CENTRE FOR ENVIRONMENT, FISHERIES AND AQUACULTURE SCIENCE LOWESTOFT LABORATORY, LOWESTOFT, SUFFOLK NR33 0HT

2009 RESEARCH VESSEL PROGRAMME Report

PROGRAMME: RV CEFAS ENDEAVOUR: 05/09

STAFF:

Sven Kupschus Dave Sivyer Sarah Walmsley Ian Holmes Ruth Parker / Tom Hull Dave Pearce Paul Whomersley / Suzanne Ware Nigel Lyman **Bill Mulligan** Jeroen van der Kooij **Rob Bush** Peter Randall Joana Silva **Richard Humphreys** James Pettigrew Tom McGowan / Katy Owen Andrew Griffith Elke Neubacher

Marine Mammal and Seabird Observer: Ray Eades French Observer: Jerome Quinquis

DURATION: 16 March – 4 April.

LOCATION: Western Channel (ICES area VIIE)

AIMS:

1. To carry out a multidisciplinary survey of the Western Channel waters for the purposes of stock assessment monitoring, examining the effectiveness / capabilities of multidisciplinary monitoring on Endeavour, the stratified random survey design and collecting ecosystem level information.

RESULTS: Figure 1 & 2 shows the distribution of samples collected by gear type. Associated station numbers are shown in Figure 3. Other gears were sampled in the same location where it was possible to deploy according to environmental and habitat conditions. The number of stations sampled by each gear and their validity is shown in Table 1. a) to carry out a beam trawl sampling survey of the Western Channel for stock assessment purposes using standardized 4m beam trawls in order to obtain information on:

- Distribution, size composition and abundance of all fish species caught.
- Age length distribution of selected species.
- Distribution of fish in relation to their environment.
- Distribution of macrobenthos and anthropogenic debris.
- Length weight & maturity information using individual fish measurements, in support of the EU Data Regulation.
- To collect fisheries acoustic data at two operating frequencies (38 kHz, 120 kHz, 200 kHz) continuously throughout the cruise.

RESULTS:

The aim was completed successfully with all fish measured and benthos counted and ID'ed to the lowest taxonomic group possible at sea. Additional samples were returned to the lab for further identification.

At total of over 21000 fish and invertebrates of commercial importance were sampled during the cruise. A list of numbers and caught and measured is shown in Table 2. With length frequency distributions for the most important commercial species collected displayed in Figures 4. Species distribution maps for the same species are shown in Figure 5-10.

Other invertebrates were enumerated in keeping with current protocols. The catches in weight (including those species measured) are listed in Table 3.

Biological samples were collected for commercially important species. The number of samples taken for age and maturity is shown by sex in Table 4, and includes samples for Gurnards and John Dory in line with new EU data regulations.

Multibeam data was collected on all but one of the fishing stations where the deployment of the drop keel was not possible due to shallow depths. This data has been processed for all stations along with the fisheries acoustic data. Data for the whole cruise track has been collected and will be stored on Cefas servers awaiting funding for processing.

Species composition data as in previous years showed similar classification by area in previous years, although the species determining the classifications appear to have changed relative composition (Figure 11).

b) habitat discrimination will be carried out continuously during the cruise using the EK600 system (QTC-analysis) and the multibeam system. Station data will be correlated to catches and video footage from the Bowtech Explorer Extreme mounted on the beam. In addition on 10 stations the drop camera will be deployed to collect video footage to the MESH standard.

RESULTS:

QTC data has been collected, but requires completion of the cruise to fully analyse the data. As one of the members of the acoustics team had to return to Lowestoft prematurely it was not possible to complete this task on board. All 10 JNCC camera tows were completed on the agreed stations, with one station moved from primary to secondary target to accommodate JNCC requirements (Positions are shown in Figure 1. On beam camera work had to be abandoned after 5 stations as the camera mounting suffered severe damage during a collision under water. The camera was retrieved safely requiring minor repair.

c) sediment and benthos at a station. Five sediment samples will be collected along the trawl transect preferably using the NIOS corer, but at those sites where this is not possible due to the sediment type the mini-hamon grab will be deployed. These samples will be used for collecting the following data.

The benthic macro infauna (5mm sieve) Sediment Oxygen Profile (NIOZ) Pore water exchange (NIOZ)

At the first NIOZ site or the last Hamon site Benthic infauna (1mm sieve), secondary aim Sediment particle size analysis Bulk Chlorophyll Bulk Nutrients Meiofaunal sample / core (NIOZ) secondary aim

RESULTS:

One hundred and thirty nine sediment samples were collected in triplicate at each station where NIOZ deployment was possible. Collecting five replicates was abandoned early on in the cruise as time constraints and sorting of samples on board was found to be impractical given the size of samples and the lack of small-scale spatial variability. The vast majority of samples were collected in the UK sector where habitats were suitable for coring. In areas where this was not possible, mostly deployment of the Hammond grab would also not have yielded useful samples, video footage was collected using the SPI camera video facility.

d) Sediment redox. Five SPI camera dips with 5 replicates at each dip. This data will be linked to the sediment and benthic samples so should occur at an equivalent site to those samples

RESULTS:

One hundred and sixty five valid SPI camera deployments were made, although on a number of stations the flash was working only intermittently, and on other stations penetration was poor due to hard substrates.

e) Water column sampling. Water column profile and water samples will be collected at each station, providing profile information for chlorophyll, oxygen salinity temperature, nutrient samples and the relevant QAQC samples for calibration of the equipment. Water samples will be collected and fixed on board for analysis post-hoc. The sonde will also provide a sound velocity profile for calibrating / QAQC of the acoustic information.

RESULTS:

Seventy-one CTD dips were completed yielding temperature, chlorophyll a (chl), suspended load, PAR, and salinity profiles as well as surface and bottom samples for oxygen and nutrient analysis. Oxygen and Chl samples were all processed on board awaiting data entry and QAQC processing back at the lab. Additional salinity samples for quality control were collected for processing later.

f) Collect water samples for tritium and caesium contamination (22 litres) at eleven stations at graduated distances around the nuclear dumping grounds at the western end of the Hurd Deep. These will be mostly collected in transit near the requested sites, though the station at the actual dumping ground will be sampled with greater precision.

RESULTS:

Eleven samples were collected mostly on the requested stations although one had to be changed due to a change in plans. Provisions have been made to collect an additional sample on the return journey to Lowestoft closer to the requested station.

g) Seabird and Marine Mammal. Locations, species and numbers observed will be recorded as encountered by SIC and crew as per the usual fisheries division protocol. In addition, a berth and space on the bridge will be made available to the JNCC or one of its consultants to collect information on seabirds and marine mammals between stations in accordance with the relevant standard practices for this kind of observation (e.g. ESAS).

RESULTS:

The JNCC observer was accommodated on the first half of the cruise. Unfortunately due to the requirements of daylight and speed greater than 4 knots, in conjunction with the long periods on station and the effect of fishing operations on sea birds, the time of effective sampling was extremely limited.

h) Collect ray and smooth hound fin clips for genetic analysis by external cefas partners.

RESULTS:

Ninety starry smooth hound and 43 ray samples of various species were collected.

i) collect samples of commercial fish species for ministerial fish ID course

Samples of species collected and frozen

GENERAL CONCLUSIONS:

The multidisciplinary aspect of the cruise represented some serious challenges in terms of logistics and manpower. This cruise demonstrated that it is clearly possible to collect the data necessary to address ecosystem level questions on board. Scientific staff from all divisions worked together extremely well in making this project a success. Special thanks go to the shift deck masters and the second SIC for making this project a success. Despite unexpected staff changes and the constraints of time series protection and partnership requirements.

NARRATIVE:

Provisionally RV CEFAS Endeavour was due to sail from Portland on the 16th of March, but due to the working time directive (on the ships side) it was not possible to start sampling out of Portland. Instead we sailed west to the first station south of Land's End. The first station was completed with all scientific staff on deck to ensure consistency through out the survey. Completion of the station lasted 13 hours in part due to glitches in the gear associated with the set up. This included the first of the JNCC camera tows. Nevertheless some changes needed to be made to the sampling protocol. The number of SPI deployments and cores was reduced to three a station as habitat on a station was found to be much less variable than anticipated. Sampling of infauna could not be carried out effectively at sea so samples were stored instead. As staff familiarised themselves with the sampling over the next couple of days times on station were reduced to under 4 hours. However this left little time for the JNCC observer to collect information since the protocol required speeds of greater than 4 knots.

During the following 3 days we worked our way around the western part of the grid catching considerable numbers of monk and megrim with some very good catches of sole inshore around the area of Mounts Bay in very fine weather. Coring and SPI work indicated course shell and sandy habitats with little indication of an anoxic layer on all but the most inshore stations, uniformly distributed over the tows. The light sensitive camera mounted on the beam to observe habitats was severely damaged by an impact. The camera itself could be repaired, but the mounting was beyond fixing, so will require further development if this type of work is found to be of value.

Heading back out into the middle of the Channel sampling in Stratum 13 continued with the completion of 3 JNCC camera tows at requested stations. One of the primary stations had to be exchanged for a secondary station due to the camera requirements. Good numbers of monk fish and persistent catches of sole were observed on these tows with benthic work continuing along the same vein. The weather was about to turn so we headed back inshore to Falmouth Bay where coring started to produce more variable habitat distributions, though still largely consistent within stations. Moving to the east of the bay we started to see increasing number of plaice and sole in worsening weather, completing a JNCC camera tow off Start Point. At this time two of the scientific staff got news that they would have to return to shore unexpectedly so plans had to be made to replace their expertise and facilitate their evacuation.

Heading around the Start sampling times had been reduced to close to three hours per station putting us ahead of schedule so changes were made to the plan to pick up a couple of stations further off shore in worsening weather including one JNCC camera tow. Although less than ideal, future weather was predicted to be worse. In the afternoon of the 26th March we held station off Brixham to exchange six scientists (four planned, 2 due to emergencies back home) and equipment. Because sampling of in-fauna at sea had been abandoned further equipment had been requested prior to exchange staff departure from Lowestoft. This caused concern to ships staff because of the weight of the cargo and the nature of the material. Having eventually completed the exchange we continued north into Lyme Bay dropping all together 3 stations from

the full sampling program around the densest station distribution (reduced to CTD and beam trawling) due to time constraints and worsening weather. We continued to pick up some sole, but fewer than expected for the area and plaice abundances seemed higher than in the past. Few fishing boats had been observed on the trip prior to sampling the Start area. Here a number of beamers were observed, but fishing activity in the area seemed low given the weather and time of year.

Heading back offshore the weather continued to worsen and it was to the credit of the ships deck crew that we were able to continue sampling with the heavy coring gear and JNCC camera work. As we hit mid Channel all but beam work had to be abandoned for health and safety considerations and even that limit was exceeded for a time. The stations included two that we hoped to sample for the JNCC. The decision was made to leave the last two JNCC tows to possibly pick these up on the return leg to Falmouth instead of waiting for better weather.

Moving into the French sector it soon became clear then infaunal sampling and SPI work was going to be difficult because of the very hard nature of the habitat. The wide variety of epifauna continued to be sampled by the beam trawl with additional camera deployments completed using the video facility attached to the SPI. This with a view to developing a better protocol for sampling these rocky habitats in now improving weather conditions. Relatively few fish were encountered in the western part (Stratum 12). As we headed east we continued to see good number of monk fish, which had not been observed in such densities in this area previously, including a good number of white bellied angler fish. Sole numbers on the other hand were low, and a tow just off a known spawning ground around the Langoustine Bank yielded very poor catches. The ground turned from a hard cobble substrate to bedrock, which produced very different catches of epibenthos and fish. Camera work qualitatively confirmed the change in habitat.

Moving into the most easterly stratum sampling became very difficult due to a large amount of static gear and very hard ground at most stations. Four cores were completed in the most southerly stations in stratum 11 where grounds were somewhat softer. Moving up the coast a number of primary stations had to be dropped and replaced with secondary ones. One of which could not be sampled either so an additional station had to be selected. A substantial number of local trawlers were observed in the area, apparently targeting clams in amongst the rough ground using dredges. Going over rough grounds the beams had held up very well, but our luck ran out off Alderney where during the process of shooting the gear we parted the warp. Roughly 12 hours were spent recovering the gear in very difficult tidal conditions. The large amount of technical equipment and expertise (acoustics and cameras) allowed exact location of the beam and the ships crew did an excellent job recovering the gear by the parted warp using a grapple. Because of the time delay and the state of the tide a further station (in addition to the one we lost the beam on) had to be dropped to make up the time spent on recovery.

The final two stations mid Channel were sampled on the morning of the final day of the survey and the JNCC camera work was completed on the two requested stations which previously been sampled for fish and epifauna only. We came along side in Falmouth on the morning of the 4th of April where scientist departed for Lowestoft.

DISTRIBUTION:

Basic list +

Sven Kupschus Dave Sivyer Sarah Walmsley Ian Holmes Ruth Parker / Tom Hull Dave Pearce Paul Whomersley / Suzanne Ware Nigel Lyman Bill Mulligan Jeroen van der Kooij Rob Bush Peter Randall Joana Silva Richard Humphreys James Pettigrew Tom McGowan / Katy Owen Andrew Griffith

Edmund McMannus EmmaVerling

-2

-2

-1

-3

-1

-3

Figure 1: Deployments by environmental gear types.

Figure 2: Beam trawl sampling stations positions and cruise track.

Figure 3: Station numbers associated with each position samples

Figure 5: Sole distribution

Figure 6:Plaice distribution

Figure 7: Lemon Sole distribution

Figure 8: Monk distributions

Figure 9: Megrim distributions

Figure 10: Species composition by number

Table 1: Number of gear deployments

Gear Starboard	Validity	Numbers
beam	I	2
	V	78
Port beam	I	2
	V	78
CTD	V	71
NIOZ	I	5
	V	140
SPI	I	24
	V	165
Drop Camera	V	10

Table 2: Number measured by species:

SCIENTIFIC	SpTotal	MAFF
Symphodus bailloni		3 BLW
Gobiidae	23	8 POM
SEPIA OFFICINALIS	30	7 CTC
LOLIGO FORBESI		6 NSQ
LOLIGO VULGARIS		1 LLV
ALLOTEUTHIS SUBULATA	6	9 ATS
OMMASTREPHES (TODAROPSIS) EBLANAE	1	2 OME
HOMARUS GAMMARUS		4 LBE
PALINURUS ELEPHAS/PALINURUS-		
	4.0	1 SLO
	10	
	11	
	67	
	E	
	0	1000
	1	
	I	
	3	5 CLIR
		3 UNR
RAJA CLAVATA	Δ	3 THR
CONGER CONGER		3 COE
CLUPEA HARENGUS		3 HER
SPRATTUS (CLUPEA) SPRATTUS	22	9 SPR
SARDINA (CLUPEA) PILCHARDUS		3 PIL
ENGRAULIS ENCRÁSICOLUS		2 ANE
ARGENTINIDAE	1	0 ARG
MAUROLICUS MUELLERI		1 PLS
DIPLECOGASTER BIMACULATA		5 TSC
LOPHIUS PISCATORIUS	26	3 MON

LOPHIUS BUDEGASSA	20 WAF
GADUS MORHUA	3 COD
POLLACHIUS POLLACHIUS	1 POL
MELANOGRAMMUS AEGLEFINUS	58 HAD
ENCHELYOPUS CIMBRIUS	7 FRR
PHYCIS BLENNOIDES	7 GFB
TRISOPTERUS MINUTUS	7448.132 POD
TRISOPTERUS LUSCUS	576 BIB
TRISOPTERUS ESMARKI	2 NOP
MERLANGIUS MERLANGUS	235 WHG
MOLVA MOLVA	5 LIN
GAIDROPSARUS VULGARIS	3 TBR
GADICULUS ARGENTEUS	1 SYP
MICROMESISTIUS POUTASSOU	21 WHB
RANICEPS RANINUS	2 LFB
CILIATA MUSTELA	4 FVR
CILIATA SEPTENTRIONALIS	1 NNR
MERLUCCIUS MERLUCCIUS	72 HKE
ZEUS FABER	75 JOD
CAPROS APER	1016.269 BOF
SYNGNATHUS ACUS	37 GPF
ENTELURUS AEQUOREUS	1 SKP
TRIGLA LUCERNA	112 TUB
EUTRIGLA GURNARDUS	122 GUG
TRIGLOPORUS LASTOVIZA	57 GUS
ASPITRIGLA CUCULUS	486 GUR
TAURULUS BUBALIS	1 SSN
AGONUS CATAPHRACTUS	85 POG
LIPARIS LIPARIS	1 SSL
TRACHURUS TRACHURUS	48 HOM
SPONDYLIOSOMA CANTHARUS	187 BKS
MULLUS SURMULETUS	137 MUR
CEPOLA RUBESCENS	1 RPF
DICENTRARCHUS (MORONE) LABRAX	4 ESB
CTENOLABRUS RUPESTRIS	48 GDY
LABRUS BERGYLTA	2 BNW
LABRUS MIXTUS	46 CUW
TRACHINUS (ECHIICHTHYS) VIPERA	42 WEL
TRACHINUS DRACO	1 WEG
BLENNIUS OCELLARIS	43 BBY
BLENNIUS(PARABLENNIUS)GATTORUGINE	4 TBY
PHOLIS GUNNELLUS	2 BTF
AMMODYTESTOBIANUS	3 TSE
HYPEROPLUS LANCEEOLATUS	5 GSE
	1816 CDT
	229 SDT
	19 BLG
	3 GSV
	139 FSG
BUENIA JEFFREYSII	6 JYG

SCOMBER SCOMBRUS	15 MAC
SCOPHTHALMUS MAXIMUS	1 TUR
SCOPHTHALMUS RHOMBUS	11 BLL
ARNOGLOSSUS LATERNA	1012 SDF
ARNOGLOSSUS IMPERIALIS	231 ISF
ZEUGOPTERUS PUNCTATUS	86 TKT
PHRYNORHOMBUS NORVEGIUS	109 NKT
PHRYNORHOMBUS REGIUS	3 EKT
LEPIDORHOMBUS WHIFFIAGONIS	162 MEG
GLYPTOCEPHALUS CYNOGLOSSUS	6 WIT
HIPPOGLOSSOIDES PLATESSOIDES	12 PLA
LIMANDA LIMANDA	91 DAB
MICROSTOMUS KITT	202 LEM
PLATICHTHYS FLESUS	4 FLE
PLEURONECTES PLATESSA	495 PLE
SOLEA SOLEA (S.VULGARIS)	195 SOL
PEGUSA (SOLEA) LASCARIS	14 SOS
BUGLOSSIDIUM LUTEUM	1646.215 SOT
MICROCHIRUS VARIEGATUS	1448.495 TBS

Table 3: Catches in kg by species:

	SampledCatc	TotalCatc
SCIENTIFIC	h	h MAFF
ASSORTED ROCKS	4869.55	4869.55 ROK
EPIBENTHIC MIXTURE	2645.33	2645.33 BEN
CHLOROPHYCEAE	0.01	0.01 CHZ
ULVA LACTUCA	0.028	0.028 ULL
ALPHEUS GLABER	0.193	0.193 ALP
BOTRYLLUS SCHLOSSERI	0.884	0.884 BIS
Symphodus bailloni	1.535	1.535 BLW
CELLARIA SPP	0.045	0.045 CEL
CHAETOPTERUS TUBES	28.942	28.942 CVT
Eunicella verrucosa	0.174	0.174 EUV
HALICLONA OCULATA	7.891	7.891 HAO
Meiosquilla desmaresti	0.05	0.05 MED
NATICA EGGS	0.172	0.172 NAE
NEMERTESIA SPP	37.336	37.336 NEM
PHALLUSIA MAMMILLATA	65.988	65.988 PAM
PENTAPORA SPP	7.562	7.562 PET
PISIDIA LONGGICORNIS	0.194	0.194 PIS
Gobiidae	0.304	0.304 POM
RAJA EGG CASES	0.03	0.03 RES
STYELA CLAVA	3.602	3.602 SAA
SQUID EGGS	1.165	1.165 SQS
SUBERITES SPP	1.219	1.219 SUB
LAMINARIA SPP	9.243	9.243 LMX
FUCUS SPP	0.456	0.456 FUX
FUCUS VESICULOSUS	422.007	422.007 WRB
FUCUS SPIRALIS	0.02	0.02 WRE

FUCUS SERRATUS	0.207	0.207 WRS
RHODOPHYCEAE	0.638	0.638 SWR
PORIFERA	58.473	58.473 PFZ
SUBERITES DOMUNCULA	0.872	0.872 SUD
TETHYA AURANTIA	1.79	1.79 TAA
HYDROIDA (order)	10.363	10.363 HYD
ALCYONIUM DIGITATUM	141.524	141.524 DMF
VIRGULARIA MIRABILIS	0.001	0.001 VAM
TEALIA FELINA	1.945	1.945 DHA
BOLOCERA TUEDIAE	5.51	5.51 BCT
ADAMSIA PALLIATA	0.144	0.144 AMP
METRIDIUM SENILE	7.576	7.576 PMA
CARYOPHYLLIA SMITHI	0.003	0.003 DCC
LOPHELIA PERTUSA	0.005	0.005 LPP
APHRODITE ACULEATA	19.662	19.662 AAC
NEREIS SPP	0.023	0.023 NEX
HYALINOECIA TUBICOLA	1.51	1.51 HYT
SABELLARIA	0.075	0.075 RCL
SERPULA VERMICULARIS	0.003	0.003 SAV
PATINA PELLUCIDA (HELIION P)	0.006	0.006 PPA
	0 186	0 186 TUC
	1 678	1 678 ASI
	2 614	2 614 WHE
WHELK EGGS	43.28	43 28 WES
	0.09	0.09 RWK
SCAPHANDER LIGNARIUS	1 794	1 794 SDI
	0 141	0 141 PHP
	0.005	0.005 AYP
NUDIBRANCHIA	0.000	0.045 NBX
ARCHIDORIS PSEUDARGUS	27 969	27 969 ADP
	0 264	0 264 TNH
	0.002	0.002 AIP
	3 752	3 752 PLX
	0.762	0.256 GLG
	82 182	82 182 OSC
CHI AMYS VARIA	0.001	0.001 CHV
	59.076	59.076.SCE
	0.001	0.001117
	0.001	0.001 455
	0.011	
ROSSIA MACROSOMA	0.005	0.000 DOL
SEPIOLA ATLANTICA	0.110	0.013.SPA
	0.013	0.013 CT A
SEDIA ELEGANS	0.004	0.004 010
	0.431	171 014 CTC
	0.015	0.015 CEG
	3 65/	3 654 NGO
	0.004	0 35111/
	0.00	
	0.000	
CIVINIAGTICETTES (TODAROFOIS) EDEANAE	0.000	0.000 OIVIE

OCTOPODIDAE	0.8	0.8 OCT
ELEDONE CIRROSA	52.028	52.028 EDC
PYCNOGONUM LITTORALE	0.001	0.001 PGL
LEPADIDAE	0.001	0.001 GOZ
AMPHIPODA	0.001	0.001 AAZ
PALAEMON SERRATUS	0.15	0.15 CPR
PROCESSA CANALICULATA	0.272	0.272 PCC
PANDALUS BOREALIS	0.01	0.01 PRA
PANDALUS MONTAGUI	0.568	0.568 PRM
CRANGON ALLMANNI	0.473	0.473 CGA
PONTOPHILUS SPINOSUS	0.015	0.015 PPS
HOMARUS GAMMARUS	3.99	3.99 LBE
PALINURUS ELEPHAS/PALINURUS-		
VULGARIS	1.79	1.79 SLO
PAGURIDAE	0.055	0.055 PAY
EUPAGURUS / PAGURUS IN SUBERITES	0.504	0.504 HIS
EUPAGURUS / PAGURUS IN BUCCINUM	0.512	0.512 HIW
EUPAGURUS / PAGURUS IN ADAMSIA	31.089	31.089 HIA
ANAPAGURUS IN EPIZOANTHUS	0.002	0.002 HIE
GALATHEA SPP	0.291	0.291 GLX
GALATHEA DISPERSA	0.071	0.071 GLD
GALATHEA STRIGOSA	0.08	0.08 GLT
PORCELLANIDAE	0.268	0.268 PLY
DROMIA PERSONATA	1.105	1.105 DRP
HYAS COARCTATUSS	0.606	0.606 HYC
HYAS ARANEUS	0.64	0.64 HYA
EURYNOME SPINOSA	0.001	0.001 EUS
INACHUS DORSETTENSIS	173.232	173.232 IND
MACROPODIA ROSTRATA	0.041	0.041 MCR
MACROPODIA TENUIROSTRIS	38.569	38.569 MCT
PISA ARMATA	0.278	0.278 PAA
MAIA SQUINADO	173.975	173.975 SCR
CORYSTES CASSIVELAUNUS	0.356	0.356 CCV
ATELYCYCLUS ROTUNDATUS	1.552	1.552 ALR
CANCER PAGURUS	63.664	63.664 CRE
MACROPIPUS (LIOCARCINUS) DEPURATOR	38.835	38.835 LMD
MACROPIPUS (LIOCARCINUS) HOLSATUS	6.608	6.608 LMH
MACROPIPUS (LIOCARCINUS) PUSILLUS	0.171	0.171 LPU
MACROPIPUS TUBERCULATUS	0.028	0.028 MPT
MACROPIPUS (LIOCARCINUS) PUBER	20.285	20.285 MLP
MACROPIPUS (LIOCARCINUS) MARMOREUS	0.298	0.298 LMM
XANTHO PILIPES	0.115	0.115 XAP
GONEPLAX RHOMBOIDES	0.005	0.005 GOR
GOLFINGIIDAE	0.105	0.105 GFX
ALCYONIDIIDAE	0.01	0.01 ALX
ALCYONIDIUM GELATINOSUM	8.644	8.644 ALG
FLUSTRIDAE	0.024	0.024 FAX
FLUSTRA FOLIACEA	271.733	271.733 FAF
LUIDIA SARSI	10.269	10.269 LUS
LUIDIA CILIARIS	39.771	39.771 LDC

ASTROPECTEN IRREGULARIS	7.386	7.386 API
CROSSASTER PAPPOSUS	9.38	9.38 CTP
ANSEROPODA PLACENTA	67.54	67.54 PLM
PORANIOMORPHA HISPIDA	1.76	1.76 PMH
PORANIA PULVILLUS	3.486	3.486 PPV
HENRICIA OCULATA	2.79	2.79 HEO
ASTERIAS RUBENS	184.327	184.327 STH
MARTHASTERIAS GLACIALIS	414.063	414.063 MAG
STICHASTRELLA ROSEA	0.37	0.37 SLR
OPHIUROIDEA	0.011	0.011 BSY
OPHIURIDAE	0.017	0.017 BTZ
OPHIURA ALBIDA	0.011	0.011 OHA
OPHIURA TEXTURATA	2.022	2.022 OHT
OPHIOCOMINA NIGRA	0.639	0.639 OPN
OPHIOTHRIX FRAGILIS	129.965	129.965 OPF
ECHINUS ACUTUS	5.643	5.643 URA
ECHINUS ESCULENTUS	112.809	112.809 URS
PSAMECHINUS MILIARIS	4,159	4.159 PMM
SPATANGIDAE	0.392	0.392 STY
SPATANGUS PURPUREUS	17 055	17 055 SPG
	1 02	1 02 FCC
HOLOTHUROIDEA	0.035	0.035 HTZ
THYONE FUSUS	0.03	0.03 THH
ANTEDON BIFIDA	0 101	0 101 ADB
ASCIDIACEA	37 259	37 259 SSX
	2 901	2 901 PC7
	0 439	0 439 CNI
	3 405	3 405 DIV
	1 378	1 378 ASV
	0.004	0.004 ASM
	0.372	0.372 ASV
	1 107	1 107 ASS
DENDRODA GROSSIII ARIA	11 042	11 042 DDG
	105 563	105 563 ATH
	163 947	163 947 BSK
	0 409	0 409 DEG
	378 541	378 541 LSD
SCYLIORHINUS STELLARIS	0.58	0.58 DGN
	130.078	130 078 SDS
	0.076	0.076 DGS
	8 255	8 255 MEP
	13 804	13 804 BLP
	0.232	0 232 SDP
	9.232	9.232 SDR
	0.035	0.000 SKT
	29.002	29.332 CUR
	10.007 04 076	
	24.270 10	
	0.233	
OLUPEA HAKENGUS	0.211	U.ZTTHER

SPRATTUS (CLUPEA) SPRATTUS	3.143	3.143 SPR
SARDINA (CLUPEA) PILCHARDUS	0.231	0.231 PIL
ENGRAULIS ENCRASICOLUS	0.02	0.02 ANE
ARGENTINIDAE	0.159	0.159 ARG
MAUROLICUS MUELLERI	0.001	0.001 PLS
CARASSIUS CARASSIUS	0.02	0.02 FCC
DIPLECOGASTER BIMACULATA	0.005	0.005 TSC
LOPHIUS PISCATORIUS	282.343	282.343 MON
LOPHIUS BUDEGASSA	9.983	9.983 WAF
CERATIAS HOLBOELLI	3.326	3.326 DAH
GADUS MORHUA	9.23	9.23 COD
POLLACHIUS POLLACHIUS	3.795	3.795 POL
MELANOGRAMMUS AEGLEFINUS	18.73	18.73 HAD
ENCHELYOPUS CIMBRIUS	0.021	0.021 FRR
PHYCIS BLENNOIDES	1.74	1.74 GFB
TRISOPTERUS MINUTUS	209.146	239.731 POD
TRISOPTERUS LUSCUS	213.959	226.299 BIB
TRISOPTERUS ESMARKI	0.025	0.025 NOP
MERLANGIUS MERLANGUS	47.508	47.508 WHG
MOLVA MOLVA	27.195	27.195 LIN
GAIDROPSARUS VULGARIS	2.165	2.165 TBR
GADICULUS ARGENTEUS	0.01	0.01 SYP
MICROMESISTIUS POUTASSOU	2.863	2.863 WHB
RANICEPS RANINUS	0.265	0.265 LFB
CILIATA MUSTELA	0.043	0.043 FVR
CILIATA SEPTENTRIONALIS	0.051	0.051 NNR
MERLUCCIUS MERLUCCIUS	12.21	12.21 HKE
ZEUS FABER	14.25	14.25 JOD
CAPROS APER	16.974	36.069 BOF
SYNGNATHUS ACUS	0.723	0.723 GPF
HIPPOCAMPUS RAMULOSUS	0.005	0.005 SHE
ENTELURUS AEQUOREUS	0.005	0.005 SKP
TRIGLA LUCERNA	30.03	30.03 TUB
EUTRIGLA GURNARDUS	5.888	5.888 GUG
TRIGLOPORUS LASTOVIZA	35.234	35.234 GUS
ASPITRIGLA CUCULUS	68.339	68.339 GUR
TAURULUS BUBALIS	0.002	0.002 SSN
AGONUS CATAPHRACTUS	1.303	1.303 POG
LIPARIS LIPARIS	0.012	0.012 SSL
TRACHURUS TRACHURUS	2.734	2.734 HOM
SPONDYLIOSOMA CANTHARUS	60.368	60.368 BKS
MULLUS SURMULETUS	14.435	14.435 MUR
CEPOLA RUBESCENS	0.075	0.075 RPF
DICENTRARCHUS (MORONE) LABRAX	7.96	7.96 ESB
CTENOLABRUS RUPESTRIS	1.097	1.097 GDY
LABRUS BERGYLTA	6.69	6.69 BNW
LABRUS MIXTUS	7.785	7.785 CUW
TRACHINUS (ECHIICHTHYS) VIPERA	0.983	0.983 WEL
TRACHINUS DRACO	0.295	0.295 WEG
BLENNIUS OCELLARIS	0.731	0.731 BBY

BLENNIUS(PARABLENNIUS)GATTORUGINE	0.16	0.16 TBY
PHOLIS GUNNELLUS	0.015	0.015 BTF
AMMODYTES TOBIANUS	0.118	0.118 TSE
HYPEROPLUS LANCEEOLATUS	0.4	0.4 GSE
CALLIONYMUS LYRA	81.273	81.273 CDT
CALLIONYMUS MACULATUS	1.085	1.085 SDT
GOBIUS NIGER	0.23	0.23 BLG
GOBIUS GASTEVENI	0.02	0.02 GSV
LESUEURIGOBIUS FRIESII	1.568	1.568 FSG
BUENIA JEFFREYSII	0.004	0.004 JYG
SCOMBER SCOMBRUS	0.856	0.856 MAC
SCOPHTHALMUS MAXIMUS	2.02	2.02 TUR
SCOPHTHALMUS RHOMBUS	19.935	19.935 BLL
ARNOGLOSSUS LATERNA	14.267	14.267 SDF
ARNOGLOSSUS IMPERIALIS	10.703	10.703 ISF
ZEUGOPTERUS PUNCTATUS	4.801	4.801 TKT
PHRYNORHOMBUS NORVEGIUS	0.954	0.954 NKT
PHRYNORHOMBUS REGIUS	0.085	0.085 EKT
LEPIDORHOMBUS WHIFFIAGONIS	30.532	30.532 MEG
GLYPTOCEPHALUS CYNOGLOSSUS	0.94	0.94 WIT
HIPPOGLOSSOIDES PLATESSOIDES	0.349	0.349 PLA
LIMANDA LIMANDA	6.913	6.913 DAB
MICROSTOMUS KITT	51.294	51.294 LEM
PLATICHTHYS FLESUS	1.233	1.233 FLE
PLEURONECTES PLATESSA	154.418	154.418 PLE
SOLEA SOLEA (S.VULGARIS)	79.586	79.586 SOL
PEGUSA (SOLEA) LASCARIS	3.51	3.51 SOS
BUGLOSSIDIUM LUTEUM	15.827	24.293 SOT
MICROCHIRUS VARIEGATUS	47.107	51.295 TBS
tubeworms	0.041	0.041 TBX
	0.176	0.176 ABI
	15.501	15.501 AXI
	0.01	0.01 CHA
	0.26	0.26 CLI
	4.171	4.171 COT
	1.565	1.565 DIP
	2.101	2.101 HYH
	0.054	0.054 HYL
	0.118	0.118 LIC
	0.049	0.049 LIM
	0.03	0.03 NEA
	0.005	0.005 NER
	0.444	0.444 PAW
	2 576	2 576 PHA
	32.382	32.382 PM.I
	31 535	31.535 PMX
	77 003	77.003 RAS
	0.013	0.013 SAG
	0.025	0.025 SAM
	0.025	
	0.000	0.000 SCA

		NumberSample
Species	Sex	d
BLL	F	7
BLL	Μ	6
BLR	F	4
BLR	Μ	5
COD	F	2
COD	Μ	1
CUR	F	15
CUR	Μ	20
ESB	Μ	5
GUG	F	59
GUG	Μ	28
GUG	U	8
GUR	F	231
GUR	М	101
GUR	U	20
GUS	F	108
GUS	М	76
GUS	U	9
HAD	F	29
HAD	М	17
HKE	F	40
HKE	М	28
HKE	U	2
JOD	F	30
JOD	М	17
JOD	U	7
LEM	F	79
LEM	M	109
MEG	F	125
MEG	M	32
MON	F	143
MON	M	122
MON	U	1
MUR	F	27
MUR	M	35
MUR	U	1
PLE	F	200
	M	132
SDR	F	10
SDR	M	R R
SKT	F	1
SOL	F	110
SOL	M	00
		33 01
	1°	<u>کا</u>

Table 4: Biological Samples collected

THR	М	26
TUB	F	44
TUB	Μ	45
TUB	U	2
TUR	Μ	1
UNR	F	4
UNR	Μ	3
WAF	F	7
WAF	Μ	9
WAF	U	4
WHG	F	106
WHG	Μ	63