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1. OVERVIEW

Mike Sparrow

This report describes the tenth occupation of the Drake Passage section, established during the

World Ocean Circulation Experiment as repeat section SR1b, first occupied by Southampton

Oceanography Centre in collaboration with the British Antarctic Survey in 1993, and re-occupied

most years since then.

The main objectives are:

(i) to determine the interannual variability of the position, structure and transport of the

Antarctic Circumpolar Current (ACC) in Drake Passage;

(ii) to examine the fronts associated with the ACC, and to determine their positions and

strengths;

(iii) by comparing geostrophic velocities with those measured directly (by the lowered ADCP),

to determine the size of ageostrophic motions, and to attempt to estimate the barotropic

components;

(iv) to examine the temperature and salinity structure of the water flowing through Drake

Passage, and to identify thereby the significant water masses;

(v) to calculate the total flux of water through Drake Passage by combining all available

measurements.

The tenth occupation of the SOC!/!BAS Drake Passage section was certainly an eventful one.

Having arrived in Stanley without incident, we joined the JCR early in the afternoon of December

1st, only to find that we would be doing the section southbound, rather than northbound as

planned.  The reason for this was the unusual amount of ice to the west of the peninsula.  It was

hoped that delaying our arrival at Rothera would give the ice time to clear.

Once onboard we leapt into action to get everything set up and ready. There was some delay as it

took a while to locate the LADCP equipment that had been left on board from a previous cruise

(for example, we found the LADCP PC in the explosives locker and the battery pack tied up in

the deck engineers workshop…). Once located it was several days before the LADCP equipment

could be made to work (more of this later), but luckily Mark Brandon was available to give

invaluable help getting everything else set up and running.

Despite some rather feisty weather, the CTD work started on the evening of December 2nd with a

full depth test station just to the south of Burdwood bank (station 01). The CTD section itself

started on December 3rd.  There were some problems on stations 05, 07 and 08 with data
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acquisition failing in mid cast. We believe that this was linked to failure of the Trimble during

station 07 which resulted in a disturbance to the NMEA signal.  The LADCP was put into

operation from this station onwards.  A shallow second cast was made on stations 16 and 26 a

shallow second cast was made to allow water samples to be collected for biogeochemical analysis

(a separate project for the University of East Anglia).  These casts were not processed beyond the

raw data.  After concern about a possible problem with tension readings, the winch was slowed at

200!m during the downcast on station 23 for a safety check on the wire.  On station 27 the power

button was accidentally pressed instead of a bottle being fired at the bottom of the cast.  The

downcast data was saved to file, and Deck Unit and software restarted for the upcast.  These files

were then merged for further processing. On the return leg we took the opportunity to repeat

stations 02, 03 and 04 with the LADCP.  No salinity samples were taken on these stations.  The

cruise track is illustrated in Figure 1.1.

The extreme ice conditions to the west of the Antarctic Peninsula (Figures 1.2 and 1.3) made this

cruise noteworthy.  Despite several days of backing and ramming we were forced to turn back or

run the risk of ‘doing a Shackleton’.

The JCR was full to capacity on this trip, with scientific personnel, personnel destined for

Rothera, a Sky New Team and a novelist.  There were several additional science projects (coring,

mooring deployment, buoy recovery) but these are not mentioned further in this report except

where they impact the Drake Passage section.
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Figure 1.1:  Cruise track for JR115.

The cruise track (using data from BestNav) is illustrated in red, with the locations of the CTD

stations and the positions of the float deployments represented by red circles and yellow squares,

respectively.
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Figure 1.2:  Extent of ice cover on Sunday 12th December 2004 at 20:51:02.

Data is from the NOAA HRTP multi-plane data.

Figure 1.3:  The JCR in the ice off the Antarctic Peninsula.

Photograph taken from a Dash-7.
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2. CTD DATA AQUISITION AND DEPLOYMENT

Elizabeth Hawker, Adam Williams

2.1 Introduction

A Conductivity-Temperature-Depth (CTD) unit was used on JR115 to vertically profile the

temperature and salinity of the water column.  35 full depth stations were completed, and 2 repeat

shallow stations for biogeochemical sampling only.  The full depth stations included a test station,

the 30 stations for the SR1b Drake Passage section, with three repeat stations south of Burdwood

Bank (to collect LADCP data) and one station in the ice in the Bellingshausen Sea for Dr. Mark

Brandon.  The method of acquisition and calibration of the data are described below.

2.2 CTD unit and deployment

The CTD unit was a Sea-Bird 911 plus with dual temperature and conductivity sensors, an

altimeter, an oxygen sensor, a PAR (photosynthetically active radiation) sensor and a fluorometer.

For stations 7 to 31 a UKORS downward looking LADCP was added to the outside of the main

CTD frame in a protective cage (see Section 2).  A fin was also added to the frame to reduce

rotation of the package underwater.

The CTD unit was connected to an SBE 32, a 12 position carousel water sampler (S/N 3215759-

0173) and an SBE 35 Reference Temperature Sensor (S/N 0315759-0005).  For the first 6

stations, 12 Niskin bottles were fitted to the rosette, while for the later stations, bottles 2 and 3

were removed to accommodate the LADCP battery.  The CTD data were logged via an SBE 11

plus deck unit to a 1.4GHz P4 PC, running Seasave Win32 version 5.28e (Sea-Bird Electronics

Inc.).  This new software is a great advance on the DOS version, allowing numerical data to be

listed to the screen in real time, together with several graphs of various parameters. The data rate

of recorded data for the CTD was 24 Hz.

The CTD package was deployed from the mid-ships gantry and A-frame, on a single conductor

torque balanced cable connected to the CTD through the BAS conducting swivel. This CTD cable

was made by Rochester Cables and was hauled on the 10T traction winch.   The general

procedure was to start data logging, deploy, and then to stop the CTD at 10 db pressure.  The

pumps are water activated and typically do not operate until 30-60 seconds after the CTD is in the

water.  If the word display on the Deck Unit is set to ‘E’ then the least significant digit on the

display indicates whether the pumps are off (0) or on (1).  After a 2 minute soak, the package was

raised to just below the surface and then continuously lowered to near bottom, with the Niskin



18

bottles being closed during the upcast.  The final CTD product was formed from the calibrated

downcast data averaged to 1!db intervals.

The altimeter gave correct readings throughout, finding the bottom at its maximum range of about

100!m.  The Simrad EA500 and EM120 systems would sometimes lose the bottom or give

erroneous readings on station, so care was needed to interpret these digitised records.

The ideal station positions for the Drake Passage section are listed in Table 2.1 and a summary of

all CTD deployments is given in Table 2.2.  The CTD configurations used during the cruise are

detailed in Table 2.3, together with the serial numbers of the relevant sensors.  The corresponding

calibration coefficients are given in Table 2.4.

On station 05, acquisition of the CTD data stopped at 630!m on the downcast.  The cast was

restarted and data acquisition again failed during the upcast at 813!m.  The deck unit was re-

powered and a full cast successfully completed.  On station 07, data acquisition again failed on

the downcast (at 100 m).  The CTD was brought to the surface, the software restarted and a full

cast was then completed.  At the start of station 08, the CTD PC hung when waiting for the

NMEA position data.  We believe that this was linked to failure of the Trimble during station 07

which resulted in a disturbance in the NMEA signal.  To allow the seasave software to initialise

and data acquisition to begin, the NMEA input was disabled (within the configuration file,

115ctd[nn].con).  After this, there was no further interruption to data acquisition on any casts.

We believe that if configured to accept NMEA position data, the deck unit waits for an NMEA

message so that when communication fails, the system hangs such that no CTD data is acquired.

Removing the NMEA signal from the CTD configuration resulted in a noticeable decrease in the

time taken to load the Seasave.exe programme suggesting the NMEA input may have a

detrimental effect on the running of the software.

On stations 16 and 26 a shallow second cast was made to allow water samples to be collected for

biogeochemical analysis (a separate project for the University of East Anglia).  These stations

were not processed beyond the raw data.

On station 23, the winch was slowed at 200!m on the downcast for a safety check on the wire,

after concern about a possible problem with tension readings.

On station 27 the power button was accidentally pressed instead of a bottle being fired at the

bottom of the cast.  The downcast data was saved to file, and Deck Unit and software restarted for

the upcast.  These files were then merged for further processing.
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2.3 Data Acquisition

1. At the end of each CTD cast, four files were created by the Seasave Win32 version 5.28e

module:

100ctd[nn].dat a binary data file

100ctd[nn].con an ascii configuration file containing calibration information

100ctd[nn].con an ascii header file containing the sensor information

100ctd[nn].bl an file containing the data cycles at which a bottle was closed on the rosette

These files were saved on the D:\ drive of the CTD PC with a separate folder for each CTD.  They

were also copied to the N:\ drive, as soon as possible, as a back up.

2. The CTD data was converted to ascii and calibrated by running the Sea-Bird Electronics

Inc. Data Processing software version 5.28f Data Conversion module.  This program was used

only to convert the data from binary, although it can be used to derive variables.  This output an

ascii file 100ctd[nn].cnv.

The sensors were calibrated following:

Pressure Sensor:

† 

P = C 1-
T0

2

T 2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 1- D 1-

T0
2

T 2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

where P is the pressure, T is the pressure period in mS, U is the temperature in degrees Centigrade,

D is given by  D ! = ! D1!+!D2U, C is given by C ! = ! C1!+!C2U!+!C3U2,  T 0 is given by

T0!=!T1+!T2U!+!T3U2!+!T4U3!+!T5U4.

Conductivity Sensor:

† 

cond =
g + h f 2 + i f 3 + j f 4( )

10 1+d t +e p( )
where the coefficients are given in Appendix A, , p is pressure, t is temperature, and d!=!CTcorr

and e!=!Cpcorr.

Temperature Sensor:

† 

Temp (ITS - 90) =
1

g = h (ln f0 f( )+ i (ln2 f0 f( )+ j ln3 f0 f( )( )
Ï 
Ì 
Ô 

Ó Ô 

¸ 
˝ 
Ô 

˛ Ô 
- 273.15

where the coefficients are given in Appendix A, and f is the frequency output by the sensor.
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3. The Sea-Bird Electronics Inc. Data Processing software version 5.28f Cell Thermal Mass

module was then used to remove the conductivity cell thermal mass effects from the measured

conductivity. This takes the output from the data conversion program and re-derives the pressure

and conductivity to take into account the temperature of the pressure sensor and the action of

pressure on the conductivity cell.  The output file is of the form 100ctd[nn]_ctm.cnv.  This

correction followed the algorithm:

Corrected Conductivity = c + ctm

where,

ctm!=!(-1.0!*!b!*!previous!ctm)!+!(a!*!dcdt!*!dt),

dt!=!(temperature!-!previous!temperature),

dcdt!=!0.1!*!(1!+!0.006!*!(temperature!-!20),

a!=!2!*!alpha!/!(sample!interval!*!beta!+!2)

and  b!=!1!-!(2!*!a /!alpha) with  alpha!=!0.03 and beta!=!7.0.

All files were transferred from the CTD PC to the unix system using samba and placed in the

directory ~/pstar/data/ctd/ascii_files/115ctd[nn]/ where nn was the station number of the cast.

2.4 SBE35 High Precision Thermometer

The BAS SBE35 high-precision thermometer was fitted to the CTD frame. Each time a water

sample was taken using the rosette, the SBE35 recorded a temperature in EEPROM.  This

temperature was the mean of 10 * 1.1 seconds recording cycles (therefore 11 seconds) data. The

thermometer has the facility to record 157 measurements but the data was downloaded

approximately every few casts and then transferred to the unix system using samba.  To process

the data, communication was established between the CTD PC and the SBE35 by switching on

the deck unit.  The Seabird terminal programme was used to process the data.  This is a simple

terminal emulator set up to talk to the SBE35.  Once you open the program the prompt is ">".

The SBE35 will respond to the command ‘ds’ (display status) by telling you the date and time of

the internal clock, and how many data cycles it currently holds in memory.  A suitable file name

can be entered via the ‘capture’ toolbar button, and the data downloaded using the command ‘dd’

(dump data).  The data currently held in the memory is listed to the screen. This can be slow due

to the low data transfer rate.  Once the download is completed the 'capture' button should be

clicked to close the open file, and the memory of the SBE 35 cleared using the command

“samplenum=0”.   To check the memory is clear the command ‘ds’ should again be entered

before shutting down the system.  The SBE35 data files were divided into separate files for each
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station with 12 records (one level for each bottle) called 100sbe[nn].  These were transferred to

unix via samba and placed in the directory ~/pstar/data/ctd/ascii_files/SBE35/.

The data were converted to temperature using the Sea Bird calibration routines:

† 

Temp ITS - 90( ) =
1

a0 + a1 ln n( )+ a2 ln2 n( )+ a3 ln3 n( )+ a4 ln4 n( )
Ï 
Ì 
Ô 

Ó Ô 

¸ 
˝ 
Ô 

˛ Ô 
- 273.15

and 

† 

t90 = slope ¥ t90 + offset

where n is the output from the SBE 35 and the other constants are listed in appendix!A.

2.5 Salinity Samples

At each CTD station ten (or twelve before the LADCP WH unit was fitted) Niskin bottles were

closed and sampled for salinity analysis.  The primary purpose of this is to calibrate the salinity

measurements made by the CTD sensors.  Samples were taken in 200!ml medicine bottles.  Each

bottle was rinsed three times and then filled to just below the neck, to allow expansion of the

(cold) samples, and to allow effective mixing upon shaking of the samples prior to analysis.  The

rim of each bottle was wiped with a tissue to prevent salt crystals forming upon evaporation, a

plastic seal was inserted into the bottle neck and the screw cap was replaced.  The bottle crates

were colour coded and numbered for reference.  The salinity samples were placed close to the

salinometer (sited in the chemistry lab) and left for at least 24 hours before measurement.  This

allowed the sample temperatures to equalise with the salinometer.

The samples were then analysed on the BAS Guildline Autosal model 8400B, S/N 63360 against

Ocean Scientific standard seawater (batch P143 and P144).  One vial of OSIL standard seawater

was run through the salinometer at the beginning, and at the end of each crate of samples enabling

a calibration offset to be derived and to check the stability of the salinometer.  Once analysed the

conductivity ratios were entered by hand into an EXCEL spreadsheet, converted to salinities and

transferred to the unix system using samba.  They were then read into an ascii data file and used

in the further CTD data processing.

30 Standard Seawater vials were used for the analysis and the mean difference in the salinity

obtained from replicate pairs was 0.0037 with a standard deviation of 0.00033.

2.6 CTD data processing

Further processing of the CTD data using pstar scripts (in unix) required both the salinity data

from the bottle samples and the SBE35 temperature data.  The pstar execs check for the required
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input files, assuming that they have been placed in the correct directories.  The final unix CTD

files were a 1!Hz time series for the full cast (for use in LADCP processing, for example), and a

1!db file of the downcast.  Following the procedure in JR94, to simplify reprocessing the scan

numbers for the start of the downcast maximum depth and end of cast were selected from the

24!Hz file, and entered into a file called 115station_dcs.  Scripts requiring knowledge of these

scan numbers were modified to interrogate this file.  The scan number for the bottom of file was

found automatically using refval.  The start and end scan numbers were found from listings to the

screen, judging the start of the downcast after hauling to the near surface, and selecting a scan

number shortly before the CTD broke the surface at the end of the cast.

115seactd0

This exec converted data from the Seabird ascii file 115ctd[nn]_ctm.cnv to pstar.  The start time,

water depth, latitude and longitude were extracted from the ascii file, simrad file and navigation

files respectively.  The initial output file was 115ctd[nn].raw.  A second file, 115ctd[nn], was

created with calculated salinities and potential temperatures.  These were moved to the directories

~/ctd/raw/ and ~/ctd/rough/ respectively.

115seactd1.1

This exec finds the datacycle of the maximum pressure of the ctd cast and appends it to a file

115stations_dcs.

115seactd1.2

This exec finds the datacycle for the start and end of good data (i.e. from the start of the downcast

to the end of the upcast).

115seactd1.3

This exec inserts the datacycles for the start and end of good data into the file 115stations_dcs.

115seactd2

This exec extracts data from 115ctd[nn] corresponding to the bottle firing times taken from the

Seabird ascii file 115ctd[nn].bl.  Data were extracted for 3 seconds before the bottle closed and 5

seconds after the bottle closed (a total of just under 10 seconds).  These 10 seconds of data are

averaged to give a file containing a single data cycle for each bottle firing.  The output file was

115ctd[nn].btl.

115seactd3

This exec extracts data from 115ctd[nn] corresponding to the 24 second measurement period of

the SBE35.  The 24 seconds of data after the bottle firing time were binned on bottle number

andthe output file produced was 115ctd[nn].sbe35.
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115seactd4

This exec applies an automatic edit to the file 115ctd[nn] to remove data where the CTD is out of

the water.  This is assessed using the noise in the conductivity.  The start and end of the file are

binned into 5 second bins.  The start of good conductivity data was defined as the first bin in

which the standard deviation of conductivity was less than 0.05 mScm-1 and similarly for the end

of good conductivity data.  The output was directed to 115ctd[nn].ed1.

115samblank.exec

This exec creates an empty sample file 115sam[nn] containing 12 data cycles corresponding to

the positions of the 12 bottles on the BAS rosette.

115samfir

This exec pastes variables, pressure, and temperature, conductivity and derived salinity for each

sensor pair, from the CTD data into the sample file 115sam[nn].  The bottle salinity data is also

entered into the sample file.

115botcond

This exec calculates the differences in conductivities between the CTD and bottle samples.  These

are pasted into the sample file 115sam[nn].

115seactd5

This exec applies an automatic edit to the file 115ctd[nn].ed11 to remove data spikes.  The

differences of salinity and potential temperature from their 1 second filtered values were

calculated for both the primary and secondary sensors.  Conductivity and salinity values where

the absolute difference from the filtered value was greater than 0.01 and to remove temperature

and potential temperature where the absolute difference from the filtered value was greater than

0.05°C.  The output file from the processing is 115ctd[nn].ed2.

115seactd6

This exec applies a calibration to the CTD conductivities and recalculates salinities and potential

temperatures to form calibrated 24!hz CTD data, output in the file 115ctd[nn].24hz.

115seactd7

This exec creates 1!hz and 1!db CTD data from the 24!hz CTD data, output in files

115ctd[nn].1hz and 115ctd[nn].1db respectively.
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2.7 CTD Calibration

Opportunities for CTD data calibration and comparison include internal checks between primary

and secondary sensors, comparison with salinity samples, and comparison with the SBE35.

An initial comparison was made of 187 bottle closures at 500!m or deeper (avoiding the steep

gradients in salinity and temperature within the upper part of the water column).

For these comparisons the notation T1, T2, C1, C2, botC1, botC2 and T35 is used for primary and

secondary temperature and conductivity sensors, conductivities from bottle salinities and SBE35

respectively.

T1!-!T2!=!0.0007±!0.0015 °C

T1!-!T35!=!-0.00065!±!0.0083 °C

T2!-!T35!=!-0.0014±!0.0083 °C

C1!-!C2!=!-0.0091!±!0.0012 mmho!cm-1

botC1 - C1!=!0.0128!±!0.0015 mmho!cm-1

botC2!-!C2!=!0.0029!±!0.0014 mmho!cm-1

On this basis it was decided to use the primary temperature sensor and the secondary conductivity

sensor.  An offset of 0.0029 was applied to the conductivity sensor.

Figures 2.1!to!2.4 show the calculated salinity, temperature, geostrophic velocity (relative to the

deepest common level) and potential temperature-salinity plots associated with the data.
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station
number

lat
˚S

lat
min

lon
˚W

lon
min

nominal
depth

1 61 03.00 54 35.23 400
2 60 58.86 54 37.80 600

3 60 51.02 54 42.66 1000
4 60 49.99 54 43.30 1500
5 60 47.97 54 44.55 2500
6 60 40.00 54 49.49 3100

7 60 20.00 55 01.88
8 60 00.00 55 14.28
9 59 40.00 55 26.67
10 59 20.00 55 39.07

11 59 00.00 55 51.47
12 58 41.00 56 03.24
13 58 22.00 56 15.02
14 58 03.00 56 26.79

15 57 44.00 56 38.57
16 57 25.00 56 50.35
17 57 06.00 57 02.12
18 56 47.00 57 13.90
19 56 28.00 57 25.67

20 56 09.00 57 37.45
21 55 50.00 57 49.23
22 55 31.00 58 01.00
23 55 12.86 58 12.24 3500

24 55 10.25 58 13.86 3000
25 55 07.27 58 15.71 2500
26 55 04.18 58 17.62 2000
27 54 57.66 58 21.67 1500

28 54 56.62 58 22.31 1000
29 54 55.34 58 23.10 600
30 54 40.00 58 32.61 250

Table 2.1:  Definitive station positions for Drake Passage section (from Bacon et al., 2003).
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STATION Calendar
date

Day of
Year

Time

at
bottom
(GMT)

Longitude
(W)

Latitude
(S)

Water
depth

(db)

Ctd Max
pressure

(db)

Comment

115ctd01 2/12/2004 337 23:47 58°  8.46 53°20.46 1570 1546.425 test station

115ctd02 3/12/2004 338 07:45 58°32.56 54°39.93 379 373.052 SR1b-01

115ctd03 3/12/2004 338 10:04 58°22.97 54°55.42 563 577.256 SR1b-02

115ctd04 3/12/2004 338 11:16 58°22.12 54°56.69 1163 1211.597 SR1b-03

115ctd05 3/12/2004 338 16:17 58°21.74 54°57.61 1585 1608.607 SR1b-04

115ctd06 3/12/2004 338 19:17 58°17.62 55° 4.18 2138 2076.562 SR1b-05

115ctd07 3/12/2004 338 23:53 58°15.71 55°7.26 2508 2547.459 SR1b-06

115ctd08 4/12/2004 339 02:45 58°13.90 55°10.26 3011 3067.531 SR1b-07

115ctd09 4/12/2004 339 05:40 58°12.23 55°12.93 4165 4204.930 SR1b-08

115ctd10 4/12/2004 339 09:59 58° 0.95 55°30.99 4244 4306.560 SR1b-09

115ctd11 4/12/2004 339 14:41 57°48.86 55°49.90 4780 4849.054 SR1b-10

115ctd12 4/12/2004 339 19:21 57°37.46 56° 8.91 3431 3469.784 SR1b-11

115ctd13 4/12/2004 339 23:45 57°25.69 56°28.05 3800 3956.964 SR1b-12

115ctd14 5/12/2004 340 04:19 57°13.75 56°47.03 3207 3332.033 SR1b-13

115ctd15 5/12/2004 340 08:36 57° 1.87 57° 5.71 3722 3835.477 SR1b-14

115ctd16 5/12/2004 340 13:18 56° 50.30 57°24.89 3479 3515.530 SR1b-15

115ctd16b 5/12/2204 340 15:06 56° 49.27 57°24.37 250 253 shallow station for
biogeochemistry

115ctd17 5/12/2004 340 18:51 56°38.65 57°43.99 3518 3532.267 SR1b-16

115ctd18 5/12/2004 340 23:09 56°26.78 58° 3.07 3992 3992.934 SR1b-17

115ctd19 6/12/2004 341 05:17 56°15.23 58°22.01 3930 3949.891 SR1b-18

115ctd20 6/12/2004 341 09:25 56° 3.24 58°41.02 3803 3803.613 SR1b-19

115ctd21 6/12/2004 341 13:31 55°51.47 59° 0.10 3804 3825.081 SR1b-20

115ctd22 6/12/2004 341 19:00 55°39.07 59°20.00 3790 3816.339 SR1b-21

115ctd23 6/12/2004 341 23:27 55°26.72 59°40.03 3749 3732.776 SR1b-22

115ctd24 7/12/2004 342 03:55 55°14.03 60° 0.07 3537 3551.467 SR1b-23

115ctd25 7/12/2004 342 08:12 55° 1.75 60°20.00 3477 3488.160 SR1b-24

115ctd26 7/12/2004 342 12:30 54°49.26 60°39.95 3117 3120.522 SR1b-25

115ctd26b 7/12/2004 342 14:08 54°47.52 60°39.80 250 255 shallow station for
biogeochemistry

115ctd27 7/12/2004 342 18:41 54°44.47 60°47.96 2560 2604.031 SR1b-26

115ctd28 7/12/2004 342 20:58 54°43.29 60°49.99 1651 1791.335 SR1b-27

115ctd29 7/12/2004 342 22:27 54°42.63 60°50.99 996  1011.159 SR1b-28

115ctd30 8/12/2004 343 00:18 54°37.80 60°58.86 593 575.694 SR1b-29

115ctd31 8/12/2004 343 01:36 54°35.20 61° 3.00 362 351.902 SR1b-30

115ctd32 13/12/2004 348 16:52 70°26.13 68°1.72 861 847.210 Station for Brandon et
al. (OU)

115ctd33 18/12/2004 353 12:06 58°22.36 54°56.60 1119 1126.548 repeat of SR1b- with
LADCP

115ctd34 18/12/2004 353 14:11 58°23.05 54°55.37 522 526.322 repeat of SR1b- with
LADCP

115ctd35 18/12/2004 353 16:15 58°32.55 54°40.01 386 379.536 repeat of SR1b with
LADCP

Table 2.2:  Summary of JR115 CTD deployments.
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CTD sensor Serial Number date last calibrated

Series 410K-105 Digiquartz pressure transducer 93686 15-April-04

Primary SBE 4C conductivity sensor 42875 17-March-04

Primary SBE 3 plus temperature sensor 4302 02-March-04

Primary pump SBE 5 T submersible pump 2395

Secondary SBE 4C conductivity sensor 41912 17-March-04

Secondary SBE 3 plus temperature sensor 32191 02-March-04

Secondary SBE 5 T submersible pump. 2400

Tritech  PA200/20-5 Altimeter 2130.27001

Seabird SBE 43 Oxygen sensor 0620 21-March-04

Chelsea Aqua 3 Fluorometer 88216 21-June-04

Chelsea Seatech Wetlab Cstar Transmissometer CST-527DR 01-July-04

Biospherical Instruments Par Sensor 7274 24-March-04

Table 2.3:  JR115 CTD configuration with sensor instrument numbers.
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DATE: 12/10/200

ASCII file: D:\data\JR115\jr115B.CON
Configuration report for SBE 911/917 plus CTD
-----------------------------------------

Frequency channels suppressed : 0
Voltage words suppressed      : 0
Computer interface            : RS-232C
Scans to average              : 1
Surface PAR voltage added     : No
NMEA position data added      : No
Scan time added               : No

1) Frequency, Temperature

Serial number : 4302
Calibrated on : 2 March 04
G             : 4.37260000e-003
H             : 6.41632000e-004
I             : 2.16042000e-005
J             : 1.73786000e-006
F0            : 1000.000
Slope         : 1.00000000
Offset        : 0.0000

2) Frequency, Conductivity

Serial number : 42875
Calibrated on : 17 March 04
G             : -1.05506000e+001
H             : 1.46804000e+000
I             : -5.25852000e-003
J             : 5.11651000e-004
CTcor         : 3.2500e-006
CPcor         : -9.57000000e-008
Slope         : 1.00000000
Offset        : 0.00000

3) Frequency, Pressure, Digiquartz with TC

Serial number : 09P35716-0771(93686)
Calibrated on : 15 April 04
C1            : -4.785925e+004
C2            : -3.416160e-001
C3            : 1.442400e-002
D1            : 3.781000e-002
D2            : 0.000000e+000
T1            : 3.011158e+001
T2            : -3.924450e-004
T3            : 4.201770e-006
T4            : 2.250320e-009
T5            : 0.000000e+000
Slope         : 1.00000000
Offset        : 0.00000
AD590M        : 1.284610e-002
AD590B        : -8.492756e+000

4) Frequency, Temperature, 2

Serial number : 32191
Calibrated on : 2 March 04
G             : 4.31969000e-003
H             : 6.38784000e-004
I             : 2.26921000e-005
J             : 2.13675000e-006
F0            : 1000.000
Slope         : 1.00000000
Offset        : 0.0000!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

5) Frequency, Conductivity, 2

Serial number : 41912
Calibrated on : 17 March 04
G             : -4.15895000e+000
H             : 5.35728000e-001
I             : -5.18624000e-004
J             : 5.00904000e-005
CTcor         : 3.2500e-006
CPcor         : -9.57000000e-008
Slope         : 1.00000000
Offset        : 0.00000

6) A/D voltage 0, PAR/Irradiance, Biospherical/Licor

Serial number        : 7274
Calibrated on        : 24th March 04
M                    : 1.00000000
B                    : 0.00000000
Calibration constant : 38310000000.00000000
Multiplier           : 1.00000000
Offset               : -0.03798000

7) A/D voltage 1, Free

8) A/D voltage 2, Fluorometer, Chelsea Aqua 3

Serial number : 88216
Calibrated on : 21 June 04
VB            : 0.387000
V1            : 2.014200
Vacetone      : 0.396800
Scale factor  : 1.000000
Slope         : 1.000000
Offset        : 0.000000

9) A/D voltage 3, Free

10) A/D voltage 4, Transmissometer, Chelsea/Seatech/Wetlab CStar

Serial number : CST-527DR
Calibrated on : 1 July 04
M             : 21.1770
B             : -1.2710
Path length   : 0.250

11) A/D voltage 5, Free

12) A/D voltage 6, Altimeter

Serial number : 2130.27001
Calibrated on :
Scale factor  : 15.000
Offset        : 0.000

13) A/D voltage 7, Oxygen, SBE 43

Serial number : 0620
Calibrated on : 21 March 04
Soc           : 4.0500e-001
Boc           : 0.0000
Offset        : -0.5123
Tcor          : 0.0006
Pcor          : 1.35e-004
Tau           : 0.0!!!!!!!!!!!!!!!!!!!!!!!!!

Table 2.4:  JR115 CTD calibration coefficients.
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Figure 2.1:  Contour plot of salinity for SR1b section across Drake Passage.

The section is plotted from north (left hand side) to south (right hand side).  The x and y axes are

latitude and pressure (db) respectively.
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Figure 2.2:  Contour plot of potential temperature (°C) for SR1b section across Drake Passage.

The section is plotted from north (left hand side) to south (right hand side).  The x and y axes are

latitude and pressure (db) respectively.
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Figure 2.3:  Contour plot of geostrophic velocity (cm!s-1) for SR1b section across Drake Passage.

The geostrophic velocity was calculated from adjacent hydrographic stations referenced to the

deepest common level (DCL).

The location of the major ACC fronts are marked: Polar Front (PF), Sub-Antarctic Front (SAF),

Southern ACC Front (SACCF).

Figure 2.4:  Potential temperature!/!salinity plot for the JR115 SR1b Drake Passage section.

Stations to the north and south of the Polar Front are represented in red and blue, respectively.

Stations to the south of the Continental boundary marking the southern edge of the ACC, on

which Antarctic Continental Shelf waters were observed, are represented in black..
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3. LADCP

Mike Sparrow

3.1 Introduction

Cruise JR115 was the sixth cruise to use a RDI Workhorse WH300 ADCP (WH) unit.  The

details of its use are described in the JR67 cruise report (Bacon et al., 2002).  As in cruise

JR115, a single WH unit was deployed  (S/N 1885) in a downward facing position on the

CTD frame.

The LADCP unit, spares box, computer and battery had been left on board from a previous

cruise. Unfortunately the equipment had somehow become scattered throughout the ship (for

example, the battery pack was found lashed down in the deck engineers’ workshop, and the

computer was in the explosives locker).  Since the section ended up being worked

southbound, there were unnecessary delays whilst the relevant equipment was tracked down.

It is to be highly recommended that, in the future, such equipment should not be left on board

ship for any length of time.

When the equipment was eventually located it was discovered that the leads/chargers etc.

used last year had not been included. This meant that the battery could not be easily charged

during the section (though this turned out not to be a problem; see section 3.3). Once the

LADCP equipment had been set up in the lab it was found impossible to communicate to the

WH unit (many different combinations of baud rate, leads etc. were tried). Rather than delay

the section it was decided to start with the CTDs while the problem was being investigated.

After much tearing out of hair and grinding of teeth, and with the help of the UKORS people,

Dan and Rob, two problems were discovered:

(i) The internal fuse in the WH unit had blown. This was replaced.

(ii) The DOS software supplied with the ancient UKORS computer (BBTALK etc.) was

not suitable for communicating to the WH unit. Luckily the UKORS people had some more

up-to-date software (WinSc) that, when loaded onto the PC was able to communicate to WH

unit. However, this meant remaking a deployment file, the parameters of which are listed in

section 3.4.  The instructions for use of this software were also different (see section 3.5).

The above problems meant that no LADCP data were collected until station 07, although the

first three stations of the SR1b section (i.e. stations 02, 03 and 04) were repeated on the

northbound leg. Thus LADCP data was eventually obtained for all but 2 of the SR1b stations
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(SR1b-04 and SR1b-05).

A further problem encountered was that after the first deep cast the new WH unit clamps

suffered somewhat from the pressure (see Figure 3.1). After this cast holes were drilled in the

clamps.

3.2 JR115 LADCP Positioning

Figure 3.2 shows the positioning of the WH unit and battery pack on the CTD frame. The

WH unit was fitted to its mounting bracket and set in a downward-facing position on the

outside of the CTD frame. The battery pack was mounted in a vertical position, with one

bracket attached to an inner support of the CTD frame and another bracket attached to an

outer support.  A third bracket was taken on the cruise, but was found to be impractical to fit.

Two Nisken bottles were removed from the CTD rosette, due to the positioning of the battery

pack.  A fin was added to the CTD frame to reduce spinning.

3.3 Battery Pack

The performance of the LADCP battery pack (S/N WH003) was far superior to the previous

cruise (JR94), when the batteries had to be trickle charged during the section.  During JR115,

however, the batteries only lost 3.8V (from 49.5V after the 1st cast with the WH unit) over the

28 casts.

It should be noted that it was necessary to remove the vent plug every 10 stations or so.  The

operation is described in the JR67 cruise report (p. 43 of Bacon et al., 2002).

3.4 Workhorse configuration and deployment

An ADCP planning file had to be produced for the new WinSC software. This was done by

opening WinSC -> File -> New Deployment. A single planning file was produced and used

for all casts.  The parameters are listed in Table 3.1.  Most parameters remained the same as

for the configuration file described in the JR67 cruise report (p.44 of Bacon et al., 2002).

Note that for cast 035 (repeat of section number 01), EX11111 was changed to EX00111 in

order to try collecting some data in beam coordinates, i.e. radial beam dopplers, instead of

earth coordinates (transformed to east-north-up). This will be processed at a later date.
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3.5 JR115 instructions for use of LADCP

3.5.1 Connections

The WH unit was connected to the battery pack and controlling PC (COM 1) via a double

serial cable (the ‘slave’ cable for use with a second WH unit was blanked off). It was not

necessary to connect the battery to a charging unit.  See previous cruise reports (e.g. Bacon et

al., 2002) for further details.

3.5.2 Software

Since the WH unit refused to talk to the PC using the software provided, the windows based

WinSC (named WinScadcp in the following) was loaded. This seemed to have several

advantages over the previous DOS based software:

(i) Everything could be done from the same programme

(ii) The Baud rate could be set much higher (115200 instead of 38400) allowing faster

uploading of the files on recovery.

However, as the software was adopted and implemented in somewhat of a hurry it would be a

good idea to explore the software more fully before the next cruise. It looks as if many of the

commands are common to both types of software (one can use the terminal commands by

‘File’->’Terminal’ and proceed as normal).

Occasionally the rather elderly LADCP PC would crash. The reason for this was never

ascertained, but a more modern PC should be acquired for the next cruise.

3.5.3 Pre-deployment

(i) Ensure coms lead is in place (to Upward facing plug on frame – COM1, PC1)

(ii) Open ‘WinSCadcp’

Go to Functions -> import planning file

Use: c:\Ladcp\Jr115\Dpl1_\Dpl1_.whp

(This should only need to be done once unless the PC crashes).

(ii) Check settings: Got to ‘ADCP’ -> ‘Settings’

should be Com1, Baud rate 115200, Parity None, Stop bits 1.

(iii) Check PC clock time: Go to ‘Functions’ -> Set ADCP time date

check PC clock is set correctly (rhc bottom right clock icon).
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(iv) Run Tests : Go to ‘File’->’Test ADCP’ or ‘Functions’ -> ‘Test’

Skip compass verification. Wide band width test fails (LADCP not used in this mode).

Remember to ‘press any key’ sometimes as some of the tests are continuous. Ignore the bit

about rubbing the ladcp head (or people will think you’re a bit odd) – just press return.

3.5.4 Deployment

(v) Still in WinScadcp go to ‘Functions’->’Deploy’. Note time of deployment.

(vi) Remove coms lead and fit blanks. Secure leads to frame. Ensure LADCP is pinging.

Remove protective cap from unit if not already done.

3.5.5 Recovery

(vii) Remove blanks and reconnect coms lead.

(viii) Note time of stop logging

(ix) In WinScadcp: ‘File’ -> ‘recorder status’: Note memory used and memory free.

(x) Recover data: ‘File’->’Recover recorder data’: File LADCPXXX.000 is downloaded

– change this to 115mNNN.000 (NNN= 3 digit cast number). Note that it didn’t seem

possible to download only the last deployment (more investigation of the software required),

so all files had to be downloaded. In this cruise we adopted the procedure of emptying the

memory every second cast (‘Functions’->’Erase Recorder Data’).

(xi) Check battery voltage.

(xii) Drag file to unix_drop (U:\data\ladcp/raw) for further processing.

A basic log sheet (see Table 3.2) was adopted.  This should be improved for any subsequent

cruises.

3.6 Initial Data Processing

Before any data could be processed the software had to be installed on the UNIX system. The

steps in setting up the software were similar to those used in JR81 (Bacon et al., 2003).

Best practice is for data to be processed as soon as possible after a CTD station in order to

check the instrument has worked correctly and that the data has been downloaded from the

WH unit onto the controlling PC laptop and UNIX system without any problems. However

because so little time was available to get the software running correctly the processing was

not completed until after the end of the section.
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Initial processing of the data was carried out using software that originated from Eric Firing’s

group at the University of Hawaii.

Due to failure of the NMEA during staions 07 and 08, these were reprocessed using the

Ashtech to get position (i.e. for these two stations in gps_ash was used in putpos2 rather than

gps_nmea).

The initial steps of data processing on JR115 were as follows:

(i) Log onto one of the UNIX machines as pstar, password pstar.

You must be logged on to jrua to get access to the matlab licence

(ii) cd ladcp (ensures you’re in the correct directory)

setup jr115matlab (set up matlab)

source LADall (set up paths)

(iii) cd proc

cd Rlad

linkscript  (checks the raw LADCP data; there should be a raw file called

115mNNN.000. Linkscript will make a symbolic link from jNNN_02.000 to the real

raw file. We use _02 for compatibility with other cruises when there is more than one

LADCP. The convention adopted on CD139 was that 02 is a downlooking WH.).

(iv) cd proc

perl –S scan.prl NNN_02 (allows the user to check the start and end times for the

downcast and upcast. The duration of the downcast and upcast should be similar. The

minimum and maximum depths should also be checked).

(v) putpos2 (collects start and stop times, positions, and gets the magnetic variation

correction using a matlab routine. Updates stations.asc and magvar.tab. Note that if

you run this more than once for the same station then you should go into these files

and delete the invalid entry).

(vi) perl –S load.prl NNN_02 (loads data into the CODAS database, correcting for

magvar.tab. It is very important that this step is only done once. If you need to do it

again, for example if you discover an error in step 5, then you must delete the

database files first. In JR115 these are found in proc/casts/jNNN_02/scdb).

(vii) perl –S domerge.prl –c0 NNN_02 (merge single pings into long shear profiles.

Occasionally this would give an error that could only be solved by opening a fresh

window and running stage (2) again before running the perl script).
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(viii) cd Rnav

updatesm.exec (updates a navigation file and calls matlab)

cd proc

(ix) The data can be plotted and checked using the following commands:

plist = NNN.02 (sets the station and cast number – always 2 – to process. This is a

decimal number in matlab)

do_abs  (generates five plots showing the various velocity components and

information about the sensor such as its heading, tilt and angle).

3.7 Secondary Processing (absolute velocities)

Once the CTD has been processed as far as a 1hz file the absolute velocities can be calculated

in the following manner:

(i) In UNIX:

cd proc

cd Rctd

mk_ctdfile NN (makes ascii version of CTD 1hz file in preparation for LADCP use)

(ii) In Matlab:

cd to proc/Pctd

ctd_in(NNN,02)

cd proc/Fitd

plist = NNN.02    (set the station and cast  - always 2 – numbers)

fd (check vertical velocities from CTD and LADCP agree)

(iii) In UNIX:

cd proc

perl –S add_ctd.prl NNN_02 (add the CTD data to the CODAS database)

perl –S domerge.prl –c1 NNN_02 (merge the ping profiles using the CTD data)

(iv) In Matlab:

plist = NNN.02

do_abs (When the velocity profiles are plotted they should be a similar shape to the

profiles at the end of the ‘first look’ data processing, but with a mean velocity, so that

the U and V velocities have a mean offset).

Figure 3.3 shows the zonal meridional velocity structure across Drake Passage, which makes
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an interesting comparison with the geostrophic velocities calculated from the CTD data and

shown in Figure 2.3.

CR1
CF11101
EA0
EB0
ED0
ES35
EX11111
EZ0111111
LW1
LD111100000
LF500
LN16
LP1
LS1000
LV250
SM1
SA001
SI0
SW5000
TE00:00:01.00
TP00:01.00
CK
CS
;
;Instrument         = Workhorse Sentinel
;Frequency          = 307200
;Water Profile      = YES
;Bottom Track       = NO
;High Res. Modes    = NO
;High Rate Pinging  = NO
;Shallow Bottom Mode= NO
;Wave Gauge         = NO
;Lowered ADCP       = YES
;Beam angle         = 20
;Temperature        = 5.00
;Deployment hours   = 24.00
;Battery packs      = 1
;Automatic TP       = YES
;Memory size [MB]   = 48
;Saved Screen       = 1
;
;Consequences generated by PlanADCP version 2.02:
;First cell range   = 15.15 m
;Last cell range    = 165.15 m
;Max range          = 168.26 m
;Standard deviation = 5.31 cm/s
;Ensemble size      = 468 bytes
;Storage required   = 38.56 MB (40435200 bytes)
;Power usage        = 67.62 Wh
;Battery usage      = 0.2
;
; WARNINGS AND CAUTIONS:
; Lowered ADCP feature has to be installed in Workhorse to use selected option.
; Advanced settings has been changed.
; Expert settings has been changed.

Table 3.1:  LADCP planning file for WinSC software, with parameters.
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CTD Cast Number:

Deployment:

1.Run tests

2. Check Settings: Com1, Baud rate = 115200, stop bits= 1

3. PC clock time:

    Master Clock time:

    Diff:

4. Time of start of logging:

Recovery:

1. Recovery time:

2. Space used:

3. Free space:

4. File name (old):

5. File name (new – 115mNNN.000):

6. File size:

7. Battery voltage:

Table 3.2:  LADCP log sheet
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Figure 3.1:  The WH and the WH unit clamps showing the effects of 4km depth of water.

Figure 3.2:  The WH unit and battery pack on the BAS CTD frame.
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Figure 3.3:  The zonal meridional velocity (cm!s-1) field from LADCP data across Drake

Passage.

The major fronts are marked; Polar Front (PF), Sub-Antarctic Front (SAF), Southern ACC

Front (SACCF).  The major features observed in the geostrophic velocity field (Figure 2.3)

are also seen here.
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4. NAVIGATION

Sue-Ann Watson, Justin Buck, Marc Lucas, Mike Sparrow

4.1 Introduction

During JR115 data from five of the scientific navigational instruments on RRS James Clark

Ross were routinely processed.  The navigational systems include: Trimble 4000, Ashtech

GLONASS (GG24), Ashcheck ADU-2, Gyrocompass and Bestnav.  These systems and the

data processing are described in more detail below.

4.2 Trimble 4000

The Trimble 4000 GPS is the ship’s primary source of positional information. During JR115,

the system went down on three occasions and had to be rebooted (see section 7). The dates

and times are listed in Table 4.1.

The Trimble 4000 data was converted to the pstar format using 115gpsexec0. This was done

by daily chunks throughout the duration of the cruise and produces three files,

115gps[jday]d.raw, 115gps[jday]d and 115 gps01.

4.3 Ashtech GLONASS (GG24)

The Ashtech GG24 records data from both the American GPS and the Russian GLONASS

satellite clusters. This extends the constellation of available satellites to 48, increases the

accessibility to satellite fixes and hence should provide more accurate navigation than

standard GPS coverage allows.

Data was processed using the UNIX script 115ggexec0, which creates an output file of the

form 115glo[jday][a/p].raw. It also carries out some basic quality control and stores the good

data in the file 115glo[jday][a/p].

4.4 Ashtech ADU-2

The main role of the Ashtech ADU-2 GPS system is to correct the ship’s gyrocompass data.

This is necessary because when the ship executes a manoeuvre, the gyrocompass fluctuates

significantly for several minutes due to an inherent instrument error.
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One of the watch keeper duties is to check that the system is running properly. This is done

by regularly checking the data gathering (every four hours) in the unix system by typing the

following command Ashcheck and insuring that the data stream has been recently updated.

On one occasion the ashtech system failed during JR115 for unknown reasons. This occurred

from jday 341 23:26 to jday 342 09:05.

The ashtech data must be processed and merged with the gyro data in order to correct the

latter data for gyrocompass oscillations.

(i) Read data into pstar (115ashexec0)

Data was read in from the ship’s level C system into the pstar environment in daily chunks,

creating one raw data file, 115as[jday]d.raw

(ii) Merging of the Ashtech data with the Gyro data (115ashexec1)

The gyro and the Ashtech data were merged into a single data stream and the differences

between the two ship’s heading stream calculated. This created on single file,

115ash[jday]d.mrg

(iii) Quality control (115ashexec2)

This routine checked the merge data and rejected all the data outside the following limits:

Heading: 0o to 360o

Pitch: -5o to 5o

Roll: -7o to 7o

Attf: -0.5 to 05

Mrms: 0.00001 to 0.01

Brms: 0.00001 to 0.1.

a-ghdg: -5o to 5o

The data were then averaged into two minute bins and once again quality controlled.

This produces two new files, 115ash[jday]d.edit and 115ash[jday]d.ave

(iv) Despiking of data (115ashedit.exec)

The final step consists of manually removing the a-ghdg outliers using the pstar routine

plxyed, called up by the executable. This produces two files, 115ash01.int and

115ash[jday]d.ave.dspk.
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4.5 SeaTex

The SeaTex SEAPATH 200 unit provides heading data for the em120 swath system.  It was

not processed during this cruise.

4.6 Gyrocompass

The gyrocompass provides the most continuous information on the ships heading. Its major

drawback is that is fluctuates for several minutes following a ship’s manoeuvre. The

gyrocompass data is used to correct other instruments data such the VM-ADCP and the

meteorological acquisition system.

Data was read from the RVS Level C system into the pstar environment in daily chunks using

115gyroexec0, creating two output files: 115gyrd and 115gyr[jday]d.raw

4.7 Bestnav

Bestnav is one of the standard data streams produced by the computer system on the ship and

can be viewed by typing lookd into pstar.  Bestnav provides positional information at

30!second intervals using the best available data source.  GPS is used when available, but

otherwise the system uses dead reckoning based on data from the gyrocompass and velocity

sensors on the ship.

Data processing: In the UNIX system, the script 115navexec0 was run from the directory

‘pstar/data/exec’.  This script was used to convert the Bestnav data to pstar format and

temporarily changed the directory to ‘pstar/data/nav/bsn’.  The two-digit year number was

entered as ‘04’ and the Julian day, or Jday, was entered.  The options to select the am, pm or

whole day segments of the data were given.  The ‘whole day’ option ‘d’ was used to analyse

the complete 24-hour data set from the Julian day.  The start and end times were confirmed as

04XXX000000 and 04XXX235959 GMT for each Julian day analysed, where XXX was the

Julian day.  The scripts use the following pstar programs: datapup, to input the RVS data and

form a pstar binary file; pcopya and pheadr to set the header information; posspd to calculate

east and north velocities; pdist to calculate distance run; pcopya to remove the RVS distance

variable; and papend to append the data to the master file.  The new data were appended to

the master navigation file ‘abnv1151’ and the number of data cycles and version number of

the file were recorded in the log sheet.
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A second script 115navexec1 was then run from ‘pstar/data/exec’.  This script takes a straight

copy of the unsmoothed navigation data from ‘abnv115’, averages, filters, smooths and

despikes the data, and puts the resultant data in the file ‘abnv1151.av’.  The version number

of this file was also recorded in the log sheet.

4.8 Comparison of Navigation Streams

Justin Buck

The three navigation streams were compared; firstly by plotting the three streams at a time

when the ship was stationary (Figure 4.1), and secondly by taking the differences between

each stream for the southbound passage across the Drake Passage (Figure 4.2).

Figure 4.1 shows that when the JCR is stationary the differences between the three streams

are no more than 0.0002 degrees of latitude or longitude.  This corresponds to 22 m of

latitude and 12 m of longitude.  When the entire southbound passage across the Drake

Passage is considered (Figure 4.2) larger differences between the three systems are apparent.

The large discrepancy at the start of day 339 is accounted for by the temporary loss of the

navigation stream. The large discrepancy during day 342 is due to the loss of the ADU-2 data

stream for that period. Apart from a few intermittent spikes in the difference between the

Ashtech GLONASS and Trimble 4000 GPS systems (Figure 4.2 e,f) the navigation streams

maintain the accuracy observed when the JCR was stationary. The Ashtech ADU-2 is not as

accurate as the other sources, with differences of up to 0.003 degrees observed

(Figures!4.2!a,b,c,d), corresponding to 330 m of latitude and 206 m of longitude.  This is

unsurprising since the primary purpose of the Ashtech ADU-2 is to obtain the attitude of the

ship.  In conclusion, no reason was found for switching from using Trimble 4000 GPS system

for the recording of latitude and longitude.
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Jday Off line time Online line notes

338 22:24:15 23:33:40

339 02:06:30 02:45:00 Switched to LEICA GPS

340 00:45:07 01:05:00

Table 4.1:  Dates and times of Trimble failure.
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Figure 4.1:  Positions derived from the three navigation streams during stationary periods.
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Figure 4.2: Differences between locations derived from the three navigation streams during

the southbound Drake Passage section.

ADU-2 is the Ashtech ADU-2, GPS is the Trimble 4000 GPS and Glo is the Ashtech

GLONASS system.
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5. VM_ADCP

Marc Lucas, Mike Sparrow

5.1 Introduction

In this section the data acquisition method of the Vessel Mounted Acoustic Doppler Current

Profiler (VM-ADCP) is described. The processing steps and the relevant executables are then

detailed, and the problems described. Generally, the instruments performed in a satisfactory

manner except for two instances: when the Trimble 4000 GPS and theAshtech ADU-2 failed.

5.2 Setup

5.2.1 Configuration of VM-ADCP

The RRS James Clark Ross has a hull mounted RD instrument 150 kHz ADCP which

provides near continuous vertical profiles of ocean currents in space and time. The instrument

has four beams, resolving all three-velocity components (u, v, w) relative to the ship.  The

calculation of an error velocity, the difference between the two vertical velocity components,

allows an estimate of data quality to be made.  By merging the VM-ADCP data with that

collected by other instruments such as the GPS and the gyroscope, absolute current velocities

can be obtained.

On the JCR, the VM-ADCP is placed in a recess in the hull filled with a mixture of ionised

water (90%) and ethylene glycol (10%).  This recess is covered by a 33 mm thick Low

Density PolyEthylene (LDPE). The transducer head is rotated by 45o to the fore-aft axis. This

is done in the hope of increasing the response in the main direction of motion.

During JR115 the data collected by the instrument was averaged into 64 x 8!m bins in

ensembles of 2 minutes duration, which were passed directly to the ship’s level C. The ‘blank

beyond transmission’ was set to 4 m and the approximate depth of the transducer was 6 m.

This means that the centre of the first bin is at a depth of 18 metres (rather than the usual

14!m, see Brian King for details).

The version of the firmware used by the VMADCP was 17.07 and the version of RDI Data
Acquisition Software (DAS) was 2.48. The software ran on a Viglen Pentium II 266Mhz
desktop machine running DOS located in the UCI laboratory.
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5.2.2 Modes of operation

The VM-ADCP can be operated in two modes configured through the direct command menu

of the DAS, water tracking (WT) and bottom tracking (BT). During the latter mode the

instrument was configured to make one bottom track measurement for every four water track

measurements.

During JR115, data in BT mode were collected in shallow waters (shallower than

approximately 500 m), generally over Burdwood Bank and the Antarctic Peninsula shelf.

Data in WT mode were collected when the water depth was in excess of 500!m where useful

bottom tracking was not possible.

5.3 Problems

During failure of the Trimble 4000 GPS (see section 3) only the gyro data was available.

This led to difficulties in estimating the true direction and speed of the water past the ship.

The Ashtech ADU-2 also failed for unknown reasons. This made it difficult to determine the

correction to apply to the gyro heading.

5.4 Processing

(i) Read data into PSTAR (115adpexec0)

Data was read from the RVS Level C system into the pstar environment in daily chunks,

creating two output files containing the water track and bottom track data respectively:

115adp[jday]d and 115bot[jday]d.

(ii) Temperature correction  (115adpexec0.1)

The VM-ADCP DAS assumes that the instrument’s transducer is placed in ambient water.

The speed of sound is calculated using the temperature measured at the transducer’s head and

an assumed salinity of 35. A correction must be made to the data to take into consideration

the composition of the liquid in the recess of the hull where the instrument is located.  These

corrections were derived using data obtained from RDI by Mike Meredith and Brian King.

This routine outputs two files: 155adp[jday]d.t and 115bot[jday]d.t.

(iii) Clock correction (115adpexec1)

The data gathered from the VM-ADCP is time stamped by the PC running the DAS. Because

the PC clock drifts from the ship’s Master clock at a rate of about 1 second per hour, the
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timing error on the raw data must be corrected. During JR115, the time difference between

the Master clock and the PC clock was recorded every four hours. These differences are

entered manually while running 115adpexec1 and the relevant correction applied to the data.

This routine outputs the following 3 files:  155adp[jday]d.corr, 115bot[jday]d.corr, and

clock115[jday]d.

(iv) Gyrocompass correction (115adpexec2)

As mentioned earlier, the VM-ADCP measures velocities relative to the ship. In order to

obtain true East and North velocities, it is necessary to correct the raw data for the ship’s

heading. This data is obtained from two instruments, the gyrocompass and the Ashtech ADU-

2 GPS. It can be found on the ships level C system and needs to be uploaded into the PSTAR

environment. This is achieved through running 115gyroexec0 which produces two files,

115gyr[jday]d.raw and 115gyrd.

The gyrocompass provides near continuous data but can oscillate substantially after a

manoeuvre. It can be corrected by using the GPS data from the Ashtech ADU-2 system but

the Ashtec system does not provide continuous measurements and, as a result, the gyro data

must be corrected by 2 minutes ensembles. The data is thus uploaded, merged and then

average before being manually despiked using the Ashtec series of executables. This gives the

ships true heading. The output files are 115adp[jday]d.true and  115bot[jday]d.true

When the Ashtech ADU-2 failed, the correction was approximated in the following way:

(a) the ash-gyro on either side of the gap was averaged in two hours chunks.

(b) The mean of the two values was calculated and the missing data was then filled with

the resulting value (-0.5).

(v) Calibration (115adpexec3)

Two further corrections must be applied to the data in order to take into account an inherent

scaling factor associated with the VM-ADCP (A) and to compensate for the misalignment of

the VM-ADCP transducers with the GPS Ashtech ADU-2 antennas (f).

These are obtained in the following manner:

A = Ugps / UVMADCP

f  = fgps - fVMADCP

where Ugps and UVMADCP, and fgps and fVMADCP are the averaged speeds and headings, derived

from the GPS and bottom track VM-ADCP data respectively. The direction of f was reversed

to give it the correct orientation and it was put in the range –180 < f <180. Outliers were
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excluded.  Table 5.1 details the steps required to obtain A and f.  Table 5.2 gives the values

of  A and f for specified periods.

The VM-ADCP data was then calibrated using the values of A and f.  For JR115, the

following values were obtained:

A =1.0361 f  = -1.69

Since the ship was stuck in ice for about 3 days (jdays 346, 347, 348), the data collected

during that period was not suitable for calibration.

These values compare with the following obtained on previous cruises:

A =1.030 f  = -1.60     (Mc Creadie and King, JR94)

A =1.0284 f  = -1.68     (Hardy and Brandon, JR84)

A =1.0285 f  = -1.275   (Meredith, JR81)

A =1.0290 f  = -1.55     (Meredith, JR70)

A =1.0314 f  = -1.81     (Hawker, King and Meredith, JR67)

A =1.0253 f  = -1.48     (Meredith, JR57)

A =1.0269 f  = -1.55     (Meredith and King, JR55)

Two new files are created, 115adp[jday]d.abs and  115bot[jday]d.abs, which contain the

calibrated current velocities relative to the ship.

(vi) Ship velocity correction (115adpexec4)

The final correction subtracts the ship velocity vectors from the data to obtain absolute values

of current velocities.  This is done by merging the VM-ADCP data to the ships navigation

data obtained from the ‘bestnav’ executables. The final absolute velocities are written to the

115adp[jday]d.abs and  115bot[jday]d.abs.  The processing steps are summarised in

Figure!5.1.

5.5 Results

The files for jdays 337 to 343 were merged together, creating a file named 115adpall.abs.

From this file the values for the depth of 106 m were extracted (115adpallc.bin) and then

averaged in half hour chunks (115adpallc.ave). Finally, the periods of bad data, such as when

the Trimble failed were removed (115adpallc.ave). The data was then plotted using parrog

and saved a postscript file before being imported into Corel Draw for further editing

(Figure!5.2).
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Derivation of A and f in the pstar environment.

1) Periods during which the VM-ADCP provides good quality bottom track data and

during which the ship’s heading remains nearly constant are identified for each jday.

2) The files of jdays with bottom track data are processed through 115adpexec3 by

setting A to 1 and f to 0 (dummy runs). This produces two files, 115adp[jday]d.cal

and  115bot[jday]d.cal.

3) The data is then merged with the Trimble 4000 GPS data, which gives the ships true

heading and speed to obtain absolute current velocities. This is done by running

115adcpexec4, which produces two new files: 115adp[jday]d.abs and

115bot[jday]d.abs

The final step consists of running 115adcp_calibration_exec and entering the lower and upper

cycles limits for each of the periods identified in section 1. The routine outputs values for A

and f for the specified periods. It also outputs a 115bot[jday]d.abs.ext where ext is a file

extension chosen by the user (see Table 5.2).

Table 5.1:  Derivation of A and f in the pstar environment.

Jday Start of cycle End of cycle A f

338 132 165 1.0354 -1.8662

338 168 186 1.0390 -1.9075

338 249 281 1.0385 -1.5878

343 12 144 1.0276 -1.8113

344 10 34 1.0742 -1.7181

345 382 393 1.0306 -1.8344

345 421 456 1.0319 -1.8090

345 517 540 1.0317 -1.8654

349 548 559 1.0277 -1.2834

349 555 583 1.0274 -1.4807

349 625 681 1.0323 -1.5212

Weighted average for JR115 1.0361 -1.69

Table 5.2:  Values of A and f for JR115.
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Figure 5.1:  Summary of VM-ADCP processing.
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Figure 5.2:  VM-ADCP Current vectors at a depth of 106 m across the Drake Passage.

The southbound and northbound legs are represented in blue and red, respectively.
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6. UNDERWAY

Justin Buck

6.1 Introduction

Throughout the Drake Passage section data was recorded onto the oceanlogger system. This

data was passed to the Shipboard Computer System (SCS), after which it was accessed and

processed using pstar (see section 6.2). The parameters collected are summarised in Table

6.1.  Meteorological data were measured by instruments on the forward mast, and surface

layer oceanic parameters were measured using the ships uncontaminated water supply.  Many

of the meteorological parameters are recorded with duplicate sensors, allowing some

redundancy in the system if an instrument fails. The ship anemometer data was also available

in a separate stream, and processed with the meteorological data.

Recording of underway data began at 00:00 day 337 and continued throughout the cruise.

Recording was stopped during the afternoon of day 353 over the Burdwood Bank. The data

presented in this section is for the southbound leg across the Drake Passage (jdays 337 to 343)

and the northbound leg across the Drake Passage (jdays 351 to 353).  Since most of the CTD

casts were made southbound, the northbound leg was of much shorter duration.

There was a problem with logging the gyro heading between 20:00 on jday 341 and 07:00 on

jday 342.

6.2 Data Capture and Processing

Data was processed in 24 hour sections using pstar. The scripts are based on those used

during the previous JR94 Drake Passage cruise.

The executables for processing the data are described here:

115oclexec0: reads the ocean-logger and anemometer data streams and stores them into a

single pstar type file.

115oclexec1: splits the data into separate ocean data and meteorological data files. It also

de-spikes the conductivity data and calculates a raw salinity value.

twvelexec: Merges the met data file with gyrocompass and navigation data streams in

order to calculate ship motion and true wind velocity.

papend: used to append the one day processed sections of data together.
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pmerge: used to merge ocean, meteorological, navigation and sim500 echo sounder

data sets together.

Data were then despiked and plotted using MATLAB, and the differences between duplicate

instruments were calculated (instrument 1 - instrument 2).

6.3 Air Temperature (Figures 5.1a and 5.2b)

During the southbound leg the air temperature had the same trend as the SST, with values

between 0°C and 2°C south of the Polar Front (57°S) and between 5°C and 7°C north of the

front.  The temperature offset between the two instruments was between -0.3°C and +0.4°C

throughout the section.  Interestingly, this pattern was not observed during the northbound leg

with the air temperature steadily increasing from –2°C at 61°S to 5°C at 54.5°S.6.3.

6.4 Humidity (Figures 5.1b and 5.2c)

The humidity had a range between 75% and 100% throughout the southbound leg, with the

maximum values of 99% between 60°S and 58.7°S.  Values of 90% to 100% were recorded

between 54.3°S and 57.5°S. The periods of high pressure corresponded to the periods of low

humidity.  During the northbound leg the humidity also increased with decreasing pressure

(75% at 61°S to 99% at 56°S) and vice versa (78% at 54.5°S).  The humidity difference

between the two instruments was between -1% and +4% throughout the southbound leg and

between -1% and +3% for the northbound leg.

6.5 Sea Surface Temperature (Figure 5.1c)

Values of between 5°C and 7°C were recorded for the first part of the southbound section

(53°S to 57°S). Once the Polar Front was reached the values decreased to around 0°C for the

remainder of the section (57°S to 61°S).  As in the case of salinity, the Polar Front was

observed further south on the northbound leg (~57.7°S) and was less well defined.

6.6 Salinity (Figure 5.1d)

Values of approximately 34.0 were recorded for the first part of the southbound leg (53°S to

57°S). Once the Polar Front was reached, the values decreased to around 33.8 (57°S to

60.6°S). The salinity then increased to 34.4 when the Antarctic continental shelf was reached
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(60.6°S). A similar situation was observed on the northbound leg, although the front was less

well defined and was observed further south (57.7°S).

6.7 Fluorescence (Figure 5.1e)

Fluorescence estimates the amount of phytoplankton in the surface water, giving an indication

of primary production.  For most of the southbound leg the fluorescence had values of around

0.5 mg l-1.  On the continental shelf edges (53.6°S, 55.5°S and 60.7°S) this value increased to

between 1.5 and 2 mg l-1.  This was most apparent at 55.5°S where the area of increased

fluorescence covered 0.5 degrees of latitude.  There was an additional area of increased

fluorescence in the region of the Polar Front at 57°S, with values up to 1!mg !l-1. The

northbound leg had a different pattern with the lowest values (<!0.5!mg!l-1) south of the Polar

Front (57.7°S).  The values increased north of the front to up to 2!mg!l-1 and then reduced in

value to around 1!mg!l-1 at 55.5°S for the remainder of the leg.

6.8 Air Pressure (Figure 5.2a)

The air pressure was 998!mbar at the start of the southbound leg, and decreased to 980!mbar

at 57°S.  It subsequently increased to 988!mbar at 58°S with another minimum at 59.5°S. The

pressure returned to 988 mbar until the end of the section (61°S).  During the northbound leg

the pressure decreased from 1000 mbar at 61°S to 987 mbar at 55.5°S.  The pressure then

increased for the remainder of the leg.  This variation in pressure during the northbound leg

was associated with a low pressure weather system (cyclonic). The air pressure difference

between the two instruments was ±0.2!mbar throughout the cruise.

6.9 Total Incident Radiation (Figure 5.2d)

The TIR showed near zero values at night with values that increased towards midday, and

decreased towards night.  The maximum daily values of TIR varied from 500 W!m-2 up to

900!W!m-2.  Variation in the maximum values was due to the degree of cloud cover or mist.

During the day the difference between the two instruments was less than +150!W!m-2. There

was a night-time offset from zero of -0.3!W!m-2.  Similar results were observed for both the

southbound and northbound legs.
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6.10 Photosynthetically Active Radiation (PAR) (Figure 5.2e)

The same patterns were observed in the PAR as for the TIR, with a daily maximum and an

evening minimum.  The maximum values of PAR varied from 1500!mm!s-2!m-2 to

2300!mm!s–2!m–2.  During the day the difference between the two instruments had a maximum

value of +100 mm s-2 m-2.  There was a night offset between the two instruments of

+3!mm!s–2!m–2.  Similar results were observed for both the southbound and northbound legs.

6.11 Anemometer (Figure 5.2f)

Throughout the southbound leg the wind direction was predominantly southerly with wind

speeds ranging from 10 m s-1 to 20 m s-1.  There were two regions where this was not the case;

firstly, between 58°S and 59°S the winds direction were easterly with speeds between 5 and

10!m!s-1, and secondly, there were also easterly winds between 56.5°S and 57°S with wind

speeds between 5 and 10 m s-1.  During the northbound leg the winds were predominantly

northerly, changing to westerly at 55°S.  Wind speeds during the northbound leg were

between 10 and 20 m s-1.  The change in direction was associated with the cyclonic weather

system.

6.12 Flow Meter

Flow rates of between 0.5 and 0.8 (uncalibrated) were maintained throughout both legs.

When ice was encountered the flow was switched off to prevent the system getting blocked.

6.13 Water Masses and Ocean Fronts

Three principle water masses were observed in the underway data.  These are clearly

observed in Figure 6.3, where SST is plotted against the salinity for both the southbound and

northbound legs. The first of these water masses is Sub-Antarctic Surface Water, with

salinities between 33.8 and 34.1 and temperatures between 5°C and 7°C.  This water is

located north of the Polar Front.  To the south of the Polar Front two further water masses are

observed.  The first is Antarctic Surface Water, with salinities between 33.6 and 34.0 and

temperatures between -0.5°C and 1.5°C.  The second is Continental Shelf Water, observed

south of 60.6°S during the southbound leg on the continental shelf with salinities between

33.8 and 34.4, and temperatures between -0.8°C and 0.4°C.
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Parameters No. of Sensors

Meteorological Air Pressure 2

Air Temperature 2

Air Humidity 2

Total Incident Radiation (TIR) 2

Photosynthetically Available Radiation (PAR) 2

Wind Speed 1

Wind Direction 1

Oceanographic Sea Surface Temperature (SST) 1

Salinity 1

Fluoresence 1

Table 6.1:  Environmental parameters recorded by the Oceanlogger system.
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Figure 6.1:  Plots of air temperature, humidity, SST, salinity, fluorescence and depth against

latitude.

The southbound and northbound legs are represented in blue and red, respectively.  For

duplicate instruments, only the primary data is plotted.
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Figure 6.2:  Plots of the meteorological parameters with latitude.

Data from the southbound leg is illustrated in blue, and from the northbound in red.  For

duplicate instruments, only data from the primary instrument is shown.
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Figure 6.3: Plots of sea surface temperature (SST) against salinity.

The upper panel (blue) corresponds to data from the southbound leg across Drake Passage,

and the lower panel (red) to data from the northbound leg.
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7. ECHO-SOUNDER

Sue-Ann Watson

7.1 Introduction

The RRS James Clark Ross is equipped with two SIMRAD echo-sounders, the single beam

EA600 and the swath bathymetry system EM120.  The EA600 has been upgraded from the

EA500 used on previous cruises.  The EA600 has one transducer mounted on the hull to

starboard.  The two echo-sounder systems are synchronised so they can be run

simultaneously.  Both echo-sounders were used to produce a bathymetry profile.  For

comparison with EA600, only the centre beam of EM120 was used.  Logging and data

processing are similar for both systems.

7.2 Data processing

Raw data with an assumed sound velocity of 1500!m!s-1 are logged by the SCS onto simulated

level C streams.  Raw data were retrieved into a twice daily pstar file using the pstar scripts

115sim and 115swt for EA600 and EM120, respectively.  For EA600, initial processing was

done by running the script 115sim from ‘pstar/data/exec’.  The script retrieves data from the

level C stream (monitored by lookd), does some preliminary processing and reads the data

into pstar format.  The script takes raw data from the SCS every 30 seconds and runs a 5 point

filter.  The filter removes values greater than 100 metres from the median and assigns an

absent data value to zero depths, which occur when no good data are available.  This

processing removes many spikes from the data.

From the options ‘am’, ‘pm’ or ‘whole day’ of data, the ‘whole day’ option ‘d’ was used to

analyse all data from each Julian day.  This produced a file ‘115simXXXd’, where XXX was

the Julian day of the data being processed.  The times were set from XXX!0!0!0 to

XXX!23!59!59 GMT for each day analysed.  The Julian day, number of data cycles, and the

version number of the file were recorded on the log sheet for each day processed.

Data from EM120 was processed using the same method as above, but using the script 115swt

which produced the bathymetry file ‘115swtXXXd’.

The bathymetry produced by the two echo-sounders was compared by running the script

115pbath.exec, which sent a plot of depth against time for the two bathymetry data sources to

print.  This plot was used as an aid in the manual despiking of data.



65

For EM120 data, from the directory ‘pstar/data/swt’ the pstar program plxyed with pdf file

swt.pdf was run to manually edit out areas of poor data.  The start and stop times were set as

XXX0!0!0 to XXX!23!59!59 GMT for each day analysed, where XXX was the Julian day of

the data being processed.  The file ‘115swtXXXd’ was plotted and obvious spikes removed.

The pstar programme pintrp was used to interpolate between the data gaps.

Manual despiking was repeated in the directory ‘pstar/data/sim’ using sim.pdf and the file

‘115simXXXd’ for EA600 data.

Final EA600 processing was done from the directory ‘pstar/data/exec’ using the script

115simpapall.  This script merges the bathymetry data with the bestnav navigation data and

performs a depth correction using Carter’s tables.  The script appends the old data with the

new data overwriting the previous master file.  The version number of the resultant file

‘sim115.al’ was logged.

Final EM120 processing was repeated in the same way, using the script 115swtpapall to

produce the file ‘swt115.al’.

The bathymetry for the whole transect was plotted using the pstar program overxy.  In the

‘pstar/data/sim’ and ‘pstar/data/swt’ directories, the plot description files (pdf) over.ea.pdf

and over.em.pdf were used to plot EA600 and EM120 data, respectively.

The EA600 and EM120 generate similar depth data where the topography is reasonably flat

and shallow.  With variable or particularly deep topography, the values of EA600 and EM120

become offset from one another.  Both echo-sounders generate noisy data in rough or steep

topography, particularly the EA600.  These findings are similar to those in previous cruises.

In these conditions, it is hypothesised that the beam of the EA600 is contaminated by adjacent

topographical features.  The EA600 is switched off in sea ice conditions, so there is no data

available for comparison.  The EA600 can sometimes produce erroneous spikes c. 0 – 10 m in

depth.  The EA600 also produces a more noisy profile, especially just before and after a depth

change.  The EA600 was switched off whilst stationary in shallow water.

The EM120 is generally thought to be the most useful for routine recording of bathymetry

data, however, in rough weather the swath system is more sensitive, making the EA600

system preferable in these conditions.  In pack ice the EM120 can lose the bottom and

produce erroneous readings of c.!4000!m in depth.  Neither of the bathymetry systems worked

when the ship was breaking through pack ice (jday 346).  In pack ice, EM120 generated very

deep values, whereas EA600 produced few accurate values or was switched off for much of

the time.
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7.3 CTD depths

The variation in depth data from the single beam EA600 and swath EM120 bathymetry

systems were compared by analysis of the difference between the depths measured from CTD

mounted instruments (considered to be the most accurate depth data) and shipboard mounted

bathymetry systems.  Altimeter and pressure data from instruments mounted on the CTD

were converted to depth data using the pstar command peos83  in the directory

‘pstar/data/ctd/raw’.  Data were converted from the input file ‘115depthXX.raw’ where XX

was the CTD number.  An output file ‘115depthXX’ was made for each CTD cast, where XX

was the CTD number.  Parameters 1,3,8 were converted and the output variable 11 (depth83)

was chosen and renamed to ‘depth’.

Bottom depth data were viewed by typing the command plistf 115depthXX into the same

above directory, where ‘115depthXX’ was the file created in the previous step.  Data were

viewed in steps of 1000 and the time of the greatest depth according to the altimeter, and

greatest depth (altimeter data plus pressure data converted to depth) noted.

The ‘sim115.al’ and ‘swt115.al’ files were then viewed from their respective directories,

‘pstar/data/sim’ and ‘pstar/data/swt’, by typing the pstar command plistf followed by the

filename.  Data cycle and depth (options 1 and 6) were viewed and the depth at the time of

greatest depth according to the bathymetry system was recorded.

The variation in depth from the CTD mounted systems (altimeter and pressure sensors) and

the bathymetry systems are shown in Figure 7.1.  The EA600, records depths a median of 9 m

shallower than CTD mounted instruments.  By contrast the EM120 produces more reliable

depths, with a median of 0.5 m deeper than the CTD mounted instruments.  Figure 7.1 shows

the swath EM120 system produces depth data most consistent with CTD mounted systems.

Consistent with findings from previous cruises it seems the middle beam of the EM120 swath

system is more accurate than the single beam EA600.
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Comparison of bathymetry systems
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Figure 7.1:  Comparison of EA600 and EM120 bathymetry systems
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8. IT SUPPORT

Johnnie Edmonston

8.1 Personal Computers

8.1.1 LADCP PC

An old Win98 machine was used to talk to the LADCP.  Sophos was installed and the

machine and the machine was connected to the lan to allow LADCP to be uploaded to the

pstar unix account via SAMBA.  The PC would hang when running through pre flight checks

on the LADCP.  Other operations ran normally.  When the interrogating software ran, the

machine would hang when interrogating the memory of the LADCP.  After a thorough

diskcheck and disabling all non essential startup items and processes on the machine the same

process was followed.  The same problem reoccurred.  At this point the LADCP on board

memory was cleared.  The next pre-flight check on the LADCP ran without hitch.

8.1.2 CTD PC

The CTD seabird software was configured to accept an NMEA string from the Trimble

differential GPS via the CTD deck unit.  Throughout the day of 3rd December (jday 338) the

machine would intermittently hang.  No obvious fault was found with the CTD PC, yet the

machine would hang intermittently.  To make matters more confusing, the CTD deck unit

crashed on one occasion displaying an unknown word message on the display.  NMEA output

was not needed or wanted by the PSO’s so the NMEA socket message from the SCS was

switched off.  The configuration of the CTD software was changed to not require NMEA

output from the deck unit.  As it transpires later events would lead us to be believe that the

intermittent hangs were the product of an intermittent fault with the trimble output to the deck

unit.  Further details are given later in the report.

8.1.3 MET laptop (Bridge)

The old win MET laptop on the bridge used to compile MET reports was connected to the

network.  The MET software now mails MET reports directly, no longer requiring to be

transferred to the SAT-C laptop for transmission.  The PC is not fitted with a netware client,

but has IP.  PC-Cillin antivirus which was already on the laptop (but never registered or set

up) was registered and updated.  The bridge team are aware that despite antivirus software,

external web browsing and the downloading of data are to be discouraged.  The bridge team



69

intend to use the laptop, in conjunction with Jeremy Robst, to log software available via the

JCR intranet.

8.1.4 ADCP PC (UIC)

Hung from jday 348 03:11:48z to 348 09:19:16.

The message on the screen indicated a problem reading drive D:

Machine was reset, later scandisked, no fault found.

8.2 Netware

JRNA was rebooted on 12th December 2004.  This was due to Groupwise messages no longer

showing up in the official mail queue.  DSRepair and groupwise checks indicated no

problems, and rebooting was the quickest solution.

8.3 Unix

8.3.1 JRUA

No problems with JRUA.

8.3.2 Matlab V14

Mark Brandon brought along a copy of matlab for installation on JRUA.  There were some

initial problems with the licence manager.

V14 of Matlab which Mark brought along was installed to /nerc/packages/jr115matlab

/nerc/packages/matlab/14/etc/MLM.opt was edited and the username altered to pstar, which

was the user account used throughout the cruise for RVS processing.

Libf77compat.so.1 was copied from /nerc/packages/forte/6.0/SUNWspro/WS6/lib into

/nerc/packages/jr115matlab/14/bin/sol2

8.4 SCS Logging System

The SCS had to be rebooted after resolution of the problem with the Trimble GPS to

reacquire the time signal.  There were some locked com ports after rebooting, these were

resolved using the java comport utility.  The instruments logged are detailed in Table 8.1.
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8.5 Network

No network problems were experienced during the cruise, and no changes made.

8.6 Other

8.6.1 Trimble

Problems were experienced with the CTD unit (see section 8.1).  These were resolved when

the NMEA socket message from the Trimble to the CTD deck unit via the SCS was switched

off, and the CTD software reconfigured to no longer expect it.

At 2255!GMT on December 3rd 2004 (jday 339), the Trimble stopped output entirely.  First

suspicions fell on the SCS, which was restarted, but with no success in getting Trimble data

back.  Multiplexor indicators showed no traffic through port 2 to the SCS, however when

another instrument was swapped into port2, the multiplexor was found to not be the problem.

The same procedure was carried out on the multiplexor in the navigational bridge electrical

locker.  The next step was to check the serial patch panel, which indicated that there was no

output from the SCS.  Leads to and from the Trimble were checked as ok and the unit

restarted, with still no data output evident.  Due to difficult working conditions at this time,

i.e. total darkness in the Bridge and working via head torch, it was decided to swap the output

from the Leica GPS in its stead until morning.  In the morning ETS checked the unit and

reseated all cables.

To summarise:  the CTD PC failures throughout the previous day were believed to be due to

an intermittent problem with the serial cables in the Trimble itself.   Error checking on the

CTD deck unit resulted in the deck unit being unhappy with the data and freezing

communications with the software on the PC, such that it would hang.

Chronology of events:

3/12/04 22:34 Watch keeper noticed Trimble SCS display as gone red

3/12/04 22:55 last Trimble output to SCS logged.

3/12/04 23:30 ITS notified that a problem had occurred

4/12/04 02:47 Leica swapped into Trimbles place

4/12/04 12:39 trimble back on SCS
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8.6.2 Gyro

Whilst working in the cabinet on the navigational bridge deck the gyro to level A had become

dislodged sufficiently to stop data getting to the level A, and thereafter the SCS.  Reseating

the plug, with great difficulty, brought data back on line.

8.7 Recommendations

Improve access to the back of the cabinet on the Navigational Bridge Deck.

Sensor name levc credat names
Glonass gps_glos

GPS-ADU gps_ash

Trimble gps_nmea

Anemometer anemom

TSSHRP tsshrp

Oceanlogger oceanlog

Emlog em_log

Dopperlog dop_log

Simrad-ea500 sim500

Simrad-em120 em120

Winch winch

Truewind-spd

Truewind-dir

Seatex seatex

Minipack Minipack

Ngyro ngyro

adcp

new_stcm

gyro

relmov

bestnav

bestdrf

Table 8.1:  Instruments logged by SCS system.
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9. TECHNICAL SUPPORT

Mike Sparrow

No report was submitted by ETS.

The CTD pumps should be carefully observed, since sometimes they do not switch off when

brought on board (not good for the pumps).  There were no other technical problems (see

section 8.6 for note about NMEA).
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10. ARGO FLOATS

Mike Sparrow

10.1 Introduction

Four PROVOR Argo floats were left on board to be launched during the Drake Passage

section. Unfortunately one sustained damage to the conductivity sensor whilst being

transported from the box in the Prep (TSG) lab to the Chem (LADCP) lab. This float was

repacked and shipped back to SOC for repairs. A fourth float stopped communicating during

the testing phase. Several attempts were made to rouse the instrument, but without success.

This float was also returned to SOC.

The launching positions of the two floats launched are shown in Figure 1.1 and summarised

in Table 10.1.

10.2 Instructions for testing and deploying a PROVOR float

The procedure followed is detailed here, based on a procedure supplied by Brian King.

10.2.1 Testing

In principle, tests are not required.  However, in practice tests should be carried out, due to

the time elapsed since the floats were programmed at the factory.

(i)  Use the lead marked ‘4-WAY LEAD’. Do not use the ‘5-WAY LEAD’ without

reading the notes in that section.

(ii) The tests should be conducted with the float out of the box and upright, so that the

data port on the float endcap can be accessed properly. It will need to be lashed securely. Do

not allow the protective coating on the hull to be scratched.

(iii) The magnet should still be in place.

(iv) A laptop or desktop with a COM1 port will need to be located near to the float,

loaded with TALK.EXE. TALK.EXE only seems to work on COM1. TALK is a simple

terminal program, but is capable of sending +9volts onto pins 4 and 7 of the RS232 port.
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(v) Start TALK.EXE and check configuration is 9600,8,none,1, no flow control.

Settings are changed using F2, F3 etc keys, as summarised in the top line of the window.

Note F8 and F9. F8 switches +/- 9 volts on RTS and DTR pins of RS232.

Ensure F8 and F9 are toggled to give –9 volts. The plus volt settings are interrupts.

(vi)  Connect the data lead to the data port of the float. Be very careful to align the rib on

the plug with the groove on the socket. This can be hard to see.

(vii) Check the parameter settings (described on pages 16/34 of the manual)

• If the float is not already awake ($ response when you press the enter key), wake it up

by toggling F9 to send plus and then minus 9 volts on DTR. You get a wakeup

message, which includes float serial number and ARGOS Platform Hex ID. Note

these on the log sheet. If the float is already awake, you can get these by typing

MDOWN (to power down) and then use F9 to wake it up again.

• MCONFIG  note the responses in the logsheet.

• MTIME  note the UTC time and float clock error. If the clock error is more than one

minute, reset the clock and recheck the error. Note the clock error in the log sheet.

Setting parameters (including the clock) is described below.

• MBATTERY  note the two voltages in the logsheet

• MVACUUM  note the vacuum. This is factory set to 700 when the internal oil

reservoir is empty. It may vary if some of the oil has been pumped into the interior

reservoir, or due to temperature variations.  Values in the range 600 to 800 are

acceptable. Outside this range means the float has leaked and SHOULD NOT BE

DEPLOYED.

• MTRIPLET note the three values. Temperature should be sensible in mdeg, eg

17000. Pressure is in centibars. Conductivity should be small.

• MLEVEL  This should be zero. If it is not, use MEMPTY as many times as necessary

until MEMPTY says the level is zero. If there is a lot of oil to empty, then MEMPTY

times out and needs to be run several times. MEMPTY runs the pump in bursts. The

float must be upright for MLEVEL and MEMPTY to work properly. It can be

horizontal for most other checks.

• MTESTPUMP  Listen for the pump running.

• MTESTVALVE  Listen for a valve click (solenoid valve near the bottom of the float)

• MTESTARGOS  When I tried this, I got:
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45 seconds wait

5 beeps at 30 seconds interval

timeout after a total of 8m15seconds.

You simply have to wait patiently for timeout. Control then returns to terminal and

float may (or may not!) give powerdown message. The ARGOS message echos to

screen at each beep.

• NOTE THAT THE MAGNET SHOULD STILL IN PLACE

(viii) Changing parameters (described in manual pages 20ff)

• MPREMISSION 1 (numeral one)  float responds ‘System Status is INIT’

• MUNLOCK  to unlock parameters. Be careful, because now it is possible to mess up.

• MCONFIG still lists the parameter list

MCONFIG 03  (zero padded to two characters) lists only the parameter VAL03

(reference day)

MCONFIG 03!7 will reset the parameter to a value of 7.

The float will always echo the value back, even if you don’t change it or get the

syntax wrong, so watch responses carefully.

• MTIME YYYY/MM/DD hh:mm:ss  sets the time.

• Choose and set the REFERENCE_DAY. The reference day is the number of days

after which the float will start its first cycle.

Set reference day using

MCONFIG 03 7 (or whatever).

MCONFIG (to check)

• MPREMISSION R locks the parameters, tests some of the values (vacuum, level,

battery, triplet) and powers down.

(ix) You can also power down with MDOWN, which is not described in the manual.

(x) The float can be woken up again using F9, and parameters listed as before.

(xi) Disconnect the data lead, and fit the blank plug. Be careful with the pin alignment,

using rib and groove as for the data lead. If it is correctly aligned, it fits nicely and the sleeve

screws down easily. The O-ring on the blank should be lightly lubricated. Suggest you use the

same silicone spray as used for LADCP/CTD blank plugs.
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10.2.2 Starting the mission

(i) Install the damping disk.

The manual describes a procedure for a different kind of damping ring. Use the following

procedure:

• Peel the protective film off both sides of the disk if it is still in place.

• The disk must be in the correct orientation for the holes to align. There is a number

written on the disk, which aligns with the corresponding number on the disk securing

ring.

• The disk is fed on from the bottom of the float, and secured to the underside of the

ring using three bolts. The nuts should have threadlock applied.

(ii) Remove the magnet.

This starts the mission. Note the time to the nearest second on the logsheet. This is time T.

• At T+3m10s (3mins 10 secs), expect the first beep on the ARGOS tester. (The easiest

thing is to attach this to the float antenna sleve, eg with an elastic band, but don’t

accidentally leave it in place for deployment !!!!

• Expect 5 beeps at 30 second intervals, ie T+3m10s, 3m40s, 4m10s, 4m40s, 5m10s.

After 5 beeps, put the argos tester somewhere safe.

• Listen out for 10 clicks at T+10m45s  The clicks are fairly distinctive, and occur at

about 2Hz.

If you hear the 5 beeps and 10 clicks, all is well, that’s it. The float is ready to go. The

mission has started at T+11m. The external bladed stays inflated for one hour. Then it

starts to deflate, but slowly at first. The float will take anything up to another 2 hours

to sink, depending on surface buoyancy.

(iii) Deploy the float.  This should be between T+11m and T+71m. After that, the bladder

has started to deflate.

(iv) IF THERE IS A PROBLEM:

i.e. no success with 5 beeps and 10 clicks.

First line of attack is to try the magnet again. Wait until at least T+16m. Reattach the magnet.

Wait a further 5 minutes with the magnet in place. Then remove the magnet again as in (2).

This is a new time T. Listen for 5 beeps and 10 clicks.
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(v) If you don’t have a success with the second attempt, attach the magnet again, then

you need to plug the data lead back in, and try to check everything out again. (MLEVEL,

MEMPTY, MPREMISSION!R to check all tests are passed). Detach the data lead, insert the

blank, remove the magnet and listen again. Note the new time T of magnet removal.

Remember that TALK.EXE should have F8 and F9 toggled to minus volts. F9 can be used to

send plus 9 volts and then returned to minus 9 volts.

10.2.3 Notes on the use of the 5-way lead

The 4-way lead does not have the RTS pin on the RS232 connected. This is pin 4 on the 5-

way float connector, on p15 of the manual. Therefore the F8 key in TALK.EXE has no

function with the 4-way lead. In the 5-way lead, this extra pin is connected, and F8 toggles

plus/minus volts on this pin. The preferred way to wake up the float is with F9 on/off.  The

plus volts from F8 is some sort of CPU interrupt, and should be used sparingly. In particular,

if plus volts is left on F8 tests can fail or the mission may not start properly. Therefore, if the

5-way lead is being used, make extra sure that F8 is toggled to minus volts in TALK.EXE.

10.2.4 Launching the Float

We don’t have a launching cradle or procedure for these PROVORs. APEXs can be launched

with a rope through the hole in the damper plate, but PROVORs cannot. During JR115 and

JR110 the floats were launched by throwing them off the stern of the ship (see Figure 10.1).

As well as being hugely satisfying it seemed to have no ill effects on the floats themselves.

Note time and position of deployment on the logsheet. Transmit deployment information to

bak@soc.soton.ac.uk and rebl@bodc.ac.uk as requested in the logsheet.

Note any anomalous circumstances in the log sheet (see Table 10.2).

Argo ID Mission Start Time
(JDAY: HR: MM)

Float Launch time Latitude Longitude Reference Day

64AF800 341: 14:30 341: 15:16 59°00’S 55°51’W 2

5F74300 342: 14:09 342: 14:30 60°40’S 54°29’W 1

Table 10.1:  Details of PROVOR floats deployed during JR115.
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SHIP AND CRUISE NUMBER  ________

Date (YYYY/MM/DD) & Day number: __________________   (eg 2004/11/01=306)

Float number from crate eg 02-F2-01 _________________________________

Float Serial number from TALK.EXE eg MT001  _______________________

ARGOS Hex number  _____________________________________________

Expected value

VAL01 NUMBER_OF_CYCLES 255

VAL02 CYCLE_PERIOD 10

VAL03 REFERENCE_DAY User select

VAL04 ASCENT_TIME 21

VAL05 DELAY_BEFORE_MISSION 60

VAL06 DESCENT_SAMPLE_PERIOD 0

VAL07 DRIFT_SAMPLE_PERIOD 12

VAL08 ASCENT_SAMPLE_PERIOD 10

VAL09 DRIFT_DEPTH 2000

VAL10 PROFILE_DEPTH 2000

VAL11 GROUNDING_MODE 0

VAL12 ARGOS_PERIOD 45

VAL13 ARGOS_TRANS_DUR 6

VAL14 ARGOS_ID Float specific

VAL15 RETRANSMISSION 25

MTIME YYYY/MM/DD HH:MM:SS _________________

UTC time DDD/HHMMSS  _________________________

Clock error (UTC minus MTIME)  _____________________ Adjust if necessary

MBATTERY 1

2

Should be near 14000

MVACUUM MUST be 600 to 800

MTRIPLET P

T

C

P should be small

T should be sensible

C should be small

MLEVEL zero ? (Tick) MUST be ZERO.

Use MEMPTY to empty

Magnet removal time T (DDD/HHMM)

Deployment time T2

Deployment Lat

Deployment Lon

CTD station identifier

COMMENTS ON DEPLOYMENT __________________

Table 10.2:  PROVOR deployment sheet.
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Figure 10.1:  Launching of a PROVOR float.



80

REFERENCES

Bacon, S., 2002: RRS James Clark Ross Cruise 67, 19 Nov – 17 Dec 2001. Drake Passage

repeat hydrography: WOCE Southern Repeat Section 1b – Burdwood Bank to Elephant

Island. Southampton Oceanography Centre, Cruise report No. 38, 118 pp.

Bacon, S., 2003: RRS James Clark Ross Cruise 81, 18 Dec 2002 – 02 Jan 2003. Drake

Passage repeat hydrography: WOCE Southern Repeat Section 1b – Burdwood Bank to

Elephant Island. Southampton Oceanography Centre, Cruise report No. 43, 86 pp.


