JB08:

RRS John Biscoe South Georgia and Bransfield Strait Marine Biology (OBP8) December 1987 - March 1988

This unpublished report contains initial observations and conclusions. It is not to be cited without the written permission of the Director, British Antarctic Survey.

Copyright ©1998 British Antarctic Survey.

MARINE LIFE SCIENCES DIVISION - Cruise 0BP08 1987-88

Julian Priddle

May 1988

Actives 1991/12

0BP08 cruise report DISTRIBUTION LIST

Director Deputy Director MLSD Steering Committee MLSD Files

BAS cruise participants (for circulation) Nicola Fenton, Paul: Tett, Des Barton - Univeristy College of North Wales Nick Owens - Plymouth Marine Laboratory Moragh Stirling - IOS Deacon Laboratory

Marine Life Sciences Division - 1987-88 cruise 0BP08 Julian Priddle

Contents :	Introroduction	
	Narrative	
	Specific topics:	Phytoplankton production and ecology
		Bacterial product ion and activity
		Microbialgrazing study
		Horizontal variability
		Hydrocarbon study
		Physical oceanography
Dringingl	Scientist's notes and	recommendations

Principal Scientist's notes and recommendations

Appendix 1 : Personnel

Appendix 2 : Projects undertaken

Appendix 3: Event Log

Appendix4:Revised "General Safety Notes" and "Instructions for Watch Leaders"

FIGURE: 1. Cruise track for MLSD cruise OBP08, 1987-88

INTRODUCTION

The Marine Life Sciences Division cruise on RRS John Biscoe during the 1987-88 field season was the eighth in the Offshore Biological Programme (OPB), devoted to the investigation of the Southern Ocean pelagic ecosystem with special reference to living resources. It was the second cruise in a series planned for the collection of data for the construction of a production-and-loss budget for microbial particulate material in the Southern Ocean euphotic zone.

Research was concentrated in two geographic areas. The first part of the cruise was undertaken around South Georgia. This has been the main research area for OBP and a large and useful body of data already exists, complemented both by current research on the biology of birds and seals, and historical oceanographic research of the 'Discovery' Investigations.

The second region for the cruise research was the Bransfield Strait. This area is hydrologically more diverse than the South Georgia Zone and provides a wide variety of environments in which to carry out more experimentally-oriented projects. Abundant use of the passages to and from the two main sites was made to collect physical and biological information over a wide geographic area.

Two further reports cover specialist aspects of the cruise. Eugene Murphy describes shipsboard data analyses and Glen Middleton deals with the electronics.

NARRATIVE

15-22 December 1987. Science Group joined RRS John Biscoe in Montevideo. The majority of the lab and deck gear was set up whilst in port.

FIGURE 2. Planned layout of transects around South Georgia, with additional CTD stations. In the pre-cruise plans, a seventh transect between the positions of T3 and T4 was suggested but this was abandoned when it became obvious that there was insufficient time. In the event, T5 was curtailed and T6 lost during the transecting phase but both were recovered later (see Fig. 3) 23-29 December. Passage from Montevideo to South Georgia. The period was used to test all major items of equipment, including towing tests with the PML Undulating Oceanographic Recorder (UOR) Surface samples were taken for biological monitoring. Problems were encountered with the water-bottle rosette system but fortunately these were repaired before work began in earnest.

A surprising number of icebergs was encountered on this passage. The first berg was sighted one day out of Montevideo, at 36°S There were still numerous bergs around South Georgia, although not in the very high densities reported by Biscoe earlier in the season.

- 29-31 December. Fishing for Krill with the 8nf Rectangular Midwater Trawl (RMT8), in support of the Krill Target Strength Experiment based at Stromness.
- 31 December 1 January 1988. New Year 's Eve in Grytviken.
- 1-9 January 1988. The first phase of the microbiological programme around South Georgia. Seven transects had been planned, each 240 nautical miles long, with the aim of mapping the OBP South Georgia Zone using surface sensors and other underway instrumentation. It soon became clear that poor navigational conditions would necessitate the cancellation of one transect (Fig. 2). The data collected are summarised under the specific topic (see below). The UOR was deployed over selected parts of these transects, providing vertical sections over approximately 50 m depth range.

FIGURE 3. The final layout of work around South Georgia during OBP08. The three shaded squares are microbial station grids. Thin lines are the major surface-sampling transects, the thickened portions represent UOR deployments A medical emergency required evacuation to Grytviken when the ship was part of the way along Transect 5.

A number of CTD-rosette casts for microbiological sampling was undertaken during this phase. An Anglian-TV film crew was on board to film the ship-based activities.

- 10-14 January. Following a day at Grytviken, we sailed to Stromness. There we first transferred the depot for the Husvik field party. The second block of krill-fishing was then completed. A trial deployment of the PML in situ incubation rig was then carried out.
- 15 January 6 February. Second phase of the South Georgia microbiological study. Three sites were selected to represent the spatial variability of the South Georgia Zone, as indicated by the results of the recently completed mapping activities. At each site three stations were selected. These each comprised a twenty-four hour incubation for microbial growth and activity studies, with supporting environmental data. Physical measurements in the upper-water column were made on a regular grid of CTD stations, in which the microbial stations were set (Fig. 3). Grid A, to the south-west of the island, was situated in a comparatively long-lived intrusion of warm water and was executed to plan. The diary records finishing the grid 15 min late! Following this, the transects abandoned at the end of the first phase were undertaken. These, and some subsidary transects completed the mapping of the South Georgia Zone.

The second site was to the north of the island, in an area of high phytoplankton biomass. A storm on 28 January resulted in the

abandoning of the grid after two of the microbial stations had been completed. After being hove-to for nearly a day, the ship worked along the northern coast of South Georgia. Plans for a second pair of short transects, to 'plug the gap' east of Cooper Island, were abandoned as the weather was still bad. The ship entered Hound Bay for repairs. The third grid of stations, north-east of the island, was worked in a dense belt of icebergs and, with deteriorating weather also had to be abandoned after two microbial stations had been worked. The full complement of CTD profiles was completed, however. An isolated on-shelf station was selected as a 'refuge' but was also abandoned owing to bad weather.

- 7-9 February. Third and final block of Krill fishing was carried out off Bird Island and close to Hound Bay.
- 10-12 February. Passage to Falkland Islands. Horizontal profiling was undertaken along this track. The UOR was lost during recovery on 10 February.
- 13-16 February. Time-off in Stanley.
- 16 February. Steam to Beauchene Island to start a density section across Drake Passage.
- 17-21 February. Transect from Beauchene Island to Elephant Island to complete a density section using CTD casts with interpolated XBT temperature profiles. Three TOGA buoys were deployed.

.

- 21-22 February. Horizontal profiling in the eastern Bransfield Strait, on passage to the main research site in the south-western part of the strait.
- 23-24 February. Microbial productivity station in the south-western Bransfield Strait, centered on a previous SIBEX station. In order to gain some insight into the hydrology of the area, five CTD stations were worked in a cruciform pattern, the microbial station being set at the centre. Deteriorating weather, prevented deployment of the in situ experiment rig, necessitating the vise of the deck incubator.
- 25-26 February. Microbial productivity station in Gerlache Strait. Very high phytoplankton biomass was encountered but this proved to be very patchy. The 'station' was progressively repositioned to remain within a high biomass area. A fine-scale mapping grid was followed, in order to study the interrelationships between environment, phytoplankton and krill. Following the recovery of the in situ rig from a position uncomfortably close to an iceberg, the acoustic current meter was deployed.
- 27-28 February. Microbial productivity station north-west of Brabant Island. Again this was sited at the coordinates of an old STBEX station, to allow comparison with earlier data. The current meter was deployed under fair conditions. The in situ rig was set up the following morning but was recovered early owing, again, to deteriorating weather conditions. The experiment was completed in the deck tanks.

- 28-29 February. On passage to Bismark Strait via Gerlache Strait, and Neumayer Channel. High winds (gusting to 80 kts) prevented deployment of the UOR but surface profiling and acoustics were run.
- 29 February 1 March. Microbial productivity station in Bismark Strait. It was surprisingly calm after the conditions experienced in Gerlache Strait. An additional CTD cast off Anvers Island was made, again a repeat of a SIBEX station. Poor weather again prevented deployment of the in situ rig, so that the deck incubator was used to simulate the natural irradiance profile. Returned to Gerlache Strait site to repeat the density and phytoplankton biomass profiles to investigate the effects of the storms.
- 2-3 March. Repeat CTD casts at the five stations in Bransfield Strait, again to investigate possible effects of the storm. The ship then steamed for King George Island to collect samples for bacterial and hydrocarbon studies. The transect, running across the Strait to Antarctic Sound, was curtailed because of the high density of icebergs in the area.
- 4-6 March. Density section from north-east Bransfield Strait to Signy Island. The high incidence of bergs caused some problems with station positioning.

6-7 March. Call at Signy.

8-11 March. Density section from Coronation Island to South Georgia. The Science Group started packing gear. 12-15 March. Remainder of gear packed at South Georgia. Stromness and Husvik field parties and their gear brought on board.

PRELIMINARY REPORTS ON SPECIFIC TOPICS

A list of the projects undertaken on the cruise is provided in Appendix 2. The following sketches summarise the main aims and achievements in the main research areas. In nearly all cases these can only be preliminary as complete data analysis was not possible on ship.

 Phytoplankton production and ecology (Nicola Fenton, Nick Owen, Julian Priddle).

Phytoplankton production was studied by estimation of carbon and nitrogen flux, using isotopic tracer techniques. As a routine procedure, incubation in situ of water from five different irradiance depths was used to measure assimilation of carbon (CO₂ by ¹⁴C uptake) and nitrogen (uptake of ¹⁵NO₃ and ¹⁵NH₄) Size fractionation using 20, 2 and 0.2 um screens was applied to the carbon uptake measurements.

At three research sites around South Georgia, species composition and abundance of phytoplankton varied markedly. Chlorophyll biomass at microbial site B, to the north of South Georgia, was as high as 8 m⁻³ at the other two sites. The increased biomass was contributed largely by the largest size-fraction (>20 μ m) and carbon uptake by these cells was low compared with the smaller groups. Thus total carbon uptake by the phytoplankton at Site B was only double that elsewhere, whereas biomass was nearly ten times as high.

Further estimates of production were made at Bransfield Strait i sites in the second part of the cruise, including work at a site of very high biomass (over 30 mg m⁻³ chlorophyll a) in Gerlache Strait.

In addition to the estimation of phytoplankton production for the microbial particulate budget, a specific project on phytoplankton ecology was undertaken. The relationship between phytoplankton and light climate and vertical mixing is the topic of an NERC CASE-studentship between BAS and University College of North Wales School of Ocean Sciences. The cruise provided a large amount of the field work for the project. An underwater spectroradiometer was used to measure the vertical irradiance profiles at all sites of microbial study. The second part of the cruise was specifically designed to collect data from sites representing a wide variety of physical environments and phytoplankton biomass.

A number of complementary shipboard experiments was carried out. Results from deck incubations compared favourably with the corresponding in situ results. Experiments were undertaken to investigate the possibility of photoadaptation by phytoplankton populations from different depths. The photosynthetic behaviour of water samples from near-surface and close to the bottom of the euphotic zone was compared over a range of irradiance in order to assess the possible establishment of physiologically distinct groups responding to ambient irradiance. As far as could be found, photoadaptation was not present and the phytoplankton was physiologically homogeneous within the euphotic zone.

The apparent paradox of low phytoplankton production in the high nutrient environment of the Southern Ocean was investigated briefly in some longer experiments. Earlier workers had suggested that vertical movement of algal cells results in decreased growth rate, and that water samples maintained in the uniform illumination on deck typically show rapid growth. Such experiments were repeated on a larger scale during this cruise, with large volumes (up to 40 dm³) seawater being subsampled at daily intervals to

1Ø

follow changes in biomass, productivity, species composition and nutrient concentrations. Data available so far confirm that rapid growth is possible under these conditions and provide useful information on the potential in situ growth rate.

2. Bacterial production and activity (Brian Mullins, Nick Owens)

Bacterial studies fell into two groups. The work around South Georgia contributed primarily to the microbial particulate budget, with measures of growth rate-and turnover of selected substrates. Over a wider scale, the spatial variation of bacterial metabolic characteristics was studied in twin projects to relate to hydrography and to environmental temperature.

Studies around South Georgia, and at some later microbial stations, used a suite of standard techniques. Biomass will be estimated in UK using image analysis methods for calculation of biovolume. Until these data are available the full implications of the bacterial growth and activity measurements cannot be assessed. Bacterial growth rate was estimated by the thymidine-uptake method. Measurements of the uptake of selected organic substrates were undertaken using radioisotope tracers in combination with estimation of ambient concentrations of the natural compounds. The latter included the use of HPLC to characterise and quantify the amino acid pool.

At the three South Georgia sites, there was evidence for horizontal and vertical spatial variation. Site B, with its high phytoplankton biomass, had a threefold high growth rate than that at the other two sites. Growth rate decreased dramatically with depth at all stations, by approximately an order of magnitude over the top 100m of the water column.

Bacterial activity, measured by the uptake of labelled organic substrates, varied less both with depth and between sites. In spite of high levels of dissolved amino acids at Site B (40 μ mol m⁻³, as opposed to 10-15 at A and C), amino acid uptake appeared to be similar at all stations.

A pilot study of methane concentrations in the SGZ was undertaken to evaluate possible production of this compound by microbes. Concentrations were close to saturation, suggesting little.biological or benthic influence.

Routine bacteriological work continued into the second part of the cruise. Concentrations of amino acids were again high at more productive sites (ie. those with high phytoplankton biomass). Amino acid uptake in the Bransfield Strait area was generally higher than that found around South Georgia, and was more variable between sites. Study of growth rates was extended to deeper samples, and showed negligible thymidine uptake at 500 m and deeper at most stations.

Large-scale spatial variation in bacterial abundance, characteristics, growth and activity were investigated with reference to hydrography and to environmental temperature, the latter using a temperature gradient block. Results await analysis.

3. Microbial grazing study (Moragh Stirling - first part of cruise only)

An investigation of the phagotrophic members of the microbial community was undertaken at the South Georgia sites. Water samples from the surface supply and from vertical profiles were collected for enumeration of

photoautotrophs and protozoan microphagotrophs. Studies on passage to and from South Georgia showed that picoplanktonic cyanobacteria appeared to be absent from waters with temperatures lower than 4°C. This accords with recently published data and suggests that the microbial dynamics of Antarctic surface waters may differ markedly from the other areas of the world ocean.

Estimation of protozoan grazing on bacteria and algae was carried out using the dilution assay technique. Preliminary results were equivocal, but generally indicated low grazing rates.

4. Horizontal variability (Eugene Murphy, Alistair Murray, Nick Owens, Julian Priddle)

Horizontal profiling in the main research areas and on passage was undertaken for two purposes. First, the study of microbial processes in the South Georgia Zone required a preparatory mapping phase to provide the information for the placing of sites so that representative coverage could be achieved. This implied the processing of data on ship to an extent not undertaken on previous cruises. Second, and possibly of greater long-term benefit to the division's research, it has become clear that the data collected on earlier cruises needed baseline data with a scale common to all variables if maximum utilization of the information could be made.

Routine data collection involved estimates of variables from the pumped seawater supply and acoustic estimation of zooplankton biomass. The PML Undulating Oceanographic Recorder (UOR) was used to profile between 20 and 75 m depth, providing data on temperature, light and phytoplankton abundance, but could not be deployed at all times on passage. The

0

5

Table 1.	Variables	and sampling	frequencies for OBP08 transect data.
Variable			Sensor
Surface	(3m) water	temperature	Platinum resistance thermometer
In vivo	Chlorophyll	fluorescence	Turner 112
"	Nitrate		Autoanalyser
н	Nitrite		П
II	Silica		11
Acoutic	biomass of	krill	Simrad echosounder
Depth of	f krill		П

20-75m	In vivo chlorophyll	UOR-fluorometer
II	water temperature	UOR-thermistor
Π	downwelling PAR	UOR-photocell
Π	downwelling green light	Π
II	upwelling green light	11
II	downwelling blue light	**
Π	upwelling blue light	**

variables measured are shown in Table 1. Coverage was extensive and included long continuous records such as the passages to and from South America, across Drake Passage and the Scotia Sea. The South Georgia Zone transects alone totalled over 3000 km, with continuous runs of up to 450 km. UOR tows covered 4500 km during the whole cruise, with approximately 80% success rate.

The volume of these data and their availability on ships cannot be overstressed. Eugene Murphy discusses this in depth in a separate report.

5. Hydrocarbon study (Geof Cripps, Brian Mullins)

Sampling on the cruise was devised to follow up specific aspects of previous work on anthropogenically-derived hydrocarbons in the Antarctic marine environment and to undertake pilot work on 'biomarker' compounds as tracers of natural processes in the euphotic zone.

The large-scale distribution of polyaromatic hydrocarbons in seawater was investigated using surface water samples. In the South Georgia area, highest concentrations were found at inshore sites at Husvik, Stromness and Grytviken. In the open ocean, the warmer water had higher aromatic concentrations than cooler areas, but in all cases these remained low in relation to most temperate seas. Expressed as 'natphalene equivalents' concentration ranged from 0.06-0.55 μ g dm⁻³ rising to 0.28-2.19 at inshore sites. Characterisation of aromatic hydrocarbons in particulate material was also undertaken.

An extension of the monitoring component of the programme was a limited investigated of sediments from Signy Island and shorelines samples from Stromness and Grytviken whaling stations at South Georgia.

The potential for bacterial breakdown of polluting hydrocarbons is being investigated. Antarctic bacterioplankton are being incubated on a hydrocarbon medium to test utilization. Spiking of seawater with a hydrocarbon 'cocktail' and testing for uptake after three months will provide an index of possible microbial breakdown of pollutants.

6. Physical oceanography (Barry Heywood, Julian Priddle)

Physical oceanographic measurements were made as components of long-term programmes and in support of the microbial research.

As part of a BAS commitment to WOCE and the Fine Resolution Antarctic Model (FRAM), three CTD density sections with 50 km resolution were executed in the Drake Passage, Scotia Sea and across the Weddell Sea outflow. Interpolated XBT casts and use of continuous profiling of surface water improved the resolution of the temperature field and also provided data to determine the launch-sites for three TOGA oceanographic buoys. This was the first year in which the density sections and buoy developments had been carried out, but they develop previous BAS interest in variability of the frontal zones in the Southern Ocean currents.

Continuing interest in the hydrography of the Bransfield Strait prompted a number of CTD casts in this area, repeating where possible stations worked as part of the BIOMASS-SIBEX programme. An acoustic current was deployed successfully from the ship at some stations in this area. CTD profiles at

six stations were then repeated during the visit after severe storms had been experienced. This provided the opportunity to assess the affects of strong wind mixing on the circulation in the Bransfield Strait - a topic arising from analysis of SIBEX data. However, no major shift in hydrographic boundaries was found although the affects of wind-mixing on local vertical stratification was often dramatic. A site in the Gerlache Strait appeared to be more or less immune to these effects, and this seems. likely to be of great interest for future study of the relationship between phytoplankton growth and the physical environment.

PRINCIPAL SCIENTIST'S NOTES AND RECOMMENDATIONS

The cruise was undertaken in a competent and cheerful fashion by all members of the Science Group. It was especially gratifying to have participation of members of PML, IOS and CNW. The officers and crew were most helpful in the planning and execution of a sometimes complex cruise schedule.

The following comments refer to some specific matters arising from day-today activities or from individual incidents. In some cases I feel that action should be taken before the next cruise or the next occasion when similar research is planned. Electronics and software faults and recommendations are covered in a separate Central Services report by Glen Middleton. Input has already been made to the ship's refit specification.

1. Deck safety

It was gratifying that the OBP Principal Scientist is now invited to attend the ship's Safety Committee meetings. Safety procedures adopted by the Science Group were accepted and it was noted that general awareness of safety procedures by the scientists was good.

With the increasing responsibility of the Principal Scientist and Watch Leaders for safety in science operations, revised general instructions and a new guide for Watch Leaders were prepared. These are included here as Appendix 4.

Safety gear provided by BAS is of high quality, although some has now been in use or in stock for a long time. With the increasing number of people

joining single or even part cruises, the multi-use of harnesses and hard hats implies increasing vigilance when these gear are reissued. ACTION. I feel that the job of Safety Officer within OBP should devolve on one competent person rather than switching around between cruises.

I am pleased to see that alternative safety footwear will now be provided for OBP personnel on ship. Rubber boots and RBLTs are not always ideal, for instance in the case of cargo work.

ACTION. I have also suggested that overalls, hard hat and safety footwear are no longer part of kitbag issue but are available all the time for both ship and UK duties.

The quality of work gloves issued to some personnel, and those available to the ships crew, was inadequate.

ACTION. It would be useful for Logistics to be able to discuss this matter with experienced members of the OBP Science Group. The "slop chest" will also need restocking - perhaps this is the sensible venue for the secondhand gear from visitors etc.

The CTD monorail system caused the usual problems when working the gear in rough seas. The high coaming at the outboard entrance to the waterbottle annex necessitates an awkward lift when moving the CTD to an from the hydrographic platform with a full rosette of water bottles, this hear weighs over 100 kg. One member of the Science Group damaged his back by misbalancing during this manouvre. He appears to have recovered fully but this does serve to highlight the problem.

A second strongpoint for clipping on harnesses at the hydrographic platform has been inserted in the refit specification.

The loss of the PML UOR underlined for all personnel the need for great care in the use and deployment of towed gear. It was fortunate that the wire parted in such a fashion as not to endanger anyone, but it provided a graphic demonstration of the behaviour of a steel cable which has parted under load.

2. Laboratory safety

The ship's laboratory accommodation is becoming overstretched as programmes become more sophisticated and involve larger amounts of equipment. Nevertheless, sensible laboratory procedure prevented any accidents and non-trivial contamination.

ACTION. However, the potential for accidents remains, and I would recommend that for all future cruises, the possible laboratory hazards both from equipment and chemicals and from work procedures are assessed adequately well in advance of sailing date. Ideally, safety should be included as a section of the standard project proposal. It would then be the Principal Scientist's overall responsibility to ensure that the facilities for dealing with hazards are either already available on ship or have been provided by the Science Group for the cruise. As as example, chemicals which absorb or neutralise spillage should be carried, but must be specific to the classes of chemicals in use. Specific general recommendations are for more Winchester bottle carriers, and for provision of Vermiculite for absorbing most spillages.

An extemporary First Aid Kit was made up for the laboratory area by the ship's medical officer.

ACTION. In future, a full kit should be provided by OBP as part of its equipment. This should comprise a standard laboratory First Aid Kit, supplemented where necessary to cover common chemical hazards. Sterile eyewash packs should also be provided, complete with the appropriate mountings and instructions.

3. New equipment and facilities used during 0BP08.

Provision of a shipboard liquid scintillation counter was a great boon in experiments using radioisotope tracers, enabling confirmation of techniques at sea. The unit, a Beckman LS 1701, worked well throughout the cruise.

Use of high pressure liquid chromatography (HPLC) on ship was also a novelty for us. Again the set-up worked well except for the failure of one pump. This was rectified and a spare part obtained later at the Stanley call. The only other problems associated with this technique were not caused by shipboard use per se but related from the need frequently to change columns for different analyses. Use of several columns with a switching valve would appear to offer a solution.

A gas chromatograph was used by PML. The attendant gas cylinders were stored easily on the after deck but provision of a custom-made rack for both storage and transport should be considered for future seasons.

The PML UOR proved to be a very efficient way of collecting data from the upper water column while underway. It was simple to deploy and recover. navigation hazards such as fog and ice sometimes necessitated a reduction in ship's speed below that necessary to provide the force for the UOR to undulate. The non-undulating version provided as replacement for the unit

lost between South Georgia and Stanley was very much less easy to use. Undulations were generated by continuous veering and hauling of the winch, which was both an unpopular job with crew and scientists and caused 'excessive noise in the scientists' accommodation.

A floating rig for in situ incubation of microbial production experiments was also provided by PML. This was launched and recovered with comparative ease from the well-deck.

Large amounts of data processing were carried out on board, using PC's This worked well on the whole and is dealt with in detail in Eugene Murphy's report.

4. Cargo management

The cargo list written by Roger Coggan using the RMS data handling package was used again of this trip, following its successful introduction on OBP06. The system is effective but slow, and has a few annoying idiosyncrasies.

ACTION. Now that more IBM-compatible microcomputers are available on ship, the use of a spreadsheet such as 'Framework' or 'Lotus 1-2-3' for this task should be considered.

5. Ship's navigation

Much of the science programmes on OBP are dependent on the correct positioning of the ship. This in turn depends largely on the Magnavox satellite navigation system and its associated sensors. Whilst it is agreed that the present system is not 'state-of-the-art', it is a great

pity that the Magnavox performance is degraded by the consistent under performance or failure of the Simrad acoustic log. I trust that measures taken during this refit will rectify the problem.

6. Other points arising from the cruise

- i. Protocols for the disposal of dangerous chemicals, including radioisotopes should be established formally within BAS.
- ii. Air conditioning in the electronics laboratories failed completely. Although electronics did work satisfactorily without this, it would be desirable that the air conditioning be refurbished to its original functional specification.
- iii. A new protocol for communication between the CTD operator and the bridge was established following a near-loss of the unit. The Loudaphone telephone system proved unreliable and VHF radio was used instead. If there were no water-bottle stops close to the surface, the CTD operator informed the bridge of the CTD depth on ascent at 50m intervals shallower than 250m. Hopefully, repair of the meters on the hydrographic winch controls will increase the safety of operations, but the present practice provides an increased safety margin which could usefully be retained. Incidentally, in an emergency where the bridge is unaware that the CTD is dangerously close to the surface (or even out of the water!) the winch can be stopped by switching off the power pack at either the hydrographic platform or the trawl winch controls.
- iv. It would aid appreciation of timetabling if charts of the research area were available in the laboratory or Chief Scientist's Office.

Appendix 1. Personnel participating in OBP08

Lynette Allen Geof Cripps Nicola Fenton (UCNW Ocean Sciences - CASE PhD) Graham Harvey (MO ex Faraday) Barry Heywood (second half of cruise only) Helen Hill Lesley Holmes Glen Middleton Brian Mullins Eugene Murphy Alistair Murray Nick Owens (Plymouth Marine Laboratory) Julian Priddle Ken Richard Moragh Stirling IOS Deacon Laboratory - first half only) Mick Whitehouse

Appendix 2. Projects carried out on OBP cruise 08 (in whole or part)

a) BAS projects

Production of microbial material in the euphotic zone (PMOG in collaboration with PML, UCNW-OS and IOS-DL) Recycling of microbial material (as above) Silicon dynamics in the euphotic zone (PMOG) Bacterial activity in relation to ambient temperature (BWM) Bacterial activity and characteristics - spatial variation (BWM) Bacterial - hydrocarbon interactions (BWM, GC) Hydrocarbons in the Southern Ocean food-web (GC) Large-scale spatial variation in hydrocarbon levels (GC) The fate of natural hydrocarbons in the upper water column (GC) Variation in the position of frontal zones in the Southern Ocean (RBH) Transport in the Antarctic Circumpolar Current (RBH)

b) non-BAS projects

Cycling of nitrogen in the Southern Ocean microplankton (Owens, PML) Composition of nitrogen pools (Owens, PML) Dynamics of methane cycling (Owens, PML) Photosynthetic physiology in relation to physical factors (CASE studentship between BAS and UCNW-OS)

IOS-DL - Institute of Oceanographic Sciences - Deacon Laboratory
PML - Plymouth Marine Laboratory
PMOG - Physical and Microbial Oceanography Group (BAS-MLSD)
UCNW-OS - School of Ocean Sciences, University College of North Wales,
Bangor

Hare-	
for	
2	
Even	

	Рћање	Start 13		Grid Transord	11 - 11 - 11 - 11	A11.1	v Erat	÷.	it is a set of
÷		27 12-87	13:20	7000)	(10.1)			1:2:	0 for de CAST
÷.j	• • •	27-12-87	18:35	10001	1.421	Lin di	28 J :	. 18:21	$1.5 \pm 1.5 \pm 0.4$ HR TEST
37)	-	27-12-87	18:35	10001	Stan	(HOR	 80 80	13:81	 CALL RUND
4	-	28-12-87	01:44	T0001	130200	92B	28-11	-1:01:4·	4
ഹ		28-12-87	13:25	10001	s la fals	1000	े - इ.स.	13:51	
ę		23~12~87	17:33	TOOPT			12		N TAN DR CONC SXI'S
;-	• 7	28-12-87	18:31	TODA			25	200	5 I STAND NO WATER BOTTL
ω		28-12-87	19:32	10001	1.111	HERE		9191	
თ	÷٦	29-12-87	19:44	T0001	110,000	001	2191 1	19:41	
01									
11	-1	30-12-87	02:29	10001	1000	KMT	30 1: -	0:60	
2		30-12-87	08:45	TOOU	5000	1.141	30 11	0:60 //	x
<u>_</u>		30-12-87	10:04	T0001	(14 + 44 h	RM5	30 - 1	W: [1 - 0	0
4	-1								
5	Ţ								
9	-	30-12-87	16:18	1.0001	3000	KM3	30	··· 17:2:	Z CANCELLED IN ERROR
		30 - 12 - 87	19:34	10001	2000	T.M.H	00	20:23	c ×
α		30-15-87	22:45	1.0001	8000	H2O	30 F	22.50	
20	- +	79-91-18 24-61-18	00.00	10004		DWL			
n q	6	40-27-10		Fodou	0000	10.01			
23	NJ -	31 - 12 - 87	13:07	TUUUT	50HU	074			
-	21	31-12-87	13:33	10001	12040	E H	3	13:3	
2	64	31-12-87	13:14	T0001	2000	OCH	31-12	13:1	<i></i>
e	2	01-01-88	17:03	T0002	2000	NOR	01 - 01	ын 23:4(
•	c.)	02-01-88	07:59	T0062	2003	3.1.D	05-01	3:60	
Ē	2	02-01-88	10:54	T0000	\$000	BCHEY	(0 - 3 - 0)	8 15:1	
9	~	02 - 01 - 88	11:47	10003.	SQUQ	2008	10-30 08-01	20:07 01	~1
1	2	02-01-88	15:03	T0003	0:03	HPC	(02 - 0)	30 15:0	5 WATEN SAMPLE FENTON
00	0	02-01-88	16:45	T0003	\$000	H2O	03-01-	MD 16:49	3.
5	~	02-01-88	22:00	T0003	0000	H2O	(0.2 - 0.1)	22:10	
C	с.	02-01-88	22:45	T0003	8000	UOF	10-20	00:00	
	100	02-01-88	23:11	T0003	8000	HZO	02-01-	84 2 3: 14	
c v	C1	03-01-88	06:42	Sugar.	8000	UOK	(13 - 0.1)	RA 08:08	
60	2	03-01-88	08:49	F0003	\$000	H2O	-10 - 50	8:80 33	I WATER GC
34	~	03-01-88	10:11	T0003	0008	UOR	-10-20	HA 15:1:	
ŝ	~	03-01-88	16:34	T0003	5003	STU	03-01-	P8 17:21	
<u>ශ</u>	2	03-01-88	16:57	T0003	2003 2003	HZO	03-01-	NN 16: 5'	V WATER MORAG
37	2	03-01-88	18:17	T0004	S000	H2O	-10 - 50	RE 18:1	
88	0	03-01-88	20:51	T0004	5000	UCF	03~01-	RN 23:11	
66	~	03 - 01 - 88	20:56	T0004	8000	RCHO	01-01-0	ыл] 0: 30	50
10	2	03-01-88	22:11	70004	2000	H2O	03-01-	NA 22:10	20
	2	04-01-88	07:17	T0004	2000	H20	- [()- ÞÚ	-88 0 7 :20	
12	¢1	04-01-88	10:24	T_{0004}	8000	UOR	04-01-	88 1 3 :03	20
3	2	04 - 01 - 88	12:45	T0004	S000	H20	04-01-	88 14:00	0
4	. ~	04-01-88	14:36	T0004	S000	1120	04 - 01 -	88 14:39	5
- 40 - 11	10	05-01-88	00:43	T0004	8000	H2O	- (1)50	23 00 82	
9	: N	05-01-88	01:51	10001	0003	H2O	-: e -: e	88 02 U	1
1.1	1 04	05-01-88	06:38	T0004	0003	DOR	010-01	NB 10:40	
48	2	05-01-88	10:55	T0004	S004	STD	0-40	RH 12:01	α
0) 2	05-01-88	14:35	T0001	5000	0.211	01-01	88 14:38	R WATER GO
	a c								

Wed Nar 23

Byeers fleere start the

			Rventlog for J	50.R
teid Teidar	Matio	n Activity	End time	Compositors
ti ninti	1000	11QK	04-01-88 25:17	
121424.2	0000	112.0	01-01-38 21:05	
100 J.C.	(1010)) (1010)	1120	06-01-88 0.::02	ASSERCE TRAFF. DATE: TR
1.96-11	STOD	HZO	$06-01 \cdot 88 05 \cdot 12$	MATPHE SCREET
Junat.	South	00K	06-01-88 11:36	
T0005	0000	H2O	06-01-88 1::51	WATER GC
70005	\$000	PAF	06-01-88 1-20	
100015	0000	STL	06-01-88 200	(500m
Puont	8000	FNET	070188 04-38	
Tench	0001	FNET	07-01-88-04-70	
10004.	0003	H2O	07-01-88 10:16	WATER
T0006	8000	ECHO	08-01-88 1.37	
70006	\$000	UOR	07-01-88 1 36	
T0006	5000	H2O	07 - 01 - 88 1 39	
T_{0006}	S000.	UOR	07-01-88 20:40	
70006	0003	H2Q	07-01-88 2014	
70006	S000	HZO	08-01-88 00:20	
_0000	0008	H2O	08-01-88 15:55	BETWEEN TOODS AND TOOD?
-0000	8000	H2O	08-01-88 20:56	BETWEEN TOODS AND TOOOS

AH THAT TER ALAS MARKA WATER GART WATER GA TEST IRNAD (Mericia MATER WATER	EETWEEN TOOOE AND TOOOT BETWEEN TOOOE AND TOOOT WATER FUM WATER FUM 10 MIN NET	3H GLUTAMATE TIME EXPT CANCELLED ON NAVLOG ERBOR 14C GLUCOSE CONC TEST	WATER FUMP WATER GROC	14C GLUCOSE EXPT 2 RESUMED ACOUSTIC RUN PUMP WATER PUMP WATER 300M NO WATER 300M NO WATER
11000000000000000000000000000000000000	00000000000000000000000000000000000000	0 12 12 12 12 14 12 14 12 14 12 14 12 14 10 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0.5 1 4 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.5 - 0.1 - 88 0.5 - 0.1 - 88 0.6 - 0.1 - 88 0.7 - 0.1 - 100 -	07-01-88 07-01-88 07-01-88 08-01-88 08-01-88 08-01-88 09-01-88 08-01-88 09-01-88 10-01-88 12-01-88 13-01-88 13-01-88	13-01-88 13-01-88 13-01-88 13-01-88 13-01-88 13-01-88 13-01-88 13-01-88	14-01-88 14-01-88 15-01-88 15-01-88 15-01-88 15-01-88 15-01-88	155-001-988 155-00000000000000000000000000000000000
100 1120 1120 1120 1120 1120 1120 1120	100 100 100 100 100 100 100 100 100 100	KMT RMT RMT RMT RMT H2O	КМТ Н20 БСН0 Н20 КСН0	UOR H20 BCH0 BCH0 STD STD STD
8000 8000 8000 8000 8000 8000 8000 800	8000 8000 8000 8000 8000 8000 8000 800	8000 8000 8000 8000 8000 8000 8000 800	8000 8000 8000 8000 8000 8000 8000 800	8000 8000 8000 8000 8000 8000 8000 800
7 **** 7 ***** 7 **** 7 ***** 7 ****** 7 ****** 7 ***** 7 ****** 7 ****** 7 ****** 7 ****** 7 ****** 7 ****** 7 ****** 7 ******* 7 ********	40000 40000 40000 40000 40000 40000 40000 40000 60000 60000 60000 60000	60000 60000 60000 60000 60000	60000 60000 70001 70001 70002 70002	T0002 T0002 T0002 T0002 G0101 G0101 G0102
мараараа мараараа мараараараа мараараараараа мараараараараараа мараараараараараараараараараараараараара	00000000000000000000000000000000000000	1485 1885 1985 1985 1985 1985 1985 1985 19	23:19 19:35 19:35 20:08 07:17	07:17 07:17 12:40 12:40 12:42 14:27 10:10
01.01.03 01.01.03 01.01.03 01.01.03 01.01.03 05.01.03 05.01.03 05.01.03 05.01.03 05.01.03 07.01.03 07.01.03 07.01.03 07.01.03	0.4.1.0 0.4	13-01-88 13-01-88 13-01-88 13-01-88 13-01-88 13-01-88 13-01-88	13-01-88 14-01-88 14-01-88 14-01-88 14-01-88 15-01-88 15-01-88 15-01-88	16:01-88 15:01-88 15:01-88 15:01-88 15:01-88 15:01-88 15:01-88 16:
	1 N 04 N 22 N N 04 04 04 04 04 06 06 06 06 06 06 06 06 06 06 06 06 06	0000000000	う い ム み み み み	'ব' ব' ব' ব' ব' ব' ব' ব' -

90.00

23
Mar
Wed

Eventiog for JB08

		TER	LEIK		MATER		1.B.K 1.B.L	150 151	1 B.V. P.T. 1 P.C.						LEK.	VATEN		SAUT. HC	LEK L		XIII	FER	TER		IEK			VITH WATER			TER	TER	TER	TER			TUND CUNDI	760	PER-	AATER NE RIG	RIG	3E FAILED	TER REFEAT 142					TER	IEK	
	Comments	300M NO WAT	LAW ON MODE		HIIM WOOPT		LAN ON MUCH	EVA CNE MOUSE	LAN UN DUCC	LUCE UN ENTRE				ETM CNEMC	TAW ON NUUS	A HITW MOGS	NEAK KIG	NATER FOR L	LAW ON MODE	LAN JO SLOU	TAN ON NOOS	300M NO WAT	300M NO WA1		SOUN NO WAY			DEEP DROF V	FUME WATER		300M NO WAT	300M NO WAT	300M NO WAT	300M NO WAT			VALEN DANEL	SUDM NO WOLS	SOOM NO WAT	The with the	NEV OWENS 1	DATA STORAC	300M NO WAT	WATFIN				300M NO WA	SUUN NU WA	
	End tyme	16-01-88 11:50	16-01-88 13:30	16-01-88 16:14	16-01-83 18:12	16-01 8N 18:35	12:02 23-10-91	97:17 00-1/m41	10-11-00 VC-00-	10-11 00 23:41	17-01 84 02:33		20:00 00 00-11	GF:22 02 TO JT	GG:ZT 08 [0-/]	17-01-88 15:08	17-01-83 16:45	17-01-88 17:46	40:61 88-10-71	18-01-88-02:44	18 03 88 09:27	18-01-88 10:32	18-01-88 11:35		18-01-88 13:11		18-01-88 15:54	18-01-82 17:49	J8-01-88 17:03	18-01-88 18:13	18-01-88 20:21	18-01-88 21:36	18-01-88 23:02	19-01-88 00:06	19-01-88 01:45	19-01-88 03:08	13-01-00 00-10-61	10-01-88 00-10-01	19-01-88 19:37	19-01-88 16:02	19-01-88 17:04	19-01-88 19:37	19-01-88 19:57	19-01-88 21:00	20-01-88 07:25		2001-88 09:19	20-01-88 10:58	90:21 98-F0-62	
	cation Activity	000 870	000 STD	00.1 PAK	013 100	101 FNET			200 011 200 001		NUJ PUNKT						JUU FAK	028 100	01 STP	TANY 100	000 8710	000 STD	000 STD		000 STD		DOZ FAK	002 STD	002 H20	DO2 PNET	000 STD	000 STD	000 STD	000 STD	DO2 FNET	00Z STD	002 510 202 510	102 BUUI 208 STD	000 STL	200 STD	DOO PAR	002 STD.	002 STD	002 H20	000 STD		000 STD	000 STD	000 STD	
Grid	Transect 51	0 G0103 SC	3 G0203 SC	0 G0202 S(4 60202 50	7 60202 80	3 G0Z01 30	0 60301 St		0 GU3U0 21	20205 St	0 00000 00000 00000 000000 000	0 60202 3	0 GUZUZ 50	1 60202 50	5 G0202 SC	4 0000 SC	2 20202 50	5 G0202 SC	5 G0202 SC	5 G0401 50	3 G0402 S(3 G0403 S(4 G0503 SC		5 G0502 S(8 C0202 S(7 G0502 SC	1 G0502 SC	2 G0501 S(1 G0601 S(9 G0602 SC	6 G0603 S(5 G0502 S(6 60502 St				0 60000 80	4 G0000 8(6 G0502 S(7 G0502 5(7 G0502 S(5 G0604 S(0 60605 50	4 G0606 S(2 GUDU6 51	
	Start time	16-01-88 11:30	16-01-88 13:0:	16-01-88 15:10	16-01-88 16:54	16-01-88 18:2		16-01-88 71:10	17:22 00-10-01	17:02 20:10-4T	17-01-88 02:27	1. 01 08 02:40	17-01-88 03:50	17-01-88 06:13	1/-01-88 12:0	17-01-88 14:3	17-01-88 15:54	17-01-88 17:4	17-01-88 18:40	18-01-88 02:3	18-01-88 09:00	18-01-88 10:1	18-01-88 11:1:		18-01-88 12:5		18-01-88 15:1	18-01-88 16:2	18-01-88 17:0	18-01-88 18:0	18-01-88 19:55	18-01-88 20:5	18-01-88 22:3	18-01-88 23:20	19-01-88 01:3	19-01-88 02:3	19-01-88 03:4	18-01-00 00-10-01	10-01-00-00-00-0	19-01-88 14:21	19-01-88 16:1	19-01-88 19:0	19-01-88 19:3	19-01-88 20:0	20-01-88 07:0		20-01-88 09:0	20-01-88 10:3	20-01-88 11:4	
	Event Phase	101 4	102 4	103 4	104 4	105	106 4	107	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	70A	6	[.] J	₹* • 	113 4	114 4	115 4	116	117 4	118 4	119 4	120 120	121 4	122 4	123 4	124	125 4	125 4	127 4	128 4	129 4	130 4	131 4	132 4	133 4	134 4	135	136	+ + + + + +		140 4	141 4	142 4	143	144 4	145 4	146 4	147 4	148 4	149 150 4	* · · · · · · · · · · · · · · · · · · ·

page 3

	Compare the	ATTOR NO WATTOR	BOOM NO WATER		DEET DEETH ZOOM MESH	NULVE ON WOLLS	SOOM NO WATER	COM NO WATTER	SUDM NO WATER		300M WITH BOTTLES	WATER BOTTLES AS MISCL	300M NO WATER	SUOM NO WATER	SUDD NO WALLEN	300M NO WATER	300M NO WATER	APPRET DUN	NOW OF LODGER	MISC 1	MISC I		WATER GC	MJSC 1 AT THAT OF TRANSPORT	ACOUSTIC RIN		MISC 1		MLAUCE.	300M NO WATER	SOOM NO WATER	SUUM NO WATER		TWO BOTTLES		300M NO WATER	SCOR NO WATER	SOOM NO WATER		WATER BOTTLES ONLY 200M MITH BOTTLES	OWENS RIG	300M NO WATER NEAK RIG
Rventiog for Jr	End time	20-01-88 1.: 20	20-01-88 14:20	20-01-88 1. 47	20-01-88-10:50	20:01-88.10:14	20.01-88 2.41	20-01-88-21-55	20-01-88 2: 05 21-01-88 0: 20	21-01-88 00 40	21-01-88 0: 00	21-01-88 0. 10	21-01-88 0: 10	21-01-88 07 15	21-01-88 04 38	21-01-88 1 17	21-01-88 1 46	00-01-00 01 11	22-U1-00 20-10 01-01-80 00-10	21-01-88 17:19	21-01-88 2: 37	2201-88 20 49	22-01-88 09:15	22-01-88 10 50	22-01-88 04 38	23-01-88 2002	23-01-88 27 50	24-01-88 49 23	24-01-68 1/ 10	25-01-88 09 4H	25-01-88 1 18	25-01-88 1 13	25-01-88 18:00	25-01-88 JA: 15	25-01-88 17 11	25-01-88 15:31	25-01-88 22:14	25-01-88 2005	26-01-88 08	26-01-88 00 42	26-01-88 S	26-01-88 HE HE
	on Activity	8710	STD	PAR	STD PNET	87D	STD	STD	CLC CLC	FNET'	STD	STD	STD	STD	010 012	STD	STD	CIDE		H20	H2O	UOR	H2O	H20	01D	nor	H2O	UOR 1120	FNRT	srb	STD	STD CTD	PAR	STD	PNET	STD		STD	FNET	STD	BUOY	STD
	t Static		S000	\$003	5003 2003	8000	S000	. 8000 2000	8000 8000	5000 5000	\$003	\$003	S000	2000 2000	8000 8000	S000	2000		0000	SOOD	8000	2000	S000	2000 2000	0002	5000 5000	S000	2000 2000	5000 S000	S000	S000	2000 2000	5004 5004	S004	S004	0008	0000	2000S	S000	5004	5004	S000
	Grid Transec	G0505	G0504	G0405	G0405 G0405	60406	60306	.60305 2022	60304 - 60404 -	G0404	G0405	G0405	60206	G0205	G0204	G0105	G0106	0000m	10003 T0003	10003	T0003	T0003.	T0003	T0003	GUUUU	T0004	T0004	T0004	60000 60000	G1611	G1612	G1613	61512	61512	G1512	G1511	61415	G1413	60000	G1512	01016	60000
	t time	5-88 13:00	1-88 14:00	1-88 15:06	1-88 16:20 1-88 17:53	1-88 19:03	1-88 20:21	1-88.21:29	1-88.22:50 1-88.22:50	1-88 00:30	1-88 02:33	1-88 03:30	1-88 05:55	1-88 06:56	1-80 UX:U3	1-88 10:59	1-88 12:26		1-00 17:04	1-88 17:11	1-88 22:20	1-88 06:43	1-88 09:12	1-88 15:44	1-88 01.35	1-88 05:40	1-88 22:19	1-88 06:00	1-88 17:25	1-88 09:05	1-88 10:40	1-88 12:23	1-88 15:10	1-88 16:30	1-88 17:36	1-88 19:10	1-88 20:28	1-88 23:05	1-88 01:56	1-88 02:58	1-88 05:40	1-88 09:30
	Phase Star	4 20-0	4 20 0	4 20-0	4 20-0	4 20-02	4 20-0	4 20-0	4 20-0	4 21-0	4 21-0	4 21-0	4 21-0	4 21-0	0-12 F	4 21-0	4 21-0	4	0-12 4	4 21-D	4 21-0	4 22-0	4 22-0	4 22-0	0-22 4	4 23-0	4 23-0	4 24-0	4 24-0	4 25-0	4 25-0	4 25-0	4 25-0	4 25-0	4 25-0	4 25-0	0-02 4	4 25-0	4 26-0	4 26-0	4 20-U	4 26-0
	Event	151	152	153	154	99 1 2 2 2	157	158	591- 128-	1.61	162	163	164	165	165	168	169	170	7/7 7/7	173	174	175	176	177	140 140 140	180	181	182	183	185	186	187	189	190	191	192	ror Tag	195 195	196	197	1001	200

Marena,

1000

Page 4

Evenilog for Jpus

DAGE 5

li u con t	the second	Start time	Grid Transalt	Statl on	Activity			
	JUD III.							- 1
201	4	26-01-88 12:4:	3	Súinh	S.7.1)	Sec. 13:00	ADD NICKY WATER NE RIG	
202 203	44	26-01-88 14:40	1 90000	8000	STH	26.01 - 59.16:37.	action what also	
204	4.	7-01-00 10-1	7 (1210	C000	c mD	07.41.68 13.10	TOOM NO WATER	
0112 0112	4	27-01-88 14:05	- GIG12	SODO	STD	27-01-83 14:30.	SOUM NO WATEN	
742	4	27-01-88 15:50	0 61212	8008 2	PAR	27.01 25 16:15		
208	4	27-01-88 16:2:	2 61212	S005	STD	27-01 58 17:14	LOOM CAST	
209	4	27-01-88 17:11	6 61212	S005	L'and	27-01 -3 17:46	X	
210	4	27-01-88 18:30	0 61213	8000 8000	STD	27-01-86 18:44	SOOM NO WATER	
-1 (-1 (4	27-01-88 19:50		5000 5000	STJ Car	27-01 80 20:01	CORR NO WALLEY	
212	4, 4	27-01-88 20:4	21115 21115	5000 8000	urs urs	27-01 88 22:20	SODM NO WATER	1 a.,
212	77	27-01-88 22:3	7 G1111	2000	H2O	27-01-38 22:57	RISC 1	
215	4	27-01-88 23:0	5 G1211	\$000 \$000	STD	27-01-38 23:25	SOOM NO WATUR	
216	4	28-01-88 00:1	7 G1311	2000	STD	28 01 83 00:33	SOOM NO WATER	
217	4	28-01-88 03:00	0 G1212	\$005 2225	STD	28-01-88 03:44	KATER SAMPLES ONLY	
218	4	28-01-88 04:3		. 8005 2005	STD	28-01-53-04:57	LEOR	
	4 <	28-01-88 05:3.	8. GIZIZ -	5005 6000	1001 1001	28-01-00 23:00 98.01.89 0 0 -18-	ANDRES MATTER NEAR RIG	
0220	ਧਾਂ *	20-01-00 00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0		2000 2000	e Ta Ta	28-01-38% 12:23	SOOM NO WATER. NEAR RIG	
1000	+ √	28-01-00 11-0		SDOO	STE	28-01-38 16:50	TOTAL CANT - WATER, NEAR B	0
222	4	28-01-88 17:1	3 0000	5000	ЕЛБ РАБ	28-01 85 17:45	NEAN RIG	
224	.4	28-01-88 18:00	0000 0	2000	STD	28-01-88 18:33	SOOM NO WATER, NEAR RIG	
225	4	28-01-88 21:01	00000.	S000	STD	28-01-68-21:21	SOOM NO WATER, NEAR KIG	
226	4							
122	4 .							
622	4							
230	4							
231	4	31-01-88 20:0	7 G2523	\$000 \$000	STD STD	31-01-38 20:30	SOOM NO WATRA	
232 233 233	44	31-01-88 21:2	6 62522	2000		59:17 22-10-12	WITE MATER	
2.34	4	31-01-88 22:4	0 62521	S000	STD	31-01-88 23:10	BOON NO WATER	
235	የ	01-02-88 00:0	3 G2621	2000	STD	010288 00:24	SOOM NO WATER	
236	4 4	01-00-00 01.0	1 00800	0000	c tr Li	01-02-88 01-42	SOOM NO WATER	
238	4 4	7-10 00-70-TO	77070 T	2020	тт 2			
239	4	01-02-88 03:1	5 G2623	S000	STD	01-02-88 03:31	SODM NO WATER	
240	4	01-02-88 04:4	7 G2624	2000	STD	01-02-88 05:05	300M NO WATER	
241	4.	01-02-88 06:2	0 G2625	8000 2000	STD (TTS	01-02-88 06:55	300M NO WATER	
200	d₁ •	T:00 00-00-10	07075	0000	110	01-00 00 00 00 00	SOCH WARER	
244	4 4	7.00 00_70_TA	0 44940	20000	λ Γ			
245	4	01-02-88 14:5	9 G2525	2006	PAR	01-02-88 15:45		
246	4	01-02-88 16:1	9 G2525	S006	STD	01-02-88 17:42	1500M WITH WATER	
247	4	01-02-88 16:5	7 G2525	\$006	PNET	01 - 02 - 88 = 17 : 03	50M 200M	
248	4	01-02-88 18:4	0 G2524	5000 2000	STD	01-02-88 18:55	SUUM NO WATER	
249	4 4	0]-02-88 18:0	0 62424	sooo	arb c	-01-02-20-10-10- 96-10-88-60-10-	SOUR NO WATER	
2010.2		A-12 00-21-70		5000 S	1112			

9

Eventiog for JB08

4

ेग्री एवं

C.20M OFF CUMBERLAND RAY 190M WITH WATER, C.20M OFF CUMBERLAND BAY C.20M OFF CUMBERLAND BAY 50M 200, CANCELLED ON NAVLOG 300M MLTH WATER , NEAR NG 300M MLTH WATER FOR BORAG NEAR ALG WRONG CODE ENTERED CUMBERLAND BAY STROMNESS TOWARDS STAULEY 300M NO WATER, NEAR ELG 300M NO WATER, NEAR RIG 300M NO WATER, NEAR RIG CANCELLED ON NAVLOG WATER SAMPLES ONLY 300M NO WATER 300M NO WATER 3000M WITH WATER 300M NO WATER 300M WITH WATER WATER SAMPLES 300M WITH WATER OWENS RIG 300M NO WATER 300M NO WATER 300M NO WATER 300M NO WATER WATER WATER WATER 300M NO WATER 300M NO WATER SOUN NO WATTON WATER WATER OWENS RIG A ON WOOS SOOM NO V Grapments 13554 135554 135554 135556 135556 135556 135556 135556 135556 135556 135556 135556 135556 135556 135566 135556 135556 1355566 135556 135556 135566 135566 135566 1355566 135566 135566 135 16:45 18:40 02:15 09:10 11:126 15:28 17 45 18:03 00:25 03:14 05:00 20:27 21:36 00:25 02:04 17:59 12:06 01:30 02:59 04:40 06:05 18:10 03:48 17:05 15:45 0.5:12 22:45 03:30 02:14 07:446639 09-02-88 02-02-88 08-02-88 08-02-88 01-02-88 05-02-88 03-02-88 03-02-88 03-02-88 04-02-88 04-02-88 04-02-88 88 08-02-88 02-02-88 02-02-88 02-02-88 02 - 02 - 8802-02-88 02-02-88 02-02-88 03-02-88 03-02-88 03-02-88 0.3-02-88 03-02-88 03-02-88 03-02-88 03-02-88 03-02-88 04-02-88 04-02-88 04 - 02 - 8804-02-88 04-02-88 04-02-88 04-02-88 04-02-88 88 05-02-88 05-02-88 05-02-88 05-02-88 05-02-88 08-02-88 08-02-88 End time 02-02-88 05-02-05-02-Artivity: FUET STD STD STD STD PAR STD FNR STD STD STD BUOY FNET ENET RMT RMT RMT RMT RMT RMT STEP TAR Ser 19 STD. 1.02 dut Station \$000 \$000 \$000 \$000 \$007 \$007 5000 5000 \$000 \$000 \$000 5000 S000 110012 5000 5000 5000 5000 3000 \$007 \$007 5000 5000 \$000 SCON 5008 5008 5000 S000 5000 30.00 5000 0003 and. \$000 0005 0000 5007 5008 8000 0005 0005 0000 1000 juu(je Transect G2421 0000 0000 62428 0000 0000 (52126 (52126 (521256 (521255 (52323) (523233) (523233) (523233) (523233) (523233) (523233) (523233) (523235) (523235) (523235) (523225) (523225) (523225) (523225) (523225) (521225) (521226) (522226) (522226) (522226) (522226) (522226) (522226) (522226) (522226) (522226) (522226) (522226) (522226) (522226) (522226) (522226) (522226) (5222226) (5222226) (5222226) (5222226) (5222226) (5222226) (5222226) (5222226) (5222226) (5222226) (5222226) (52226) (5226) (52226) (52226) (526) (526) G2323 G2323 G2222 G2222 G2223 G2123 G2123 G2122 G2122 G2121 _0000 0000 0000 _0000 T0001 0000 62525 62525 0000 0.000 0000 G2221 G2321 G2322 nnon 0000 0000 0 r i d 02:04 08:50 09:55 11:20 12:39 14:08 03:29 04:20 06:15 09:37 11:00 15:4216:2817:2521:13 02:3804:2307:28 16:05 14:4516:3009-02-88 02:35 09-02-88 18:05 16:34 05:47 22:18 02:12 03:00 04:0706:38 09:35 11:581.4:2815:4016:25 19:40 18:4420:02 00:05 01:4613:31 17:4018:4602:04 17:1517:56 00:10 02:28 04:22Start time 03-02-88 03-02-88 04-02-88 04-02-88 08-02-88 0 er 04-02-88 05-02-88 03-02-88 03--02-88 04-02-88 04-02-88 04-02-88 05-02-88 05-02-88 05-02-88 05-02-88 08-02-88 08-02-88 --02-88 -02--38 02-38 02--02--88 -02-83 02-02-88 -02-88 02 - 02 - 8802-02-88 02-02-88 03-02-88 0.3-0.2-88 03-02-88 03-02-88 03-02-88 03-02-88 03-02-88 03-02-88 04 - 02 - 8804 - 02 - 8804-02-88 04 - 02 - 8804-02-88 05-02-88 05-02-88 05-02-88 08--02--88 Phase 265 275 276 276 285 286 287 22202102288 Event 256 257 261 268 269 272 273 273 295 295 298 2098 2098 2098 2098 252 252 252 254 255 258 259. 260 263 264 267 270 271

00:00

3000

	Grid			Even for for J	
Start time	Transec	t Station	Activity	End 1,1%6	
10-02-88 0	6:28 T0001	8000	UOF	10-02 38 22:05	DOWN EXLOW THE SEA SO PAR, HOW I WONDER WHERE LOGI-
6 10-02-88 1 8 11-02-88 1	5:27 T0001 8:31 T0001	0003 2000	H20 H20	10-02-88 15:38 11-02-88 19:05	FURE WATER SURFACE WATER 311 THYM/BLOCK
6-12-02-88-1	2:43 T0001	\$000 8	H20	12-05 08 12:48	
6 12-02-88.1	5:17 T0001	8060	112.0	12-02-20-15:20	SURFACE WATER AND ALLES
6 12-02-88 1	7:30 T0001	5000 5555	H2O	$12-02 \le 8 \le 17:33$	SURFACE WATER AMINO ACINE
6 12-02-88 2 7 16-09-88 9	1000L 07:07	8000 8000	NZO XRT	18-01 6A 20:21 16-02-28 23:48	SUPERCE NATES APPART OF SUS
7 17-02-88 0	13:24 T0001	8000	STD	17-02 88 04:25	JORR WITH BOTTLESS
7 17-02-88 0	15:26 T0001	2000	XBT	17-02 88 05:28	
7 17-02-88 0	16:12 T0001	8000 2000	XBT	17-02-88 06:15	
7 17-02-88 0	7:08 T0001	0502	87.D 493	17-02 FC 07:40	AAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
7 17-02-88 0	18:50 10001 19:12 T0001	S000	XHT XHT	17-02 88 09:14	Protocomenta 19 194
7 17-02-88 0	1001 1001	2000S	XBT	17-02-88 09:55	TA FAILED AT 90M
7 17-02-88 1	0:08 T0001	S000	XBT	17-02-88 10:09	
7 17-02-88 1	0:54 T0001	8000	STD	$17 \cdot 02 \cdot 88 $ 11:10	
7 17-02-88 1	2:35 T0001	8000 2000	XET	17-02-88-12:37	
7 17-02-88 1	4:15 T0001	5000 2000	STD	17-02-88 14:54	SECOND ATTEMPT
7 17-02-88 1	5:55 T0001	S000	XET	17-02-88 16:00	
7 17-02-88 1	6:38 T0001	8000 8000	XRT	17-02-88.16:45 17-02-44 18:45	14 2000M
7 17-02-88 1	9:55 T0001	SOGO	XBT	17-02 88 20:00	
7 17-02-88 2	20:49 T0001	8000	XPT	17-02-88 20:54	
7 17-02-88 2	21:55 T0001	5000	STD	17-02-88 22:20	- MOOS
7 17-02-88 2	23:22 T0001	5000 5000	XET Ver	17-02-88 23:25 19-09-88 00-16	2 L
7 18-02-88 0	10001 CT:00	SOOD	117 117	10702-88 03:45 18-02-88 03:45	1.1 3800M
7 18-02-88 0	14:26 T0001	3000	XPT	18-02-88 04:48	
7 18-02-88 0	05:30 T0001	S000	XBT	18-02-88 05:32	T - 7
7 18-02-88 0	06:27 T0001	8000 8000	STD	18-02-88 07:30	1000M
7 18-02-88 1	12:04 T0001	2000 2000	BUOY	18-02-88 12:05	TOGA BUOY NO 1
7 18-02-88 1	L2:37 T0001	2000	UOR	18-02-88 18:09	
7 18-02-88 1	[5:38 T0001	5000	H2O	18-02-88 15:40	SURFACE SAMPLE FOR GRADIENT BLOCK
7 18-02-88 1	15:51 T0001	5000 5000	ECHO	18-02-88 18:10	LOGGED TO OCLAN LOUGHN
7 18-02-88 1 7 18-02-88 1	16:02 T0001	5000 5000	XET	18-02-88 17:14	
7 18-02-88	10:15 70001	2000	STD.	18-02-88 $20:20$	2100M
7 18-02-88 2	20:48 T0001	\$000	UOR	18-02-88 23:59	
7 18-02-88 2	21:29 T0001	S000	XBT	18-02-88 21:30	
7 18-02-88 2	22:17 T0001	2000	XBT	18-02-88 22:18	
7 19-02-88 0	08:41 T0001	5000 2000	01.S	19-02-88 09:22 19-05-88 10:94	5000
7 19-02-88 1	11:25 T0001	2000	XBT	19-02-88 11:27	
7 19-02-88 1	12:14 T0001	8000	PUOY	19-02-88 12:15	TOGA BIOY NO 2
7 19-02-88 1	12:24 T0001	5000 2000	21년32 11년32	19 01 38 14:27 10-02-88 16-31	WATCHING QVERTINGA BUGY
T DD-20-RT L	10:30 10001	2000	AP.1	TO OT DO 70 DT	

. . .

्रतिहर्षः -

Eventies for Juns

8

<u>ित्र ह</u>

			Gr1d				
Event.	Pbase	Start time	Transect	Station	Activity	Rnd time	Comments
350	7	19-02-88 18:19	10001	SOOD	ХRТ	19-02-88 16.2	
351		19-02-88 17:19	T0001	3000	571)	19-02-88 17.5	O RALERN TO CLUER ARCEARA
3.52	-	19-02-88 $17:53$	10001	2000	STI)	19-02-88 18:1	R. R.R.F.A.T. Ch. F.S
353	c	19-02-88 18:19	10001	8000	STD	19-02-88 17:4	3 RUPEAT OF RELARDS
354	2	19-02-88 19:52	T0001	S000	XBT	19-02-88 19:5	
355	7	19-02-88 20:42	T0001	2000	XPT	19-02-88 20:4	
356	L_{-}	19-02-88 21:40	10001	\$000 S	STD	30 01 88 01 3	9 3600M
357	-	20-02-88 02:50	10001	2000	XPT	20-02-88 02:5	3 T-1
358	~	20-02-88 03:51	70001	0008.	XET	20-02-88 03:5	3 7-7
359		20-02-88-04:50	1.000.01	3000	STD	20-02-88_01:1	9 500M
360	2	20-02-88 06:22	T0001	8000	XPT	20-02-88 0m:2	5 J - 7
361	7	20-02-88 07:10	T0001	2000	XBT	20-02-88 07:1	4 1-7
362	7	20-02-88 08:20	T0001	S000	STD	20-02-88 08:3	5 EVENT CANCELLED DUE TO RAD WEATHER
363	2	21-02-88 01:10	T0001	S000	STD	21-02-88 03:1	1 3500M
364	7	21-02-88 04:18	10001	S000	XBT	21-02-88 04:2	0 T-7
365	2	21-02-88 05:05	T0001	S000	XBT	21-02-88 05:0	7 T-7
366	6	21-02-88 06:05	T0001	S000	STD	21-02-88-06:3	7 500M
367	2	21-02-88 07:35	T0001	S000	XET	21-02-88 07:3	8 T - 7
368	7	21-02-88 08:30	T0001	2000	XBT	21-02-88 08:3	3 T-7
369	2	21-02-88 09:21	T0001	S000.	BUOY	21-02-88 09:2	Z TOGA BUOY NO 3
370	2	21-02-88 09:39	T0001	S000	STD	21-02-88 11:3	6 3300M
371	7	21-02-88 12:50	T0001	S000	XBT	21-02-88 12:5	3 T-7
372	7	21-02-88 13:49	T0001	S000	XBT	21-02-88 13:5	0 1-7
373	ß	21-02-88 13:57	T0001	2000	UOR	21-02-88 18:3	2
374	8	21-02-88 13:58	T0001	S000	ECHO	21-02-88 18:4	
375	œ	21-02-88 19:01	T0002	S000	ECHO	21-02-88 23:0	4
376	œ	21-02-88 22:55	T0002	S000	H2O	21-02-88 23:1	6 PUMP WATER
377	8	21-02-88 23:13	T0003	S000	ECHO	22-02-88 06:00	
378	Ø	22-02-88 06:09	T0004	S000	ECHO	22-02-88 11:3	9 LOGGED TO OCEAN LOGGER
379	8	22-02-88 12:04	T0005	S000	ECHO	22-02-88 17:1	5 LOGGRD TO OCRAN LONGTRE
380	œ	22-02-88 16:03	T0005	S000	H2O	22-02-88 16:0	5 SURFACE SAMPLE FOR 3H AA BLOCK EXPT
381	8	22-02-88 17:25	0000	5000	PAR	22-02-88 18:2	Λ
382	8	22-02-88 19:49	0000	S000	STD	22-02-88 20:30	
383	8	22-02-88 20:42	T0006	S000	UOR	23-02-88 11:0	
384	~	22-02-88 20:42	T0006	S000	ECHO	23-02-88 11:0	2 LOGGED TO OCEAN LOGGER
385	8	22-02-88 21:58	T0006	8000	H2O	22-02-88 22:3	9 PUMP INLET
386	ф (23-02-88 00:01	70006	8000	H20	23-02-88 00:0	2 SURFACE SAMPLE FOR BACTERIA COUNTS
387	ω (23-02-88 03:10	T0006	2000	H2O	23-02-88 03:1	8 SURFACE SAMPLE FOR EACTERIA COUNTS
388	ο o	23-02-88 06:50	70006	\$000 \$	H2O	23-02-88 06:5	5 SURFACE SAMPLE FOR PACTERIA COUNTS
800	α	23-02-88 11:05	0000	1005	020	23-02-88 11:01	5. SURFACE SAMPLE FOR BACTERIA COUNTS
390	α	23-02-88 II:21	-0000	5001	STD	23.02-88 11:5	
1600	xο	Z3-0Z-88 14:59	0000-	2002	STD	23-02-88 16:00	0. 500M The second s
	0 0	00-01 00-20-02	0000	0000	L'AR Amp	0.87 00.20.00	
202	0.0	50.00 00 00 00 00	0000	5005 5005	ol D DNEm	0:02 00 00 00	
460 305	0 œ	00.02 00-20-02	0000-	crine	L'NEJ	2:02 00-20-02	3. 0.011
396	, co	23-02-88 22:48	0000	S004	srb	23-02-88 23:4	2 Knim
397	8					3	
398	8	23-02-88 04:21	0000	2003	STD	24-02-88 05:1	3 WATER ONLY
399	æ	24-02-88 05:18	0000	S003	STD STD	24-02-88 610 30	D WATER ONLY

Weit May 23

Page 9

Grid Transect Station Activity Ref -0000 5003 5003 5003 24 -0000 5003 5003 24 -0000 5003 5003 24 -0000 5003 5003 24 -0000 5003 5003 24 -0000 5003 70 24 -0000 5003 70 24 -0000 5003 70 24 -0000 5003 70 24 -0000 5003 70 24 -0000 5003 70 24 -0000 5003 70 26 -0000 5003 71 26 -0000 5003 71 26 -0000 5003 71 27 27 -0000 5003 71 27 27 -0000 5003 71 27 27 -0000 5	an log for du	 2.10 2.10 2.10 2.10 2.23 2.23 	12 - 14 16:45 17:31 12:- 17: 33 17:58 17:58 17:58 17:58 17:58 18:20 17:58 18:20 10:59 10:59 10:59	<pre>E = 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2</pre>	2-88 00:05 CURKENT M 2-88 00:05 CURKENT M 2-88 00:34 LOG TO OL 2-88 03:35 SURFACE W 2-88 08:35 SURFACE W 2-88 13:20 14C INCUE W 2-88 13:20 14C INCUE 2-88 13:20 10 00 2-88 13:06 NECK INCU 2-88 13:06 NECK INCU
	By Station Activity Bud	8003 CJ4 25 8003 CJ4 25 8000 FNET 25 8000 FNET 25	6007 FAR 20- 5007 H2A 20- 5007 STD 20- 5007 FNET 20- 25-	 \$3000 FNUCT \$5007 STD \$5007 STD \$5007 BUOY \$5000 H20 \$5000 STD \$5000 STD \$5000 STD \$5000 STD \$64-58-56-56-56-56-56-56-56-56-56-56-56-56-56-	5000 FCM 27 5000 FNET 27 5000 FAK 28 5000 FAK 28 5000 FIOY 28 5000 FIOY 28 5000 FIOY 28 5000 FIO 28<
그는 그렇게 잘 하는 것 같아요. 그는 것 같아요. 그는 것 같아요. 이렇게 있는 것 같아요. 이렇게 하는 것 같아요. 그는 것	Grid Trausect				

Eventlog for JB08

page 10

																				11 (S.M.)	Shutun.														Wat and a construction of the					CK FOR HELEN				
				NNVL 54												IG TANK .	N NAVLOG			A MARKELARY CLASS CLASS	T INGTITATION MA			G TANK			•								an reow werron	and rear and the second states	G TANK			D FROM WELLDE				
Coments	SURFACE WATER SANDA	SURFACE WATER SANFLA	SURFACE WATER SAMPLE	INCUEATION IN HOLDIN	SURFACE WATER SAMPLE	ALC NOT A CONTRACT OF A CONTRACT	SOM DEPTH, 200 MESH	LOG TO OCEAN LOGGER	FLUS SURFACE WATER	SURFACE WATER SAMPLE		LOG TO OCEAN LOGGER SHRFACT WATTER SAMPLE	WATER SAMPLES ONLY	DECK INCUBATION	LOG TO OCEAN LOGGER	INCUBATION IN HOLDIN	NOT TV AS RECORDED (And the state of t	FLUS CURRENT METER	CUG TO OCEAN LOFGER CUDEACE WAREE FOR WE	JUNE WALLE WALLER FUR LE	LOG TO OCEAN LOGGER		INCUBATION IN BOLDIN			LOG TO OCEAN LOGGER		LOG TO OCRAN LOCCER	CANCELLED	150M	LOG TO OCEAN LOGGER	680M	LOG TO OCEAN LOGGER	SHDEACE WATER CAMPLE		INCUBATION IN HOLDIN		KING GEORGE BAY	SURFACE WATER SAMPLE		LOG TO OCEAN LOGGER	I OG TO OCEANI OCCEE	500M TV VVPUNUVVVII
me:	88 06:05	88 09:03	88 05:49	88 13:10	88 14:18 00 16:25		88.18:00	88 21:53	88 22:45	88 22:43	88 03:39	88 03:39 88 01:13	88 04:59	88 06:34	88 06:34	88 12:58	88 17:25	88.14:10	88 27:00	00 00 00 00 00 00 00 00 00 00 00 00 00	88 03.35	88 19:34	88,13:33	88 13:02	88 13:02	88 16:49	88 16:50 56 15 50	88 18:20	00-21-50 88-51-58)	88 22:52	88 03:04	88 03:55 88 03:55	88 19:42	00 10:00 88 10:17		88 13:15	88 18:30	88 20:25	88 20:32	88 22:31	88 22:33		88 04:55
y Rout ti	38-02	29 02	- 20 - 62 -	20-62	-20-62	20 62 50 62	29-02-	20-03-	29-02-	- 20 - 68 - 68	01-03-	01-03-0	01-03-	02-03-1	02-03-1	01-03-1	01-03-1					02-03-0	02-03-8	02-03-1	02-03-8	02-03-8	02-03-8	02-03-3	0-20-20)))	02-03-8	03-03-1	03-03-8	00-03-0	01-00-00 	2	03-03-8	03-03-8	03-03-6	03-03-8	03-03-8	03-03-0	04-03-03-0	04-03-1
Act IVIT		H20	H2O	C14 	0ZH OZH	STD.	FNET	NCHO	STD	120	NOR	ECHO H2O	STD	G14	ECHO	C14	NON	CAL	o LT o		STD S	RCHO	NOR	C14	STD	UOR	ECHO	010 101	NCHO FICHO		STD	ECHO	STD	ECHO ECHO	100P	000	Cld	UOR	STD	H20	UOR	ECHO	CHDA RCHD	STU
		Contraction of the second s	think:	3000		5000	0008	Calcul	8008	8008	2000	2000	8008	8003	S000	5000 2000	2000a	000	1002	00000	2005	0008	S000	0008	S004	\$000	5000 2000	2003 2000	0000		S002	2000	500J	2000	0000		5000	S000	5001	S001	2000	8000	2000 2000	2003
Grid Transer	Roout	TOOOR	10006	10009	BOODT	10000	0000	10010	T0000	10000	TIOOL	T0011	T0000	T0000	T0012	T0012	70012	10000	T00013	CTOOL .	10000	T0014	T0014	T0014	T0000	T0015	T0015	10001	T0016) 1))	0000	T0017	0000	10018			70018	T0018	_0000	0000	10001	10001	10002	0000
ine	18. A6: A0	00:30.83	8.09:46	8 11:08	01.91 8.01 8.16.01	8 16:46	8 17:44	8 18:00	8.21:59			8 01:10	8 04:01	8 06:38	8 07:30	8 11:00		0	0 70.30	00-700 8	8 07:50	8 08:29	8 10:37	8 11:00	8 11:00	8 14:38	8 14:38	20:17 0	8 18:34 8 18:34	4	8 22:22	8 22:57	8 03:15	8 04:08		•	8 11:17	8 13:55	8 19:42	8 20:29	8-20:35	8 20:35	00-00 8	8 04:25
Phase Start 4		8 29-02-8	8-20-62-8	8 29-02-8	8-00-00 8	8 29 02 8	8 29-02-8	8 29-02-8	8 29-02-8	8-20-62 8	0 00 00 00 0	8 01-03-8	8 01-03-8	8 01-03-8	8 01-03-8	8 01-03-8	8-60-10 8			0-00-20 0 8-00-00 8	8 02-03-8	8 02-03-8	8 02-03-8	8 02-03-8	8 02-03-8	8 02-03-8	8 02-03-8		8 02-03-0		8 02-03-8	8 02-03-8	8 03-03-8	8 03-03-8 0 03-03-8	8 03-00-30 8 03-03-8	ο S S S C C	8 03-03-8	8 03-03-8	9 03-03-8	9 03-03-8	9 03-03-8	0-00-00 B	0-00-00 B	9 04-03-8
Bvent	449	450	451	452	5 C F	455	456	457	458	459	400 401	462 462	463	464	465	466	401	400 400 400		471	472	473	474	475	476	477	478	Cov	481	482	483	484	485	480	407	489	490	491	492	493	494	495	497	498

	HELEN											ĿŢ																		
	ILLERCK FOR											INT BLOCK EX																		
	ID FROM WI		K TANK			Cartwo TH						MP GRADIJ	IG TANK					Nat					IG TANK	Ē	21			LE GC	IG TANK	
113 Cispatae († 1.8	LOUTO OCEANLOGUER	LE DOCEANDOGRAN	INCONTION IN HOLDIN 650M		LOG TO OCEANLOGGER	LOA TO OCEANLOGGER	TEN MON YOTTEM 2014 AND A	LOG TO OCRANLOGGER		LOG TO OCEANLOGGER	LOG TO OCRANLOGGER	SURFACE WATER FOR TH	INCUENTION IN HOLDIN	FIXED DEPTH		3000%		SURFACE WATER FOR HE	LOG TO CCEANLOGGER	3000M LGG TO OCEANLOGGER	LOG TO OCEANLOGGER	1000M croteen nier crw	INCORVING IN BOLDIN	2600M	LOTA OF JARBERGE ABC SODE	LOG TO OCEANLOGGER	150M Arrived at signy is	SIGNY IS WATER SAME	INCUEATION IN HOLDIN	LOG TO OCEANLOGGER
for J.	06:40 05:29	14:00 14:00	13:09 14:45	17:36	17:35	20:42	21:07	00:07 00:07	01:13	05:10	06:34 09:34	10:20	11:13	14:16 14:26	1 1 1	17:00		17:53 21:00	21:17	2 3 :30 3:36	08:23	09:25 11/8	14:08	13:36	17:04	50:40	21:16	23:05	13:19 20:08	00000
Event log End time	0.4 - D 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	04-68 85 0 04-63-88 3	04-03-88 04-03-68 3	04:03 85.	04-03-880 04-03-880		04-03-88 2	05-03-88-0 05-03-88-0	05-03 88 0	05-03-89 (05-03-85 (05-03-86	05-03-88		05-03-88)))	05-03-88	05-03-88	05-03-83 : 06-03-83 :	06-03-88	06-03-88 (06-03-88 (06-03-88	06-03-88	06-03-88 06-03-88	06-03-88	06-03-88	06-03-88	07-03-88	01-00-00-00-00-00-00-00-00-00-00-00-00-0
Activity	BCHQ H20	ECHO UOR	C14 STD	UOR	ECHO	ECHO	STD STD	UOR ECHO	STD	ECHO	STD	H20	C14	UOR RCHO		STD		HZO UOR	ECHO	STD	ECHO	STD	C14	STD	FCHO STD	ECHO	STD	H20	C14 H20	HZU FCHO
Station	8000 8000	5000 5000	5000 5001	2000	5000 5000	2000 2000	5003	5000 5000	S004	2000	5005 5000	2000	5006 5006	5000 5000	> > > >	S007		5007 5000	2000	5008 5000	S000	S009	5000 5000	\$010	5000 5011	2000S	S012	2000	8000 2000	0000
Grid Transect	T0003 T0003	T0004	T0004 _0000	T0001	T0001	T0002	0000	T0003 T0003	0000-	T0004	0000	T0005	0000	T0006 T0006	>	0000		0000 T0007	T0007	0000	T0009	0000		0000	T0011	T0012	0000	00000 ⁻	0000	
<u>4</u>	05:26	08:09 09:49	11:07	14:56	14:50	0 0 0 7 - 0 - 0 - 0	18:26 20:47	21:18 21:18	00:36	01:24	06:20 06:30	06:57	U8:30 11:05	11:35)) 	15:21	T () T	17:50	17:52	21:20	07:18	08:23	11:11	11:59	13:43	18:04	20:45	23:00	11:06	20:02
и(1 1.те.)	4 -03 88 4 -03 88	4~03~88 4~03~88	4-03-88 4-03-88	4-03-88	4-03-88	4 - 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	4-03-88 4-03-88	4-03-88 4-03-88	5-03-88	5-03-88	5-03-88		5-03-88	5-03-88)))	5-03-88		5-03-88 5-03-88	5-03-88	5-03-88 5-03-88	6-03-88	6-03-88	6-03-88 8-03-88	6-03-88	6-03-88	6-03-88	6-03-88	6-03-88	7-03-88	7-03-88
23 Phase 3	: 8 ć	ကမဲ ဘီတီ	0 0 0 1	0 10 1	10 0		10 0 10 0	10 0	10 0	10 0	10 0			100		10 0		10 0	10	0 01 0 10 0		10 0		10 0			100	90 10 10	10 0	
E Kar Kar		205 205 205	503 504	205 208 208	507	000 000 000	610 511	6 6 6 6 6 6	₩. 100	ు చిల చిల్లె	517	្ត ភូមិរំ រ	521 521	522 722	524 624	525 226 226	527	ස ඊ. දුරු දු දුරු දු	530		3 6 6 6 6 7 7 7 7 7	534 234	0 0 0 0 0 0	537	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	540	541	045 543	544	2 U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2																														

т 1 Dage 11

-12-jú

				7.72						
Event	Phase	Start, ti	ime	Transect	Station	Activity	End time		Comments	
549	11	08-03-85	3 02:38	70002	8000	UOR	08-03-88	06:27		•
034	•••• •	08-03-88	3 06:40	0000	S017	STD	08-03-88	10:10		
				50004	0000	POR.	08-01-00	10-10	REPUBLIC RAPIA DAN TO LER	
0 0 0 0 0		08-03-85		0000	SOOO	(14	08-03-88	13:09	INCHEATION IN HOLDING TANK	
000 220	+ +	08-03-85	13:07	0000	5016 5016	STD	08-03-88	14:38	CLORE:	
292 292	÷	08-03-85	14:51	10004	\$000	NON	01-03-88	1 18		
556		38-03-88	3 14:52	T0004	5000	RCHO	01-03-88	1. 23	LOG TO OCKANLOGGEN	
557	Ę	08-03-85	3 17:30	0000	1.11.12	61.D	08-03-88	1 , 25	TARAN SALAR SA	
558	11	08-03-85	3 18:32	T0005	5660	ROR	08-03-88	21:15		
559	11	08-03-86	3 18:33	T0005	S000	LCHO	08-03-80	2.45	LOG TO OCEANLOGGER	
560	11	08-03-86	3 18:33	0000	S014	STD	08-03-88	21:15	1480M	
561	11	08-03-86	3 22:50	T0006	\$000	UOR	09-03-88	02:50		
562		08-03-86	3 22:50	T0006	\$000	RCHO	09-03-88	03:00	LOG TO OCEANLOGGER	
563	•	09-03-88	3 02:56	0000	Sola	STD	09-03-88	0.4:28	2500M	
564		09-03-88	3 03:52	0000	50.13 102	TANT	0903-88	056	40N 300U	
565	+-i ; 1 ;	09-03-86	3 04:38	r_{0007}	0000	ECHO	09-03-88	00000	LOG TO OCEAN LOGGER	
566		09-03-85	3 04:43	10001	8000). 80100).	UOR 2015	08-03-80	02:03	NOT UNDULATING!	
567	r= ;	08-03-80	3 08:02	0000		STD Fair	08-03-88		NO WATLK	
563		09-03-88	3 10:15	8000J.	5000 5000	ECHO.	08-03-88		TOD TO OCRANDOWERN	
2697		38-20-80	01:10 	10008	2000 2000	00K	09-03-83		TMPHDATION IN BOLDING TANK	
0/0 #71	-1 F -1 F		0 -10 2 -1-0	0000	2011 2011	STD.	00-00-00	14-42		
572		18-80-60	14:58	T0009	SOOD	lion	09-03-88	17:32		
573		09-03-85	3.14:58	T0009	\$009	ECHO	09-03-88	17:48	LOG TO OCEANLOGGER	
574	11	09-03-85	3 17:51	0000	8010	STD	09-03-88	19:44	3176M	
575		38-60-60	3 19:54	T0010	S000	ECHO	09-03-88	23:00	LOG TO OCEANLOGGER	
576	F	09-03-36	3 19:54	T0010	8000	UOR	09-03-88	22:46		
577	¥-4 ⊊-4	09-03-88	3 23:03	0000	\$003 ·	STD	10-03-88	· 01 : 25	3600M	
578		10-03-85	3 01:34	TIOOL	8000 8000	NON	10-03-88	1911	BACKTRACK TO CHEL FLATURE	ANT TOW:
5) CO	-i + -i +	10-01-07	0 1 1 1 1 4 F	TTOOT	0000	ECHO CTD	10-00-00-01		PARAVAVA IN VELE PERIODA No wared	
000	-1 + -1 +		201101 0		0000	110	10-03-80	1	THOURS THOUSE THOUSE THOUSE THOUSE THOUSE THE THOUSE THE THE THE THE THE THE THE THE THE TH	
100	-1 - -1 -	10-03-80-01	00.11.0	T0019	8000 8000	NCHO	10-03-83		LOG TO OCTANLOGER	
2 C 2 C 2 C		38-80-0F	14:49	T0019	SCOO	H2O	10-03-88	14:12	3H AMTNO ACTD TEMP GRADIENT	RLOCK FYPT
584	4 1	10-03-85	3 15:00	0000	S007	STD	10-03-88	17:03	NO WATER 3275M	
585		10-03-85	3 17:05	T0013	SODO	ECHO	10-03-88	19:1,3	LOG TO OCEAN LOGGICR	
586	1 1	10-03-85	3 19:59	0000	SOOR	STD	10-03-88	20:00	NO WATER. 3005M	
587		10-03-85	3.22:09	T0014	2000	ECHO	10-03-88	20:00	LOG TO OCEANLOGGER	
588		11-03-85	3 02:06	0000	5005	STD	11-03-88	04:05		
589	11	11-03-85	3 04:40	T0015	\$000	ECHO	11-03-88	07:33	LOG TO OCEANLOGGER	
590	11, 2	11-03-85	3 07:40	0000	S004	STD.	11-03-88	06:50	3200M	
591	11	11-03-85	3.09:57	T0016	S000	ECHO	11-03-88	12:43		
592	11	11-03-86	3 13:10	0000	S003	STD	11-03-88	11::45		
593	11	11-03-85	3 15:49	T0017	0003	ECHO	11-03-88	18:36	LOG TO OCEANLOGGER	
594	11	11-03-88	3 18:43	0000	S002	STD	11-03-88	19:04		
595	11	11-03-85	3 19:14	T0018	\$000	ECHO	11-03-88	27:12	LOG TO OCEANLOGGER	
596	11	11-03-85	3 22:17	0000	S001	STD	11-03-88	22:31	LEOM CONTRACTOR STATES	
282	11	11-03-85	3 22:42	T0019	0008	ECHO	12-03-88	09:15	LOG TO OCCEANLOGGER	
2055		21-03-1C	24:62 8	1001		07H				

្រងខ្លួន 13

्म • •

			Grid				
Event	Phase	Start time	Transect	Station	Activity	Rud Alive	Comments
663	12	12-03-88 18:33	0000	S000	H2O	12-03 ×8 18:35	STRONGES
600	12	12-03-88 18:49	0000	S000	H2O	12-03:83 19:03	STROMNESS
603	12	17-03-88 17:15	-0000	S000 .	H2O	11-03-88, 17:23	GETTVIKEN
602	12	17-03-88 17:38	T0001	S000	ECHO	19403-88 11:53	LOG TO OCEANLOGGER
603	12	17-03-88 17:59	T0001	S000	H20	17-03-88 18:02	
604	12	17-03-88 20:18	T0001	S000	XBT	17-03-88 20:19	1-4
605	73	17-03-88 21:05	T0001	S000	H2O	17-03-33 21:08	WELTDECK SAMPLE FOR HELED
606	12	17-03-88 21:12	T0001	5000	XBT	17-03-88 21:14	
603	12	17-03-88 22:23	70001	S000	XP:T	12-00 kg 28:34	
603		17-03-88 22:38	1000.	8000	XBT	17 60 41 22:39	T & AT AFGMAN DAMA D'UN'.
609	57 -7	17-03-88 23:20	T0001	\$000	XET	17-03-20 23:24	
. 610	2	18-03-88 00:20	T0001	5000 5200	XBT	18-63 80 00:23	
611	27	18-03-88 01:18	1000L	5000 2000	XBT	18-03-88 01:20	
212 212		18-03-88 02:44	[0001.	5000 5000	XBT	18-03-28 02:46- 	
		18-03-88 04:05	TOOOL	8000 2005	XIST.		
614		18-03-88 05:20	TOOOT	0000	XIST	10 101 82 00150 ** 01 82 00150	~ ~ ~
	7	18-03-88 05:58	TOOOL	8000	VIST VIST		
9 2		18-03-88.07:58	10001	5000	XBT	18-03-88-08:02	1/
617	12	18-03-88 09:00	T0001	5000	XBT	18-03 88 09:02	
5 2		18-03-88 10:00	Tonol	S000	XET	18 63 86 10:03	
619	7	18-03-88 11:00	10001	5000 2000	YBY	18-03-20 11:04 19 22 80 10:04	
020	7	10-02-00 12:00	Tonor	0000	ABI	10101100 TZ:04	
22	2 T 7	18-03-88 13:00	TOOOL	5000	XHX	10-00-00 13:04	
229	77	18-03-88 13:32	10001	8000 5060	HZO VDm	18-03-02 13:35	WILDEADA ZAFIJAB POK RELED
22 C 22 C 22 C		18-03-88 13:39	LOUOL	5000	XIST STREET	18-03 83 13:42	
624	2	18-03-88 14:01	10001	5000	XPT	18-63-82 14:03	
	21	1803-88 14:47	TOOL	8000 5111	XET		
979 979 1		18-03-88 15:30	10001	2000	XBT	18 03-88 15:3]	
627	21	18-03-88 15:47	10001	5000	HZO	18-03-88 15 :50	WELEDRUK SAUTH FOR BELEN
628 628	C 2 	18-03-88 15:54	10001	2000	H2O	18-03-88-1 5 :58	
6.7.9 9		18-03-88 16:20	TOOOL	5000		18-03 88 16:21	1-1
630	7	18-03-88 16:35	[0001	5000	HZC		WELLERGK RAMELE FOR HELER
		18-03-88 17:58	10001	8000 2080	HZ()	18-03-28 17:28	RDUR KXET MUUNU "" "
202		18-03-88 18 28 18 18 18 18 18 18 18 18 18 18 18 18 18	10001	2000	APA		
χ. 2	24 (17)	10:31 33-61-61	10001	5000 2000	XBI		
400 400	20	10-00-00 10:10 10-00 00 00:11	FOOD	0000	AB1 vn m	41.00 00 00.01 • • • • • • • • • • • • • • • • • • •	小学 1997年1月1日(1997年)(1997年)(1997年)(1997年)(1997年)(1997年)(1997年)(1997年)(1997年)(1997年)(1997年)(1997年)(1997年)
	9 C -		10001		VDT VDT	10 00 00 01 10	
6 6 6 7 6 7	21	01-12 00-00-01	10001		Ab1 Wmw	07 17 00 00 01	
	20	10-02-00 22:10	10001		AD.L WDW	13122 00.001.01	
0000	1 C 4 F	10-03-00 20:75	10001		vov	10-05-00 60-51 10-05-64 00-18	おかった ひょうしん しんしょう ションサイン
	20	10-00-00-01-10 10-00-00 01-15	10001		100	10-03 20 01-18	
2 F Q	10	10-03-00-01-14	10001		VBT VBT	10-03-88 02:16	
- 1-2- - 1-2-2-	101	10-03-88 07:42	T0001	SOOO	XRT	19-03 88 02:43	ŋ7
643	10	19-03-88 03:34	T0001	SOOD	XBT	19-03-88 03:36	T-4 FATLED
644	12	19-03-88 03:51	T0001	2000	XBT	19-03-88 03:54	T-7
645	12	19-03-88 04:27	T0001	S000	XBT	19-03-38 04:29	T-7 FAILED
646	12	19-03-88 04:45	T0001	5000	XBT	19-03 88 04:48	7-7
647	12	19-03-88 05:39	T0001	S000	XBT	19-02 88 05:42	7.7
648	12	19-03-88 05:39	- T0001 -	0000	H2O	19-03 88 05:42	WELLDRCK SAMPLE FOR HELE

4 1		
D9	성상 이는 것은 것이 가지 않는 것은 것은 것을 알려야 한다. 것은 것은 것은 것은 것은 것은 것은 것은 것을 가지 않는 것을 가지 않 같은 것이다. 이는 것은	
	에 같은 것 같아요. 이는 것 같은 것 같아요. 이는 것은 말에 가장 것 같아요. 또한 것은 것은 것이 있는 것이 가 있는 것이 있다. 같아요. 이는 것 같아요. 것 같아요. 이는 것은 것 같아요. 한 것은 것은 것은 것은 것은 것은 것은 것이 있는 것은 것이 있다. 같이 있는 것은 것이 있는 것이 있다. 같이 있는 것은 것이 있는 것	
	특별한 가장	
	활동은 가지 않는 것이 것 같은 것 같아요. 이는 것에 가지 않는 것이 가장 동안에서 가장 관계적대로 알았는 것이 가장 것 같다. 특히 아이는 것 같아요. 것 같아요. 이는 것 것 같아요. 이는 것 같아요. 이는 것 같아요. 아이는 것이 것 같아요. 이는 것이 것 같아요. 이는 것이 같아요. 이는 것이 같아요.	
	물 가장 같은 것 같아요. 이는 것 같아. 유해 가장 같아. 이는 것 같아. 이는 것 같아. 이는 것 같아. 가지 않는 것 같아. 가지 않는 것 같아. 이는 것 같아. 이는 것 같아. 물 것 같아. 같아. 그는 것 같아. 유해 있는 것 같아. 것 같아. 것 같아. 이는 것 같아. 이는 것 같아. 가장 있는 것 같아. 것 같아. 이는 것 같아. 이는 것 같아. 이는 것 같아. 이는 것	
	홍수 방법이 있는 것 같은 않 는 것이 가지 않는 것 같은 것이 있는 것 같은 것을 가지 않는 것이 같다. 것이 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 것이 있는 것이 있다. 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 것이 있는 것이 있다. 것이 있는 것이 있다. 것이 있는 것이 있다. 것이 있는 것이 없다. 같은 것이 있는 것이 없다. 것이 있는 것이 있는 것이 있는 것이 없는 것이 없다. 것이 있는 것이 없는 것이 없 것이 않는 것이 없는 것이 없다. 것이 않은 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 않은 것이 없는 것이 없는 것이 없는 것이 않은 것이 없는 것이 않는 것이 없는 것이 않는 것이 않는 것이 않는 것이 않는 것이 않는 것이 않이 않이 않는 것이 않은 것이 않은 것이 않는 것이 않은 것이 않은 것이 없다. 것이 않은 것이 않은 것이 않은 것이 않는 것이 않 것이 않아, 것이 않는 것이 않는 것이 않아, 것이 않아, 것이 않아, 것이 않이 않아, 것이 않이 않이 않아, 것이 않아, 않아, 것이 않아, 것이 않아, 않아, 것이 않아, 것이 않아, 않아, 것이 않아, 것이 않아, 것이 않아, 않아, 것이 않아, 않아, 것이 않아, 것이 않아, 것이 않않 않이 않아, 않이 않아, 않아, 것이 않아, 않아, 않이 않이 않아, 않이 않이 않아, 않아, 않이 않아, 않이 않이 않	
	가 있는 것이 같아요. 이렇게 가지 않는 것이 있는 것이 가 같이 같이 같이 같이 있는 것이 같은 것은 것은 것이 같이 있는 것이 같이 있는 것이 있는 것이 같이	1
	같은 것은 것은 가장에 가지 않는 해야 해야지는 것이다. 것은 것은 것은 것은 것은 것은 것을	
	가 같은 것이 있는 것이 바꿨다. 이 가 있는 것은 것이 가 있는 것이 있는 것이 있는 것이 있는 것이 가 있는 것이 가 있다. 것이 가 있는 것이 가 있는 것이 가 있는 것이 있는 것이 있는 것이 가 같은 것이 같은 것이 있는 것	
	에는 것이 아이지 않는 것 것 <mark>것 않</mark> 는 것이 아이지 않는 것 같은 것이 있는 것이 것 같은 것이 있었다. 것 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 특히 아이지 아이지 않는 것 같은 것 같은 것 같은 것이 있는 것이 같은 것이 있는 것이 같은 것이 있는 것이 같은 것이 있는 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 있는	
	을 가장 같은 것 같은 것 이 전 1000 이 가지 않는 것 같은 것 같이 가지 않는 것은 것이 가지 않는 것이 가지 않는 것이 가지 않는 것이 가지 않는 것이 있다. 가지 않는 것이 가지 않는 것 같은 것 같은 것 같은 것 같은 것 같은 것은 것은 것이 가지 않는 것이 같은 것 같은 것이 같이 있다. 것은 것 같은 것은 것 같은 것이 같이 있는 것이 같이 있다. 것이 같은 것이 있는 것이 있는	
53 42 20	물건이 있는 것 같은 것은 것 것 같은 것 같은 것 같은 것 같은 것 같은 것 같	
ame.		
8 0 0 0	DALANIH BADANAN MANANANAN MANANANAN MANANANANAN MANANANAN	
Г Ч	14404704808080808080808080808080808080808	
4.4	n Nacional Anna Anna Anna Anna ann an Anna Anna	
Jol a	န္းတဲ့ က က က က က က က က က က က ။ ေတာင္က က က က က က က က က က က က ။ ေတာင္က က က က က က က က က က က	
ant 1.1) ကြိုင်းနောက်နောက်က နောက်ကို ကြိုင်းကို ကြိုင်းနေသည်။ ကြိုင်းနောက်ကြိုင်းကို ကြိုင်းနိုင်ငံသည်။ ကြိုင်းကိုကို ဒီကာဘာတာအတက္ကိုထိုက်ကာကာကို ကြိုင်းနေသည်။ ကြိုင်းနောက်ကြိုင်းနေသည်။ ကြိုင်းနောက်ကြိုင်းနောက်ကြိုင်းနေသည်။ ဂြီကာတာအတက္ကိုက်ကက္ကာကာကာက ကြိုင်းနေသည်။ ကြိုင်းနေသည်။ ကြိုင်းနေသည်။ ကြိုင်းနောက်ကြိုင်းနေသည်။ ကြိုင်းနောက်ကျို	
Ev End	tertu de la colore de la terra de la colore d La colore da colore de la colore d Colore da colore de la colore de	
£.	가 있는 것 같은 것 같	
2		
Act.	マメメメメメガを目を行われていた。 こうかい かんかい かんかい かんかい かんかい かんかい かんかん ひょう ひょうごう	
5		
•• ••		
	을 했 않 것 것 않 것 것 않 것 않 않 않 않 는 것 같은 것 같	
500		
pi.		
6 Ê I		
	$ \begin{array}{c} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{C} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{C} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{C} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{C} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} A$	
e e e		
	တက္ကေတာ့ အတက္က က တက္က တက္ တက္က အတက္ က က က က က က က က က	
t.	00000000000000000000000000000000000000	
ů. V	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
4 9	NOUNANANANA	
2 2 2 3	같은 것이 있는 것이 같은 것이 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 가지 않는 것이 있는 것이 있는 같은 것은 것이 같은 것이 있는 것이 같은 것이 있는 것이 있	
11 12 12	경 약 약 수 1월 19일 전 2월 19일 전 2월 19일 전 19일 19일 전 19일	
4) - 5 - 9 - 2 -	መር መስከት መስከት መስከት በመንግ በመንግ እንዲያስ እንዲ የሚያስ መስከት መስከት መስከት መስከት እንዲያስ እን የሚያስ እንዲያስ እንዲያስ መስከት መስከት እንዲያስ እ	
ž Ť		
	승규는 이번 것이 같이 집에 집에 있는 것이 같이 있는 것이 있는 것이 많이 많이 있는 것이 같이 많이 있는 것이 같이 많이 많이 있다.	

SQL> /

		-Number of	Total Time
Cruise	Activity	events	(hours)
JB08	BUOY	8	120.30
JB08	C14	18	87.18
JB08	ECHO	69	579.75
JB308	FNET	19	4.72
JB08	H20	110	14.00
JB08	PAR	21	17.42
JB08	PCM	1	.53
JB08	PNET	12	2.85
JB08	RMT	19	14.88
JB08	STD	211	157.65
JB08	TOGA	3	.05
JB08	UOR	51	286.75
JB08	XBT	81	3.48
JB08	ZNET	1	.07

14 records selected.

SQL> SQL>

Appendix 4. Revised "General Safety Notes", and "Instructions for Watch Leaders"

SAFETY PROCEDURES - 0BP08 (1987-88)

This notice highlights or amplifies particular topics in the NERC 'Guidance Notes for Safety in Marine Operations' - it is in no way a substitute for that document. All members if the science group should have familiarised themselves with the appropriate parts of the 1987 revision of the NERC document before undertaking any deckwork or other tasks of potentially hazardous nature.

In the case of deck operation, the ship's officer, petty officer, senior seaman or science group watch leader is responsible for all aspects of safety. He or she will stop operations in the event of non-compliance with the safety code or of any other hazard.

In the case of laboratory procedures, the principal scientist or watch leader is responsible for safety.

However, in both situations all individuals must take the maximum possible care to ensure their own wellbeing and that of others.

Principal scientist and watch leaders are identified in the duty roster as appropriate.

Safety equipment - hard hats and safety boots (with steel toecaps) - must be worn in designated areas and where personnel are working in the way of warps or suspended loads. Harnesses will be worn and secured to strong

points whilst working gear from the foredeck, hydrographic platform or trawling deck when gates are open.

It is the individuals' responsibility to care for and check their safety gear. If in doubt, the suspect item should be replaced. Only under exceptional circumstances should other people's gear be used.

Trawl gates or other barriers should be open for the minimum time necessary for an operation. Whether closed or open, the trawl gates should be secured with the locking pins.

Members of the science group must not work any winch, or handle ropes on the drum ends.

They should not work aloft except under ideal conditions and with the prior permission of the Chief Officer.

No member of the science group should go onto the foredeck or the fo'c'sle without first obtaining clearance from the officer on the bridge. This rule will extend to all outside activities in rough conditions.

All scientific activities involving the deployment of gear from the ship, either when stationary or underway, should be cleared with the officer on the bridge by the watch leader or someone designated specifically by him/her. This line of communication should be adhered to rigidly. Departure from this practice may result in independent action by deck or bridge personnel which might unwittingly jeopardise personal safety or risk equipment damage.

Whenever gantries or winches are not in use, securing pins must be fitted, clutches disengaged and brakes applied; even if this is only for a short time. This is because hydraulics tend to creep and could cause considerable damage if allowed to do so.

The two bulkhead hydraulic valves for the linehauler should be closed whenever it is not in use. Otherwise, other hydraulic machinery on the ship may be affected adversely.

Those people wishing to view deck operations should ensure that they do so in a way which neither endangers themselves nor puts the crew or science personnel at risk. Ideally they should place themselves on the boat-deck or in the alley-ways, at a safe distance from the working area. They should not enter the working area during operations. Even so, they may require safety gear when moving to or from the safe vantage point.

Finally, please remember to evaluate all actions carefully. Alertness and judgement can both be diminished by long watches and after weeks at sea.

December 1987

WATCH LEADER

Those people designated Watch Leader by the Principal Scientist have the full responsibilities outlined in Section 3.3 (page 10) of the NERC Guidance Notes for Safety in Marine Operations. Their paramount consideration should be for the safety of operations during their watch. This covers both personnel and gear.

They should delegate personnel to carry out deck activities and should ensure the following -

Personnel working on deck are adequately instructed in the procedures used;

Appropriate safety gear is being used and is in good condition; Personnel are kitted up and ready to work well in time for the scheduled time of the activity.

The Watch Leader should liaise with the bridge regarding the deployment and recovery of gear, and should ensure that any special instructions or deviations from normal practice are agreed in advance.

If there is no-one in the labs, for instance when the ship is hove to in bad weather, the Watch Leader or personnel designated by him or her are responsible for hourly inspection of the laboratories, including the Black Hole, and the tweendecks if safe to do so.

The Watch Leader should update the handwritten event log as events start and finish and should transfer these data to the event-data-entry programme. He or she should also enter the start and finish of events on

the Navlogger, using the keypad in the Wet Lab. Corrected times for events should be marked on the schedule on the lab noticeboard.

When working regular shifts, the Watch Leader should wake people well in time for their allocated shift and should ensure that they are up. People working irregular shifts may leave wake-up requests, and these should be treated similarly.

At handover, the Watch Leader should ensure that his/her replacement is completely familiar with work underway and any potential problems.

The Principal Scientist retains overall responsibility for all aspects of the Science Groups activities. If there is the slightest doubt as to whether it is necessary to refer to him/her, the Watch Leader should contact the Principal Scientist immediately (even when he or she is asleep).

December 1987