	0939	0818	0812
ſ	Date (2012)	01-Apr	02-Apr	04-Apr	04-Apr	14-Apr	05-May	06-May
	Station # (C240-)	001	004	011	011	043	077	079

Calculated (% (m)	66	93	66	79	94	78	79
1.0	37	35	37	30	35	29	30
Secchi Depth (m)	3	4	3	e S	3	4	0
Wind Sp (BF)							
Wave Ht (ft)	1.0	3.0	2.0	4.0	5.0	6.5	0.5
Cloud Cover (%)	%0	20%	10%	20%	20%	95%	100%
Xmiss (volts)	3704	3404	3713	3782	3793	3802	2197
CDOM (volts)	89	87	85	85	84	79	83
Chl-a Fluor (volts)	881	1095	1315	1017	732	852	2078
Water Depth (m)	727	66L	4137				
Time (local +4 GMT)	0922		1000		0932		
# Date (2012)	03-Apr	05-Apr	09-Apr	12-Apr	19-Apr	23-Apr	06-May
Station # (C240-)	007	014	027	038	047	062	620

Table 12. Secchi disc station data for C240.

Table 13. Student research topics for C240.

Title	Author(s)
Analysis Of Sargassum Abundance And Macrofauna Distribution In The North Atlantic Gyre And Gulf Stream	Max Abrahamson
Effect Of Spiny Lobster Fishing Efforts Reflected Through Larval Populations	Katie Carria
Adaptations Of Marine Organisms	Crystal Hartley
The Distribution Of Plastic And Plankton In The Water Column Compared With Myctophid Gut Content	Brian Crowley and Kayla Lubold
Physical And Physiological Factors That Affect Diel Vertical Migration In Copepods In The Sargasso Sea And Zooplankton Diversity	Patrick Mears
Investigation Of Plastic Transporting Escherichia coli In The Western North Atlantic Ocean	William Melvin
The Role Of Sargassum fluitans And S. natans In The Ontogeny Of Anguillid Leptocephali In The Sargasso Sea	Victoria Pinheiro
The Effect Of Lunar Phase And Cloud Cover On Diel Vertical Migration Of Myctophids In The North Atlantic	Dawn Rivera
Effects Of Ocean Acidification On Pteropod Shell Strength	James Rohman and Terese Mayerle
The Distribution And Speciation Of Early-Stage Fish In The Sargasso Sea And Adjacent Waters	Matthew Scheuer
Geographic And Vertical Distribution Of Diatom And Dinoflagellate Phytoplankton Based On Light And Nutrient Levels In The Gulf Stream, Blake Plateau, And Sargasso Sea	Peter Wu
The Spatial and Temporal Distributions of Plastics in the Sargasso Sea and Surrounding Regions	Anna Yoors