ATLANTIC MERIDIONAL TRANSECT (AMT)

. .

AMT 6 CRUISE REPORT

CENTRE FOR COASTAL & MARINE SCIENCES _ into

Atlantic Meridional Transect

AMT-6 CRUISE REPORT

Cape Town to Grimsby, 14 May to 16 June 1998.

Jim Aiken, Malcolm S. Woodward, Carol Robinson, Andy Rees, Pablo Serret, Centre for Coastal & Marine Sciences, Plymouth Marine Laboratory, Plymouth, UK, Andy Bowie, Rachel Woodd-Walker, CCMS, PML and University of Plymouth, UK, Derek Pilgrim, University of Plymouth, UK, Patrick Holligan, Dave Suggett, Southampton Oceanographic Centre, Southampton, UK, Stan Hooker, NASA, Goddard Space Flight Centre, Greenbelt, Md, USA, Cyril Dempsey, NASA & Satlantic Inc, Bedford, Canada, Jim Brown, NASA & University of Miami, USA, Stephane Maritorena, NASA Goddard Space Flight Centre, USA, Ray Barlow, Department of Fisheries, Cape Town, Republic of South Africa, Mike Lucas, University of Cape Town, Republic of South Africa, Gavin Tilstone, Eva Teira, University of Vigo, Spain.

Edited and prepared by Jim Aiken, Principle Scientist AMT-6

Approved by Prof. R. F. C. Mantoura, Director PML.

CCMS, PML, Prospect Place, Plymouth, PL1 3DH. UK

Table of Contents:

List of Appendices. List of Figures. **Circulation list.**

ABSTRACT

1. INTRODUCTION

- 1.1 AMT Programme goals.
- 1.2 AMT Station strategy and procedures.
- 1.3 AMT-6 Scientific Personnel.
- 1.4 Acknowledgements.

2. CRUISE ITINERARY, TRACK & NARRATIVE

2.1 Itinerary.

- 2.2 Cruise Track.
- 2.3 Narrative.

3. RESEARCH REPORTS

- 3.1 Physical Oceanography CTD data & XBTs.
- 3.2 Remotely Sensed Imagery.
- 3.3 In Water Optics.
- 3.4 IOPs ac-9.
- **3.5 FRRF & UOR.**
- 3.6 Water Sampling for pigments, plankton and bacteria.
- 3.7 Pigments.

3.8 Photosynthesis Parameters & Primary Production of Pico, Nano & Net-Phytoplankton. 3.9 Gross Production, Net Community Production and Dark Community Respiration.

3.10 Basin Scale Estimates of the Planktonic Assimilation and Regeneration of Nitrogen.

3.11 Size-fractionated phytoplankton production by 15N & 13Cdual-labelling tracers.

- 3.12 Micro and nano nutrients
- 3.13 Total Dissolvable Iron (TD-FE) Analyses
- 3.14 Zooplankton

4. SYNTHESIS and CONCLUSIONS

AMT-6 Report: List of Appendices

A6-0

ł

Return and achieved station positions A6-1 Combined CTD and Optical Station list A6-2 Scientific Bridge Log. A6-3 XBT deployment Log A6-4 CTD water bottle depths, T and S for each cast A6-5 CTD Salinity calibration bottles A6-6 SeaOPS Log A6-7 SeaFALLS Log A6-8 LoCNESS Log A6-9 Mini NESS Log A6-10 SeaSPEC Log A6-11 SeaSAS Log A6-12 FRRF Data acquisition Log A6-13 UOR tow Log Chlorophyll and HPLC pigments sampling log A6-14 Oxygen, DIC and Respiration Samples Collected A6-15 A6-16 Samples taken for New Production, Ammonium regeneration, ¹⁵N Uptake and Nitrification A6-17 Discrete CTD nutrient samples analysed A6-18 Underway Nutrient Analysis A6-19 TD-Fe and SPM, CTD sampling log. A6-20 TD-Fe and SPM, underway sampling log. A6-21 High volume aerosol sampling log.

Pre-cruise Provisional station positions, Re-cast station dates after Cape Town

- A6-22
- Mesozooplankton log.
- A6-23 Particulates CHN analyses log.
- AMT-6 Cape Town to Grimsby, Data Matrix. A6-24

AMT-6 Report: List of Figures.

- Fig. 1. Cruise Track, part 1, 35 S to 10 N.
- Fig. 2. Cruise Track, part 2, Equator to 50 N.
- Fig. 3. Temperature, Salinity, Chlorophyll fluorescence & Transmissometer sections, 35 S to 50
- Fig. 4. Temperature, Salinity, Chlorophyll fluorescence & Transmissometer sections, 5 S to 50 N.
- Fig. 5. Sea surface Temperature, Salinity and surface density, 35 S to 50 N.
- **Fig. 6.** XBT section 35 S to 50 N.
- Fig. 7. Southern Benguela SST from AVHRR.
- Fig. 8. Southern Benguela Chl from SeaWiFS.
- Fig. 9. Northern Benguela SST from AVHRR.
- Fig. 10. Northern Benguela Chl from SeaWiFS.
- Fig. 11. West African Upwelling from SeaWiFS.
- Fig. 12. Western Approaches from SeaWiFS.
- Fig. 13. Typical particle absorption spectra observed at four stations: stn.630 in the Gulf of Guinea stn.633 at the Equator, stn.648 in the NW African upwelling and stn.664 in the Western Approaches.
- Fig. 14. Total absorption against chlorophyll-a concentration from observations at 27 stations.
- Fig. 15. b/a ratio against total absorption for 6 broad geographical areas.
- Fig. 16. b/a ratio against chlorophyll-a for 6 broad geographical areas.
- Fig. 17a. FRRF Vertical Profile, N Equator region.
- Fig. 17b. FRRF Vertical Profile, CANIGO region.
- Fig. 18. Vertical Section Fv, Fm, Fv/Fm from CTD casts from 35 S to 50 N.
- Fig. 19a. Surface Chl a S Benguela.
- Fig. 19b. Accessory Pigments.
- Fig. 19c. Surface Chl a Mid Benguela.
- Fig. 19d. Accessory Pigments.
- Fig. 20a. Surface Chl a N Benguela.
- Fig. 20b. Accessory Pigments.
- Fig. 20c. Surface Chl a NW Africa.
- Fig. 20d. Accessory Pigments.
- Fig. 21a. Chlorophyll a distributions total Chla.
- Fig. 21b. Chlorophyll a distributions >20 µm.
- Fig. 21c. Chlorophyll a distributions 2-20 µm.
- Fig. 21d. Chlorophyll a distributions 0.2-2 µm.
- Fig. 22. Total primary production (mg C m⁻³ h⁻¹) along AMT-6.
- Fig. 23. Spatial distribution of temperature and percentage of oxygen saturation from 35 S to 50 N
- Fig. 24. Latitudinal distribution of TD and Fe through the upper water column along AMT-6.
- Fig. 25a. TD-Fe profile through the upper water column of the South Atlantic gyre (SDY 150, CTD A6-29 / A6-30, 02°48.7' S, 06°09.8' W).
- Fig. 25b. TD-Fe distribution through a deep cast in the North Atlantic (SDY 163, CTD A6-50, 44°40.8' N, 14°00.6' W).
- Fig. 26. OPC total biovolume for 20m and 200m nets.
- Fig. 27. OPC total biovolume for underway (7m non-toxic sea water supply), integrated over morning, afternoon and night time periods.
- Fig. 28. Surface underway mean equivalent spherical diameter (ESD) of zooplankton, integrated over morning, afternoon and night.

4

1

ł

}.

ì

1

)

)

ļ

ł

)

)

)

}

Circulation list.

Cruise personnel: CCMS, Plymouth Marine Laboratory: JIM AIKEN, MALCOLM WOODWARD, CAROL ROBINSON, PABLO SERRET, ANDY REES PML & University of Plymouth: RACHEL WOODD-WALKER, ANDY BOWIE. University of Plymouth: DEREK PILGRIM NASA, Goddard Space Flight Centre, USA: STANFORD HOOKER, STEPHANE MARITORENA Satlantic Inc., Bedford, Canada: CYRIL DEMPSEY University of Miami: JIM BROWN Southampton Oceanographic Centre: PATRICK HOLLIGAN, DAVE SUGGETT RSA Dept of Fisheries, Cape Town, RSA: **RAY BARLOW** University of Cape Town, RSA: MIKE LUCAS University of Vigo, Spain: GAVIN TILSTON, EVA TIERRA British Antarctic Survey: DAVE RICHMOND, Vsevolod Afanasyev

Internal:

J McGlade, Director CCMS R F C Mantoura, Director PML P Williamson, NERC HQ C Rapley, Director, BAS F Curry, A Clarke, J Priddle, J Hall, BAS G B Shimmield, Director DML **Director POL** P H Burkill, P N Claridge, R P Harris, D B Robins, A J Bale, S B Groom, PML J Burgan & C Elliott, Masters, RRS James Clark Ross c/o BAS

External:

J Shepherd, Director, SOC P J LeB Williams, PRIME; Bangor G Jackson, DERA, Winfrith C McClain, NASA, Goddard, USA J Campbell, NASA, HQ, Washington, DC M Rast, J Louet, ESA/ESTEC, Noordwijk, Netherlands N Hoepffner, IRSA, JRC of the EC, Ispra, Italy R. Anadon, Oviedo, Spain. E. Fernandez, Vigo, Spain.

•:'r

ABSTRACT

This report describes the conduct and outcome of the scientific research programme of the sixth Atlantic Meridional Transect cruise (AMT-6) on board the RRS James Clark Ross from Cape Town, RSA to Grimsby, UK, from 15 May to 16 June 1998.

The long-term objectives of the AMT programme are:

1. To understand the links between biogeochemical processes, biogenic gas exchange, air-sea interactions and the effects on and the responses of oceanic ecosystems to climate change;

2. To investigate the functional roles of biological particles and processes of ecosystem dynamics which influence ocean colour; as such the programme relates directly algorithm development and the validation and interpretation of remotely sensed observations of ocean colour.

AMT-6 departed from Cape Town in mid-May, so it was exceptional with respect to previous AMT cruises in that it was 4 weeks later in the season and it could not follow the standard transect route from the Falkland Isles to the UK. The research focused on the Benguelan ecosystems off the coast of the Republic of South Africa and Namibia and other upwelling systems along the route. Diplomatic clearances to sample within 200 mile EEZ had been requested and granted by many African and European states. We acknowledge the permissions given by RSA, Namibia, Senegal, Cape Verde Islands, Portugal, Spain and France.

The cruise was designated a study of the "Functional relationships of bio-optical properties and phytoplankton productivity in upwelling and highly productive ecosystems in the Atlantic Ocean, South Africa to the UK". Thanks to an outstanding science team, exceptional fine weather, blue skies and regular, daily satellite imagery of SST (from AVHRR) and Ocean colour (Chlorophyll concentration and water reflectance from SeaWiFS) the key objectives were met successfully.

1. Introduction

The Atlantic Meridional Transect (AMT) programme exploits the passage of the Royal Research Ship James Clark Ross (RRS JCR) latitudinally through the Atlantic Ocean (50 N to 52 S) between the U.K. and the Falkland Islands (FI). In September the JCR sails southward, sampling the boreal fall and the austral spring; and the following April it returns to the UK, sampling the austral fall and the spring conditions in the northern hemisphere. The ship's track crosses a range of ecosystems and physico-chemical regimes, within which conditions vary from sub-polar to tropical and from eutrophic shelf seas and upwelling systems to oligotrophic mid-ocean gyres. The JCR provides the ideal platform to measure physical, biological and bio-optical properties and processes through these diverse ecosystems of the North and South Atlantic Oceans.

There have been 5 AMT cruises to date: AMT-1 Sept./Oct. 1995, from UK to FI; AMT-2 April/May 1996, from FI to UK; AMT-3 Sept./Oct. 1996, from UK to FI; AMT-4 April/May 1997, from FI to UK; and AMT-5 Sept/Oct 1997, from UK to FI. Exceptionally, for AMT-6, the JCR was scheduled to depart from Cape Town, Republic of South Africa because of prior research activities in the Indian Ocean, leaving Cape Town on 15 May and arriving in Grimsby, UK on 16 June 1998. An extra research cruise (AMT-6b), with limited scientific objectives (station CTD and optics and surface layer C, T and pigments), on RRS Brandsfield in April/May 1998, covered the standard transect from Stanley to the UK, which was missed by the JCR passage from Cape Town (AMT-6).

ł

٠,

J

1

;

į

)

ł

ì.

1.1 AMT programme goals.

The AMT programme goals are:

To test and refine hypotheses on the responses of oceanic ecosystems and the coupled marine atmosphere to anthropogenically forced environmental change.

To develop a holistic research strategy, integrating shipboard measurements, remote sensing and modeling.

To provide calibration and validation of new satellite sensors of ocean colour, sea surface temperature, sea surface height and solar radiation.

To improve our knowledge of marine biogeochemical processes, ecosystem dynamics, food-webs and fisheries and characterize biogeochemical provinces.

To develop coupled physical-biological models of production and ecosystem dynamics.

To quantify oceanic responses to changes in abundance of radiatively and chemically-active trace gases.

1.2 Station strategy and procedures.

The normal strategy for AMT cruises is set by the requirement for the JCR to make passage between the UK and the FI within the allocated time of 25 d plus 6 d added for scientific research. The geographical range of 50 N, 1 W to 52 S, 58 W, amounts to approximately 7500 miles (13800 km), requiring an average distance of 240 miles per day, or 4° of latitude while on a N - S course (as on the 20 W line). For AMT-6, with a focus on high productivity, upwelling ecosystems and with 6 d extra for science spread over a shorter total course (35 S to 50 N), it was planned to spend more time in the areas of greatest interest (e.g. the Benguela). Thus the plan was to proceed northwards through the Benguela at only ca 150 miles per day, with more than one station as necessary and make a faster passage through the oligotrophic regions. Appendix A6-0 shows planned provisional station positions (revised plan of 17/04/98), with the re-cast dates following the enforced return to Cape Town on 20 May; the actual stations achieved are added. The outline plan was achieved without excessive speed and underway sampling was maintained for the whole transect. Note the JCR departed Cape Town on 15 May 1 day later than originally planned.

As planned, the main daily station commenced at ca 10.00 ship's time (08.00 GMT in the Southern Hemisphere) with a second, opportunistic optics station planned for early afternoon, if good sun/sky conditions prevailed. In the Southern Hemisphere and east of the Greenwich meridian, the morning station fell within the SeaWiFS window (+ / - 2 h of the overpass, ca 11.00 GMT). Further north and west, the window was later at ca 12.00 to 13.00 GMT and the afternoon, opportunistic optical station was a necessity to meet the cruise objectives. The principal objectives were to acquire optical measurements with SeaOPS, SeaFALLS, LoCNESS and miniNESS at the SeaWiFS wavelengths, with concurrent data on phytoplankton pigments and species, water for primary productivity, biogases, nutrients, N-cycling and zooplankton.

The main instruments deployed were:

)

ì

1. SeaOPS for the measurement of $Ed(\lambda)$ and $Lu(\lambda)$, with CTD, Chlorophyll fluorescence 'Fl'. SeaOPS was deployed from the stern, starboard crane with the vessel positioned with the sun on the stern or the starboard side quarter.

- 2. SeaFALLS, a freefall probe with $Ed(\lambda)$, $Lu(\lambda)$, CTD & Fl. SeaFALLS was deployed from the stern.
- 3. LoCNESS, a low cost freefall probe with $Ed(\lambda)$, $Lu(\lambda)$, CTD & Fl, deployed from the stern.
- 4. MiniNESS, a small, freefall probe with $Ed(\lambda)$, $Lu(\lambda)$, CTD & Fl, deployed from the stern.
- 5. SeaSPEC a full spectral $Ed(\lambda)$, $Lu(\lambda)$ sensor (350 to 800 nm), deployed in place of SeaOPS.

7

÷.,

ć j

SeaSAS a full spectral Ed(λ), Lwn(λ) sensor (350 to 800 nm), mounted on the stern trawl post.
Sea-Bird 911plus CTD, with Fl, Transmission & PAR sensors and a 12 x 30 l rosette bottle sampler for water for phytoplankton pigments and productivity etc. from 12 depths to 200 m. The CTD was deployed from the dedicated gantry and winch mid-ships.

8. Zooplankton nets were deployed from the forward crane independent of other operations.

Experience from previous AMT cruises on JCR, showed that it was possible to conduct the stations safely, with up to 4 main instrument systems deployed simultaneously. The Optics casts required the sun on the starboard quarter or stern, and often in the Southern Hemisphere this meant that the wind (SE trades) was on the stern. For station keeping in these conditions, the vessel would be moving astern, which was not conducive to the deployment of the freefall optical probes simultaneously with the CTD and SeaOPS. When possible, CTD and SeaOPS casts were synchronous, profiled at the same rate; the rate was set at 0.2 m/s by the speed of the SeaOPS winch. At the maximum depth for the optics cast, the CTD system was profiled at a safe speed to the maximum depth of 200 m. The instruments were not synchronised for the up-casts. SeaFALLS, LoCNESS and miniNESS were profiled independently and usually after the completion of the CTD cast.

The Sea-Bird CTD 911plus with 12 x 30 liter water bottles, purchased by NASA for AMT-5, gave sufficient water that normally only one cast was needed per station. Extra casts were needed to test the system when a mal-function of the rosette system was detected (pairs of bottles closing simultaneously when only one was fired). When the pattern of miss-firing was determined, one cast was sufficient. The rosette 'pylon' firing mechanism was replaced with a new unit at Madeira. The second station in the afternoon was always opportunistically timed to fall within the SeaWiFS window (+/- 2 h of the overpass) so as to exploit the most favourable sky conditions with least cloud cover. In general this worked well and many of the afternoon stations were in excellent cloud-free conditions. A total of 66 stations were worked and data acquired, 52 CTD casts 40 SeaOPS, 227 SeaFALLS, 58 LoCNESS, 88 miniNESS and SeaSPEC casts, making AMT-6 a highly productive cruise for bio-optical data. The combined CTD & OPTICS station list for AMT-6 is given in Appendix A6-1.

8

)

)

)

)

;

٦

7

ŝ

ł

i

ì

)

1

ž

.)

1.3 Scientific Personnel

AMT-6 scientific personnel were drawn from 10 Institutes, Laboratories and Universities and 4 countries besides the UK. The scientific team is listed below.

Plymouth Marine Laboratory:

JIM AIKEN, Principal Scientist, Optics, UOR, Physical Oceanography.

MALCOLM WOODWARD, Nutrients.

CAROL ROBINSON, OXYGEN PRODUCTION AND RESPIRATION.

PABLO SERRET, OXYGEN PRODUCTION AND RESPIRATION.

ANDY REES, 15N PRODUCTION.

and University of Plymouth RACHEL WOODD-WALKER, Zooplankton.

ANDY BOWIE, IRON.

University of Plymouth:

DEREK PILGRIM, AC-9, DOC, POC, & S, T calibrations.

NASA, Goddard Space Flight Centre, USA:

STANFORD HOOKER, Optics.

STEPHANE MARITORENA, Optics, from 9 to 16 June, Madeira to Grimsby.

Satlantic Inc., Bedford, Canada:

CYRIL DEMPSEY, Optics

University of Miami:

JIM BROWN, Optics, from 15 May to 9 June, Cape Town to Madeira.

Southampton Oceanographic Centre:

PATRICK HOLLIGAN, Pigments and Fluorometry

DAVE SUGGETT, Pigments and Fluorometry

RSA Dept of Fisheries, Cape Town, RSA:

RAY BARLOW, HPLC Phytoplankton Pigments.

University of Cape Town, RSA:

MIKE LUCAS, 15N Production.

University of Vigo, Spain:

GAVIN TILSTONE, Primary Production, EVA TIERRA, Primary Production

British Antarctic Survey:

DAVE RICHMOND, COMPUTING SUPPORT

VSEVOLOD AFANASYEV, CTD AND ELECTRONICS

1.4 Acknowledgements

AMT receives resources and financial support a variety of research initiatives and diverse sources. The Centre for Coastal and Marine Sciences funds additional time added to the passage of the JCR. The PML Strategic research projects 1 & 4 provide scientific support, equipment and resources. The NERC community research project PRIME funds two core AMT projects:

Bio-optical Signatures (PIs, Aiken, PML & Holligan, SOC; RA Moore, PML),

Zooplankton characterisation (PIs, Robins, Harris, PML & Pilgrim, U o Plymouth).

NASA SeaWiFS project (PI, Hooker) provides financial support, state-of-the-art optical sensors and calibration equipment; a Sea-bird 911+ CTD & 12 x 30 l water bottle rosette was provided for AMT-6. EU CANIGO project (PIs Robins, Pingree, Fernandez & Anadon) has informal links.

There are links with the Joint Research Centre of the EU at Ispra, through EU projects (PI Zibordi). The Principle Scientist and the scientific party acknowledge the assistance of the Officers and crew of the RRS James Clark Ross, led by Captain Chris Elliott. Their professional skills have contributed hugely to the success of the scientific research of the AMT programme. ۰.

2.CRUISE ITINERARY, TRACK & NARRATIVE

2.1 Itinerary

09 May	PML & UK personnel fly to Cape Town
12 May	JCR arrived Cape Town
13 May	Mobilization commenced
15 May	JCR departed Cape Town, scientific research commenced
18 May	Inshore to Offshore section, in southern Benguela
	Stowaways found; 18.00 h altered course for return to Cape Town
20 May	Off Cape Town, stowaways disembarked, resumed AMT northbound
20 May	Sampling in Benguela completed; Gulf of Guinea
31 May	Crossed the Equator
03 June	Altered course to northbound on 20° W line
5/6 June	NW African upwelling region
07 June	Entered CANIGO region
09 June	Exchanged personnel at Madeira; new CTD rosette pylon
11 June	Completed sampling in CANIGO region
13 June	Shelf break crossing at 48° 42' N
14 June	Western English Channel, South of Plymouth
15 June	Southern North Sea
16 June am	Docked Grimsby, unloaded equipment.
16 June pm	Returned to Plymouth

2.2 Cruise Track

AMT-6 cruise departed Cape Town 15 May 1998, progressing northwards close to the coast of South Africa, where the most intense upwelling was evident as shown by satellite imagery of SST (cold water) and colour (high biomass). The satellite images were used to navigate the vessel into particular features and devise a cruise track for greatest diversity of biology and productivity. During an inshore to offshore section, stowaways were found on board, necessitating the return to Cape Town, delaying the cruise by 3 days but giving an extra 2 days sampling in the southern Benguela. In the northern Benguela, the cruise track was adjusted to sample features of high biomass and high reflectance, as shown by current SeaWiFS data, representing different phytoplankton assemblages. At the Namibian, Angolan border (ca 17.5° S) the cruise track crossed the front into the oligotrophic water of the 'Gulf of Guinea'. The equatorial upwelling was crossed five days later. The cruise track joined the nominal 20° W line at ca 10° N, deviating inshore to 19° W to sample high biomass features of the NW African Upwelling in Senegalese waters. The front to the north of the upwelling showed the sharp change to the oligotrophic waters of the CANIGO region (20 N to 42 N). Six stations were dedicated to CANIGO objectives, with intensive productivity measurements at each. North of these there was one deepwater CTD cast to 1500m, which was used for determining the concentrations of Iron and nutrients. At the shelf break, a substantial bloom of Phaeocystis added to the phytoplankton diversity encountered, with an intensive patch of coccolithophores on the shelf and a bloom of mixed phytoplankton south of Plymouth.

Charts of the cruise track are presented in Fig. 1. Cruise Track, part 1, 35 S to 10 N and Fig. 2. Cruise Track, part 2, Equator to 50 N.

10

)

)

)

)

•)

÷

)

)

)

ş.

ï

Ŧ

.)

ì

,)

ì

•)

)

)

•)

INTERNATIONAL SPHEROID PROJECTED AT LATITUDE -10

AMT6 to end of day 154

AMITS to end of day 165

}

3

)

2.3 Narrative

Cruises don't often start from Cape Town, but when they do it's a beautiful place to start from. The RRS James Clark Ross arrived on schedule in Cape Town at 7.30 a.m. on the morning of Tuesday 12 May and the science team from the previous cruise de-mobilised on the first day in port. The AMT-6 scientific party joined the vessel at 08.00 h on Wednesday 13 May and mobilisation commenced, as various items of scientific equipment arrived from diverse points of origin. The main PML sea-freight shipment was held up in customs for 7 d, because of the other goods in the same container and was not delivered until late Wednesday, delaying sailing by 24 h. We got underway at 10.00 (local time) Friday 15 May. The non-toxic sea water supplies and under-way logging were switched-on soon after departure and the scientific research commenced. The first station under clear blue skies and in deep green water was at 13.00 h on 15 May and comprised the CTD (SeaBird 911plus with Chlorophyll fluorescence, Transmissometer, PAR and 12 x 30 l water bottle rosette), Optics casts (SeaOPS and SeaFALLS) and zooplankton nets. Two bottles on the rosette mis-fired due to 'hang-ups', but the success rate for the first station was acceptable. Measurements showed some of the 'power-cords' of the water bottles were under the recommended tension and these were replaced.

The second station on Saturday 16 May under blue skies and in green seas went smoothly, with 100% success on the CTD rosette, bar some small leakages. Power cords were replaced as necessary and the problems solved in time for the afternoon station. Both stations provided excellent optical measurements in waters of relatively high chlorophyll concentration (5 mg/m3). Good AVHRR imagery of SST from Scarla Weeks in Cape Town and SeaWiFS imagery from NASA, Goddard, were invaluable for choosing station positions in areas of maximum biomass and in setting survey courses through interesting mesoscale features on the overnight transects to the following day's station position. Clear skies and calm, green seas followed for the third day in a row for stations 4 and 5 on Sunday and with all experiments fully operational, the scientific party generally felt they had hit the 'sea running' for AMT-6.

At 04.00 GMT on Monday morning (18/5), the first inshore to offshore 'productivity' transect started as scheduled, towing the UOR and FRRF between stations; these were linked to lab P/I experiments using water from the 4 CTD casts and surface water at intermediate positions. Shortly after the first station, 2 stowaways were located and consternation prevailed briefly as the ship came to grips with the predicament. Fortunately the scientific plan was uninterrupted and the section of 4 stations were completed before the vessel made an about turn to return our unwanted passengers to Cape Town. En route to Cape Town and on return to the survey area, some stations were completed so there was a scientific bonus, albeit a 3-day delay to the planned arrival in Grimsby was incurred.

With the exception of some high cirrus clouds (mostly thin, rarely thick) the next 5 days in the Benguela ecosystem was almost entirely under clear blue skies and the OPTICS team made hay. By the end of the first 11 days, over 200 optical profiles had been 'put-in-the-can', mostly using the 'freefall' profilers. The general pattern of two CTD casts per day at 10.00 am and 2.00 pm ship's time was established, with the FRRF on the CTD for each cast and in the UOR for a tow between stations and a second tow from the pm station to 20.00h. A second inshore to offshore 'productivity section' and coupled P/I experiment was conducted on 23 May at the northern end of the Benguela. The second FRRF was used in 'flow-through mode in the wet lab and provided continuous measurements of photosynthetic parameters and productivity. These, when linked to biomass, pigments and nutrients measurements, gave results in 'real-time' that were enthralling to the old hands, as much as the fresh-faced, new kids on the block!

The diversity of the Benguelan system was even more enthralling, not just the spatial heterogeneity of structure and biomass but the diversity of phytoplankton species. Throughout the area we encountered at least 6 different phytoplankton assemblages: large, small and colonial diatoms, small and large dinoflafellates, red tides up to 30 mg.m⁻³ chlorophyll concentration, even the ubiquitous coccolithophores. These were identified and tracked from a SeaWiFS band 555 nm image, again emphasising the value of near real time imagery.

The Zooplankton were equally diverse. In fact, the first samples on board each morning were from 'Rachel's zooplankton nets' and the bucket samples were gazed into eagerly by everyone, scientists and crew alike. There were lots of 'jellies', many small and some up to 2 m in length and 30 cm diameter. There were many seals, in their tens, around the ship at each station and many seabirds were a feature of this highly productive ecosystem.

We were fortunate in getting permission from both the South African and Namibian governments to work in their waters. We have to thank the respective ministries of Foreign Affairs and Fisheries and the help of the First Secretary in the British High Commission in Windhoek (Namibia) and Luanda (Angola) for their sterling efforts.

The only negative aspect of the scientific operations, was the identification of a mal-function of the CTD rosette, causing some bottles to be fired together in error. After extensive testing, the pattern of failures was identified and a workable sequence of operations established. It seemed likely that the problem could not be rectified at sea so it was deemed necessary to check it regularly.

The final day in the Benguela was 25 May and working offshore throughout the day, the ship's track crossed the front between the upwelled, nutrient rich water to the warmer water offshore. Chlorophyll concentrations fell from 2.4 mg/m³ at the morning station to 0.8 mg/m³ afternoon, still mesotrophic and 'green' water. To cope with the mal-function of the CTD rosette system, an order-of-firing was established and tested, by an extra CTD cast at the surface (2 depths), each morning, confirming performance and providing extra water, making everyone happy! Working westward through the Gulf of Guinea we were still surprised by the degree of diversity and general productivity of the ecosystems; the mixed layer was generally shallow (40 to 50 m) with a sub-surface chlorophyll maximum in the thermocline and surface chlorophyll concentrations about 0.2 mg/m³. There was only one station with concentrations less than 0.1 mg/m³, which could be described as truly oligotrophic.

These mesotrophic conditions persisted throughout the south Atlantic, notably through the Equatorial upwelling, which was imaged as a broad (100 km N-S) 'green' region over the equator by SeaWiFS data, relayed to the ship. The satellite colour and SST data allowed us to sample it with UOR/FRRF tows, into and out of a station in the middle of the feature (concentration ca 0.33 mg/m^3). Northwest of this, mixed layer depths of *ca* 40-50 m and surface chlorophyll concentrations of 0.2 to 0.3 mg/m³ were observed, higher than expected.

The crossing-the-line ceremony was the usual highlight for everyone, old hands and new initiates alike. It was followed by an evening BBQ featuring polo giganticus, and as the mid-point of the cruise, gave most people a slight break in the relentless daily station sampling, which is the characteristic of AMT cruises.

Approaching the 20 W line from the south and east, the mixed layer depth (MLD) shallowed further (20 to 30 m) and the phytoplankton populations in the surface layer and the thermocline increased to up to 2 mg/m³. Remarkably these populations were very mixed, with diatoms, haptophytes, cyanobacteria and dinoflagellates co-existing.

With permissions from Cape Verdes and Senegal, but not Mauritania, we were able to sample the

2

)

NW African upwelling relatively unrestricted, though limited time permitted only a small deviation off the 20 W line. As it happened, SeaWiFS images showed the high productivity zone extending well beyond the 20 W line, contrary to expectations and with higher concentrations of pigments than was usual for AMT northbound cruises. Single band (555 nm) images showed regions of high reflectance inter-mixed with high absorption, indicating diverse phytoplankton assemblages with diverse biological and optical properties, all of which were sampled. The contrast with the Southern and Northern Benguelan upwelling systems (both different) was notable, with cyanobacteria and coccolithophores the dominant phytoplankton. All the three systems turned out to be different than expected in many ways and together gave interesting inter-comparisons.

A salinity front of 0.65 in 10 km marked the transition from the upwelling high productivity zone to blue water as the JCR moved into the CANIGO region. This proved to be the most oligotrophic zone encountered on AMT-6 or on any previous AMT cruise, with surface chlorophyll concentrations often as low as 0.03 mg.m⁻³. Off Madeira (9 June), we exchanged personnel as arranged, Stephane Maritorena replacing Jim Brown; after a turnaround of only 15 minutes, the cruise track northwards was resumed. North of Madeira, there were 3 more CANIGO stations, making 6 in total. The only deep CTD cast (to 1500 m) at *ca* 45°N provided deep-water samples for Iron and nutrients and some water for productivity of the surface layers.

Approaching the European shelf, new satellite imaging from PML focused our attention on the shelf break upwelling (at *ca* 48° 43' N 8° 40' W) and a coccolithophore bloom on the shelf further east. Both were sampled at stations on Sat. 13 June; the upwelling turned out to be a. 'phaeocystis bloom', adding further to the diversity of assemblages encountered on the cruise.

On Sunday 14 June the morning station was due south of Plymouth at (49° 50' N, 4° 10' W), again in a late spring bloom of phytoplankton of mixed species and taxa. The weather was generally overcast, so this was one of the few occasions when no good optical casts were acquired. Later, further to the west, an afternoon optics cast in good conditions was obtained, just east of Start Point in the mixed water of the eastern English Channel. As it turned out, this was our last station measurement, as cloudy weather prevailed during the passage up the southern N. Sea to Grimsby.

All scientific activities are listed in the Scientific Bridge Log, Appendix A6-2.

3. RESEARCH REPORTS

3.1 Physical Oceanography CTD data & XBTs

Jim Aiken & Derek Pilgrim, Plymouth Marine Laboratory & U o Plymouth.

Measurements of T & C at stations were made with the SeaBird 911plus CTD with additional sensors for Chlorophyll fluorescence (Chfl) water transmission at 660 nm (Tr) and PAR. In addition, most of the freefall optical profilers had supplementary sensors for CTD and Chfl. The UOR, while carrying a FRRF, also had sensors for CTD to provide vertical sections through the undulation depth range of 5 to 55 m. As normal for all AMT cruises on the JCR, measurements of C, T (SeaBird) and Chfl (Turner Mk 10) of the surface water, from the non-toxic supply at 7 m, were recorded by the Ocean Logger system. XBT deployments were limited to deep water off the continental shelf; a total of 99 XBTs were deployed, 66 T-7 and 33 T-5 at 6 knots as the ship left station. The XBT deployments are listed in Appendix A6-3.

There were 52 CTD casts (see Appendix A6-1), of which 12 were shallow (to 10 - 15 m) while testing the CTD firing mechanism and 1 deep (A6-50) to 1500 m. The remainder were to 100 to 200 m depending on the water depth whilst on the continental shelf and to a maximum of 400 m off-shelf, though, typically most were to 200 m. Water bottle depths for each CTD cast are listed in Appendix A6-4. Fig. 3a, b, c & d show the contoured vertical sections of T, S, Chfl and Tr for the complete cruise from 35 S to 50 N. Fig. 4a, b, c & d show the contoured vertical sections for the Northern Hemisphere only, for comparison with earlier AMT cruise measurements over the same sector. Salinity calibration bottles are listed in Appendix A6-5.

The surface layer T, S and ot for AMT-6 is shown in Fig. 5a, b & c. The contoured vertical section of T from the XBTs is shown in Fig. 6.

16

)

J

)

)

)

`}

Ż

5

)

٩

.

į

`

7

)

5

ì

)

1

)

Fig. 3 a, b. Vertical Section of Temperature (top) and Salinity (bottom) from CTD casts for all stations 35 S to 50 N

AMT-6 CTD Temperature

AMT-6 CTD Salinity

ţ

2

j

)

ĥ

Fig. 4 a, b. Vertical Section of Temperature (top) and Salinity (bottom) from CTD casts for all stations 5 S to 50 N $\,$

AMT-6 CTD Salinity (North)

)

)

Fig. 4 c, d. Vertical Section of Fluorescence (top) and Transmission (bottom) from CTD casts for all stations 5 S to 50 N

Fig. 5 a, b & c. Along Track Sea Surface Temperature (top), Salinity (middle) and Density (bottom).

Fig. 6. XBT Section 50 N to 15 S

)

)

)

)

٦

(`

3.2 Remote Sensed Imagery

Satellite imagery was received daily, throughout the cruise. SeaWiFS data were received from NASA, Goddard and AVHRR imagery of SST from UCT, Cape Town and RSMAS U of Miami. These were used to adjust daily sampling strategy, to take samples in regions of high or low chlorophyll, high or low reflectance (Rrs550) or low or high temperature waters.

Figure 7 shows the SST image for the S. Benguela for 4 May, a few days before sailing from Cape Town. The predominant features are the large mesoscale eddy structures off Cape Columbine (35 S) and to the north of this. The dominant cold water cell stretched from Lamberts Bay (32.5 S) to the Orange River (28.7 S) at the border of RSA and Namibia to the north. The SeaWiFS image (fig. 8) showed complex phytoplankton biomass structures with eddies, jets and streamers extending 100 km offshore. Unusually for this time of year, the biological activity in the S. Benguela was very intense, resulting in very high chlorophyll concentrations (eutrophic, up to and >10 mg.m⁻³) near shore from 32.5 S to 29 S and mesotrophic concentrations off shore, in the mesoscale structures. The highest concentrations measured (*ca* 30 mg.m⁻³ in a dinoflagellate bloom) were encountered in a streamer only 20-30 km in width at 32.4 S.

The main cold water cell in the mid Benguela stretched from Luderitz (26.7 S) to Conception Bay (24 S), see fig 9. The SeaWiFS image for the area (fig 10) showed very high concentrations (black) and areas where the algorithms failed (white). During the cruise it was thought that these areas had very high pigments, but subsequently it was discovered that desert dust (Kalahari) caused the atmospheric correction algorithm to fail. In these areas the images still showed enough structure, especially the Rrs555 image, to guide the boat through zones of striking contrast and to station positions with maximum variety. At the northern limit of the Benguela the SST imagery showed the extremely sharp front at 15.6 S with the warm tropical water to the north and west. Because of fog, sea mist or atmospheric dust, no good SeaWiFS images of the area were received, and cruise track was set to sample the coldest zones from the SST image.

On leaving the northern Benguela and the mesotrophic area to the northwest, the SST and SeaWiFS images showed less variability as would be expected for the oligotrophic ocean. Unexpectedly there were patches of chlorophyll up to 0.2/0.3 mg.m-3, higher that usual for the equatorial zone. The next significant feature of interest was the Equatorial upwelling, which appeared as a broad (50 km, S to N) band stretching 150 km E to W. At the same time the ITCZ appeared as a cloud covered feature in the AVHRR image composites, from about 3 N to 7 N.

Approaching the West African region there were no notable features in the SeaWiFS or AVHRR and little sign of upwelling off either Senegal or Mauritania. With permission to sample in Senegalese waters, a small excursion to 19 W was possible encountering high phytoplankton concentrations again; see fig 11. The passage in and out of this zone showed high variability in reflectance seen in the Benguela, which were related to 'a' and 'c' measurements by the ac-9.

Finally, SeaWiFS and SST images from PML (received at Dundee) showed phytoplankton blooms and coccolithophores in the western approaches and the English Channel, all of which were sampled; see fig 12.

Satellite images Fig7, 8, 9, 10, 11 & 12 are included as pages 13 a, b, c, d, e & f.

- Fig. 7. Southern Benguela SST
- Fig. 8. Southern Benguela SeaWiFS Chlorophyll
- Fig. 9. Northern Benguela SST
- Fig. 10. Northern Benguela SeaWiFS Chlorophyll
- Fig. 11. West African Upwelling SeaWiFS Chlorophyll
- Fig. 12. Western Approaches SeaWiFS Chlorophyll

j

۰,

)

)

`}

ì

1

)

. j

)

)

1

į.

`}

)

)

5

Ì

2

)

Fig. 9 Northern Benguela SST

)

)

ۇر

)

Fig. 10 Northern Benguela SeaWiFS Chlorophyll

Fig.11 West African Upwelling SeaWiFS Chlorophyll

Fig. 12 Western Approaches SeaWiFS Chlorophyll

3.3 In-Water Optics

١

Stan Hooker, Jim Brown, Cyril Dempsey and Stephane Maritorena, NASA.

During AMT-6, optical data were collected underway with the UOR and an ac-9 and on station by four in-water profiling systems: SeaWiFS Optical Profiling System (SeaOPS), SeaWiFS Free-Falling Advanced Light Level Sensors (SeaFALLS), Low-Cost NASA Environmental Sampling System (LoCNESS), and the miniature NASA Environmental Sampling System (miniNESS). An above-water set of radiometers SeaWiFS Surface Acquisition System (SeaSAS) measured the water leaving radiance on station. SeaOPS was deployed using a winch and crane, whereas, SeaFALLS, LoCNESS, and miniNESS are tethered freefall systems that were deployed by hand. The crane used with SeaOPS had about a 10 m reach over the side of the ship, and the tethered systems were at least 30 m away from the stern of the vessel before any data were collected. All of the in-water profiling instruments collected $Ed(z, \lambda)$ and $Lu(z, \lambda)$ data; SeaOPS and LoCNESS also collected $Eu(z, \lambda)$.

Underway and station surface (solar) irradiance data were measured by an in-air irradiance sensor, Es(0⁺), that was mounted on the port trawl post mast, as part of SeaOPS; the SeaWiFS Buoyant Optical Surface Sensor (SeaBOSS), which comprised an in-air irradiance sensor, $Es(0^+)$, fitted inside a buoyant collar, so it can be deployed on a mast or as a tethered buoy; and a photosynthetically available radiation (PAR) sensor (with a deck cell) which was integrated into the CTD system. A complete description of the SeaOPS, LoCNESS, and SeaFALLS systems can be found in Aiken et al. (1998).

The miniNESS profiler was not a new instrument, but had been built up from SeaOPS components: a DATA-100 (S/N 004) and the two light sensors, OCR-200 and OCI-200. Once assembled, miniNESS became a free-falling unit that functioned as LoCNESS, and it was deployed in the same fashion. The data acquisition for miniNESS was the same as used for LoCNESS and SeaOPS. The principle advantage of miniNESS was its low cost, compactness, and flexibility; it was assembled from relatively low cost components, less than one half the size of LoCNESS or SeaFALLS. It was reconfigured quickly, since the radiometers used are not integral to the design. The radiometers were positioned on the edges of the tail fins, so they were at the same depth level when taking data (unlike LoCNESS or SeaFALLS where the sensors were separated by the length of the profiler). In comparison to SeaFALLS (which uses OCR-1000 and OCI-1000 sensors), there was a commensurate loss in sensitivity, so one of the objectives of the AMT-6 cruise was to evaluate the capabilities of miniNESS in comparison to the other proven designs. This was achieved by making simultaneous deployments with the other profilers.

The LoCNESS profiler was used with the Three-Headed Optical Recorder (THOR) option. In this configuration, a special adapter plate, on the nose of the profiler, allowed two heads to be mounted rather than one: the usual Lu sensor plus an Eu sensor. The two nose sensors did not disturb the stability of the profiler during descent. In fact, THOR was shown to have the lowest and most stable tilts of all the profilers. This stability, and the fact that three components of the light field were measured during each profile, made LoCNESS one of the most versatile profilers used.

SeaSAS was used to make above-water radiometric measurements. It consisted of two OCR-200 radiombeters and a DIR-10 directional unit. One radiometer was pointed at the sea surface to measure $Lw(0^{+})$ and the other at the sky to measure $Ls(0^{+})$. The DIR-10 measured the compass heading of the vessel and its pitch and roll. The measurement procedure followed during AMT-6 was the same as given in Mueller and Austin (1995) with the exception that the surface-viewing angle was 40 degrees up from

nadir and the sky-viewing angle was 140 degrees up from nadir (the original protocol was 30 degrees and 150 degrees, respectively). Both radiometers made measurements in the viewing plane perpendicular to the sun. Since the sun was usually on the starboard beam, the measurements were made to the stern. In most cases, simultaneous profiles with one or more of the inwater profilers were made at the same time.

All of the calibrations for above- and in-water radiometers were monitored daily with the SeaWil³S Quality Monitor (Johnson et al. 1998) which has been used on previous AMT cruises for the same purpose (Hooker and Aiken 1998 and Aiken et al. 1998). See Appendices A6-6, 7, 8, 9, 10, and 11.

nadir and the sky-viewing angle was 140 degrees up from nadir (the original protocol was 30 degrees and 150 degrees, respectively). Both radiometers made measurements in the viewing plane perpendicular to the sun. Since the sun was usually on the starboard beam, the measurements were made to the stern. In most cases, simultaneous profiles with one or more of the inwater profilers were made at the same time.

All of the calibrations for above- and in-water radiometers were monitored daily with the SeaWiFS Quality Monitor (Johnson et al. 1998) which has been used on previous AMT cruises for the same purpose (Hooker and Aiken 1998 and Aiken et al. 1998). See Appendices A6-6, 7, 8, 9, 10, and 11.

)

1

ļ

Ĵ.

.

3.3 In-Water Optics

Stan Hooker, Jim Brown, Cyril Dempsey and Stephane Maritorena, NASA.

During AMT-6, optical data were collected underway with the UOR and an ac-9 and on station by four in-water profiling systems: SeaWiFS Optical Profiling System (SeaOPS), SeaWiFS Free-Falling Advanced Light Level Sensors (SeaFALLS), Low-Cost NASA Environmental Sampling System (LoCNESS), and the miniature NASA Environmental Sampling System (miniNESS). An above-water set of radiometers SeaWiFS Surface Acquisition System (SeaSAS) measured the water leaving radiance on station. SeaOPS was deployed using a winch and crane, whereas, SeaFALLS, LoCNESS, and miniNESS are tethered freefall systems that were deployed by hand. The crane used with SeaOPS had about a 10 m reach over the side of the ship, and the tethered systems were at least 30 m away from the stern of the vessel before any data were collected. All of the in-water profiling instruments collected $Ed(z, \lambda)$ and $Lu(z, \lambda)$ data; SeaOPS and LoCNESS also collected $Eu(z, \lambda)$.

Underway and station surface (solar) irradiance data were measured by an in-air irradiance sensor, $Es(0^+)$, that was mounted on the port trawl post mast, as part of SeaOPS; the SeaWiFS Buoyant Optical Surface Sensor (SeaBOSS), which comprised an in-air irradiance sensor, $Es(0^+)$, fitted inside a bucyant collar, so it can be deployed on a mast or as a tethered buoy; and a photosynthetically available radiation (PAR) sensor (with a deck cell) which was integrated into the CTD system. A complete description of the SeaOPS, LoCNESS, and SeaFALLS systems can be found in Aiken et al. (1998).

The miniNESS profiler was not a new instrument, but had been built up from SeaOPS components: a DATA-100 (S/N 004) and the two light sensors, OCR-200 and OCI-200. Once assembled, miniNESS became a free-falling unit that functioned as LoCNESS, and it was deployed in the same fashion. The data acquisition for miniNESS was the same as used for LoCNESS and SeaOPS. The principle advantage of miniNESS was its low cost, compactness, and flexibility; it was assembled from relatively low cost components, less than one half the size of LoCNESS or SeaFALLS. It was reconfigured quickly, since the radiometers used are not integral to the design. The radiometers were positioned on the edges of the tail fins, so they were at the same depth level when taking data (unlike LoCNESS or SeaFALLS where the sensors were separated by the length of the profiler). In comparison to SeaFALLS (which uses OCR-1000 and OCI-1000 sensors), there was a commensurate loss in sensitivity, so one of the objectives of the AMT-6 cruise was to evaluate the capabilities of miniNESS in comparison to the other proven designs. This was achieved by making simultaneous deployments with the other profilers.

The LoCNESS profiler was used with the Three-Headed Optical Recorder (THOR) option. In this configuration, a special adapter plate, on the nose of the profiler, allowed two heads to be mounted rather than one: the usual Lu sensor plus an Eu sensor. The two nose sensors did not disturb the stability of the profiler during descent. In fact, THOR was shown to have the lowest and most stable tilts of all the profilers. This stability, and the fact that three components of the light field were measured during each profile, made LoCNESS one of the most versatile profilers used.

SeaSAS was used to make above-water radiometric measurements. It consisted of two OCR-200 radiombeters and a DIR-10 directional unit. One radiometer was pointed at the sea surface to measure $Lw(0^+)$ and the other at the sky to measure $Ls(0^+)$. The DIR-10 measured the compass heading of the vessel and its pitch and roll. The measurement procedure followed during AMT-6 was the same as given in Mueller and Austin (1995) with the exception that the surface-viewing angle was 40 degrees up from

3.4 IOPs ac-9 measurements

Derek Pilgrim, Institute of Marine Studies, University of Plymouth

The *ac-9* was operated almost continuously in underway mode from days 141 to 166. The instrument was connected to the ship's non-toxic supply. To maintain the instrument at ambient temperature it was placed in a plastic barrel, on deck, supplied by a constant flow of seawater. A Chelsea Instruments *Alphatracka* transmissometer (25cm, 565nm) was also deployed in the barrel. The output of the *ac-9* was continuously logged using the PC-based *Wetview* package. On CTD stations (and some optical stations) a 0.2 μ m filter was fitted at the input to the *ac-9* to remove all suspended material. Thus measurements of *a* and *c* were obtained for 'total', 'water + dissolved', and, by subtraction, 'particulate' components.

Numerous attempts were made during the cruise to calibrate the ac-9 using filtered Milli-Q water, but the results were considered unsatisfactory. The instrument is to be calibrated under laboratory conditions ashore. Calibration is not needed to produce 'particulate' values of a and c (and by subtraction, b) since these are obtained by subtraction of filtered from non-filtered measurements.

Figure 13 illustrates typical particle absorption curves from four sample stations, and these clearly show the expected chlorophyll-a spectral peaks in the region of 430nm and 662nm

Fig. 13. Particle absorption spectra observed at 4 stations: stn.630 in the Gulf of Guinea, stn.633 at the Equator, stn.648 in the NW African upwelling and stn.664 in the W. Approaches.

Figure 14 illustrates the relationship between particle absorption (in this case total absorption derived from the integration of the spectra in figure 13) and chlorophyll-a concentration (from HPLC measurements). The relationship may be expressed as:

Absorption = 27.4 [Chl-a] + 3.21 (n = 27, r² = 0.71)

Figure 15 shows the relationship between particle scattering (as the scattering ratio, b/a) and total absorption a. High values of a indicate high concentrations of particles (plankton) whilst high values of b/a indicate relatively small-sized plankton. The plankton populations of the six broad geographical areas sampled are clustered into groups of similar scattering ratio and/or absorption. Figure 16 shows the same scattering (b/a) data plotted as a function of Chl-a concentration.

Figure 14. Total absorption vs. chlorophyII-a concentration from observations at 27 stations

Figure 15. Plot of scattering ratio against total absorption for 6 broad geographical areas

Figure 16. Plot of scattering ratio against chlorophyll-a for 6 broad geographical areas.

Figure 14. Total absorption vs. chlorophyll-a concentration from observations at 27 stations

Figure 15. Plot of scattering ratio against total absorption for 6 broad geographical areas

Figure 16. Plot of scattering ratio against chlorophyll-a for 6 broad geographical areas.

27

١

٦

)

)

3.4 IOPs ac-9 measurements

Derek Pilgrim, Institute of Marine Studies, University of Plymouth

The *ac-9* was operated almost continuously in underway mode from days 141 to 166. The instrument was connected to the ship's non-toxic supply. To maintain the instrument at ambient temperature it was placed in a plastic barrel, on deck, supplied by a constant flow of seawater. A Chelsea Instruments *Alphatracka* transmissometer (25cm, 565nm) was also deployed in the barrel. The output of the *ac-9* was continuously logged using the PC-based *Wetview* package. On CTD stations (and some optical stations) a $0.2 \,\mu$ m filter was fitted at the input to the *ac-9* to remove all suspended material. Thus measurements of *a* and *c* were obtained for 'total', 'water + dissolved', and, by subtraction, 'particulate' components.

Numerous attempts were made during the cruise to calibrate the ac-9 using filtered Milli-Q water, but the results were considered unsatisfactory. The instrument is to be calibrated under laboratory conditions ashore. Calibration is not needed to produce 'particulate' values of a and c (and by subtraction, b) since these are obtained by subtraction of filtered from non-filtered measurements.

Figure 13 illustrates typical particle absorption curves from four sample stations, and these clearly show the expected chlorophyll-a spectral peaks in the region of 430nm and 662nm

Fig. 13. Particle absorption spectra observed at 4 stations: stn.630 in the Gulf of Guinea, stn.633 at the Equator, stn.648 in the NW African upwelling and stn.664 in the W. Approaches.

Figure 14 illustrates the relationship between particle absorption (in this case total absorption derived from the integration of the spectra in figure 13) and chlorophyll-*a* concentration (from HPLC measurements). The relationship may be expressed as:

Absorption = 27.4 [Chl-a] + 3.21 (n = 27, r² = 0.71)

Figure 15 shows the relationship between particle scattering (as the scattering ratio, b/a) and total absorption a. High values of a indicate high concentrations of particles (plankton) whilst high values of b/a indicate relatively small-sized plankton. The plankton populations of the six broad geographical areas sampled are clustered into groups of similar scattering ratio and/or absorption. Figure 16 shows the same scattering (b/a) data plotted as a function of Chl-a concentration.

3.5 FRRF & UOR

Dave Suggett & Jim Aiken, PML & SOC

Fast Repetition Rate Fluorometry:

Fast Repetition Rate (FRR) Fluorometry is an active fluorescence technique, which measures the in vivo fluorescence of chlorophyll (red, 683mm) resulting from a stimulating light source (blue, 450-460mm). FRR fluorometry has evolved from Pump and Probe Fluorometry (both have the same fluorescence-photosynthesis relationships). Both techniques produce an increase and eventual saturation of [PSII] fluorescence yield, via a cumulative closure of reaction centres, as higher light intensities are applied by successive flashes. FRR fluorometry provides about 100 short spaced sub-saturating flashlets. The more efficient design of FRR fluorometry provides an improved signal to noise ratio giving better measurements in low chlorophyll waters. The Fast Repetition Rate Fluorometer (FRRF) has 2 measurement chambers. One chamber is open to water under ambient light conditions and the other chamber is enclosed forming a 'dark cell'. This cell allows measurements of a dark-adapted sample for comparison. From the concurrent measurements from these 2 chambers, the physiological characteristics of algal cells can be determined. The parameters measured are: Fv/Fm, the photochemical quantum efficiency which is proportional to the maximal change in the quantum yield of fluorescence, $\Delta \phi_{max}$, σ_{PSII} the functional absorption cross section of PSII, τ the minimum turnover time for electron transport. An indirect estimate of production can be derived, based on a theoretical relationship between these parameters and rates of photosynthesis.

Two Chelsea Instruments FAST^{tracka} FRRFs were used on AMT 6, both operating with a flash sequence of 100 saturation flashes (100 1µs flashes each separated by 1µs interval) and 20 relaxation flashes (20 1µs flashes each separated by 50µs intervals) flashes at 200kHz rates. **Underway Flow Through Mode:** FRRF #1 was set to acquire data under *discrete* mode. Data were logged by a PC. Water from the underway non-toxic supply and passed through the dark chamber using the standard dark cell or a blackened polycarbonate square vial. The polycarbonate cell had an offset, which needed a calibration factor, obtained by a simultaneous measurement using the 2 cell types, in-line. The windows and the cells were cleaned daily, to prevent fouling.

Periodically, FRRF #2 was attached to the underway flow through water supply for intercalibration. In this mode, the polycarbonate and the standard dark cells were interchanged, to measure any residual effect of the 2 instruments and the 2 cell types. The measurement of darkadapted algal samples using this flow through method, means that the ambient light, properties of algae cannot be observed. A range of important biophysical parameters can be derived.

Data acquisition in this underway mode was programmed for 1 data point every 16 flash sequences (=16 flash sequences per acquisition) and recorded in the internal flashcard memory. This was equivalent to a sampling rate of 1 record every 40s. This rate was the lowest possible and was chosen to minimise the noise level and the file size. The gain of the instrument photomultiplier was set manually, and adjusted daily, depending on the chlorophyll concentration for the previous day.

Files were downloaded once per day to the PC. The files were kept small (1.3 MB) to allow easy transfer between machines. All underway files were logged throughout the cruise as UNDWYxx.bin files (see FRRF data acquisition log appendix A6-12). The FRRF's internal clock was set to GMT.

The files were processed through a programme supplied by Z.S. Kolber. This programme provides the biophysical parameters of the algal samples from on the fluorescence measurements taken from the instrument. These are: Fo, background fluorescence; Fm, maximum fluorescence yield; Fv, variable fluorescence yield equated to biomass, Fv/Fm, σ_{PSII} , τ).

CTD Profiling: FRRF #2 was set to acquire data in a remote (*Autoacquire*) mode. The FRRF and appropriate battery pack were attached to the CTD rig and switched on immediately prior to the CTD deployment. Data acquisition in underway mode was 4 flash sequences per acquisition (= 1 data point stored/chamber/10s). For the downcast, data was logged corresponding to a depth average depending on the speed of descent. The upcast was stopped for 2 minutes at chosen depths to improve the signal to noise ratio. A PAR sensor was attached to the FRRF. Additionally, PAR data (for each depth) was taken from the CTD mounted PAR sensor.

The FRRF data were downloaded and processed as above. All CTD files were logged throughout the cruise as CTDPxx.bin files (see FRRF data acquisition log Appendix A6-12). The optical windows and dark cells were cleaned daily to remove any build up of fouling material. Gain was changed manually according to the measurements from the previous day FRRF or Turner fluorometer. The battery voltage was checked daily and changed and recharged as appropriate.

Fig. 17a and b show examples of profile data. Fig. 17a is taken from the Northern Equatorial region (16.22.7 N 20.00.3 W) whilst Fig. 17b is from more oligotrophic waters in the CANIGO region (36.36.9 N 17.30.3 W). Both figures include Fv (fluorescence biomass) and Fv/Fm (Quantum efficiency which is a measure of the 'health' of the algae) for both the dark adapted phytoplankton (D) and phytoplankton under ambient light (L). The scales are the same for both. The oligotrophic region shows a lower (value) deeper maxima of fluorescence and a higher (value) deeper Fv/Fm, compared to that observed in the Northern Equatorial region.

Undulating Oceanographic Recorder (UOR) Tows

The UOR measured the vertical section of the water column (5 to 60 m) whilst towed at the ship's passage speed 11 to 11.5 knots (20km/h). For AMT-6, the UOR carried a FRRF, temperature and salinity sensors, Satlantic downwelling irradiance (OCI-200, S/N 001) and upwelling radiance (OCR-200, S/N 001) sensors. The logger recorded data at a rate of once per 2 seconds from the sensors. The internal logger clock was set to ship's clock GMT and was checked (and readjusted when necessary) daily at time of data download.

This depth range (5 to 60m) captured the fluorescence maxima values for the majority of areas encountered. The UOR was towed from early morning into the main station, between stations or from the afternoon station to early evening, through a wide range of hydrographic areas producing 75 h of tow data. An inventory of the tows for the cruise is given in Appendix A6-13.

The FRRF #2 was programmed to collect data in an identical manner to CTD profiling, although the importance of logging data collected from a section of depth becomes more pronounced under the UOR mode. The number of sequences per acquisition were not changed (reduced so less averaging within a band of depth) to maintain an adequate signal to noise. All data were downloaded and logged as UORPxx.bin files (see FRRF data acquisition log Appendix A6-12). The files were processed through a programme supplied by Z.S. Kolber. This programme provides the biophysical parameters of the algal samples from on the fluorescence measurements taken from the instrument. These are: Fo, background fluorescence; Fm, maximum fluorescence yield; Fv, variable fluorescence yield equated to biomass, Fv/Fm, σ_{PSII} , τ).

CTD Profiling: FRRF #2 was set to acquire data in a remote (*Autoacquire*) mode. The FRRF and appropriate battery pack were attached to the CTD rig and switched on immediately prior to the CTD deployment. Data acquisition in underway mode was 4 flash sequences per acquisition (= 1 data point stored/chamber/10s). For the downcast, data was logged corresponding to a depth average depending on the speed of descent. The upcast was stopped for 2 minutes at chosen depths to improve the signal to noise ratio. A PAR sensor was attached to the FRRF. Additionally, PAR data (for each depth) was taken from the CTD mounted PAR sensor.

The FRRF data were downloaded and processed as above. All CTD files were logged throughout the cruise as CTDPxx.bin files (see FRRF data acquisition log Appendix A6-12). The optical windows and dark cells were cleaned daily to remove any build up of fouling material. Gain was changed manually according to the measurements from the previous day FRRF or Turner fluorometer. The battery voltage was checked daily and changed and recharged as appropriate.

Fig. 17a and b show examples of profile data. Fig. 17a is taken from the Northern Equatorial region (16.22.7 N 20.00.3 W) whilst Fig. 17b is from more oligotrophic waters in the CANIGO region (36.36.9 N 17.30.3 W). Both figures include Fv (fluorescence biomass) and Fv/Fm (Quantum efficiency which is a measure of the 'health' of the algae) for both the dark adapted phytoplankton (D) and phytoplankton under ambient light (L). The scales are the same for both. The oligotrophic region shows a lower (value) deeper maxima of fluorescence and a higher (value) deeper Fv/Fm, compared to that observed in the Northern Equatorial region.

Undulating Oceanographic Recorder (UOR) Tows

The UOR measured the vertical section of the water column (5 to 60 m) whilst towed at the ship's passage speed 11 to 11.5 knots (20km/h). For AMT-6, the UOR carried a FRRF, temperature and salinity sensors, Satlantic downwelling irradiance (OCI-200, S/N 001) and upwelling radiance (OCR-200, S/N 001) sensors. The logger recorded data at a rate of once per 2 seconds from the sensors. The internal logger clock was set to ship's clock GMT and was checked (and readjusted when necessary) daily at time of data download.

This depth range (5 to 60m) captured the fluorescence maxima values for the majority of areas encountered. The UOR was towed from early morning into the main station, between stations or from the afternoon station to early evening, through a wide range of hydrographic areas producing 75 h of tow data. An inventory of the tows for the cruise is given in Appendix A6-13.

The FRRF #2 was programmed to collect data in an identical manner to CTD profiling, although the importance of logging data collected from a section of depth becomes more pronounced under the UOR mode. The number of sequences per acquisition were not changed (reduced so less averaging within a band of depth) to maintain an adequate signal to noise. All data were downloaded and logged as UORPxx.bin files (see FRRF data acquisition log Appendix A6-12).

3.5 FRRF & UOR

Dave Suggett & Jim Aiken, PML & SOC

Fast Repetition Rate Fluorometry:

Fast Repetition Rate (FRR) Fluorometry is an active fluorescence technique, which measures the in vivo fluorescence of chlorophyll (red, 683mm) resulting from a stimulating light source (blue, 450-460mm). FRR fluorometry has evolved from Pump and Probe Fluorometry (both have the same fluorescence-photosynthesis relationships). Both techniques produce an increase and eventual saturation of [PSII] fluorescence yield, via a cumulative closure of reaction centres, as higher light intensities are applied by successive flashes. FRR fluorometry provides about 100 short spaced sub-saturating flashlets. The more efficient design of FRR fluorometry provides an improved signal to noise ratio giving better measurements in low chlorophyll waters. The Fast Repetition Rate Fluorometer (FRRF) has 2 measurement chambers. One chamber is open to water under ambient light conditions and the other chamber is enclosed forming a 'dark cell'. This cell allows measurements of a dark-adapted sample for comparison. From the concurrent measurements from these 2 chambers, the physiological characteristics of algal cells can be determined. The parameters measured are: Fv/Fm, the photochemical quantum efficiency which is proportional to the maximal change in the quantum yield of fluorescence, $\Delta \phi_{max}$, σ_{PSR} the functional absorption cross section of PSII, τ the minimum turnover time for electron transport. An indirect estimate of production can be derived, based on a theoretical relationship between these parameters and rates of photosynthesis.

Two Chelsea Instruments FAST^{tracka} FRRFs were used on AMT 6, both operating with a flash sequence of 100 saturation flashes (100 1µs flashes each separated by 1µs interval) and 20 relaxation flashes (20 1µs flashes each separated by 50µs intervals) flashes at 200kHz rates. **Underway Flow Through Mode:** FRRF #1 was set to acquire data under *discrete* mode. Data were logged by a PC. Water from the underway non-toxic supply and passed through the dark chamber using the standard dark cell or a blackened polycarbonate square vial. The polycarbonate cell had an offset, which needed a calibration factor, obtained by a simultaneous measurement using the 2 cell types, in-line. The windows and the cells were cleaned daily, to prevent fouling.

Periodically, FRRF #2 was attached to the underway flow through water supply for intercalibration. In this mode, the polycarbonate and the standard dark cells were interchanged, to measure any residual effect of the 2 instruments and the 2 cell types. The measurement of darkadapted algal samples using this flow through method, means that the ambient light, properties of algae cannot be observed. A range of important biophysical parameters can be derived.

Data acquisition in this underway mode was programmed for 1 data point every 16 flash sequences (=16 flash sequences per acquisition) and recorded in the internal flashcard memory. This was equivalent to a sampling rate of 1 record every 40s. This rate was the lowest possible and was chosen to minimise the noise level and the file size. The gain of the instrument photomultiplier was set manually, and adjusted daily, depending on the chlorophyll concentration for the previous day.

Files were downloaded once per day to the PC. The files were kept small (1.3 MB) to allow easy transfer between machines. All underway files were logged throughout the cruise as UNDV/Yxx.bin files (see FRRF data acquisition log appendix A6-12). The FRRF's internal clock was set to GMT.

AMT-6 FRRF Fv/Fm from CTD cast

Fig. 18. Vertical section of Fv, Fm, & Fv/Fm from CTD casts from 35 S to 50 N.

)

)

С

С

)

1

)

)

Fig. 17 Vertical profiles of FRRF Fv & Fv/Fm for: a) N Equatorial Region; b) CANIGO

3.6 Water sampling for pigments, phytoplankton and bacteria.

Patrick Holligan, University of Southampton.

Water samples were collected on stations (up to 10 depths between surface and 200 m) and along track (non-toxic supply from \sim 7 m at approximately 2 h intervals) and filtered for chlorophyll *a* and pigment determinations by fluorescence and HPLC respectively. The chlorophyll *a* measurements were made using the method of Welschmeyer (1994) and gave values that were consistent with but higher than those determined by HPLC. Surface values were in the range >30 mg m⁻³ (Benguela upwelling) to ~0.03 mg m⁻³ (N Atlantic subtropical gyre).

The Chlorophyll and HPLC pigment sampling log (underway & station) is given in Appendix A6-14.

Samples were collected for identification and enumeration of phytoplankton by the following methods:

1. Flow cytometry (fixed in glutaraldehyde, stored at - 80 C) for eukaryotic flagellates, cyanobacteria and heterotrophic bacteria to be analysed by Dr. M. Zubkov (PML)

2. Light microscopy (fixed in Lugols iodine and buffered formalin)

a) Surface fine townet at each daily station, for large cells and colonial forms

b) Surface (7 m) and sub-surface fluorescence maximum depths at each daily station.

3. Additional samples were taken between the daily stations in the upwelling regions where surface fluorescence (chlorophyll) maxima were observed.

During the course of the cruise fresh material from the tow nets was examined. Observations relevant to synoptic optical and biogeochemical measurements included:

1. Dense patches of Ceratium spp in the S. Benguela giving surface chlorophyll a values >30 mg m⁻³.

2. Extensive populations of the very large (cells >250 μ m in diameter) diatom Coscinodiscus wailsei in the mid-Benguela region in both surface and deeper waters. Apparently healthy cells were relatively abundant in the anoxic bottom water off Walvis Bay.

3. Trichodesmium/Oscillatoria widespread but not abundant in the eastern tropical S. Atlantic.

4. Exceptionally dense populations of Synechococcus and a small (10 μ m) Nitzschia species off N. W. Africa.

5. Blooms of Phaeocystia and Emiliania huxleyi off N.W. European shelf.

3.8 Phytoplankton Pigment Distributions

Ray Barlow, Sea Fisheries Research Institute, Cape Town, RSA.

Objectives

- 1. Provide accurate pigment data for the calibration and validation of SeaWiFS ocean colour images and the development of SeaWiFS remote sensing algorithms.
- 2. Investigate the distribution of chlorophyll and carotenoid biomarker pigments along the AMT' track to determine the basin scale variations in phytoplankton biomass and community structure.

Methods

Underway surface sampling was conducted every 2 hours from the non-toxic sea water supply and 0.5-4 litres was filtered through 25 mm GFF filters. For vertical profiling, samples were taken from up to 9 depths down to 200 m. Pigment samples were stored at -80°C until analysis by HPLC which was conducted on all underway and station samples on board the James Clark Ross. Pigments were extracted in acetone using ultrasonication, and centrifugation to remove debris, and analysed using the method of Barlow *et al (Mar Ecol Prog Ser*, 161, 303-307, 1997) on a Shimadzu HPLC coupled to a Thermo Separations Products autosampler and a UV6000 diode array absorbance detector. Chlorophyll and carotenoid standards were obtained from Sigma Chemical Co, UK, VKI Water Quality Institute, Denmark and Mike Ondrusek, University of Hawaii.

Preliminary results

524 samples were analysed for a range of 15 chlorophylls and carotenoids. Daily main optics stations were processed on board. Concentrations of chlorophyll a for underway and station samples are given in Appendix A6-14.

AMT-6 provided a unique opportunity to study a wide variety of water masses and different phytoplankton populations. Some of the data from 4 sections of the underway surface transect are presented as an example of the variations encountered in the Benguela and NW African upwelling regions. High, patchy, chlorophyll a concentrations of up to 18.9 mg.m⁻³ were recorded in the southern Benguela between 32 S and 29 S and the accessory pigment data indicated that dinoflagellates (Peridinin - Per) accounted for most of this high biomass (Fig. 19a & b). In the mid-Benguela (28.5 S-25 S), chlorophyll a levels ranged from 1 to 4.5 mg m⁻³ with diatoms (Fucoxanthin - Fuc) being the dominant phytoplankton group, although microflagellates in the form of prymnesiophytes (Hexanoyloxyfucoxanthin - Hex) were also significant (Fig. 19c & d).

Similar surface chlorophyll *a* concentrations (1to 4.5 mg m⁻³) were observed between 22 and 20 S in the N. Benguela with a mixed community of diatoms (Fucoxanthin - Fuc) and microflagellates (Hexanoyloxyfucoxanthin - Hex) accounting for most of the chlorophyll at 22 S to 21 S. Diatoms (Fucoxanthin - Fuc) were the dominant phytoplankton group at 21 to 20 S (Fig. 20a & b). In the NW African Upwelling, chlorophyll *a* ranged from 0.5-4 mg.m⁻³ with diatoms generally being the most prominent group from 15 N to 20 N (Fig. 20c & d). Microflagellates (Hexanoyloxyfucoxanthin - Hex) were also important. At the frontal boundary at 21-21.5 N, chlorophyll *a* concentrations declined markedly to 0.1 mg m⁻³ and the prokaryote organisms *Synechococcus* and *Prochlorococcus* (Zeaxanthin - Zea; Divinyl chlorophyll – DVChla *a*) dominated the community (Fig.21).

Fig. 19 a. Surface Chi a – S Benguela; 19 b. Accessory Pigments; 19 c. Surface Chi a – Mid Benguela; 19 d. Accessory Pigments.

Fig. 20 a. Surface Chl a – N. Benguela; 20 b. Accessory Pigments; 20 c. Surface Chl a – NW Africa; 20 d. Accessory Pigments.

< -

(₿.

3.8 Photosynthesis parameters and primary production of pico, nano and net-phytoplankton.

Gavin Tilstone and Eva Teira, University of Vigo, Spain

Introduction

The study of phytoplankton photosynthesis is fundamental to understanding the global carbon cycle and to characterising factors that lead to high primary production in the ocean. Phytoplankton photosynthesis has been studied extensively on regional and local scales but less work has been done on the global scale. The Atlantic Meridional Transect using the twice yearly cruise track of RRS James Clark Ross between the Falkland Islands and the United Kingdom (in this case Cape Town and the United Kingdom), provides an opportunity to study basin scale photosynthesis and primary productivity in a number of contrasting biogeochemical regions. The data generated are used to enhance our understanding of phytoplankton photosynthesis and carbon fixation over broad latitudinal scales and to aid the calibration of remotely sensed observations.

Research Objectives

- 1. The primary objective of this research is to compare spatial and temporal variation of phytoplankton photosynthesis and primary productivity in a range of oligotrophic and eutrophic ecosystems from 35°S to 50°N.
- 2. To determine primary productivity in the pico (0.2 to 2μ), nano (2 to 20μ) and net-phytoplankton (>20 μ) size levels at contrasting longitudinal zones along the AMT6.
- 3. To correlate phytoplankton photosynthesis parameters derived from photosynthesis irradiance (P-E) experiments with physical, biological and chemical parameters over broad spatial scales. P-E data will be used to validate FRRF data collected on this cruise.
- 4. To determine phytoplankton light absorption in different regions along the AMT-6 and to compare primary production values calculated using the photosynthetic action spectrum of phytoplankton against those derived from non spectral specific measurements.
- 5. It has been suggested that carbon excreted by phytoplankton can be as much as 40 % of that fixed during photosynthesis. Extracellular release has been identified as an important source of carbon for bacteria. Excreted carbon was determined at stations in the oligotrophic Canaries and Azores region and in upwelling regions to compare carbon excretion by phytoplankton in oligotrophic and eutrophic environments.
- 6. To study the latitudinal variability in composition and biomass of microzooplankton assemblages, and the potential relationship of these parameters with phytoplankton and environmental variables.

Methodology

Samples were collected between 8:00 and 9:00 GMT each day. The downwelling CTD cast was used to determine irradiance and chlorophyll fluorescence through the water column using the Seabird 911 plus. Between five and eight depths were selected, for a detailed analysis of the water column based on percentage irradiance levels and fluorescence levels.

Fractionated chlorophyll a :

Fractionated chlorophyll a (Chla) was determined at 26 stations along AMT-6. Between 200 & 300

ml of sea water sample from each depth in the water column were sequentially filtered through 0.2, 2 & $20\mu m$ polycarbonate filters. Chla was extracted from the filters in 90 % acetone at -20°C for 12 to 24 hrs. The samples were measured on a Turner 10-AU fluorometer calibrated with pure Chla.

Fractionated primary production:

Primary production derived from 6 h incubations was determined at 24 stations and from 24 h incubations at 6 stations. Four discrete samples (3 replicates and 1 dark bottle) were taken from each depth in 75 ml polycarbonate bottles and were inoculated with 5 or 10µ Ci NaH¹⁴CO₃. The samples were incubated for 6 to 7 h in on-deck cylindrical chambers covered with blue filters to simulate light levels in the water column. The incubators were maintained at sea surface temperature using pumped surface seawater. The samples were filtered through 0.2, 2 & 20µm polycarbonate filters, fumed with acid for 12 h to remove inorganic ¹⁴C and suspended in 3.5 ml scintillation liquid. DPMs were counted on a Beckman LS600 Sc scintillation counter using internal quenched-corrected curves. The counting error was 7 %. Counting efficiency was checked every 7 days.

Photosynthesis - Irradiance (P-E) curves:

P-E experiments were conducted at 3 depths in the water column at 23 stations. Fifteen 75 ml subsamples (14 samples plus one dark bottle) were inoculated with 5 or 10 μ Ci NaH¹⁴CO₃. The samples were illuminated by 100 W tungsten halogen lamp in linear incubators calibrated to give an irradiance range of between 2200 and 5 μ E m⁻² s⁻¹. The incubators were maintained at sea surface temperature using the ships non- toxic supply. After 2.5 to 3.5 h, the samples were filtered onto GF/Fs, exposed to HCL acid fumes for 12 h and counted on the scintillation counter as per primary production.

Determination of excreted carbon by phytoplankton:

Dissolved organic carbon, DOC, was determined at 5 stations in the CANIGO region and at 3 stations in the upwelling region. At each station, four sub-samples were taken at 3 depths in 30m, pyrex bottles. Between 30 and 70μ Ci of NaH¹⁴CO₃ was added and the samples incubated on deck for 2 h at irradiance levels similar to those found in the water column. 10 ml was filtered onto GF/F glass microfibre filters and the residue acidified with HCl to pH 2.0. The samples were bubbled for 24 h to remove inorganic ¹⁴C. 14 ml of scintillation liquid was added and DPM's determined on the Beckman LS600 Sc scintillation counter.

Measurement of Total Organic Carbon, TOC.

Samples were collected at 5 stations for the determination of Total Organic Carbon (TOC) in the CANIGO region. Three seawater samples were collected directly from Niskin bottles in 10ml ampoules containing 50µl of phosphoric acid. The ampoules were heat-sealed and preserved in the dark at 4°C. The samples will be analysed by the novel High Temperature Catalytic Oxidation (HTCO) technique, at the Instituto de Investigaciones Marinas (IIM), Vigo, Spain.

Dissolved and particulate organic phosphorus - DOP & POP:

Samples for the measurement of *DOP* & *POP* were taken from 15 stations. One litre of water was from 5 to 7 depths and filtered through GF/Fs. The residue was collected and frozen in polyethylene bottles. The filter was dried for 12 h using silica gel and stored in aluminium soil. DOP & POP will be determined at IIM.

Light absorption by phytoplankton:

Sub-samples were taken at P-E experimental depths from 16 stations. Between 500 and 2000 ml of sea water was filtered onto GF/F filters which were then frozen at -80 °C. Light absorption by

phytoplankton will be measured on a 600 BU Beckman spectrophotometer at IIM.

Zooplankton samples :

Zooplankton samples were collected for Ignacio Huskin and Mario Quevedo of the Universidad de Oviedo, Oviedo, Spain.

Copepods gut contents

Copepod ingestion rates will be obtained using the gut fluorescence method.

At each station, one WP2 plankton net (200 μ m) was deployed to 200 m. The sample was immediately screened to obtain three different size fractions (200-500, 500-1000 and >1000 μ m). Sub-samples of each fraction were filtered onto paper filters and frozen for further determination of gut contents in each fraction. The gut contents will be measured after extraction in acetone (90%) for 24h, using a Turner Fluorometer before and after acidification.

Microzooplankton composition and biomass

Microzooplankton samples were taken from Niskin bottles at 23 stations. Three depths were sampled; surface, Chl-a maximum and 1% PAR. To obtain estimates of microzooplankton biomass, 500 ml water samples were fixed in 4% (f.c.) pre-added acid Lugol solution and stored at 4°C for subsequent analysis using Uthermol sedimentation technique, an inverted microscope and a video-image analysis system.

Results

3

A total of 28 stations were sampled in an AMT transect that encompassed four different upwelling systems, three oligotrophic regions and one coastal shelf break environment.

Fractionated chlorophyll a :

516 size fractionated chlorophyll measurements were made. The highest chlorophyll values (>5.2 μ g/l) were found in the Southern Benguela (Fig. 21a) where the chla max. resided in the upper 20m. of the water column. The 0.2 - 2 and 2 - 20 μ m fractions constituted 98 % of the total (Figs 21d & c). In the Northern Benguela and NW African upwelling system the >20 μ m were the most abundant fraction (Fig. 21b). The lowest values (<0.05 μ g/l) were found in the CANIGO region where the maximum was found at >80 m and the 0.2 - 2 μ m (Fig 21d) comprised 80 % of the total.

Fig. 21 Chlorophyll-a distributions determined with primary production measurements: b) >20 μ m fraction; c) 2-20 μ m fraction; d) 0.2-2 μ m fraction.

Primary production:

1812 primary production measurements using 6 hr incubations were made at 24 stations. 47 P-E measurements were made at 19 of the stations. In addition, 11 P-E parameters were measured in one offshore and one alongshore transect in the Benguela upwelling system to compare FRRF derived photosynthetic parmeters with those derived from radiocarbon measurements.

The highest integrated primary production values (Fig. 22) were measured in the Northern Benguela upwelling system (3340 mgCm⁻²day⁻¹) where *Coscinodiscus* spp. dominated the water column and the >20 μ m constituted 87 % of primary productivity. In the North West African upwelling system values of upto 3270 mg C m⁻² day⁻¹ were recorded of which 44% was due to the >20 μ m fraction and 33% to the 0.2 to 2 μ m fraction.

INT PP (mgC m ⁻² d ⁻¹)	S BEN	N BEN	GOG EQ UP	N EQ	NW UP
Total range	428 - 1084	833 - 3360	47 - 395	395 - 420	819 - 3270
I otal mean	756	1445	228	408	2045
>20µm range	64 - 140	370 - 2953	9 - 30	28 - 84	425 - 1446
mean	102	987	53	56	936
2-20µm range	222 - 654	146 - 296	11 - 65	128 - 131	166 - 737
mean	438	262	40	129	451
0.2-2µm range	66 - 366	94 - 291	26 - 252	209 - 235	227 - 1088
mean	216	180	133	222	658

Fig 22. Total primary production (mg C m⁻³ h⁻¹) along AMT-6 track from 32 S to 40 N.

The lowest values were found in the Gulf of Guinea equatorial (47 mg C m⁻² day⁻¹) and Canaries - Azores regions where the 0.2 to 2 μ m fraction contributed 75 % of the total productivity.

There were initial sampling difficulties from 15 to 23 May due to the miss fire of three Niskin bottles at incorrect depths. Two CTD casts were therefore undertaken at each station to collect surface water and then water down to 200m. The problem was resolved on 10 June and sampling continued using one cast.

3.9 Gross Production (GP), Net Community Production (NCP) And Dark Community Respiration (DCR)

Carol Robinson & Pablo Serret Ituarte, Plymouth Marine Laboratory

Objectives

1. To determine the depth and spatial distribution of dissolved oxygen and dissolved inorganic carbon (DIC) concentration

2. To determine the depth and spatial distribution of respiration within and below the euphotic zone and relate this to plankton community structure, particulate organic carbon concentration and nitrogen remineralisation processes

3. To determine the depth and spatial distribution of the balance of gross production and respiration

4. To determine the magnitude and variability of the photosynthetic and respiratory quotients of the plankton community

Methods

Measurements of dissolved oxygen were made with an automated Winkler titration system based on that described in WILLIAMS and JENKINSON (1982), DIC was measured by coulometric titration (ROBINSON and WILLIAMS, 1991; DOE, 1994). Analysis of seawater DIC reference materials throughout the cruise provided quality assessment of the precision and accuracy of the DIC measurements. Oxygen saturation was calculated using the equations for the solubility of oxygen in seawater of BENSON and KRAUSE (1984).

Gross production (GP), net community production (NCP) and dark community respiration (DCR) were determined from *in vitro* changes in dissolved oxygen and DIC. Water was collected each day from depths equivalent to 97%, 33%, and 1% of surface irradiance plus three depths below the euphotic zone and incubated in 60 ml and 125 ml glass bottles in surface water cooled deck incubators or temperature controlled water baths at *in situ* temperature for 24 hours. Five replicate bottles were incubated in the light; five in the dark and five fixed for determination of zero time concentrations. Water was collected from the same CTD casts as that analysed for phytoplankton assimilation of ¹⁴C and ¹⁵N, and determination of total particulate organic carbon.

Production and respiration rates are calculated from the difference between the means of the replicate light and dark incubated and zero time analyses, and are reported with an associated standard error. The usual standard error associated with a rate determined from a change in dissolved oxygen is 0.2-0.5 mmol $O_2m^{-3}d^{-1}$, and from a change in DIC is 0.5-2 mmol $Cm^{-3}d^{-1}$. Photosynthetic quotients were calculated as GP[O₂]/GP[DIC] and respiratory quotients as DCR[DIC]/DCR[O₂].

Time series measurements of community respiration (DCR[O₂] and DCR[DIC]) were made in conjunction with measurements of nitrate, nitrite and ammonia flux and

plankton nitrate and ammonia assimilation, ammonium regeneration and nitrification rates.

Water samples were filtered (47 mm GFC) for later determination of plankton electron transport activity (ETS). The ETS method estimates the maximum activity of the enzymes associated with the respiratory electron transport systems of both eukaryotic and prokaryotic organisms and has a sensitivity of $< 0.05 \text{ mmol } O_2 \text{m}^{-3} \text{d}^{-1}$. ETS analyses will be carried out according to the KENNER and AHMED (1975) modification of the tetrazolium reduction technique proposed by PACKARD (1971), as described in PACKARD and WILLIAMS (1981).

Preliminary Results

Oxygen, DIC and Respiration samples collected are listed in appendix A6-15. The depth and latitudinal distribution of the percentage of oxygen saturation, based on preliminary results, is shown in Figure 23. Oxygen saturation distinguishes the different provinces studied and exhibits a spatial pattern related to the temperature distribution. Both the Benguela and NW Africa upwelling regions are characterised by strong vertical oxygen gradients, with high values of oxygen saturation (>105%) near the surface and very low saturation in the subsurface upwelled waters. Some stations in the N Benguela and south of the NW Africa upwelling have extremely low levels of oxygen saturation (< 30%) in subsurface waters. The equatorial upwelling can also be traced by the tilting of the oxyclines towards the surface. In the frontal region between the N Benguela and the Guinea Basin very low oxygen concentrations were measured throughout the water column; this was the only region where oxygen saturation was < 100 % at the surface, and values < 30 % saturation were observed below 60-70 m depth. In both oligotrophic regions sampled (Guinea Basin, and north Atlantic gyre) oxygen supersaturation was measured in the surface mixed layer. While relatively strong vertical oxygen gradients were observed in the Guinea Basin (with <50% saturation below the thermocline), north of ca. 25°N a marked increase in deep oxygen concentration was observed. Near the Ushant front oxygen saturation > 110 % was measured to a depth of 30m.

The high spatial heterogeneity in chlorophyll and plankton community structure observed along the cruise track is highlighted in the range of measured gross production. Surface water gross community oxygen production spans at least two orders of magnitude from 0.5 mmol $O_2m^{-3}d^{-1}$ in the north Atlantic oligotrophic gyre (8 June 1998) to 50 mmol $O_2m^{-3}d^{-1}$ in the northern Benguela upwelling (25 May 1998). Preliminary comparisons confirmed that GP[O₂] corresponded to chlorophyll concentration and ¹⁴C assimilation in magnitude and variability.

Dark community respiration was always measurable from the surface to the 1% light depth, and often detectable with the oxygen technique at 200m (0.2-1.0 mmol $O_2 m^{-3} d^{-1}$). A respiration maximum was seen below the chlorophyll peak often; this should be better described by the finer scale vertical sampling of ETS samples. Surface community respiration rates varied from 1 mmol $O_2 m^{-3} d^{-1}$ in the north Atlantic gyre to 7 mmol $O_2 m^{-3} d^{-1}$ in the NW Africa upwelling region.

Net community production is a direct measurement of the balance between plankton autotrophic and heterotrophic processes. NCP became negative (i.e. the magnitude of plankton respiration was greater than that of photosynthesis) at depths shallower than the 1% light level in the upwelled waters of the northern and southern Benguela and the NW Africa upwelling. NCP was negative throughout the water column at all oligotrophic stations sampled off the Gulf of Guinea and in the north Atlantic gyre. This predominance of respiration supports the recent contentious suggestion of the dominance of heterotrophic processes in the world's oceans (DEL GIORGIO, 1997) and requires careful investigation. Surprisingly NCP was even negative in the sub-surface chlorophyll maxima of the equatorial region (12 - 16°N).

Time course experiments confirmed the linearity of oxygen consumption during the dark community respiration incubations. Concomitant fluxes of DIC and nitrogen nutrients await data analysis.

Preliminary calculations of photosynthetic and respiratory quotients from the Benguela upwelling stations conform to the stochiometry of organic metabolism (i.e. 1.03 < PQ > 1.4 and 0.97 < RQ > 0.667) unlike those measured in the coastal upwelling of the Arabian Sea (ROBINSON, C and WILLIAMS, P.J.IeB. 1998).

All dissolved oxygen, dissolved inorganic carbon and production and respiration data will be available by August 1998. Particulate organic carbon and ETS analyses will be available by November 1998.

References

Benson, B.B. and Krause, D. Jr. (1984). The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. *Limnology and Oceanography* **29** 620-632

del Giorgio, P.A., Cole, J.J. and Cimbleris, A. 1997 Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems Nature **385** 148-151 Doe (1994) Handbook of methods for the analysis of the various parameters of the carbon dioxide system in seawater; version 2. A.G.Dickson and C.Goyet (eds.) ORNL/CDIAC-74 Kenner, R.A. and Ahmed, S.I. (1975) Measurements of electron transport activities in marine phytoplankton *Marine Biology* **33** 119-127

Packard, T.T. (1971). The measurement of respiratory electron transport activity in marine phytoplankton Journal of Marine Research 29 235-244

Packard, T.T. and Williams, P.J.Leb. (1981) Rates of respiratory oxygen consumption and electron transport in surface seawater from the Northwest Atlantic Ocean. Oceanol. Acta 4 351-358. Robinson, C. and Williams, P.J.Leb. (1991) Development and assessment of an analytical system for the accurate and continual measurement of total dissolved inorganic carbon. Marine Chemistry 34 157-175

Robinson, C. and Williams, P.J.Leb. (1998) Plankton net community production and dark community respiration in the Arabian Sea during September 1994. *Deep-Sea Research* (In press) Williams, P.J.Leb. and Jenkinson, N.W. (1982) A transportable micro processor controlled precise Winkler titration suitable for field station and shipboard use. *Limnol & Oceanog* 27 576-584

Acknowledgements

Many thanks to the officers and crew on board RRS James Clark Ross, in particular Simon Wright who enabled the deck incubations. This work could not have been completed without the generous loan of analytical equipment by Prof. Peter J.leB.Williams, University of Wales; Bangor.

Fig. 23. Spatial distribution of temperature (upper panel) and percentage of oxygen saturation (lower panel) from 35 S to 50 N.

÷

44

3.10 Basin Scale Estimates of the Planktonic Assimilation and Regeneration of Nitrogen

Andrew Rees, Plymouth Marine Laboratory

Rationale

Refinements to the ¹⁵N methodology made at PML in combination with nanomolar nutrient analysis have improved the confidence in the technique, so that estimates of new and regenerated production can be made routinely in oligotrophic zones (Joint et al., 1996; Rees et al., in press). The importance of new production in biogeochemical studies is well documented, however its extrapolation to basin scale estimates has previously been restricted to a small number of ship derived determinations. Following Sathyendranath et al (1991) we have, in collaboration with the Remote Sensing Data Analysis Service (RSDAS) combined AVHRR temperature data with ship based analyses to provide temporal and spatial estimates of new production which were unattainable previously (Rees, 1997; Joint et al, in press)

We will continue this work using the AMT to provide estimates of new production for areas of the eastern Atlantic covered by the transect.

Recent measurements of euphotic zone nitrification rates suggest that a substantial fraction of assimilated nitrate is regenerated and not new and hence previous estimates of global new production may be over-estimated. To this end, experiments were conducted to test this hypothesis for a number of marine provinces in the North and South Atlantic Ocean.

Aims

- 1. To determine the magnitude and variability of ammonium regeneration and nitrification rates and thereby assess the scale of error on estimates of new production.
- 2. To couple nitrogen regeneration estimates with those made for carbon.
- 3. To perform uptake experiments to determine the kinetic parameters of nitrate and ammonium assimilation rate at nanomolar concentrations.

Methodology

Nitrate and Ammonium uptake - New Production

Assimilation rates for nitrate and ammonium were determined following the incorporation of the stable isotope ¹⁵N. Triplicate samples of water from each depth were distributed into 620 ml clear polycarbonate bottles and ¹⁵N-NO₃ and ¹⁵N-NH₄ were added at a final concentration of 10% ambient nitrate or ammonium concentration. Incubations were made in an on-deck incubator maintained at surface seawater temperature. This consisted of a series of tanks with spectrally corrected light screens, which permitted transmission of ambient irradiance in the range 97 – 1%. Incubations were performed for both 24 hours and for shorter time periods of approximately 4 hours to determine mean daily and linear uptake rates respectively. Incubations were then terminated by filtration (< 40 cm Hg vacuum) onto ashed Whatman GF/F filters, which were dried on board and stored over silica gel dessicant until return to the laboratory. These will be analysed by continuous flow nitrogen analysis-mass spectrometry.

Ammonium regeneration

Following inoculation with ¹⁵N-NH₄ and 24 hour incubation as described above, the filtrate from a number of samples from the base of the euphotic zone were stored in ashed, acid cleaned pyrex bottles with mercuric chloride. Ammonium regeneration will be estimated according to an isotope

dilution technique following the extraction of dissolved ammonium in the laboratory.

¹⁵N uptake kinetics

In oligotrophic waters, a series of experiments were performed to allow examination of the uptake rate kinetics of nitrate and ammonium. ¹⁵N-NO₃ and ¹⁵N-NH₄ were added at concentrations ranging from 5 – 120 nM to 620 ml samples, which were then incubated for <4 hours in the on-deck incubator. Incubations were terminated by filtration onto GF/F filters and dried prior to analysis in the laboratory.

Nitrification

The bacterial oxidation of ammonium to nitrite and nitrate was estimated by three methods from a number of depths throughout the water column.

(i) The first involved the incorporation of ¹⁴C in the dark with and without the prescence of a nitrification inhibitor – allylthiourea (ATU). 6 x 150 ml polycarbonate bottles were filled from a number of depths, 5.0 μ Ci of ¹⁴C bicarbonate was added to each, and to three of the bottles ATU was added to a final concentration of 10 mgl⁻¹. Incubations were in the dark at ambient temperature for approximately 6 hours and were terminated by filtration onto 0.2 μ m polycarbonate filters, which were then stored over silica gel dessicant prior to analysis by liquid scintillation counter in the laboratory

(ii) In parallel to the ¹⁴C/ATU experiments, the second estimate of nitrification involved the determination of the relative change (Δ DIN) in the concentrations of dissolved nitrate, nitrite and ammonium. A number of samples were collected and incubated under the same conditions without the ¹⁴C/ATU additions, with nutrient analysis being made at time of collection and after 24 hours.

(iii) On the samples collected for determination of ammonium regeneration, following extraction of dissolved ammonium, the samples will be further treated with Devarda's alloy to allow extraction of dissolved nitrate, and following isotopic ratio analysis of ¹⁵N/¹⁴N an estimate will be made of ammonium oxidation based on the isotope dilution theory.

Results

Samples for New Production, Ammonium regeneration, 15N Uptake and Nitrification are listed in appendix A6-16.

No data are available at the moment. Analysis of samples by continuous-flow mass spectrometry and liquid scintillation counting will be complete in the order of 4 months after cruise completion.

References

Joint I., A. Rees & A. Pomroy. 1996 Primary and New Production.

OMEX final report. Contract No. MAS2-CT93-0069.

Joint I and 25 others. Pelagic production at the Celtic Sea Shelf Break - a synthesis of results obtained in the OMEX I project. Deep-Sea Res. II - in press

Rees A. 1997. Continuous-flow isotope mass spectrometry at sea; a link between research vessel and satellite. *Innovation (Europa Scientific Ltd)*.

Rees A., I. Joint & K. Donald. Early spring bloom phytoplankton-nutrient dynamics at the Celtic Sea shelf break. *Deep-Sea Res.I – in press*

. . . .

3.11 Size-fractionated phytoplankton production based on 15N and 13C dual-labelling tracers.

MIKE LUCAS, UNIVERSITY OF CAPE TOWN & SOUTHAMPTON OCEANOGRAPHIC CENTRE.

INTRODUCTION

The major focus of AMT-6 was to provide, for the first time, optical and biological in situ validation of SeaWiFS ocean colour imagery concurrent with SeaWiFS over-passes. The upwelling systems of the southern and northern Benguela, west Africa and the equatorial Atlantic, as well as the oligotrophic sub-tropical Atlantic gyres, provided an extensive range of optical and biological gradients to test both Case I and II algorithms. The extreme spatial and temporal heterogeneity of the high chlorophyll southern Benguela system, evident from the SST and SeaWiFS imagery, contrasts strongly with the homogeneous but low chlorophyll subtropical systems we passed through. This creates problems of scaling up, particularly with respect to daily (24 h) primary productivity measurements within the heterogeneous upwelling systems. Furthermore, it was clear from the received satellite imagery that within the high biomass regions, the SeaWiFS imagery was saturated above ~30µg Chl. L⁻¹ and that the 555 band frequently demonstrated high reflectance regions, usually associated with smaller phytoplankton cells and the different species to be found further offshore in the upwelling regions. This relates to the age of the upwelled water and the well-defined species succession that occurs with a shift from "new" to "regenerated" production as initial NO³ concentrations are reduced. Marked contrasts in the underwater optical depth perceived by SeaWiFS (~33% PAR) add to this scenario where species succession with depth was also observed, governed by light and nutrient availability. There is clearly, therefore, a great deal of complexity involved to resolve the progression from satellite derived ocean colour to phytoplankton biomass and primary production over sensible time and space scales.

Within the context of biogeochemical cycles for carbon and nitrogen, phytoplankton biomass and photosynthesis provide the basis for transporting fixed carbon into the deep ocean by the processes of direct sedimentation of cells and through particle transformation into rapidly sinking fecal pellets as a result mesozooplankton grazing on larger (>20 μ m) net-phytoplankton cells. This is the "biological pump". The rate at which phytoplankton cells and other particles sink are to some extent size-dependent although physiological fitness considerably influences buoyancy and sedimentation rates. Nevertheless, it is useful to consider phytoplankton (2-20 μ m) and pico-plankton (<2 μ m). Small nano- and pico-plankton are not readily consumed by large zooplankton so they enter the micro-zooplankton food web characterised by little sedimentation but considerable regeneration of NH⁴ urea and dissolved free amino acids, which is preferred and assimilated rapidly by phytoplankton.

Nitrate assimilation relative to total N assimilation by phytoplankton using ¹⁵N tracers provides a useful index, the f-ratio, which indicates what proportion of phytoplankton growth is dependent upon NO³ assimilation - i.e. "new" net production. Under long term equilibrium conditions, the f-ratio provides a measure of export production available to consumers or for sedimentation and therefore provides a valuable tool for indirectly estimating vertical carbon flux. However, it is becoming apparent that Redfield stochiometry for C:N uptake can no longer be unequivocally taken as 6.6:1 so that dual-labeled tracer studies become an essential component of ¹⁵N tracer work if carbon fluxes are to be inferred. Furthermore, size-fractionated ¹⁵N tracer studies can provide considerable insight into the structure and functioning of planktonic communities which has implications for planktonic trophodynamics and carbon flux. Size-based production ought also to relate to shifts from strong absorbance to strong refelectance observed in the SeaWiFS imagery.

The dual-labeling and size-fractionated tracer experiments on surface waters carried out on this cruise were undertaken to provide a size-based measure of primary production and nitrogen partitioning designed to complement ¹⁵N work and ¹⁴C productivity measurements.

Methods

Nitrogen and carbon uptake measurements

Size-fractionated ¹⁵N & ¹³C uptake experiments were carried out on surface communities at each of the daily CTD "production" stations and for a number of "optics" stations. Water was incubated in the simulated *in situ* on deck incubator tubes covered with neutral density filters to give the appropriate light. The incubator bottles were cooled by surface seawater pumped through the tubes. For each nutrient (NO₃, NH₄, urea), 6.0L of sample was measured into a 6.0L polycarbonate bottle and inoculated with ¹⁵N label. Bottles (6.0L and 2.0L) were supplemented separately with Na¹⁵NO₃ (98 atom%), CO (¹⁵NH₂)₂ (99.1 atom%) and ¹⁵NH₄Cl (98 atom%) to a final concentration of ~10% of the ambient nutrient concentration. To measure C:N uptake ratios and carbon fixation as a measure of primary production, NaH¹³CO₃ was added to the nitrate bottle (to 5% of the ambient DIC concentration). A dark ¹⁵NO₃ and ¹³C experiment was also carried out to correct for respiration and dark ¹⁵N uptake.

At the end of the 24 h incubation period, the spiked samples for each nutrient (NO₃ & ¹³C, NH₄, urea) were fractionated into an intact community (2.0L), a <20 μ m fraction (2.0L passed through a 20 μ m mesh) and a <2 μ m fraction (2.0L passed through a 2.0 μ m Nuclepore filter). Each separate fraction was filtered onto pre-ashed (450°C for 6 hours) Whatman 47mm GF/F filters which were frozen at -80°C for later determination of particulate ¹⁵N and ¹³C enrichment by mass spectrometry.

Nitrate and urea uptake rates will be calculated according to Dugdale and Goering (1967). Ammonium uptake rates are similarly calculated but corrected for isotopic dilution due to ¹⁵N excretion (Glibert *et al.* 1982). A relative preference index (RPI) will be calculated for each nutrient assimilated (McCarthy *et al.* 1977).

Nutrients

Ambient nitrate and ammonium concentrations were determined daily by Malcolm Woodward using a Technicon TA II Autoanalyser. Samples for urea determinations were frozen and subsequently analysed using the methods of Grasshoff *et al.* (1983) scaled down to 5 ml samples (Probyn 1987).

Chlorophyll determinations

At each station for every depth and for all underway samples, chlorophyll concentrations were determined. Samples corresponding to the ¹⁵N & ¹³C uptake experiments were size-fractionated into "total", <20 μ m and <2.0 μ m fractions. All samples were filtered onto 25 mm Whatman GF/F filters. Pigment was extracted overnight in a -20°C freezer in 90% acetone and measured by a Fluorometer calibrated with pure chlorophyll-*a* (Sigma).

References

Dugdale and Goering (1967) Limnology & Oceanography 12: 196-206 Glibert et al (1982) Limnology & Oceanography 27: 639-650 Grasshoff et al (1983) Methods of Seawater Analysis. Verlag Chemie, Germany McCarthy et al (1977) Limnology & Oceanography 22: 996-1101 Probyn (1987) Marine Ecology Progress Series 37: 53-64

3.12 Micro and Nano Nutrients

Malcolm Woodward, Plymouth Marine Laboratory

Objectives:

To study the spatial and temporal variations of the micro nutrients Nitrate, Nitrite, Phosphate, Silicate and Ammonia, through differing oceanic regions along the cruise track. Where ambient concentrations were below the detection limits of the colorimetric systems, a nanomolar Ammonia analysis system, and a nanomolar chemiluminescence analysis system for detection of Nitrate and Nitrite were deployed.

Methodology:

Nutrients were measured with a 5 channel Technicon AAII, segmented flow autoanalyser. The chemical methodologies used were:

Nitrate, (Brewer and Riley, 1965); Nitrite, (Grasshoff, 1976); Phosphate (Kirkwood, 1989); Silicate (Kirkwood, 1989), and Ammonia (Mantoura and Woodward, 1983). Nanomolar Nitrate and Nitrite detection methodology was from Garside (1982), and the

nanomolar Ammonia system adapted from Jones, 1991.

Water samples were taken from the 30 litre CTD/Rosette system (SeaBird) and sub-sampled into clean Nalgene bottles. Analysis of the nutrient samples was completed within 3 hours of sampling in every case. Clean handling techniques were employed to avoid any contamination of the samples, particularly by ammonia. No samples were stored. The list of CTD samples analysed for nutrients are given in appendix A6-17.

Underway continuous surface sampling was from the non-toxic water system. The water flow was in-line filtered (Morris *et al*, 1978), by a 0.45um Millipore filter, before analysis for the macro nutrients. For the underway ammonia nanomolar system the Millipore filter was removed and the water was only coarse filtered through a stainless steel mesh. The results for CTD and underway samples from the same approximate depth of 7 metres then agreed. Underway sampling was carried out where possible for the nanomolar ammonia system, and where necessary. Where concentrations exceeded 1 microgram, the 5 channel Technicon analyser was used for the other nutrients. The inventory of Underway Nutrient analysis is given in Appendix A6-18.

All CTD samples were analysed successfully with a negligible sample loss. One CTD section was lost due to poisoning of the Copper/Cadmium Nitrate reducing column by anoxic bottom water samples on one day of the Benguela study.

As usual the Technicon system showed its reliability and reproducibility in the extreme environment of marine research.

The nanomolar nitrate/nitrite chemiluminescent system worked as well as could be expected, although this system was at the limits of its detection for many mixed layer samples from the oligotrophic stations, and the present detector is of insufficient sensitivity to show fine scale changes and variations at less than 10 nanomoles.

The ammonia system performed well following an extensive pre-cruise rebuild, and again it will have produced unique ammonia concentration data from these parts of the world's oceans.

CTD Samples Analysed. The maximum sampling depth was 200 metres for the CTD samples, and was the bottom depth for all CTDs where possible, there was one deep CTD (to 1500m) in the north of the Canigo region, off the Iberian peninsula.

Preliminary Results

Little analysis of the data was carried out on-board, but will be given high priority on return to PML. Details for the nitrate profiles along the transect are presented in preliminary form. The Southern Benguela region of the coast of Africa had surface nitrate concentrations in the region of 10-13 μ moles./1 In the northern Benguela these concentrations were somewhat less in magnitude at 5-8 μ moles/1. There was a very sharp front, shown both by the nutrient profiles, and also the temperature and chlorophyll records. The front was identified in position from SeaWiFS and Ocean temperature satellite images. Offshore of the Benguela and north-west towards the equator, in the oligotrophic region, the nitrate concentrations were 10-20 nanomoles/1. In the equatorial upwelling, these concentrations increased to 30-50 nanomole.

There was a marked nutrient enhancement due to the West African upwelling off the coasts of Mauritania and Senegal, extending out from the coast to the 20° W line. The concentrations here ranged between 0.1 and 3 µmoles/l. To the north of the upwelling there was an area of extreme nutrient depletion, and a truly oligotrophic environment. In the surface waters down to the depth of the thermocline, the nitrate concentrations were less than 5 nanomoles/l, and on many occasions less than the detection limit (3 nanomoles) of the NOx chemiluminescent analyser. On crossing the shelf break entering the Western Approaches, the concentrations increased to 1-2 µmoles/l to the south of Plymouth, and to over 4µmoles/l east of the front off Start Point.

Brewer P.G. and Riley J.P. (1965) The automatic determination of nitrate in seawater. Deep-Sea Research, 12, 765-772.

Garside C. (1982) A chemiluminescent technique for the determination of nanomolar concentrations of nitrate and nitrite in seawater. *Marine Chemistry*, **11**, 159-167.

Grasshoff K. (1976) Methods of seawater analysis. Verlag Chemie, Weiheim: 317 pp.

Jones R.D. (1991) An improved fluorescence method for the determination of nanomolar concentrations of ammonium in natural waters. *Limnology and Oceanography*, **36**, 814-819.

Kirkwood D. (1989) Simultaneous determination of selected nutrients in sea water. International Council for the Exploration of the Sea (ICES), CM 1989/C:29.

Mantoura R.F.C. and Woodward E.M.S. (1983) Optimization of the indophenol blue method for the automated determination of ammonia in estuarine waters. *Estuarine, Coastal and Shelf Science*, 17, 219-224.

Morris A.W., Bale A.J. and Howland R.J.M. (1978) A filtration unit for use with continuous autoanalytical systems applied to highly turbid waters. *Estuarine and Coastal Marine Science*, 6, 105-109.

3.13 Total Dissolvable Iron (TD-Fe) Analyses

Andrew Bowie, Plymouth Marine Laboratory and University of Plymouth

Background

Iron is a major component of the Earth's crust, but like other reactive trace elements, dissolved Fe levels in open-oceanic waters remain very low (<1 nM). The marine biogeochemistry of iron is complicated by its redox speciation, low solubility, and involvement in biological cycles. Improvements to the understanding of the Fe redox cycle are required and chemical nature of iron associated with various operationally defined parameters (e.g., labile, dissolved, colloidal, organically bound, particulate) needs further clarification.

The major sources of iron to the world's oceans are atmospheric, fluvial, hydrothermal, continental shelf regeneration and upwelling of Fe-enriched subsurface waters. In remote areas, the ocean receives the majority of surface water iron from atmospheric dusts, and the true impact of suspended aerosols on trace element levels can only be made by direct measurements. Iron removal in surface waters is thought to be dominated by biological processes. Iron is an essential chemical element for micro-organisms and in HNLC areas of the world's oceans appears to limit phytoplankton growth, which may have important implications for global carbon cycles. The ongoing debate about the effect of iron limitation on phytoplankton communities has highlighted how little is actually known about the marine speciation of iron and its uptake mechanisms by biota.

Fe (III) is the thermodynamically stable form in oxygenated seawater, present predominantly as insoluble oxy-hydroxides or colloidal matter. Fe(II) is a transient species in surface oxic waters, existing via chemical or photochemical reduction or via atmospheric deposition and is oxidised rapidly by O_2 and H_2O_2 species at seawater pH. Recently, organic complexation has been thought to occur to a significant extent in marine systems. Laboratory studies have shown that phytoplankton are able to utilise only dissolved Fe²⁺ or Fe³⁺ species, uptake of the colloidal or particulate forms only possible via a thermal or photochemical dissolution pathway.

AMT-6 Objectives

1. To map underway Fe levels along the complete transect using FI-CL technology for subnanomolar determinations

2. To monitor the distribution of Fe in the upper water column through contrasting biogeochemical provinces via daily CTDs

3. To elucidate the Fe input mechanisms along the transect (e.g. atmospheric dusts, sedimentary regeneration, upwelling waters, riverine plumes) from sampling strategy outlined in 1 and 2 and through cross-correlation with hydrographic data and other AMT shipboard measurements (e.g. nutrients, chlorophyll)

4. To correlate Fe with other trace metal profiles (Al, Co, Ni, and Zn) via laboratory analyses on selective asset preserved sub-samples. Such determinations will be performed in a Class 100 clean air laboratory in Plymouth using spectrofluorimetric and cathodic stripping voltammetry techniques. 5. To focus specifically on the extent on Saharan fallout across the Atlantic and investigate the direct contribution of such atmospheric dusts on Fe levels (i.e. solubility, mobility, reactivity). Underway shipboard collection of dust aerosols (see section 2) will enable the dry flux of trace metals to the ocean to be evaluated.

6. To investigate any seasonality in N & S Atlantic Fe levels by comparison with AMT-3 survey.

7. To investigate any changes in the Fe redox content (FeII / FeIII ratio) of surface waters through (i) depths of varying irradiance through the euphotic zone, and (ii) contrasting ecosystems containing varied chlorophyll signatures and organic matter.

Analytical Methodology

Shipboard determinations were performed using a semi-automated flow injection chemiluminescence (FI-CL) analyser. The technique enables the rapid analysis of total dissolvable Fe(II+III) (TD-Fe) at the sub-nanomolar concentration level. The system is based on the oxidation of luminol, which is catalysed by Fe ions, emitting blue light. The iron is first reduced to Fe(II) and then extracted from its sea-salt matrix and preconcentrated in-line using a micro-column containing the 8hydroxyquinoline resin. Elution may be performed with a weak acid prior to the detection of the light on mixing with the CL reagent stream. The method requires very little sample handling, the reaction is simple, throughput is high (a 3 min analytical cycle, seawater sample quantified within 25 min). The shipboard limit of detection is 40 pM, below Fe concentrations generally found in open-ocean studies. Unfiltered seawater samples were acidified to ca. pH 2 using 0.01M Q-HCl (quartz sub-boiled distilled) prior to analysis, reduced to the ferrous form using sodium sulfite (100 μ M) and the Fe content determined by the method of standard additions. The analysis of unfiltered samples using the FI-CL method is likely to have resulted in the detection of an important fraction of colloidal, particulate and possibly cellular Fe, which dissolved during acidification. Asset preserved subsamples were collected and stored for subsequent laboratory analysis of other trace metals delivered either via atmospheric deposition (e.g. Al, Pb) or through upwelling systems (e.g. Co, Zn). This will enable the Fe enrichments to be fingerprinted across the south-to-north transect.

Results

The FI-CL system performed without problem throughout the cruise period. The sampling logs are given in A6-19, A6-20. Surface water (-7m) TD-Fe levels ranged from 0.2 nM measured in the oligotrophic waters, up to levels of 3.3 nM found in the shelf waters of the Benguelan system. Fig. 24. shows the latitudinal distribution of TD-Fe through the upper water column (0-200 m) in the S & N Atlantic (-35°S to 17°N). Fe enrichments can be seen through the south and north Benguelan upwelling systems due to the input of sub-surface Fe-rich waters. Levels decrease to ca. 0.8 nM in the oligotrophic South Atlantic gyre. Away from continental land masses and upwelling systems, enrichments in TD-Fe levels are dominated by aerosol inputs, particularly from the Saharan dust plume. TD-Fe increases through filaments of the NW African upwelling system are not shown.

Fig. 24. Latitudinal distribution though the upper water column along AMT-6

Wide variations in TD-Fe levels were found through the water column distributions of the Benguelan coastal waters TD-Fe concentrations as high as 16.2 nM were observed in these waters at the lower depth of the CTD cast, a distance of only 25 m above the shelf. Sedimentary regeneration of Fe was thought to be the dominant input mechanism in these samples, but it is also believed that high chlorophyll concentrations through the Benguela, and in particular certain large diatom species (e g cosinodiscus), contributed to large Fe enrichments via the release of cellular iron.

In addition to mapping TD-Fe levels through daily upper water column CTD casts (0-200m), redox speciation experiments were performed to determine FeII and FeII+III concentrations at pH 5.5, in addition to TD-Fe at pH 2.0. Early results indicate higher FeII / FeIII ratios near the surface, decreasing through the euphotic zone, but showing increases towards 200m. Higher Fell concentrations can be attributed to photo-reduction and / or release of FeII species via the breakdown of organic matter at depth. These preliminary measurements indicate that the Fe redox speciation is strongly linked to changes in irradiance and variability in chlorophyll concentrations / signatures through the upper water column, and it is clear that further experiments are necessary in this regard to clarify Fe redox cycling. Fig. 25a shows the distribution of TD-Fe through a typical upper water column (0-200m) of the South Atlantic gyre, whilst Fig. 25b. illustrates the variation in TD-Fe levels in a deeper CTD cast (0-1500m) in the eastern North Atlantic. Both figures are very similar, showing variation through the euphotic zone, but displaying small Fe increases at the chlorophyll maximum, possibly due to the release of cellular iron during sample acidification. TD-Fe levels below the euphotic zone are uniform and consistent throughout different water masses, validating the clean sampling and analytical protocols adopted. Deep water TD-Fe levels average 0 7nM, consistent with the literature data, and indicating that Fe profiles are maintained via a mechanism that reduces the scavenging rate of Fe below this concentration. Such a mechanism may be complexation by strong organic ligands, which have been measured in the Atlantic and Pacific at concentrations near 0.6nM; further experiments are needed to investigate these hypotheses.

Fig. 25. (a) TD-Fe profile through the upper water column of the South Atlantic gyre (SDY 150, CTD A6-29 / A6-30, 02°48.7'S, 06°09.8'W); (b) TD-Fe distribution through a deep cast in the N. Atlantic (SDY 163, CTD A6-50, 44°40.8.N, 14°00.6'W)

53

Suspended Particulate Matter, Andrew Bowie, Plymouth Marine Lab. and University of Plymouth

The suspended particulate matter distribution along the transect was investigated via collection of UNCONTAM SW from underway samples and CTD bottles. Seawater (volumes ranged from 500ml to 51) was filtered through pre-weighed 0.45µm cellulose nitrate (Whatman) membranes. The filters were flushed with UHP (Elgastat) water before storage in petri dishes in the refrigerator (ca. 4°C). The SPM concentrations will be calculated in the laboratory after drying and weighing of the filters. The SPM data will be used to evaluate the contribution of particulate matter to ambient trace metal levels, and distributions correlated with the dry aerosol flux into the eastern Atlantic Ocean.

High Volume Aerosol Sampling

Background

The aims of the sampling are:

- 1. To assess the concentration of trace metals (e.g. Fe, Al, Pb, Cd, Cu, Zn) in aerosols and hence the dry deposition flux into the eastern Atlantic Ocean
- 2. To attempt to understand the processes controlling the concentration of these metals.
- 3. To evaluate the trace metal aerosol solid state speciation and seawater solubilities in selected aerosol populations enabling the prediction of the atmospherically derived trace metals post depositional biogeochemical cycling.

Techniques

Aerosol samples were collected along the AMT-6 cruise track when the sampling was influenced by differing air masses, allowing atmospheric trace metal chemistries of different air masses to be evaluated. Sampling was continuous throughout the cruise period, except whilst on station, during rain events or when the filter head unit was susceptible to sea-spray or precipitation.

The sampling system consisted of: (i) a sampling head on which are attached the filter holder charged with a filter to collect material, (ii) a high volume pump (model Seconak 575), and (iii) a flowmeter.

Analytical Protocols

The filters (Whatman 41, diameter 125 mm) were thoroughly acid washed (10% HCl, 10% HNO₃) prior to use. On-board ship, filters were placed in the filter holders using clean techniques. The loaded filter holder was then transported in a polythene bag to the sampling unit, which was assembled on the "Monkey Island" of the RRS James Clark Ross, facing towards the bow of the ship. The holder was then attached and the pump started. The Aerosol sampling log is given in A6-21.

In order to collect an adequate quantity of aerosol material for chemical analysis, sampling was continuous for intervals of ca. 36h, after which the filter was changed. The flow rate at the start and end of the collection period was noted. When the ship was on station, or during rain, sea-spray or heavy precipitation, aerosol sampling was terminated, the pump was switched off and the filter head covered using a plastic bag. At the end of a sampling period, the filter holders were transported back to a clean area in the ship's laboratory, the filter removed, folded in half with the collection surfaces facing inwards and sealed within labelled clean plastic bags.

Subsequently, a laboratory total hydrofluoric acid digestion of the filters will be carried out within a class 100 laminar flow unit. Analysis for Fe, Al, Pb, Cd, Cu, Zn will be performed using ICP-MS.

54

3.14 Zooplankton Rachel Woodd-Walker, University of Plymouth

Aims

The objective of the cruise was to measure and characterise the zooplankton community along the AMT 6 transect. The zooplankton community structure was measured in terms of traditional taxonomic composition and size structure (fractionated carbon (JGOFS size classes), and OPC sized biovolume), for both daily stations and surface underway samples.

Method

At each morning station, a double WP2-200 μ m was deployed to 200 m (or 100m if the water depth was less than 200m). One net was used for gut analysis, and the other was split in half using a folsum splitter for OPC biovolume and size fractionated CHN biomass estimation. A single WP2 - 200 μ m was deployed to 20m, and used for OPC biovolume estimation. In addition, three night nets to 200 m were taken: two in the Southern Benguela and one in the CANIGO region. Each was treated as the day net, except total rather than size fractionated CHN samples were taken.

Biomass. The half 200 m net was stored at 4 °C until it could be processed (generally 1-2 h). The zooplankton were washed through 2000, 1000, 500 and 200 μ m meshes to produce four size fractions: >2000, 1000-2000, 500-1000 and 200-500 μ m (JGOFs size classes). These were made up to an appropriate volume using filtered sea water, usually 500 or 1000 ml depending on the density of zooplankton. Three replicate 50 ml aliquots were filtered onto three pre-ashed Whatman GF/C filters from each size fraction. The filters were placed in a 60 °C oven for 48 hours, before being encapsulated in pre-ashed aluminium foil and frozen for subsequent CHN analysis. The remaining portion of each fraction was preserved in 4 % borax buffered formalin for future taxonomic analysis.

OPC net sample. On station, the non-toxic sea water supply was switched off, and net samples processed. The OPC had a container of pre-screened sea water (130 μ m) pumped through it at approximately 151 min⁻¹. The water was recycled via a 130 μ m mesh collection tube. The net sample was added slowly to the body of water and the file left to run until the counts returned to zero. The sample was retrieved from the collection tube, and preserved in 4 % borax buffered formalin. The system was rinsed with fresh water, before starting the non-toxic sea water supply. The files were downloaded, and processed into JGOF's size classes.

Underway sampling. A bench top OPC-l was run in underway mode from the non-toxic sea water supply continuously, apart from file changes at sunrise, sunset and on station when the net samples were processed and routine maintenance carried out. The OPC could not be used when the ship's speed exceeded approximately 13 knots and the probe was retracted due to bubbles in the system. Some data was therefore lost from day 140 and 141, recovering the track from Cape Town to Northern Benguela. To reduce problems with bubbles, a debubbler system was used proceeding the OPC. A flow rate of approximately 20 l min⁻¹ was used through the OPC. The volume of water passing through the OPC was measured using a flowmeter, and recorded for each file. Latitude and longitude were logged directly from the ship's differential GPS to the OPC computer. Each day the files were downloaded, and processed to produce averaged biovolumes for the four JGOFS size classes, total biovolume, and mean equivalent spherical diameter (ESD).

"In line" samples were taken periodically for validation of the OPC counts and taxonomy; see

Mesozooplankton sample log A6-22. The samples were collected from the outflow of the OPC using a 200 μ m mesh tube, and preserved in 4 % formalin. Occasional biomass (total carbon) samples were taken from these before preservation. The sample was made up to 50 or 1000 ml, and three replicated aliquots of 50 ml were filtered on to GF/C filters and treated as the net CHN samples.

Particulates. At each morning station, samples of particulates for CHN analyses were obtained from CTD water bottles at two different depths: surface (7m) and chlorophyll maximum, as determined by *in situ* fluorescence. Water samples from the two depths were filtered through 5 μ m membrane filter, and a 200 μ m gauze. The filtrate from each size fraction was filtered in triplicate onto pre-ashed Whatman GF/F filters to produce a series of replicate samples of the two size fractions (<2,<200 μ m). Filters were dried for 24 hours in the oven (60 °C) and then compacted in pre-ashed aluminium foil and frozen for subsequent CHN analysis. Particulates CHN analyses log A6-23.

Preliminary results

The biovolume showed huge variation both between the upwelling areas (North & South Benguela, Equatorial and North West African) and the gyres, and within these regions. This is seen in the net data (Fig. 26.) and the surface underway data (Fig. 27). The underway data also shows evidence suggesting an increase in biovolume at night, although the signal is partially masked by the high spatial variation. At night the underway data clearly shows the mean equivalent spherical diameter, a measure of zooplankton size, is higher at night than at other times of the day, suggesting that larger zooplankton are migrating towards the surface at night.

Fig. 26. OPC total biovolume for 20 m and 200 m nets.

Fig. 27. OPC total biovolume for underway (7m non-toxic sea water supply), integrated over morning, afternoon and night time periods.

Fig. 28. Surface underway mean equivalent spherical diameter (ESD) of zooplankton, integrated over morning, afternoon and night.

4. SYNTHESIS and CONCLUSIONS

Satellite imagery was received daily, throughout the cruise. SeaWiFS data were received from NASA, Goddard and AVHRR imagery of SST from UCT, Cape Town and RSMAS U of Miami. Both AVHRR and SeaWiFS delivered remarkable imagery, unique in the active pursuit of biological oceanographic research in a heterogeneous area such as the Benguela, in a way that was only ever speculated on previously. These were used to adjust daily sampling strategy, to take samples in regions of high or low chlorophyll, high or low reflectance (Rrs550) or low or high temperature waters. The success of the cruise in sampling such a wide diversity of phytoplankton assemblages and low to high range of biomass can be attributed to the availability of these data in such a timely and convenient manner.

AMT-6 was designated a study of upwelling and high productivity ecosystems.

From a physical and biological oceanographic perspective, the cruise partitioned into 7 main regions, with distinctive ecosystem characteristics:

- 1. The S. Benguela Upwelling (S BEN UP);
- 2. The N. Benguela Upwelling (N BEN UP);
- 3. The Gulf of Guinea and the Equatorial Upwelling (GOG & EQ UP);
- 4. Equatorial North Atlantic (ENA);
- 5. N. W. African Upwelling (NWA UP);
- 6. CANIGO region;
- 7. Biscay, S. W. Approaches and western English Channel (SWA & WEC).

Of these 7 areas, 3 were upwelling, highly productive (S BEN UP, N BEN UP & NWA UP), 2 were mesotrophic (ENA & SWA) and 2 were oligotrophic (GOG & CANIGO). The basic physical (SST, MLD), biological (CHL, Phytoplankton) and optical (Kd490, R555) characteristic properties of these 7 regions are summarised in appendix A6-24a. An extended data matrix for all the stations is given in appendix A6-24b.

Within the Benguela, the diversity of phytoplankton assemblages was exceptionally great. In the southern area, small diatoms were abundant, but there were major populations of dinoflagellates. Chlorophyll concentrations were typically over 5 mg.m⁻³. At ca 32 19'S, a "red tide" of Ceratium spp was encountered, with chlorophyll concentrations over 30 mg.m⁻³, extending over a broad area 20 km in width.

In the Northern, Benguela diatoms were dominant, small (Nitzschia spp), colonial forms and the large Coscinodicus wailsei, with single cells > 250um in diameter. Chlorophyll concentrations throughout the northern Benguela ranged from 1 to 4 mg.m⁻³. In many respects the two sectors of the Benguela were different from expectations for the time of year, which normally has the northern area the most intense in biological activity.

The Gulf of Guinea ecosystem was unusual for several features, notably that nowhere was it truly oligotrophic; surface chlorophyll concentrations were typically 0.2 (range 0.1 to 0.36) mg.m⁻³. Sub-surface, the region was highly heterotrophic and oxygen was under-saturated. All these 'unusual' observations may be normal for an oligotrophic ocean gyre near mid-winter, given that these conditions have been studied rarely and reported less.

The equatorial upwelling feature was a much broader feature (>100 km S to N) as observed by SeaWiFS, than encountered on the usual AMT track further west (23 W), where it is normally
only 20 km S to N. Surface chlorophyll concentrations were 0.3 to 0.4 much higher than observed on previous AMT cruises at 23 W.

North of the EQ UP, the ITCZ was the most evident feature in the satellite imagery (AVHRR), shown as a broad band of cloud from 2 to 8 N. This was the only area that provided poor optical sampling conditions, but for only 2 days, so little was lost. In the ENA, south of the NWA UP, observing and sampling conditions were exceptionally good. Surface chlorophyll values were 0.3 to 0.5 mg.m⁻³, but in the thermocline at 40 m a sub-surface maximum, up to 2 mg.m⁻³, was measured at all stations. Surprisingly at the time, there were no useful SeaWiFS images available, despite the sunny, cloudless skies; in retrospect it was explained by the occurrence of a Saharan dust storm affecting the area, which produced a dust-laden atmosphere, which the SeaWiFS atmospheric correction procedures could not process.

Only when north of this area, off the coast of Senegal and Mauritania, were good images obtained which showed areas of high biomass and high reflectance, not always co-incident, indicating different phytoplankton assemblages. These included dense populations of Synechococcus and a small (10 um) Nitzchia species. The SeaWiFS images showed the upwelling system extending further offshore (beyond the 20W line) and at seemingly much higher concentrations than usual, compared to the distributions shown in the NASA, CZCS May and June monthly composites.

The front to the north of the WA UP, at the southern limit of the CANIGO region, was the sharpest encountered since the Benguela; there was a salinity change of 0.6 PSU in < 20 km and the chlorophyll concentrations dropped to < 0.05(HPLC) the lowest encountered anywhere. Satellite imagery was sparse for the area, due to patchy cloud cover, but in the cloud-free patches biomass exceeded 0.2 mg.m⁻³ in places. These conditions were typical for the whole of the CANIGO region.

North of the CANIGO there was a significant increase in biological activity, though surface chlorophyll concentrations were low, above a sub-surface maximum in the thermocline again reaching 0.5 mg. m⁻³.

Good imagery for the WAP and the WEC showed a major phytoplankton bloom at the shelf break, a coccolithophore bloom on the shelf and a large bloom in the WEC south of Plymouth. As it turned out the shelf edge bloom was identified to be Phaeocystis and the bloom south of Plymouth was composed mainly of small diatoms.

The wide diversity and concentration range (0.03 to 8.5 mg.m⁻³ chlorophyll-a) made AMT-6 notable for the range of biomass and bio-optical data used for SeaWiFS algorithm. Post cruise, the SeaWiFS operational algorithm was modified by the high concentration data (> 1.5 mg.m⁻³), reducing the modeled (retrieved) values from satellite imagery by a factor of 2 at values greater than 2 mg.m⁻³. These data and their residual outliers provide a test set for new bio-optical models, which have been developed to explain biological diversity occurring in widespread ecosystems. The study of high productivity, upwelling systems has been part of this, as well as being important studies in their own right. These ecosystems are among the most sensitive to the effects of climate change. Although regular AMT cruises from Cape Town are unlikely, the study of high productivity systems on AMT should always be a consideration to fulfill its objectives, which are related to climate change.

APPENDICIES

- A6-0 Pre-cruise Provisional station positions, Re-cast station dates after Cape Town
- Return and achieved station positions. A6-1
- Combined CTD and Optical Station list A6-2
- Scientific Bridge Log. A6-3
- XBT deployment log A6-4
- CTD water bottle depths, T and S for each cast A6-5
- CTD Salinity calibration bottles A6-6
- SeaOPS log
- A6-7 SeaFALLS log
- A6-8 LoCNESS log
- A6-9 Mini NESS log
- A6-10 SeaSPEC log
- A6-11 SeaSAS log
- FRRF Data acquisition log A6-12
- A6-13 UOR tow log
- A6-14 **HPLC** pigments
- Oxygen, DIC and Respiration Samples Collected A6-15
- A6-16 Samples taken for New Production, Ammonium regeneration, ¹⁵N Uptake and Nitrification

i

- Discrete CTD nutrient samples analysed A6-17
- A6-18 Underway Nutrient Analysis
- A6-19 TD-Fe and SPM, CTD sampling log.
- TD-Fe and SPM, underway sampling log. A6-20
- A6-21 High volume aerosol sampling log.
- Mesozooplankton log. A6-22
- Particulates CHN analyses log. A6-23
- A6-24 AMT-6 Cape Town to Grimsby, Data Matrix.

Appendix A6-0; Pre-cruise Provisional station positions, Re-cast station dates after Cape Town Return and achieved station positions.

ANNEX 1

Provisional daily, main, pre-noon station positions by latitude, and approx. longitude.

Leg 1. @ 2.2 deg/day; 14 to 21 May 98; 1. 33.6 S, 17.7 E (135, 33.6 S) 2. 31.4 S, 17.5 E (136, 32.3 S)	Recast C. Tn/2 (20 - 25May); 20/5 140	Actual achieved
3. 29.2 S, 16.0 E (137, 29.5 S) 4. 27.0 S, 14.7 E (138, 26.7 S)	21/5 141	28.54 S, 15.8 E
5. 24.8 S, 14.2 E (139, 29.5 S) 6. 22.6 S, 13.4 E	22/5 142 23/5 143	24.75 S, 14.3 E 21.52 S, 12.2 E
7. 20.4 S, 12.4 E 8. 18.2 S, 11.2 E	24/5 144 25/5 145	19.00 S, 12.0 E 17.66 S, 11.3 E
Leg 2. @ 3.5 deg/day; 22 to 31 May 98; 9. 14.5 S, 6.0 E	26/5 146	14.74 S, 07.9 E
10. 11.0 S, 3.0 E 11. 7.5 S, 0.7 W	27/5 147 28/5 148 20/5 140	11.61 S, 04.1 E 08.63 S, 00.6 E
12. 4.0 S, 4.2 W 13. 0.5 S, 8.2 W 14. 3.0 N, 11.7 W	29/5 149 30/5 150 31/5 151	05.86 S, 02.6 W 02.80 S, 06.2 W
15. 6.5 N, 15.4 W 16. 10.0 N, 19.0 W	1/6 152 2/6 153	00.02 S, 08.9 W 03.07 N, 12.8 W 05.85 N, 16.1 W
17. 13.5 N, 20. W Leg 3, 3 @ deg/day; 31 May 4 June 98;	3/6 154	09.06 N, 19.1 W
18. 16.0 N, 20. W 19. 19.0 N, 20. W	4/6 155 5/6 156	12.80 N, 19.2 W 16.38 N, 20.0 W
20. 22.0 N, 20. W 21. 25.5 N, 20. W	6/6 157 7/6 158	20.41 N, 20.0 W 24.51 N, 20.0 W
Leg 4, @ 3.5 deg/day; 5 to 10 June 98; 22. 28.5 N, 20. W	8 June to 13 June 8/6 159	28.70 N, 19.9 W
23. 32.0 N, 20. W; Madeira. 24. 35.5 N, 20. W	9/6 160 10/6 161	32.43 N, 17.1 W 36.74 N, 17.5 W
25. 39.0 N, 20. W 26. 41.5 N, 13.5 W	11/6 162 12/6 163	41.08 N, 17.4 W 44.68 N, 14.0 W
27. 43.5 N, 9.5 W; Leg 5; 11 to 13 June 98	13/6 164 Shelf Break 14 June to 16 June	48.45 N, 09.7 W
 28. 48.5 N, 5.5 W Ushant 29. English Channel/N. Sea. 30. Dock Grimsby. 	14/6 165 Eng. Chan S of Ply. 15/6 166 S, North Sea 16/6 167 Dock 10.30 BST	49.84 N, 03.5 W no station

Appendix A6-1
CTD/OPTICS Station List for AMT-6, Cape Town to Grimsby, 14 May to 16 June 1998.

Sta.	Time GMT	Date	(SDY)	Lat (N,S), Lon (E,W)	СТД	CODC	ODAT D			~
A601	12.25-15.10	15/5	135	33 37.1'S, 18 00.2'E	A6-01		SFAL N 01-05			
A602	08.05-09.30	16/5	136	32 20.2'S, 17 52.6'E		06-07		nil	N N	5.48
A603	11.07-12.21	16/5	136	32 03.4'S, 17 51.9'E		08-09		nil	N	2.58
A604	07.55-09.50	17/5	130	29 31.2'S, 16 27.2'E	A6-03			nil	N	5.03
A605	11.06-12.02	17/5	137	29 21.7'S, 16 14.9'E	A6-04		12-18	01-09	N	4.34
A606	04.15-05.38	18/5	138	26 42.6'S, 14 47.9'E				nil	N	2.83
A607	08.36-09.48	18/5	138	26 41.8'S, 14 14.8'E	A6-06		nil 20.21	nil	N	3.4.9
A608	11.23-12.28	18/5	138	26 42.4'S, 13 57.5'E	A6-07			nil	N	2.23
A609	14.57-15.28	18/5	138	26 41.8'S, 13 30.1'E	A6-08	17	22	nil	N	1.11
A610	08.56-09.52	19/5	130	29 30.7'S, 15 12.5'E	A6-09		nil	nil	N	1.60
A611	08.00-09.00	21/5	141	28 55.8'S, 16 11.3'E	nil A6-10	18	23-27	10-12	N	1.04
A612	11.43-12.56	21/5	141	28 32.5'S, 15 48.3'E		19-20		13	N	8.30
A613	08.00-09.32	22/5	142	24 45.0'S, 14 19.5'E	A6-11		28-37	14-17	N	6.00
A614	12.03-13.11	22/5	142	24 45.0 S, 14 19.5 E 24 16.5'S, 14 06.4'E	A6-12		38-52	18-25	N	2.44
A615	04.05-05.00	23/5	142	22 05.5'S, 12 36.7'E	A6-13	24	53-64	26-31	N	1.85
A616	08.02-11.06	23/5	143	,	A6-14		NIL	N	N	1.73
A617	12.18-13.27	23/5	143	21 39.3'S, 12 24.4'E	A6-15	25-29		N		1.66
A618	13.34-14.55	23/5	143	21 31.5'S, 12.12.6'E	NIL	NIL	65-67	N		
TEST	07.30-08.15	24/5	143	21 23.9'S, 12 06.1'E 19 00.0'S, 12 00.0'E	A6-16		68-75	32-35		1.79
A619	08.15-08.52	24/5	144	-	TEST	NIL	N	N		
A619	09.15-09.50	24/5	144	18 59.8'S, 12 00.0'E	A6-17	32	76-90	Ν		1.86
TEST	11.20-11.50	24/5	144	18 54.6'S, 12 09.3'E	A6-18	\ III	N T	N T		
A620	11.52-12.30	24/5	144	18 54.6'S, 12 09.3'E	TEST	NIL	N	N		
A621	13.10-13.44	24/5	144	18 52.6'S, 12 02.1'E	A6-19	N	N 01.02	36-39		1.62
TEST	06.30-07.07	25/5	145	17 40.0'S, 11 20.0'E	NIL	NIL	91-93	40-44		3.97
A622	08.20-09.30	25/5	145	17 40.0'S, 11 20.0'E	TEST	NIL	N 04.09	N 45 40		• • • •
A623	11.33-12.25	25/5	145	17 26.5'S, 11 04.5'E	A6-20	33-34	94-98	45-48		2.43
A624	08.30-09.42	26/5	145	14 44.6'S, 07 51.6'E	A6-21	35	99-102			0.82
A625	11.32-11.47	26/5	146	14 29.6'S, 07 33.5'E	A6-22 NIL	36-37 NIL	-105	52-54		0.466
A626	08.32-09.00	27/5	147	11 37.2'S, 04 08.3'E	A6-23	N	-108 N	55-57 N		0.37
A626	09.08-10.05	27/5	147	u n	A6-24	38	N N	N 58-59		0.10
A627	13.10-13.36	27/5	147	11 11.7'S, 03 38.2'E	NIL	N	-110	60-61		0.12
A628	08.30	28/5	148	08 37.6'S, 00 36.5'E	A6-25	N	-112	N		0.08
A628	09.00-09.58	28/5	148	4 4	A6-25		N	N		0.22
A629	14.22-14.56	28/5	148	08 09.8'S, 00 03.3'W	NIL	N	-116	62-65		0.15
A630	08.30-	29/5	149	05 51.9'S, 02 37.1'W		Y	117	N		0.15 0.24
A630	09.20-10.20	29/5	149	и n		39	-119	66-67		0.24
A631	08.30-	30/5	150	02 48.7'S, 06 09.8'W		40	N	L		0.17
A631	09.14-10.58	30/5	150	4 7	A6-30	SS	-125	L		0.17
A632	12.06-12.31	30/5	150	02 38.8'S, 06 35.3'W	NIL	N	-125	L	1-3	0.16
A633	07.55-10.12	31/5	151	00 01.7'S, 08 51.0'W	A6-31		N N	Ľ	4-7	
A633	-10.12	31/5	151	4 5	A6-32		-131	L	N	0.33
A634	11.49-12.17	31/5	151	00 10.1'N, 09 08.2'W	NIL	N	-131	L	N 8-10	0.27
A635	09.08-	1/6	152	03 04.3'N, 12 46.2'W	A6-33		N	N	8-10 N	0.27
A635	09.46-10.32	1/6	152	4 n	A6-34	50		14	14	0.10
A636	11.22-11.43	1/6	-	03 10.4'N, 12 53.7'W	NIL	N	134	N	N	
A637	08.50-	2/6		05 51.7'N, 16 04.9'W	A6-35			N	N	0.24
A637	09.35-10.21	2/6	153	۲ m	A6-36			N	N	U.2T
A638	13.58-14.11	2/6		06 21.7'N, 16 32.9'W	NIL		Ŷ	-136	N	0.20
				-	-		_	~~ ~ ~	- •	0.20

.

A639	09.02-	3/6	154	09 03.7'N, 19 07.2'W	A6-37	SS	-138	68-71	N	0.23
A639	09.44-10.30	3/6	154	44 n	A6-38	N	N	N	N	
A640	13.00-13.28	3/6	154	09 24.6'N, 19 25.7'W	NIL	Ν	-141	72-74	Ν	0.18
A641	09.05	4/6	155	12 47.1'N, 19 14.7'W	A6-39	SS	Ν	N	11	0.27
A641	09.53-10.46	4/6	155	4 n	A6-40	Ν	-144	N	12-14	
A642	13.34-13.56	4/6	155	13 17.8'N, 19 08.7'W	NIL	Ν	-146	N	15-17	0.18
A643	09.12-	5/6	156	16 22.5'N, 20 00.0'W	A6-41	SS	Ν	Ν	Ν	0.47
A643	09-52-10.36	5/6	156	4 97	À6-42		-149	N	18-21	
A644	11.43-12.01	5/6	156	16 33.5'N, 19 59.9'W	NIL	Ν	-151	N	22-23	0.88
A645	13.35-13.53	5/6	156	16 49.2'N, 20 00.2'W	NIL	Ν	-155	Ν	24-27	1.12
A646	09.00-10.36	6/6	157	20 24.3'N, 20 00.1'W	A6-43	SS	-161	75-83	28-30	1.87
A647	12.08-12.23	6/6	157	20 40.7'N, 19 59.7'W	NIL	Ν	-164	N	31-33	1.60
A648	13.29-13.43	6/6	157	20 52.1'N, 20 00.0'W	NIL	Ν	-167	Ν	34-36	1.14
A649	08.58-09.58	7/6	158	24 30.3'N, 20 00.0'W	A6-44	SS	-169	N	Ν	0.19
A650	12.26-12.43	7/6	158	24 59.4'N, 20 00.1'W	NIL	Ν	170	N	37-38	0.086
A651	13.16-13.34	7/6	158	25 05.1'N, 19 59.8'W	NIL	Ν	-172	84	39-40	0.095
A652	09.02-09.55	8/6	159	28 41.0'N, 19 52.2'W	A6-45	N	173	N	Ν	0.034
A653	12.22-12.42	8/6	159	29 05.2'N, 19 33.7'W	NIL	Ν	-175	Ν	41-42	0.027
A654	08.00-08.42	9/6	160	32 25.6'N, 17 02.9'W	A6-46	Ν	176	N	Ν	0.032
A655	12.40-13.18	9/6	160	32 39.4'N, 17 09.7'W	NIL	Ν	-179	85	43-45	0.027
A656	09.00-	10/6	161	36 36.8'N, 17 30.2'W	A6-47	Ν	-182	Ν	46-48	0.065
A656	09.47-10.35	10/6	161	14 17	A6-48	Ν	-185	86-88	N	
A657	12.30-12.56	10/6	161	36 59.4'N, 17 29.5'W	NIL	Ν	-188	Ν	49-51	0.111
A658	09.01-10.11	11/6	162	41 04.7'N, 17 29.9'W	A6-49	Ν	-191	N	52-55	0.158
A659	11.46-12.12	11/6	162	41 19.0'N, 17 12.2'W	NIL	Ν	-194	Ν	56-58	0.163
A660	08.28-09.50	12/6	163	44 40.8'N, 14 00.6'W	A6-50	N	-197	Ν	Ν	0.357
A661	15.03-15.19	12/6	163	45 29.5'N, 13 07.5'W	NIL	N	-200	N	Ν	0.70
A662	09.50-10.28	13/6	164	48 27.0'N, 09 41.8'W	A6-51	Ν	-207	N	Ν	1.82
A663	14.30-15.55	13/6	164	48 43.1'N, 08 37.4'W	NIL	Ν	-219	Ν	N	3.75
A664	17.00-17.27	13/6	164	48 47.0'N, 08 16.6'W	NIL	Ν	-221	N	N	1.69
A665	08.57-10.42	14/6	165	49 50.2'N, 04 09.5'W	A6-52	Ν	-224	Ν	Ν	2.03
A666	13.06-13.17	14/6	165	50 00.2'N, 03 28.0'W	NIL	Ν	-227	Ν	Ν	1.34

NOTES:

Stations are numbered sequentially.

CTD casts are numbered sequentially.

SeaOPS, SeaFALLS & MiniNESS are each numbered sequentially.

Zooplankton nets are not included on this table and night time nets are numbered separately.

1. All times are for start and end of stations in GMT.

2. There were no CTD casts for stations: A610, A617, A621, A625, A627, A629, A632, A634, A636, A638, A640, A642, A644, A645, A647, A648, A650, A651, A653, A655, A657, A659, A661, A663, A664, A666.

3. There were no OPT casts for stations: A606, A609, A615.

4. There were 2 CTD casts for station A619, A626, A628, A630, A631, A633, A635, A637, A639, A641, A643, A656

5. There was no water sampled from any TEST CTD casts.

6. Data for CTD cast A6-20, station A622 was not stored on disk.

7. Data only for CTD cast A6-33; no water bottles, due to cable failure at 120 m.

8. Bottles 10,12 did not fire on CTD1, bottle 3 did not fire on CTD A6-34, A6-36.

9. CTD cast A6-50 (Sta. A660) was to 1500m.

ver 14/6/98

Appendix A6-2 Scientific Bridge Log (all times are in GMT)

Date	<u>SDY</u>	Latitude	Longitude	Time	Activity
15/05/98	135	\$ 33° 37.1	E 18º 00.2	1110	V/L on station #1
				1120	
				1124	Deploying 'F' Net forward starboard
				1124	Sea ops deployed Aft starboard
				1134	'F' Net recovered on board
				1144	'F' Net re-deployed
				1144	'F' Net recovered, Rocket in the water
				1140	'F' Net re-deployed
					Rocket recovered, sea ops on the surface
				1158	Sea ops going down
				1208	'F' Net recovered
				1246	Sea ops recovered on board
				1308	Deploying AC9 stationboard Aft
				1318	Recovered AC9
				1338	Commence deploying CTD
				1344	CTD in the water, veering
				1358	CTD at 120m
				1425	CTD recovered
				1510	V/L proceeding to survey area
				1955	V/L coming into station
		S 32° 55.4	E 17°05.4	2010	V/L on station NON 1 (Night Only New Days)
				2022	V/L on station NON 1 (Night Only Net). Depth 350m
				2038	Commence deploying plankton net Plankton net retrieved
				2045	Crass stowed Ma
				2045	Crane stowed, V/L moves off station
16/05/98	136	S 32° 20.25	E 17° 52.59	0800	V/L coming into station #2
			0805	Depth 137m	
			0809	Deploying CTD	
			0811	Deploying plankton nets	
			0815		
			0820	Sea ops deployed	
				Plankton nets recovered	
			0824	CTD at 120m	
				0827	Plankton net deployed -20m
				0830	Plankton net recovered
				0834	Hauling on CTD 80m
				0835	Plankton net deployed
				0837	CTD at 80m
				0838	Hauling CTD to 40m
				0840	CTD at 40m
				0841	Hauling CTD –20m
				0844	CTD at 20m, sea ops recovered
				0900	Recovering CTD
				0900	
					Recovering plankton net
				0904	CTD and nets recovered
				0909	Rocket in water off the stern
				0926	Rocket on deck and recovered
				0930	V/L moves off station
		8 79809 90	T 1 - - - -	1103	V/L coming onto station
		S 32°03.36	E 17° 51.94	1107	V/L on station #3, depth 126m
				1110	Commence deploying CTD
				1114	CTD in the water, 100m
				1119	Sea ops deployed
				1121	CTD at 100m
				1137	Commence recovery CTD
				1140	CTD recovered on fast
				1148	CTD recovered on deck, recovered sea ops
				1205	Deploying rockets off stern
					Rocket recovered
				1210	AC9 deployed, starboard Aft
				1213	AC9 recovered
				1221	V/L off station
		0.31917.0	D <i>a a</i> b <i>a</i> = -	2000	V/L coming onto station
		S 31º 17.3	E 16°20.8	2007	V/L on station NON 2
				2008	Deploying plankton nets
				2022	Plankton nets recovered
				2029	V/L moves station
7/05/98	137	S 29°31.2	E 169 27 2		
	137	3 49 31.2	E 16° 27.2	0755	V/L coming onto station #4, depth 150m
				0000	
				0809 0811	Plankton net deployed CTD deployed

ı ł

İ

		S 26° 42.3 S 26° 41.8	E 14° 47.6 E 14° 14.8	0538 0545 0825 0830 0835 0836 0840 0853 0921 0925	CTD recovered UOR deployed V/L at 1 lkts UOR recovered V/L on station#7, depth 365m Plankton nets deployed CTD deployed Sea ops deployed CTD at 300m CTD recovered Sea ops and plankton nets recovered
•		S 26° 42.44	E 13° 57.54	0930 0942 0948 1111 1117 1123 1129 1131 1134	C4 deployed C4 recovered UOR deployed Commence recovery of UOR UOR recovered V/L on station #8, depth 418m Sea ops deployed, deploying 'F' Net, commence CTD deployment CTD deployed
•					

ş

•

	<u>-</u>			0952	V/L moves off station
21/05/98	141			0755	V/L coming onto station
		S 28° 55.8	E 16º 11.3	0800	V/L on station #11, depth 130m
				0805	Plankton nets deployed
				0806	Sea ops deployed
				0807	CTD deployed
				0820	CTD at 110m
				0832	Sea ops recovered
				0845	CTD recovered
				0849	Plankton nets recovered
				0852	Mini net deployed
				0855	Mini net recovered
				0900	V/L moves off station
		S 28° 38.86	E 15° 54.85	1049	V/L on station #12, depth 130m
				1054	V/L off station resuming course for 30 mins
				1138	V/L coming on station
		S 28° 32.5	E 15° 48.3	1143	V/L on station, depth 131m
				1146	Sea ops deployed, commence deploying CTD
				1148	CTD deployed
				1151	Sea-falls deployed aft
				1220	Sea ops and sea-fails recovered
				1221	Commence CTD recovery
				1224	CTD recovered
				1226	Lauching mini-net and rocket
				1254	Recovered mini-net and rocket, all secure
······				1256	V/L off station
22/05/98	142			0744	····
	_	S 24° 45.0	E 14° 19.5	0755	V/L coming onto station
			214 19.5	0800	V/L on station #13, depth 120m
				0804	Plankton nets deployed
				0807	Sea ops deployed
				0809	CTD deployed
				0815	Rocket launched port off
				0820	CTD at 110m
				0829	Sea ops recovered
				0840	Mini-net deployed
				0857	CTD recovered
				0900	Plankton net recovered
				0930	Min-net and C4 recovered
				0932	V/L moves off station, half power
		0.04944.4		1200	V/L approaching station
		S 24° 16.5	E 14º 06.4'	1203	V/L on station #14, depth 150m
				1206	Sea-ops deployed, commence deployed CTD
				1209	CTD deployed
				1213	Sca-falls deployed
				1224	Sea-ops recovered
				1230	Rockets deployed aft
				1242	Commence recovering CTD
				1247	CTD recovered on deck
				1311	All gear recovered, V/L moving off station
				1317	UOR deployed @ 4 knots
				1334	Increasing to 11.0 knots
				1745	V/L reducing speed for UOR recovery
				1755	UOR recovered, increasing to 2250 kW
3/05/98	143	\$ 22°05.5'	E 12°36.7'		
	142	3 44 05.5	E 12'30.7	0405	V/L on station #15 for CTD, depth 666m
				0408	CTD deployed
				0416	Bongo net deployed
				0426	CTD @ 200m
				0434	Bongo net recovered
				0450	CTD recovered
		S 22°02.9'		0500	V/L proceeding to next waypoint
		3 22 02.9	E 12°35.5'	0525	UOR deployed @ 6 knots
				0750	V/L slows to recover CTD
		0.01000.00	D • • • •	0755	UOR recovered, V/L coming onto station
		S 21°39.3*	E 12°24.4'	0802	V/L on station #16, depth 964m
				0803	Plankton nets deployed
				0903	Plankton nets recovered
				0908	Sea-ops deployed
				0010	
				0918	Sca-ops recovered
				0923	Sea-ops recovered Sea-ops redeployed
					Sea-ops recovered Sea-ops redeployed Commence deploying CTD

.

				1050	Sea-ops recovered
		S 21°39.2'	E 12°24.3'	1104 1106	Commence CTD recovery CTD recovered on deck, off station
		\$ 21°31.5°	E 12°12.6	1218	V/L on station #17, depth 1235m
			 *	1219	Deploying rockets aft
				1234	Rockets recovered, V/L off station
				1327	V/L coming on station
		S 21°23.9'	E 12°06.1	1334	V/L on station #18, depth 1257m
				1336	Sea-ops deployed
				1340	Commence deploying CTD
				1342 1401	CTD deployed, rocket deployed aft Sea-ops recovered
				1401	Deploying mini-ness, commence recovering CTD
				1413	CTD on-board, gantry secured
				1415	Sea-falls deployed
				1423	Mini-ness recovered
				1427	Mini-ness re-deployed
				1438	Sea-falls recovered
				1446	Mini-ness recovered
				1449 1454	Mini-ness re-deployed Mini-ness recovered
		S 21°24.2'	E 12°06.2'	1454	V/L moves off station, UOR deployed @ 4 knots
		S 20°44.1'	E 11°36.1'	1947	UOR recovered
24/05/98	144	S 18°59.8'	E 12°00.0	0655	V/L comes onto station #19 for test CTD, depth 206m
				0735 0750	CTD deployed for testing Plankton net deployed, CTD recovered
				0758	CTD re-deployed for testing
				0815	CTD recovered
				0822	CTD deployed
				0824	Sea-ops deployed
				0838	CTD @ 180m
				0849	Plankton net recovered
				0851	Sea-ops recovered
				0852	CTD recovered
				0902 0917	Plankton net deployed CTD deployed
				0920	Planitton net recovered
				0924	CTD @ 55m
				0942	CTD recovered
				0950	V/L moves off station
		S 18°54.6'	E 12°09.3'	1120	V/L on station #20, depth 115m
				1123	Commence deploying CTD
				1126	CTD deployed in water
				1138 1150	CTD recovered on deck, no sampling
				1150	Commence re-deploying CTD CTD in water
				. 1156	Deploying mini-ness
				1203	Mini-ness recovered
				1205	Mini-ness re-deployed
				1216	Commence recovering CTD
				1219	CTD recovered
				1222	Mini-ness re-deployed
		C 10963 CT	E 10000 11	1230	Mini-ness recovered, set course 290°T
		\$ 18°52.6'	E 12°02.1'	1310	On station #21, depth 144m, heading 180°T
				1311 1325	Sea-fails deployed Sea-fails recovered
				1323	Mini-ness deployed
				1327	Mini-ness recovered, course 290°T @ 4 knots for UOI
				,,	deployment
				1403	UOR deployed, increasing to 11 knots
			<u> </u>	1550	UOR recovered
25/05/98	145	S 17°40.0'	E 11°20.1	0600	V/L stopped on station #22
				0635	CTD deployed for testing
				0645	CTD recovered
				0655	CTD deployed for testing
				0707	CTD recovered
				0742	Plankton nets deployed
				0805 0812	Plankton nets recovered
				0812	CTD and plankton nets deployed Sea-ops deployed
				0829	CTD @ 200m

)

				0856	Plankton neto recover 4
				0900	Plankton nets recovered CTD recovered
				0905	Mini-ness deployed
				0910	C4 deployed
				0928	C 4 and mini-ness recovered
				0930 0935	V/L moves off station and deploys UOR
				1125	UOR deployed
				1125	Commence UOR recovery UOR recovered
		S 17°26.51	E 11°04.5'	1133	On station #23, depth 1306m
				1136	Sea-ops deployed
				1142	CTD deployed
				1143	F-net deployed fwd
				1156	F-net recovered
				1159	Sea-ops recovered
				1202 1204	CTD recovered
				1204	Sea-falls deployed aft
				1207	Mini-ness deployed aft All eminment recovered art course 2128T @ 41
					All equipment recovered, set course 313°T @ 4 knots for UOR
				1238	UOR deployed
<u> </u>				1752	UOR recovered
26/05/98	166	، ب 6			
20/02/28	-100	S 14º44.6'	E 0.000	0824	V/L coming onto station
		o 14 44.0	E 07°51.6'	0834	V/L on station #24, depth 4860m
				0838	Sea-ops and plankton nets deployed
				0840 0850	CTD deployed
				0830	CTD @ 200m Sea-ops recovered
				0920	CTD recovered
				0923	Plankton net recovered
				0925	C4 deployed
			092 6	Mini-ness deployed	
			0941	C4 and mini-ness recovered	
		\$ 14°29.6'	E 07°33.5'	0942	V/L moves off station
		₩ x7 42.0	201 33.3	1132 1134	V/L on station #25
			1134	Deploying rockets sea-falls and mini-ness	
				1146	All gear recovered V/L proceeding off station
		<u>S 13°18.5'</u>	E 06°08.6	2020	XBT launched #2
27/04/202	47				
27/05/98	167-	S 11°53.0'	E 04°26.8'	0630	XBT launched #3
		S 11°37.2°	E 04°08.3°	0832	V/L comes onto station #26, depth 5523m
				0840	Plankton nets deployed
				0902	Sea-ops deployed
				0908 0918	CTD deployed
				0918	CTD @ 200m States recovered
				0945	Sea-ops recovered Plankton nets recovered
				0949	CTD recovered
				0951	Mini-ness deployed
		0.1192.4		1000	Mini-ness recovered
		S 11°36.9'	E 04°08.0'	1005	XBT launched #4
		S 11º11.7'	E 03°38.2'	1312	V/L on station #27
				1314	Sea-falls deployed
				1315 1336	Mini-ness deployed
		\$11°11.3*	E 03°37.1'	1336	All equipment recovered, V/L off station XBT launched #5
		S 10°49.6'	E 03°12.8'	1715	XBT launched #6
		S 10°30.01	E 02°49.6'	1837	XBT launched #7
0.000					
28/05/98	148	S 08°55.8*	E 00°57.2	0613	XBT launched #8
		0.00020	B	0825	V/L coming onto station
		\$ 08°57.6'	E 00°36.5'	0830	V/L on station #28, depth 4932m
				0833	Plankton net deployed
				0835	CTD deployed for tests
				0848	CTD recovered
				0850 0910	C4 deployed C4 recovered
				0914	CTD deployed, Sea-spec deployed
					~ ·
				0923	CTD @ 200m
				0923 0940	CTD @ 200m
					CTD @ 200m Sea-spec recovered Plankton net recovered

		\$ 08°37.2'	E 00°35.7'	0954 0958 1112	V/L moves off station @ 8 knots, UOR deployed XBT launched #9 Commence slowing to 4 knots for UOR recovery
				1122	UOR recovered, V/L coming on station, rocket deployed
		S 08°28.8'	E 00°25.8'	1126	Rocket recovered, V/L on station
		S 08°11.9'	W 00000 T	1131	V/L off station, resume course
		\$ 08 09.8'	W 00°00.7' E 00°03.3'	1408	XBT launched #10
		0.00 07.0	E 00 03.3	1422 1428	Commence slowing to come on station #29
				1428	Sea-fails deployed aft
				1453	Mini-ness deployed aft Mini-ness recovered on-board
				1456	Sea-fails recovered on-board, V/L off station
				1500	Course 315°T @ 4 knots for UOR deployment
		S 08°09.9'	W 00°03.7'	1502	UOR deployed
				1506	Increasing to 11 @ knots
		S 07°41.5'	W 00°29.6'	1836	XBT launched #11
		S 07°25.9'	W 00°47.2'	2050	UOR recovered
		<u>S 07°08.3'</u>	W 01°07.4'	2257	XBT deployed #12
29/05/98	149	S 06°13.0'	W 02°11.9'	0640	
		S 05°51.9'	W 02°57.1°	0542 0830	XBT launched #13
				0830	V/L on station #30, depth 4389m
				0904	Plankton net deployed Rocket deployed
				0910	Rocket recovered
				0920	CTD deployed
				0930	CTD @ 200m
				0945	Sea-ops deployed
				0955	Plankton net recovered
				1000	CTD recovered
				1003	Sea-ops recovered
				1004	C4 deployed
				1008 1016	Mini-ness deployed
				1018	Mini-ness recovered
		\$ 05°51.0°	W 02°39.0'	1020	C4 recovered
		\$ 05°20.7'	W 03°12.7'	1403	V/L moves off station @ 1250 kW, XBT launched #14 XBT launched #15
		S 04°42.9'	W 03°56.8'	1830	XBT launched #16
				1103	V/L on station
		S 04°22.2'	W 04°20.7'	2104	Plankton nets deployed
				2122	Plankton nets recovered
		S 04º08.7'	W 04°35.9'	2124	V/L moves off station
	······			2300	XBT launched #17
30/05/98	150	\$ 03°06.6'	W 05°48.7'	0618	XBT launcjed #18
		S 02°48.7°	W 06°09.8'	0830	V/L on station #31
				0834	Plankton net deployed
				0836	Sea-ops deployed
				0900	Sea-ops recovered
				0914	CTD deployed
				0924	CTD @ 200m
				0926	Sca-spec deployed
				0950 0959	Plankton net recovered
				1001	CTD recovered
				1001	Sca-spec recovered C4 deployed
				1016	Loch-ness deployed
				1040	Loch-ness recovered
				1052	Loch-ness re-deployed
				1055	Loch-ness and C4 recovered
		\$ 0.2047 41	111 0 000 +	1058	V/L moves off station @ 4 knots
		\$ 02°47.5'	W 06°11.7'	1100	XBT launched #19
		S 02°38.8'	Wacestill	1107	XBT complete, V/L moves up to 2250 kW
			W 06°21.1'	1206	On station, Loch-ness deployed
				1210 1227	Sea-falls on starboard quarter
				1227	Sea-fails recovered
		S 02°22.7'	W 06°35.3'	1410	Loch-ness recovered, resume cruising speed XBT launched #20
		\$ 01°37.2'	W 07º06.1	1820	XBT maunched #20 XBT maunched #21
				2058	V/L slows to 6 knots
		S 01°06.9'	W 07°26.0'	2105	UOR deployed
				2110	V/L increases speed to 11 knots

)

		S 00°13.9'	W 08°02.0'	0300	UOR recovered
		B.00010.41		0304	UOR recovered to deck
		S 00°13.4'	W 08°03.5'	0316	XBT launched #22
		\$ 00°13.2' \$ 00°12.9'	W 08°04.6*	0324	XBT launched
		5 00 12.9	W 08°05.4'	0331	UOR re-deployed
		S 00°06.0*	WARDER	0341	V/L at 11 knots
		0.00 00.0	W 08°35.5'	0626	XBT launched #23
		\$ 00°02.1	W 08°51.0'	0750	V/L slows to recover UOR
		S 00°01.7'	W 08°51.4'	0755	UOR recovered
				0811	V/L on station, depth 4530m
				0815 0833	Plankton net deployed
				0834	Plankton net recovered
				0835	Loch-ness deployed
				0856	C4 deployed
				0901	C4 and Loch-ness recovered Plankton net deployed
				0904	CTD and sea-spec deployed
				0929	CTD recovered (no communications)
				0939	Sea-spec recovered
				0942	Plankton net recovered
				0950	Loch-ness and C4 deployed
				1010	Loch-ness and C4 recovered
		S 00°00.5'	11/ 00060 00	1012	V/L resumes passage
		0.00.00.5	W 08°52.8'	1020	XBT launched
		N 00°10.1	W 09°08.2	1022	V/L moves up to 2250 kW
			W 05-08.2	1149	On station
				1151 1156	Rocket deployed port quarter
·				1217	Sea-falls deployed starboard quarter
				1217	V/L off station, resume cruising speed
01/06/98	152	N 02°42.8'	W 12°20.6'	0614	XBT launched
				0850	V/L slows for station #35
		N 03°04.3'	W 12°46.2'	0908	V/L on station
				0909	Plankton net deployed
				0911	CTD deployed
				0915	Sea-spec deployed
				0921	CTD recovered
				0946	CTD deployed
				0950	Sea-spec recovered
				0957	CTD @ 100m
				1015	Plankton net recovered
				1029	CTD recovered
		N 03°09.2'	W 12°46.8'	1032	V/L moves off station
			12 10.0	1043	XBT launched
				1045 1122	V/L moves up to 2250 kW
		N 03°10.4'	W 12°53.7'	1130	Commence slowing down to come on station V/L on station #36
				1132	a
				1135	Sea-falls deployed Loch-ness deployed
				1141	Sea-fails recovered
				1143	V/L off station, set course 270°T
		N 03°26.2'	W 13°15.2'	1400	XBT faunched
		N 03°57,2'	W 13°53.2'	1806	XBT launched
,,		N 04°36.9'	W 14°42.5'	2328	XBT launched
02/06/98	153	N 05°29.3'	N/ 1 66 49 91		
		11 05 49.5	W 15°43.7'	0613	XBT launched
		N 05°51.7'	W 16°04.9'	0850	V/L slows for station #37
			W 10-04.9	0905	V/L on station, depth 4945m
				0910	Plankton net deployed
				0911	CTD deployed
				0913	Sea-spec deployed
				0919 0935	CTD recovered
				0935	CTD deployed
				0940	Sea-spec recovered
				1008	CTD @ 200m Plankton net recovered
				1019	CTD recovered
				1021	V/L moves off station @ 8 knots
		N 05°51.7'	W 16°04.9'	1024	XBT launched
				1028	V/L moves up to 2250 kW
		N			and the second s
		N 06°21.7'	W 16°32.9'	1458	V/L on station #38
		N 06°21.7'	W 16°32.9'	1458 1500	V/L on station #38 Rockets deployed aft
		N 06°21.7' N 06°56.3'	W 16°32.9' W 17°06,6'		V/L on station #38 Rockets deployed aft Rockets recovered, resume course and speed XBT deployed

03/06/98	154	N 07°52.5'	W 17°58.1'	0021	XBT deployed
		N 08°42.2'	W 18°47.1'	0618	XBT deployed
				0850	V/L slows for station #39
		N 09°03.7°	W 19°07.2`	0902	V/L on station
				0904	Plankton net deployed
				0912	Sca-spec deployed
				0923	Mini-ness deployed
				0928	C4 deployed
				0936	Mini-ness and C4 recovered
				0940	Sea-spec recovered
				0944	CTD deployed
				0956	CTD @ 200m
				1012	Plankton net recovered
				1030	CTD recovered
				1030	V/L moves off station @ 8 knots
		N 09º04.2'	W 19º07.6'	1035	XBT launched
		11 07 04.2		1035	V/L moves up to 2250 kW
		N 09°24.6'	W 19°25.7'	1300	V/L slowing down to come on station #40
		11 07 24.0	W 17 23.7	1307	Mini-ness deployed aft
				1307	Sca-falls deployed aft
				1320	Rockets recovered aft
				1328	V/L @ 4 knots for UOR deployment
				1330	UOR deployed, V/L increasing to 8 knots
		100000	11 10000 51	1337	V/L increasing to 11 knots
		N 09°28.6'	W 19°29.5'	1403	XBT deployed
		N 10°07.7	W 19°48.2'	1807	XBT deployed
				1844	Reduce speed for UOR recovery
		N 10°08.7'	W 19°46.8'	1851	UOR recovered
04/02/00		N. 10010 11		0.000	
04/06/98	155	N 12°19.1'	W 19°20.4'	0606	UOR deployed
		N 12°20.6'	W 19°20.1'	0617	XBT launched
				0845	V/L slows to 8 knots
		N 12°47.1	W 19°14.7'	0855	UOR recovered
		N 12°47.3'	W 19°14.6'	0905	V/L on station #41
				0906	Plankton net deployed
				0908	CTD deployed
				0912	Sea-spec deployed
				0916	CTD recovered
				0934	Loch-ness deployed
				0950	Loch-ness recovered
				1002	CTD @ 200m
				1004	Sea-spec recovered
				1015	Plankton net recovered
				1025	Loch-ness deployed
	•			1030	C4 deployed
				1040	CTD recovered
				1044	Loch-ness and C4 recovered
				1046	V/L moves off station
		N 12°47.8'	W 19º14.6'	1048	XBT launched
				1050	V/L moves up to 2250 kW
		N 12°59.9'	W 19º12.4'	1153	XBT deployed
		N 13º12.3'	W 19°09.6'	1300	XBT deployed
		17 12 14.2	. 17 07.0	1333	V/L coming on station
		N 13°17.8'	W 19°08.7'	1333	V/L comming on station V/L on station #42
		is 13 17.0	W 17 VO./	1334	Loch-ness deployed aft
				1338	
					C4 deployed starboard quarter
		N 10010 21	11/ 10000 #1	1356	Off station, rockets recovered, increasing to 4 knots
		N 13°18.3'	W 19°08.7'	1403	UOR deployed
		N 13°18.7'	W 19°08.6'	1408	XBT deployed
		N 14º01.8'	W 19°00.1'	1812	XBT deployed
		N 14º08.4'	W 19°01.2'	1852	UOR recovered
	·····	N 14°52.1'	W 19°18.1'	2300	XBT launched
05:07:00		11 1 2020 01	111 - 004		
05/06/98	156	N 15°53.5'	W 19°58.3'	0600	UOR deployed
		N 15°56.3'	W 19°58.5'	0620	XBT deployed
		N 15°57.0'	W 19°58.5'	0625	UOR recovered, sensor not switched on
		N 15°57.3'	W 19°58.6'	0628	UOR redeployed
		N 15°59.31	W 19°58.6'	0640	XBT deployed
				0847	V/L slows for UOR recovery
		N 16°22.5'	W 20°00.0°	0852	UOR on-board
				0912	V/L on station #43
				0712	17 E 08 Station (45
		N 16°22.7'	W 20°00.0'	0913	Plankton net deployed

J

)

,

				09 16	Sca-spec deployed
				0928	CTD recovered
				0944	Sca-spec recovered
				0952	CTD deployed
				0959	Loch-ness deployed
				1004 1005	C4 deployed
				1003	CTD @ 200m
				1023	Plankton net recovered C4 and loch-ness recovered
				1034	CTD recovered
				1036	V/L moves off station @ 6 knots
		N 16°22.7'	W 20°00.21	1039	XBT launched
				1045	V/L moves up to 2250 kW
		N 16°33.5'	W 19°59,9'	1143	V/L coming on station
		10 35.5	W 19-39.9	1148 1149	V/L on station #44
				1149	Loch-ness deployed aft port
				1201	Sca-falls deployed aft starboard Sca-falls recovered
				1202	Loch-ness recovered, V/L moves off station
		N 16°49.2'	W 20°00.2*	1335	V/L on station #45
				1337	Loch-ness deployed
				1338	Sea-falls deployed
				1352	Sea-fails recovered
		<u>N 17º40.6'</u>	111 10050 01	1353	Loch-ness recovered, V/L moves off station
	<u> </u>	11/17/40.0	<u>W 19°59.9'</u>	1829	XBT launched
06/06/98	157	N 19°57.8'	W 20°00.1	0623	
		N 19°58.3'	W 20°00.2'	0623	XBT launched
			. 20 00.2	0845	UOR deployed V/L slows to recover UOR
		N 20°23.9'	W 20°00.0*	0850	UOR on-board
				0853	V/L coming on station
		N 20°24.31	W 20°00.1	0900	V/L on station #46
				0901	C4 deployed
				0906	C4 recovered
				0910	Plankton net deployed
				0914	CTD deployed
				0920	Sea-spec deployed
				0924 0944	CTD @ 200m
				0944	Sea-spec recovered Mini-ness deployed
				0959	CTD recovered
				1007	C4 deployed
				1010	Plankton net recovered
				1017	Loch-ness deployed
				1034	Loch-ness, mini-ness and C4 recovered
		N 20°24.7'	11/ 00000 01	1036	V/L moves off station
		19 20-24.7	W 20°00.2'	1037	XBT launched
		N 20°40.7'	W 19°59.7'	1043 1208	V/L moves up to 2250 kW
				1208	V/L on station #47
				1212	Loch-ness deployed Sea-falls deployed
				1221	Sea-fails recovered
				1223	Loch-ness recovered, off station, resuming normal
				-	speed
		N 20°52.1'	W 19°60.0'	1329	V/L on station #48
				1331	Rocket in water
				1332	Sea-falls deployed
				1342	Sea-falls recovered
				1343	Off station
		N 20°52.4'	W 20°00.0'	1347	Deploying UOR
		·· •· ••	++ 20°00.0	1348 1354	UOR deployed
		N 21°16.8'	W 20°00.6'	1554	Increasing to 11 knots XBT launched
		N 21°41.8'	W 20°00.4'	1825	XBT hunched
		<u>N 21º45.7'</u>	W 20°00.3'	1849	UOR recovered
10000	14-			· · · · · · · · · · · · · · · · · · ·	
706/98	158	N 23°59.0'	W 20°00.0'	0613	XBT launched
		N 24°30.3'	W 20°00.0'	0858	V/L on station #49
				0905	Plankton nets deployed
				0906	CTD deployed
				0907	Sea-spec deployed
				00	
				0917	CTD @ 200m
				0917 0933 0939	CTD @ 200m Sea-spec recovered C4 deployed

-

-

				0950 0955	CTD recovered C4 recovered
				0956	Plankton net recovered
				0958	V/L moves off station
		N 24°30.5'	W 20°00.1*	1000	XBT launched
				1005	V/L moves up to 2250 kW
		N 24°59,4'	W 20000	1226	V/L coming on station
		14 24 39.4	W 20°00.1'	1232	V/L on station #50
				1233	Loch-ness deployed aft port
				1234	Sea-fails deployed aft starboard
				1241	Sea-fails recovered
				1243 1316	Loch-ness recovered, resuming course, offstation
		N 25°05.4'	W 19°59.6*	1318	V/L coming on station
				1319	V/L on station #51
				1320	Loch-ness deployed aft port Sea-falls deployed aft starboard
				1330	Mini-ness deployed aft port
				1333	Loch-ness recovered
				1334	Sea-falls and mini-ness recovered, V/L off station
		N 25°10.3'	W 19°59.7'	1405	XBT launched
		N 25º11.8'	W 19°59.7'	1412	XBT launched
		<u>N 26°03.2'</u>	W 19°59.8'	1840	XBT launched
08/06/98	159	N 78914 71			
	137	N 28°14.2'	W 19°59.9'	0620	XBT launched
		N 28°41.0'	W 10025	0850	V/L slows for station
		14 26-41.0	W 19°52.2'	0902	V/L on station #52
				0903	Plankton net deployed
				0906	CTD deployed
				0916	CTD @ 200m
				0940 0950	C4 deployed
				0950	C4 recovered
				0955	CTD recovered
				0957	V/L moves off station V/L @ 2250 kW
		N 28º41.3'	W 19°52.0'	0959	XBT launched
		N 29°05.2'	W 19°33.7'	1217	V/L coming on station
				1222	V/L on station #53
				1223	Loch-ness deployed aft port
				1225	Sea-fails deployed aft satrboard
		11		1242	Rockets recovered, V/L off station, resume course
		N 29º19.2'	W 19°23.7'	1407	XBT launched
		N 30°00.7' <u>N 30°</u> 50.9'	W 18°52.2'	1804	XBT launched
			<u>W 18°14.6'</u>	2244	XBT launched
09/06/98	160	N 32º08.5'	W 17º15.7'	0611	
				0611 0750	XBT hunched
		N 32°25.6'	W 17º02.9'	0800	V/L slows for station V/L on station #54
				0803	
				0804	CTD deployed Plankton nets deployed
				0816	CTD @ 200m
				0828	CTD and plankton nets recovered
				0833	C4 deployed
				0842	C4 recovered
		1.00000		1239	V/L coming on station
		N 32°39.4'	W 17°09.7'	1240	V/L on station #55
				1249	Loch-ness deployed aft port
				1250	Sea-falls deployed aft starboard
				1306	Mini-acss deployed
				1316	Sea-falls recovered
		N 33°29.8'	13/ 1 7000 01	1318	Rockets recovered, V/L proceeding off station
······		1 33 27.0	W 17°30.0'		XBT launched
10/06/98	161				
		N 36°36.8'	W 17°30.2'	0850	V/L slows for station
			++ 17 3U.Z	0900	V/L on station #56
				0903	Plankton nets deployed
				0905	CTD deployed
				0912	Loch-ness deployed
				0914	C4 deployed
				0920	CTD recovered
				0946 0947	Loch-ness recovered
					CTD deployed
				11049	
				0948 0958	Mini-ness deployed
				0948 0958 1006	CTD @ 200m Mini-ness recovered

i

				1008	C4 recovered
				1018	
		N 36°37.0'	W 10000 01	1035	
		11 50 57.0	W 17°30.3'	1037	XBT launched
				1040 1224	V/L moves up to 3000 kW
		N 36°59.4'	W 17°29.5'	1224	V/L coming on station V/L on station #57
				1230	Loch-ness deployed aft port
				1234	Sea-fails deployed aft starboard
				1255	Sea-fails recovered
				1256	Loch-ness recovered, V/L off station
		N 37º12.4'	W 17°29.3'	1400	XBT launched
		N 38º07.6'	W 17°30.2'	1820	XBT launched
		N 38°52.81	W 17°30.0'	2150	V/L slows for station
			W 17 50.0	2200 2201	V/L on station #58
				2201	Plankton net deployed
				2222	Plankton net recovered V/L moves off station
11/05/00	152				
11/06/98	152	N 40°32.8'	W 17°29.9'	0618	XBT launched
				0850	V/L slows for station
		N 32°25.6'	W 17º02.9'	0901	V/L on station
				0904	Plankton nets deployed
				0906	CTD deployed
				0909	Loch-ness deployed
				0910 0920	C4 deployed
				0920	CTD @ 200m
				0928	C4 and loch-ness recovered
				0952	CTD recovered Loch-ness deployed
				0956	C4 deployed
				1001	Plankton net recovered
				1007	C4 recovered
				1009	Loch-ness recovered
				1011	V/L moves off station, XBT launched
		N 41°19.0'	111 1 001 0 01	1014	V/L moves up to 2250 kW
		N 41-19.0	W 17°12.2°	1146	V/L on station #59
				1148	Loch-ness deployed port quarter
				1149	Sea-falls deployed starboard quarter
				1211 1212	Sea-falls recovered
		N 41°35.3'	W 16°56.5'	1400	Loch-ness recovered, off station @ 2250 kW
		N 42°17.3*	W 16°16.8'	1825	XBT launched XBT launched
10/06/00					
12/06/98	163	N 44°19.0'	W 14°23.5'	0614	XBT launched
				0820	V/L slows for station
		N 44°40.8'	W 14°00.6*	0828	V/L on station #60, depth 4240m
				0835	CTD deployed
				0840	Plankton nets deployed
				0910	CTD @ 1500m
				0920	C4 deployed
				0930 0945	C4 recovered
				0945	Piankton net recovered CTD recovered
		N 44°40.6'	W 14°00.7'	0955	XBT launched, off station
				1455	V/L coming on station
		N 45°29.5'	W 13º07.5'	1503	V/L on station #61
				1514	Sea-falls deployed aft starboard
		N/ 40000		1519	Sea-falls recovered, V/L off station
		N 45°59.1'	W 12°34.9'	1819	XBT launched
	·····	N 46°48.8'	<u>W 11°37.6'</u>	2314	XBT launched
13/06/98	164	N 47° 57.9'	W 10010 A1	0.00	
	101	N 47°59.3'	W 10°18.0' W 10°16.3'	0605	UOR deployed
			A IN 10'2.	0617	XBT launched
		N 48°22.4'	W 09°48.8'	0858	V/L slows to recover UOR
			1 07 10.0	0904 0935	UOR recovered
		N 48°27.0'	W 09°41.8'	0950	V/L slows for station
				0953	V/L on station #62 Plankton pat and CTD databased
				0955	Plankton net and CTD deployed C4 deployed
				1003	CTD @ 200m
				1026	Plankton net and CTD recovered
				1028	C4 recovered
		N 48°27.2'	W 09°41.4'	1044	XBT launched

ļ

		N 48°42.2*	W 08°42.3	1404	XBT launched
		N 48°43.1	W 08°37.4'	1430	V/L drfiting on station #63 in manual D.P.
				1448	Sea-falls deployed aft port
				1453	Sea-falls recovered
				1500	Sea-falls re-deployed aft port
				1555	Sea-fails recovered
				1700	V/L reducing speed for station #64
		N 48°47.0'	W 08º16.6'	1715	Sea-falis deployed
				1727	Sea-falls recovered
		N 48°52.3'	W 07°50.8'	1848	UOR deployed
		N 49°08.3'	W 06°49.5'	2253	UOR recovered
14/06/00					
4/06/98	165	N 49°50.2'	W 04°09.5'	0857	V/L on station #65, depth 79m
				0901	Plankton net deployed
				0903	CTD deployed
				0908	CTD @ 60m
				0932	CTD recovered
				0934	Plankton net recovered
				1006	C4 deployed
				1006 1016	C4 deployed C4 recovered
				1016	C4 recovered
		N 50°00.2'	W 03°28.0'	1016 1042	C4 recovered V/L moves off station
		N 50°00.2'	W 03°28.0'	1016 1042 1302	C4 recovered V/L moves off station V/L coming on station

)

)

Prepared by: Andrew R. Bowie, 01/07/98

•

Appendix A6-3 XBT deployment log

Cast	Date	Time	Lat, Long	Type	File No. OK	
1	26/5	15.43		T7	T-7\$54	OK
2	26/5	20.17	13 20.8'S, 06 11.3'E	T7	T -7\$ 55	OK
3	27/5	06.37	11 52.7'S, 04 26.4'E	T7	T-7\$56	OK
4	27/5	10.05	11 37.1'S, 04 08.3'E	T5	T-5\$57	1200
5	27/5	13.40	11 11.8'S, 03 37.7'E	T7	T-7\$58	OK
6	27/5	16.10	10 50.7'S, 03 14.1'E	T7	T-7\$59	OK
7	27/5	18.37	10 31.0'S, 02 50.7'E	T7	T-7\$60	OK
	27/5	23.17		T7		?
•	27/5	23.		T7		?
8	28/5	06.11	08 56.6'S, 00 58.2'E	T7	T-7\$6 3	OK
9	28/5	09.58	08 37.4'S, 00 35.9'E	T5	T -5\$6 4	OK
10	28/5	14.04	08 12.4'S, 00 00.0'	T7	T-7\$65	OK
11	28/5	18.29	07 42.2'S, 00 28.7'W	T7	T -7\$6 6	OK
11X	28/5	22.00	07 08.4'S, 01 07.5'W	T7	T-7\$67 -71	?
12	29/5	01.56	07 00.0'S, 01 17.3'W	17	T-7 \$ 72-73	OK
13	29/5	05 49	06 12.2'S, 02 12.8'W	T7	T-7\$74	OK
14	29/5		05 51.5'S, 02 37.7'W	T5	T -5\$ 75	200
15	29/5	14.01	05 21.7'S, 03 11.6'W	T7	T- 7\$7 6	OK
16	29/5	18.29	04 43.5'S, 03 11.6'W	T7	T-7\$77	OK
17	29/5	23.00	04 09.6'S, 04 35.0'W	T7	T-7\$78	OK
18	30/5	06.15	03 07.2'S, 05 48.0'W	T7	T-7\$79	OK
19	30/5	11.00	02 48.5'S, 06 10.5'W	T5	T-5\$80	OK
20	30/5	14.06	02 28.3'S, 06 34.6'W	T7	T-7\$81	OK
21	30/5	18.25	01 36.6'S, 07 06.5'W	T7	T-7\$82	OK
22	30/5	23.05		T7	T-7\$83 `	OK
23	31/5	03.15	00 13.6'S, 08 02.9'W	T5	T-5\$84	OK
24	31/5	03.25	a n	T5	T -5\$85	OK
25	31/5	03.35	4 p	T7	T -7\$8 6	OK
26	31/5	06.40	00 06.2'S, 08 34.8'W	T5	T-5\$87	OK
27	31/5	10.53	00 01.7'N, 08 51.0'W	T5	T-5\$88	700
28	31/5	23.00	01 40.7'N, 11 04.6'W	T5	T -5\$8 9	
29	1/6	06.10	02 42.2'N, 12 19.9'W	T7	T-7\$90	OK
30 31	1/6	14.00	03 04.4'N, 12 46.3'W	T5	T-5\$91	OK
32	1/6	14.00	03 24.7'N, 13 14.6'W	T7	T-7\$92	OK
32 33	1/6	18.10	03 56.6'N, 13 52.5'W	T7	T-7 \$ 93	OK
	1/6	23.25	04 36.3'N, 14 41.7'W	T7	T-7\$94	OK
34	2/6	06.10	05 28.7'N, 15 43.1'W	T7	T-7\$95	OK
35	2/6	11.	05 51.8'N, 16 04.9'W	T5	T-5\$96	OK
36	2/6	18.10	06 56.4'N, 17 06.1'W	T7	T-7\$97	OK
37 29	3/6	00.17	07 52.0'N, 17 58.4'W	T7	T-7\$98	OK
38 39	3/6	06.15	08 41.6'N, 18 46.6'W	T7	T-7\$99	OK
39 40	3/6	10.30	09 03.8'N, 19 07.3'W	T5	T-5\$	OK
40	3/6	14.00	09 28.3'N, 19 29.2'W	17	T-7\$	OK
41	3/7	18.05	10 01.1'N, 19 48.2'W	T7	T-7\$	OK

÷

42	4/6	06.15	12 20.0'N, 19 20.2'W	T7	T-7\$	ОК
43	4/6	10.48	12 47.8'N, 19 14.6'W	Т5	T-5\$	NIL
44	4/6	10.55	14 P	T7	T- 7\$	OK
45	4/6	11.53	12 59.9'N, 19 12.4'W	T7	T-7 \$	OK
46	4/6	13.00	13 12.3'N, 19 09.6'W	T7	T-7\$	OK
47	4/6	14.08	13 18.7'N, 19 08.6'W	T7	T-7\$	
48	4/6	18,10	14 01.2'N, 19 00.0'W	T7	T-7 \$ 10	OK OV
49	4/6	22.57	14 51.3'N, 19 17.8'W	T7	T-7\$10	OK
50	5/6	06.20	15 55.7'N, 19 58.4'W	T7	T-7\$12	OK
51	5/6	06.40	15 59.5'N, 19 58.6'W	T7	T-7\$12 T-7\$13	200m
52	5/6	10.39	16 22.7'N, 20 00.3'W	T5	T -5\$ 14	700m
53	5/6	14.00	16 49.1'N, 20 00.2'W	T7		OK
54	5/6	18.25	17 41.0'N, 19 59.9'W	T7	T-7\$15	OK
55	6/6	06.20	19 56.9'N, 20 00.1'W	17 T7	T-7 \$ 16	OK
56	6/6	10.35	20 24.3'N, 20 00.2'W	T5	T-7\$17	OK
57	6/6	14.00	20 54.2'N, 20 00.0'W	13 T7	T-5\$18	OK
58	6/6	16.05	21 16.3'N, 20 00.6'W		T-5 \$ 19	OK But T7
59	6/6	18.20	21 41.3'N, 20 00.4'W	T7	T-7 \$ 20	OK
60	7/6	06.10	23 58.4'N, 20 00.0'W	T7	T-7 \$ 21	OK
_61	7/6	10.0?	24 30.4'N, 20 00.1'W	T7 T6	T-7\$22	
<u>_</u>	7/6	14.00	25 09.5'N, 19 59.6'W	T5	T-5 \$ 23	OK
63	7/6	14.10	25 11.2'N, 19 59.7'W	T7	T-7\$24	X
64	7/6	18.35	26 02.7'N, 19 59.8'W	T7	T-7 \$ 25	OK
65	8/6	06.20	28 13.5'N, 19 59.9'W	T7	T-7 \$ 26	OK
66	8/6	10.55	28 41.1'N, 19 52.2'W	T7	T-7 \$ 27	OK
67	8/6	10.57	" »	T5	T-5 \$ 28	Х
68	8/6	14.05	-	T7	T-7\$29	OK
69	8/6	18.00	29 18.4'N, 19 24.2'W	T7	T -7\$ 30	OK
70	8/6	22.45	29 59.8'N, 18 52.8'W	T7	T-7 \$ 31	OK
71	9/6	06.10	30 50.1'N, 18 15.3'W	T7	T -7\$ 32	OK
72	9/6	14.00	32 07.9'N, 17 16.1'W	T7	T - 7 \$ 33	OK
73	9/6	14.00	32 43.2'N, 17 17.7'W	T7	T -7\$ 34	OK
74	10/6	06.20	33 29.1'N, 17 30.0'W	T 7	T-7 \$ 35	OK
75	10/6	10.37	36 03.6'N, 17 30.0'W	T7	T -7\$ 36	OK
76	10/6	14.00	36 36.8'N, 17 30.3'W	T5	T-5 \$ 37	500m
77	10/6	14.00	37 11.4'N, 17 29.3'W	T7	T-7 \$ 38	As T5
78	10/6	23.15	38 07.0'N, 17 30.1'W	T7	T-7 \$ 39	OK
79	11/6	25.15 06.15	39 03.6'N, 17 30.1'W	T7	T-7 \$ 40	500m
80	11/6	11.15	40 32.0'N, 17 29.9'W	T7	T-7 \$4 1	OK
<u>8</u>	11/6	14.00	41 04.8'N, 17 25.9'W	T7	T-7 \$4 2	OK
	11/6	14.00	41 34.9'N, 16 56.8'W	T7	T -7\$4 3	OK
83	12/6	00.02	42 16.7'N, 16 17.3'W	T7	T-7 \$4 4	OK
84	12/6		43 01.8'N, 15 33.2'W	T7	T-7 \$ 45	OK
85	12/6	06.15	44 18.3'N, 14 24.1'W	T7	T-7 \$4 6	OK
86	12/6	09.57	44 40.6'N, 14 00.6'W	T5	T5 -\$4 7	OK 1500m CTD
87		14.00	45 19.7'N, 13 18.1'W	T7	T-7 \$48	OK
88	12/6 12/6	18.15	45 58.5'N, 12 35.4'W	T7	T-7 \$ 49	OK
89		23.10	46 47.7'N, 11 38.9'W	T7	T-7 \$ 50	OK
90	13/6	06.15	47 58.7'N, 10 16.7'W	T7	T-7\$51	OK
90 91	13/6	10.42	48 26.9'N, 09 41.9'W	T 7	T-7 \$ 52	OK T7 on T5
21	13/6	14.00	48 42.1'N, 08 43.0'W	T7	T-7 \$ 53	OK

)

ł

}

ļ

Appendix A6-4 CTD water bottle depths, \mathbb{T} and S for each cast

CTD Cas	t Start Date	time	Beatb	T	Depth	Тетр	Sainity
АМТ6-01		13:51	1 2 3 4 5 6 7 8 9 10 11 11 12	13:58 13:59 14:01 14:05 14:07 14:08 14:10 14:11 14:13 14:14 14:16 14:16	120.7 100.7 80.7 60.6 41.1 30.6 30.9 21.2 20.6 11.0 10.6	9.32 9.62 9.81 10.18 10.97 10.98 11.84 11.83 13.08 14.31 15.69 15.74	37,723 34,753 34,772 34,814 34,883 34,885 34,912 34,923 34,953 34,972 34,987 34,987
АМТ6-02	16/5/98	08:15	1 2 3 4 5 6 7 8 9 10 11 11 2	08:34 08:39 08:42 08:43 08:45 08:45 08:51 08:51 08:54 08:56 08:56	120.7 80.8 40.3 20.8 21.2 16.3 11.3 8.5 8.4 5.5 3.6 3.6	7.92 9.87 11.78 15.13 16.19 16.23 16.18 16.29 16.10 15.82 15.75	34.585 34.779 35.017 35.017 35.047 35.054 35.049 35.057 35.049 35.057 35.049 35.057 35.049 35.057 35.049 35.026
AMT6-03	16/5/98	11.13	1 2 3 4 5 6 7 8 9 10 11 12	11.29 11:30 11:30 11:31 11:32 11:33 11:33 11:34 11:35 11:35 11:36 11:36	41.2 41.3 41.5 41.1 16.6 16.5 11.2 11.3 8.2 8.6 3.4 3.7	10.26 10.27 10.27 10.27 11.83 11.60 13.83 12.95 13.28 13.28 13.23 13.84 13.93	34.824 34.826 34.826 34.956 34.905 34.901 34.900 34.900 34.899 34.900 34.900 34.900
АМТ6-04	17/5/98	08:10	1 2 3 4 5 6 7 8 9 10 11 12	08:23 08:27 08:30 08:35 08:35 08:35 08:42 08:42 08:42 08:44 08:44 08:47 08:48	130.8 81.0 41.2 26.9 21.6 21.3 13.4 13.7 8.3 4.6 4.7 4.7	9.33 9.62 10.52 11.42 12.67 12.94 13.36 13.14 13.09 13.08	34.723 34.756 34.829 34.876 34.860 34.860 34.860 34.860 34.861 34.861
AMT6-05	17/5/98	11:15	1 2 3 4 5 6 7 8 9 10 11 12	11:31 11:32 11:33 11:33 11:34 11:35 11:35 11:35 11:36 11:37 11:38 11:38 11:38 11:38	16.4 16.5 16.3 8.6 8.7 8.7 8.8 4.5 4.4 4.4 4.4	13.81 13.92 13.92 14.30 14.30 14.31 14.32 14.61 14.67 14.71 14.71	34.904 34.909 34.910 34.909 34.909 34.909 34.909 34.909 34.909 34.911 34.913 34.913
AMT6-06	18/5/98	04:1 8	1 2 3 4 5	04:34 04:37 04:60 04:44 04:45	160.8 20.8 41.2 5.3 5.3	10.32 11.50 12.18 13.22 13.20	34.870 34.970 15.970 15.950 15.952
AMT6-07	18/5/98	68:35	1 2 3 4 5 6 7 7 8 9 10 11 12	09:02 09:03 09:03 09:13 09:14 09:14 09:14 09:15 09:17 09:18 09:18	251_5 161_5 20.6 46.2 30.6 20.9 18.3 14.2 8.1 5.0 4.7	9.04 11.33 13.54 14.23 15.02 15.02 15.47 15.70 15.67 15.78 16.15 15.94	34.799 34.939 35.827 34.894 34.897 34.866 34.882 34.878 34.878 34.877 34.938 34.938 34.9311
AMT6-08	18/5/98	11:28	1 2 3	11:59 12:00 12:01	17.4 9.3 5.2	14.92 14.95 15.04	34.999 34.989 34.987
AMT6-09	18/5/98	15:00	1 2 3 4 5	15:12 15:19 15:20 15:21 15:22	201.7 17.9 11.9 8.4 5.5	12.05 16.67 17.52 18.29 19.03	35.047 35.007 35.140 35.268 35.391

;

,

AMT6-10	21/5/98	80:30	1 2 3 4 5 6 7 7 8 9 10 11 12	08:19 08:24 08:24 08:37 08:38 08:30 08:34 08:36 08:37 08:39 08:40 08:41	111.6 61.7 37.0 27.0 18.8 13.0 8.7 9.3 4.6 5.1 4.3	9.63 10.13 11.71 11.81 11.86 13.06 13.05 13.31 13.33 13.33 13.33	34,758 34,811 34,908 34,910 34,907 34,874 34,835 34,835 34,836 34,836 34,836 34,836
АМТ6-11	21/5/98	11:49	l 2 3 4 5 6 7 8 9 10 11 12	11:57 11:57 12:01 12:07 12:07 12:10 12:11 12:13 12:14 12:14 12:18 12:19	101.0 101.2 61.6 31.2 31.3 21.6 21.4 13.4 13.4 13.2 8.8 5.9 5.8	9.68 9.67 10.48 11.80 11.74 13.38 13.26 13.79 13.83 13.93 13.97 13.97	34.770 34.854 34.946 34.946 34.902 34.914 34.840 34.844 34.844 34.844 34.844
AMT6-12	22/5/98	08:06	1 2 3 4 5 6 7 8 9 10 11 12	08:27 08:31 08:34 08:38 08:41 08:42 08:45 08:45 08:51 08:52 08:55 08:55	100.9 80.4 59.4 46.5 37.6 37.3 24.3 17.2 8.6 8.5 4.8 5.0	11.84 11.91 11.99 12.39 12.62 12.65 12.85 12.91 13.05 13.04 13.12 13.12	35.095 35.098 35.052 35.035 35.005 35.002 34.999 35.001 35.010 35.010 35.015
AMT6-13	22/5/98	12:09	 2 3 4 5 6	12:24 12:27 12:31 12:34 12:37 12:39	71.8 51.6 31.7 16.3 8.4 4.2	12.46 12.94 13.84 14.02 14.17 14.29	35.079 35.044 35.036 35.040 35.039 35.039
AMT6-14	23/5/98	04:15	1 2 3 4	04:31 04:34 04:38 04:40	41.0 21.5 8.7 4.2	16.74 17.87 17.91 17.91	35.278 35.275 35.283 35.282
AMT6-15	23/5/98	10:20	 2 3 4 5 6 7 8 9 10 11 11 12	10:35 10:39 10:43 10:43 10:46 10.49 10:52 10:55 10:58 10:58 10:59 11:01	201.4 101.9 61.6 61.5 41.7 36.6 20.8 16.1 8.8 8.4 3.8 3.8	11.58 14.08 16.03 16.02 16.49 16.76 16.76 16.97 17.02 17.10 17.12 17.12 17.13	35.065 35.330 35.309 35.310 35.297 35.297 35.291 35.293 35.293 35.293 35.293 35.293
AMT6-16	23/5/98	13:39	1 2 3 4 5 6 7	13:49 13:54 13:57 14:00 14:01 14:03 14:05	202.2 41.5 26.4 16.6 16.3 8.5 3.7	11.42 14.42 16.63 17.52 17.52 17.74 17.63	35.034 35.278 35.320 35.340 35.340 35.342 35.341
AMT6-17	24/5/98	08:22	1 2 3 4 5 6 7	08:39 08:43 08:45 08:46 08:46 08:48 08:48 08:49	176.0 142.4 101.7 101.3 101.4 81.6 61.7	13.35 13.74 14.40 14.40 14.40 14.87 15.42	35.317 35.364 35.437 35.438 35.438 35.438 35.472 35.487
AMT6-18 AMT6-19	24/5/98	09.16	1 2 3 4 5 6 7 8 9 10 11 12	09:23 09:26 09:29 09:29 09:30 09:30 09:32 09:35 09:36 09:37 09:38 09:40	55.7 46.4 46.2 31.2 31.0 31.4 21.2 16.4 16.3 12.1 12.6 8.0	15.74 15.78 15.78 16.20 16.20 16.23 16.31 16.45 16.25 16.30 16.47	35.504 35.506 35.489 35.489 35.489 35.488 35.493 35.493 35.498 35.493 35.490 35.493 35.493 35.500
618110-LY	24/5/98	11:54	1 2 3 4 5 6 7	12:02 12:05 12:08 12:08 12:09 12:11 12:14	101.0 31.9 16.9 16.8 8.1 4.8	14.43 15.18 15.54 15.52 15.50 15.61 15.96	35.398 35.388 35.397 35.397 35.396 35.401 35.400

)

20

i

AMT6-21	25/5/98	11:42	8 6 2	11:56 11.58 11:59	31.5 18.8 8.5	18.49 18.77 18.87	35.708 35.703 35.703
AMT6-22	26/5/98	08:40	12 11 10 8 7 9 3 6 2 5 1 4	08:52 03:55 03:59 09:02 09:06 09:06 09:09 09:11 09:14 09:16 09:17 09:18	201.8 142.0 81.6 64.4 51.8 37.4 26.9 14.1 14.3 9.6 9.4	11.65 12.81 14.41 15.37 17.48 17.58 22.09 22.13 22.16 22.15 22.15	35.117 35.246 35.442 35.542 35.737 35.747 36.043 36.046 36.046 36.046 36.046 36.046
АМТ6-23	27/5/98	08:36	12 11 10 8 7 9 3 6 2 4 1	08:38 08:39 08:41 08:41 08:42 03:43 08:43 08:43 08:45 08:45 08:46 08:46	8.1 7.9 1.5 1.6 1.4 1.4 1.0 1.1 0.8 1.3	25.18 25.18 25.18 25.18 25.18 25.18 25.18 25.18 25.18 25.18 25.18 25.18	36,709 36,709 36,709 36,708 36,708 36,709 36,709 36,709 36,709 36,709 36,709
AMT6-24	27/5/98	09:08	12 11 10 8 9 7 6 5 2 3 4 1	09:20 09:23 09:27 09:30 09:34 09:34 09:35 09:39 09:39 09:39 09:42 09:45 09:45	201.9 141.7 102.1 86.3 76.6 76.3 66.9 53.6 53.6 53.6 33.6 21.6 21.6	11.69 12.56 13.85 14.71 15.59 15.55 17.45 20.27 20.40 25.16 25.17 25.17	35,122 35,224 35,382 35,594 35,594 35,594 35,594 35,830 36,113 36,126 36,704 36,707 36,707
AMT6-25	28/5/98	08.33	12 11 10 8 7 9 3 6 2 1	08:37 08:38 08:39 08:41 08:42 08:42 08:43 08:44 08:45 08:45 08:46	8.3 8.9 8.4 0.6 1.3 1.3 1.5 1.2 1.1 0.7	26.79 26.79 26.79 26.79 26.79 26.79 26.78 26.78 26.78 26.78 26.78	36.145 36.247 36.247 36.247 36.247 36.247 36.245 36.144 36.142 36.143
AMT6-26	28/5/98	09:13	12 11 10 9 8 5 2 7 6 3 4 1	09:23 09:28 09:31 09:34 09:35 09:37 09:38 09:40 09:43 09:43 09:43 09:43 09:43	201.0 131.5 81.9 66.4 66.9 48.4 49.2 44.5 36.2 29.3 18.0 18.3	12.13 13.6 2 15.56 16.13 16.10 20.50 20.94 23.94 26.73 26.84 26.80 26.80	35.166 35.346 35.542 35.590 35.588 35.834 35.927 36.280 36.375 36.255 36.145 36.146
AMT6-27	29/5/98	08:42	12 11 10 9 8 5 7 6 3 4 1	03: 46 03: 47 03: 49 03: 50 03: 50 03: 51 03: 52 03: 52 03: 52 03: 53 08: 53	7.7 7.9 1.3 1.6 1.2 1.3 1.9 1.8 1.3 1.3 1.2	26.67 26.67 26.67 26.68 26.68 26.68 26.68 26.68 26.68 26.68 26.68	35.125 35.126 35.126 35.122 35.123 35.123 35.123 35.123 35.122 35.122 35.122 35.122
AMT6-28	29/5/98	09:19	12 11 10 9 8 5 2 7 6 3 4 1	09:32 09:35 09:40 09:42 09:43 09:45 09:46 09:46 09:46 09:50 09:50 09:50 09:56 09:57	199.2 120.9 58.1 50.7 51.9 48.3 47.8 40.7 34.0 22.8 13.4 13.4	12.47 14.59 17.94 18.53 19.22 19.43 21.16 23.99 26.53 26.71 26.70	35.209 35.451 35.751 35.724 35.722 35.759 35.767 35.826 36.083 35.187 35.115 35.115
AMT6-29	30/5/98	08:35	12 11 10 9 8 5 7 6 6 3	08:37 03:38 03:40 08:41 03:41 03:41 03:42 08:42 08:42 08:43 08:44	8.8 8.9 9.0 1.8 1.4 1.9 1.1 1.8 0.6 1.7	27.02 27.02 27.01 27.02 27.02 27.02 27.02 27.02 27.02 27.02 27.02 27.02	35.166 35.166 35.167 35.166 35.166 35.166 35.166 35.166 35.166 35.167

АМТ6-30	30/5/98			4 08: 1 08:		27.02 27.01	35.167 35.168
Ab(16-3)		09:14		12 09:2 11 09:2 10 09:3 9 09:4 8 09:4 5 09:4 7 09:4 6 09:5 3 09:5 1 09:5	122.2 128 122.2 128 120.2 121 <td>13.43 14.96 15.95 17.36 19.13 19.10 20.64 21.19 21.31 27.01 27.01</td> <td>35.326 35.526 35.589 35.708 35.710 35.937 36.026 36.040 36.044 35.168 35.174</td>	13.43 14.96 15.95 17.36 19.13 19.10 20.64 21.19 21.31 27.01 27.01	35.326 35.526 35.589 35.708 35.710 35.937 36.026 36.040 36.044 35.168 35.174
	31/5/98	08:17		12 08:2 11 08:2 10 08:2 9 08:2 5 08:2 7 08:2 3 08:2 1 08:2 1 08:2	1 8.0 1 7.9 2 1.1 3 1.2 4 1.1 4 0.4 5 0.6 5 1.0 5 1.0	25.52 25.51 25.52 25.53 25.53 25.53 25.53 25.53 25.53 25.53 25.53 25.53 25.51 25.50	35.563 35.564 35.564 35.563 35.560 35.560 35.561 35.561 35.562 35.563 35.564 35.565
AMT6-33	01/6/98	09:11	1	12 09:14 11 09:14 10 09:13 10 09:16 8 09:17 5 09:18 7 09:18 6 09:19 3 09:19 4 09:20 1 09:21	8.7 8.5 1.0 1.0 1.1 1.5 1.4 1.0 1.3	28.98 28.98 28.97 28.97 28.97 28.97 28.97 28.97 28.97 28.97 28.97 28.97 28.97	34.743 34.743 34.743 34.743 34.742 34.742 34.742 34.743 34.743 34.744 34.744
АМТ6-34	01/6/98	09:46	1		201.3 141.6 91.4 76.4 61.9 61.6 57.0 51.5 33.3 19.7 19.7	14.19 14.90 15.64 17.08 17.09 18.36 18.48 19.61 23.73 28.89 28.98 28.99	35,423 35,520 35,689 35,689 35,689 35,680 35,680 35,787 34,945 34,747 34,748
АМТ6-35	02/6/98	09:11	1: 1 10 5 8	l 09:13 0 09:14 0 09:15 3 09:15	8.3 8.4 8.4 1.5 1.7 1.5	28.94 28.93 28.92 28.92 28.92 28.92 28.92 28.92	34.723 34.701 34.695 34.690 34.687 34.687 34.686
AMT6-36	02/6/98	09:35	12 11 10 9 8 8 5 2 7 7 6 3 4 1	09:50 09:56 09:59 10:00 10:03 10:04 10:06 10:09 10:11	201.1 121.1 81.0 61.0 60.7 50.2 50.1 41.3 35.3 27.3 15.0 15.1	13.72 14.98 16.15 17.71 17.52 18.99 19.67 23.05 23.97 26.82 28.88 28.88	35.371 35.515 35.620 35.688 35.688 35.789 35.815 35.963 36.000 36.027 35.063 35.097
AMT6-37	03/6/98	09:06	12 11 10 3 9 8 8 7 7 6 5 4 1	09:08 09:09 09:10 09:11 09:11 09:12 09:13 09:14 09:15 09:16 09:17	8.3 8.2 8.3 1.5 1.5 1.7 15.3 15.2 1.6 1.4 1.1	27.32 27.32 27.31 27.31 27.31 27.31 27.32 27.32 27.32 27.32 27.32 27.31 27.32	35.992 35.992 35.992 35.991 35.991 35.991 35.993 35.993 35.993 35.993 35.993 35.993
AMT6-38	03/6/98	09:44	12 11 10 3 9 8 7 6 5 2 4 1	09:55 09:59 10:06 10:09 10:11 10:13 10:15 10:19 10:20 10:22 10:24	201.2 121.5 81.3 61.4 51.5 51.2 45.4 40.3 41.0 40.7 34.1 23.6	13.44 14.62 15.14 15.70 16.10 17.95 18.48 18.79 20.03 22.04 27.31	35.347 35.463 35.511 35.554 35.565 35.574 35.696 35.737 35.794 35.864 35.884 35.987
AMT6-39	04/6/98	09:08	12 11 10	09:10 09:10 09:11	15.8 15.7 15.5	25.35 25.03 25.34	35.943 35.930 35.944

	3 9 8 5 4 1	09:12 09:13 09:13 09:14 09:15 09:16	9.2 9.0 9.2 1.5 1.6 1.7	25.37 25.37 25.37 25.37 25.37 25.37 25.37	35.945 35.946 35.946 35.946 35.945 35.945
AMT6-40 04/6/98 09:52	12 11 10 3 9 8 7 6 5 2 4 1	10:01 10:06 10:12 10:15 10:16 10:17 10:20 10:24 10:24 10:25 10:26 10:28	201.1 101.8 61.8 51.5 51.9 41.3 36.3 28.7 28.9 28.9 27.9 23.9	12.35 13.94 14.89 15.30 15.30 15.87 16.20 18.46 18.69 22.00 22.67 24.92	35.277 35.406 35.508 35.540 35.541 35.603 35.634 35.759 35.762 35.816 35.850 35.923
AMT6-41 05/06/98 09:15 AMT6-42 05/6/98 00:53	12 11 10 3 9 8 5 2 4 1	09:19 09:20 09:21 09:22 09:23 09:23 09:24 09:25 09:25 09:26	15.3 15.1 15.2 9.5 9.4 9.5 1.4 0.5 1.0 0.9	22,64 22,64 22,63 22,64 22,63 22,63 22,64 22,63 22,64 22,63	36.002 36.001 36.002 36.001 36.002 36.000 36.000 35.996 35.993
	12 11 10 3 9 8 7 5 2 6 4 1	10:05 10:09 10:15 10:18 10:21 10:22 10:23 10:24 10:25 10:26 10:28 10:28	201.6 121.9 61.9 49.9 42.1 42.2 37.2 37.3 37.1 32.0 27.8 18.9	12.61 14.08 16.90 21.17 22.42 22.39 22.42 22.39 22.42 22.44 22.44 22.44 22.46 22.61	35.429 35.623 35.903 36.010 36.066 36.066 36.065 36.065 36.065 36.066 36.066 36.066 36.064 36.011
	12 0 3 9 8 7 6 4 1 5 2	09:24 09:27 09:36 09:39 09:42 09:45 09:47 09:48 09:50 09:53 09:55 09:55 09:56	201.5 162.2 81.8 51.9 31.9 21.8 21.8 17.9 14.0 8.7 8.8	14.47 14.03 16.45 18.26 19.37 19.77 20.46 20.63 20.65 20.64 20.81 20.81	35,843 35,602 36,325 36,325 36,506 36,044 35,899 35,872 35,867 35,868 35,858 35,858
	12 11 10 3 9 8 7 6 4 5 2 1	09:20 09:23 09:26 09:30 09:30 09:32 09:34 09:37 09:40 09:43 09:44 09:44	202.2 122.3 92.5 82.2 81.9 77.2 67.0 55.4 35.3 222 22.1 9.5	16.81 19.13 20.86 21.11 21.16 21.27 21.59 21.79 22.11 22.25 22.25 22.46	36.390 36.803 37.076 37.122 37.129 37.079 37.119 37.154 37.194 37.017 37.017 36.909
AMT6-45 08/6/98 09:06	12 11 10 3 9 8 7 6 5 2 4 1	09:16 09:22 09:28 09:31 09:33 09:34 09:37 09:40 09:43 09:44 09:46 09:49	202.6 182.5 167.6 157.9 148.4 148.8 97.9 64.4 38.3 38.3 38.3 22.7 9.3	16.78 17.18 17.54 18.24 18.81 19.52 19.65 20.77 20.77 21.29 21.29	36.371 36.429 36.473 36.614 36.705 36.712 36.822 36.774 36.886 36.896 36.897 36.927
AMT6-46 09/698 08:04	12 11 10 3 9 8 7 6 4 5 2 1	03:16 03:18 03:20 03:21 03:22 03:23 03:24 03:25 03:26 03:27 03:27 03:28	81.3 56.6 46.1 31.9 32.0	16.04 17.70 18.53 18.57 18.58 18.60 18.71 18.78 18.87 19.27 19.37 19.37 20.23	36.216 36.489 36.673 36.682 36.685 36.685 36.685 36.685 36.638 36.641 36.641 36.661
AMT6-46 10/6/98 09:06	1 5 7 4 9	09:06 09:07 09:07 09:09 09:10	1.9 1.8 2.0 22.2	18.84 18.84 18.84 18.14 18.15	36.312 36.312 36.312 36.312 36.352 36.352

			11	09:11	22.0	10.14	
			2	09:14		18.15	36.351
					9.1	18.84	36.312
			6	09:14	9.1	18.83	36.312
			8	09:15	8.7	18.84	
			3	09:16			36.312
					2.0	18.84	36.312
			10	09:17	2.3	18.84	36.311
			12	09:18	1.5		
						18.84	36.311
AMT6-47	10/6/98	09-47					
		-7	12	09:57	202.3	14.03	35.925
			11	10:01	142.3	15.10	
			10	10:07			36.053
					102.2	16.18	36,188
			9	10:09	92.2	16.47	36.225
			6	10:14	91.0	16.59	36.242
			7	10:14			
					90.9	16.54	36.234
			8	10:15	91.1	16.54	36.234
			5	10:17	72.1	17.12	36.347
			3	10:20			
			4		57.1	17.21	36.325
				10:21	57.0	17.22	36.326
			2	10:22	47.0	17.51	36.332
			ı	10:26	37.3		
			-	10.20	37.3	18.01	36.345
AMT6-49	11/6/98	09:06					
			12	09:17	202.4	13.21	35.78
			11	09:22	122.3		
			io			13.91	35.B64
				09:28	82.0	14.42	35,918
			9	09:31	61.9	14.79	35.938
			8	09:33	56.9		
			7			14.84	35.942
				09:37	47.9	15.05	35.959
			6	09:38	47.9	15.05	35.960
			5	09:40	38.2		
			4			15.40	35.961
				09:44	26.3	16.60	35.896
			3	09:45	14.3	17.17	35.864
			2	09.46			
			ī		14.6	17.17	35.865
			L	09:48	9.6	17.19	35.865
AMT6-50	12/4/00	09.57					
104110-00	12/0/98	08:30	12	09:11	1508.0	4.83	
			11	00.10			35.076
				09:19	1249.1	6.93	35.360
			10	09:24	999.0	8.81	35.561
			9	09:28	749.2		
			8			9.52	35.435
				09:33	500.1	10.69	35.472
			7	09:38	248.2	11.88	35.632
			6	09:41	101.1		
			5			12.58	35.727
				09:42	50.1	13.21	35.784
			4	09:43	40.4	13.64	35.726
			3	09:44	35.0	14.13	
			2	09:45			35.756
					21.3	16.28	35.892
			1	09:46	8.7	16.29	35.894
ALCTC AL	12/200	~~ ~~					
AMT6-51	13/0/58	UV:03	12	10:04	303.4	11.00	.
					203.5	LI.48	35.604
			11	10:09	103.4	11.64	35,607
			10	10:10	83.3	11.81	35.611
			9	10:11	63.0	12.19	
			8				35.614
				10:13	52.9	12.81	35.604
			7	10:15	32.3	13.40	35.583
			6	10:17	32.6	13.40	
			5				35.585
				10:19	22.7	13.48	35.578
			4 `	10:21	15.5	13.50	35.579
			3	10:23	9.9	13.50	
			2	10:24			35.579
					10.0	13.48	35.578
			1	10:26	6.7	13.49	35.578
A) (TC 52							
AMT6-52	4/0/98	79:04	12	09:12	41.6		
					61.5	12.18	35.310
			11	09:14	42.0	12.20	35.310
			10	09:17	31.8	12.23	
			9	09:18			35.309
					31.8	12.24	35.309
			8	09:20	21.6	13.16	35.315
			7	09:21	21.5	13.17	
			6	09:23			35.315
					14.6	13.18	35.315
			5	09:24	14.7	13.18	35.316
			4	09:26	8.5	13.22	
			3	09:26			35.316
					8.6	13.21	35.316
			2	09:28	2.8	13.24	35.316
			09:29	2.7	13.24	35.315	
					12.44	JJ. JI J	

Appendix A6-5 CTD SALINITIES

date	day	<u>station</u>	depth (m)	sample no	salinity
15 May	135	601	10	1.1	35.079
16 May	136	602	7	1.2	35.226
17 May	137	604	7	1.3	35.023
		605	7	1.4	35.060
18 May	138	606	4	1.5	35.153
		607	4	1.6	35.100
	1		7	1.7	35.061
	1	608	4	1.8	35.249
		609	10	1.9	35.228
21 May	141	611	7	1.10	34.985
		612	7	1.11	35.029
22 May	142	613	7	1.12	35.114
		614	7	1.13	35.158
23 May	143	615	7	1.14	35.397
		616	7	1.15	35.430
		617	7	1.16	35.455
24 May	144	618	7	1.17	35.995
		619	7	1.18	35.620
·		620	7	1.19	35.553
25 May	145	622	7	1.20	35.810
		623	7	1.21	35.842
26 May	146	624	7	1.22	36.169
27 May	147	626	7	1.23	36.861
			52	1.24	36.181
28 May	148	628	7	2.1	36.216
			47	2.2	35.967
29 May	149	630	7	2.3	35.207
<u> </u>			47	2.4	35.885
30 May	150	631	7	2.5	35.271
21.24	+		40	2.6	36.021
31 May	151	633	7	2.7	35.683
l June	152	635	7	2.8	34.834
			60	2.9	35.782
2 June	153	637	7	2.11	34.780
2 1			51	2.12	34.812
3 June	154	639	7	2.13	36.079
<u> </u>	1.50		40	-	35.784
4 June	155	641	7		36.012
	L		16	I	35.833

<u>date</u>	day	station	depth (m)	sample no	salinity
5 June	156	643	7	2.17	36.081
			35	2.18	36.118
6 June	157	646	7	2.19	35.967
7 June	158	649	7	2.20	36.919
			80	2.21	37.136
8 June	159	652	7	2.22	37.001
·			46	2.23	36.800
9 June	160	654	115	3.1	36.630
10 June	161 656		89	3.3	36.283
11 June	162	658	7	3.2	35.916
			45	3.4	36.042
12 June	163	660	7	3.5	35.928
			35	3.6	35.806
13 June	164	664	7	3.7	35.675
			20	3.8	35.612
4 June	165	665	7	3.9	35.383

dap/dox/amt6/a6_salt

)

ł

à

ŧ

Т

Appendix A6-6 SeaOPS log.

AMT-6 SeaOPS Log for the Sequential Day of the Year (SDY) with all times reported in GMT (SDY 135 is 15 May and SDY 152 is 1 June).

Cast No. SDV	Position Darks Data Radiometers Measurement Down Cast CCD Up Cast Depth
1 135	18.0158-33.6324 1107 1107 OCP-004 (CL-100 OCP 068 OCI 048, DL 1
3 135	
4 135	
5 135	
6 136	17.8765-32.3394 0741 0741 0CP-004 0CI-040 0CR-035 0CI-048 Ed Lu Eu 1232 1237 1240 1244 50 Clear. 17.8767-32.3399 0CP-004 0CI-040 0CR-035 0CI-048 Ed Lu Eu 0818 0822 0823 0824 0829 50 Clear.
7 136	17.8767 -32.3399 OCP-004 OCI-040 OCR-035 OCI-048 Ed Lu Eu 0818 0822 0823 0824 0829 50 Clear. 17.8661 -32 0579 1108 1108 000 004 0CR-035 OCI-048 Ed Lu Eu 0831 0835 0837 0841 50 Clear
8 136	10001-52.0077 1108 1108 OCT-004 OCT-040 OCR-035 OCT-049 Ed. Th. Th. 1101 1102 1101
9 136	17.8667-32.0580 OCP-004 OCI-040 OCR-035 OCI-048 Ed Lu Eu 1132 1137 1126 1131 50 Clear, High haze. 16.4446-29 5272 0741 0741 OCB 004 OOL 040 OCR-035 OCI-048 Ed Lu Eu 1132 1137 1142 50 Clear, High haze.
10 137	16.4446-29.5272 0741 0741 OCP-004 OCI-040 OCB-035 OCI 048 E4 U 1132 1137 1137 1137 1142 50 Clear, High haze.
11 137	16.2495 -29.3641 1100 OCP-004 OCI-040 OCR-035 OCI-048 Ed Lu Eu 1910 0910 0910 0920 50 Clear, High cirrus. 16.2511 -29.3645 OCP-004 OCI-040 OCR-035 OCI-048 Ed Lu Eu 1118 1123 1128 50 Cloudy, Heavy cirrus.
12 137	16.2511 -29.3645 OCP-004 OCI-040 OCR-035 OCI-048 Ed Lu Eu 1118 1122 1126 1123 1128 50 Cloudy, Heavy cirrus. 14.2456 -26.6976 0802 0802 0802 060 004 000 000 000 000 000 000 000 000
13 138	100 100 100 100 100 100 100 100 100 100
14 138	14.2441 -26.6973 OCP-004 OCI-040 OCR-035 OCI-048 Ed Lu Eu 0852 0856 0856 0856 0856 0856 0856 0856 0856
15 138	
10 138	
12 138	13.9559 -26.7094 1115 OCP-004 OCI-040 OCR-035 OCI-048 Ed Lu Eu 0913 0917 0918 0922 50 Thin high cirrus. 15.2091 -29.5129 0830 0830 OCP-004 OCI-040 OCR-035 OCI-048 Ed Lu Eu 1132 1138 1141 1138 1144 75 Clear down, High cirrus up.
10 141	15.2091 -29.5129 0830 0830 OCP-004 OCI-040 OCR-035 OCI-048 Ed Lu Eu 1132 1138 1141 1138 1144 75 Clear down, High cirrus up. 16.1879 -28.9295 0730 0730 OCP-004 OCI-040 OCR-035 OCI-048 Ed Lu Eu 0904 0911 0913 0912 0918 75 Clear.
17 141	
77 141	15.8032 -28.5431 1047 OCP-004 OCI-040 OCR-035 OCI-048 Ed Lu Eu 10820 0824 0815 0825 0829 50 Partly cloudy w/high cirrus. 15.8012 -28.5437 OCP-004 OCI-040 OCR-035 OCI-048 Ed Lu Eu 1149 1153 1154 1159 50 Clear.
23 142	
24 142	
25 143	14.1058-24.2753 1157 OCP-004 OCI-040 OCR-035 OCI-048 Ed Lu Eu 0812 0819 0821 0819 0825 75 Clear, thin high cirrus. 12.4044-21.6534 0743 0743 0CP-004 OCI-040 OCR-035 OCI-048 Ed Lu Eu 1210 1215 1244 1216 1221 60 Cloudy, high cirrus.
26 143	12.4044 -21.6534 0743 0743 0743 0CP-004 OCI-040 OCR-037 OCI-048 Ed Lu Eu 1210 1215 1244 1216 1221 60 Cloudy, high cirrus. 12.4039 -21.6526 OCP-004 OCI-040 OCR-037 OCI-048 Ed Lu Eu 0910 0914 0914 0919 50 Clear, high light haze.
	12.4035-21.6519 OCL 001 OCL 001 OCL 007 OCL 048 Ed Lu Eu 0924 0931 0925 0931 0937 78 Clear, high light baze
28 143	12.4042 -21.6520 OCP_004_OCI 040_OCD_032_0CI 040_OCD_032_0CI 040_0933_0954_1001_80_Clear, high light haze
29 143	12.4042 -21.6529 OCP-004 OCI 040 COD 037 OCI 040 OCI 040 COD 037 OCI 040 OCI 0
30 143	12.1015 -21.3989 1319 OCP-004 OCL-040 OCP 037 OCL-040 A La La La La 1036 1043 1043 1050 75 Clear, high light haze,
31 143	12.1011-21.3984 OCP-004 OCL 040 OCP 027 OCI 045 Et al El 1340 1344 1349 50 Clear.
32 144	11.9995 -18.9960 0737 0737 0728-004 001 040 002 017 018 121 121 1349 1354 1354 1354 1358 50 Clear.
33 145	11.3314-17.6599 0737 0737 OCP-004 OCI-040 OCR-037 OCI-048 Ed Lu Eu 0825 0834 0841 0840 0850 100 Clear. 11.3315-17.6601 OCP-004 OCI-040 OCR-037 OCI-048 Ed Lu Eu 0819 0826 0827 0835 85 Clear, high haze.
34 145	11.3315 -17.6601 OCP-004 OCI-040 OCR-037 OCI-048 Ed Lu Eu 0819 0826 0827 0835 85 Clear, high haze.
35 145	11.0733 -17.4396 OCP-004 OCL-040 OCP 037 OCL 040 E1 Li Ei 0835 0842 0901 0843 0849 75 Clear, high haze.
36 146	7.8609-14.7433 0710 0710 OCP-004 OCI-040 OCP-037 OCI 048 Ed. Ed. Ed. 1743 1150 1214 1151 1157 75 Clear, light haze.
	7.8604 -14.7433 OCP-004 OCL040 OCP 027 COL 040 TH FU 0841 0847 0848 0854 75 Clear.
38 147	4.1392 -11.6210 0832 0832 OCP-004 OCI-040 OCR-037 OCI-048 Ed Lu Eu 0855 0902 0930 0902 0909 75 Clear. -2.6308 -5.8635 0835 0835 OCP-004 OCI-040 OCR-037 OCI-048 Ed Lu Eu 0905 0913 0959 0915 0925 100 Cloudy.
39 149 -	-2.6308 -5.8635 0835 0835 0CP-004 OCI-040 OCR-037 OCI-048 Ed Lu Eu 0905 0913 0959 0915 0925 100 Cloudy.
[up].	Character in the La Unit of the Unit of th
40 130 -	-6.1659 -2.8111 0823 0823 OCP-009 OCI-100 OCR-035 Ed Lu 0838 0845 0848 0846 0901 75 Clear.

1

,

Appendix A6-7 SeaFALLS log.

.

÷

AMT-6 SeaFALLS Log for the Sequential Day of the Year (SDY) with all times reported in GMT (SDY 135 is 15 May and SDY 152 is 1 June).

	Cast	Position	Darks Down Cast	C	CCD Depth
,	No. SDY	Congitude Latitude	te Ea Ew Lu/Ed Beg	. End	Pic. [m] Comments
	2 135	18.0121 -33.6327	1108 1108 1108 1230	1231	
	3 135	18.0120 -33.0320	1232 1233 1239 1239	55	Clear.
	4 135	18.0115 -33.6326	1239 1239	40	Clear.
	5 135	18.0111 -33.6329		38	Clear.
	6 136			38	Clear.
	7 136	17.8735 -32.3447	0809 0809 0809 0911		75 Clear.
	8 136	17.8732 -32.3455			
	9 136		0920 0921 1146 1146 1152 11	80	Clear.
		17.8667 -32.0600	1140 1140 1152 11	.34 75	75 Clear, High haze.
	11 126	17 9662 23 33 0700	1000 1001		Clear, High haze.
4	1 137	16 4479 -29 5251	1200 1201 0741 0741 0741 0854 0858 0859 0900 0901 0910 0912 0913 0914 0916 0918 0920 0921 1100 1100 1118 11 0815 0815 0815 0835	13	Clear, High haze.
1	13 137	16 4471 -29 5255	0858 0850	16000	Close
	14 137	16.4467 -29 5258	0000 0001	43	Clear.
	15 137	16 4450 -29 5269		75	Clear, High cirrus.
	16 137	16 4447 -29 5271	0910 0912	75	Clear, High cirrus.
	17 137	16.4445 -29 5273	0915 0914	75	Clear, High cirrus.
	18 137	16.4443 -29 5274	0920 0921	75	Clear, High cirrus.
	19 137	16.2484 -29 3640		10 11	26 75 Cloudy, Heavy cirrus.
	20 138	14.2412 -26 6978	0815 0815 0815 0931	N033	75 Thin high cirrus.
	21 138	14.2391 -26.6983			High cirrus thinned a lot.
	22 138	13.9552 -26.7096	115 115 1140 11	42 11	41 100 High cirrus moving through
	23 139	15 2066 -29 5118	<u>- NY27 NY27 NY27 NO27 NAAO</u>	1930 I	1 100 Fight Chrus moving through
	24 139	15.2060 -29.5113	0932 0933		Clear.
	25 139	15.2049 -29.5107 15.2044 -29.5105 15.2031 -29.5099	0936 0938		Clear.
	26 139	15.2044 - 29.5105	0941 0943		Clear.
	27 139	15.2031 -29.5099	0945 0947		Clear.
	28 141	15.8032 -28.5430	0730 1047 1047 1153	1154	75 Clear.
	29 141	15.8030 -28.5431	1156 1158		Clear.
	30 141	15.8026 -28.5434			Clear.
	31 141	15.8019 -28.5436	1206 1207		Clear.
(141	15.8012 -28.5436	1209 1211	75	Clear.
	33 141	15.8004 -28.5438	1213 1214	75	Clear.
	34 141	15.7996 -28.5438	1216 1218	75	Clear.
	35 141	15.7970 -28.5447	1227 1228		Clear.
		15.7958 -28.5455	1231 1232		Clear.
	37 141	15.7944 -28.5466	1235 1237	75	Clear.
	38 142	14.3243 -24.7504	0724 0724 0724 0817	0819 (9821 100 Clear, thin high cirrus.
	39 142	14.3237 -24.7500	0821 0823	100	Clear, thin high cirrus.
	40 142	14.3233 -24.7499	0826 0827	100	
	41 142	14.3226 -24.7496	0830 0832	100	Clear, thin high cirrus.
	42 142	14.3218 -24.7493	0835 0837	100	Clear, thin high cirrus.
	43 142	14.3212 -24.7487	0840 0842	100	Clear, thin high cirrus.
	44 142	14.3211 -24.7485	0844 0846	100	Clear, thin high cirrus.
	45 142	14.3204 -24.7479	0852 0853	100	Clear, thin high cirrus.
	46 142	14.3189 -24.7470	0857 0859	100	Clear, thin high cirrus.
	47 142	14.3175 -24.7460	0902 0904	100	Clear, thin high cirrus.
	48 142	14.3152 -24.7446	0909 0911	100	Clear, thin high cirrus.
	49 142	14.3133 -24.7438	0915 0917	80	Clear, thin high cirrus.
	50 142	14.3121 -24.7434	0920 0921	50	Clear, thin high cirrus.
	51 142	14.3115 -24.7431	0922 0924	60	Clear, thin high cirrus.
	52 142	14.3106 -24.7427	0926 0927	60	Clear, thin high cirrus.

57 140		
53 142		1200 1200 1213 1215 75 Cloudy, high cirrus.
54 142		1220 1221 75 Cloudy, high cirrus.
55 142		1223 1224 75 Cloudy, high cirrus.
56 142		1228 1230 75 Cloudy, high cirrus.
57 142	14.1046 -24.2757	1233 1234 75 Cloudy, high cirrus.
58 142	14.1041 -24.2760	
59 142		
60 142		
61 142		1248 1249 75 Thin high cirrus.
62 142		1252 1254 75 Thin high cirrus.
63 142		1257 1258 75 Thin high cirrus.
		1300 1301 75 Thin high cirrus.
64 142		1305 1306 75 Thicker high cirrus
65 143		0743 1215 1215 1221 1222 75 Clear.
66 143	12.2091 -21.5262	1225 1227 1227 75 Clear.
67 143		1228 1230 75 Clear.
68 143	12.1012 -21.3976	1319 1319 1416 1417 60 Clear.
69 143	12.1014 -21.3984	
70 143	12.1018 -21.3992	
71 143	12.1021 -21.3997	
72 143	12.1025 -21.4006	1424 1426 60 Clear.
73 143		1428 1429 55 Clear.
	12.1027 -21.4010	1430 1431 60 Clear.
74 143	12.1029 -21.4014	1433 1434 60 Clear.
75 143	12.1031 -21.4016	1435 1436 60 Clear
76 144	11.9993 -18.9956	0737 0737 0737 0838 0840 0841 100 Clear.
77 144	11.9993 -18.9956	0843 0844 100 Clear.
78 144	11.9993 -18.9956	0843 0844 100 Clear.
79 144	11.9993 -18.9956	0843 0844 100 Clear.
80 144	11.9993 -18,9956	
	11.9993 -18.9956	
	11.9993 -18.9956	0843 0844 100 Clear.
		0843 0844 115 Clear.
	11.9993 -18.9956	0843 0844 110 Clear.
	11.9993 -18.9956	0843 0844 105 Clear.
85 144	11.9993 -18.9956	0843 0844 100 Clear.
86 144	11.9993 -18.9956	0843 0844 100 Clear.
87 144	11.9993 -18.9956	0843 0844 100 Clear.
88 144	11.9993 -18.9956	0843 0844 100 Clear.
89 144	11.9993 -18.9956	0843 0844 100 Clear.
90 144	11.9993 -18.9956	0843 0844 110 Clear.
91 144	12.0345 -18.8775	1312 1313 75 Clear.
92 144	12.0343 -18.8782	
93 144	12.0340 -18.8788	
94 145	11 3306 -17 6582	1325 1325 1319 1321 75 Clear.
95 145	11.3301 -17.6576	743 0743 0743 0909 0911 0901 60 Clear, high haze.
96 145		0913 0914 50 Clear, high haze.
	11.3297 -17.6572	0915 0917 75 Clear, high haze.
97 145	11.3290 -17.6567	0921 0922 60 Clear, high haze.
98 145	11.3287 -17.6564	0924 0925 60 Clear, high haze.
99 145	11.0711 -17.4384	1207 1208 55 Clear, light haze.
100 145	11.0696 -17.4383	1211 1213 1214 100 Clear, light haze.
101 145	11.0680 -17.4382	1217 1217 55 Clear, light haze.
102 145	11.0667 -17.4381	1220 1221 55 Clear, light haze.
103 146		639 0639 0639 0925 0927 0930 75 Clear.
104 146	7.8589 -14.7413	0929 0931 75 Clear.
105 146	7.8590 -14.7404	+- ···
106 146	7.5574 -14.4937	0934 0936 100 Clear.
107 146	7.5564 -14.4937	1135 1137 75 Clear.
107 146		1139 1140 75 Clear.
	7.5558 -14.4943	1143 1145 75 Clear.
109 147	3.0353 -11.1959 ()	830 0830 0830 1316 1317 1318 75 Partly cloudy w/sun breaks.
110 147	3.6314 -11.1972	1331 1332 50 Partiv cloudy w/cup breaks: clouds at and
111 148	0.6054 -8.6261 01	50 0750 0750 0852 0854 100 Clear (w/scattered clouds).
112 148	0.6030 -8.6247	0858 0900 80 Clear (w/scattered clouds).

i

,

.

1428 1430 1439 75 Clear (w/scattered clouds). -0.0533 -8.1620 113 148 65 Clear (w/scattered clouds). 114 148 -0.0560 -8.1637 1443 1444 Clear (w/scattered clouds). 115 148 -0.0562 -8.1640 1446 1447 65 116 148 -0.0567 -8.1644 1450 1451 100 Clear (w/scattered clouds). -2.6256 -5.8646 0836 0836 0836 0904 0905 0951 75 Clear, little high cirrus. 117 149 85 Clear. 118 149 -2.6317 -5.8643 1007 1009 -2.6331 -5.8634 1013 1014 75 Clear, small cloud moved through. 119 149 -6.1728 -2.8104 0830 0830 0830 1006 1008 0848 100 Clear. 120 150 100 Clear. 121 150 -6.1742 -2.8097 1011 1013 122 150 -6.1754 -2.8088 1015 1017 100 Clear. 123 150 -6.1865 -2.8002 1040 1041 50 Clear, aborted due to cloud at end. 124 150 -6.1876 -2.7994 1042 1044 100 Clear. -6.1908 -2.7971 100 Clear. 125 150 1049 1051 126 150 -6.3551 -2.6492 1214 1216 100 Clear. -6.3563 -2.6497 1227 1227 1219 1222 125 Clear. 127 150 -8.8586 -0.0281 0809 0809 0809 0837 0839 128 151 100 Clear, light high haze. 129 151 0849 0850 0911 75 Clear, light high haze. -8.8609 -0.0250 130 151 -8.8664 -0.0189 0955 0956 80 Clear, light high haze. 131 151 -8.8681 -0.0167 1000 1002 85 Clear, light high haze. 151 -9.1376 0.1684 1152 1154 90 Clear. 32 151 -9.1389 0.1698 1202 1203 1217 Clear. 33 60 134 152 -12.8960 3.1727 0836 0836 0836 1132 1134 100 Clear, thin high cirrus. 135 153 -16.5499 6.3614 0902 1401 1403 75 Clear, high cirrus. 136 153 -16.5505 6.3616 1411 1411 1405 1407 100 Clear, high cirrus. 137 154 -19.1210 9.0632 0804 0901 0901 0928 0930 0935 75 Completely overcast w/some brightening. 138 154 -19.1210 9.0633 0932 0933 75 Completely overcast w/some brightening. 139 154 -19.4284 9.4100 1308 1309 1324 75 Clear w/high haze. 75 Clear w/high haze. 140 154 -19.4281 9.4103 1312 1314 141 154 -19.4281 9.4102 1316 1317 75 Clear w/high haze. 142 155 -19.2449 12.7933 0854 0854 0854 1033 1034 0955 75 Clear w/light haze. 143 155 -19.2451 12.7939 1037 1038 90 Clear w/light haze. 144 155 -19.1462 13.2978 1339 1340 90 Clear w/light haze. 145 155 -19,1466 13,2984 1343 1344 1345 90 Clear w/light haze. 146 155 -19.1468 13.2993 1348 1350 100 Clear w/light haze. 147 156 -20.0049 16.3776 0837 0837 0837 1009 1010 1014 80 Clear. 148 156 -20.0048 16.3777 1012 1014 90 Clear w/small cloud ~2/3 down. 149 156 -20.0047 16.3778 1017 1019 95 Clear. 150 156 -19.9983 16.5593 1152 1153 1158 90 Clear. 151 156 -19.9980 16.5595 1156 1158 90 Clear. **5**2 156 -20.0035 16.8204 1339 1340 70 Clear. 53 156 -20.0036 16.8204 1341 1342 75 Clear. 154 156 -20.0037 16.8205 1345 1346 30 Clear, abort on cloud encroachment. 155 156 -20.0040 16.8204 90 Clear. 1348 1349 156 157 -20.0027 20.4058 0841 0841 0841 0901 0903 1032 100 Clear. 157 157 -20.0035 20.4071 1011 1012 50 Clear. 158 157 -20.0035 20.4077 1014 1015 50 Clear. 159 157 -20.0033 20.4089 1019 1020 50 Clear. 160 157 -20.0032 20.4099 1023 1024 50 Clear. 161 157 -20.0032 20.4109 1027 1028 50 Clear. 162 157 -19.9954 20.6784 1212 1213 50 Clear. 163 157 -19.9954 20.6787 1214 1215 50 Clear. 164 157 -19.9956 20.6791 1218 1219 50 Clear. 165 157 -20.0000 20.8690 1333 1334 50 Clear. 166 157 -19.9998 20.8692 1336 1337 50 Clear. 167 157 -19.9998 20,8693 1338 1339 50 Clear. 168 158 -20.0017 24.5062 0829 0829 0829 0942 0943 0939 100 Cloudy, diffuse lighting. 169 158 -20.0012 24.5061 0947 0949 100 Cloudy, diffuse lighting. 170 158 -20.0010 24.9912 100 Clear. 1235 1237 171 158 -19.9963 25.0855 1321 1323 100 Clear. 172 158 -19.9959 25.0859 1326 1328 100 Clear.

173 159 -19.8706 28.6844 0848 0848 0848 0939 0942 0943 150 Cloudy, pretty diffuse. 174 159 -19.5624 29.0873 1226 1229 1239 170 Clear. 175 159 -19.5621 29.0875 1233 1236 175 Clear. 176 160 -17.0497 32.4282 0727 0727 0727 0833 0836 0834 150 Clear, thin high cirrus. 177 160 -17.1639 32.6540 1251 1253 125 Clear. 178 160 -17.1657 32.6529 1258 1301 140 Clear. 179 160 -17.1673 32.6517 1307 1310 140 Clear. 180 161 -17.5049 36.6139 0824 0824 0824 0916 0917 135 Clear. 181 161 -17.5050 36.6140 0926 0928 120 Clear. 182 161 -17.5051 36.6141 0939 0941 0944 120 Clear. 183 161 -17.5049 36.6141 0948 0951 120 Clear. 184 161 -17.5050 36.6140 0955 0957 120 Clear. 185 161 -17.5051 36.6140 1001 1004 125 Clear. 186 161 -17.4917 36.9897 1235 1237 150 Clezr. 187 161 -17.4914 36.9908 1241 1244 1244 150 Clear. 188 161 -17.4912 36.9918 1248 1251 150 Clear. 189 162 -17.4316 41.0801 0837 0837 0837 0918 0920 100 Clear, cloud at end. 190 162 -17.4317 41.0808 0956 0958 115 Clear. 191 162 -17.4313 41.0819 1001 1003 115 Clear. 192 162 -17.2021 41.3170 1151 1153 120 Clear. 193 162 -17.2009 41.3173 1157 1159 120 Clear 194 162 -17.1991 41.3179 1204 1206 1210 120 Clear. 195 163 -14.0099 44.6780 0822 0822 0822 0917 0918 80 Completely overcast. 196 163 -14.0099 44.6780 0922 0924 75 Completely overcast. 197 163 -14.0102 44.6779 0925 0927 0928 75 Completely overcast. 198 163 -13.1258 45.4918 1505 1506 75 Foggy, completely overcast. 199 163 -13.1261 45.4907 1508 1510 85 Foggy, completely overcast. 200 163 -13.1277 45.4891 1513 1515 75 Foggy, completely overcast. 201 164 -9.6972 48.4493 0832 0832 0832 0958 0959 55 Clear. -9.6978 48.4486 202 164 1009 1009 60 Clear. -9.6979 48.4485 203 164 1011 1012 50 Clear. 204 164 -9.6978 48.4483 1013 1014 50 Clear. 205 164 -9.6978 48.4481 1015 1016 50 Clear. 206 164 -9.6983 48,4481 1019 1020 50 Clear. 207 164 -9.6983 48.4480 1021 1023 1025 100 Clear. 208 164 -8.6240 48.7190 1449 1450 40 Clear, cloudy at end. 209 164 -8.6155 48,7234 1503 1504 50 Clear. 210 164 -8.6143 48.7241 1505 1506 Clear, cloudy at end. 35 211 164 -8.6130 48.7248 1507 1508 50 Partly cloudy. 212 164 -8.6084 48.7275 1514 1516 1520 100 Completely cloudy, diffuse light. 213 164 -8.6045 48.7297 50 Clear. 1521 1522 214 164 -8.6025 48,7309 1524 1525 30 Clear. 215 164 -8.5994 48.7328 1529 1530 50 Completely cloudy, diffuse light. 216 164 -8.5905 48.7379 1542 1543 60 Clear. 217 164 -8.5884 48.7389 1545 1546 50 Clear. 218 164 -8.5861 48.7401 1548 1549 25 Clear, abort due to cloud. 219 164 -8.5845 48.7409 1550 1551 50 Clear, small cloud in middle of cast. 220 164 -8.2751 48.7834 1716 1717 40 Cloudy, diffuse light. 221 164 -8.2707 48,7840 1719 1720 50 Cloudy, diffuse light. 222 165 -4.1469 49.8391 0749 0749 0749 1006 1007 50 Completely cloudy, diffuse light. -4.1477 49.8390 223 165 1009 1010 50 Completely cloudy, diffuse light. -4.1484 49.8388 224 165 1012 1013 1019 50 Completely cloudy, diffuse light. -3.4685 50.0025 225 165 1307 1308 50 Clear. 226 165 -3.4676 50.0026 1309 1310 50 Clear. 225 165 -3.4662 50.0028 1312 1313 50 Clear.

Appendix A6-8 LoCNESS log.

)

AMT-6 LoCNESS Log for the Sequential Day of the Year (SDY) with all times reported in GMT (SDY 258 is 15 September and SDY 152 is 1 June).

Cast Position Darks Down Cast CCD Depth No. SDY Longitude Latitude Es Lu/Ed Beg. End Pic. [m] Comments 1 150 -6.3530 -2.6485 0823 1232 1207 1209 100 Clear. 2 150 -6.3551 -2.6492 1214 1216 80 Clear. 3 150 -6.3563 -2.6497 1219 1222 125 Clear. 4 151 -8.8586 -0.0281 0809 0809 0837 0839 95 Clear, light high haze. 5 151 -8.8611 -0.0249 0849 0851 0911 75 Clear, light high haze. 6 151 -8.8664 -0.0189 75 Clear, light high haze. 0955 0956 7 151 -8.8681 -0.0167 1000 1002 75 Clear, light high haze. -9.1376 0.1684 8 151 1152 1154 75 Clear. 9 151 -9.1389 0.1698 1202 1203 50 Clear. 10 151 -9.1401 0.1704 1208 1209 1217 80 Clear. 11 155 -19.2442 12.7915 0854 0854 0944 0946 100 Clear w/light haze. 2 155 -19.2446 12.7923 1027 1028 0955 45 Clear w/high cirrus. 155 -19.2448 12.7929 1030 1032 75 Clear w/high cirrus. 14 155 -19.2451 12.7939 1037 1038 80 Clear w/high cirrus. 15 155 -19.1462 13.2978 75 High cirrus. 1339 1340 16 155 -19.1466 13.2984 1343 1344 1345 75 High cirrus. 17 155 -19.1468 13.2993 85 High cirrus. 1348 1350 18 156 -20.0048 16.3777 0837 0837 0959 1000 1014 75 Clear. 19 156 -20.0049 16.3776 70 Clear. 1009 1010 20 156 -20.0048 16.3777 1012 1014 75 Clear w/small cloud ~2/3 way down. 21 156 -20.0047 16.3778 1017 1019 75 Clear. -19.9983 16.5593 22 156 1152 1153 1158 75 Clear. 23 156 -19.9980 16.5595 1156 1158 75 Clear. 24 156 -20.0035 16.8204 1339 1340 75 Clear. 25 156 -20.0036 16.8204 1341 1342 75 Clear. 26 156 -20.0037 16.8205 1345 1346 75 Clear, abort on cloud encroachment. 27 156 -20.0040 16.8204 1348 1349 75 Clear. 28 157 -20.0033 20.4089 0841 0841 1019 1020 1032 50 Clear. 29 157 -20.0032 20.4099 50 Clear. 1023 1024 30 157 -20.0032 20.4109 1027 1028 50 Clear. 31 157 -19.9954 20.6784 1212 1213 50 Clear. -19.9954 20.6787 157 1214 1215 50 Clear. -19.9956 20.6791 157 1218 1219 50 Clear. -20.0000 20.8690 34 157 1333 1334 50 Clear. 35 157 -19.9998 20.8692 1336 1337 50 Clear. 36 157 -19.9998 20.8693 1338 1339 50 Clear. -20.0010 24.9911 0829 0829 1234 1236 37 158 100 Clear. 38 158 -20.0011 24.9915 1239 1240 50 Clear. 39 158 -19.9964 25.0854 1320 1322 1325 100 Clear. 40 158 -19.9959 25.0859 1326 1328 100 Clear. 41 159 -19.5624 29.0873 0848 0848 1226 1229 150 Clear. 42 159 -19.5621 29.0875 1233 1236 1239 150 Clear. 43 160 -17.1639 32,6540 115 Clear. 1245 1251 1253 44 160 -17,1657 32,6529 1258 1301 125 Clear. 45 160 -17.1673 32.6517 1307 1310 125 Clear. 46 161 -17.5049 36.6139 0831 0831 0916 0917 105 Clear. 47 161 -17.5050 36.6140 110 Clear. 0926 0928 48 161 -17.5051 36.6141 0939 0941 0944 105 Clear. 49 161 -17.4917 36.9897 1235 1237 125 Clear. 50 161 -17.4914 36.9908 1241 1244 1244 125 Clear, 51 161 -17.4912 36.9918 1248 1251 130 Clear. 52 162 -17.4316 41.0801 0837 0837 0918 0920 90 Clear, cloud at end.

53 162 -17.4316 41.0802 0924 0926 55 Clear (ended early). 54 162 -17.4317 41.0808 0956 0958 100 Clear. 55 162 -17.4313 41.0819 1001 1003 1005 100 Clear. 56 162 -17.2021 41.3170 1151 1153 100 Clear. 57 162 -17.2009 41.3173 1157 1159 100 Clear. 58 162 -17.1991 41.3179 1204 1206 1210 100 Clear.	58 100 Clear. 53 1005 100 Clear. 53 100 Clear. 53 100 Clear. 59 100 Clear.	1001 1003 1151 1153 1157 1159	-17.4313 41.0819 -17.2021 41.3170 -17.2009 41.3173	 54 162 55 162 56 162 57 162
--	--	-------------------------------------	--	--

Ì

Appendix A6-9 miniNESS log.

AMT-6 miniNESS Log for the Sequential Day of the Year (SDY) with all times reported in GMT (SDY 135 is 15 May and SDY 152 is 1 June).

Cast	Position Da	rks Data Radiometers Measurement Down Cast CCD Depth
No. SD	Y Longitude Latitud	le Es Lu/Ed Logger Port1 Port2 Port1 Port2 Beg. End Pic. [m] Comments
1 137	16.4519 -29.5229	0752 OCP-008 OCI-100 OCR-068 Ed Lu 0837 0838 50 Clear.
2 137		
3 137	16.4493 -29.5243	
4 137		
5 137		OCP-008 OCI-100 OCR-068 Ed Lu 0845 0845 50 Clear. OCP-008 OCI-100 OCR-068 Ed Lu 0847 0848 40 Clear.
6 137		OCP-008 OCI-100 OCR-068 Ed Lu 0849 0850 50 Clear.
7 137		OCP-008 OCI-100 OCR-068 Ed Lu 0854 0855 50 Clear.
8 137		OCP-008 OCI-100 OCR-068 Ed Lu 0858 0858 45 Clear.
9 137	16.4468 -29.5257	
10 139		
11 139		OCP-008 OCI-100 OCR-068 Ed Lu 0928 0929 0913 50 Clear. OCP-008 OCI-100 OCR-068 Ed Lu 0932 0933 50 Clear.
2 139		OCP-008 OCI-100 OCR-068 Ed Lu 0936 0937 50 Clear.
B 141		
14 141		1047 OCP-008 OCI-100 OCR-068 Ed Lu 0852 0852 0815 50 Ptly cldy high cirrus 1047 OCP-008 OCI-100 OCR-068 Ed Lu 1227 1228 50 Clear.
15 141		
16 141		
17 141	20.0100	OCP-008 OCI-100 OCR-068 Ed Lu 1243 1244 50 Clear. OCP-008 OCI-100 OCR-068 Ed Lu 1249 1249 50 Clear.
18 142		
19 142		
20 142		
21 142		
22 142		
23 142		
24 142		
25 142	14.3106 -24.7427	
26 142		
27 142		
28 142		
29 142	14.1020 -24.2773	
30 142	14.1015 -24.2775	
31 142	14.1007 -24.2780	
143	12.1012 -21.3976	1403 OCP-008 OCI-100 OCR-068 Ed Lu 1305 1306 60 Thicker high cirrus. 1403 OCP-008 OCI-100 OCR-035 Ed Lu 1416 1417 60 Clear.
5 143	12.1014 -21.3984	OCP-008 OCI-100 OCR-035 Ed Lu 1419 1420 50 Clear.
34 143	12.1025 -21.4006	OCP-008 OCI-100 OCR-035 Ed Lu 1428 1429 55 Clear.
35 143	12.1031 -21.4016	OCP-008 OCI-100 OCR-035 Ed Lu 1435 1436 60 Clear.
36 144	12.1521 -18.9076	1146 OCP-008 OCI-100 OCR-035 Ed Lu 1200 1201 50 Mostly cloudy.
37 144	12.1517 -18.9078	OCP-008 OCI-100 OCR-035 Ed Lu 1206 1207 50 Mostly cloudy.
38 144	12.1508 -18.9086	OCP-008 OCI-100 OCR-035 Ed Lu 1215 1216 50 Mostly cloudy.
39 144	12.1502 -18.9094	OCP-008 OCI-100 OCR-035 Ed Lu 1222 1223 50 Mostly cloudy.
<i>i</i> 40 144	12.0336 -18.8801	OCP-008 OCI-100 OCR-035 Ed Lu 1328 1329 50 Clear,
41 144	12.0332 -18.8809	OCP-008 OCI-100 OCR-035 Ed Lu 1335 1336 50 Clear
42 144	12.0331 -18.8814	OCP-008 OCI-100 OCR-035 Ed Lu 1339 1339 50 Clear.
43 144	12.0330 -18.8818	OCP-008 OCI-100 OCR-035 Ed Lu 1342 1342 50 Clear.
44 144	12.0328 -18.8824	1351 OCP-008 OCI-100 OCR-035 Ed Lu 1346 1346 50 Clear.
45 145	11.3306 -17.6583	0756 OCP-008 OCI-100 OCR-035 Ed Lu 0909 0911 0901 60 Clear high have
46 145	11.3301 -17.6576	OCP-008 OCI-100 OCR-035 Ed Lu 0913 0914 50 Clear high here
47 145	11.3290 -17.6567	OCP-008 OCI-100 OCR-035 Ed Lu 0921 0922 60 Clear high have
48 145	11.3287 -17.6564	OCP-008 OCI-100 OCR-035 Ed Lu 0924 0925 60 Clear high haze
49 145	11.0711 -17.4384	OCP-008 OCI-100 OCR-035 Ed Lu 1207 1208 1214 55 Clear light have
50 145	11.0680 -17.4382	OCP-008 OCI-100 OCR-035 Ed Lu 1217 1217 55 Clear light have
51 145	11.0667 -17.4381	OCP-008 OCI-100 OCR-035 Ed Lu 1220 1221 55 Clear light have
52 146	7.8598 -14.7428	0918 OCP-008 OCI-100 OCR-035 Ed Lu 0925 0925 0930 55 Clear.

.

53	146	7.8589 -	14 74 14	000	001 100	OCD A15	гч	τ.	0000 0000		
	146				OCI-100	OCR-035	Ed		0929 0930		Clear.
	146	. –		+ • •	OCI-100	OCR-035	Ed		0934 0935		Clear.
	146				OCI-100	OCR-035	Ed	Lu	1135 1136		
	146				OCI-100	OCR-035			1139 1140		Clear.
	147					00 CCD 0	26 5	ւս	1143 1144	55	Clear.
	147						33 E	a r	u 0952 09: 0956 0957		55 Clear, cloud at end.
60	147	3.6353 -		-	OCI-100	OCR-035				60	Cloudy.
	147				OCI-100	OCR-035			1316 1317	55	Partly cloudy w/sun breaks
62	148			0750 1122 OCP	001-100 1700 800.	100 OCD	Ed	LU	1331 1332	50	Partly cloudy w/sun breaks.
	148	-0.0560	-8.1637	OCP-003			C20-	Ea	LU 1431]	432 143	9 50 Clear.
64	148	-0.0562		OCP-008	OCI-100				1443 1444		Clear.
65	148	-0.0567		OCP-008	OCI-100		Ed		1446 1447		Clear.
	149			0841 OCP-00			EQ.	LU J.T.	1450 1451	60	Clear.
	149			0841 OCP-00			אם כו גים כו		u 1008 100 1013 1014		50 Clear.
thro				001-005	001-100	UCK-033	Ea	Lu	1013 1014	50	Clear, small cloud moved
		-19.1209	9.0631	0900 OCP_0		00 OCD 01		т с			
w/sc	ome l	brightening		0900 OCP-00		00 UCK-0.	55 E	a L	u 0923 092	4 0935	55 Completely overcast
69	154	-19.1210	9.0631	OCP	OCT 100	000 025	E.A		0926 0926		. .
		orightening			001-100	OCK-055	EQ	Lu	0926 0926	50	Completely overcast
		-19.1210		000-000	001 100		F .4	Ŧ	0928 0929		
w/sc	me l	orightening.		001-003	001-100	OCK-035	Ea	LU	0928 0929	50	Completely overcast
71	154	-19.1210	9.0633	0000-000	OCT 100		E J	τ.	0932 0933		. .
w/so	me t	orightening.			UCI-100	OCK-035	ca	Lu	0932 0933	50	Completely overcast
		-19.4284		OCP-008	OCL 100	000 025	БА	т	1200 1200	100/ 0	
73	154	-19.4281	9.4103	OCP-008	OCI-100	000 025			1308 1308	1324 5	5 Clear w/high haze.
74	154	-19.4281	9.4102	OCP-008	OCI-100				1312 1313	55	Clear w/high haze.
75	157	-20.0025	20.4056	0841 0929 OCP	001-100		EG		1316 1317	55	Clear w/high haze.
76	157	-20.0025	20.4056			OCR-035	-035 F-1		Lu 0955		50 Clear.
77	157	-20.0027	20.4061	OCP_008	OCI-100	OCR-035			0959 1000		Clear.
78	157	-20.0031	20.4067	OCP-008		OCR-035			1002 1003		Clear.
79	157	-20.0035	20.4071	OCP-008	001-100	OCR-035	Ed Ed		1005 1006		Clear.
80	157	-20.0035	20.4077	OCP-008		OCR-035	Ed		1011 1012		Clear.
81	157	-20.0033	20.4089		001-100		E.C.		1014 1015		Clear.
82	157	-20.0032	20.4099	OCP-020	OCI-100				1019 1020		Clear.
83	157	-20.0032	20.4109						1023 1024		Clear.
84	158	-19.9956	25.0863	0829 OCP-00	001-100 N. C.CI-10	0000-000 00000-00		่าน	1027 1028	1032 5	0 Clear.
85	160	-17.1673	32.6517	10-100 800-970			55 EA 154	ц Г т	u 1331 133 1308 1309		60 Clear.
86		-17.5050		0828 OCP-00	B OCLIG	00K-033	ECO ECO	LU	1308 1309	65	Clear.
	161	-17.5050	36.6140	OCP-008		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	אם כי אם כי	u L/	u 0948094 09550955		50 Clear.
88	161	-17.5051 3	36.6139	OCP-008		0000-033	CU CJ	LU L.,	1001 1001		Clear.
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	JC1-100	UCK-033	<b>C</b> (1	ւս	1001 1001	50	Clear.
### Appendix A6-10 SeaSPEC log.

AMT-6 SeaSPEC Log. All times reported in GMT (SDY 135 is 15 May and SDY 152 is 1 June).

	ast	Positio		ollecto	ors	Cable	s N	leasur	emer	nt Down Ca	ist CCI	) Up Ca	ast De	nth	
ſ	NO. SD	Y Longiti	ide Latitu	de P	ortl	Port2	Port 1	Port2	Po	rtl Port2 B	eg. En	d Pic. B	eg. Er	nd [m]	Comments
											***** **				**************
(	0 148	0.5983	-8.6225	С	Α	C	2 m	Ed	T	0912 0930	00	24.0020	<b>5</b> 0 <b>/</b>	<b>.</b> .	
		-6.1703			Ā	č	2 m	Ed	Lu Tu	0712 0930	0940	34 UY38 0062 004	50 C	Cloudy.	
		Clear [up]		·	••	Ç	2 111	Lu	Lu	0928 0939	0648	0952 093	9 70	Scatte	red clouds
		-8.8637		С	Α	С	2 m	Fd	T n	0000.0024	0011	0020 002			
-	eaks.			•	••	č	2 Ш	Lu	LU	0300 0924	0911	0930 093	58 70	Mosti	y cloudy w/sun
1	3 152	-12.7718	3.0734	С	Α	С	2 m	FA	In	0017 0034	0022	0041.00	40 70	C	y w/high cirrus.
4	4 153	-16.0816	5.8623		A	-	2 m	Fd	In	0016 0033	0734	24 0020	+0 /U	Sunny	y w/nigh cirrus. tely cloudy.
-	5 154	-19.1210	9.0632	Ċ	A	-	2 m	Fd	In	0910 0932	0025	0939	30 0	Comple	lely cloudy.
		brightenin			••	Ũ	2 111			0913 0927	0933	0930.09.	32 60	Com	pletely overcast
e	5 155	-19.2441	12.7903	С	Α	С	2 m	Ed	I m	0912 093(	0055	0062 10	<u></u>	) <b>B</b> 4	
ha	ze.			_		Ŭ	~ M	Lu	1.10	0912 0930	0955	0322-10	00 /(	Partr	y cloudy w/high
	? 156	-20.0042	16.3781	С	Α	С	2 m	Fd	Ŧπ	0017 0022	1014	0026.00	40 70	N 701	y cloudy, clear
1	occasi	onal cloud	L			Ŭ	- 11	LA	Lu	0717 0953	1014	0930.09	42 /l	Paruy	/ cloudy, clear
8	3 157	-20.0025	20.4054	С	Α	С	2 m	Fd	Τu	0920 0936	1022	0020.00	42 40	0	
		-20.0004			A	č	2 m	Ed	T .s	0009 0001	0020	0939 09	42 40	) Clear	
	ghting.			Ť	~ 1	C	4 Ш	LAI	L.U	0908 0921	0939	0925 09	31 70	Cloue	dy, diffuse
													***		

112 156	-20.0048 16.3778		19 T. T.	
		OCP-019 OCR-064 OCR-0 0841 0841 OCP-019 OCR-064 OC		
	-20.0025 20.4055			-
	-20.0025 20.4053			
	-20.0025 20.4055			
	-20.0025 20.4055			
	-20.0023 20.4034			
	-20.0024 20.4055			
	-20.0026 20.4055			
	-20.0034 20.4070			
	-20.0035 20.4074			
	-20.0034 20.4082			
	-20.0033 20.4089			
	-20.0032 20.4099			
	-20.0032 20.4107			
	-20.0034 20.4114			
	-20.0038 20.4116			
	-19.9954 20.6784		-	
	-19.9954 20.6788			
	-19.9955 20.6791			
	-20.0010 20.8687			
	-20.0001 20.8689			
	-19.9998 20.8692			
	-19.9998 20.8693			
		0829 0829 OCP-019 OCR-064 O		
	-20.0003 24.5058			J, 0 0
139 158	-20.0004 24.5058			••••••
	-20.0004 24.5058			
	-20.0005 24.5057			
	-20.0005 24.5058			
	-20.0004 24.5058	-		
	-20.0003 24.5058			
	-20.0002 24.5058			
	-20.0018 24.5062			,
	-20.0014 24.5062			
148 158	-20.0012 24.5062			v 0947 0950 Cloudy, diffuse lighting.
149 158	-20.0011 24.9910			
150 158	-20.0010 24.9913	3 OCP-019 OCR-064 OCR-0	28 Ls Lv	v 1236 1239 Clear.
151 158	-20.0012 24.9916			
152 159	-19.5623 29.0874	1 0848 0848 OCP-019 OCR-064 O		
153 159	-19.5621 29.0875	5 OCP-019 OCR-064 OCR-0	28 Ls Lv	
154 159	-19.5620 29.0875	5 OCP-019 OCR-064 OCR-0	28 Ls Lv	v 1236 1239 1239 Clear.
155 159	-19.5620 29.0874			
156 160	-17.1651 32.6533	3 0727 0727 OCP-019 OCR-064 O	CR-028 Ls	Lw 1255 1258 Clear.
157 160	-17.1657 32.6529	OCP-019 OCR-064 OCR-0	28 Ls Lv	v 1258 1301 Clear.
158 160	-17.1664 32.6525			
	-17.1669 32.6520		28 Ls Lv	v 1305 1308 Clear.
	-17.1674 32.6516			
161 160	-17.1681 32.6511	I OCP-019 OCR-064 OCR-0	28 Ls Lv	v 1311 1314 Clear.

.

Date	Time	Start	Posi	tion	Gain	File Name	Notes
	GMT	Ship	Lat	Lon			
15.5.98	11:15:05	13:15:05	Dat	LUI	16	UNDWY01	· · · · · · · · · · · · · · · · · · ·
15.5.98	12:25:19	14:25:19	33.37.15 S	18.00.27 E	16	CTDP01	No PAR data using new prog
15.5.98	15:30:18	17:30:18	33.37.13 3	16.00.27 E	16	UNDWY02	Periodic air in flow-through
15.5.98	23:04:57	01:04:57	· ·		16	UNDWY03	Periodic air in flow-through
16.5.98	08:05:23	10:05:23	32.20.21 S	17.52.67	16	CTDP02	To tout out in now an ough
16.5.98	09:32:32	11:32:32			4	UNDWY04	Outflow tube not in place
16.5.98	12:25:02	14:25:02	32.03.75 S	17.51.81 E	4	UNDWY05	
16.5.98	20:32:10	22:32:10	31.17.10 S	16.20.56 E	4	UNDWY06	
16.5.98	22:05:11	22:05:11	31.03.88 S	16.34.74 E	4	UNDWY07	Periodic air in flow-through
17.5.98	05:25:04	07:25:04	29.50.11 S	16.49.73 E	4	UNDWY08	
17.5.98	07:55:47	09:55:47	29.31.24 S	16.27.21 E	16	CTDP03	
17.5.98	09:58:16	11:58:16	29.29.67 S	16.23.88 E	4	UNDWY09	FRRF submerged to avoid air
17.5.98	11:06:18	13:06:18	29.21.85 S	16.14.92 E	16	CTDP04	
17.5.98	12:16:00	14:16:00	29.21.12 S	16.15.82 E	4	UNDWY10	
17.5.98	14:27:00	16:27:00	29.02.05 S	16.02.29 E	4	UNDWY11	
17.5.98	22:34:17	00:34:17	27.45.63 S	15.08.34 E	4	UNDWY12	
18.5.98	05:38:12	07:38:12	26.42.31 S	14.47.22 E	4	UORPOI	Flashing on recovery (= logger file Tow603.dat)
18.5.98	09:55:00	11:55:00	26.42.05 S	14.13.36 E	4	UORP02	Flashing on recovery (= logger file Tow604.dat)
18.5.98	12:39:24	14:39:24	26.42.62 S	13.55.75 E	4	UORP03	Flashing on recovery (= logger file Tow605.dat)
20.5.98	09:34:04	11:34:04	33.43.74 S	18.11.39 E	4	UNDWY13	
20.5.98	16:13:47	18:13:47	32.23.96 S	17.22.20 E	4	UNDWY14	Inflow hose detached few mins
21.5.98	23:59:27	01:59:27	30.37.67 S	16.42.39 E	4	UNDWY15	
21.5.98	08:09:29	10:09:29	28.55.80 S	16.11.29 E	4	CTDP05	PAR sensor #14 used
21.5.98	09:07:20	11:07:20	28.54.49 S	16.10.13 E	4	UNDWY16	
21.5.98	11:50:00	13:50:00	28.32.59 S	15.48.25 E	4	CTDP06	PAR sensor #14 used
21.5.98 21.5.98	12:32:22 20:16:32	14:32:22	28.32.77 S	15.47.69 E	4	UNDWY17	
22.5.98	04:03:57	22:16:32 06:03:57	27.11.27 S 25.33.77 S	14.54.18 E 14.23.89 E	4	UNDWY18 UNDWY19	
22.5.98	04:03:37	10:20:11	24.45.07 S	14.19.49 E	4	CTDP07	PAR sensor #14 used
22.5.98	10:04:49	12:04:49	24.38.67 S	14.15.78 E	4	UNDWY20	Alt. dark cell; contd. file through stn 12:02 to 13:24 GMT; contd. file through UOR
22.5.98	12:10:27	14:10:27	24.16.52 S	14.06.38 E	4	CTDP08	PAR sensor #14 used
22.5.98	13:29:44	15:29:44	24.14.70 S	14.05.34 E	4	UORP04	NOT Flashing on recovery (= logger file Tow606.dat)
22.5.98	18:03:47	20:03:47	23.35.81 S	13.36.34 E	4	UNDWY21	Out of stn.
23.5.98	01:49:00	03:49:00	22.22.64 S	12.23.23 E	4	UNDWY22	Alt. dark cell; contd. file through stns; contd. file through UOR
23.5.98	04:05:15	06:05:15	22.05.51 S	12.36.72 E	4	CTDP09	PAR sensor #14 used
23.5.98	05.23.33	07.23.33	22.02.76 S	12.35.52 E	4	UORP05	NOT Flashing on recovery (=
23.5.98	09:32:42	11:32:42	21.39.15 S	12.24.23 E	4	UNDWY23	logger file Tow607.dat) Alt. dark cell; started file on stn;
23.5.98	10:19:14	12:19:14	21.39.10 S	12.24.24 E	4	CTDP10	PAR sensor #14 used
23.5.98	13:41:00	15:41:00	21.23.90 S	12.24.24 E	4	CTDP11	PAR sensor #14 used
23.5.98	15:04:50	17:04:50	21.23.88 S	12.06.12 E	4	UORP06	NOT Flashing on recovery (= logger file Tow608.dat)
23.5.98	16:12:43	18:12:43	21.14.15 S	11.58.97 E	4	UNDWY24	Alt. dark cell
23.5.98	22:51:08	00:51:08	20.19.53 S	11.53.56 E	4	UNDWY25	Alt. dark ceil
24.5.98	05:22:57	07:22:57	19.16.33 S	12.02.40 E	4	UNDWY26	Alt_dark celi
24.5.98	08:00:12	10:00:12	18.59.85 S	12.00.09 E	4	CTDP12	PAR sensor #14 used
24,5.98	09:15:34	11:15:34	18.59.85 S	12.00.09 E	4	CTDP13	PAR sensor #14 used
24.5.98	09:18:48	11:18:48	18.59.85 S	12.00.09 E	4	UNDWY27	Alt. dark cell; started file on stn; contd. file through UOR
24.5.98	11:50:40	13:50:40	18.54.45 S	12.09.17 E	4	CTDP14	PAR sensor #14 used
24.5.98	13:58:47	15:58:47	18.52.52 S	12.00.62 E	4	UORP07	Flashing on recovery (= logger file Tow609.dat)
24.5.98	17:06:21	19:06:21	18.42.14 S	11.32.49 E	4	UNDWY28	Ah. dark cell
25.5.98	01:20:00	03:20:00	18.10.97 S	10.51.52 E	4	UNDWY29	Alt. dark cell
25.5.98	08:11:13	10:11:13	17.39.68 S	11.19.93 E	4	CTDP15	PAR sensor #14 used
25.5.98	08:42:08	10:42:08	17.39.68 S	11.19.93 E	4	UNDWY30	Alt. dark cell; started file on stn; contd. file through UOR

25.5.98	00.26.26	T					
	09:36:35	11:36:35	17.39.01 S	11.19.27 E	4	UORP08	Flashing on recovery (= logger file Tow61011.dat)
25.5.98	12:29:54	14:29:54	17.26.08 S	11.03.57 E	4	UORP09	Flashing on recovery (= logger
25.5.98	16:06:23	18:06:23	16.58.64 S	10.32.90 E	4	UNDWY31	file Tow61011.dat)
25.5.98	23:50:14	01:50:14	15.56.81 S	09.18.29 E	4	UNDWY32	Alt. dark cell
26.5.98	07:32:48	09:32:48	14.51.92 S	08.00.46 E	4		Alt. dark cell
26.5.98	08:39:22	10:39:22	14.44.62 S	07.51.66 E	4	UNDWY33	Alt. dark cell
26.5.98	10:13:02	12:13:02	14.40.00 S	07.46.34 E		CTDP16	PAR sensor #14 used
26.5.98	16:53:33				4	UNDWY34	Alt. dark cell; noisy data from insensitive gain
		18:53:33	13.46.78 S	06.43.08 E	4	UNDWY35	Alt. dark cell; noisy data from
26.5.98	20:22:08	22:22:08	13.17.65 S	06.07.60 E	4	UNDWY36	Alt. dark cell; noisy data from
27.5.98	03:57:55	04:57:55	12.13.02 S	04.51.11 E	4	UNDWY37	insensitive gain Alt. dark cell; noisy data from
27.5.98	08:36:18	09:36:18	11.37.26 \$	04.08.35 E	+		insensitive gain
27.5.98	09:06:43	10.06.43	11.37.26 \$	04.08.35 E	4	CTDP17	PAR sensor #14 used
		10.00.45	11.57.20 8	04.08.35 E	4	CTDP18	PAR sensor #14 used; battery
27.5.98	10:27:17	11:27:17	11.33.84 \$	-			died at end of 1st depth acqn.
27.5.98	10:41:14	11:41:14		04.04.47 E	16	UNDWY38	Gain test
27.5.98	10:58:20		11.31.93 S	04.02.20 E	64	UNDWY39	Gain test
27.5.98	the second s	11:58:20	11.29.58 S	03.59.33 E	64	UNDWY40	
	18:30:42	19:30:42	10.30.52 S	02.50.11 E	64	UNDWY41	<b></b>
28.5.98	02:10:30	03:10:30	09.28.00 S	01.35.90 E	64	UNDWY42	†
28.5.98	08:35:57	09:35:57	08.37.50 S	00.36.22 E	16	CTDP19	DAD
28.5.98	09:11:27	10:11:27	08.37.50 S	00.36.22 E	16	CTDP20	PAR sensor #14 used
28.5.98	10:16:07	11:16:07	08.37.50 S	00.36.22 E	16		PAR sensor #14 used
					10	UORP10	Flashing on recovery (= logger
28.5.98	10:25:51	11:25:51	08.35.02 S	00.34.04 E		100000000	file Tow61213.dat)
28.5.98	15:02:22	16:02:22	08.09.79 \$	and the second se	64	UNDWY43	Alt. dark cell
1			00.09.79.5	00.03.79 W	16	UORP11	NOT Flashing on recovery (=
28.5.98	18:12:07	19:12:07	07 44 12 0				logger file Tow61213.dat)
29.5.98	02:01:47	03:01:47	07.44.13 S	00.26.22 W	64	UNDWY44	Alt. dark cell
29.5.98	08:32:08		06.43.19 S	01.36.78 W	64	UNDWY45	Alt. dark cell
29.5.98	09:21:37	09:32:08	05.51.91 S	02.37.50 W	16	CTDP21	PAR sensor #14 used
29.5.98		10:21:37	05.51.91 S	02.37.50 W	16	CTDP22	PAR sensor #14 used
	10:14:02	11:14:02	05.51.80 S	02.37.99 W	64	UNDWY46	
29.5.98	17:50:25	18:50:25	04.48.36 S	03.50.37 W	64	UNDWY47	
30.5.98	01:31:20	02:31:20	03.47.28 S	05.01.49 W	64	UNDWY48	<b></b>
30.5.98	08:30:14	09:30:14	02.48.68 S	06.09.97 W	16	CTDP23	PAR sensor #14 used
30.5.98	09:14:22	10:14:22	02.48.68 S	06.09.97 W	16	CTDP24	
30.5.98	10:10:03	11:10:03	02.48.59 S	06.10.44 W	64	UNDWY49	PAR sensor #14 used
30.5.98	17:48:29	18:48:29	01.43.83 S	07.02.08 W	64		Start file on stn.; change gain
30.5.98	20:55:03	21:55:03	01.08.15 S	07.25.20 W		UNDWY50	
30.5.98	21:06:52	22:06:52	01.06.92 S	07.26.02 W	16	UNDWY51	Alt. dark cell
31.5.98					16	UORP12	NOT Flashing on recovery (= logger file Tow61415.dat)
	03:31:08	04:31:08	00.12.93 S	08.05.63 W	16	UNDWY52	Alt. dark celi
31.5.98	03:31:32	04:31:32	00.12.98 S	08.05.63 W	16	UORP13	Flashing on recovery (= logger
216.00							file Tow61415.dat)
31.5.98	10:32:03	11:32:03	00.00.27 S	08.55.34 W	16	UNDWY53	Part noisy data from insensitive
31.5.98	18:38:09	19:38:09	01.03.02 N	10.17.83 W	16	LINID WOVER	gain
					10	UNDWY54	Part noisy data from insensitive gain
31.5.98	23:15:01	00:15:01	01.43.06 N	11.07.58 W	16	UNDWY55	Part noisy data from insensitive
1600	06.80.00		L				gain
1.6.98	06:59:00	07:59:00	02.49.19 N	12.28.11 W	64	UNDWY56	Change gain
1.6.98	09:10:11	10:10:11	03.04.40 N	12.46.31 W	16	CTDP25	PAR sensor #14 used
1.6.98	09:52:46	10:52:46	03.04.40 N	12.46.31 W	16	CTDP26	
1.6.98	10:58:30	11:58:30	03.06.38 N	12.40.32 W	64	UNDWY57	PAR sensor #14 used
1.6.98	18:30:53	19:30:53	04.00.26 N	13.57.04 W	64	UNDWY58	
2.6.98	02:10:15	03:10:15	04.57.29 N	15.07.85 W	64		
2.6.98	09:08:56	10:08:56	05.51.74 N	16.04.90 W		UNDWY 59	
2.6.98	09:35:11	10:35:11	05.51.74 N	16.04.90 W	16	CTDP27	PAR sensor #14 used
					16	CTDP28	PAR sensor #14 used; FRRF not flashing on recovery.
2.6.98	10:35:08	<u>1</u> 1:35:08	05.53.20 N	16.06.34 W	64	UNDWY60	anoming on recovery.
2.6.98	18:43:52	19:43:52	07.01.00 N	17.11.12 W	64	UNDWY61	
3.6.98	02:26:00	03:26:00	08.10.44 N	18.15.87 W	64	UNDWY62	
3.6.98	09:11:12	10:11:12	09.03.80 N	19.07.26 W	16	CTDP29	DAD
3.6.98	09:47:52	10:47:52	09.03.80 N	19.07.26 W	16		PAR sensor #14 used
3.6.98	10:38:19	11:38:19	09.04.28 N	19.07.72 W		CTDP30	PAR sensor #14 used
3.6.98	12:20:39	13:20:39	09.18.84 N	19.20.91 W	64	UNDWY63	
3.6.98	13:30:03	14:30:03	09.25.01 N		64	UNDWY64	Alt. dark cell
				19.26.13 W	16	UORP14	Flashing on recovery (= logger

<b></b>		-1					
3.6.98	19:06:13		+				file Tow616.dat)
4.6.98	02:52:28	20:06:13	10.11.63 N	19.46.22 W	64	UNDWY65	Alt_dark cell
4.6.98	06:06:18		11.41.15 N	19.28.19 W	64	UNDWY66	Alt. dark cell
4 4.0.26	00.00.18	07:06:18	12.19.23 N	19.20.45 W	16	UORP15	Flashing on recovery (= logger
4.6.98	10:49:29	11:49:29					file Tow617.dat)
4.6.98	13:33:39	11:49:29	12.47.92 N	19.14.68 W	64	UNDWY67	Alt. dark cell
4.6.98	14:03:18	14:33:39	13.17.84 N	19.08.74 W	64	UNDWY68	Alt. dark cell
1.0.26	14.05.18	15:03:18	13.18.31 N	19.08.75 W	4	UORP16	Flashing on recovery (= logger
4.6.98	20:12:13	21:12:13					file Tow618.dat)
5.6.98	01:32:42		14.22.63 N	19.06.32 W	64	UNDWY69	Alt_dark cell
5.6.98	06:28:45	02:32:42	15.19.45 N	19.28.65 W	16	UNDWY70	Alt. dark cell
1	00.28.45	08:28:45	15.57.63 N	19.58.67 W	4	UORP17	Flashing on recovery (= logger
5.6.98	09:21:32	10.21.22			<u> </u>		file Tow62021.dat)
5.6.98	09:53:46	10:21:32	16.22.66 N	20.00.28 W	4	CTDP31	PAR sensor #14 used
5.6.98	11:26:05	10:53:46	16.22.66 N	20.00.28 W	4	CTDP32	PAR sensor #14 used
5.6.98		12:26:05	16.30.62 N	20.00.03 W	16	UNDWY71	Alt. dark cell
6.6.98	19:09:03	20:09:03	17.47.47 N	20.00.00 W	16	UNDWY72	
6.6.98	02:41:42	03:41:42	19.15.63 N	19.59.86 W	16	UNDWY73	
0.0.98	06:28:15	07:28:15	19.58.39 N	20.00.16 W	4	UORP18	Flashing on recovery (= logger
6.6.98	06.00.10						file Tow62021.dat)
6.6.98	06:28:13	07:28:13	19.58.39 N	20.00.16 W	16	UNDWY74	Alt. dark cell
	09:13:28	10:13:28	20.24.32 N	20.00.14 W	4	CTDP33	PAR sensor #14 used
6.6.98	10:41:05	11:41:05	20.25.08 N	20.00.27 W	16	UNDWY75	Alt. dark cell
.98	13:48:27	14:48:27	20.52.49 N	20.00.00 W	4	UORP19	Flashing on recovery (= logger
6.6.98	10.01.00	<u> </u>					file Tow622 dat)
	18:01:22	19:01:22	21.37.62 N	20.00.49 W	16	UNDWY76	Alt. dark cell
7.6.98	01:54:97	02:54:97	23.09.35 N	20.00.12 W	16	UNDWY77	Ait. dark cell
7.6.98	10:41:42	11:41:42	24.38.32 N	20.00.14 W	64	UNDWY78a	Flow through both FRR's in
						UNDWY78b	scries: a= alum; b=titan
7.6.98	18:11:56	19:11:56	25.58.06 N	19.59.90 W	64		
8.6.98	01:54:00	02:54:00	27.23.24 N	19.59.90 W	64	UNDWY79	<u> </u>
8.6.98	09:04:06	10:04:06	28.41.07 N	19.52.24 W	64	UNDWY80	
8.6.98	10:03:12	11:03:12	28.42.21 N	19.51.40 W	04	CTDP34	PAR sensor #14 used
8.6.98	13:51:48	14:51:48	29.16.50 N	19.25.58 W		UNDWY81	
		[ ·····		19.23.36 W	64	UNDWY82a	Flow through both FRR's in
8.6.98	20:22:00	21:22:00	30.28.68 N	18.33.53 W	64	UNDWY82b	series: a= alum; b=titan
L				10.55.55 ₩	04	UNDWY83	Flow through both FRR's in
9.6.98	03:09:51	04:09:51	31.36.61 N	17.40.14 W	64	I DIDIVITIO -	series: a= alum; b=titan
9.6.98	08:02:11	09:02:11	32.25.69 N	17.02.91 W	16	UNDWY84	
				11.02.91 ₩	10	CTDP35	PAR sensor #14 used; no 2
9.6.98	09:53:22	10:53:22	32.30.42 N	17.09.20 W	64	INDUDYOC	minute depth stops; battery fail
9.6.98	17:10:24	18:10:24	33.16.63 N	17.29.79 W	64	UNDWY85	
10.6.98	01:31:16	02:31:16	35.02.14 N	17.30.03 W	64	UNDWY86	L
10.6.98	09:47:09	10:47:09	36.36.85 N	17.30.30 W		UNDWY87	
10.6.98	10:42:58	11:42:58	36.37.43 N		16	CTDP36	PAR sensor #14 used
10.6.98	18:14:21	19:14:21	38.06.61 N	17.30.35 W	64	UNDWY88	
98	09:06:22	10:06:22	41.04.80 N	17.30.21 W	64	UNDWY89	
11.6.98	09:54:55	10:54:55	41.04.83 N	17.25.93 W	16	CTDP37	PAR sensor #14 used
11.6.98	18:50:32	19:50:32	42.21.56 N	17.25.90 W	64	UNDWY90	
12.6.98	02:31:20	03:31:20	43.40.12 N	16.12.66 W	64	UNDWY91	
12.6.98	10:02:01	11:02:01	44.40.53 N	15.01.86 W	64	UNDWY92	
			AL CC.04.44	14.01.27 W	16	UNDWY93a	Flow through both FRR's in
12.6.98	17:60:48	18:60:48	45.48.52 N	12 46 62 111		UNDWY 93b	series: a= alum; b=titan
1		10.00.40	43.46.32 N	12.46.53 W	16	UNDWY94a	Flow through both FRR's in
13.6.98	01:32:00	02:32:00	47.12.04 N	11 10 00 11		UNDWY 94b	series: a= alum; b=titan
)			47.12.04 14	11.10.09 W	16	UNDWY95a	Flow through both FRR's in
13.6.98	06:06:16	08:06:16	47.58.05 N	10 17 96 31		UNDWY 95b	series: a= alum; b=titan
I	· I		47.50.05 14	10.17.85 W	4	ÜORP20	Flashing on recovery (= logger
13.6.98	09:46:35	10:46:35	48.27.02 N	00 41 01 32			file Tow62324.dat); av. Agn=16
13.6.98	10:31:32	11:31:32	48.26.91 N	09.41.01 W 09.41.92 W	4	CTDP38	PAR sensor #14 used; av. aqn=16
13.6.98	12:49:05	13:49:05	48.37.21 N		4	UNDWY96	Alt. dark cell
13.6.98	14:58:14	15:58:14	48.43.30 N	09.04.00 W	16	UNDWY97	Ait. dark cell
13.6.98	18:48:26	19:48:26		08.37.16 W		UNDWY98	Alt. dark cell
1		12.70.20	48.52.33 N	07.50.49 W	4	UORP21	Flashing on recovery (= logger
13.6.98	22:45:06	23:45:06	49.07.02.11				file Tow62324.dat)
14.6.98	06:19:22	07:19:22	49.07.92 N	06.51.15 W	4	UNDWY99	Alt. dark cell
14.6.98	09:01:04	10:01:04	49.48.34 N	04.47.79 W	4	UNDWY100	Alt. dark cell
14.6.98	10:16:07		49.50.28 N	04.09.54 W	4	CTDP39	PAR sensor #14 used
1	10.10.07	11:16:07	49.50.32 N	04.08.93 W	4	UNDWY101a	Flow through both FRR's in
14.6.98	16:20:00					UNDWY 101b	series: a= alum; b=titan
14.0.78	16:29:06	17:29:06	50.12.93 N	02.36.47 W	4	UNDWY102	Flow thro both FRR's in series:
							and other ran sin series.

]

## Appendix AMT 6-13: UOR Tow Log

Date	Tow Number	Time Start (GMT)	Pos	ition	Time Stop (GMT)	Pos	ition	File Name	Notes
			Lat	Lon		Lat	Lon		
17.5.98	TowA601	07:30			07:55			Towtest.dat	Stopped on station test: LOG JA8 and CTDF JA
17.5.98 	TowA602	12:12	29.20.1 S	16.14.4 E	17:55	28.33.5 \$	15.40.8 E	n/a	Logger failed to record (no data)
18.5.98	TowA603	05:38	26.42.3 S	14.47.2 E	08:24	26.41.8 S	14.14.8 E	Tow603.dat	Removed SSIJL JA3, FRRF added (18:00: 26.41.8 S 149.4 E)
18.5.98	TowA604	09:48	26.42.0 S	14.13.3 E	11:18	26.42.3 S	13.58.4 E	Tow604.dat	20.41.0 0 14. ,9.4 E)
18.5.98	TowA605	12:32	26.42.6 S	13.55.7 E	14:44	26.42.5 S	13.31.2 E	Tow605.dat	Battery to FR & flooded; no damage to data acqn.
22.5.98	TowA606	13.19	24.14.7 S	14.05.3 E	17.43	23.38.4 S	13.38.8 E	Tow606.dat	FRRF not flathing on recovery
23.5.98	TowA607	05:29	22.02.7 S	12.35.5 E	07:45	21.39.1 S	12.24.2 E	Tow607.dat	Und 9 (07:03, 21.47.6 S 12.28.5 E); FRRF n
23.5.98	TowA608	15:05	21.23.9 S	12.06.1 E	19:45	20.44.4 S	11.36.3 E	Tow608.dat	flashing on recovery FRRF not flathing on
24.5.98	TowA609	13:59	18.52.5 S	12.00.6 E	16:02	<u> </u>		Tow609.dat	recovery Und 5, 14:55, 18.49.6 S 12.52.3 E.
25.5.98	TowA610	09:36	17.39.0 S	11.19.3 E	11:28	17.26.5 S	11.04.5 E	Tow61011.dat	
25.5.98	TowA611	12:29	17.26.1 \$	11.03.6 E	17:55			Tow61011.dat	Und 31, 17:24, 16.49.65 10.21.6 E; 18 05, 16.44.8 S 10, 16.0 E
28.5.98	TowA612	10:16	08.35.9 S	00.34.1 E	11:25		<b> </b>	Tow61213.dat	10.44.8 S 10.10.0 E
28.5.98	TowA613	15:02	08.09.8 S	00.03.7 W	20:50	07.25.7 S	00.47.4 W	Tow61213.dat	FRRF not flathing on recovery
30.5.98	TowA614	21:06	01.06.9 S	07.26.0 W	03:05	00.13.6 S	08.02.9 W	Tow61415.dat	FRRF not flashing on recovery
31.5.98	TowA615	03:31	00.12.9 S	08.05.6 W	08:00	00.01.7 S	08.51.0 W	Tow61415.dat	
03.6.98	TowA616	14:30	09.25.0 N	19.26.1 W	18:48	10.08.9 N	19.46.8 W	Tow616.dat	······································
04.6.98	TowA617	06:06	12.19.2 N	19.20.4 W	08:52	12.47.1 N	19.14.7 W	Tow617.dat	
05.6.98	TowA618	14:03	13.18.3 N	19.08.8 W	18:54	14.09.8 N	19.01.5 W	Tow618.dat	
	TowA619	06:02	15:38:8 N	19:58:3 W	06:26			Tow62021.dat	FRRF not switched on: UOR out for switch on & re-deploy
05.6.98	TowA620	06:28	15:57.6 N	19.58.6 W	08:55	16.22.7 N	20.00.0 W	Tow62021.dat	
06.6.98	TowA621	06:28	19.58.4 N	20.00.2 W	08:55	20.24.3 N	20.00.1 W	Tow62021.dat	-
06.6.98	TowA622	13:48	20.52.5 N	20.00.20W	18:49	21.46.2 N	20.00.3 W	Tow622.dat	
13.6.98		06:06	47.58.1 N	10.17.9 W	09:02	48.22.2 N	09.49.5 W	Tow62324.dat	
13.0.98	10WA024	18:48	48.52.3 N	07.50.5 W	22:54			Tow62324.dat	

Date 15/5	<b>Time-GMT</b> 11.50 13.13	Lat.	Long.	PLC pigmer JD:Stn:Sample	Depth NT	Bottle	<b>Chi.a</b> 4.64	HPLC 4.589	Hex/Fuc	Fi
	13.13			135-1-2	NT		4.05	5.567	Hex/Fuc	
15/5-Stn. 1	12.25-15.10	33 37.1 S	18 00.2 E	135-1-3	100	2	0.07			
				135-1-4	80	3	0.07			
				135-1-5	40(?100)	5.6	0.06			
				135-1-6	30	7,8	4.25			
				135-1-7	20	9,10	0.28			
				135-1-8	10	11,12	0.28	5.401	Hex/Fuc	
15/5	18.57	33 03.0 S		135-UW-9	NT		2.42			1
	21.00	32 53.0 S	17 03.0 E	135-UW-10	NT		1.81			ŧ
10/6	23.05	32 36.0 S	16 40.0 E	135-UW-11	NT		1.30			ŧ
16/5	01.00	32 19.0 S		136-UW-12	NT		0.95			
	03.00	32 20.2 S	16 47.6 E	136-UW-13	NT		1.32			1
	05.02	32 20.6 S	17 14.8 E	136-UW-14	NT		7.69			1
	07.06	32 20.4 S	17 41.6 E	136-UW-15	NT		3.18			1
16/5-Stn. 2	08.05-09.30	32 20.2 S	17 52.6 E		80	2	0.07			
				136-2-17	20	4,5	2.23	1.877	Hex/Fuc	
				136-2-18	15	6	3.02	2.704	Hex/Fuc	
				136-2-22	10	7	3.12	2.799	Hex/Fuc	
				136-2-23	7	8,9	3.09	2.591	Hex/Fuc	
				136-2-24	4	10	3.34	2.519	Hex/Fuc	
				136-2-19	0-Tot.		4.20			
				136-2-20	0-<20		2.58			
				136-2-21	0-<2		3.88			
16/5-Stn. 3	11.07-12.21	32 03.4 S	17 51.9 E		15(?80)	5,6	1.18	0.590	Per(Hex/Fuc)	
				136-3-26	7(?10)	9,10	5.84	4.425	Per(Hex/Fuc)	
				136-3-27	2	11,12	7.00	5.643	Per(Hex/Fuc)	
16/5	18.06	31 28.2 S		136-UW-28	NT		1.00			9
	20.01	31 17.4 S		136-UW-29	NT		0.92			9
17/5	21.57	31 03.9 S	16 21.4 E	136-UW-30	NT		1.19			10
1715	00.02	30 42.9 S	16 34.7 E	137-UW-31	NT		2.78			1
	02.00	30 22.8 S	16 46.7 E	137-UW-32	NT		2.65			2
	04.00	30 01.1 S	16 59.4 E	137-UW-33	NT		2.92			9
	05.57 07.06	29 45.6 S	16 44.3 E	137-UW-34	NT		3.68			1.
	07.00	29 31.2 S	16 27.2 E	137-UW-35	NT		4.86			14
17/5-Stn. 4	07.55-09.50	29 31.2 S	16 27.2 E		80(725)	2	0.7 <del>9</del>	0.035	Fuc	
				137-4-37	40	3	0.19	0.335	Fuc	
				137-4-38	25(?130)		0.11			
				137-4-39		5,6	2.37	2.236	Fuc(Hex)	
				137-4-40	13	7,8	4.88		Fuc(Hex)	
				137-4-41	7(?13)	9	4.85	4.233		
				137-4-42	3	10,11, 12	5.34	4.613	Fuc(Hex)	
				137- <b>4-4</b> 3 137-4-44	0-Tot. 0-<20		4.14 4.30			
					0-<2		4.30			
7/5-Stn. 5	11.06-12.02	29 21.7 S	16 14.9 E	137-5-46	15	10	1.94	1.721	Fuc/Hex	
					-	11	3.81	2.708	Fuc/Hex	16
				137-5-48		12	3.23	2.952	Fuc/Diadino	.0
7/5	14.49	28 59.2 S	15 59.8 E	137-UW-49	NT		2.16			16.
	18.45	28 24.2 S	15 33.5 E	137-UW-50	NT		1.99			10
	21.01		15 19.2 E		NT		1.67			16
8/5	23.08		15 05.2 E		NT		0.47			8.
w5	01.00	27 21.2 S	14 55.4 E	138-UW-53	NT		0.61			8.
	03.04	26 54.5 S	14 49.6 E	1 <b>38-UW-</b> 54	NT		3.29			15
8/5-Stn. 6	04.15-05.38	26 42.6 S	14 47.9 E			1	0.20			
						2	0.03			
				138-6-57	40	2	0.05	4 000	<b>F</b>	
						3 4	4.38	1.205	Fuc(Hex)	

#### Appendix A6-14 Chlorophyll and HPLC pigments sampling l

·. ·

+

				138-6-59 138-6-60 138-6-61 138-6-62 138-6-63	4 NT 4 Tot(160) 4 <20(160) 4 <2(160)	4	3.28 3.96 0.20 0.16 0.04	3.486	Fuc/Hex	13.7
18/5	07.02	26 41.7 S	14 30.4 E	138-UW-64	NT-PI		2.12	1.859	Hex	14.1
18/5-Stn. 7	08.36-09.48	26 41.8 S	14 14.8 E	138-7-65 138-7-66 138-7-67	80 30 20	3 5,6 7	1.37 3.20	1.210 2.899	Per/Fuc Hex/Fuc/Per	
				138-7-68 138-7-69 138-7-70	13(720) 7 4	9 10 11,12	2.22 1.97 2.18 2.48	2.402 1.989 2.113 2.171	Hex/Fuc Hex/Fuc Hex(Fuc/Diad) Hex(Fuc/Diad)	
				138-7-71 138-7-72 138-7-73 138-7-74	4-Tot 4-<20 4-<2 NT	11 11 11 11	2.60 2.42 1.69		````	
18/5-Stn. 8	11.23-12.28	26 42.4 S	13 57.5 E		16	10	1.94 1.21	1.699	Hex(Fuc/Diad)	
				138-8-76 138-8-77	8	11	1.34	1.042	Hex/Per/Fuc Hex/Per/Fuc	
49/5				138-8-78	4 NT	12	1.26 1.36	1.145 1.095	Hex/Per/Fuc Hex/Per/Fuc	
18/5 18/5-Stn. 9	13.49	26 42.3 S		138-UW/PI-79	NT		1.21	1.209	Diadino/Per	7.5
10/3-3th, 9	14.57-15.28	26 41.8 S	13 <b>30</b> .1 E	138-9-85 138-9-80	200 16	1 2	0.02 1.72	1.566	Hex(Fuc/Per)	
				138-9-81 138-9-82	10	3	1.05	0.978	Hex(Fuc/Per)	
				138-9-83 138-9-84	7(?200) 4(?16) NT	4 5	0.02 1.74 0.40	1.617 0.237	Hex(Fuc/Per) Hex	
19/5-Stn. 10	08.56-09.52 (10.00)	29 30.7 S	15 12.5 E	139-Optics-86 139-Optics-87	NT NT		1.19 1.15	1.102 1.119	Hex(Dia/But/Fuc Hex(Dia/But/Fuc	
				139-Optics-88 139-Optics-89	NT NT		1.09 1.13	0.918 1.084	Hex(Dia/But/Fuc Hex(Dia/But/Fuc	;)
				139-Optics-90 139-Optics-91	NT NT		1.13 1.07	1.002 1.012	Hex(Dia/But/Fuc Hex(Dia/But/Fuc	, ,
20/5	12.37 14.49	33 12.7 S 32 42.5 S		140-UW-92 140-UW-93	NT		1.21			12.0
	16.29			140-UW-94	NT NT		0.62 27.12			10.0 33.6
	16.35 16.35	32 19.0 S 32 19.0 S	17 20.2 E	140-UW-95 140-UW-98	NT-replica		49.59			~50
	16.35	32 19.0 S	17 20.2 E	140-UW-97	NT-replica NT-replica		48.39 45.89			~50 ~50
	16.35 16.35	32 19.0 S 32 19.0 S	17 20.2 E	140-UW-98	NT-replica	te	45.89			~50 ~50
	16.35	32 19.0 S	17 20.2 E 17 20.2 E	140-UW-99 140-UW-100	NT-replica NT-replica		47.09 47.39			~50 ~50
20/5	19.01 21.06	31 45.4 S 31 15.8 S		140-UW-101	NT		8.16	17.739?	Per(Diadino)	17.6
	23.02	30 50.7 S		140-UW-102 140-UW-103	NT NT		2.98 2.96	6.564? 2.906	Per(Dia/Hex)	14.5
21/5	01.02 03.01	30 24.4 S	16 36.5 E	141-UW-104	NT		2.90	2.908 1.790	Per/Hex/Fuc Hex/Fuc(Per/B ut)	19.5 20.4
	05.01	29 58.9 S 29 33.2 S	16 27.3 E 16 17.8 E	141-UW-105 141-UW-108	NT NT		5.00 3.58		Per(Hex/Fuc) Fuc/Hex(Per)	25.2 20.9
21/5-Stn. 11	08.00-09.00	28 55.8 S	16 11.3 E	141-11-107 141-11-108		2 4,5	0.14	0.767	Per	
				141-11-109		4,5 6	0.16 2.85	6.537	Per	
				141-11-110	11	7	4.72	4.450	Fuc	
				141-11-111 141-11-112	3	8,9 10,11. 12	5.64 6.08		Fuc Per/Fuc	
				141-11-113 141-11-114	3-Tot	11 11	5.98 5.02			

ł

					141-11-115	3-<2	11	1.85			
	21/5-Stn. 12	11.43-12.56	28 32 5 S	15 48 3 F	141-12-116	4-Tot	11	6.66			
			20 02.0 0	10 10.0 2	141-12-117	4-<20	11	6.32			
					141-12-118	4-<2	11	2.55			
					141-12-119	12	8	6.58	5.969	Fuc/Hex	
					141-12-120	7	10	6.50	6.084	Fuc/Hex	
					141-12-121	4	12	6.26	5.966	Fuc/Hex	
)	21/5	15.24	20 05 6 6	+= 2=2 =	1 44 1 84/ 400	NT		4.40	3.896	Euro/Hay	22.0
	21/5	15.34 18.42	28 05.6 S 27 30.0 S		141-UW-122 141-UW-123	NT NT		4.40 2.54		Fuc/Hex Fuc/Hex	23.0 21.8
		21.03			141-UW-123	NT		3.04	2.146	Fuc/Hex	22.2
		23.09	26 35.1 S		141-UW-125	NT		2.52	1.775	Fuc/Hex	21.1
	22/5	01.03			142-UW-126	NT		2.70	1.954	Fuc/Hex	22.8
		03.03	25 45.9 S	14 27.1 E	142-UW-127	NT		1.30	0.772	Fuc/DVb	19.5
		05.00	25 22.1 S		142-UW-128	NT		2.20	1.435	Fuc(Hex/DVb)	21.3
		06.34	25 02.4 S	14 19.6 E	142-UW-129	NT		8.00	4.334	Fuc(Dia/DVb)	30.2
		07.40			142-UW-130	NT		9.28			38.0
	22/5-Stn 13	08.00-09.32	24 45 0 5	14 195 F	142-13-131	100	1	4.02	2.680	Fuc	
	220-0th. 10	00.00-03.02	24 40.0 0	14 13.0 L	142-13-132	80	2	2.77	2.008	Fuc	
					142-13-133	58	3	1.82	0.782	Fuc	
					142-13-134	45	4	8.00	2.898	Fuc	
					142-13-135	35	5,6	8.96	3.680	Fuc	
					142-13-136	23	7	6.30	3.020	Fuc	
					142-13-137	15	8	3.12	2.252	Fuc	
					142-13-138	7	9,10	3.77	2.620	Fuc	07 7
					142-13-139	3 3 T-4	11.12	2.16	1.651	Fuc	27.7
					142-13-140 142-13-141	3-Tot 3-<20	11 11	2.12 1.94			
					142-13-141	3-<2	11	1.05			
					142-13-143	3-Tot rpt		2.12			
					142-13-144	3-<20 rpt		2.00			
					142-13-145	3-<2 rpt	11	0.86			
								<b>.</b>			
	22/5-Stn. 14	12.03-13.11	24 16.5 S	14 06.4 E		70 50	1	5.64			
					142-14-156	50 30	2 3	2.93 1.58			
					142-14-155 142-14-154	30 15(?70)	4	4.27			
					142-14-146	15(770)	4	5.27	3.293	Fuc	
					142-14-147	7(?50)	5	2.88	2.014	Fuc	
					142-14-148	3ົ ໌	6	2.91	1.676	Fuc	
					142-14-149	7-Tot		3.13			
					142-14-150	7-<20		0.35			
					142-14-151	7-<2		0.22			
					142-14-158	15-Cosc		3919.70			
<u>ا.</u>					142-14-159	70-Cosc		4059.70			
	22/5	16.01			142-UW-152	NT		4.08			41.0
,		18.03	23 60.2 S		142-UW-153	NT		1.45			31.5
		19.59	23 30.2 S		142-UW-160	NT		18.80			34.6
	00/5	22.00	22 58.7 S		142-UW-161	NT		0.04			35.7
	23/5	00.01 02.00	22 39.8 S 22 20.3 S		143-UW-162 143-UW-163	NT NT		1.60 0.73			36.3 33.4
)		02.00	22 20.3 3 22 05.4 S		143-UW-164	NT		2.36			37.0
,											
,	23/5-Stn. 15	04.05-05.00	22 05.5 S	12 36.7 E	143-15-165	40	1	0.31			
1					143-15-166	20	2	1.47	1.789	Fuc(Hex)	
`					143-15-167	7	3	1.71	1.663	Hex/Fuc	
)					143-15-168	3	5	1.21	1.020	Hex(Fuc)	
					143-15-169	NT/PI		1.26			
	23/5	06.50	21 49 4 5	12 29.3 E	143-UW-170	NT/PI		1.30			39.8
		30.00	21 70.70	12 20.0 L				1.00			
	23/5-Stn. 16	9.14	21 39.3 S	12 24.4 E	143-16-171	NT/PI		2.20			42.5
		8.02-11.06			143-16-172	100	2	0.20	0.131	Fuc	
					143-16-173	60	3,4	0.81	0.630	Fuc(Hex)	
					143-16-174	40	5	0.95	0.683	Fuc(Hex)	
					143-16-175 143-16-176	20 7	7 9,10	2.43 1.95	1.676 1.532	Fuc/Hex(Zea/Dia) Fuc/Hex(Zea/Dia)	
					1-10-170	,	9,10	1.90	1.002	T GUTTER(ZEB/DId	,

Ϊ,

				143-16-177 143-16-179 143-16-180 143-16-181	3 3-Tot 3-<20 3-<2	11,12	1.86 2.06 1.21 0.64	1.78	3 Fuc/Hex(Zea/D	ia)
	12.18-13.27 (13.09)		5 12 12.5	E 143-17-182	NT/Pi		2,34	1.761	Hex/Fuc(Dia)	39.0
23/5-Stn. 18	13.34-14.55	21 23.9 5	6 12 06.1	E 143-18-186 143-18-183	15(?40) 15(?5)	4 5	0.09 0.68	0.361	Fuc	
				143-18-184 143-18-178	7 3	6 7	2.09 2.56	1.684 1.904		
23/5	15.01 17.25	21 24.0 S 21 03.8 S		E 143-UW-185 E 143-UW-187	NT/PI		1.83	1.216		45.4
	19.11 20.37			143-UW-188 143-UW-189	NT NT		2.26 4.92	2.024 4.430	·	40.3 44.0
	20.37 20.37			143-UW-190	A/C 1 A/C 2		1.89 6.36			
	21.10 23.10	20 31.7 S		143-UW-191 143-UW-192	A/C 3 NT		1.57 4.08	3.295	Fuc(Hex/Dia)	48.0
24/5	01.10	20 18.7 S 20 02.5 S	11 54.7 E 12 18.6 E	143-UW-193	NT NT		2.55	1.601	Fuc(Hex/But)	44.9
	03.00	19 42.6 S	12 13.8 E	144-UW-195	NT		1.44 2.05	0.985	Fuc(Hex)	39.0
	05.00 07.00	19 20.4 S	12 04.3 E	144-UW-198	NT		2.90			40.5 58.2
24/5-Stn. 19				144-UW-197	A/C 4		2.01			50.2
249-5th, 19	8.15-08.52	18 59.8 S	12 00.0 E	144-19-201 144-19-202	180 100	1 3	1.18	0.759	Fuc(Diadino)	
				144-19-203	60	3 7	2.53 1.13	0.935 0.348	Fuc(Diadino) Fuc(Diadino)	
				144-19-204	30	6	1.34	1.149	Fuc(Diadino)	
				144-19-205	20	7	1.87	1.992	Fuc(Diadino)	
				144-19-208 144-19-198	7 0-Tat	12	1.72 1.28	1.722	Fuc(Diadino)	57.1
				144-19-199	0-<20		0.51			
				144-19-200	0-<2		0.32			
24/5-Stn. 20	11.52-12.30	18 54.6 S	12 09.3 E	144-20-207 144-20-207	100a	1	19.20			
				144-20-207	100b 30a	1 2	21.30			
				144-20-208	305	2	10.02 11.90			
				144-20-209	15	3	2.88	1.505	Fuc(Hex/Diadino)	•
				144-20-210	7	6	3.18	2.016	Fuc(Hex/Diadino)	
24/5-Stn. 21	13.10-13.44	19 53 6 6		144-20-211	3	7	1.73	1.251	Fuc(Hex/Diadino)	
2 #0 O(ii, 21	(13.50)	18 52.6 S	12 02.1 E	144-21-212	Surf./Opti	cs	3.32	3.971	Fuc(Hex/Diadi no)	52.0
24/5	15.58			144 104/ 040						
	18.40	18 37.6 S	11 18.8 E	144-UW-213 144-UW-214	NT NT		3.76			
	20.34	18 32.0 S	11 03.8 E	144-UW-215	NT		0.87 0.77			
25/5	22.39 00.37	18 26.1 S	10 46.2 E	145-UW-216	NT		0.92			
2010	00.37	18 16.5 S 18 01.4 S	10 46.6 E	145-UW-217	NT		0.78			
	04.20	17 50.1 S	11 10.9 E	145-UW-218 145-UW-219	NT NT		1.82 3.50			
25/5-Stn. 22	08.20-09.30	17 40.0 S	11 20.1 E	145-22-225	100		0.09	0.117	Fuc	
				145-22-226	40		1.26	0.815	Fuc(Hex/Diadino)	
				145-22-227	20		3.18	1.946	Fuc(Hex/Diadino)	
				145-22-228 145-22-229	13 7		3.85 4.00	2.390	Fuc(Hex/Diadino)	
				145-22-230	3		4.00 3.81	2.522 2.396	Fuc(Hex/Diadino) Fuc(Hex/Diadino)	
				145-22-220	0-Tot		4.40	2.000	·	
				145-22-221	0-Tot		5.15			
				145-22-222 145-22-223	0-Tot 0-<20		5.00			
				145-22-224	0-<2		0.94 0.51			
25/5-Stn. 23 1	1.33-12.25	17 26.5 S	11 04.5 E		30		0.90	0.565	Fuc(Hex/Diadino)	
				145-23-235	17		1.18	0.926	Fuc/Hex(Diadino)	
				145-23-236 145-23-231	7 0-Tat		1.14	0.712	Fuc/Hex(Diadino)	
					0-Tot		1.13			



					145-23-232	0 - 20	0.00			
					145-23-232	0-<20 0-<2	0.83 0.64			
						• -2	0.04			
	25/5	14.30			145-UW-237	NT	2.00			
		16.30	16 54.9 S	10 28.2 E	145-UW-238	NT	3.59			37.2
		18.30	16 41.0 S		145-UW-239	NT	5.22			42.7
		20.32	16 24.0 S		145-UW-240	NT	1.35			79.7-
	26/5	22.37	16 06.9 S		145-UW-241	NT	1.87			32.6
3	20/3	00.32	15 50.9 S		146-UW-242	NT	4.49			32.9
		03.09 05.05	15 28.6 S		146-UW-243	NT	0.77			44.0
2		03.05	15 12.5 S 14 53.8 S		146-UW-244	NT	0.47			23.9 <u> </u>
,		07.10	14 33.0 3	00 02.0 E	146-UW-245	NT	0.81			51.9
	26/5-Stn. 24	08.30-09.42	14 4465	07 51 6 F	146-24-249	80	0.46	0.400		
				0. 01.0 2	146-24-250	50	0.16 0.48	0.106	Hex	
		•			146-24-251	35	0.48	0.514	Hex/DVa/Zea Hex/DVa/Zea	
					146-24-252	25	0.57	0.390	Hex/DVa/Zea	
					146-24-253	12	0.52	0.464	Hex/DVa/Zea	
					146-24-254	7	0.54	0.378	Hex/DVa/Zea	
					146-24-246	0-Tot	0.52			
					146-24-247	0-<20	0.47			
					146-24-248	0-<2	0.36			
					146-24-255	NT	0.66	0.556	Hex/DVa/Zea	
	/5-Stn. 25	11.32-11.47	14 2965	07 3355	146-25-256	NTON	• •			
		(1. <b>0</b> £-11, <del>4</del> )	14 29.0 3	U/ 33.5 E	140-20-200	NT/Optic s	0.42	0.371	Hex/Zea/Fuc	
		(11.36)				3				
	26/5	13.33	14 15.0 S	07 16.0 E	146-UW-257	NT	0.41			59.2
		15.45	13 55.9 S	06 54.7 E	146-UW-258	NT	0.17			48.2
		17.29	13 41.8 S		146-UW-09	NT	0.23			50.1
		19.32	13 24.6 S		146-UW-10	NT	0.17			37.6
		21.32	13 07.8 S		146-UW-11	NT	0.18			33.2
		23.32 01.31	12 08.5 S		146-UW-12	NT	0.17			40.7
	27/5	03.32	<b>12 56.6 S</b> 12 17.3 S	US 26.6 E	147-UW-13 147-UW-14	NT	0.21			35.6
		05.30	12 00.6 S	04 35.4 E	147-UW-14 147-UW-15	NT	0.16			30.8
		07.28	11 44.6 S		147-UW-16	NT NT	0.18			30.4
				04 10.0 L	147-010-10	IN F	0.20			31.8
	27/5-Stn. 26	08.32-09.00	11 37.2 S	04 08.3 E	147-26-20	140	0.02			
					147-26-21	85	0.22	0.163	Zea/DVa(Hex)	
					147-26-22	65	0.31	0.136	Zea/DVa(Hex)	
					147-26-23	52	0.49	0.350	Zea/DVa(Hex)	
					147-26-24	32	0.21	0.123	Zea/DVa(Hex)	
					147-26-25	20	0.21	0.121		
•	_				147-26-26	7	0.19		Zea/DVa(Hex)	30.9
1					147-26-27	0	0.19	0.109	Zea/DVa(Hex)	
-					147-26-17 147-26-18	1-Tot 1-<20	0.20			
					147-26-19	1-<2	0.19 0.14			
)						, <b>-</b>	0.14			
	27/5	12.02	11 20.3 S	03 48.1 E	147 <b>-UW</b> -28	NT	0.17			30.1
										30.1
	27/5-Stn. 27		11 11.7 S	03 38.2 E	147-27-29	NT	0.17	0.082	Zea/DVa(Hex)	29.2
		(13.20)								
Ĵ	27/5	15 20	10 57 0 0	M2 04 0 -	4 <b>43</b> 1 <b>4</b> 4 4 4 -					
	2110	15.20 17.20	10 57.2 5	US 21.2 E	147-UW-30	NT	0.19			30.2
)		19.20	10 40.2 5	03 01.8 E	147-UW-31 147-UW-32	NT	0.16			30.2
		21.20	10 07 2 8	02 72 4 F	147-UW-32 147-UW-33	NT	0.22			31.6
1		23.20	09 50.8 S	02 02.6 F	147-UW-34	NT NT	0.31 0.14			42.6
	28/5	01.20			148-UW-35	NT	0.14			30.0
		03.20	09 19.0 S	01 25.2 E	148-UW-36	NT	0.13			27.8 25.8
		05.20	09 02.9 S	01 05.9 E	148-UW-37	NT	0.15			25.6 25.5
		06.25	08 53.5 S	00 54.5 E	148-UW-39	NT	0.39			40.0
		07.28	08 45.0 S	00 44.8 E	148-UW-38	NT	0.38			45.5
	28/5-Stn. 28	09 30 00 50	00 07 0 0	AA						
•	2010-3111. 20	00.30-09.58	UO 37.6 \$	00 36.5 E		130	0.04			
					148-28-44 148-28-45	65 47	0.26	0.169	Hex/But/DVa	
					148-28-45	47 43	0.44 0.38	0.343	Hex/DVa	
						TV I	0.30	0.313	Hex/DVa	

ł

29/5	40.40			148-28-47 148-28-48 148-28-49 148-28-50 148-28-51 148-28-40 148-28-41 148-28-42	35 28 16 7 0 surf-Tot surf-<20 surf-<2	0.24 0.26 0.28 0.29 0.28 0.29 0.28 0.27 0.24	0.172 0.191 0.222 0.193 0.229	DVa(Zea/Hex)	32.9
28/5	12.13	08 23.2 5	5 00 19.4 E	E 148-UW-52	NT	0.17			26.8
28/5-Stn. 29	14.22-14.56	08 09.8 9	6 00 03.3 V	V 148-29-53	NT/Optic s	0.17	0.148	Zea/DVa(Hex)	25.5
	(14.30)				-				
28/5	16.39	07 55.8 5	00 13.9 V	148-UW-54	NT	0.21			26.7
	18.20 20.08	07 43.1 5	5 00 27.6V 5 00 43 3 4	148-UW-55	NT	0.48			40.0
	21.54	07 17 1 S		/ 148-UW-56 / 148-UW-57	NT NT	0.74			50.9
	23.53	07 00.9 5		/ 148-UW-58	NT	0.26 0.21			34.0
29/5	01.50	06 44.5 S		/ 149-UW-59	NT	0.26			33.0
	04.00	06 26.1 S	01 56.7 W	/ 149-UW-60	NT	0.24			34.0 32.0
	06.01	06 10.5 S	02 14.9 W	/ 149-UW-61	NT	0.25			31.0
29/5-Stn. 30	08.30-10.20	05 51.9 S	02 37.1 W	/ 149-30-65	120	0.08	0.043	Hex/DVa(Zea/B	ut)
				149-30-66	-58	0.34	0.228	Hex/DVa(Zea/B	
				149-30-67	50	0.42	0.311	Hex/DVa(Zea/B	ut)
				149-30-68 149-30-69	47	0.44	0.297	Hex/DVa(Zea/B	
				149-30-69	40 33	0.50	0.388	Hex/DVa(Zea/B	
				149-30-71	22	0.41 0.32	0.348 0.265	Hex/DVa(Zea/B	ut)
				149-30-72	7	0.32	0.250	DVa/Zea(Hex) DVa/Zea(Hex)	31.4
				149-30-73	0	0.30	0.214	DVa/Zea(Hex)	31.4
				149-30-62	surf-Tot	0.26			
				149-30-63	surf-<20	0.24			
				149-30-64	surf-<2	0.20			
29/5	12.12 14.07	05 35.0 S	02 54.3 W	149-UW-74	NT	0.22			19.1
	14.07	05 20.1 S 05 02.9 S		149-UW-75	NT	0.22			30.2
	18.09	03 02.9 S 04 46.2 S	03 52 0 14	149-UW-76 149-UW-77	NT	0.25			31.1
	20.07	04 28.6 S	04 136W	149-UW-78	NT NT	0.21			30.2
	22.06	04 15.7 S	04 28.0 W	149-UW-79	NT	0.22 0.18			30.0
	23.57	04 00.6 S		149-UW-80	NT	0.19			30.4 30.2
30/5	01.58	03 43.5 S	05 05.9 W	150-UW-81	NT	0.22			30.2 30.6
	04.01	03 25.9 S	05 25.9 W	150-UW-82	NT	0.22			30.5
	06.02			150-UW-83	NT	0.31			30.3
30/5-Stn. 31	08.30-10.58	02 48.7 S	06 09.8 W		120	0.03	0.017		
				150-31-88	65	0.31	0.250	Hex(DVa/But)	
				150-31-89	55	0.38	0.255	Hex(DVa/But)	
				150-31-90 150-31-91	40	0.41	0.318	Hex(DVa/But)	
				150-31-91	30 20	0.44	0.336	Hex/Zea(DVa)	
				150-31-93	13	0.31 0.20	0.244 0.165		
				150-32-94	7	0.20	0.160	Zea/DVa(Hex) Zea/DVa(Hex)	28.6
				150-33-95	0	0.22	0.172	Zea/DVa(Hex)	20.0
				150-31-84	surf-tot	0.19			
				150-31-85 150-31-86	surf-<20 surf-<2	0.16 0.15			
30/5-Stn. 32	12.06-12.31	02 38.8 S	06 35.3 W	150-32-96	NT/Optic	0.18	0.161	Zea(DVa)	28.9
	(12.12)				S			· •	
30/5	14.32	02 19.0 S	06 37.8 W	150-UW-97	NT	0.17			~ ~
	16.25	01 57.9 S	06 52.1 W	150-UW-98	NT	0.24			29.2 33.6
	18.31	01 34.6 S	07 07.9 W	150-UW-99	NT	0.17			33.6 36.6
	20.30	01 12.6 S	07 22.4 W	150-UW-100	NT	0.18			44.5
31/5	22.38	00 52.8 S	07 35.1 W	150-UW-101	NT	0.20			55.9
5110	00.33	JU JO.5 S	U7 46.4 W	151-UW-102	NT	0.24			60.4

		02.34	00 17.2 S	07 58.5 W	151-UW-103	NT	0.25			60.2
~		04.30	00 10.7 S		151-UW-104	NT	0.29			63.2
		06.27	00 06.0 S		151-UW-105	NT	0.36			62.6
							0.00			02.0
	31/5-Stn. 33	07.55-10.12	00 01.7 S	08 51.0 W	151-33-106	7	0.42	0.330	Zea/DVa/Hex	65.2
		(CTD	Broke	Down)	151-33-107	0	0.42	0.320	Zea/DVa/Hex	00.2
		·						V.ULU	LOUDTUING	
					151-33-109	surf-tot	0.41			
					151-33-110	surf-<20	0.39			
					151-33-111	surf-<2	0.29			_
	31/5 Stn 31	11.49-12.17	00 40 4 N	00 00 0144	151 01 100					
,	5170-5th. 54	11.49-12.17	00 10.1 N	09 08.2 W	151-34-108	NT/Optic	0.38	0.265	Zea/DVa	64.7
		(11.54)				S				
١		(11.04)								
	31/5	14.48	00 321 N	09 34 7 14	151-UW-112	NT	A 40			
	••	17.01			151-UW-113	NT	0.19			63.3
		18.50			151-UW-114		0.21			65.2
		20.58	01 23 1 N	10 20.2 W	151-UW-115	NT	0.23			61.5
		22.50	01 20.1 N	11 02 1 14/	151-UW-116	NT	0.22			55.6
	1/6	00.40			152-UW-117	NT	0.17			53.5
		02.40			152-UW-118	NT	0.15			50.3
		04.11	02 72.0 N	12 00 4 14/	152-UW-118	NT	0.19			49.3
		06.08	02 23.5 N	12 00.1 W	152-099-119	NT	0.23			49.9
		08.09			152-UW-120	NT	0.19			47.5
		00.09	UZ 30.3 N	12 39.3 W	152-UW-121	NT	0.19			45.9
	1/6-Stn. 35	09.08-10.32	02 04 2 N	40.40.014	150.05.100		•			
	170-0un, 55	09.00-10.32	03 04.3 N	12 46.2 W		140	0.05	0.010	Hex	
					152-35-123	90	0.21	0.160	Hex(But/DVa)	
					152-35-124	75	0.49	0.196	Hex(But/DVa)	
					152-35-125	60	0.33	0.251	Hex(But/DVa)	
					152-35-126	55	0.42	0.320	Hex(But/DVa)	
					152-35-127	50	0.43	0.332	Hex(But/DVa)	
					152-35-128	18	0.24	0.151	DVa/Zea(Hex)	
					152-35-129	7	0.23	0.164	DVa/Zea(Hex)	45.0
					152-35-130	0	0.26	0.168	DVa/Zea(Hex)	
					152-35-132	surf-Tot	0.23		• •	
					152-35-133	surf-<20	0.21			
					152-35-134	surf-<2	0.18			
						3011-72	0.10			
						3011-2	0.10			
	1/6-Stn. 36	11.22-11.43	03 10.4 N	12 53.7 W	Optics/NIL ?	3un~2	0.10			
					Optics/NIL ?	5411-74	0.10			
	1/6-Stn. 36 1/6	12.25	03 15.2 N	13 00.9 W	Optics/NIL ? 152-UW-131	NT	0.22			43.7
		12.25 14.25	03 15.2 N 03 29.4 N	13 00.9 W 13 19.4 W	Optics/NIL ? 152-UW-131 152-UW-135					43.7 45.9
		12.25 14.25 16.22	03 15.2 N 03 29.4 N 03 44.4 N	13 00.9 W 13 19.4 W 13 37.3 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136	NT	0.22			45.9
		12.25 14.25	03 15.2 N 03 29.4 N 03 44.4 N	13 00.9 W 13 19.4 W 13 37.3 W	Optics/NIL ? 152-UW-131 152-UW-135	NT NT	0.22 0.29			45.9 48.1
		12.25 14.25 16.22 18.30 20.32	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-138	NT NT NT	0.22 0.29 0.35 0.38			45.9 48.1 48.7
		12.25 14.25 16.22 18.30 20.32 22.26	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N 04 29.3 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W 14 33.2 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-138 152-UW-139	NT NT NT NT	0.22 0.29 0.35			45.9 48.1 48.7 49.5
		12.25 14.25 16.22 18.30 20.32 22.26 00.33	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N 04 29.3 N 04 45.0 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W 14 33.2 W 14 52.4 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-138 152-UW-139 153-UW-140	NT NT NT NT NT	0.22 0.29 0.35 0.38 0.30 0.30			45.9 48.1 48.7 49.5 50.0
		12.25 14.25 16.22 18.30 20.32 22.26	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N 04 29.3 N 04 45.0 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W 14 33.2 W 14 52.4 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-138 152-UW-139	NT NT NT NT NT	0.22 0.29 0.35 0.38 0.30 0.30 0.30			45.9 48.1 48.7 49.5 50.0 49.8
		12.25 14.25 16.22 18.30 20.32 22.26 00.33	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N 04 29.3 N 04 45.0 N 04 59.0 N 05 14.1 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W 14 33.2 W 14 52.4 W 15 10.0 W 15 29.7 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-138 152-UW-139 153-UW-140 153-UW-141 153-UW-142	NT NT NT NT NT NT NT	0.22 0.29 0.35 0.38 0.30 0.30 0.30 0.31 0.33			45.9 48.1 49.5 50.0 49.8 50.0
		12.25 14.25 16.22 18.30 20.32 22.26 00.33 02.30	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N 04 29.3 N 04 45.0 N 04 59.0 N 05 14.1 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W 14 33.2 W 14 52.4 W 15 10.0 W 15 29.7 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-138 152-UW-139 153-UW-140 153-UW-141	NT NT NT NT NT NT	0.22 0.29 0.35 0.38 0.30 0.30 0.31 0.33 0.24			45.9 48.1 49.5 50.0 49.8 50.0 48.6
	1/6	12.25 14.25 16.22 18.30 20.32 22.26 00.33 02.30 04.32 06.27	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N 04 29.3 N 04 45.0 N 04 59.0 N 05 14.1 N 05 31.3 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W 14 33.2 W 14 52.4 W 15 10.0 W 15 29.7 W 15 45.4 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-138 152-UW-139 153-UW-140 153-UW-141 153-UW-142 153-UW-143	NT NT NT NT NT NT NT NT	0.22 0.29 0.35 0.38 0.30 0.30 0.30 0.31 0.33			45.9 48.1 49.5 50.0 49.8 50.0
		12.25 14.25 16.22 18.30 20.32 22.26 00.33 02.30 04.32	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N 04 29.3 N 04 45.0 N 04 59.0 N 05 14.1 N 05 31.3 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W 14 33.2 W 14 52.4 W 15 10.0 W 15 29.7 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-138 152-UW-139 153-UW-140 153-UW-141 153-UW-142 153-UW-143	NT NT NT NT NT NT NT NT	0.22 0.29 0.35 0.38 0.30 0.30 0.31 0.33 0.24 0.23	0.032	Hex/DVa(But)	45.9 48.1 49.5 50.0 49.8 50.0 48.6
	1/6	12.25 14.25 16.22 18.30 20.32 22.26 00.33 02.30 04.32 06.27	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N 04 29.3 N 04 45.0 N 04 59.0 N 05 14.1 N 05 31.3 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W 14 33.2 W 14 52.4 W 15 10.0 W 15 29.7 W 15 45.4 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-138 152-UW-139 153-UW-140 153-UW-141 153-UW-142 153-UW-143	NT NT NT NT NT NT NT NT	0.22 0.29 0.35 0.38 0.30 0.30 0.31 0.33 0.24	0.032 0.098	Hex/DVa(But) Hex/DVa(But)	45.9 48.1 49.5 50.0 49.8 50.0 48.6
	1/6	12.25 14.25 16.22 18.30 20.32 22.26 00.33 02.30 04.32 06.27	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N 04 29.3 N 04 45.0 N 04 59.0 N 05 14.1 N 05 31.3 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W 14 33.2 W 14 52.4 W 15 10.0 W 15 29.7 W 15 45.4 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-138 152-UW-139 153-UW-140 153-UW-141 153-UW-141 153-UW-143 153-37-144	NT NT NT NT NT NT NT NT NT NT	0.22 0.29 0.35 0.38 0.30 0.30 0.31 0.33 0.24 0.23 0.06 0.24	0.098	Hex/DVa(But)	45.9 48.1 49.5 50.0 49.8 50.0 48.6
	1/6	12.25 14.25 16.22 18.30 20.32 22.26 00.33 02.30 04.32 06.27	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N 04 29.3 N 04 45.0 N 04 59.0 N 05 14.1 N 05 31.3 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W 14 33.2 W 14 52.4 W 15 10.0 W 15 29.7 W 15 45.4 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-138 152-UW-139 153-UW-140 153-UW-140 153-UW-141 153-UW-142 153-UW-143 153-37-144 153-37-145	NT NT NT NT NT NT NT NT NT NT 120 80	0.22 0.29 0.35 0.38 0.30 0.30 0.31 0.33 0.24 0.23 0.06 0.24 0.14	0.098 0.103	Hex/DVa(But) Hex/DVa(But)	45.9 48.1 49.5 50.0 49.8 50.0 48.6
	1/6	12.25 14.25 16.22 18.30 20.32 22.26 00.33 02.30 04.32 06.27	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N 04 29.3 N 04 45.0 N 04 59.0 N 05 14.1 N 05 31.3 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W 14 33.2 W 14 52.4 W 15 10.0 W 15 29.7 W 15 45.4 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-138 152-UW-139 153-UW-140 153-UW-140 153-UW-141 153-UW-142 153-UW-143 153-37-144 153-37-145 153-37-146	NT NT NT NT NT NT NT NT NT 120 80 60	0.22 0.29 0.35 0.38 0.30 0.30 0.31 0.33 0.24 0.23 0.06 0.24 0.14 0.14 0.40	0.098 0.103 0.297	Hex/DVa(But) Hex/DVa(But) Hex/DVa	45.9 48.1 49.5 50.0 49.8 50.0 48.6
	1/6	12.25 14.25 16.22 18.30 20.32 22.26 00.33 02.30 04.32 06.27	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N 04 29.3 N 04 45.0 N 04 59.0 N 05 14.1 N 05 31.3 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W 14 33.2 W 14 52.4 W 15 10.0 W 15 29.7 W 15 45.4 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-138 152-UW-139 153-UW-140 153-UW-140 153-UW-141 153-UW-142 153-37-144 153-37-145 153-37-146 153-37-147	NT NT NT NT NT NT NT NT NT 120 80 60 51	0.22 0.29 0.35 0.38 0.30 0.30 0.31 0.33 0.24 0.23 0.06 0.24 0.14 0.14 0.40 0.50	0.098 0.103 0.297 0.384	Hex/DVa(But) Hex/DVa(But) Hex/DVa Hex/DVa	45.9 48.1 49.5 50.0 49.8 50.0 48.6
)	1/6	12.25 14.25 16.22 18.30 20.32 22.26 00.33 02.30 04.32 06.27	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N 04 29.3 N 04 45.0 N 04 59.0 N 05 14.1 N 05 31.3 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W 14 33.2 W 14 52.4 W 15 10.0 W 15 29.7 W 15 45.4 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-138 152-UW-139 153-UW-140 153-UW-140 153-UW-141 153-UW-142 153-37-144 153-37-145 153-37-145 153-37-147 153-37-148	NT NT NT NT NT NT NT NT NT 120 80 60 51 40 34	0.22 0.29 0.35 0.38 0.30 0.30 0.31 0.33 0.24 0.23 0.06 0.24 0.14 0.14 0.40 0.50 0.48	0.098 0.103 0.297 0.384 0.407	Hex/DVa(But) Hex/DVa(But) Hex/DVa Hex/DVa DVa(Zea/Hex)	45.9 48.1 49.5 50.0 49.8 50.0 48.6
	1/6	12.25 14.25 16.22 18.30 20.32 22.26 00.33 02.30 04.32 06.27	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N 04 29.3 N 04 45.0 N 04 59.0 N 05 14.1 N 05 31.3 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W 14 33.2 W 14 52.4 W 15 10.0 W 15 29.7 W 15 45.4 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-138 152-UW-139 153-UW-140 153-UW-140 153-UW-141 153-UW-142 153-UW-143 153-37-144 153-37-145 153-37-145 153-37-148 153-37-149 153-37-150	NT NT NT NT NT NT NT NT NT 120 80 60 51 40 34 14	0.22 0.29 0.35 0.38 0.30 0.30 0.31 0.33 0.24 0.23 0.06 0.24 0.14 0.40 0.50 0.48 0.36	0.098 0.103 0.297 0.384 0.407 0.281	Hex/DVa(But) Hex/DVa(But) Hex/DVa Hex/DVa DVa(Zea/Hex) DVa(Zea/Hex)	45.9 48.1 49.5 50.0 49.8 50.0 48.6 48.4
)	1/6	12.25 14.25 16.22 18.30 20.32 22.26 00.33 02.30 04.32 06.27	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N 04 29.3 N 04 45.0 N 04 59.0 N 05 14.1 N 05 31.3 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W 14 33.2 W 14 52.4 W 15 10.0 W 15 29.7 W 15 45.4 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-138 152-UW-139 153-UW-140 153-UW-140 153-UW-141 153-UW-142 153-UW-143 153-37-144 153-37-145 153-37-145 153-37-148 153-37-149	NT NT NT NT NT NT NT NT NT 120 80 60 51 40 34	0.22 0.29 0.35 0.38 0.30 0.30 0.31 0.33 0.24 0.23 0.06 0.24 0.14 0.40 0.50 0.48 0.36 0.28	0.098 0.103 0.297 0.384 0.407 0.281 0.233	Hex/DVa(But) Hex/DVa(But) Hex/DVa Hex/DVa DVa(Zea/Hex) DVa(Zea/Hex) DVa(Zea/Hex)	45.9 48.1 49.5 50.0 49.8 50.0 48.6 48.4
)	1/6 )*6 2/6-Stn. 37	12.25 14.25 16.22 18.30 20.32 22.26 00.33 02.30 04.32 06.27	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N 04 29.3 N 04 45.0 N 04 59.0 N 05 14.1 N 05 31.3 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W 14 33.2 W 14 52.4 W 15 10.0 W 15 29.7 W 15 45.4 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-138 152-UW-139 153-UW-140 153-UW-140 153-UW-141 153-UW-142 153-37-144 153-37-145 153-37-145 153-37-145 153-37-148 153-37-149 153-37-150 153-37-151	NT NT NT NT NT NT NT NT NT 120 80 60 51 40 34 14 7	0.22 0.29 0.35 0.38 0.30 0.30 0.31 0.33 0.24 0.23 0.06 0.24 0.14 0.40 0.50 0.48 0.36	0.098 0.103 0.297 0.384 0.407 0.281	Hex/DVa(But) Hex/DVa(But) Hex/DVa Hex/DVa DVa(Zea/Hex) DVa(Zea/Hex)	45.9 48.1 49.5 50.0 49.8 50.0 48.6 48.4
)	1/6	12.25 14.25 16.22 18.30 20.32 22.26 00.33 02.30 04.32 06.27	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N 04 29.3 N 04 45.0 N 05 14.1 N 05 51.7 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W 14 33.2 W 14 52.4 W 15 10.0 W 15 29.7 W 15 45.4 W 16 04.9 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-138 152-UW-139 153-UW-140 153-UW-140 153-UW-141 153-UW-142 153-UW-143 153-37-145 153-37-145 153-37-145 153-37-148 153-37-149 153-37-150 153-37-151 153-37-152	NT NT NT NT NT NT NT NT 120 80 60 51 40 34 14 7 0	0.22 0.29 0.35 0.38 0.30 0.30 0.31 0.33 0.24 0.23 0.06 0.24 0.14 0.14 0.50 0.50 0.48 0.36 0.28 0.27	0.098 0.103 0.297 0.384 0.407 0.281 0.233	Hex/DVa(But) Hex/DVa(But) Hex/DVa Hex/DVa DVa(Zea/Hex) DVa(Zea/Hex) DVa(Zea/Hex)	45.9 48.1 49.5 50.0 49.8 50.0 48.6 48.4 58.1x31.6
)	1/6 )*6 2/6-Stn. 37	12.25 14.25 16.22 18.30 20.32 22.26 00.33 02.30 04.32 06.27 08.50-10.21	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N 04 29.3 N 04 45.0 N 05 14.1 N 05 51.7 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W 14 33.2 W 14 52.4 W 15 10.0 W 15 29.7 W 15 45.4 W 16 04.9 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-138 152-UW-139 153-UW-140 153-UW-140 153-UW-141 153-UW-142 153-37-144 153-37-145 153-37-145 153-37-145 153-37-148 153-37-149 153-37-150 153-37-151	NT NT NT NT NT NT NT NT NT 120 80 60 51 40 34 14 7	0.22 0.29 0.35 0.38 0.30 0.30 0.31 0.33 0.24 0.23 0.06 0.24 0.14 0.40 0.50 0.48 0.36 0.28	0.098 0.103 0.297 0.384 0.407 0.281 0.233	Hex/DVa(But) Hex/DVa(But) Hex/DVa Hex/DVa DVa(Zea/Hex) DVa(Zea/Hex) DVa(Zea/Hex)	45.9 48.1 49.5 50.0 49.8 50.0 48.6 48.4
)	1/6 )*6 2/6-Stn. 37	12.25 14.25 16.22 18.30 20.32 22.26 00.33 02.30 04.32 06.27 08.50-10.21	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N 04 29.3 N 04 45.0 N 05 14.1 N 05 51.7 N 05 51.7 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W 14 33.2 W 14 52.4 W 15 10.0 W 15 29.7 W 15 45.4 W 16 04.9 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-138 152-UW-139 153-UW-140 153-UW-140 153-UW-141 153-UW-142 153-UW-143 153-37-144 153-37-145 153-37-147 153-37-148 153-37-149 153-37-150 153-37-151 153-37-152 153-UW-153	NT NT NT NT NT NT NT NT 120 80 60 51 40 34 14 7 0 NT	0.22 0.29 0.35 0.38 0.30 0.30 0.31 0.33 0.24 0.23 0.06 0.24 0.14 0.50 0.48 0.36 0.28 0.27 0.28	0.098 0.103 0.297 0.384 0.407 0.281 0.233 0.215	Hex/DVa(But) Hex/DVa(But) Hex/DVa Hex/DVa DVa(Zea/Hex) DVa(Zea/Hex) DVa(Zea/Hex) DVa(Zea/Hex)	45.9 48.1 49.5 50.0 49.8 50.0 48.6 48.4 58.1x31.6 49.5x31.6
)	1/6 5 2/6-Stn. 37 2/6	12.25 14.25 16.22 18.30 20.32 22.26 00.33 02.30 04.32 06.27 08.50-10.21	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N 04 29.3 N 04 45.0 N 05 14.1 N 05 51.7 N 05 51.7 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W 14 33.2 W 14 52.4 W 15 10.0 W 15 29.7 W 15 45.4 W 16 04.9 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-138 152-UW-139 153-UW-140 153-UW-140 153-UW-141 153-UW-142 153-UW-143 153-37-144 153-37-145 153-37-147 153-37-148 153-37-149 153-37-150 153-37-151 153-37-152 153-UW-153	NT NT NT NT NT NT NT NT 120 80 60 51 40 34 14 7 0	0.22 0.29 0.35 0.38 0.30 0.30 0.31 0.33 0.24 0.23 0.06 0.24 0.14 0.14 0.50 0.50 0.48 0.36 0.28 0.27	0.098 0.103 0.297 0.384 0.407 0.281 0.233	Hex/DVa(But) Hex/DVa(But) Hex/DVa Hex/DVa DVa(Zea/Hex) DVa(Zea/Hex) DVa(Zea/Hex)	45.9 48.1 49.5 50.0 49.8 50.0 48.6 48.4 58.1x31.6 49.5x31.6
)	1/6 5 2/6-Stn. 37 2/6	12.25 14.25 16.22 18.30 20.32 22.26 00.33 02.30 04.32 06.27 08.50-10.21 12.06 14.58-15.11	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N 04 29.3 N 04 45.0 N 05 14.1 N 05 51.7 N 05 51.7 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W 14 33.2 W 14 52.4 W 15 10.0 W 15 29.7 W 15 45.4 W 16 04.9 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-138 152-UW-139 153-UW-140 153-UW-140 153-UW-141 153-UW-142 153-UW-143 153-37-144 153-37-145 153-37-147 153-37-148 153-37-149 153-37-150 153-37-151 153-37-152 153-UW-153	NT NT NT NT NT NT NT NT 120 80 60 51 40 34 14 7 0 NT	0.22 0.29 0.35 0.38 0.30 0.30 0.31 0.33 0.24 0.23 0.06 0.24 0.14 0.50 0.48 0.36 0.28 0.27 0.28	0.098 0.103 0.297 0.384 0.407 0.281 0.233 0.215	Hex/DVa(But) Hex/DVa(But) Hex/DVa Hex/DVa DVa(Zea/Hex) DVa(Zea/Hex) DVa(Zea/Hex) DVa(Zea/Hex)	45.9 48.1 49.5 50.0 49.8 50.0 48.6 48.4 58.1x31.6 49.5x31.6
)	1/6 5 2/6-Stn. 37 2/6	12.25 14.25 16.22 18.30 20.32 22.26 00.33 02.30 04.32 06.27 08.50-10.21 12.06 14.58-15.11	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N 04 29.3 N 04 45.0 N 05 14.1 N 05 51.7 N 05 51.7 N 06 06.1 N 06 21.7 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W 14 33.2 W 14 52.4 W 15 10.0 W 15 29.7 W 15 45.4 W 16 04.9 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-139 153-UW-140 153-UW-140 153-UW-141 153-UW-143 153-37-144 153-37-145 153-37-145 153-37-148 153-37-149 153-37-150 153-37-151 153-37-152 153-UW-153 153-38-154	NT NT NT NT NT NT NT NT 120 80 60 51 40 34 14 7 0 NT	0.22 0.29 0.35 0.38 0.30 0.30 0.31 0.33 0.24 0.23 0.06 0.24 0.14 0.50 0.48 0.36 0.28 0.27 0.28 0.24	0.098 0.103 0.297 0.384 0.407 0.281 0.233 0.215	Hex/DVa(But) Hex/DVa(But) Hex/DVa Hex/DVa DVa(Zea/Hex) DVa(Zea/Hex) DVa(Zea/Hex) DVa(Zea/Hex)	45.9 48.1 49.5 50.0 49.8 50.0 48.6 48.4 58.1x31.6 49.5x31.6 47.9x31.6
)	1/6 76 2/6-Stn. 37 2/6 2/6-Stn. 38	12.25 14.25 16.22 18.30 20.32 22.26 00.33 02.30 04.32 06.27 08.50-10.21 12.06 14.58-15.11 (14.01)	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N 04 29.3 N 04 45.0 N 05 14.1 N 05 51.7 N 05 51.7 N 06 06.1 N 06 21.7 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W 14 33.2 W 14 52.4 W 15 10.0 W 15 29.7 W 15 45.4 W 16 04.9 W 16 18.3 W 16 32.9 W 16 49.5 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-139 153-UW-140 153-UW-140 153-UW-141 153-UW-142 153-37-144 153-37-145 153-37-145 153-37-148 153-37-149 153-37-150 153-37-152 153-UW-153 153-38-154 153-UW-155	NT NT NT NT NT NT NT NT NT 120 80 60 51 40 34 14 7 0 NT NT	0.22 0.29 0.35 0.38 0.30 0.30 0.31 0.33 0.24 0.23 0.06 0.24 0.14 0.40 0.50 0.48 0.26 0.27 0.28 0.27	0.098 0.103 0.297 0.384 0.407 0.281 0.233 0.215	Hex/DVa(But) Hex/DVa(But) Hex/DVa Hex/DVa DVa(Zea/Hex) DVa(Zea/Hex) DVa(Zea/Hex) DVa(Zea/Hex)	45.9 48.1 49.5 50.0 49.8 50.0 48.6 48.4 58.1x31.6 49.5x31.6 47.9x31.6 50.3x31.6
) ) .	1/6 76 2/6-Stn. 37 2/6 2/6-Stn. 38	12.25 14.25 16.22 18.30 20.32 22.26 00.33 02.30 04.32 06.27 08.50-10.21 12.06 14.58-15.11 (14.01) 16.10	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N 04 29.3 N 04 45.0 N 05 14.1 N 05 51.7 N 05 51.7 N 06 06.1 N 06 21.7 N 06 39.1 N 06 58.1 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W 14 33.2 W 14 52.4 W 15 10.0 W 15 29.7 W 15 45.4 W 16 04.9 W 16 18.3 W 16 32.9 W 16 49.5 W 17 07.7 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-139 153-UW-140 153-UW-140 153-UW-141 153-UW-142 153-37-144 153-37-145 153-37-146 153-37-148 153-37-149 153-37-149 153-37-150 153-37-151 153-37-152 153-UW-153 153-UW-155 153-UW-155 153-UW-156	NT NT NT NT NT NT NT NT NT 120 80 60 51 40 34 14 7 0 NT NT NT	0.22 0.29 0.35 0.38 0.30 0.30 0.31 0.33 0.24 0.23 0.06 0.24 0.14 0.40 0.50 0.48 0.26 0.27 0.28 0.24	0.098 0.103 0.297 0.384 0.407 0.281 0.233 0.215	Hex/DVa(But) Hex/DVa(But) Hex/DVa Hex/DVa DVa(Zea/Hex) DVa(Zea/Hex) DVa(Zea/Hex) DVa(Zea/Hex)	45.9 48.1 49.5 50.0 49.8 50.0 48.6 48.4 58.1x31.6 49.5x31.6 47.9x31.6 50.3x31.6 53.8
) ) .	1/6 76 2/6-Stn. 37 2/6 2/6-Stn. 38	12.25 14.25 16.22 18.30 20.32 22.26 00.33 02.30 04.32 06.27 08.50-10.21 12.06 14.58-15.11 (14.01) 16.10 18.24	03 15.2 N 03 29.4 N 03 44.4 N 04 00.2 N 04 15.1 N 04 29.3 N 04 45.0 N 05 14.1 N 05 51.7 N 05 51.7 N 06 06.1 N 06 21.7 N 06 39.1 N 06 58.1 N 07 17.5 N	13 00.9 W 13 19.4 W 13 37.3 W 13 57.0 W 14 15.6 W 14 33.2 W 14 52.4 W 15 10.0 W 15 29.7 W 15 45.4 W 16 04.9 W 16 18.3 W 16 32.9 W 16 49.5 W 17 07.7 W 17 25.3 W	Optics/NIL ? 152-UW-131 152-UW-135 152-UW-136 152-UW-137 152-UW-139 153-UW-140 153-UW-140 153-UW-141 153-UW-142 153-37-144 153-37-145 153-37-145 153-37-148 153-37-149 153-37-150 153-37-152 153-UW-153 153-38-154 153-UW-155	NT NT NT NT NT NT NT NT NT 120 80 60 51 40 34 14 7 0 NT NT	0.22 0.29 0.35 0.38 0.30 0.30 0.31 0.33 0.24 0.23 0.06 0.24 0.14 0.40 0.50 0.48 0.26 0.27 0.28 0.27	0.098 0.103 0.297 0.384 0.407 0.281 0.233 0.215	Hex/DVa(But) Hex/DVa(But) Hex/DVa Hex/DVa DVa(Zea/Hex) DVa(Zea/Hex) DVa(Zea/Hex) DVa(Zea/Hex)	45.9 48.1 49.5 50.0 49.8 50.0 48.6 48.4 58.1x31.6 49.5x31.6 47.9x31.6 50.3x31.6

3/6	00.03	07 49,8 N	17 56 2 14	154-UW-159						
	02.04	08 07.4 N			NT		0.19			49.9
				154-UW-160	NT		0.21			49.5
	03.58	08 23.0 N		/ 154-UW-161	NT		0.23			51.9
	06.03	08 40.4 N	18 45.4 V	154-UW-162	NT		0.28			34.4
	08.08	08 57.9 N	19 01.6 W	/ 154-UW-163	NT		0.28			50,7
							0.20			30,7
3/6-Stn.39	09.02-10.30	09 03.7 N	19 07 2 W	/ 154-39-169	120		0.00			
			10 01.2				0.03			
				154-39-170	80		0.09	0.060	DVa/Hex/Fuc	
				154-39-171	60		0.22	0.153	DVa/Hex/Fuc	
				154-39-172	50		0.33	0.273		
				154-39-167	40	2	2.28			
				154-39-168	40	6	2.12			
				154-39-173	40	•	2.07	1.831	Line (Dar 10 and 10	
				154-39-174	33				Hex/Fuc/Per/E	iur -
				154-39-175	14		0.58	0.521	Hex/DVa/Zea	
							0.29	0.228		
				154-39-176	7		0.29	0.254		52.5x31.6
				154-39-177	0		0.27	0.220	Zea/DVa(Hex)	
				154-39-164	surf-tot		0.26			
				154-39-165	surf-<20		0.25			
				154-39-166	surf-<2		0.20			
					_		0.20			
3/6-Stn. 40	13.00-13.28	09 24.6 N	19 25.7 W	154-40-184	NT/Optic		0.15	0 1 0 2	7	
					s s	•	0.15	0.183	Zea(DVa)	49.7x31.6
	(13.10)				3					
	()									
3/6	15.40	00 40 0 11	10 10 010							
		09 40.2 N	19 40.9 W	154-UW-185	NT		0.15			49.6x31.6
	17.33	09 55.5 N	19 49.3 W	154-UW-186	NT		0.16			52.3
	19.38	10 17.6 N	19-45.1 W	154-UW-187	NT		0.13			49.5
	21.31	10 38.9 N	19 40.9 W	154-UW-188	NT		0.17			
	23.34	11 02.3 N	19-36.1 W	154-UW-189	NT		0.17			50.3
4/6	01.38	11 26.6 N	19 31 3 W	155-UW-190	NT					50.0
	03.33	11 49.3 N	19 26 5 14	155-UW-191			0.18			51.7
	05.39	12 14.2 N	10 21 2 14	155-044-191	NT		0.17			50.9
	08.37	12 14.2 1	19 21.3 44	155-UW-192	NT		0.22			52.8
	00.57	12 46.4 N	19 14.9 W	155-UW-193	NT		0.30			58.1
410 01- 44										
4/6-Stn. 41	09.04-10.46	12 47.1 N	19 14.7 W	155-41-194	60		0.08	0.024	DVb(Fuc/Hex)	
				155-41-195	50		0.24	0.193	DVb(Fuc/Hex)	
				155-41-196	40		0.34	0.250		
				155-41-197	30	5		0.200	DVb(Fuc/Hex)	
				155-41-206			1.93			
					30	6	1.44	1.762	Hex/Fuc(But/P	er)
				155-41-198	26		0.63	0.539	DVa/Zea(Hex)	
				155-41-199	22		0.84	0.712	DVa/Zea(Hex)	
				155-41-200	14		0.37	0.306	Zea/DVa(Hex)	
				155-41-201	7		0.30	0.247	Zea/DVa(Hex)	56 4x31 6
				155-41-202	0		0.30		Zea/DVa(Hex)	
				155-41-203	surf-tot		0.30			
				155-41-204	surf-<20		0.27			
				155-41-205	surf-<2					
				100-41-200	Sul1-~2		0.22			
4/6-Stn. 42	13.34-13.56	13 17.8 N	10 09 7 14/	155 40 007						
	(13.40)	13 17.014	19 00.7 44	100-42-207	NT		0.21	0.178	Zea(Hex/DVa)	56.0x31.6
	(10.40)									
410	45 00									
4/6	15.32	13 33.0 N	19 05.5 W	155-UW-208	NT		0.21			57.2x31.6
	17.37	13 55.4 N	19 00.7 W	155-UW-209	NT		0.27			71.1x31.6
	19.34	14 26.8 N	19 06.2 W	155-UW-210	NT		0.18			
	21.25	14 35.7 N	19 11.6 W	155-UW-211	NT		0.29			5.7x3.61
	23.26	14 56.7 N	19 19 9W	155-UW-212	NT					7.8x3.61
5/6	01.28		10 29 / 14/	156-UW-213			0.36			8.4
	03.30	15 40 0 N	10 26 0 14/	100-044-213	NT		0.80	0.484	Fuc(Hex)	17.7
		15 40.5 N	19 30.9 W	156-UW-214	NT		0.31			8.4
	05.30	10 00.0 N	19 53.2 W	156-UW-215	NT		0.39			9.8
	07.31	16 08.6 N	19-59.1 W	156-UW-216	NT		0.55			10.4
<b>FM</b> A1										
5/6-Stn. 43	09.12-10.36	16 22.5 N	20 00.0 W	156-43-217	60		0.21	0.156	Fuc(Hex)	
				156-43-218	48		0.66	0.582	• •	
				156-43-219	40				Fuc(Hex)	
				156-43-220			1.80	1.058	Fuc(Hex)	
					35		1.81	1.056	Fuc(Hex)	
				156-43-221	30		1.86	1.047	Fuc(Hex)	
				156-43-222	26		1.26	1.112	Fuc(Hex)	
				156-43-223	13		0.49	0.452	Hex/Fuc(Zea)	
				156-43-224	7		0.50	0.450		11.0x3.16
				156-43-225	0		0.49	0.496	Hex/Fuc(Zea)	
							<b>-</b>	2.,00		

•

	5/6-Stn. 44	11.43-12.01	16 33.5 N	19-59.9 W	156-44-226	NT/Optic	0.94	0.882	Fuc/Hex(But)	18.3x3.16
		(11 52)				5				
-		(11.53)								
	5/6-Stn. 45	13.42	16 49 2 N	20 00.2 W	158 45 007					
			10 43.2 1	20 00.2 99	100-40-227	NT/Optic s	1.55	1.115	Fuc(Hex)	35.0x3.16
		13.35-13.53			156-45-228	s 0-Tot	2.41			
					156-45-229	0-<20	0.91			
)					156-45-230	0-<2	0.34			
						0 <u>E</u>	0.04			
١	5/6	15.40	17 02.2 N	20 00.1 W	156-UW-231	NT	1.41			23.8
		18.21	17 39.4 N		156-UW-232	NT	0.56			15.3
		20.07	17 59.6 N		156-UW-233	NT	4.04	3.747	Fuc(Hex/Dia)	56.0
		21.19	18 13.9 N	19-59.9 W	156-UW-234	NT	1.89	1.887	Fuc(Hex/Dia)	52.9
		23.16	18 36.2 N		156-UW-235	NT	3.41	2.812	Fuc(Hex/Dia)	58.8
,	6/6	00.20			157-UW-236	NT	2.34			50.9
		01.20	18 59.9 N	20 00.0 W	157-UW-237	NT	0.58			17.4
,		03.37	19 26.1 N	20 00.0 W	157-UW-238	NT	0.46			17.7
		05.20			157-UW-239	NT	0.56			19.4
		05.55	19 52.5 N	20 00.1 W	157-UW-240	NT	1.25			33.2
		07.02	20 04.4 N	20 00.2 W	157-UW-241	NT	1.74			45.0
		08.11	20 17.2 N	20 00.1 W	157-UW-242	NT	1.71	1.696	Hex/Fuc(Zea)	50.2
	/6-Stn. 46									
	70-Sui, 40	09.00-10.36	20 24.3 N	20 00.1 W		80	0.06			
					157-46-247	50	0.24	0.157	Fuc	
					157-46-248	40	0.45	0.273	Fuc	
					157-46-249	30	1.79	1.683	Fuc(Hex)	
					157-46-250	20	2.03	1.985	Fuc(Hex)	
					157-46-251	12	2.29	1.834	Hex/Fuc(Zea/D	lia)
					157-46-252	7	2.20	1.972	Hex/Fuc(Zea/	~56
					157-46-253	0	1.07	4 770	Dia)	
					157-46-243	0-tot	1 <i>.</i> 97 1.92	1.770	Hex/Fuc(Zea/D	ia)
			•		157-46-244	0-<20	1.38			
					157-46-245	0-<2	0.48			
						0 <u>2</u>	0.40			
	6/6	11.30	20 34.3 N	20 00.0 W	157-UW-254	NT	1.91			42.9
							1.01			42.3
	6/6-Stn. 47	12.08-12.23	20 40.7 N	19 59.7 W	157-47-255	NT/Optic	1.82	1.598	Hex(Fuc)	~50
		(40.47)				8				
		(12.17)			157-47-256	0-tot	1.86			
					Rpt. Extraction	0-tot	0.24			
					157-47-257	0-<20	1.55			
					Rpt. Extraction	0-<20	0.21			
					157-47-258	0-<2	0.47			
-					Rpt. Extraction	0-<2	0.08			
	6/6-Stn. 48	13.29-13.43	20.52.1 N	20.00.0W	157_48_250	NT/Optic	0.00	4 4 9 9	<b>E</b>	
,				20 00.0 11	101-40-205	s s	0.89	1.138	Fuc/Hex	38.7x3.16
		(13.35)			Rpt. Extraction		0.30			
•	e ie	45.00		<b></b>			-			
	6/6	15.30	21 10.7 N		157-UW-260	NT	3.36	2.662	Hex/Fuc(Dia)	56.9
1		16.29	21 21.2 N		157-UW-261	NT	0.24	0.112	Zea(DVa)	25.0
		18.32	21 43.4 N	20 00.4 W	157-UW-262	NT	0.22	0.117	Zea(DVa)	18.4
)		20.29	22 05.1 N		157-UW-263	NT	0.21			15.4
,	7/6	22.25	22 28.0 N		157-UW-264	NT	0.14			13.5
	110	00.31	22 53.0 N		158-UW-265	NT	0.30			14.5
)		02.37	23 17.6 N		158-UW-266	NT	0.26			13.6
		04.35	23 40.5 N		158-UW-267	NT	0.29			13.3
1		06.24	24 01.4 N	20 00.0 W	158-UW-268	NT	0.22			12.0
	7/6-Stn. 49	08.58-09.58	24 30.3 N	20 00.0 W	158.40 079	0.4-4				
	<b>-</b>			10 00.0 44	158-49-279	0-tot	0.22			
					158-49-280	0-<20 0-<2	0.20			
					158-49-269	0-<2 0	0.13	0.400		
					158-49-270	0 7	0.20	0.180	Hex/Zea/DVa	
					158-49-271	20	0.20	0.200	Hex/Zea/DVa	32.4x10
					158-49-272	20 34	0.20 0.21	0.339	Hex/Zea/DVa	
					158-49-273	5 <del>4</del> 65	0.21	0.151	Hex/Zea/DVa	
					158-49-274	75	0.34	0.256 0.381	Hex/Zea/DVa	
							0.47	0.301	Hex/Zea/DVa/B	ul

					158-49-275	20			_	
					158-49-276	80 120	0.54	0.427		/But
						120	0.20	0.154	Hex/Zea/DVa	/But
7/6-Stn. 50	12.26-12.43	3 24 59.4 1	N 20 00	.1 W	/ 158-50-277	NT/Optic	0.13	0.000	7	
	(10.2.0)					8	0.15	0.086	3 Zea/DVa(Hex	) 21.5
7/6-Stn. 51	(12.34) 13.16-13.34			_						
10-0ui. Ji	1 13.10-13.34	25 05.1 M	N 19 59	.8 W	/ 158-51-281	NT/Optic	0.14	0.095	Zea/DVa(Hex	) 14.5
	(13.24)					S				/ 14.5
	(10.24)									
7/6	15.23	25 25.8 N	1 20 00	2 14	158-UW-282		_			
	17.30	25 50.3 N	19 59	9 W	158-UW-283	NT	0.18			15.3x10
	19.30	26 12.6 N	19 59	7 W	158-UW-284	NT NT	0.10			14.3
	21.32	26 34.8 N	I 19 59	9W	158-UW-285	NT	0.08			14.2
<b>A</b> 1 <b>A</b>	23.34	26 57.5 N	1 20 00.	0 W	158-UW-286	NT	0.08 0.09			16.9
8/6	01.31	27 19.1 N	I 20 00.	0 W	159-UW-287	NT	0.09			18.2
	03.31	27 42.1 N	I 20 00.	0 W	159-UM-288	NT	0.08			17.4
	05.38	28 06.2 N	I 19 59.	8 W	159-UW-289	NT	0.06			17.2
8/6-Stn. 52	00.00.00.55									17.2
010-501. 52	09.02-09.55	28 41.0 N	19 52.	2 W	159-52-293	200	0.04	0.026	Hex/Zea	
					159-52-294	165	0.16	0.117	Hex/Zea	
					159-52-295	146	0.30	0.214		/But
					159-52-298	<del>2</del> 8	0.13	0.105	Hex/Zea	but
					159-52-297	62	0.08	0.068	Hex/Zea	
					159-52-298	36	0.06	0.040		
					159-52-299	20	0.06	0.031	Hex/Zea	
					159-52-300	7	0.06	0.034		14.6x10
					159-52-301	0	0.05	0.034	Hex/Zea	14.0410
					159-52-290	surf-tot	0.06			
					159-52-291	surf-<20	0.06			
					159-52-292	surf-<2	0.06			
8/6-Stn. 53	12.22-12.42	29 05.2 N	19 33.7	w	159-53-302	NT/Optic	0.06	0.027	Zea(Hex)	12.0
	(12.24)					S		0.027	zea(nex)	13.0
8/6	14.30	29 23.2 N	19 20.8	W	159-UW-303	NT	0.06			
	16.27	29 43.6 N	19 04.9	w	159-UW-304	NT	0.06			12.5
	18.35	30 06.6 N	18 47.8	W	159-UW-305	NT	0.07			12.7
	20.34	30 27.9 N	18 31.9	W	159-UW-308	NT	0.06			13.8
	22.28	30 48.3 N	18 16.7	Ŵ	159-UW-307	NT	0.05			13.1
9/6	00.27	31 09.3 N	18 00.7	W	160-UW-308	NT	0.05			12.5
	02.27	31 29.5 N	17 45.5	w	160-UW-309	NT	0.05			14.2
	04.29	31 50.7 N	17 29.9	W	160-UW-310	NT	0.05 0.06			13.4
	06.22	32 10.7 N	17 13.9	w	160-UW-311	NT	0.08			15.6
							0.00			15.8
9/6-Stn. 54	08.00-08.42	32 25.6 N	17 02.9	W	160-54-312	115	0.41	0.294	DVa(Hex/DVb)	
					160-54-313	100	0.43	0.310	DVa(Hex/DVb)	
					160-54-314	55	0.12	0.091	Zea/Hex	
					160-54-315	30	0.08	0.056	Zea/Hex	
					160-54-316	7	0.05	0.031	Zea/Hex	13.8
					160-54-317	0	0.05	0.032	Zea/Hex	13.0
					160-54-318	0-tot	0.05		Loginex	
					160-54-319	0-<20	0.05			
				1	160-54-320	0-<2	0.04			
9/6-Stn. 55	12.40-13.18	32 39.4 N	47 00 7							
		JZ J3.4 N	17 09.7	VV	NIL.	NIL	NIL	0.027	Zea(Hex)	NIL
9/6	14.21	32 46.0 N	17 22.2	W 1	60-UW-321	NT	0.06			
	16.20	33 06.6 N	17 29.8	W 1	60-UW-322	NT	0.06			15.8x10
	18.54	33 38.1 N	17 30.0	W 1	60-UW-323	NT	0.05			14.6
	20.25	33 57.7 N	17 30.2	W 1	60-UW-324	NT	0.07 0.07			14.7
10/0	22.37	34 25.4 N	17 30.1	<b>N</b> 1	60-UW-325	NT	0.07			14.0
10/6	00.36	34 50.4 N	17 29.9	N 1	61-UW-326	NT	0.07			13.8
	02.27	35 14.1 N	17 29.9	N 1	61-UW-327	NT	0.07			13.6
	04.30	35 40.9 N	17 30.31	N 1	61-UW-328	NT	0.07			13.3
	06.27	36 05.7 N	17 30.1 \	N 1	61-UW-329	NT	0.07			14.8
10/6 51- 50							w.w/			14.1
10/6-Stn. 56	09.00-10.35	36 36.8 N	17 30.21			140	0.13			
					61-56-331	100	0.48			
					61-56-332	84	0.62			

<i>'</i>								
					161-56-333	70	0.27	
					161-56-334			
						55	0.13	
					161-56-335	35	0.09	
5					161-56-336	20	0.09	
					161-56-337	7	0.09	16.5
					161-56-338	0	0.09	
					161-56-340	0-Tot	0.08	
					161-56-341	0-<20	0.08	
}					161-56-342	0-<2	0.05	
	10/6 51- 57	10 20 40 50						
	10/0-5(0. 57	12.30-12.56	36 59.4 N	17 29.5 W	161-57-339	NT/Optic	0.15	13.7
)						5		
		(12.40)						
1								
	10/6	14.45	37 22.3 N	17 29.6 W	161-UW-343	NT	0.08	13.8x10
		16.41			161-UW-344	NT	0.05	
		19.05			161-UW-345			13.4
		21.12				NT	0.18	15.0
			38 44.7 N	17 29.9 W	161-UW-346	NT	0.12	18.6
		23.10	39 03.8 N	17 30.1 W	161-UW-347	NT	0.10	17.5
	11/6	01.08	39 27.9 N	17 30.2 W	162-UW-348	NT	0.09	17.5
		03.10	39 52.7 N	17 30.1 W	162-UW-349	NT	0.17	23.4
•		05.21	40 20.8 N	17 30.1 W	162-UW-350	NT	0.20	22.3
		08.05			162-UW-351	NT		
	<b>•</b>			11 20.0 11	102-011-001	141	0.20	20.5
	IS Sta ER	09.01-10.11	44 04 7 11	47.00.0141				
	-1/0-3(ii. 50	09.01-10.11	41 U4.7 N	17 29.9 W		120	0.03	
					162-58-356	80	0.14	
					162-58-357	55	0.59	
					162-58-358	45	1.50	
					162-58-359	36	0.29	
					162-58-360			
						24	0.19	
					162-58-361	13	0.20	
					162-58-362	7	0.19	21.5x10
			_		162-58-363	0	0.20	
			•		162-58-352	0-tot	0.17	
					162-58-353	0-<20	0.16	
					162-58-354	0-<2		
					102-00-004	0-12	0.11	
	11/6-Stn. 59	11 46 40 40						
	1110-Sul. 59	11.40-12.12	41 19.0 N	17 12.2 W	162-59-364	NT/Optic	0.20	22.0x10
		(4.4.50)				S		
		(11.50)						
	11/6	13.13	41 28.1 N	17 03.1 W	162-UW-365	NT	0.24	22.3x10
		15.31			162-UW-366	NT	0.21	
•		17.36			162-UW-367			21.6
		19.48				NT	0.18	22.9
				10 03.9 W	162-UW-368	NT	0.21	26.6
	4.010	21.54			162-UW-369	NT	0.25	28.8
4	12/6	00.03			163-UW-370	NT	0.33	33.1
		02.00	43 34.9 N	15 06.9 W	163-UW-371	NT	0.38	34.3
ŧ.	<b>•</b>	03.54			163-UW-372	NT	0.28	30.7
		05.57			163-UW-373	NT	0.41	
		07.27	44 31 5 N	14 00 7 \/	163-UW-374			35.5
*		VI.£1		14 US./ W	103-044-3/4	NT	0.48	42.1
	10/0 01- 00							
	i⊿o-stn. 60	08.28-09.50	44 40.8 N	14 00.6 W		100	0.06	
					163-60-377	50	0.26	
					163-60-378	40	1.18	
2					163-60-379	35	1.37	
)					163-60-380	20		
					· · · · · ·		0.46	
1		~~~~	44 40 7 11		163-60-381	7	0.43	
•		09.20	44 40.7 N	14 00.6 W	163-60-375	NT	0.40	34.9x10
ŧ	12/6	11.54			163-UW-382	NT	0.57	46.1x10
		13.51			163-UW-383	NT	0.60	47.3
							0.00	47.5
	12/6-Stn. 61	15 03-15 10	45 20 5 M	13 07.5 W	163.61 294	NT/Ont-	0.00	-
		10.00-10.19	-0 23.J N	13 07.3 44	103-01-364	NT/Optic	0.86	71.4x10
		(15.05)				S		
		(15.05)						
		19.43			163-UW-385	NT	0.69	68.4x10
,		(21.43?)			163-UW-386	NT	0.85	78.0
		23.36			163-UW-337	NT	0.37	
,	13/6	01.33			164-UW-338			78.3
		-1.00	77 12.011	10.3 44	10-1011-000	NT	0.82	24.9x3.16

i

.

)

	03.31	47 32.7 N		N 164-UW-339	NT	1.08	40.0x3.16
	05.27	47 51.9 N	l 10 24.8 v	N 164-UW-340	NT	1.02	34.0x3.16
	06.55	48 05.1 N	i 10.09.6V	V 164-UW-341	NT	1.57	
	07.14	48 07.7 N	I 10 06.6 V	V 164-UW-342	NT	2.34	49.8x3.16
						2.04	27.6x1
13/6-Stn. 62	2 09.50~10.28	48 27.0 N	09 41.8 V	V 164-62-346	80	0.18	
				164-62-347	60	0.53	
				164-62-348	50	1.31	
				164-62-349	30		
				164-62-350	20	3.00	
				164-62-351	13	3.02	
				164-62-352		2.94	
					7	2.94	20.1x1
				164-62-353	4	2.96	
				164-62-354	0	2.89	•
				164-62-343	0-tot	2.86	
				164-62-344	0-<20	1.41	
				164-62-345	0-<2	1.04	
43/0							
13/6	12.52	48 37.6 N	09 03.4 V	V 164-UW-355	NT	1.00	23.0x3.16
	14.10	48 42.5 N	08 41.1 V	V 164-UW-356	NT	2.14	23.0x3.10 22.4x1
							22.481
13/6-Stn. 63	14.50	48 43.2 N	08 37.4 W	/ 164-63a-357	NT/Optic	2.19	22 5.4
					S	2.10	33.5x1
14.30-15.55	15.05	48 43.9 N	08 36.8 W	164-635-358	NT/Optic	2.03	25 7.4
					S	2.00	35.7x1
	15.55	48 44.6 N	08 34.8 W	/ 164-63c-359	NT/Optic	2.00	24 Av4
(					S	2.00	34.4x1
13/6	16.30	48 45.0 N	08 26.6 W	/ 164-UW-360	NT	2.49	25 0-4
13/6-Stn. 64	17.00-17.27	48 47.0 N	08 16.6 W	164-64-361	NT/Optic	1.81	35.9x1
					8	1.01	33.7x1
	(17.18)				-		
13/6	18.52	48 52.7 N	07 49.0 W	164-UW-362	NT	2.14	22.5-4
	19.35	48 55.4 N	07 38.3 W	164-UW-363	NT	1.93	33.5x1
	20.25	48 57.8 N	07 25.6 W	164-UW-364	NT		33.9
	22.14	49 05.3 N	06 58 5 W	164-UW-365	NT	2.20	34.4
14/6	00.15	49 14 4 N	06 27 7 W	165-UW-366		1.31	30.1
	02.15	49 22 7 N	05 56 6 14	165-UW-367	NT	1.99	37.5
	04.12	49 30 6 N	05 25 0 14	165-UW-368	NT	1.94	36.2
	06.02	40 20 0 N	04 53 0 14	105-097-368	NT	1.74	28.5
	00.02	-19 39.0 N	04 55.0 W	165-UW-369	NT	0.83	26.9
14/6-Stp 65	08.57-10.42	40 50 0 N	04.00.014	105 05 000			
	00.07-10.42	49 JU.2 N	04 09.5 W	165-65-370	20	2.44	
				165-65-371	13	2.47	
				165-65-372	7	2.39	50.0x1
				165-65-373	1	2.34	
	10.14			165-65-374	NT/Optic	2.40	
					s	-	
146 04- 00	42.00.40.4						
140-311.00	13.06-13.17	50 00.2 N	03 28.0 W	165-66-375	NT/Optic	1.47	32.4x1
	(43.00)				s		52X1
	(13.09)						

CTD	Date	Lat	Long	Analyses
A6-01	15.5.98	33 37.1 S	19 00 2 5	
A0-01	JD 135	33 37.13	18 00.2 E	Profile oxygen and DIC
A6-02	16.5.98	32 20.2 S	17 52.6 E	Profile oxygen and DIC
10 02	JD 136	54 40.2 3	17 J2.0 E	Oxygen production and respiration @ 2m, 7m, 10m, 20m, 40m, 80m,
	<b>JD</b> 150			120m
				DIC production and respiration @ 2m, 7m, 20m, 40m
				ETS @ 2m, 7m, 20m, 40m, 80,
	16 6 00			120m
A6-04	17.5.98	29 31.2 S	16 27.2 E	Profile oxygen and DIC
	JD 137			Oxygen production and respiration @ 3m, 5m, 7m, 20m, 25m, 40m, 130m
				DIC production and respiration @ 3m, 5m, 20m, 25m
				ETS @ 3m, 5m, 7m, 20m, 25m, 40m, 130m
A6-07	18.5.98	26 41.8 S	14 14.8 E	POC @ 3m, 5m, 7m, 20m, 25m, 40m, 130m Profile oxygen and DIC
	ЛD 138	20 41.0 5	14 14.0 []	Oxygen production and respiration @ 4m, 13m, 17m, 30m, 45m, 80m,
	12 100			160m
				DIC production and respiration @ 4m, 30m,
				ETS @ 4m, 9m, 13m, 17m, 20m, 30m, 45m, 80m, 160m
A6-10	21.5.98	28 55.8 S	16 11.3 E	Profile oxygen and DIC
	JD 141			Oxygen production and respiration @ 3m, 7m, 11m, 25m, 35m, 60m,
				110m
				DIC production and respiration @ 3m, 7m, 25m
A6-12	22.5.98	24 45.0 S	14 19.5 E	ETS @ 3m, 7m, 11m, 25m, 35m, 60m, 110m
10 12	JD 142	24 45.0 5	14 19.3 E	Profile oxygen and DIC
	75 142			Oxygen production and respiration @ 3m, 7m, 23m, 35m, 45m, 58m, 100m
				DIC production and respiration @ 3m, 7m, 35m
				ETS @ 3m, 7m, 15m, 23m, 35m, 45m, 58m,
A6-15	33 6 00			100m
A0-15	23.5.98 JD 143	21 39.3 S	12 24.4 E	Profile oxygen and DIC
	JD 143			Oxygen respiration @ 3m, 7m, 20m, 35m, 40m, 60m, 100m, 200m
_				DIC respiration @ 20m, 35m
				ETS @ 3m, 7m, 15m, 20m, 35m, 40m, 60m, 100m, 200m
A6-17	24.5.98	18 59.8 S	12 00.0 E	Profile oxygen and DIC
	JD 144			Oxygen respiration @ 80m, 100m, 180m
				DIC respiration @ 80m
				ETS @ 60m, 80m, 100m, 180m
A6-18	24.5.98	18 59.8 S	12 00.0 E	Profile oxygen and DIC
	Л 144			Oxygen production and respiration @ 7m, 11m, 30m, 45m,
				DIC production and respiration @ 11m, 45m
				Time series of O2 and DIC respiration @ 45m
A6-20	15 5 00	17 40 0 5	11 00 1 0	ETS @ 7m, 11m, 20m, 30m, 45m
10-20	25.5.98 JD 145	17 40.0 S	11 20.1 E	Profile oxygen and DIC
	142			Oxygen production and respiration @ 1m, 30m
				DIC production and respiration @ 1m, 7m, 30m ETS @ 1m 3m 7m, 12m, 20m, 40m, 50m, 100m
A6-22	26.5.98	14 44.6 S	07 51.6 E	ETS @ 1m, 3m, 7m, 13m, 20m, 30m, 40m, 50m, 100m Profile oxygen and DIC
	D 146	** 17.00	57 91.0 E	Oxygen production and respiration @ 1m, 12m, 35m, 50m, 62m, 80m,
				140m,
				A TVLL,

## Appendix A6-15 Oxygen, DIC and Respiration Samples Collected

ł

}

ì

				ETS @ 1m, 7m, 12m, 25m, 35m, 50m, 62m, 80m, 140m,
A6-23	27.5.98	11 37.2 9	04.09.51	20011
	JD 147	11 57.2 5	5 04 08.3 1	
				Oxygen production and respiration @ 2m
A6-24	27.5.98	11 37.2 §	6 04 08.3 <u>F</u>	ETS @ 2m, 7m E Profile oxygen and DIC
	JD 147			
				Oxygen production and respiration @ 20m, 52m, 75m, 85m, 100m, 140m ETS @ 20m, 32m, 52m, 75m, 85 m, 100m, 140m
A6-25	28.5.98	08 37.6 S	00 36.5 E	ETS @ 20m, 32m, 52m, 75m, 85m, 100m, 140m, 200m Profile oxygen and DIC
	JD 148			Oxygen production and respiration @ 2m
16.26				ETS @ 2m, 7m
A6-26	28.5.98	08 37.6 S	00 36.5 E	Profile oxygen and DIC
	JD 148			Oxygen production and respiration @ 16m 47m 65m 80m 200m
A6-27	29.5.98	05 51.9 S	00 00 1 1	213 (2) 10 III, 28 III, 4 / III, 65 III, 80 III, 130 III, 200 III, 28 III, 4 / III, 65 III, 80 III, 130 III, 200 III, 130
	JD 149	03 31.9 3	02 <i>3</i> 7.1 V	V Profile oxygen and DIC
				Oxygen production and respiration @ 1m
A6-28	29.5.98	05 51.9 S	02 37 J u	ETS @ lm, 7m
	JD 149		02 37.1 4	Profile oxygen and DIC
				Oxygen production and respiration @ 50m, 58m, 120m, 200m
46 20	20.0.00			ETS @ 12m, 22m, 33m, 50m, 47m, 58m, 120m, 200m
A6-29	30.5.98	02 48.7 S	06 09.8 W	Profile oxygen and DIC
A6-30	JD 150 30.5.98	02 40 7 0		ETS @ 1m, 7m
110 50	JD 150	02 48.7 S	06 09.8 W	
	30 150			Oxygen production and respiration @40m
				Respiration time series @ 40m
A6-31	31.5.98	00 01.7 S	08 51.0 W	ETS @ 13m, 24m, 40m, 55m, 65m, 120m, 200m
	JD 151		00 51.0 📢	
A6-33	01.06.98	03 04.3 N	12 46.2 W	Oxygen production and respiration @ 1m, 7m Profile oxygen and DIC
	JD 152			Oxygen production and respiration @ 1m
	_			ETS @ 1m, 7m
A6-34	01.06.98	03 04.3 N	12 46.2 W	Profile oxygen and DIC
	JD 152			Oxygen production and respiration @ 18m, 60m, 75m, 90m, 140m, 200m
				the production and respiration (a)
				60m
A6-35	02.06.98	05 51.7 N	16 04.9 W	ETS @ 18m, 60m, 75m, 90m, 140m, 200m Profile oxygen and DIC
	JD 153			Oxygen production and respiration @ 1m
				ETS @ 1m, 7m
A6-36	02.06.98	05 51.7 N	16 04.9 W	Profile oxygen and DIC
	JD 153			Oxygen production and respiration @ 50m, 60m
A6-37	02.04.00			E15 @ 14m, 40m, 50m, 60m, 80m, 120m, 200m
AU-37	03.06.98 JD 154	09 03.7 N	19 07.2 W	Profile oxygen and DIC
	JD 154			Oxygen production and respiration @ 1m, 14m
A6-38	03.06.98	09 03.7 N	10.07.2.337	E1S@ Im, 7m, 14m
	JD 154	07 05.7 N	19 07.2 W	Profile oxygen and DIC
				Oxygen production and respiration @ 40m, 50m, 60m, 80m, 120m
A6-39	04.06.98	12 47.1 N	19 14.7 W	ETS @ 22m, 33m, 40m, 50m, 60m, 80m, 120m, 200m Profile oxygen and DIC
	JD 155			Oxygen production and respiration @ 1m, 12m
				ETS @ 1m, 7m, 12m
A6-40	04.06.98	12 47.1 N	19 14.7 W	Profile oxygen and DIC
	JD 155			Oxygen production and respiration @ 30m, 40m, 50m, 60m, 100m, 200m

;

					DIC production and respiration @ 30m
	6-41	05.06.98	16 22 6 M	20.00.0.317	ETS @ 22m, 30m, 40m, 50m, 60m, 100m, 200m
A	0-41	JD 156	16 22.5 N	20 00.0 W	Profile oxygen and DIC Oxygen production @ 1m, 13m
		JD 150			ETS @ 1m, 7m, 13m
Af	6-42	05.06.98	16 22.5 N	20.00 N W	Profile oxygen and DIC
- A	U-44	JD 156	10 22.5 1	20 00.0 ₩	Oxygen production and respiration @ 35m, 40m, 48m, 60m, 120m, 200m
		<i>JD</i> 150			DIC production and respiration @ 35m
					Oxygen and DIC respiration time series @ 35m
					ETS @ 17m, 35m, 40m, 48m, 60m, 120m, 200m
A	6-43	06.06.98	20 24.3 N	20 00.1 W	Profile oxygen and DIC
		JD 157			Oxygen production and respiration @ 1m (screened 200 um and unscreened)
					7m, 30m, 80m, 200m
-					DIC production and respiration @ 7m
					ETS @ 1m (screened & unscreened), 7m, 12m, 16m, 20m, 30m, 40m, 80m,
					160m, 200m
A	6-44	07.06.98	24 30.3 N	20 00.0 W	Profile oxygen and DIC
		JD 158		20 00.0 11	Oxygen production and respiration @ 1m, 20m, 80m, 90m, 120m, 200m
					ETS @ 1m, 20m, 34m, 53m, 80m, 90m, 120m,
					200m
A	6-45	08.06 <b>.9</b> 8	28 41.0 N	19 52.2 W	Profile oxygen and DIC
		JD 159			Oxygen production and respiration @ 1m, 36m, 146m, 155m, 165m, 200m
					ETS @ 1m, 20m, 36m, 62m, 96m, 146m, 155m, 165m, 180m, 200m
A	6-46	09.06.98	32 25.6 N	17 02.9 W	Profile oxygen and DIC
	<i>c</i>	JD 160			ETS @ 1m, 7m, 30m, 55m, 100m, 115m, 120m, 140m, 200m
A	6-47	10.06.98	36 36.8 N	17 30.2 W	Profile oxygen and DIC
					Oxygen production and respiration @ 1m, 7m,
					20m FTS @ 1m 7m 20m
A	6-48	10.06.98	36 36 8 N	17 30 2 W	ETS @ 1m, 7m, 20m Profile oxygen and DIC
Ä	0 10	D 161	50 50.0 14	17 50.2 ₩	Oxygen production and respiration @ 55m, 89m, 100m, 140m, 200m
		JD 101			DIC production and respiration @
					89m
					Time series respiration @ 89m
					ETS @ 1m, 7m, 20m, 35m, 55m, 89m, 100m, 140m, 200m
A	6-49	11.06.98	41 04.7 N	17 29.9 W	
		JD 162			Oxygen production and respiration @ 1m, 13m, 45m, 55m, 60m, 80m, 200m
					DIC production and respiration @
					45m
A	6 50	12 04 00	44 40 9 11	14 00 4 117	ETS @ 1m, 7m, 13m, 24m, 36m, 45m, 55m, 60m, 80m, 120m, 200m
A	6-50	12.06.98	44 40.8 N	14 UU.6 W	Profile oxygen and DIC
	6-51	JD 163 13.06.98	18 17 A M	00 41 9 117	ETS @ 7m, 20m, 35m, 40m, 50m, 100m, 250m
M	J-J I	JD 164	40 27.U N	U7 41.8 W	Profile oxygen and DIC
		JL7 104			Oxygen production and respiration @ 1m, 4m, 7m, 30m, 50m, 60m, 200m
					DIC production and respiration @ 1m, 7m ETS @ 1m, 4m, 7m, 13m, 20m, 30m, 50m, 60m, 80m, 100m, 200m
					LE I S (45 I III, 4 III, I IIII, 2 VIII, 2 VIII, 2 VIII, 3 VIII, 6 VIII, 1 VVIII, 2 VVIIII, 2 VVIII, 2 VVIIII, 2 VVIII,

)

Ap	pendix A6	-16	Sampl	es take	a for	• New	Production,	ຄກປ	Dark	Communit	y Production

-ppendia ili			T DOMECTION, CHI	I Dark Community Production
Date	Position	No. Deptins	Depth Range (M)	Rate Variable
16/5	32°20S	6	0 - 20	¹⁵ N uptake – 24h
	17°52E	1	20	¹⁵ N-NH ₄ - regeneration/oxidation
		1	7	¹⁵ N uptake – 4h
17/5	29°31S	6	0 - 20	¹⁵ N uptake – 24h
	16°27E	1	3	¹⁵ N uptake – 4h
18/5	26°42S	6	0 - 30	15 N uptake – 24h
10/5	14°15E	1	30	I SNT NTT
	14 150	1		15 N-NH ₄ – regeneration/oxidation
			13	¹⁵ N uptake – 4h
	000000	6	7 - 160	¹⁴ C - nitrification
21/5	28°56S	6	0 – 25	¹⁵ N uptake – 24h
	16°11E	1	25	¹⁵ N-NH ₄ - regeneration/oxidation
		1	7	¹⁵ N uptake – 4h
		6	7 - 60	¹⁴ C – nitrification
		5	7 - 60	ADIN
22/5	24°45S	5	0-35	¹⁵ N uptake – 24h
	14°19E	1	35	15 N-NH ₄ – regeneration/oxidation
		1	7	¹⁵ N uptake – 4h
		6	7 - 60	¹⁴ C - nitrification
23/5	21°29S	1	7-00	
<i>C</i> 1, <i>2</i>	12°24E			¹⁵ N uptake – 4h
24/5		<u> </u>	35	¹⁴ C – nitrification, 24h time series
24/5	18°59S	6	0 - 45	¹⁵ N uptake – 24h
	11°59E	1	45	14 C – nitrification, 24h time series
		1	45	ΔDIN, 24h time series
25/5	17°39S	6	0 - 30	¹⁵ N uptake – 24h
	11°19E	1	30	¹⁵ N-NH ₄ – regeneration/oxidation
		1	7	¹⁵ N uptake – 4h
		6	7 - 50	¹⁴ C – nitrification
		5	7 - 50	ADIN
26/5	14°44S	6	0 - 50	¹⁵ N uptake – 24h
	07°51E	1	50	15 N-NH ₄ – regeneration/oxidation
1 1	07 512	1	12	¹⁵ N uptake – 4h
		6		$\frac{140}{140} = \frac{141}{140}$
		5	7 - 80	¹⁴ C – nitrification
	1100 70		7 - 80	ADIN
27/5	11°37S	6	0 – 75	¹⁵ N uptake – 24h
	04°08E	1	75	¹⁵ N-NH ₄ – regeneration/oxidation
		3	0 – 18	¹⁵ N uptake – 4h
		4	50 - 100	¹⁴ C – nitrification
		1	18	¹⁵ N-uptake kinetics. Low addition
28/5	08°37S	6	0 - 65	¹⁵ N uptake – 24h
	00°35E	1	65	¹⁵ N-NH ₄ - regeneration/oxidation
		3	3 - 16	¹⁵ N uptake – 4h
		6	7 - 130	$^{14}C$ – nitrification
		5	7 - 130	ADIN
29/5	05°52S	6	0 - 50	
2775	02°37W	1		¹⁵ N uptake – 24h
	02°37W	i	50	¹⁵ N-NH ₄ – regeneration/oxidation
		3	0 12	¹⁵ N uptake – 4h
		6	7 - 120	¹⁴ C – nitrification
		1	12	¹⁵ N-uptake kinetics. Low addition
30/5	02°49S	3	0 –13	¹⁵ N uptake – 4h
	06°10W	2	13 - 40	¹⁵ N-uptake kinetics. Low addition
		4	40 – 120	¹⁴ C – nitrification
		5	7 - 120	ADIN
Date	Position	No. Depths	Depth Range (M)	Rate Variable
01/06	03°04N	5	0-75	¹⁵ N uptake – 24h
	12°46W	1	75 U = 75	15 NILL regeneration level define
	12 70 11	1 2		¹⁵ N-NH ₄ – regeneration/oxidation
		2	0-7	¹⁵ N uptake – 4h
		5	7 - 140	¹⁴ C – nitrification

		5	7 - 140	ΔDIN
02/06	05°52N	6	0 - 60	¹⁵ N uptake – 24h
	16°05W	1	60	¹⁵ N-NH ₄ – regeneration/oxidation
		3	0 - 14	¹⁵ N uptake – 4h
		4	40 - 120	¹⁴ C - nitrification
		1	14	¹⁵ N-uptake kinetics. Low addition
03/06	09°04N	6	0 - 50	¹⁵ N uptake – 24h
ł	19°07W	3	0 - 14	¹⁵ N-NH ₄ – regeneration/oxidation
Í		1	40	¹⁵ N uptake – 24h
		5	40 - 80	¹⁴ C – nitrification
		5	40 - 80	ADIN
04/06	12°48N	6	0 - 50	¹⁵ N uptake – 24h
04/00	12 4814 19°15W	1	50	15 N-NH ₄ – regeneration/oxidation
	17 13 14	3	0 - 14	15N unterland the
				15 N uptake – 4h
		1	28 - 100	¹⁴ C – nitrification
05/07	1(000)	5	14	¹⁵ N-uptake kinetics. Low addition
05/06	16°23N	6	0 - 40	¹⁵ N uptake – 24h
	20°00W	3	0 - 14	¹⁵ N uptake – 4h
		1	35	¹⁴ C – nitrification, 24h time series
		1	35	ΔDIN, 24h time series
06/06	20°24N	6	0 - 20	¹⁵ N uptake – 24h
	20°00W	1	1	¹⁵ N & ¹⁴ C, tracer addition test
07/06	24°30N	6	0 - 80	¹⁵ N uptake – 24h
	20°00W	1	19	¹⁵ N uptake – 24h
		5	65 - 120	¹⁴ C – nitrification
08/06	28°41N	6	0 - 145	¹⁵ N uptake – 24h
	19°52W	3	0 - 35	¹⁵ N uptake – 24h
		1	35	¹⁴ C – nitrification
		5	96 - 200	ADIN
09/06	32°26N	1	30	¹⁵ N uptake – 4h
	17°30W	1	30	¹⁵ N-uptake kinetics. Low addition
10/06	36°37N	6	0 - 89	¹⁵ N uptake – 24h
	17°30W	1	89	¹⁵ N-NH ₄ – regeneration/oxidation
		3	0 - 20	¹⁵ N uptake – 4h
		1	89	$^{14}C$ – nitrification, 24h time series
		1	89	ADIN, 24h time series
11/06	41°04N	6	0 - 55	¹⁵ N uptake – 24h
	17°26W	1	55	
	11 20 11	3	0-13	¹⁵ N-NH ₄ – regeneration/oxidation ¹⁵ N uptake – 4h
		5	45 - 120	$^{14}C - nitrification$
		2		
12/06	4404151		55,60	
12/00	44°41N	1	7	¹⁵ N & ¹⁴ C, tracer addition test
12/07	14°01W			
13/06	48°27N	6	0 - 30	¹⁵ N uptake – 24h
	09°42W	4	20 – 60	¹⁴ C – nitrification
		1	7	¹⁵ N-uptake kinetics. Low addition
14/06	49°50N	1	7	¹⁵ N-uptake kinetics. Low addition
	04°10W			

Appendix A6-17	Discrete CTD	nutrient samples
----------------	--------------	------------------

СТД	Date	Depths
CTD 01	15/5/98	10, 20, 30, 40, 60, 80, 100, 120
CTD 02	16/5/98	2, 4, 7, 10, 15, 20, 40, 80, 120
CTD 03	16/5/98	2, 7, 10, 15, 40
CTD 04	17/5/98	3, 7, 13, 20, 25, 40, 80, 130
CTD 05	17/5/98	3, 7, 15
CTD 06	18/5/98	2
CTD 07	18/5/98	4, 7, 13, 17, 20, 30, 45, 80, 160, 250
<b>CTD 10</b>	21/5/98	3, 7, 11, 17, 25, 35, 60, 110
CTD 12	22/5/98	3, 7, 15, 23, 35, 45, 58, 80, 100
<b>CTD 17</b>	24/5/98	60, 80, 100, 140, 180
CTD 18	24/5/98	7, 11, 15, 20, 30, 45, 55
<b>CTD</b> 19	25/5/98	3, 7, 13, 20, 30, 40, 50, 100, 200
CTD 20	26/5/98	2
CTD 22	26/5/98	7, 12, 25, 35, 50, 62, 80, 140, 200
CTD 23	27/5/98	2, 7
CTD 24	27/5/98	20, 32, 52, 65, 75, 85, 100, 140, 200
CTD 25	28.5,98	1, 7
CTD 26	28/5/98	16, 28, 35, 43, 47, 65, 80, 130, 200
CTD 27	29/5/98	1, 7
CTD 28	29/5/98	12, 22, 33, 40, 47, 50, 58, 120, 200
CTD 29	30/5/98	1,7
CTD 30	30/5/98	13, 20, 24, 30, 40, 55, 65, 120, 200
CTD 31	<u>31/5/98</u>	1,7
CTD 32	31/5/98	Aborted, termination u/s
CTD 33	1/6/98	1, 7
CTD 34	1/6/98	18, 32, 50, 55, 60, 75, 90, 140, 200
CTD 35	2/6/98	1,7
CTD 36	2/6/98	14, 26, 34, 40, 51, 60, 80, 120, 200
CTD 37	3/6/98	1, 7, 14
CTD 38	3/6/98	22, 33, 40, 44, 50, 60, 80, 120, 200
CTD 39	4/6/98	1, 7, 14
<u>CTD 40</u>	4/6/98	22, 26, 28, 35, 40, 50, 60, 100, 200
CTD 41	5/6/98	1, 7, 13
CTD 42	5/6/98	17, 26, 30, 35, 40, 48, 60, 120, 200
CTD 43	6/6/98	7, 12, 16, 20, 30, 40, 50, 80, 160, 200
CTD 44	7/6/98	7, 20, 34, 53, 65, 75, 80, 90, 120, 200
CTD 45	8/6/98	7, 20, 36, 62, 96, 146, 155, 165, 180, 200
CTD 46	9/6/98	7, 30, 45, 55, 80, 100, 110, 120, 140, 200
CTD 47	10/6/98	1,7,20
CTD 48	10/6/98	35, 45, 55, 70, 89, 90, 100, 140, 200
CTD 49	11/6/98	7, 13, 24, 36, 45, 55, 60, 80, 120, 200
CTD 50	12/6/98	7, 20, 35, 40, 50, 100, 250, 500, 750, 1000, 1250, 1500
CTD 51	13/6/98	4, 7, 13, 20, 30, 50, 60, 80, 100, 200
CTD 52	14/6/98	3, 7, 13, 20, 30, 40, 60

#### Appendix A6-18. Underway Nutrient Analysis.

}

	Underway Start	Underway End
	15/5/98: 1742	16/5/98: 0600
l	16/5/98: 1202	17/5/98: 0630
	17/5/98: 2032	18/5/98: 0200
	18/5/98: 1216	18/5/98: 1455
	20/5/98: 1515	21/5/98: 0630
	21/5/98: 1134	22/5/98: 0624
	23/5/98: 1721	24/5/98: 0630
	24/5/98: 1450	25/5/98: 0600
	25/5/98: 1209	26/5/98: 0600
	29/5/98: 0234	29/5/98: 0825
	30/5/98: 2032	31/5/98: 0809
	3/6/98: 1345	4/6/98: 0700
	4/6/98: 1427	4/6/98: 1846
	5/6/98: 0725	5/6/98: 0856
	5/6/98: 1340	6/6/98: 0850
	10/6/98: 1725	11/6/98: 0700
	12/6/98: 1718	13/6/98: 0936
	13/6/98: 1314	14/6/98: 0851
	14/6/98: 1109	14/6/98: 1501

Appendix A6-	19. TD-Fe	and S	PM. CTD S	ampling log.		
<b>CTD</b> Station	Date	SDY	Latitude	Longitude	Depth	SPM
A6-01	15-May	135	33o37.1'S	18000.2'E	-10	
	-			10000.21	-20	
					-30	
					-30 -40	
					-100	
A6-02	16 Man	126	22-22 00	10 00 000	-120	
AU-02	16-May	136	32o20.2'S	17052.6°E	-4	
					-10	
					-20	
					-40	
					-80	
					-120	
A6-04	17-May	137	29o31.2'S	16027.2E	-7	
					-13	
					-25	
					-40	
					-80	
					-130	
A6-06	18-May	138	26042.6'S	14o47.9E	-4	
	-			1.01.52	-40	
					-80	
					-160	
A6-07	18-May	138	26o41.8'S	14014.8E	-100	v
		120	20041.00	14014.012		X
					-20	X
					-30	X
					-80	X
					-160	X
A6-09	19 Mari	120	26 41 00		-250	Х
A6-10	18-May	138	26041.8'S	13030.1E	-7	
A0-10	21-May	141	28o55.9'S	16011.3E	-3	Х
					-7	
					-25	
					-35	
					-60	
46.10	22.24		<b>.</b>		-110	
A6-12	22-May	142	24o45.0'S	14019.5'E	-3	
					-7	
					-15	
					-35	
					-45	
					-58	
					-80	
					-100	
A6-15	23-May	143	21o39.3'S	12o24.4'E	-7	
	-				-20	
					-35	
					-60	
					-100	
					-200	
A6-16	24-May	143	21o23.9'S	12006.1E		
A6-17 / A6-18	24-May	143	18059.8'S		-7	v
	2+ 14 <b>1</b> 4y	173	10033.0 3	12 <b>0</b> 00.0'E	-7 20	X
					-30	X
					-60	X
					-100	Х
					-140	Х
A.C. 10	24 8 4				-180	Х
A6-19	24-May	144	18054.6'S	12009.3E	-7	
A6-20	25-May	145	17o40.0'S	11o20.1E	-7	

#### A:-۸ c 10 **ALLER** -~ _ . .

į

					-20 -30 -50 -100 -200	
A6-21 A6-22	25-May 26-May	145 146	17o26.5'S 14o44.6'S	11004.5'E 07051.6'E	-7 -7	X X
				0.001.02	-12	л
					-25 -35	
					-50	
					-62	
					-80 -140	
					-200	
A6-23 / A6-24	27-May	147	11o37.2'S	04o08.3'E	0 -7	x
					-20	Λ
					-32	
					-52 -65	
					-75	
					-85	
					-100 -140	
					-200	х
A6-25 / A6-26	28-May	148	08o37.6'S	00o36.5E	-2	
-					-7 -28	Х
					-47	
					-65	
					<b>-8</b> 0 -130	
					-200	х
A6-27 / A6-28	29-May	149	05o51.9'S	02o37.1'W	0	
					-7 -12	X
					-12	
					-33	
					-47 -50	Х
					-58	
					-120	
A6-29 / A6-30	30-May	150	02o48.7'S	06o09.8'W	-200 0	Х
					-7	х
					-13	
					-20 -24	
					-30	
					-40	х
					-55 -65	
					-120	
A6-31 / A6-32	21	141	00-01 70	00-51 0011	-200	Х
AU-31 / AO-32	31-May	151	00o01.7'S	08o51.0'W	0 -7	x
A6-33 / A6-34	01 <b>-Jun</b>	152	03o04.3'N	12046.2'W	0	л
					-7	х
					-18	

					-50 -55 -60 -90 -140	x
A6-35 / A6-36	02-Jun	153	05051.7'N	16004.9'W	-200 0 -7	x x
					-14 -34 -40	v
					-51 -60 -80	х
A6-37 / A6-38	03-Jun	154	09003.7'N	19007.2'W	-120 -200 0 -7	x
					-14 -22 -33	л
					-40 -44 -50	x
					-60 -80 -120	
A6-39 / A6-40	04-Jun	155	12047.1'N	19014.7'W	-200 0 -7	x x
					-14 -22 -26	
					-28 -35 -40	х
					-50 -60 -100	
A6-41 / A6-42	05-Jun	156	16022.5'N	20000.0'W	-200 0 -7	x
					-13 -26 -30	
					-35 -40 -65	x
A6-43	06-Jun	157	20o24.3'N	20000.1'W	-120 -200 -7 -12	x x
					-16 -20 -30	X X X X
					-40 -50 -80	X X X X
					-160 -200	X X X

•

A6-44	07-Jun	158	24030.3'N	20000.0'W	-7	х
					-20	
					-34 -53	
					-35 -65	
					-75	
					-80	Х
					-90	
					-120 -200	
A6-45	08-Jun	159	28041.0'N	19o52.2'W	-200 -7	х
110 12		107			-20	
					-36	
					-62	
					-96 -146	х
					-155	Λ
					-165	
					-180	
	00 I	170	22-25 CDI	17-02 0337	-200 -7	x
A6-46	09-յու	160	32025.6'N	17o02.9'W	-7 -30	х
					-55	
					-115	Х
					-140	
A6-47 / A6-48	10-Jun	161	36036.8'N	17o30.2'W	-200 0	
A0-4// A0-48	in-im	101	30030.8 N	17030.2 W	-7	х
					-20	
					-45	
					-89	х
A6-49	l i-Jun	162	41004.7'N	17o29.9'W	-200 -7	x
AU-47	11-300	102	41004.714	17029.9 W	-24	л
					-45	х
					-60	
					-120	
A6-50	12-Jun	163	44040.8'N	14000.6'W	-200 -7	х
A0-30	12-300	105	11010.011	14000.0 ₩	-20	Л
					-35	
					-40	
					-50 -100	
					-250	
					-500	
					-750	
					-1000	
					-1250 -1500	x
A6-51	13-Jun	164	48027.0'N	09041.8'W	-7	x
					-13	Х
					-20	X
					-30 -50	X X
					-50 -60	X
					-80	x
					-100	Х
	14 7	1/2	10-50 0017	04-00 5817	-200	X
A6-52	14-Jun	165	49o50.2'W	04o09.5'W	-7	х

)

## Appendix A6-20. TD-Fe and SPM Underway Sampling log.

Date	SDY	Time	Latitude	Longitude	TD-Fe	SPM
15-May	135	2120	32050.77'S	16059.92'E	UW1	X
15-May	135	2302	32036'S	16045'E	UW2	~
16-May	136	0307	32o20.18'S	16047.65'E	UW3	
16-May	136	0708	32o20.36'S	17041.90'E	UW4	
16-May	136	1102	32003.37'E	17051.94'E	UW5	х
16-May	136	1500	31046.51'S	17o23.91'E	UW6	x
16-May	136	1902	31022.85'S	16032.41'E	UW7	x
16-May	136	2305	30o50.92'S	16029.25'E	UW8	x
17-May	137	0303	30011.96'S	16053.08'E	UW9	x
17-May	137	0708	29035.88'S	16032.52'E	UW10	x
17-May	137	0845	29031.23'S	16027.21'E	UW11	~
17-May	137	1101	29021.51'S	16014.98'E	UW12	х
17-May	137	1506	28055.64'S	15057.30'E	UW13	x
17-May	137	1906	28021.68'S	15031.43'E	UW14	x
17-May	137	2300	27o37.16'S	15005.20'E	U₩15	x
18-May	138	0325	26049.66'S	14048.61'E	UW16	x
18-May	138	0550	26042.22'S	14045.21'E	UW17	x
18-May	138	0702	26041.73'S	14o26.61'E	UW18	x
18-May	138	0814	26041.82'S	14o16.09'E	UW19	x
18-May	138	1015	26042.25'S	14007.30'E	UW20	x
18-May	138	1314	26042.61'S	13048.16'E	UW21	x
18-May	138	1408	26042.27'S	13038.06'E	UW22	X
18-May	138	1455	26041.82'S	13o30.09'E	UW23	x
20-May	140	1522	32o35.36'S	17o27.09'E	UW24	X
20-May	140	1924	31040.26'S	17o06.09'E	UW25	X
20-May	140	2306	30o50.7'S	16047.7'E	UW27	X
21-May	141	0307	29058.88'S	16o27.31'E	UW26	X
21-May	141	0706	29006.11'S	16012.86'E	UW28	X
21-May	141	0840	28055.73'S	16011.22'E	UW29	х
21-May	141	1105	28o37.56'S	15053.30'E	UW/30	Х
21-May	141	1512	28009.61'S	15o27.81'E	UW31	Х
21-May	141	1906	27o30.0'S	15004.7'E	UW32	Х
21-May	141	2309	26035.12'S	14o40.08'E	UW33	Х
22-May	142	0305	25045.94'S	14o27.12'E	UW34	Х
22-May	142	0722	24o52.24'S	14o19.86'E	UW35	Х
22-May	142	1145	24018.80'S	14o07.60'E	UW36	Х
22-May	142	1525	23056.92'S	13o56.40'E	UW37	
22-May	142	1910	23025.69'S	13o25.57'E	UW38	Х
22-May	142	2300	22049.40'S	12049.00'E	UW39	
23-May	143	0258	22012.8'S	12o28.0'E	UW40	Х
23-May	143	0826	21039.32'S	12024.37'E	UW41	
23-May	143	1159	21033.22'S	12015.44'E	UW42	Х
23-May	143	1525	21o20.98'S	12004.7'E	UW43	
23-May	143	1904	20049.74'S	11o40.16'E	UW44	
23-May	143	2330	20o14.36'S	12001.09'E	UW45	Х
24-May	144	0305	19042.60'S	12013.85'E	U₩46	
24-May	144	0732	18059.79'S	11059.99'E	UW47	
24-May	144	1530	18047.52'S	11046.16'E	UW48	Х
24-May	144	1911	18035.99'S	11014.25'E	UW49	
24-May	144	2300	18o24.99'S	10o42.63'E	UW50	
25-May	145	0305	17059.12'S	11003.09'E	UW51	х

	25-May	145	1005	17o35.93'S	11015.76'E	UW52	
	25-May	145	1510	17o05.15'S	10040.47'E	UW53	х
	25-May	145	1928	16032.95'S	10001.76'E	UW54	~
	25-May	145	2301	16003.37'S	09025.78'E	UW55	
	26-May	146	0314	15o28.57'S	08043.96'E	UW56	х
	26-May	146	0945	14043.82'S	07o50.90'E	UW57	~
	26-May	146	1506	14001.40'S	07o01.06'E	UW58	х
	26-May	146	2028	13o16.77'S	06006.53'E	UW59	~
	29-May	149	0920	05o51.79'S	02037.66'W	UW60	
	29-May	149	2312	04006.78'S	04o38.29'W	UW61	
	30-May	150	0836	02048.70'S	06o09.91'W	UW62	
	04-Jun	155	1010	12047.52'N	19014.67'W	UW63	
	07-Jun	158	0930	24030.35'N	20000.02'W	UW64	
	08-Jun	159	0448	27o56.49'N	19059.88'W	UW65	х
	08-Jun	159	0948	28041.07'N	19052.24 W	UW66	x
	08-Jun	159	1500	29029.36'N	19016.05'W	UW67	~
	09-Jun	160	0825	32o25.69'N	17002.92W	UW68	х
_	_09-Jun	160	1046	32o38.27'N	16053.76W	UW69	x
	19-Jun	160	1545	33o00.40'N	17o30.09W	UW70	~
	09-Jun	160	2309	34o31.80'N	17o29.90'W	UW71 -	
	10-Jun	161	0405	35o35.50'N	17o30.20W	UW72	
	10-Jun	161	0831	36032.26'N	17030.28W	UW73	
	10-Jun	161	0920	36o36.85'N	17o30.30'W	UW74	х
	10-Jun	161	1506	37o27.30'N	17029.75W	UW75	~
	10-Jun	161	2156	38052.86'N	17o29.98'W	UW76	
	11-Jun	162	0336	39058.36'N	17o29.68W	UW77	
	11-Jun	162	0940	41004.80'N	17o25.91'W	UW78	х
							• •

## Appendix A6-21 High Volume Aerosol Sampling Log

Date	SDY	Filter	Plates	Time START	<b>Time</b> FINISH	Latitude	Longitude
SAMPLE		RS					
16-May	136	1	1	1556		31040.47'S	17o10.82'E
20-May	140	1	1		1405	32031.85'S	17028.73'E
20-May	140	2	2	1410		32031.85'S	17028.73'E
21-May	141	2	2		0710	28055'S	16011'E
21-May	141	3	3	1345		28024.72'S	15040.24'E
23-May	143	3	3		1531	21018'S	12002'E
23-May	143	4	4	1537		21018.75'S	12002.51'E
25-May	145	4	4		1135	17026.43'S	11004.40'E
25-May	145	5	1	1247		17024.29'S	11001.47'E
27-May	147	5	1		0823	11037.26'S	04008.35'E
27-May	147	6	2	1026		11033.49'S	04004.04'E
28-May	148	6	2		0828	08o37.36'S	00o35.92'E
28-May	148	7	3	1525		08c07.86'S	00o05.82W
28-May	148	7	3		1715	07o48'S	00o23W
30-May	150	8	4	1320		02031.42'S	06o29.44'W
31-May	151	8	4		1403	00o39'N	09045'W
31-May	151	9	1	1544		00o39.91'N	09045.26W
02-Jun	153	9	1		0132	04o53.81'N	15003.37W
02-Jun	153	10	2	1100		05o57.12'N	16009.95W
04-Jun	155	10	2		0823	12042.65'N	19015.55W
04-Jun	155	11	3	1112		12052.52'N	19013.77W
06-Jun	157	11	3		0845	20o24.37'N	20o00.15W
06-Jun	157	12	4	1354		21o15.33'N	20o00.56'W
08-Jun	159	12	4		0417	27o51.81'N	19o59.94W
08-Jun	159	13	1	1657		29049.13'N	19o00.74W
09-Jun	160	13	1		1422	32046.26'N	17o22.76W
10-Jun	161	14	2	1120		36o46.04'N	17o30.17'W
12-Jun	163	14	2		0800	44040.65'N	14o00.65W
13-Jun	164	15	3	1122		48o30.97W	09o27.13W
14-Jun	165	15	3		2030	52003.76'N	01o51.43'E
BLANK							
FILTERS	•	-	_				
09-Jun	160	B1	2	1718		33o18.63'N	17o29.84W
10-Jun	161	B2	3	1118		36046.00'N	17o30.17W
13-Jun 12 Jun	164	B3	4	1120		48o30.97'N	09o27.13W
13-Jun	164	B4	1	1120		48o30.97'N	09o27.13W

#### Appendix A6-22 Mesozooplankton log.

;

ł

1

			>20 00			1000 2000			500-	1000		200-	500	<u>.</u>	total	·	
Date	Time	Depth		total	Subs			Suba		land al	0		4 - 4 - 1	<del>.</del>			
15/05/98		100m	. opo	to tui	Cubs	3					Subs 50	-	total		<u> </u>	total	Subs
15/05/98		200m				5	300	50	5	1000	50	3	1000	50			
16/05/98		NT													3	1000	
16/05/98	08:00		3	500	50	2	1000	50	3	1000	60		4000		3	500	50
16/05/98			Ť			J		50	3	1000	50	3	1000	50			
17/05/98			3	500	50	3	500	50		1000			4000		3	1000	50
18/05/98			Ŭ		50	3	500	50	3	1000	50	3	1000	50			
18/05/98						3	500	50	2	500	50		4000		3	1000	50
18/05/98						J	500	50	3	500	50	3	1000	50			
18/05/98															3	1000	50
19/05/98		NT													3	1000	50
21/05/98						3	500	50	3	1000	50	~	4000	50	2	1000	100
22/05/98						J	500	50	3	1000	50	3	1000	50			
22/05/98			3	500	50	3	1000	50	3	1000	50	3	4700	50	3	500	50
<b>B</b> /05/98						Ŭ	1000		J	1000	20	э	4700	50	_	4000	
23/05/98			3	500	50	3	1000	50	3	1000	50	2	1000	50	3	1000	50
24/05/98			3	500	50	3		50	3	1000	50	3	5000	50			
24/05/98			-			Ŭ	1000	50	J	1000	50	ు	2000	50		600	
25/05/98			3	500	50	3	500	50	3	1000	50	3	4000	50	3	500	50
25/05/98		200m				Ĭ			3	1000	50	ა	4000	50			
25/05/98															3	2000	50
26/05/98			3	1000	50	3	1000	50	3	1000	50		1000		3	1000	-50
27/05/98		200m	3	500	50		1000	50	3	1000	50	3 3	1000	50			
27/05/98			Ţ			Ĭ	1000	50	3	1000	50	ు	1000	50		4000	
28/05/98		200m	3	500	50	3	500	50	3	1000	50	3	1000	50	3	1000	100
29/05/98	08:30	200m	3	500	50		1000	50	3	1000	50	3	1000	50	1		
29/05/98	13:30	NT	-			Ĩ			Ĩ	1000	30	3	1000	50	3	1000	50
29/05 <mark>/9</mark> 8	21:00	200m						-					ľ		3	1000	50
30/05/98	08:30	200m	3	1000	50	3	1000	50	3	1000	50	3	1000	50	3	1000	50
31/05/98	08:30	200m	3	500	50	3	500	50	3	1000	50	3	1000	50		ľ	
01/06/98	09:00	200m	3	500	50	3	500	50	3	1000	50	3	1000	50			
02/06/98	09:00	200m	3	500	50	3	500	50	3	500	50	3	500	50			ĺ
2/06/98	03:15											Ŭ			3	1000	50
JJ/06/98		200m	3	1000	50	3	1000	50	3	1000	50	3	1000	50	Ĩ	1000	
04/06/98			3	500	50	3	1000	50	3	1000	50	3	1000	50			
05/06/98	09:00	200m	3	2000	50	3	1000	50	3	1000	50	3	1000	50	1		
05/06/98	ļ	NT [										-			3	1000	50
06/06/98	06:45			[					1			ſ			3	1000	50
06/06/98	1-	1	3	1000	50	3	1000	50	3	1000	50	3	1000	50	Ĭ		
07/06/98			3	500	50	3	500	50	3	500	50	3	1000	50			1
08/06/98				1		3	500	50	3	500	50	3	500	50			
09/06/98	08:00		3	500	50	3	500	50	3	500	50	3	500	50			
10/06/98			3	500	50	3	500	50	3	500	50	3	500	50			
10/06/98	13:50			1					ĺ						3	500	50
10/06/98	22:00														3	1000	50
11/06/98	09:00					3	500	50	3	500	50	3	1000	50	-		
1/06/98	23:00											-			3	500	50
12/06/98	08:30		3	500	50	3	500	50	3	500	50	3	500	50	-		
13/06/87	09:45		3	500	50	3	1000	50	3	1000	50		1000	50			
4/06/87	09:00	20m				3	500	50	3	1000	50		1000	50	1		ļ

70

:

-----

Appendix A	16-23.	Particulates	C⊞ℕ	analyses	log.
------------	--------	--------------	-----	----------	------

																9.											~								-		
																					2	B	410	70.8				88	1	88			1068	<b>106</b>	10g1	•	
																					a	53	j	766	1		8610	998		<b>9</b> 8			10a8 10b8 10c8	1066	10g9	I	
					~		-														187 Bad	175 BAA	B	7a8	7d4	Ba2	8a10	806		9 <b>a</b> 9			10a8	10d6	10g4 10g9 10g11		
Š					8		8															7 K		190 7a8	g								-		•		
Chi Max <5 Reps Vol				i	R	ů.	8												22	38	38	38	3	500	8	8	200	220		8			<u>8</u>	ŝ	8	8	
Chi Max < Reps Vol				C	T)	C	ŋ												"	) (	ۍ د	<b>,</b> (	2	ო	n e	ო	ო	ო		ო				ო			
ÛE																																					
																					5.9	} &	3	7c7	5	<u>8</u>	809 0	£		806 806	£	910	1007	£6	10g8	11c7	
																					643		8	7b7	7e3	<u>ک</u>	600	8e5		<b>9</b> 08	9e5	9e10	10b7	10e5	10g3	11b6	
																											8a9 8				345 0			10d5 1	1121	a7 1	
۰ž				Q	h t	gy	ß												127	149	161 G	174 642		189 7a7	202 7	αð	đŎ	ď		ക്	ക്	ക്	ž	5	2	=	
ନ୍ଦି				250	3	220	3												800							200	250	ß		200	80	<u>8</u>	8	200	200	8	
Chi Max <200 Reps Vol N				c	,	er.	2														 				с С								÷				
Chi Max • Depth Reps Vol				~		10	,																								e			e	ო	m	
Dept						**	-												5	4	47	4		8	5	4	ଚ୍ଚ	ß		8	146	115	8	45	ŝ	8	
ç	195 195																				0	_		9	~	2	æ	_	ģ				ģ	4	2	ዊ ሰ	N
																						91		706			838	8	8 B						1097		112
	žΰ																				6b2	<b>[</b> 8	699	7b6	7e2	761	898	8	8g4	967			10 00 00			1106	1162
	165																				6a2	Ē	6 <b>P</b> 9	7æ6	7d2	7d12	898 898	84	<b>8</b> 92	Za7			10a6	<b>6</b>	10e12	981	701
No		88	50	8	2 <u>2</u> 2	57	6	88	20	8	82	88	3 8	3 5	801	114	116	124	126	147	<u>8</u>	173 6d1	177	188	Ŕ	•	-	~	Ξ.	0,			-	-		4	-
e<5 Vol	3 8 8		ς γ	250	22	30	250	250	250	350	520 520		R R	250	250	250	22	220	8	8	8	80	8	8	8	8	8	8	ß	8			8	83	88	2 2	ß
Surface<5 Reps Vol 3 24	<b>ი</b> ი	r) r	ი ლ	) თ	ო	e	ო	ო	ო	ო	ი ი	י מ	<b>n</b> e	) m	<b>( (</b> )	e	ო	ო	e	ო	e	ო	e	ŝ	ო	ო	<del>ا</del>	ო	ო	2						יי היי	
		~																																			
54 14	19 19 19																				<u>6</u>	8612	<b>81</b> 0	3	E	E	20	<b>2</b>	58 80	88	5		ŝ	5 <u>1</u>	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	5 <b>1</b>	Ē
tc)	10,																				<u>8</u> b1	6b12	899	750	761	/e11	807	5	<u>م</u>	905	<b>z</b> 9				5		0
4	12	2																				-				_									ч [.]	•	-
4			3 4	47	2	<b>%</b>	8	67	8	۶ <u>۲</u>	50	5 8	3	8	ų	ო	S	g	£	Q				7 7a5	197 0	110/		B B C C C C C C C C C C C C C C C C C C	5	200			5 5				
ž		_	-		9	_	~	~	~	~ .			. ~	_	Ξ	-	_		5 22		-			_		-	-	_	_	_							
e <200 Vol 250	i X Z		220	220	52	22	250	250	Ř	X i	Q 9	3 2	22	X	ž	220	250	ž	ğ	8	ß	8	ğ	8	88		88	ទីខ្ល		Ş ۋ	ξ	ŝ	38	35	38	3 2	) ) )
0 6		n m	) ო	e	e	e	ю	ო	ო	י <b>ר</b> יז	n u	) (f	ათ	ო	ო	സ	ო	ო	ო	ო	ო	ო	ო	ო (	<b>თ</b> .	<b>י</b> ר	<b>ה</b> כ	<b>^</b> (	<b>י</b> ר	יי	<b>.</b> .	<b>,</b> (	<b>)</b> (	י ר	ۍ <b>د</b>	<b>ი</b> ო	,
Surfa Depth Reps 10	~ ~		4	4	4	4	2	2	~	r- r	- r	~	~	7	2	7	2	~	~	~	2	2	~	~ '	~ r	~ r	~ r	- r	- 1							. ~	_
	89	2 0	0	0	0	0	0	0	0	00				~			~	~	~	_	_	_	_			_											
s log Time 11:15	888	8 E	8	08:30	11:30	15:00	88	100	88	12:08	58	5		88:89			11:30	08:30	06:90	83	83	8:80	8:8 8:3	888	38	38	3 8 8 8	38	3 8 8 8	8 8 8 8	38	2	38	38	09-45 09-45	200	
έο .	86/s	88	86/	96/	ଞ	88	88	8	80   10	8	88	8	ĝ	8	ĝ	86	8			_		_	_			_										_	
Particulat Date 15/05/98	17/05/98	17/05/98	18/05/98	18/05/98	18/05/98	18/05/98	21/05/98	21/05/98	22/05/98	96450/2Z		23/05/96	23/05/96	24/05/98	24/05/98	25/05/98	25/05/98	26/05/98	27/05/98	28/05/98	29/05/98	30/05/98	31/05/98	01/06/98	06/00/20					08/06/08	09/06/98	10/06/98	1/06/08	12/06/98	13/06/98	14/06/98	
ч. Ц					-	- 1	••				4 ()	. 0	CN.	CN.	τN.	64	CN.	2	0	N	N i	ей I	en i	ό c	σč	ó è	5 8	58	5 8	58	8	5	-	: 6	<u>ר</u> ד		

Appendix A6-24 AMT-6 Cape Town to Grimsby, Data Matrix.

1

3

}

)

AREA	LAT RANGE	DAYS SDY	STAS	MLD (m)	SST (C)	CHL Z,Ch	Phyto	HPLC	K490	Sea CHL	R555 %	PAR 1%
S. BEN UP	-34 S - -27.5 S	135 - 137 139 - 141	601 - 605 610 - 612	8,20,30 27	15.5,16	0, 5.5	Mixed Ceratium	Per Hex Fuco	.17,.34 .10,.32		.19,.31 .18,.27	10,19 12,28
N. BEN UP	-28 S - -17.5 S	138 142 - 145	606 - 609 613 - 623	28,44			Diatoms + Cosco		.15 .0 <b>8</b> ,.20		.18 .15,.27	14,34
GOG, EQ. UP	-17.5 S 7.5 N	146 - 153	624 - 638	24,49					.029, .072		.130, .214	34, 63
N. EQ S of UP	8 N - 16.5 N	154 - 156	639 - 643	21,46					.036, .085		.149, .200	31, 40
N.W. AFRICA UP	17 N - 21.5 N	156 - 157	644 - 648	25,45			Synecho +Cocco?		.093, .246		.151, .642	13, 28.5
CANIGO	(20 N) - 42.5 N	157 - 162	649 - 659						.025, .048		.130, .223	48, 123
S.W. APP,	47 N - 50 N	163 - 165	660 - 666	32,42			Phaeo Cocco		.081, .214		.170, 1.24	17, 32
<u></u>				<u></u>								

___ _ _ _ _ _

- _ »

#### Appendix A6-24 a. AMT-6 Cape Town to Grimsby, Data Matrix.

-----

AREA LAT RANGE	DAYS SDY	STA	MLD (m)	SST (C)	CHL Z,Ch	Phyto	HPLC Fuc Per Hex Ze Dv	K490 M-1	R555 %	Ret Chl	a488	c488	a555	c555
S. BEN UP	135	601	8	15.5	00, 5.48	Mixed	<b>0.9</b> , .25, <b>1.2</b> , .14, 0	.263	.247		1			-+
-34 S -	136	602	20	16	, 2.68	Ceratium	0.4, 0.3, 0.6, 0, 0	.185	.190					
-27.5 S	136	603	30		,5.03		<b>0.5</b> , <b>1.8</b> , 0.4, 0, 0	.340	.240			1		
	137	604			,4.34		<b>1.3</b> , .15, <b>0.6</b> , 0.1, 0	.275	.307	[			1	
	137	605			,2.83		<b>0.8</b> , 0.1, ?, 0.1, 0	.173	.306			í		
	139	610			,1.04		.13, .07, <b>0.7</b> , 0, 0	.103	.178		]			
	141	611			,8.30	}	<b>1.7</b> , ? , <b>1.8</b> , .14, 0	-	_		0.344	1.434	0.261	1.316
	141	612			,6.00		1.9, 0.4, 1.0, 0.2, 0	.321	.272		0.388	1.744	0.283	1.635
N. BEN UP -	138	606			,3.49	Diatoms	<b>0.9</b> , 0.0, <b>0.9</b> , 0.0, 0	<u>+-</u>				<u> </u>	<b> </b>	<u> </u>
28 S -	138	607			,2.23	Diatoma	<b>.35</b> , 0.14, 1.0,0.1, 0	.148	.262		1			
-17.5 S	138	608	1		,1.11		.12, 0.18, .24, .14,0	.140	.202		1			
	138	609			,1.60		<b>.12,</b> 0.18, <b>.24</b> , 114,0	-	-					Î.
	142	613			,2.44	+ Cosco	<b>1.4</b> , 0.0, 0.0, 0.0, 0	.130	.186		0.005	0 451	010	0.005
	142	614		[	,1.85	00000	<b>1.2</b> , 0.0, 0.0, 0.0, 0 <b>1.2</b> , 0.0, 0.0, 0.0, 0	.145	.164		0.025	0.451	012	0.395
	143	615		1	,1.73		<b>.55</b> , 0.1, <b>0.6</b> , .13, 0		.104		0.042	0.471	004 0.026	0.423
	143	616			,1.66		.55, 0.0, 0.3, .15, 0	.204	.179		0.075	0.697	0.020	0.635
	143	617			,		, 0.0, 0.5, .15, 0	-	_		0.103	0.838	0.029	0.020
	143	618			,1.79		.33, 0.16, 0.9, 0.1,0	.197	.272		0.103	0.838	0.037	
	144	619	1		,1.86		<b>0.9</b> , 0.0, 0.1, 0.0, 0	.080	.146		003	0.329	032	0.861 0.290
	144	620			,1.62		<b>0.9</b> , 0.0, 0.15, 0.0,0	-	.		0.093	0.330	032 028	0.290
		621		ļ	,3.97		<b>1.9</b> , 0.0, 0.14, 0.0,0	.107	.175		0.088	0.367	028	0.336
ļ		622		ļ	,2.43		<b>1.1</b> , 0.0, 0.2, 0.0, 0	.165	.145		0.077	0.623	0.007	0.520
	145	623			,0.82		<b>0.3</b> , 0.0, 0.2, 0.0, 0	.083	.153		0.012	0.498	029	0.300

# Appendix A6-24b. AMT-6 Cape Town to Grimsby, Data Matrix.

GOG,	146	624	,0.36		]	.072	.182	1	013	0.399	039	0.347
EQ. UP	146	625	,0.37			.062	.172	1	008	0.399	1	
-17.5 S	147	626	,0.12		}	.002			008	0.409	1 .	0.359
7.5 N	147	627	,0.08			.031	.145		070	1		0.152
	148	628	,0.22			.056	.143	}	052	0.159	1	0.145
	148	629	,0.15			.041	.153		1	0.191	060	0.165
	149	630	,0.24	}		.041	.155	ļ	069	0.169	068	0.151
	150	631	,0.17			.030	.209		056	0.204	070	0.170
	150	632	,0.16			.039			085	0.205	084	0.181
	151	633	,0.33			.030	.214		080	0.189	080	0.166
	151	634	,0.27			.064	.141		0.047	0.282	0.026	0.243
	152	635	,0.16		-	1	214		0.023	0.281	0.004	0.244
	152	636	1 1			.029	.141		072	0.152	068	0.139
	153	637	,0.24			-	-		- 074	0.157	073	0.144
	153	638	,0.20			-	-		065	0.163	071	0.147
			,0.20	<u> </u>		.038	.179		075	0.175	075	0.161
N. EQ	154	639	,0.23			.045	.154		057	0.207	072	0.179
S of UP	154	640	,0.18			.036	.151		059	0.208	073	0.181
8 N -	155	641	,0.27	]		.059	.186		032	0.255	058	0.222
16.5 N	155	642	,0.18	1		.039	.149		046	0.209	069	0.182
	156	643	,0.47			.085	.200		0.006	0.376	028	0.182
<b>N.W</b> .	156	644	,0.75	Synecho		.093	202		0.000			
AFRICA UP	156	645	,2.40	+Cocco?			.202		0.003	0.432	036	0.388
17 N -	157	646	,1.86			.142	.151		0.044	0.532	018	0.500
21.5 N	157	647	,1.60			.231	.267		0.213	1.091	0.111	0.975
	157	648	,1.14			.246	.344		0.230	1.239	0.134	1.107
		++				.238	.642		0.295	1.553	0.171	1.277
CANIGO	158	649	,0.19			.040	.139		059	0.195	073	0.171
(20 N) -	158	650	,0.086			.013	.137		069	0.187	073	0.168
42.5 N	158	651	,0.095		· .	.008	.136		071	0.175	074	0.159

-----

e e e -

....

	159 159 160	652 653		,0.034			.023	.130		- 060	0.152	069	(
		653	1				. V & J	1.120		000	0.152	009	1.
	140			,0.027			.015	.136		072	0.140	075	0
	1100	654		,0.032			.024	.134		074	0.150	086	0
	160	655		,0.027			.025	.152		067	0.210	078	0
	161	656					.030	.148		063	0.175	078	0
	161	657				1	.017	.149	,	067	0.175	077	0
	162	658					.048	.203		044	0.306	065	0.
	162	659		_			.041.	.223		041	0.313	061	0
S.W. APP,	163	660					.081	.170		001	0.406	035	0.
USHANT	163	661			ĺ		.102	.214		0.021	0.472	022	0.
47 N -	164	662					.179	.179		0.099	0.817	0.005	0.
50 N	164	663					.170	.695		0.132	1.066	0.063	0.
	164	664	f l				.214	1.245		0.206	1.384	0.126	1.
	165	665					.168	.250		0.096	0.876	0.013	0.
	165	666					.128	.353					ĺ
								[					
	<u> </u>	<u> </u>											

.

.

.

1

•

• ,

•