#### **Scottish Association for Marine Science**

#### **RV** Neil Armstrong Cruise AR30-04

01 – 29 JUL 2018

Reykjavik - Reykjavik

**OSNAP** moorings cruise report

S.A. Cunningham et al.

Principal Scientist Bill Johns



Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA371QA UK

Tel: +44 (0) 1631 559000 Fax: +44 (0) 1631 559001 www.sams.ac.uk (c) Scottish Association for Marine Science, 2019 This is a contribution to NERC programs UK OSNAP (NE/K010875/1 and NE/K010700/1), and the Extended Ellett Line under National Capability programme Climate Linked Atlantic Sector Science. SAC is funded in part by the European Union's Horizon 2020 research and innovation programs: AtlantOS under grant agreement (SEP-210177333); by the Blue-Action project (7278520) and; by the ATLAS project (678760-2).

## Contents

| Lis | st c        | of Fig | gures |                                                                 | 5  |  |  |  |  |
|-----|-------------|--------|-------|-----------------------------------------------------------------|----|--|--|--|--|
| Lis | st c        | of Ta  | bles. |                                                                 | 6  |  |  |  |  |
| 1   | 1 Summary 8 |        |       |                                                                 |    |  |  |  |  |
| 2   |             | Intro  | oduct | ion                                                             | 9  |  |  |  |  |
|     | 2.:         | 1      | Scie  | ntific crew                                                     | 9  |  |  |  |  |
|     | 2.2         | 2      | Crui  | se map                                                          | 10 |  |  |  |  |
| 3   |             | Mod    | oring | Operations                                                      | 10 |  |  |  |  |
|     | 3.:         | 1      | Taut  | -Wire Moorings                                                  | 10 |  |  |  |  |
|     | 3.2         | 2      | Trav  | vl Resistant Seabed Lander - RTADCP1                            | 11 |  |  |  |  |
| 4   |             | Mod    | oring | Recoveries                                                      | 12 |  |  |  |  |
|     | 4.:         | 1      | Rem   | ote access sampler                                              | 12 |  |  |  |  |
| 5   |             | Mod    | oring | Deployments                                                     | 16 |  |  |  |  |
|     | 5.:         | 1      | Moc   | oring Deployment locations and Iridium Beacon IMEI Codes        | 16 |  |  |  |  |
| 6   |             | Insti  | rume  | nt set-up Summaries                                             | 20 |  |  |  |  |
|     | 6.:         | 1      | Sum   | mary of the instruments recovered and deployed                  | 20 |  |  |  |  |
|     | 6.2         | 2      | OSN   | AP Instrumentation for Moorings EB1, WB1, WB2, IB3, IB4 and IB5 | 21 |  |  |  |  |
|     | 6.3         | 3      | Biog  | eochemical sensors on EB1                                       | 21 |  |  |  |  |
|     | 6.4         | 4      | Sign  | ature S55 on RTADCP1                                            | 22 |  |  |  |  |
|     |             | 6.4.2  | 1     | Pre-deployment Checks                                           | 22 |  |  |  |  |
|     |             | 6.4.2  | 2     | Compass Calibration                                             | 23 |  |  |  |  |
|     |             | 6.4.3  | 3     | Deployment Set-Up                                               | 24 |  |  |  |  |
| 7   |             | Mul    | tibea | m Survey of IB5 site                                            | 26 |  |  |  |  |
| 8   |             | Mod    | oring | Data Processing                                                 | 27 |  |  |  |  |
|     | 8.          | 1      | Micr  | rocat Data Processing                                           | 28 |  |  |  |  |
|     |             | 8.1.3  | 1     | Stage 0 – Data Download                                         | 28 |  |  |  |  |
|     |             | 8.1.2  | 2     | Stage 1 – Conversion to standard RDB format                     | 28 |  |  |  |  |
|     |             | 8.1.3  | 3     | Stage 2 – Trimming of data, basic statistics and summary plots  | 28 |  |  |  |  |
|     | 8.2         | 2      | Nort  | tek Current Meter Data Processing                               | 28 |  |  |  |  |
|     |             | 8.2.2  | 1     | Stage 0 – Data Download                                         | 28 |  |  |  |  |
|     |             | 8.2.2  | 2     | Stage 1 – Conversion to standard RDB format                     | 28 |  |  |  |  |
|     |             | 8.2.3  | 3     | Stage 2 – Trimming of data, basic statistics and summary plots  | 29 |  |  |  |  |
|     | 8.3         | 3      | Dee   | pSeapHOx Data Processing                                        | 29 |  |  |  |  |
|     |             | 8.3.   | 1     | Stage 0 – Data Download                                         | 29 |  |  |  |  |
|     |             | 8.3.2  | 2     | Stage 1 – Conversion to standard RDB format                     | 29 |  |  |  |  |

| 9                                           | 9 Calibration Dips                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |  |  |  |  |  |
|---------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|
| 9                                           | 9.1                                                                          | Microcat                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30             |  |  |  |  |  |
| 9                                           | 9.2                                                                          | DeepSeapHOx                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33             |  |  |  |  |  |
| 10                                          | C                                                                            | Oxygen Sampling and Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33             |  |  |  |  |  |
| 11                                          | Ν                                                                            | Nutrient, DIC and Isotope sampling protocols                                                                                                                                                                                                                                                                                                                                                                                                                          |                |  |  |  |  |  |
| 1                                           | 1.1                                                                          | Dissolved inorganic nutrients                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38             |  |  |  |  |  |
| 1                                           | .1.2                                                                         | DIC (Dissolved inorganic carbon) and total alkalinity                                                                                                                                                                                                                                                                                                                                                                                                                 | 38             |  |  |  |  |  |
| 1                                           | .1.3                                                                         | lsotopes: Delta-N-15 ( $\delta^{15}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                | 38             |  |  |  |  |  |
| 1                                           | .1.4                                                                         | Isotopes: Si                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39             |  |  |  |  |  |
| 1                                           | .1.5                                                                         | Microplastic samples                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39             |  |  |  |  |  |
| 12                                          | Д                                                                            | Argo Float Deployments                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39             |  |  |  |  |  |
| 13                                          | S                                                                            | Shipboard Underway Data                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40             |  |  |  |  |  |
| 1                                           | .3.1                                                                         | Underway Data Logging                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40             |  |  |  |  |  |
| 1                                           | .3.2                                                                         | Vessel Mounted ADCP                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41             |  |  |  |  |  |
| 14                                          | C                                                                            | CTD Calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43             |  |  |  |  |  |
| 15                                          | C                                                                            | CTD Oxygen Calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48             |  |  |  |  |  |
| 1                                           | .5.1                                                                         | CTD SBE43 Sensor Calibrations to Bottle Oxygens                                                                                                                                                                                                                                                                                                                                                                                                                       | 51             |  |  |  |  |  |
| 4                                           | 5 2                                                                          | Correction of Residual Hysteresis Between CTD Oxygen down and uncast                                                                                                                                                                                                                                                                                                                                                                                                  | <b>г</b> о     |  |  |  |  |  |
| T                                           | .J.Z                                                                         | correction of Residual Hysteresis between CTD oxygen down and upcast                                                                                                                                                                                                                                                                                                                                                                                                  |                |  |  |  |  |  |
| 16                                          | .J.Z<br>N                                                                    | MSTAR computer setup & Data archiving/backups                                                                                                                                                                                                                                                                                                                                                                                                                         | 53             |  |  |  |  |  |
| 16<br>1                                     | .5.2<br>N<br>.6.1                                                            | MSTAR computer setup & Data archiving/backups<br>Data Share & Public Disks                                                                                                                                                                                                                                                                                                                                                                                            | 53<br>55<br>55 |  |  |  |  |  |
| 16<br>1<br>1<br>1                           | .5.2<br>N<br>.6.1<br>.6.2                                                    | MSTAR computer setup & Data archiving/backups<br>Data Share & Public Disks<br>Visiting Workstations from SAMS                                                                                                                                                                                                                                                                                                                                                         |                |  |  |  |  |  |
| 16<br>1<br>1<br>1<br>17                     | .6.1<br>.6.2                                                                 | MSTAR computer setup & Data archiving/backups<br>Data Share & Public Disks<br>Visiting Workstations from SAMS                                                                                                                                                                                                                                                                                                                                                         |                |  |  |  |  |  |
| 16<br>1<br>1<br>17<br>1                     | .б.1<br>.б.2<br>.б.2<br>Д.7.1                                                | MSTAR computer setup & Data archiving/backups<br>Data Share & Public Disks<br>Visiting Workstations from SAMS<br>Appendix<br>Mooring Recovery Log sheets                                                                                                                                                                                                                                                                                                              |                |  |  |  |  |  |
| 16<br>1<br>17<br>17                         | .6.1<br>.6.2<br>.7.1<br>17.1                                                 | MSTAR computer setup & Data archiving/backups<br>Data Share & Public Disks<br>Visiting Workstations from SAMS<br>Appendix<br>Mooring Recovery Log sheets                                                                                                                                                                                                                                                                                                              |                |  |  |  |  |  |
| 16<br>1<br>17<br>17                         | .6.1<br>.6.2<br>.7.1<br>17.:<br>17.:                                         | MSTAR computer setup & Data archiving/backups<br>Data Share & Public Disks<br>Visiting Workstations from SAMS<br>Appendix<br>Mooring Recovery Log sheets<br>1.1 EB1                                                                                                                                                                                                                                                                                                   |                |  |  |  |  |  |
| 16<br>1<br>17<br>17                         | .6.1<br>.6.2<br>.7.1<br>17.:<br>17.:                                         | MSTAR computer setup & Data archiving/backups<br>Data Share & Public Disks<br>Visiting Workstations from SAMS<br>Appendix<br>Mooring Recovery Log sheets<br>1.1 EB1<br>1.2 WB1<br>1.3 WB2                                                                                                                                                                                                                                                                             |                |  |  |  |  |  |
| 16<br>1<br>17<br>17<br>1                    | .6.1<br>.6.2<br>.7.1<br>.7.1<br>17.:<br>17.:<br>.7.2                         | MSTAR computer setup & Data archiving/backups<br>Data Share & Public Disks<br>Visiting Workstations from SAMS<br>Appendix<br>Mooring Recovery Log sheets<br>1.1 EB1<br>1.2 WB1<br>1.3 WB2<br>Mooring Deployment Log sheets                                                                                                                                                                                                                                            |                |  |  |  |  |  |
| 16<br>1<br>17<br>1<br>1<br>1<br>1<br>1      | .6.1<br>.6.2<br>.7.1<br>17.:<br>17.:<br>17.:<br>.7.2                         | MSTAR computer setup & Data archiving/backups<br>Data Share & Public Disks<br>Visiting Workstations from SAMS<br>Appendix<br>Mooring Recovery Log sheets<br>1.1 EB1<br>1.2 WB1<br>1.3 WB2<br>Mooring Deployment Log sheets                                                                                                                                                                                                                                            |                |  |  |  |  |  |
| 16<br>1<br>17<br>1<br>1<br>1<br>1           | .6.1<br>.6.2<br>.7.1<br>17.:<br>17.:<br>17.:<br>17.:<br>17.:<br>17.:         | MSTAR computer setup & Data archiving/backups<br>Data Share & Public Disks<br>Visiting Workstations from SAMS<br>Appendix<br>Mooring Recovery Log sheets<br>1.1 EB1<br>1.2 WB1<br>1.3 WB2<br>Mooring Deployment Log sheets<br>2.1 EB1<br>2.2 IB3                                                                                                                                                                                                                      |                |  |  |  |  |  |
| 16<br>1<br>17<br>1<br>1<br>1<br>1<br>1      | .6.1<br>.6.2<br>.7.1<br>.7.1<br>17.:<br>17.:<br>17.:<br>17.:<br>17.:<br>17.: | MSTAR computer setup & Data archiving/backups<br>Data Share & Public Disks<br>Visiting Workstations from SAMS<br>Appendix<br>Mooring Recovery Log sheets<br>1.1 EB1<br>1.2 WB1<br>1.3 WB2<br>Mooring Deployment Log sheets<br>2.1 EB1<br>2.2 IB3<br>2.3 IB4                                                                                                                                                                                                           |                |  |  |  |  |  |
| 16<br>1<br>17<br>1<br>1<br>1<br>1<br>1      | .6.1<br>.6.2<br>.7.1<br>17.:<br>17.:<br>17.:<br>17.:<br>17.:<br>17.:<br>17.: | MSTAR computer setup & Data archiving/backups<br>Data Share & Public Disks<br>Visiting Workstations from SAMS<br>Appendix<br>Mooring Recovery Log sheets<br>1.1 EB1<br>1.2 WB1<br>1.3 WB2<br>Mooring Deployment Log sheets<br>2.1 EB1<br>2.2 IB3<br>2.3 IB4                                                                                                                                                                                                           |                |  |  |  |  |  |
| 16<br>1<br>17<br>1<br>1<br>1<br>1<br>1      | .6.1<br>.6.2<br>.7.1<br>17.:<br>17.:<br>17.:<br>17.:<br>17.:<br>17.:<br>17.: | MSTAR computer setup & Data archiving/backups<br>Data Share & Public Disks<br>Visiting Workstations from SAMS<br>Appendix<br>Mooring Recovery Log sheets<br>1.1 EB1<br>1.2 WB1<br>1.3 WB2<br>Mooring Deployment Log sheets<br>2.1 EB1<br>2.2 IB3<br>2.3 IB4<br>2.4 IB5<br>2.5 WB1                                                                                                                                                                                     |                |  |  |  |  |  |
| 16<br>1<br>17<br>1<br>1<br>1<br>1<br>1      | .6.1<br>.6.2<br>.7.1<br>17.:<br>17.:<br>17.:<br>17.:<br>17.:<br>17.:<br>17.: | <ul> <li>MSTAR computer setup &amp; Data archiving/backups</li> <li>Data Share &amp; Public Disks</li> <li>Visiting Workstations from SAMS</li> <li>Appendix</li> <li>Mooring Recovery Log sheets</li> <li>1.1 EB1</li> <li>1.2 WB1</li> <li>1.3 WB2</li> <li>Mooring Deployment Log sheets</li> <li>2.1 EB1</li> <li>2.2 IB3</li> <li>2.3 IB4</li> <li>2.4 IB5</li> <li>2.5 WB1</li> <li>2.6 WB2</li> </ul>                                                          |                |  |  |  |  |  |
| 1<br>16<br>1<br>17<br>1<br>1<br>1<br>1<br>1 | .6.1<br>.6.2<br>.7.1<br>17.:<br>17.:<br>17.:<br>17.:<br>17.:<br>17.:<br>17.: | <ul> <li>MSTAR computer setup &amp; Data archiving/backups</li> <li>Data Share &amp; Public Disks</li> <li>Visiting Workstations from SAMS</li> <li>Appendix</li> <li>Mooring Recovery Log sheets</li> <li>1.1 EB1</li> <li>1.2 WB1</li> <li>1.3 WB2</li> <li>Mooring Deployment Log sheets</li> <li>2.1 EB1</li> <li>2.2 IB3</li> <li>2.3 IB4</li> <li>2.4 IB5</li> <li>2.5 WB1</li> <li>2.6 WB2</li> <li>Trilateration</li> </ul>                                   |                |  |  |  |  |  |
| 16<br>1<br>17<br>1<br>1<br>1<br>1<br>1<br>1 | .6.1<br>.6.2<br>.7.1<br>17.:<br>17.:<br>17.:<br>17.:<br>17.:<br>17.:<br>17.: | <ul> <li>MSTAR computer setup &amp; Data archiving/backups</li> <li>Data Share &amp; Public Disks</li> <li>Visiting Workstations from SAMS</li> <li>Appendix</li> <li>Mooring Recovery Log sheets</li> <li>1.1 EB1</li> <li>1.2 WB1</li> <li>1.3 WB2</li> <li>Mooring Deployment Log sheets</li> <li>2.1 EB1</li> <li>2.2 IB3</li> <li>2.3 IB4</li> <li>2.4 IB5</li> <li>2.5 WB1</li> <li>2.5 WB1</li> <li>2.6 WB2</li> <li>Trilateration</li> <li>3.1 EB1</li> </ul> |                |  |  |  |  |  |

| 17.3 | .3   | IB4                                                     | 83 |
|------|------|---------------------------------------------------------|----|
| 17.3 | .4   | IB5                                                     | 84 |
| 17.3 | .5   | WB1                                                     | 85 |
| 17.3 | .6   | WB2                                                     | 86 |
| 17.4 | Exar | nples of instrument setup files                         | 87 |
| 17.4 | .1   | SeaBird SBE-37                                          | 87 |
| 17.4 | .2   | Nortek Aquadopp                                         | 89 |
| 17.4 | .3   | Workhorse ADCP                                          | 90 |
| 17.5 | Post | -cruise extraction and chemical analysis of RAS samples | 91 |
| 17.5 | .1   | Sample removal                                          | 91 |
| 17.5 | .2   | RAS performance                                         | 92 |

# List of Figures

| Figure 1. Schematic of the OSNAP moorings and glider occupations. Following a                  |
|------------------------------------------------------------------------------------------------|
| reorganization of international responsibilities for mooring operations the UK moorings and    |
| glider operations cover the eastern half of OSNAP East, from the middle of the Iceland Basin   |
| to the Scottish continental shelf. The UK also installed an additional mooring at the western  |
| edge of the Hatton Bank                                                                        |
| Figure 2. Chart of CTD stations (black circles, Section 14), moorings (green crosses, Sections |
| 3, 4 and 5) and Remote Access Sampler deployment location (red square, Section 4.1) 10         |
| Figure 3. Winch tension [kg] (red) with 10s low-pass filter (black dashed), cable out [m]      |
| (black)                                                                                        |
| Figure 4. (a) replacement of sample intake cap (red), (b) motocross terminal, (c) RAS COM      |
| cable, (d) RAS comms port (C)14                                                                |
| Figure 5. Screenshot of capture of RAS metadata from (a) the start, and (b) the end of the     |
| datafile                                                                                       |
| Figure 6. Iceland Basin mooring schematic and instrument allocations                           |
| Figure 7. Rockall Trough mooring schematic and instrument allocations                          |
| Figure 8: Definitions of beam number, pitch and roll. The X-mark and direction are             |
| distinctively engraved on the central boss of the transducer head 23                           |
| Figure 9. EM122 Multibeam Echosounder survey. The nominal position for planning is shown       |
| by the black dot and the final anchor seabed position is the red dot. The black lines indicate |
| the boundaries of the Hatton Bank Marine Protected Area, and the mooring is located inside     |
| this region                                                                                    |
| Figure 10. Volume of thiosulphate no.1 against time. 2a: Changeover of the thiosulphate        |
| occurred on 12/7/18, graph plotted presents Volume of thiosulphate no.2 against time 34        |
| Figure 11. Summary of the water samples taken during the cruise (x axis corresponds to the     |
| station number and y axis to the bottle number). Note: no oxygen samples were taken on         |
| station 82, they were taken on station 80; other salinity sample were taken from station 68    |
| to station 101 but data were not available at the time of this figure was made                 |
|                                                                                                |

| Figure 12. SBE43: Bottle oxygen – uoxygen 1 after ratio and pressure residual calibrations.   |   |
|-----------------------------------------------------------------------------------------------|---|
| Ratio correction uses bottles > 1400 dbar. Pressure correction across full range of pressures |   |
|                                                                                               | 2 |
| Figure 13. Polynomial coefficients for the oxygen differences between up and down casts.      |   |
| CTD station number on x axis                                                                  | 3 |
| Figure 14. Polynomial coefficients for the oxygen differences between up and down casts,      |   |
| plotted against maximum CTD pressure5                                                         | 4 |
| Figure 15. Comparison of CTD statistics for uncorrected (black) and corrected (red) data 5    | 4 |

# List of Tables

| Table 1. UK OSNAP Mooring recoveries. Moorings deployed on cruise DY078 in 2017 12            |
|-----------------------------------------------------------------------------------------------|
| Table 2. Mooring deployments, times, depths, anchor seabed positions determined by            |
| trilateration                                                                                 |
| Table 3. Nominal mooring target positions16                                                   |
| Table 4. Iridium Beacons IMEI codes. See Figure 6 & Figure 7 for positions within each        |
| mooring                                                                                       |
| Table 5. List of Nortek current meters by serial number showing instruments recovered from    |
| moorings or brought from stores(B), instruments deployed on this cruise or returned ashore    |
| (R) and instrument owner                                                                      |
| Table 6. RDI WH 300 kHz ADCPs serial number showing instruments recovered from                |
| moorings or brought from stores(B), instruments deployed on this cruise or returned ashore    |
| (R) and instrument owner 21                                                                   |
| Table 7. Summary data for RTADC1 Nortek S55. These data are typed from a screenshot           |
| after AD2CP_55kHz_osnap_S55_dep_2018.deploy was loaded into the instrument and                |
| delayed start set                                                                             |
| Table 8. AD2CP_55kHz_osnap_S55_dep_2018.deploy25                                              |
| Table 9. Table of SeaBird SMP37 and SMP37-ODO calibration casts. Columns are: s/n             |
| instrument serial number, CALDIP CAST CTD station number of the calibration cast, where       |
| MER is from CTD cast 110 conducted on the R/V Merian Cruise on 17/6/18, 1 are the             |
| moorings from which instruments were recovered or brought from stores (B). RT are Rockall     |
| Trough Moorings and M are the East Greenland Current Moorings; <b>2</b> are the moorings on   |
| which instruments have been deployed or returned to stores; Owner is SAMS, National           |
| Marine Equipment Pool and OSNAP Programme. Some instruments have been caldip'd twice          |
| and calibration values could be compared. Caldip cast 6 was designed for the calibration of   |
| the DeepSEApHOxODO and SBE37-ODOs by including two 30minute bottle stops. For better          |
| SBE37 calibrations on this cast look to other dips 30                                         |
| Table 10. Dates and locations of Argo float deployments.         39                           |
| Table 11. R/V Neil Armstrong shipboard sensors, serial numbers, installation and file         |
| information 40                                                                                |
| Table 12. CTD/LADCP station information 43                                                    |
| Table 13. Matlab MEXEC processing steps 47                                                    |
| Table 14. SBE 43 Sensors deployed on AR304. The SBE 43 is calibrated using SeaBirds'          |
| Equation (1) with the coefficients listed in this table (a modified version of the Owens $\&$ |
| Millard (1985) equations). Hysteresis corrections (Equation 2) using the Nominal              |
| Coefficients                                                                                  |

## 1 Summary

The Overturning in the Subpolar North Atlantic Program (OSNAP) is an international program designed to provide a continuous record of the full-water column, trans-basin fluxes of heat, mass and freshwater in the subpolar North Atlantic. It is a collaborative program with scientists from several nations, including the U.S., U.K., the Netherlands, Germany, Canada, France, and China. The OSNAP observing system consists of two legs: one extending from southern Labrador to the southwestern tip of Greenland across the entrance of the Labrador Sea (OSNAP West), and the second from the southeastern tip of Greenland to Scotland (OSNAP East). The observing system also includes subsurface floats in order to trace the pathways of overflow waters in the basin and to assess the connectivity of currents crossing the OSNAP line.





Cruise AR30-04 was the second U.S.-sponsored cruise across the OSNAP East line, following earlier cruises in 2014 (R/V Knorr), 2015 (R/V Pelagia), and 2016 (RRS Discovery). Scientists from the U.S., the U.K., and the Netherlands participated in the cruise.

This cruise noted a major reorganization of mooring responsibilities between countries along OSNAP East. The UK is now responsible for all moorings from the middle of the Iceland Basin to the continental shelf off Scotland, including deployment of an additional mooring in 1000m water depth on the western edge of the Hatton Bank. Prior to this cruise the UK had responsibility of moorings measuring the Deep Western Boundary Current off East Greenland and the US for moorings in the Iceland Basin extending to the Hatton Bank. These changes are part of a strategy for optimization of the array design, and rationalization of the field programme to reduce field programme costs.

## 2 Introduction

This report describes UK mooring and CTD operations only. US and Dutch activities are reported in Johns (2018)<sup>1</sup>.

The UK objectives of cruise AR30-04 were to:

1. Recover and redeploy three moorings in the Rockall Trough; deploy three moorings in the Iceland Basin (two replacing US moorings and one new mooring).

2. Conduct standard CTDO2 (Conductivity-Temperature-Depth-Dissolved Oxygen) and Lowered ADCP (Acoustic Doppler Current Profiler) stations at approximately 80 stations along the same mooring line, with water sampling at selected sites for salinity, dissolved oxygen, dissolved inorganic carbon, nutrients (nitrate, silica, phosphate), and nitrogen and silica isotopes.

3. To deploy Argo floats at two locations along the section.

4. To collect invertebrates colonizing mooring hardware for micro-plastics analysis.

A full cruise synopsis is provided in Johns (2018)<sup>1</sup>.

| Name              | Position   | Organisation  |
|-------------------|------------|---------------|
| Bill Johns        | Ch. Sci.   | RSMAS/U.Miami |
| Adam Houk         | Technician | RSMAS/U.Miami |
| Mark Graham       | Technician | RSMAS/U.Miami |
| Cedric Guigand    | Technician | RSMAS/U.Miami |
| Greg Koman        | Student    | RSMAS/U.Miami |
| Tiago Bilo        | Student    | RSMAS/U.Miami |
| Femke de Jong     | Scientist  | NIOZ          |
| Lorendz Bloom     | Technician | NIOZ          |
| Roos Bol          | Student    | NIOZ          |
| David Wichmann    | Student    | Utrecht Univ. |
| Stuart Cunningham | Scientist  | SAMS          |

#### 2.1 Scientific crew

<sup>1</sup> Johns, W. (2018), RV Neil Armstrong, Cruise AR30-04: Reykjavik, Iceland to Reykjavik, Iceland, 1 July to 30 July 2018, pp. 30, RSMAS, Univ. of Miami, U.S.

| Loic Houpert     | Scientist  | SAMS |
|------------------|------------|------|
| Sarah Reed       | Technician | SAMS |
| Jeanne Castille  | Technician | SAMS |
| James Coogan     | Student    | SAMS |
| Robert McLachlan | Technician | NOC  |
| Steve Whittle    | Technician | NOC  |
| Chris Crowe      | Technician | NOC  |
| Dean Cheeseman   | Technician | NOC  |

#### 2.2 Cruise map



Figure 2. Chart of CTD stations (black circles, Section 14), moorings (green crosses, Sections 3, 4 and 5) and Remote Access Sampler deployment location (red square, Section 4.1).

## 3 Mooring Operations

Robert McLachan, Chris Crowe

### 3.1 Taut-Wire Moorings

The moorings were deployed and recovered using a Lebus double-capstan winch system (aka "double-barrel" winch) that was provided by the UNOLS winch pool. This system allows separate wire reels to be loaded on an auxiliary spooler and fed into the main double-barrel winch without having to pre-spool all the wire reels onto a traction winch before deployment, such as is required with commonly used mooring winches such as the TSE winch. This saves considerable time in on-deck preparation for new mooring deployments and was an extremely valuable asset on the cruise. All of the taut-wire moorings were deployed in traditional fashion by laying out the mooring components from top to bottom while steaming into the wind at approximately 1.0 kt and dropping the anchors at selected "fallback" distances from the target site depending on the length of the moorings and observed ocean currents at the deployment sites. One mooring, a special trawl-resistant bottom lander deployed on the Scottish slope, was lowered to within a few meters of the bottom with the trawl winch and then dropped to the bottom using an acoustic release tethered to the bottom lander by a sling. Moorings were recovered by grapneling onto pickup lines at the tops of the moorings (usually from the starboard side of the vessel but occasionally on the port side depending on the layout of the mooring on the surface), and hauling in and sequentially removing mooring components from the top to the bottom of the moorings. All mooring operations were conducted safely and efficiently by the deck crew and mooring teams. On moorings that had anemones/bivalves or anything living on the sub-surface mooring components, samples were taken for microplastic analysis.

#### 3.2 Trawl Resistant Seabed Lander - RTADCP1

The following details the deployment notes for RTADCP1 (Stuart Cunningham).

Nortek SignatureS55 s/n 200047; Iridium D03-036; Light CO5-005; Releases 2309 & 1757

Release for lowering s/n 1999 ARM 0B16, REL OB55

Release 7/7/18 @ 183545; Lat 57.097269 N ; Lon -9.335169 W [57° 5.836'N ; 9° 20.110'W]

The lander was lowered using the trawl wire over the aft A-frame. A 3-legged bridle was rigged using spare orange recovery line. The bridle was attached to a release whose height was 5m above the base of the lander (this height should be accurately measured on deck).

At the deployment position the EM122 corrected water depth was 750m. From Carter tables 750m corrected equals 747m uncorrected. Ranges to the bridle release were uncorrected ranges. Therefore, the lander would be just touching the seabed when the range is 750-3-5=742m. Therefore, we planned to lower the lander until the range was 741m, which should place the lander 1m height-off seabed.

During the lowering at a winch rate of 10m/min throughout we monitored range to the bridle release and winch wire-out.

We lowered to 700m wire-out, halted then assessed our estimate of lander height-off bottom. We then lowered until the bridle-release range was 741m and stopped the winch. We then released the bridle. Although noisy, back tension on the winch appeared to decrease. The winch then hauled at 10m/min.

We then ranged to the releases in the lander. We achieved consistent ranges of 745m. This is consistent with the height of the bridle release being 5m above the base of the lander.

We examined the winch tension data around the time of release (Figure 7). The package touches down on the seabed just before 18:35:40. At 18:35:45 the package is released from the wire. The low-pass tension data indicate that close to seabed the package and wire weight is around 900 kg. The package lands on seabed and full weight of package is removed from wire and tension drops to about 510 kg.



Figure 3. Winch tension [kg] (red) with 10s low-pass filter (black dashed), cable out [m] (black).

## 4 Mooring Recoveries

Stuart Cunningham, Loic Houpert

Table 1 shows the location and date of mooring recoveries on the cruise. For more information on the mooring recoveries, see recovery log sheets in Section 17.1.

| Mooring | Lat (°N) | Lon (°W) | Depth (m) | Date of<br>Recovery |
|---------|----------|----------|-----------|---------------------|
| RTWB1   | 57.46933 | 12.70566 | 1601      | 06/07/2018          |
| RTWB2   | 57.47166 | 12.31116 | 1801      | 09/07/2018          |
| RTEB1   | 57.10050 | 9.563830 | 1817      | 07/07/2018          |

Table 1. UK OSNAP Mooring recoveries. Moorings deployed on cruise DY078 in 2017.

#### 4.1 Remote access sampler

John Beaton, Clare Johnson, Stuart Cunningham, Loic Houpert

A McLane Instruments Remote Access Sampler (s/n 14262) was deployed on RTEB1 on cruise DY078/079 on 13/5/2017, and recovered on AR30-04. Due to time pressures and the risk of sample loss, the decision was made to leave the sample bags on the RAS and return this to SAMS for sample removal. As the RAS multi-port valve ensures that all samples are isolated, the only step needed during the cruise was to stop the RAS and download the metadata file. The procedure for this is detailed below.

#### Pre-recovery preparation:

(1) Identify the wooden RAS crate and ensure it is accessible. Although the crate can be easily pushed around when empty, it will require an overhead crane once the RAS is in the crate.

(2) check the time and date on your camera and laptop is correct, and set to UTC.

(3) Equipment needed for recovery: RAS spares box, a laptop with the McLane terminal program 'Motocross',

#### Post-recovery steps:

(1) Place the RAS upright, on a pallet if possible, and move to a place where it can safely be worked on.

(2) If additional instruments have been added to the RAS frame (e.g. Deep SeapHOx) remove these. Remove any shackles, rings etc from the top and bottom eyes of the RAS frame.

(3) Photograph the RAS from each side, and take more detailed pictures of the top, bottom and tubing. Additionally, photograph any areas of damage, corrosion, or lose tubing. If any tubing is disconnected make a note of the multi-port valve number from the ring label on the tubing.

(4) Find the small red cap in the RAS toolbox, and cover the sample intake as in Figure 4.a.

(5) Gently wash the entire RAS with a light spray of freshwater. Do not use a power washer or a heavy hose. Wipe algal growth from the stainless steel frame.

(6) Open the 'motocross' programme which will launch a blue window (Figure 4.b).

(7) Start a capture file (select 'transfer', 'capture text', 'start'). Ensure you know where the capture file is stored.

(8) Use the serial COM cable and USB adaptor from the RAS toolbox (Figure 4.c) to connect between your laptop and the comm connector (marked C, Figure 4.d) on the RAS controller. Motocross should be open while you connect.

(9) Deployment metadata is obtained by displaying it on screen whilst the capture function is active; this is the only way. Start communication with the RAS by pressing Ctrl & C three times. You may need to try this multiple times.

(10) From the main menu choose 'Offload/Display Data File', then from the offload menu choose 'Display ALL data'. The metadata should be displayed as in Figure 5.

(11) Stop the file capture by selecting 'transfer', 'capture text', 'stop'. Open the save capture file and check the contents are as expected. The offload procedure can be repeated if necessary as the data file remains in the memory until a new deployment schedule is created or the batteries are disconnected.

(12) From the main menu in motocross, choose '<4> Sleep' to put the RAS into suspend mode. Disconnect the COM cable from the controller and reinstall the dummy plug.

(13) Pack the RAS in the crate. The easiest option is to lift the RAS into the crate from above, although the sides of the crate can be removed if this is not possible. As the foam padding in

the crate has been modified to accept the RAS frame modifications, you may need to rotate the RAS by 90 ° to get it to fit. Remember to screw the lid down to prevent it coming off during unloading by crane.



Figure 4. (a) replacement of sample intake cap (red), (b) motocross terminal, (c) RAS COM cable, (d) RAS comms port (C).

a.



Figure 5. Screenshot of capture of RAS metadata from (a) the start, and (b) the end of the datafile.

## 5 Mooring Deployments

#### Loïc Houpert, Stuart Cunningham

Seven moorings were deployed, times and positions are indicated in Table 2. The mooring schematics as deployed are in Section 17.2.

## 5.1 Mooring Deployment locations and Iridium Beacon IMEI Codes

Table 2. Mooring deployments, times, depths, anchor seabed positions determined by trilateration.

| Moor    | Date     | Start<br>Deploy | Anchor<br>Away |          | Anchor Seabe | ed posi     | tion and v | vater d     | epth    |           | Fall-<br>back |
|---------|----------|-----------------|----------------|----------|--------------|-------------|------------|-------------|---------|-----------|---------------|
| Name    | dd/mm/yy | hh:mm           | hh:mm:ss       | Lat (°N) | Lon (°W)     | Lat<br>(°N) | Lat (')    | Lon<br>(°W) | Lon (') | wd<br>(m) | m             |
| IB3     | 03/07/18 | 14:14           | 16:28:00       | 57.99010 | 24.35340     | 57          | 59.41      | 24          | 21.20   | 2854      | 318           |
| IB4     | 04/07/18 | 12:35           | 15:11:55       | 57.98990 | 21.14610     | 57          | 59.39      | 21          | 08.77   | 2920      | 152           |
| IB5     | 05/07/18 | 08:48           | 10:23:20       | 57.80100 | 19.17070     | 57          | 48.06      | 19          | 10.24   | 951       | 93            |
| RTWB1   | 06/07/18 | 12:44           | 15:04:50       | 57.47009 | 12.70431     | 57          | 28.21      | 12          | 42.25   | 1597      | 190           |
| RTWB2   | 09/07/18 | 17:20           | 18:37:35       | 57.46928 | 12.31356     | 57          | 28.16      | 12          | 18.81   | 1801      | 9             |
| RTEB1   | 08/07/18 | 10:03           | 12:42:08       | 57.09969 | 9.56322      | 57          | 05.98      | 9           | 33.79   | 1804      | 280           |
| RTADCP1 | 07/07/18 | 17:15           | 18:35:45       | 57.09727 | 9.33517      | 57          | 05.84      | 9           | 20.11   | 750       | n/a           |

#### Table 3. Nominal mooring target positions.

| Moor    | Nominal Target position |          |          |         |          |         | Nominal<br>water depth |
|---------|-------------------------|----------|----------|---------|----------|---------|------------------------|
| Name    | Lat (°N)                | Lon (°W) | Lat (°N) | Lat (') | Lon (°W) | Lon (') | m                      |
| IB3     | 58.01333                | 24.42283 | 58       | 00.80   | 24       | 25.37   | 2850                   |
| IB4     | 57.99233                | 21.14083 | 57       | 59.54   | 21       | 08.45   | 2920                   |
| IB5     | 57.76700                | 19.17267 | 57       | 46.02   | 19       | 10.36   | 900                    |
| RTWB1   | 57.47000                | 12.70417 | 57       | 28.20   | 12       | 42.25   | 1600                   |
| RTWB2   | 57.47000                | 12.31000 | 57       | 28.20   | 12       | 18.60   | 1800                   |
| RTEB1   | 57.10000                | 9.56300  | 57       | 06.00   | 9        | 33.78   | 1810                   |
| RTADCP1 | 57.10000                | 9.33833  | 57       | 06.00   | 9        | 20.3    | 750                    |

| Mooring |           | Beacon 1        |           | Beacon 2        |
|---------|-----------|-----------------|-----------|-----------------|
| Name    | depth (m) | IMEI            | depth (m) | IMEI            |
| IB3     | 92        | 300234060476980 |           | none            |
| IB4     | 92        | 300234060572000 |           | none            |
| IB5     | 70        | 300234060475990 |           | none            |
| RTWB1   | 240       | 300234060571000 | 490       | 300234060475730 |
| RTWB2   | 996       | 300234060479980 |           | none            |
| RTEB1   | 48        | 300234060474980 | 488       | 300234060573000 |
| RTADCP1 | 750       | 300434060123920 |           | none            |

Table 4. Iridium Beacons IMEI codes. See Figure 6 & Figure 7 for positions within each mooring.



Figure 6. Iceland Basin mooring schematic and instrument allocations.



Figure 7. Rockall Trough mooring schematic and instrument allocations.

## 6 Instrument set-up Summaries

Note: For examples of setup files, see Section 17.4.

## 6.1 Summary of the instruments recovered and deployed

Note: for complete list of microcats see "Table 9": Table of SeaBird SMP37 and SMP37-ODO.

Table 5. List of Nortek current meters by serial number showing instruments recovered from moorings or brought from stores(B), instruments deployed on this cruise or returned ashore (R) and instrument owner.

| s/n         | Recovered | Deployed | Owner |  |
|-------------|-----------|----------|-------|--|
| 6534        | В         | RTEB1    | NMEP  |  |
| 6723        | В         | IB3      | NMEP  |  |
| 8120        | В         | IB4      | NMEP  |  |
| 8364        | M2        | R        | NMEP  |  |
| 8365        | В         | IB5      | NMEP  |  |
| 9213        | В         | RTWB1    | NMEP  |  |
| 9822        | В         | IB3      | NMEP  |  |
| 9853        | M1        | RTWB1    | NMEP  |  |
| 9854        | RTWB1     | R        | NMEP  |  |
| 9859        | RTWB1     | R        | NMEP  |  |
| 9861        | В         | RTEB1    | NMEP  |  |
| 9867        | В         | IB5      | NMEP  |  |
| 9874        | M5        | RTEB1    | NMEP  |  |
| 9877        | В         | RTWB1    | NMEP  |  |
| 9881        | В         | RTEB1    | NMEP  |  |
| 9885        | М3        | RTWB2    | NMEP  |  |
| 11021       | RTWB1     | R        | OSNAP |  |
| 11023 RTWB2 |           | R        | OSNAP |  |
| 11026       | RTWB1     | R        | OSNAP |  |
| 11028       | RTWB2     | R        | OSNAP |  |
| 11029       | RTWB1     | R        | OSNAP |  |
| 11030       | RTWB2     | R        | OSNAP |  |
| 11032       | В         | u/s      | OSNAP |  |
| 11034       | M1        | IB3      | OSNAP |  |
| 11035       | В         | u/s      | OSNAP |  |
| 11042       | В         | R        | OSNAP |  |
| 11046       | В         | R        | OSNAP |  |
| 11047       | В         | R        | OSNAP |  |
| 11048       | В         | R        | OSNAP |  |
| 11051       | В         | IB4      | OSNAP |  |

| 11055 | В  | R     | OSNAP |
|-------|----|-------|-------|
| 11058 | M4 | RTWB1 | OSNAP |
| 11063 | M1 | RTEB1 | OSNAP |
| 11064 | M1 | RTWB2 | OSNAP |
| 11067 | M1 | RTWB2 | OSNAP |
| 11069 | В  | RTEB1 | OSNAP |
| 11069 | В  | R     | OSNAP |
| 13018 | В  | R     | OSNAP |
| 13130 | В  | RTWB1 | OSNAP |
| 13142 | В  | IB4   | OSNAP |

Table 6. RDI WH 300 kHz ADCPs serial number showing instruments recovered from moorings or brought from stores(B), instruments deployed on this cruise or returned ashore (R) and instrument owner.

| s/n   | Recovered Deployed |              | Note  |
|-------|--------------------|--------------|-------|
| 20962 | M1                 | IB4          | OSNAP |
| 20957 | M2                 | IB3          | OSNAP |
| 20961 | M3                 | R (corroded) | OSNAP |
| 20959 | M4                 | IB5          | OSNAP |
| 20960 | M5                 | IB3          | OSNAP |
| 20958 | В                  | IB4          | NMEP  |

# 6.2 OSNAP Instrumentation for Moorings EB1, WB1, WB2, IB3, IB4 and IB5

SBE37 MicroCATs and Nortek Aquadops were deployed on all six moorings. WorkHorse 300kHz ADCPs were deployed on IB3, IB4, IB5.

The microcats were cal-dipped and fitted with new batteries prior deployment. Their clocks were synchronized with GPS time, and the instruments set to sample every 1800s.

Norteks were synchronised with GPS time and new alkaline batteries (100 Wh). They were set to sample every 3600s, with an averaging period of 60s. With these settings, the battery utilisation for a deployment of 730 days was estimated to be 79%.

ADCP were set-up to ping 42 times per hour. The number of depth cells was set to 30 and the depth cell size to 4m. The battery usage for a two year deployment was estimated to be about 80%

Full setup parameters are available in Section 17.4.

#### 6.3 Biogeochemical sensors on EB1

EB1 is equipped with three SBE37-ODO MicroCATs (SBE37 fitted with an SBE63 Optical Dissolved Oxygen sensor), Figure 6. Unfortunately, one of the SBE-ODO deployed in 2017 (s/n 14987) stopped working properly on June 9<sup>th</sup>. The oxygen sensor also returned bad

oxygen data (< 300  $\mu$ mol/kg) during the caldip cast and therefore was not redeployed in 2018. During the caldip cast, the timeseries of (bad) oxygen data appeared to be correlated to the pressure (the bad values were decreasing during downcast, increasing during the upcast, and stable during the bottle stop).

The adaptive pump control option (the MicroCAT calculates the pump time before each sample for best oxygen accuracy) was activated for both SBE37-ODOs redeployed in 2018. As the pumping time is significantly higher than on a standard MicroCAT, the energy usage had to be carefully estimated before setting the sampling intervals. According to the expected depth of deployment and the minimum temperature encountered by the instrument at that depth, a sampling interval of 3600s was set-up for the SBE37-ODO 15298 (deployed at 750m) and 4500s was set-up for the SBE37-ODO 15254 (deployed at 950m). Using these settings, the number of endurance days are estimated to be respectively 858 and 973 days.

The DeepSeapHOx comprises a SBE37-ODO, and a SeaFEt pH sensor. The two instruments are connected together, with the SeaFEt controlling the sampling and data merging. After recovery of EB1, the SBE37-ODO and the SeaFEt were fitted with new batteries. The DeepSeapHox was set-up in order to obtain the longest endurance possible (estimated to be 515 days): sample interval of 3600s, burst frame of 1 and sample average of 30s.

#### 6.4 Signature S55 on RTADCP1

#### 6.4.1 Pre-deployment Checks

Pre-deployment checks followed those outlined in the Signature55 Operations Manual Chapter 4. The instrument was loaded with test parameters from file RTADCP1\_DY078\_test.deploy. This file is derived from RTADCP1\_DY078.deploy but sampling was set to an average of 6s with a measurement interval of 6s. The software was set to Online Data Collection displaying data to the PC. The blue LED on the instrument flashes every 2s corresponding to a single ping.

#### 6.4.1.1 Temperature

14.12°C noted and appropriate for the location of the instrument in the aft hanger.

#### 6.4.1.2 Pressure

We tested the pressure sensor by forming a mouth seal around the sensor and blowing to observe an increase in pressure. Pressure increases by a few tenths of a dbar. The pressure sensor outputs the absolute pressure value in units of dbar. During production, the sensor is adjusted to 9.5 dbar to output the gauge pressure (pressure relative to the atmospheric pressure). The pressure sensor cannot output negative values. The outcome is that when the instrument is in air, you will see a value of 0.2-0.7 dbar, depending on atmospheric conditions. The sensor reported values of 1.5 dbar so an offset was applied of 10.5 dbar, bringing the air values to a range of 0.1 to 0.5. The air-pressure readings were noisy varying by  $\pm 0.2$ -0.3 dbar, so fine adjustment did not seem possible.

#### 6.4.1.3 Orientation (Heading, pitch and roll)

Full orientation checks were conducted according to Figure 8 and instructions in the Operations Manual:

1. Find the X mark located on the instrument and identify which direction it is pointing.

- 2. Hold the instrument as level as possible while aiming the X direction away from you. The values for "Pitch" and "Roll" should now be close to zero.
- 3. Tilt the instrument 10<sup>o</sup> to the right. The "Roll" value should read approximately 10.
- 4. Tilt the instrument 10<sup>o</sup> to the left. The "Roll" value should read approximately -10.
- 5. Tilt the instrument 10<sup>o</sup> forwards. The "Pitch" value should read approximately -10.
- 6. Tilt the instrument 10<sup>o</sup> backwards. The "Pitch" value should read approximately 10.
- Now turn the instrument upside-down, still aiming the X direction away from you. Repeat steps 2 -6 and ensure you have the same values.
- 8. **Compass:** Point the X direction towards North. Rotate the instrument around the Z-axis and check the values at 0, 90, 180, 270 degrees corresponding to North, East, South and West respectively.



Figure 8: Definitions of beam number, pitch and roll. The X-mark and direction are distinctively engraved on the central boss of the transducer head.

#### 6.4.1.4 Beam Amplitude

The manual recommends beam amplitude tests in water: this was not done. Starting with beam one in the x-direction and proceeding clockwise to beams two and three we tested beam amplitude by a vigorous rub and mild slapping on the head. A strong response in beam amplitude was noted for each beam.

#### 6.4.1.5 Recorder/Memory

Three test files were written to memory, downloaded and translated. The memory was erased prior to deployment (Erase Recorder).

#### 6.4.2 Compass Calibration

This was not performed as being impractical to arrange within the lander surrounded by a steel ship. The current being measured is strongly bathymetrically controlled, with along

slope current speed variability 2.5 times larger than across slope. For scientific purposes the currents will be rotated to minimise the across slope flow so errors in the true current direction may be less important in this application.

It may be valuable to try and arrange compass calibrations ashore with the lander fully rigged.

#### 6.4.3 Deployment Set-Up

The instrument was programmed according to Table 7. The estimated time for recovery is from July 2018 to September 2019 (~430 days). Planning for a 702 day deployment. First the Set-up PC clock was synchronized to network time server and the S55 synchronised to the PC clock. Instrument confirmed sampling via blue LED which is set to be on for 24 hours after start time. Release 7/7/18 @ 183600; Lat 57.097269 N ; Lon -9.335169 W [57° 5.836'N ; 9° 20.110'W].

Table 7. Summary data for RTADC1 Nortek S55. These data are typed from a screenshot after AD2CP\_55kHz\_osnap\_S55\_dep\_2018.deploy was loaded into the instrument and delayed start set.

| Performance                 |                          |  |  |
|-----------------------------|--------------------------|--|--|
| Configured length (days)    | 702                      |  |  |
| Estimated max length (days) | 703.9                    |  |  |
| Battery capacity (Wh)       | 3600                     |  |  |
| Power usage (Wh)            | 3590.4                   |  |  |
| Recorder capacity (MB)      | 15258.4                  |  |  |
| Memory usage (MB)           | 356.6                    |  |  |
| System Information          |                          |  |  |
| Instrument name             | Signature55              |  |  |
| Nickname                    | Virtual Instrument       |  |  |
| Serial number               | 900001                   |  |  |
| Head frequency (kHz)        | 55                       |  |  |
| Opt sensors                 | None                     |  |  |
| Firmware version            | 1.4.4010.2205_0          |  |  |
| Recorder size (GB)          | 16 GB                    |  |  |
| Connection                  | Virtual Instrument       |  |  |
| Orientation                 | Auto Z up/down           |  |  |
| Application                 |                          |  |  |
| Туре                        | Single                   |  |  |
| Plan                        | Average – Coarse profile |  |  |
| Deployment length (days)    | 702                      |  |  |
| Environment                 |                          |  |  |
| Geography                   | Open ocean               |  |  |
| Sound velocity (m/s)        | Measured                 |  |  |
| Mounting                    | Fixed frame              |  |  |
| Orientation                 | Up-looking               |  |  |
| Instrument depth (m)        | 1000                     |  |  |
| Salinity (ppt)              | 35                       |  |  |
| Tidal range (m)             | 1                        |  |  |
| Coarse profile              |                          |  |  |
| Start of profile (m)        | 2                        |  |  |
| End of profile (m)          | 1000                     |  |  |
| Cell size (m)               | 20                       |  |  |
| Power level (dB)            | -2                       |  |  |
| Measurement load (%)        | 100                      |  |  |
| Average interval            | 00:01:24                 |  |  |
| Measurement interval        | 00:30:00                 |  |  |
| Coordinate system           | ENU                      |  |  |

| Serial telemetry       | OFF        |  |
|------------------------|------------|--|
| Telemetry format       | DF100_NMEA |  |
| Data Sampling          |            |  |
| Power level (dB)       | -2         |  |
| Long range mode        | ON         |  |
| Multiplexing           | ON         |  |
| Number of pings        | 14         |  |
| Slanted Beams          |            |  |
| Horizontal prec (cm/s) | 1.77       |  |
| Vertical prec (cm/s)   | 0.46       |  |
| Velocity range (m/s)   | 1          |  |
| Measurement Range      |            |  |
| Desired range (m)      | 1000       |  |
| Configured range (m)   | 1082       |  |
| Estimated range (m)    | 1022.3     |  |
| Blanking distance (m)  | 2          |  |
| Cell size              | 20         |  |
| Number of cells        | 54         |  |
| Number of beams        | 3          |  |

#### Table 8. AD2CP\_55kHz\_osnap\_S55\_dep\_2018.deploy.

#\$DeployFileVersion,3,1550633f1e1ba7b743bee44e81cf2ff2

#\$SWSource,"Deployment-v3.4.7.2"

#\$InstrumentId,{"InstrumentType":"Signature55","HeadFrequency":55,"FWVersion":"2205.0"}

#\$DeploymentName,"osnap\_S55\_d"

#\$Comment,"osnap 2018 armstrong deployment"

#\$ApplicationConfig,[{"Enabled":true,"Application":"AvgCoarse","Mounting":"Fixedframe","Orientation":"UpLoo king","Geography":"O\$C

#\$penOcean","SoundVelocity":"Measured","SoundVelocityValue":1500.0,"Salinity":35.0,"StrongWaves":false,"In strumentDepth":1000.0\$C

#\$,"TidalRange":1.0},{"Enabled":false,"Application":"None","Mounting":"Fixedframe","Orientation":"UpLooking", "Geography":"OpenO\$C

#\$cean", "SoundVelocity": "Measured", "SoundVelocityValue": 1500.0, "Salinity": 35.0, "StrongWaves": false, "Instrum entDepth": 1000.0, "Ti\$C

#\$dalRange":1.0}]

#\$AlternatingRatio,[3,1]

#\$DeploymentConfigExtensions,[{"AvgDesiredRange":1000.0,"BurstDesiredRange":1000.0,"BurstHrDesiredRange ":1000.0,"EchoSounderDes\$C

#\$iredRange":1000.0,"AvgEndProfile":1100.0,"BurstEndProfile":1100.0,"BurstHrEndProfile":1100.0,"EchoSounde rEndProfile":1100.0,"\$C

#\$AlStep":6,"RangeStep":1.0,"BurstMeasurementContinuous":false,"AvgMeasurementLoad":100.0,"AvgAutoMe asurementLoad":true,"AvgMea\$C

#\$surementLoadTick":7.142857,"BurstMeasurementLoad":100.0,"BurstAutoMeasurementLoad":true,"BurstMeasurementLoadTick":1.0,"Pulse\$C

#\$DistanceAutoOption":3,"PulseDistance":3,"DistanceToBottom":2.0,"DistanceToSurface":2.0,"DesiredVelocityR ange":0.25},{"AvgDesi\$C

#\$redRange":1000.0,"BurstDesiredRange":1000.0,"BurstHrDesiredRange":1000.0,"EchoSounderDesiredRange":1 000.0,"AvgEndProfile":110\$C

#\$0.0,"BurstEndProfile":1100.0,"BurstHrEndProfile":1100.0,"EchoSounderEndProfile":1100.0,"AIStep":1,"RangeS tep":0.1,"BurstMeasu\$C

#\$rementContinuous":false, "AvgMeasurementLoad":100.0, "AvgAutoMeasurementLoad":true, "AvgMeasurement LoadTick":1.0, "BurstMeasureme\$C

#\$ntLoad":100.0,"BurstAutoMeasurementLoad":true,"BurstMeasurementLoadTick":1.0,"PulseDistanceAutoOpti on":3,"PulseDistance":3,"D\$C

#\$istanceToBottom":2.0,"DistanceToSurface":2.0,"DesiredVelocityRange":0.25}]

#\$BatteryItem,null

#\$BatteryCombo,{"InternalBattery":{"Name":"None 0

Wh", "Volume": 0.0, "Voltage": 0.0}, "ExternalBattery": {"Name": "Lithium 3600 Wh", "\$C

#\$Volume":3600.0,"Voltage":18.0},"Volume":3600.0,"Voltage":18.0}

```
#$RecorderItem,{"Name":"16 GB","Capacity":1600000000}
#$AhrsInstalled,false
#$DeploymentDays,702
SETDEFAULT,ALL
SETPLAN,MIAVG=1800,AVG=1,DIAVG=0,VD=0,MV=10,SA=35,BURST=0,MIBURST=120,DIBURST=0,SV=1500,FN="D
ata.ad2cp",SO=0,FREQ=55,NSTT=0
SETAVG,NC=54,CS=20,BD=2,CY="ENU",PL=-
2,AI=84,VR=1,DF=3,NPING=14,NB=3,CH=0,MUX=1,BW="NARROW",ALTI=0,BT=0,ICE=0,ALTISTART=0.5,ALTIEND=1
50,RAWALTI=1
SETTMAVG,EN=0,CD=1,PD=1,AVG=84,TV=1,TA=1,TC=1,CY="ENU",FO=0,SO=1,DF=100
SAVE,ALL
```

## 7 Multibeam Survey of IB5 site

#### Stuart Cunningham

Opportunistically throughout the cruise the Kongsberg EM122 Multibeam Echosounder provided high-resolution imaging of seabed depths. In particular, for the deployment of mooring IB5, a survey was conducted to determine a suitable site. Data were corrected for sound-speed from an XBT-deployment at the beginning of the survey. Data were exported as good pings only, but without any manual processing, to an ASCII file containing positions and depths.

Raw data were transferred to file and directory: /home/mstar/ar304/em122/ar30—04\_cellsize38\_xyZ.DAF

This file was processed in *vi* to a file suitable for reading into MATLAB by removing header lines and new line characters. In particular new-line characters (^M) were removed with the command :1,\$ s/\r\$//. After using the Import Data function, the file was saved as: /home/mstar/ar304/em122/ar30\_04\_em122\_xyz.mat

The matlab *script em122\_ar304.m* reads *ar30\_04\_em122\_xyz.mat*, selects the data relevant to the region of IB5, grids and then contours the data (Figure 9). Based on inspection of raw pings we gridded the raw data at a lat/lon resolution of 0.0002° [approximately 0.12nm latitude x 0.24nm longitude]. A more careful consideration of the raw data could allow gridding at finer horizontal resolution if required.



Figure 9. EM122 Multibeam Echosounder survey. The nominal position for planning is shown by the black dot and the final anchor seabed position is the red dot. The black lines indicate the boundaries of the Hatton Bank Marine Protected Area, and the mooring is located inside this region.

## 8 Mooring Data Processing

#### Loic Houpert, Stuart Cunningham

Before the processing of the different datasets, a control file is created for each mooring. Each mooring deployed has an associated ASCII info.dat file in the mooring directory. (e.g. *rtwb1\_04\_2017info.dat* is created in the directory *osnap/data/moor/proc/rtwb1\_04\_2017/*). The info.dat file contains metadata of mooring position, deployment period, and nominal depths and serial numbers of each instrument on the mooring. The SBE37 are identified by the RODB code 337, while the RODB code 335 is assigned to the SBE37-ODO. The Nortek are identified by the code 370 and the DeepSeapHOx by the code 375.

#### 8.1 Microcat Data Processing

#### 8.1.1 Stage 0 – Data Download

Raw instrument data are downloaded from the instrument after the recovery of the mooring. Data are downloaded in ASCII and cnv format. Record keeping of the download is done on paper and for each instrument a download sheet is completed. After download the data are copied onto the processing computer in the directory *osnap/data/moor/raw/ar30/microcat/* 

#### 8.1.2 Stage 1 – Conversion to standard RDB format

The script *mc\_call\_2\_ar30* performs stage1 processing on microcat data. It converts microcat data from raw to RDB format for an entire mooring. The user needs to modify some information in the beginning of the script like the directory trees, the mooring name, the year of the first measurement. *mc\_call\_2\_ar30* calls *microcat2rodb\_6*, which saves the file downloaded by the instrument software (stage 0) to the RDB formatted file *.raw*. The stage1 processed data are stored in the directory

~/osnap/data/moor/proc/moor\_04\_2017/microcat, which is created manually.

#### 8.1.3 Stage 2 – Trimming of data, basic statistics and summary plots

To perform stage 2 processing, the script *microcat\_raw2use\_003\_with\_ODO.m* was used. This script uses the raw data file *mooring\_serialnum.raw* generated by stage1 and the *mooringinfo.dat* file. It removes the launching and recovery period, creates a data overview sheet including basic statistics, and produces summary plots, including filtered data. The launching period is defined as the time from the start of the data logging until the mooring settles on the sea-bed. The recovery period is defined as the time from when the mooring is released from the seabed until the end of the data logging.

#### 8.2 Nortek Current Meter Data Processing

#### 8.2.1 Stage 0 – Data Download

Raw instrument data are downloaded from the instrument after the recovery of the mooring. Record keeping of the download is done on paper and for each instrument a download sheet is completed. After download the data are backed up and transferred to the network drive. Data (.data, .dat, .aqd and .hdr files) are copied to the processing computer in the directory e.g osnap/data/moor/raw/ar30/nortek/

#### 8.2.2 Stage 1 – Conversion to standard RDB format

*The script process\_nors\_ar30 performs* stage1 and stage 2 processing on nortek data. It converts nortek data from raw to RDB format for an entire mooring. The user needs to modify some information in the beginning of the script like the directory trees, the mooring name, and the year of the first measurement. A text file containing the serial numbers of the Nortek on the mooring and the filenames containing the data is also created before running the script, e.g.~/osnap/data/moor/raw/dy078/nortek/rteb1\_04\_2017\_filenames.txt.

process\_nors\_dy078 calls nortek2rodb\_01, which saves the files downloaded by the instrument software (stage 0) to the RDB formatted file .raw. in e.g. ~/osnap/data/moor/proc/rteb1\_04\_2017/nortek.

#### 8.2.3 Stage 2 – Trimming of data, basic statistics and summary plots

The script *process\_nors\_ar30* also performs stage 2 processing on nortek data by calling the script *nortek\_raw2use\_02*. This script uses the raw data file *mooring\_serialnum.raw* generated by stage1 and the *mooringinfo.dat* file. It removes the launching and recovery period, creates a data overview sheet including basic statistics, and produces summary plots, including filtered data.

#### 8.3 DeepSeapHOx Data Processing

#### 8.3.1 Stage 0 – Data Download

After download the data are backed up and transferred to the network drive, then copied onto the processing computer in the directory *osnap/data/moor/raw/ar30/seaphox\_caldip* 

#### 8.3.2 Stage 1 – Conversion to standard RDB format

The script *seaphox\_call\_caldip* performs stage1 processing on DeepSeapHOx data. It converts the data from raw to RDB format. The user needs to modify some information in the beginning of the script like the directory trees, the mooring name or caldip cast number. This script calls seaphox2rodb\_01, which saves the file downloaded by the instrument software (stage 0) to the RDB formatted file *.raw* and produce summary plots and statistics for each instrument.

Download DeepSeapHOx and transfer to the processing computer:

~/osnap/data/moor/raw/ar30/seaphox/. For the 2017-2018 deployment of the SeapHOx 117 the data appear to have been written on several files C00000\*.CSV, and several data files from the test on DY078 where still present on the memory of the DeepSeapHOx. After keeping a copy of all the original files, the data files were manually edited to make sure than only the data relevant for the 2017-2018 RTEB1 deployment were kept in this the seaphox raw directory.

If the relevant data are present in several COOO\*.CSV file, edit and run the script (with bash shell) ~/osnap/data/moor/raw/ar30/seaphox/merge\_sort\_CSVfiles.sh. This script will sort the lines of several CSV files generated by the SeapHOx and merge them into a single file. The name of this file, containing all the data, has to be indicated in the moor\_filenames.txt file (e.g. rteb1\_04\_2017\_filenames.txt).

Make sure that the relevant info.dat file contains the serial number of the DeepseapHOx (e.g. moor/proc/rteb1\_04\_2017/rteb1\_04\_2017 info.dat).

Run process\_seaphox\_ar30.m producing timeseries for each instrument, converting raw data to RODB format and summary statistics.

## 9 Calibration Dips

Stuart Cunningham, Loic Houpert

SBE37s, SBE37-ODOs and a DeepSEApHOx-ODO were deployed on the CTD frame for direct comparison to CTD values at 5min (30m for the DeepSEApHOx) bottle stops. These calibration casts are listed in Tables 9 and 12. The comparisons provide calibration points for the mooring instrumentation either pre or post-deployment calibrations, instrument functioning and as a rapid assessment of whether to redeploy and instrument or return

ashore for servicing and laboratory calibration. These calibration dips are a critical factor in tracing the instrument accuracy and stability back to a stable reference standard in the field. Final calibrations are obtained post final CTD calibration.

#### 9.1 Microcat

#### mc\_cal\_caldip\_ar30.m

Reads raw data, converts to RODB format and compares to the CTD profile. Produces timeseries plots for C,T,P which can be used to quickly assess instrument function and accuracy. Plots of CTP differencies at bottle stops are written to *cast#\_serialnum\_bottle\_stops.jpg*.

#### mc\_cal\_caldip\_check\_ar30.m

Reads data from raw RODB files and compares to the CTD profile. Produces plots showing mean and standard deviation of SBE-CTD paramaters from the deepest bottle stop and also at the nominal instrument deployment depth (read from the info.dat file). Tables of statistics are recorded in file

/osnap/data/moor/proc\_calib/ar30/cal\_dip/microcat/cast#/microcat\_check\_cast#.log.

Table 9. Table of SeaBird SMP37 and SMP37-ODO calibration casts. Columns are: s/n instrument serial number, CALDIP CAST CTD station number of the calibration cast, where MER is from CTD cast 110 conducted on the R/V Merian Cruise on 17/6/18, **1** are the moorings from which instruments were recovered or brought from stores (B). RT are Rockall Trough Moorings and M are the East Greenland Current Moorings; **2** are the moorings on which instruments have been deployed or returned to stores; Owner is SAMS, National Marine Equipment Pool and OSNAP Programme. Some instruments have been caldip'd twice and calibration values could be compared. Caldip cast 6 was designed for the calibration of the DeepSEApHOxODO and SBE37-ODOs by including two 30minute bottle stops. For better SBE37 calibrations on this cast look to other dips.

| s/n  | CALDIP<br>CAST | 1     | 2     | Owner | Notes                    |
|------|----------------|-------|-------|-------|--------------------------|
| 0117 | 006            | RTEB2 | RTEB1 | SAMS  | DeepSEApHOxODO s/n 15476 |
| 3218 | 002            | M1    | RTWB2 | NMEP  |                          |
| 3218 | MER            | M1    | RTWB2 | NMEP  |                          |
| 3276 | 005            | RTWB1 | RTEB1 | NMEP  |                          |
| 3481 | 002            | M1    | RTWB1 | NMEP  |                          |
| 3481 | MER            | M1    | RTWB1 | NMEP  |                          |
| 8077 | 002            | M1    | IB4   | NMEP  | cdiff=0.013              |
| 8077 | MER            | M1    | IB4   | NMEP  |                          |
| 8078 | 002            | M3    | IB4   | NMEP  |                          |
| 8078 | MER            | M3    | IB4   | NMEP  |                          |
| 8079 | 002            | M3    | IB4   | NMEP  | cdiff=0.011              |
| 8079 | MER            | M3    | IB4   | NMEP  |                          |
| 8080 | 001            | M3    | IB3   | NMEP  |                          |
| 8080 | MER            | M3    | IB3   | NMEP  |                          |

| J |       |     |       |       |       |             |
|---|-------|-----|-------|-------|-------|-------------|
| ļ | 8081  | 001 | M4    | IB3   | NMEP  |             |
|   | 8082  | 002 | M1    | IB5   | NMEP  | cdiff=0.012 |
|   | 8082  | MER | M1    | IB5   | NMEP  |             |
|   | 8443  | 002 | M1    | IB5   | NMEP  |             |
|   | 8443  | MER | M1    | IB5   | NMEP  |             |
|   | 9113  | 003 | В     | RTEB1 | SAMS  |             |
|   | 9140  | 003 | В     | RTWB1 | SAMS  |             |
|   | 9141  | 005 | В     | R     | SAMS  | pdiff=-32   |
|   | 9141  | 045 | В     | R     | SAMS  | pdiff=-32   |
|   | 9371  | 002 | В     | IB4   | NMEP  | cdiff=0.012 |
|   | 9372  | 003 | В     | RTWB2 | NMEP  | cdiff=0.014 |
|   | 9373  | 001 | M1    | IB4   | NMEP  |             |
|   | 9374  | 001 | M4    | IB4   | NMEP  |             |
|   | 9375  | 005 | RTWB1 | RTEB1 | NMEP  |             |
|   | 9376  | 002 | В     | IB5   | NMEP  |             |
|   | 9377  | 005 | RTWB1 | RTWB2 | NMEP  |             |
|   | 9378  | 001 | M5    | IB3   | NMEP  |             |
|   | 10559 | 003 | В     | RTWB1 | OSNAP |             |
|   | 10560 | 005 | RTWB1 | RTEB1 | OSNAP |             |
|   | 10561 | 001 | M4    | IB3   | OSNAP |             |
|   | 10562 | 003 | В     | RTEB1 | OSNAP |             |
|   | 10575 | 002 | В     | R     | OSNAP | cdiff=0.016 |
|   | 10576 | 003 | В     | R     | OSNAP | cdiff=0.051 |
|   | 10577 | 005 | RTWB1 | RTEB1 | OSNAP |             |
|   | 10578 | 001 | M5    | IB3   | OSNAP |             |
|   | 10579 | 001 | M5    | IB3   | OSNAP |             |
|   | 11287 | 005 | RTWB1 | RTEB1 | OSNAP |             |
|   | 11288 | 005 | RTWB1 | RTEB1 | OSNAP |             |
|   | 11289 | 005 | RTWB1 | RTEB1 | OSNAP |             |
|   | 11290 | 005 | RTWB1 | RTEB1 | OSNAP |             |
|   | 11320 | 045 | RTWB2 | R     | OSNAP |             |
|   | 11321 | 001 | M1    | IB3   | OSNAP |             |
|   | 11321 | MER | M1    | IB3   | OSNAP |             |
|   | 11322 | 045 | RTWB2 | R     | OSNAP |             |
|   | 11323 | 001 | M1    | IB4   | OSNAP |             |
|   | 11323 | MER | M1    | IB4   | OSNAP |             |
|   | 11324 | 001 | M1    | IB3   | OSNAP |             |
|   | 11324 | MER | M1    | IB3   | OSNAP |             |
| ļ | 11325 | 006 | RTEB1 | R     | OSNAP |             |
| ļ | 11325 | 045 | RTEB1 | R     | OSNAP |             |
|   | 11326 | 001 | M4    | IB4   | OSNAP |             |
| ļ | 11327 | 006 | RTEB1 | R     | OSNAP |             |
| ļ | 11327 | 045 | RTEB1 | R     | OSNAP |             |
| ļ | 11328 | 001 | M4    | IB4   | OSNAP |             |
| 1 |       | '   |       |       |       | I           |

| 11329 | 003 | В     | RTWB1 | OSNAP |                                      |
|-------|-----|-------|-------|-------|--------------------------------------|
| 11330 | 006 | RTEB1 | R     | OSNAP |                                      |
| 11330 | 045 | RTEB1 | R     | OSNAP |                                      |
| 11331 | 001 | M2    | IB4   | OSNAP |                                      |
| 11331 | MER | M2    | IB4   | OSNAP |                                      |
| 11332 | 002 | M2    | IB4   | OSNAP |                                      |
| 11332 | MER | M2    | IB4   | OSNAP |                                      |
| 11333 | 002 | M2    | IB5   | OSNAP |                                      |
| 11333 | MER | M2    | IB5   | OSNAP |                                      |
| 11334 | 045 | RTEB1 | R     | OSNAP |                                      |
| 11335 | 045 | RTEB1 | R     | OSNAP |                                      |
| 11336 | 001 | M5    | IB3   | OSNAP |                                      |
| 11337 | 003 | В     | R     | OSNAP |                                      |
| 11338 | 045 | RTEB1 | R     | OSNAP |                                      |
| 11339 | 002 | В     | IB5   | OSNAP | cdiff=0.015                          |
| 11340 | 001 | M5    | IB3   | OSNAP |                                      |
| 11341 | 045 | RTEB1 | R     | OSNAP |                                      |
| 11342 | 006 | RTEB1 | R     | OSNAP |                                      |
| 11342 | 045 | RTEB1 | R     | OSNAP |                                      |
| 11343 | 045 | RTEB1 | R     | OSNAP |                                      |
| 13019 | 001 | M2    | IB3   | OSNAP |                                      |
| 13019 | MER | M2    | IB3   | OSNAP |                                      |
| 13020 | 045 | M2    | R     | OSNAP |                                      |
| 13020 | MER | M2    | R     | OSNAP | cdiff=0.081                          |
| 13021 | 001 | M3    | IB3   | OSNAP |                                      |
| 13021 | MER | M3    | IB3   | OSNAP |                                      |
| 13022 | 000 | M3    | R     | OSNAP | leaked & repaired                    |
| 13022 | MER | M3    | R     | OSNAP | cdiff=-1.4; leaked on 000 & repaired |
| 14353 | 003 | В     | RTWB1 | OSNAP |                                      |
| 14354 | 002 | В     | RTWB1 | OSNAP |                                      |
| 14355 | 003 | В     | RTWB1 | OSNAP |                                      |
| 14356 | 002 | В     | IB5   | OSNAP |                                      |
| 14364 | 002 | В     | R     | OSNAP | diff=0.019                           |
| 14365 | 003 | В     | R     | OSNAP | cdiff=0.011                          |
| 14366 | 002 | В     | IB4   | OSNAP |                                      |
| 14367 | 002 | В     | R     | OSNAP |                                      |
| 14368 | 003 | В     | RTWB1 | OSNAP |                                      |
| 14987 | 006 | RTEB2 | R     | SAMS  | ODO faulty O2                        |
| 15254 | 006 | RTEB2 | RTEB1 | SAMS  | ODO                                  |
| 15298 | 006 | RTEB2 | RTEB1 | SAMS  | ODO cdiff=0.014                      |

#### 9.2 DeepSeapHOx

1. Process CTD station data and create the 1s average up and down profile (file: ctd\_ar304\_###\_psal.nc).

2. Download DeepSeapHOx, transfer to the processing computer:

~/osnap/data/moor/raw/ar30/seaphox\_cal\_dip/cast6. Then a cast6\_filenames.txt file needs to be created. Similar to the nortek filenames.txt files, the first column of each line contain the serial number of each SeapHOx instrument (e.g. 117) and the name of the data file (e.g. C0000001.CSV)

3. Make sure that the info.dat file contains the serial number of the DeepseapHOx (e.g. moor/proc\_calib/ar304/cast#info.dat).

4. Run: seaphox\_call\_caldip.m to produce timeseries for each instrument, convert raw data to RODB format and produce individual summary statistics.

5. Run seaphox\_caldip\_check.m : this reads the info.dat and produces timeseries plots of CTD data against MicroCAT data and summary statistics are produced by the script.

## 10 Oxygen Sampling and Analysis

Jeanne Castille, Sarah Reed, Rich Abell and Clare Johnson

*Collected and analysed by:* Sarah Reed and Jeanne Castille *SAMS head quarter support:* Dr Rich Abell and Dr Clare Johnson

*Aim:* to measure dissolved oxygen from the CTD casts for calibration of oxygen sensors on both the CTD rosette and the OSNAP mooring RTEB1.

*Stations sampled:* By the CTD station number we sampled 1-30, thereafter every even number CTD was analysed all the way to CTD 90 (Figure 11.)

**Depth sampled:** 10, 25, 50, 100, 150, 200, 250, 500, 800, 1000, 1600, 1800, 2000, 2500, 2800, 3000; these were the target depths but varied on the depth of water column and what other water samples needed to be taken and at what specific depth. The general aim was to get a full profile of the water column from 10 m from the surface to 10 m from the bottom at every station. Where important stations where highlighted, such as the EB1 pre and post calibration dip and a few of the Rockall stations, triplicate oxygen samples were taken for a higher precision where time allowed. Thereafter duplicates were taken due to the high amount of samples that needed to be processed.

**Sample collection:** The glass bottles used for collecting the water samples were calibrated for their volume prior to the cruise by Sarah Reed and Dr Richard Abell. During sampling around temperature of the niskin at the time sampled was taken, using a calibrated Thermo test 110 temperature probe. Oxygen samples were the first thing sampled from each niskins. Samples were taken using a short piece of silicon tubing into pre-calibrated glass bottles, glass bottles were rinsed then the silicon tubing was put to the bottom of the glass and slowly brought up with a reduced flow rate; care was taken to ensure no bubbles were added during sampling. Using pipettes we added 1 cm<sup>3</sup> of manganese sulphate, followed by 1 cm<sup>3</sup> of the alkaline

iodide solution. During addition, the tip of the pipette was dipped below the water surface. The matching bottle top was added at a slight angle so that no air was added to the sample. The sample was then shaken and lid closed tightly. This was repeated as per the sampling plan. Samples were moved to the titration lab to warm up naturally to room temperature prior to analysis.

**Analysis equipment:** The equipment used to measure the dissolved oxygen samples was a new 848 Tritino plus automated Titrator (s/n 00141925), with the 5 ml pipette and 801 stirrers; all in working order with no issues. The backup machine which was a 702 SM Tritino was up and running with a standardisation being completed before leaving port. The method used follows the GO-SHIP protocols for (Langdon, C. 2010: Determination of dissolved oxygen in seawater by winkler titration using the amperometric technique; IOCCP Report No. 14, ICPO Publication Series No. 134, Version 1, 2010). Dr Richard Abell prepared chemicals prior to the cruise, following the GO-SHIP protocol, with the exception of the second batch of Thiosulphate which was prepared by Sarah Reed and the diluted Sulphuric acid which was prepared by Jeanne Castile (Figure 10).



Figure 10. Volume of thiosulphate no.1 against time. 2a: Changeover of the thiosulphate occurred on 12/7/18, graph plotted presents Volume of thiosulphate no.2 against time.

0.9700 0.9800

**Standardisation of the reagent thiosulphate**: Standardisations using either the SAMs inhouse or the OSIL standard was conducted before each set of samples/per day until there was a repeat of 0.005, this provided evidence that the machine and the thiosulphate were stable. The reagent thiosulphate concentration was plotted over time to check that it was still stable (Figure 10). After Rockall Bank (CTD 42) we needed to change the Thiosulphate,

this was prepared on 10.7.18 (25.4877g of sodium thiosulphate crystals added to 1L of MILIQ) this was kept in the dark and shaken every few hours. The change over to Thiosulphate bottle no.2 happened on 12.7.18. The burette was well flushed with the new thiosulphate then standardisation of both in-house and OSIL standard was run before and after the first station sampled to ensure that the results we were getting were similar to the first bottle of thiosulphate; we are happy that it was stable and continued to be so for the rest of the cruise. The standardisations and comparing data to previous cruises confirmed that the method was working and there were no issues with equipment or chemicals during this cruise.

**Analysis method:** The method used was the SAMS and SAMS Research Services Limited approved method based on that of Holley and Hydes, 1994 and following GO-SHIP procedures. After a standardisation was completed and samples had naturally warmed up to room temperature (22 °C) and had been shaken twice since collection, samples were measured on the 848 Tritino plus machine. 1 ml of Sulphuric acid (75%) was added to the sample, a magnetic stirrer was added to the sample (slowly down the side to reduce bubble contamination) then when the solution was fully mixed the sample was added to the stirrer of the 848 machine. The automated 5 ml burette and probe were added to the solution, the Holley Hyde's method was selected on the machine and the samples run by automated Winkler titration. The sample is titrated with approximately 0.25 M sodium thiosulphate using the automated pipetting system. The volume of the titre in mls was recorded from the machine and C(O2) @mol/l per sample was calculated in the format below. This was repeated for each individual sample.

**Calculating DO within the samples:** A spreadsheet made by Dr Richard Abell was used to calculate the amount of dissolved oxygen in C(O2)  $\mu$ mol/l per sample, the mean was also calculated. This spreadsheet includes the standardisation that was measured that day, the burette and pipette calibration numbers, the temperature and depth of each sample, the bottle volume calibration, the iodate molarity; to ensure data was to the highest precision for each individual measurement.

**Issues with samples:** Where there were pipetting issues when sampling, then the contents were disposed of into a waste drum. A new sample was then collected. Jeanne and Saz were very cautious to not get any bubbles into the glass bottle when sampling and ensured that the samples were well mixed to allow all of the oxygen to bind and then being left to equilibriate to room temperature for analysis. The RSD percentage was worked out for each repeat, if there was a bad repeat that seemed to not fit the data, then the spreadsheet was checked for any errors such a bad formulae or a human error when typing error, if this did not rectify it then the sample was flagged with a particular number to say what we think went wrong with that sample. Any errors or questions were quickly picked up by Clare and Rich who had a fresh set of eyes on the data, any issues were dealt with, such as the aforementioned human error issues on the spreadsheet.

*Clare's quality checks:* Regular quality checks of the bottle oxygen data were carried out by means of comparison with sensor oxygen data outputs, and also by comparison with historical oxygen data from the Extended Ellett Line section. Bottle oxygen and sensor data profiles showed similar shapes, suggesting that both the sensor and Winkler analysis were operating well. A comparison of bottle oxygen against sensor oxygen showed a tight linear relationship with a value of r of 0.95. Residuals (bottle oxygen – sensor oxygen) were near

constant throughout the cruise, providing further evidence that the both the autotitrator and rosette sensor were stable. Additionally, no sudden change in residuals were seen when a new batch of thiosulphate was applied. Finally, we compared the bottle data to bottle data from the 2015 Extended Ellett Line (DY031) to get an idea of accuracy. The oxygen data from the 2015 cruise compared extremely well to other Extended Ellett Line cruises, hence we believe that it has a good accuracy.

## 11 Nutrient, DIC and Isotope sampling protocols

Sarah Reed, Jeanne Castille and Clare Johnson

Water samples for nutrients, DIC and Isotopes were collected as per Figure 11. For reference: there were 12 bottles of 12 L niskins with position around the rosette as followed; 2 4 6 8 10 12 14 16 18 20 22 24. A CTD log was kept on the ship, the CTD number was used as the CTD event number (not the station number that was originally planned); therefore use the CTD number for sample locations on all samples collected.


Figure 11. Summary of the water samples taken during the cruise (x axis corresponds to the station number and y axis to the bottle number). Note: no oxygen samples were taken on station 82, they were taken on station 80; other salinity sample were taken from station 68 to station 101 but data were not available at the time of this figure was made.

| •  | No bottles found                  |
|----|-----------------------------------|
|    | Not fired                         |
|    | Fired ok                          |
|    | Sampled   salinity   good flag    |
| +  | Sampled   nutrients   good flag   |
| X  | Sampled   oxygen   good flag      |
| X. | Sampled   oxygen   bad flag       |
| Ы  | Sampled   Si isotope   good flag  |
| () | Sampled   DIN isotope   good flag |
| Ø  | Sampled   DIC isotope   good flag |

## 11.1 Dissolved inorganic nutrients

## Sarah Reed, Jean Castille, Clare Johnson

Water samples for dissolved inorganic nutrient analysis were collected at the shake-down CTD (CTD 0) and the CTDs in the Rockall Trough only (CTDs 5-27). 60 ml polypropylene sample vials were acid washed prior to the cruise. Water for nutrient analyses were taken straight after oxygen and carbon samples (DIC, TA, if taken) to reduce contamination risk; nitrile gloves were worn whilst sampling. Silicon tubing with a mesh on the end, to prevent plankton getting into the samples, was attached over the niskin tap. Sample vials were rinsed three times from the specified niskin and then filled with an air gap at the top to allow for expansion when stored in the -20 °C freezer after sampling. Samples from one CTD station were stored in one plastic bag with information written on the outside to keep things organised. Samples were returned frozen for later shore-based analysis of nitrite, nitrate, silicate and phosphate.

# 11.2 DIC (Dissolved inorganic carbon) and total alkalinity

## Saz Reed, Jean Castille, Clare Johnson

Water samples were collected for analysis of dissolved inorganic carbon and total alkalinity at station 0 and at selected stations in the Rockall Trough. Samples were taken straight after the oxygen samples to reduce contamination risk into borosilicate 250 ml glass stopper bottles. Silicon tubing was flushed before the sample bottle was slowly filled and first inverted and then turned upright. We slowly rotated the bottle as it filled to make sure no bubbles collected inside the bottle. The bottle was over filled, the silicon tubing slowly removed and the stopper was inserted. After sampling was completed, back in the lab under a fume cupboard Apieson L grease was placed lightly around the inside neck of the bottle. We withdrew 2.5 ml of seawater from the bottle and then pipetted 50 µl of 0.02 % mercuric chloride solution into the seawater sample. The tip of pipette was about half the length of the pipette tip below the surface of the seawater when doing this. The bottle of mercuric chloride was resealed securely straight away and the pipette tip ejected into a plastic bag. The stopper was replaced in the glass bottle and turned to improve the seal. The bottle was inverted to mix the sample before a loop of tightly stretched PVC tape was added around the bottle neck to seal the stopper. Details of the CTD station were added to the outside of the bottle and these were stored at room temperature. Samples were returned for later shore-based analysis of dissolved inorganic carbon and total alkalinity.

# 11.3 Isotopes: Delta-N-15 ( $\delta^{15}$ )

Samples for isotopic analysis of Nitrogen and Silica were collected for Antonia Doncila, University of Edinburgh.

The bottles that were acid washed prior to the cruise were rinsed bottle three times with seawater from the Niskin bottle. Then, seawater samples were collected in 65 ml acid clean bottles. Water was filtered with the Acropak filter from the Niskin bottle tap into the acid clean HDPE sample bottle. Once the Acropak was attached via the soft tube to the Niskin bottle tap, we left the water to flow through the Acropak filter for 10 seconds to ensure that there was no contamination from the previous sampling Once the water has been collected (with an airspace allowing for expansion), samples were stored in the -20 °C freezer

immediately. It must be noted that Nitrile gloves need to be worn during the sampling and further handling of the samples.

## 11.4 Isotopes: Si

The samples were rinsed three times with seawater from the Niskin bottle. Then, seawater samples were collected in 250 ml acid clean bottles. Water was filtered with the Acropak filter from the Niskin bottle tap into the acid clean HDPE sample bottle. Once the Acropak was attached via the soft tube (provided) to the Niskin bottle tap, the water flowed through the Acropak filter for 10 seconds to ensure that there was no contamination from the previous sampling done. Back in the lab under the fume cupboard we added a 0.1% v/v of 6M HCl to each sample (in this case it means 250 microliter per 250ml bottle). Then samples were stored in the dark and refrigerated. It must be noted that it was very important that the samples were NOT frozen. It must be noted that Nitrile gloves need to be worn during the sampling and further handling of the samples.

## 11.5 Microplastic samples

On moorings that were available and had anemones/bivalves or anything that was living on the sub-surface mooring array then samples were taken for microplastic analysis. Gloves were worn and then a knife or scalpel was used to remove anemones or bivalves from any part of the sub-surface mooring array. Samples were folded within aluminium foil and then put in a plastic bag for each sampling event. Data is on the excel spreadsheet where water depth, depth of instrument/buoy sampled from/ how many years it has been deployed and the position was recorded.

# 12 Argo Float Deployments

Stuart Cunningham, James Coogan

Two Argo floats were deployed on behalf of the UK Met Office. These are detailed in Table 10.

| s/n  | Date    | Time | Lat °N | Lat " | Lon °W | Lon " |
|------|---------|------|--------|-------|--------|-------|
| 8460 | 12/7/18 | 1450 | 58     | 00.27 | 23     | 01.25 |
| 8459 | 16/7/18 | 1025 | 59     | 15.97 | 35     | 22.36 |

## Table 10. Dates and locations of Argo float deployments.

# 13 Shipboard Underway Data

James Coogan

## 13.1 Underway Data Logging

The R/V *Neil Armstrong* comes equipped with a comprehensive set of underway sensors which were used throughout the cruise which provide contextual meteorological, sea surface, sounder, and navigational data to accompany the oceanographic dataset. A full inventory of the shipboard sensors is provided in Table 11, along with the file extension where the data can be found. Full processing of these ancillary data was not possible onboard due to limited personnel. Further information about the data structures can be found within the text files in the */data/underway/doc* directory with the accompanying raw data in the */data/underway/raw* directory.

| Sensor Type                      | Instrument Make and Model                                           | Serial<br>Number       | Installation                                                                                       | File<br>Information |
|----------------------------------|---------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------|---------------------|
|                                  | Kongsberg EM122 RX2 x TX1 degree<br>multibeam echosounder           | 121                    | Transducer Room<br>1x TX array<br>2x RX array                                                      | DEP_EM122<br>.txt   |
| Depth                            | Kongsberg EM710 RX1 x TX0.5 degree<br>multibeam echosounder         | 230                    | Transducer Room<br>0.5x TX array<br>1x RX array                                                    | DEP_EM710<br>.txt   |
|                                  | Knudsen Chirp 3260                                                  | K2K-14-<br>0211        | Transducer Room<br>3.5 kHz 4x4 Array Tank - 16<br>Massa TR-1075 transducers<br>12 kHz Airmar CS229 | DEP_KN326<br>0.txt  |
| Gravimeter Bell BGM-3 Gravimeter |                                                                     | S220<br>WHOI/UN<br>OLS | Transceiver Room                                                                                   | GRAV_BMG<br>.txt    |
|                                  | SBE Hull Mounted Temperature Sensor<br>SBE48                        | 0040                   | Lower Bow Thruster Room                                                                            | SSW_SBE48.<br>txt   |
| Science Salt<br>Water            | Thermosalinograph SBE45 MicroTSG                                    | 4547129-<br>0204       | Wet lab, inboard bulkhead                                                                          | SSW_SBE45.<br>txt   |
|                                  | Wet Labs Fluorometer Chlorophyll<br>WETStar                         | WS3S-<br>900P          | Wet lab, inboard bulkhead                                                                          | SSW_FLR.txt         |
| Surface Sea<br>Water             | Thiel Engineering Flowmeter Flowmeter impeller J                    | 1114                   | Wet lab, inboard bulkhead                                                                          | SSW_FLOW.<br>txt    |
| Surface<br>Sound<br>Velocity     | AML SSV probe, AML Smart X-Series<br>Instrument, P1S2, 500m Housing | 20112                  | stainless velocimeter tank,<br>transducer room                                                     | SSV_AML.tx<br>t     |
|                                  | Biospherical Instruments QSR2150A                                   | 50212                  | Met Mast                                                                                           | MET_PAR.tx<br>t     |
| Meteorologic                     | Radiometer Analog to Digital Interface<br>with Eppley PSP and PIR   | RAD_222                | Met Mast                                                                                           | MET_RAD.tx<br>t     |
| al Sensor                        | Vaisala WXT520                                                      | C3620001               | Met Mast (port)                                                                                    | MET_XTP.tx<br>t     |
|                                  | Vaisala WXT521                                                      | D0220001               | Met Mast (starboard)                                                                               | MET_XTS.tx<br>t     |
| Navigation                       | CNAV 3050                                                           | 23177                  | Chart Room                                                                                         | NAV_CNAV.<br>txt    |

# Table 11. R/V *Neil Armstrong* shipboard sensors, serial numbers, installation and file information.

|                             | Kongsberg DPS 112 GPS                         | -               | Bridge                  | NAV_DPS11<br>2.txt |
|-----------------------------|-----------------------------------------------|-----------------|-------------------------|--------------------|
|                             | Sperry Marine Gyro 4914-CA                    | Gyro1<br>11424  | Bridge void             | NAV_HDT.tx<br>t    |
|                             | Sperry Marine Gyro 4914-CA                    | Gyro2<br>11431  | Bridge void             | NAV_HDT.tx<br>t    |
| Navigation<br>Speed         | Furuno Doppler DS-60                          | DS-600:<br>2780 | Bridge, Transducer room | NAV_SPD.tx<br>t    |
| Motion<br>Reference<br>Unit | Applanix POS/MV Motion Reference<br>Unit MRU7 | 2592            | Transducer room         | MRU_POSM<br>V.txt  |
|                             | Teledyne RDI Ocean Surveyor 38khz             | -               | Transducer room         |                    |
| ADCP                        | Teledyne RDI Ocean Surveyor 150kHz            | -               | Transducer room         | **                 |
|                             | Teledyne RDI 300kHz Workhorse                 | -               | Transducer room         |                    |

\*\* Comprehensive ADCP information can be viewed at

http://arcurrents01.armstrong.whoi.edu/adcp/programs/adcp\_doc/index.html

# 13.2 Vessel Mounted ADCP

The R/V Neil Armstrong has three Teledyne RDI doppler sonars: a 300kHz Workhorse (WH300), a 150 kHz Ocean Surveyor ADCP(OS150), and a 38kHz Ocean Surveyor ADCP (OS38). These three ADCPs provide a comprehensive dataset of absolute water velocity up to 1200m in depth. The WH300 has a typical range of 80m in good conditions. Both the OS150 and the OS38 can operate in "high-resolution" broadband mode, with 4 metre bins, and "deep-profiling" narrowband mode, with 8 metre bins. In broadband mode, the OS150 has a typical range of 130-180 metres, and the OS38 has a range of 950-1200 metres. In narrowband mode, the OS150 has a typical range of 200-240 metres and the OS38 has a range of 1200-1700m. Both the OS38 and the OS150 were operated in narrowband mode throughout the cruise.

A suite of ancillary sensors (Table 11) provides measurements for heading, position, and beam angle, which are used to subtract the movements of the ship from the transducer data to reveal the ocean velocities below. Onboard data is collected and stored in a CODAS (Common Ocean Data Access System) database. A set of CODAS routines are implemented to process the raw ADCP data. First, an ocean reference layer is used to remove the ship's speed from the measurements, then a heading based on GPS corrected gyro measurements is implemented before calibration routines determine any misalignment from "bottom track" or "water track" data. Finally, bad data must be edited out before averaging the final dataset. The routines can automatically remove bad data, though a person must verify the data through inspection prior to final processing.

## The University of Hawaii's data acquisition system (UHDAS)

(<u>http://currents.soest.hawaii.edu</u>) is used to provide data processing and monitoring at sea. The UHDAS routines are automated to acquire the raw data and provide processed, corrected, edited data for scientists to use during the cruise.

Every 5 minutes the UHDAS system will:

- get the last 5 minutes of new data
- rotate to earth coordinates using gyro as the primary heading device
- correct to the "accurate heading device"
- edit single-ping data (for this 5-minute chunk)

- average, write to disk (staging for addition to the codas database)
- save the 5-minute chunk of data as a matlab file (for plotting)

## Every 15 minutes:

- the CODAS database is updated with the staged averages
- scale factor and fixed rotation are applied if specified
- the averages in the database are also edited (to look for bad bins or bad profiles, and the bottom)
- after the codas database is updated:
  - $\circ$  ~ the data are extracted and averaged (for plotting)
  - $\circ$  ~ the data are extracted with "every bin, every profile"
  - data are stored as matlab files and netCDF files, accessible via ship's web site or via windows shares [samba] or nfs.
  - Vector and contour plots of the last 3 days of data are updated, also available on the ship's web.

Monitoring of the data takes place both on land and at sea. A daily email containing diagnostic information is sent to land and profiles of the most recent 5-minute sampling window, contour and vector plots of the last 3 days of data, and the last half-day of gyro and "accurate heading". This system provides a useful tool for monitoring performance and allows for adaptive sampling if areas of interest are observed.

Data provided by UHDAS was used to create preliminary plots of VMADCP velocity for the transect. There are two types of data provided for onboard science: the *allbins\_\*.mat* files generated by *getmat*, and the *contour\_xy.mt*, *contour\_uv.mat*, *vector\_xy.mat*, and *vector\_uv.mat* generated by *adcpsect*. These outputs are located in the contour and vector folders in the processing directories for each sonar instrument and frequency (eg. *os38nb* or *os150nb*). The *getmat* files provide the CODAS native resolution data, with every bin and every profile. The *adcpsect* output provides averaged data at either 15 min or 1 hour resolutions.

# 14 CTD Calibration

Stuart Cunningham, Loic Houpert, Clare Johnson, James Coogan

A total of 101 CTD / LADCP stations were conducted during the cruise. These are detailed in Table 12.

| СТD | OSNAP | Date        | Time     | Lat DEG | Lat MIN | Lon DEG | Lon MIN | Depth |
|-----|-------|-------------|----------|---------|---------|---------|---------|-------|
| 0+  | N/A   | Jul 2 2018  | 15:58:57 | 60      | 0.11    | 22      | 37.72   | 1012  |
| 1*  | N/A   | Jul 2 2018  | 18:17:06 | 60      | 0.11    | 22      | 37.72   | 2520  |
| 2*  | N/A   | Jul 3 2018  | 17:17:42 | 57      | 59.62   | 24      | 19.01   | 2864  |
| 3*  | N/A   | Jul 4 2018  | 17:19:06 | 58      | 0.8     | 21      | 8.97    | 2955  |
| 4*  | N/A   | Jul 4 2018  | 21:20:17 | 58      | 0.79    | 21      | 8.97    | 2959  |
| 5*  | N/A   | Jul 7 2018  | 03:08:39 | 57      | 6.13    | 9       | 34.67   | 1817  |
| 6*  | N/A   | Jul 7 2018  | 13:13:15 | 57      | 6.08    | 9       | 34.74   | 1813  |
| 7   | 1     | Jul 7 2018  | 22:35:00 | 56      | 50.08   | 8       | 19.75   | 138   |
| 8   | 2     | Jul 7 2018  | 23:56:26 | 56      | 52.9    | 8       | 29.75   | 128   |
| 9   | 3     | Jul 8 2018  | 01:38:59 | 56      | 56.99   | 8       | 46.97   | 128   |
| 10  | 4     | Jul 8 2018  | 03:01:02 | 57      | 0.02    | 8       | 59.95   | 133   |
| 11  | 5     | Jul 8 2018  | 04:27:37 | 57      | 2.99    | 9       | 13      | 313   |
| 12  | 6     | Jul 8 2018  | 05:32:11 | 57      | 4.49    | 9       | 19.01   | 778   |
| 13  | 7     | Jul 8 2018  | 06:53:59 | 57      | 6.02    | 9       | 25      | 1399  |
| 14  | 8     | Jul 8 2018  | 14:57:36 | 57      | 9       | 9       | 41.97   | 1927  |
| 15  | 9     | Jul 8 2018  | 18:02:08 | 57      | 14.01   | 10      | 2.89    | 2099  |
| 16  | 10    | Jul 8 2018  | 21:11:08 | 57      | 17.95   | 10      | 22.8    | 2205  |
| 17  | 11    | Jul 9 2018  | 00:09:27 | 57      | 21.98   | 10      | 39.96   | 2089  |
| 18  | 12    | Jul 9 2018  | 02:47:40 | 57      | 23.97   | 10      | 51.86   | 792   |
| 19  | 13    | Jul 9 2018  | 04:38:53 | 57      | 26.98   | 11      | 4.89    | 588   |
| 20  | 14    | Jul 9 2018  | 06:28:19 | 57      | 28.06   | 11      | 18.88   | 747   |
| 21  | 15    | Jul 9 2018  | 08:20:13 | 57      | 28.97   | 11      | 31.9    | 2010  |
| 22  | 16    | Jul 9 2018  | 11:28:02 | 57      | 29.53   | 11      | 50.95   | 1786  |
| 23  | 17    | Jul 9 2018  | 20:08:33 | 57      | 30.44   | 12      | 15.17   | 1798  |
| 24  | 18    | Jul 9 2018  | 23:20:31 | 57      | 32.03   | 12      | 37.8    | 1642  |
| 25  | 19    | Jul 10 2018 | 01:52:56 | 57      | 32.51   | 12      | 51.97   | 1091  |
| 26  | 20    | Jul 10 2018 | 03:41:38 | 57      | 33      | 12      | 59.94   | 298   |
| 27  | 21    | Jul 10 2018 | 05:30:09 | 57      | 34      | 13      | 19.92   | 178   |
| 28  | 22    | Jul 10 2018 | 07:16:01 | 57      | 34.97   | 13      | 37.87   | 113   |
| 29  | 23    | Jul 10 2018 | 10:04:58 | 57      | 35.6    | 14      | 15.93   | 200   |
| 30  | 24    | Jul 10 2018 | 12:48:27 | 57      | 36.23   | 14      | 54      | 483   |
| 31  | 25    | Jul 10 2018 | 16:05:48 | 57      | 36.91   | 15      | 31.89   | 1052  |

## Table 12. CTD/LADCP station information<sup>2</sup>

<sup>2</sup> Johns, W. (2018), RV Neil Armstrong, Cruise AR30-04: Reykjavik, Iceland to Reykjavik, Iceland, 1 July to 30 July
2018, pp. 30, RSMAS, Univ. of Miami, U.S.

| 32  | 26 | Jul 10 2018 | 19:13:51 | 57 | 37.51 | 16 | 10.08 | 1167 |
|-----|----|-------------|----------|----|-------|----|-------|------|
| 33  | 27 | Jul 10 2018 | 22:38:52 | 57 | 38.17 | 16 | 47.82 | 1193 |
| 34  | 28 | Jul 11 2018 | 01:52:39 | 57 | 38.82 | 17 | 25.8  | 1223 |
| 35  | 29 | Jul 11 2018 | 05:21:29 | 57 | 39.4  | 18 | 3.92  | 1053 |
| 36  | 30 | Jul 11 2018 | 08:38:12 | 57 | 39.98 | 18 | 41.95 | 713  |
| 37  | 31 | Jul 11 2018 | 11:16:00 | 57 | 43.83 | 19 | 13.77 | 912  |
| 38  | 32 | Jul 11 2018 | 14:02:33 | 57 | 47.52 | 19 | 44.92 | 1306 |
| 39  | 33 | Jul 11 2018 | 16:39:52 | 57 | 50.17 | 20 | 8.58  | 1569 |
| 40  | 34 | Jul 11 2018 | 19:10:10 | 57 | 52.8  | 20 | 29.76 | 2246 |
| 41  | 35 | Jul 11 2018 | 22:16:57 | 57 | 54.9  | 20 | 51.27 | 1995 |
| 42  | 36 | Jul 12 2018 | 01:05:42 | 57 | 57.28 | 21 | 12.08 | 2949 |
| 43* | 37 | Jul 12 2018 | 05:51:26 | 57 | 57.62 | 21 | 51.48 | 3020 |
| 44* | 38 | Jul 12 2018 | 16:45:49 | 57 | 57.59 | 22 | 30.98 | 2978 |
| 45* | 39 | Jul 12 2018 | 22:11:32 | 57 | 57.64 | 23 | 10.37 | 2985 |
| 46* | 40 | Jul 13 2018 | 03:39:10 | 57 | 57.6  | 23 | 49.78 | 2935 |
| 47  | 41 | Jul 13 2018 | 09:03:10 | 57 | 57.56 | 24 | 29.28 | 2818 |
| 48  | 42 | Jul 13 2018 | 13:32:13 | 57 | 57.65 | 25 | 7.04  | 2740 |
| 49* | 80 | Jul 15 2018 | 20:00:29 | 59 | 23    | 36 | 29.78 | 3100 |
| 50  | 79 | Jul 16 2018 | 00:26:22 | 59 | 20.51 | 36 | 6.2   | 3089 |
| 51  | 78 | Jul 16 2018 | 04:16:48 | 59 | 17.65 | 35 | 38.59 | 3100 |
| 52* | 77 | Jul 16 2018 | 07:25:08 | 59 | 15.98 | 35 | 22.36 | 2985 |
| 53  | 76 | Jul 16 2018 | 14:40:44 | 59 | 14.59 | 35 | 6.8   | 3014 |
| 54  | 75 | Jul 16 2018 | 17:34:42 | 59 | 12.73 | 34 | 50.08 | 2485 |
| 55  | 74 | Jul 16 2018 | 20:38:56 | 59 | 11    | 34 | 33.95 | 2836 |
| 56  | 73 | Jul 16 2018 | 23:31:56 | 59 | 9.38  | 34 | 17.77 | 2578 |
| 57  | 72 | Jul 17 2018 | 02:33:01 | 59 | 7.73  | 34 | 1.14  | 2825 |
| 58  | 71 | Jul 17 2018 | 15:52:32 | 59 | 6.01  | 33 | 45.22 | 2135 |
| 59* | 70 | Jul 17 2018 | 18:32:46 | 59 | 4.51  | 33 | 29.77 | 2280 |
| 60  | 69 | Jul 17 2018 | 22:03:19 | 59 | 2.89  | 33 | 14.32 | 2207 |
| 61  | 68 | Jul 18 2018 | 00:49:36 | 59 | 1.33  | 32 | 58.72 | 2234 |
| 62  | 67 | Jul 18 2018 | 03:17:31 | 58 | 59.69 | 32 | 42.22 | 1838 |
| 63  | 66 | Jul 19 2018 | 00:01:02 | 58 | 58.27 | 32 | 27.93 | 1855 |
| 64  | 65 | Jul 19 2018 | 03:19:53 | 58 | 56.65 | 32 | 12.43 | 1475 |
| 65  | 64 | Jul 19 2018 | 05:28:32 | 58 | 55.07 | 31 | 57.13 | 1768 |
| 66  | 63 | Jul 19 2018 | 17:52:07 | 58 | 53.68 | 31 | 43.37 | 1620 |
| 67* | 62 | Jul 19 2018 | 20:08:14 | 58 | 52.35 | 31 | 29.66 | 1514 |
| 68  | 61 | Jul 19 2018 | 22:58:26 | 58 | 50.88 | 31 | 15.89 | 1440 |
| 69  | 60 | Jul 20 2018 | 01:08:24 | 58 | 50.5  | 31 | 2.22  | 1501 |
| 70  | 59 | Jul 20 2018 | 03:08:37 | 58 | 50.18 | 30 | 48.32 | 1466 |
| /1  | 58 | Jul 20 2018 | 14:37:26 | 58 | 50.02 | 30 | 34.91 | 1587 |
| 72  | 57 | Jul 20 2018 | 19:21:59 | 58 | 45.78 | 30 | 21.99 | 1631 |
| /3  | 56 | Jul 20 2018 | 21:32:33 | 58 | 42.01 | 30 | 10.31 | 1/08 |
| /4  | 55 | Jul 20 2018 | 23:44:50 | 58 | 37.57 | 29 | 56.9  | 1984 |
| /5  | 54 | Jul 21 2018 | 02:19:53 | 58 | 33.38 | 29 | 44.13 | 1999 |
| /6  | 53 | Jul 21 2018 | 20:44:11 | 58 | 29.45 | 29 | 32.02 | 2520 |
| //  | 52 | Jul 21 2018 | 23:29:18 | 58 | 24.7  | 29 | 18.79 | 2070 |
| /8  | 51 | Jul 22 2018 | 01:48:48 | 58 | 20.1  | 29 | 5.46  | 2168 |
| 79  | 50 | Jul 23 2018 | 00:15:54 | 58 | 15.7  | 28 | 53.01 | 2214 |
| 80  | 47 | Jul 23 2018 | 04:59:16 | 57 | 59.69 | 28 | 4.41  | 2399 |

| 81  | 46.5 | Jul 23 2018 | 19:00:18 | 57 | 59.22 | 27 | 50.35 | 2365 |
|-----|------|-------------|----------|----|-------|----|-------|------|
| 82  | 48   | Jul 23 2018 | 22:40:23 | 58 | 5.03  | 28 | 20.52 | 2294 |
| 83  | 49   | Jul 24 2018 | 01:57:29 | 58 | 10.43 | 28 | 37.03 | 2305 |
| 84  | 46   | Jul 24 2018 | 23:02:43 | 57 | 58.59 | 27 | 34    | 2250 |
| 85  | 45.5 | Jul 25 2018 | 01:49:40 | 57 | 58.01 | 27 | 17.88 | 2395 |
| 86  | 45   | Jul 25 2018 | 04:31:10 | 57 | 57.63 | 27 | 0.62  | 2678 |
| 87* | 44.5 | Jul 25 2018 | 08:15:31 | 57 | 57.56 | 26 | 42.52 | 2740 |
| 88* | 44   | Jul 25 2018 | 13:08:37 | 57 | 57.9  | 26 | 22.79 | 2817 |
| 89* | 43.5 | Jul 25 2018 | 17:22:30 | 57 | 57.56 | 26 | 4.43  | 2785 |
| 90  | 43   | Jul 25 2018 | 20:33:32 | 57 | 57.6  | 25 | 44.89 | 2725 |
| 91  | N/A  | Jul 26 2018 | 08:29:20 | 59 | 32.4  | 25 | 30.01 | 2462 |
| 92  | N/A  | Jul 26 2018 | 11:30:14 | 59 | 39.62 | 25 | 49.76 | 2401 |
| 93  | N/A  | Jul 26 2018 | 14:29:50 | 59 | 46.38 | 26 | 7.84  | 2105 |
| 94  | N/A  | Jul 26 2018 | 17:25:33 | 59 | 53.72 | 26 | 27.27 | 2293 |
| 95  | N/A  | Jul 26 2018 | 20:06:51 | 59 | 59.13 | 26 | 42.04 | 1994 |
| 96  | N/A  | Jul 26 2018 | 22:40:16 | 60 | 4.98  | 26 | 57.95 | 2026 |
| 97  | N/A  | Jul 27 2018 | 01:25:21 | 60 | 10.97 | 27 | 14.53 | 1732 |
| 98  | N/A  | Jul 27 2018 | 03:57:32 | 60 | 17.29 | 27 | 31.55 | 1649 |
| 99  | N/A  | Jul 27 2018 | 06:31:40 | 60 | 23.19 | 27 | 49.23 | 1392 |
| 100 | N/A  | Jul 27 2018 | 08:58:57 | 60 | 29.63 | 28 | 6.58  | 1538 |
| 101 | N/A  | Jul 27 2018 | 11:51:19 | 60 | 35.85 | 28 | 23.94 | 1007 |

+ Test cast

\* Instrument calibration casts

CTD data were collected in the Sea-Bird Seasave version 7.23.2 software, and the following file types saved as .hex (data in binary format), .bl (bottle firing record), .XMLCON (configuration file), and .hdr (header information input manually). Data were processed using Sea-Bird software and the mexec\_v2 software suite developed at NOC. Note that the NetCDF file and the metadata associated with the mexec processing suite are known as the mstar format. Here m refers to the use of MATLAB as the processing tool that implements mexec. The first stage of the processing was carried out on the CTD computer using the Seabird software SBEDataProcessing-Win32 Version 7.23.2. The following modules were run:

- DatCnv: converts the raw frequency and voltage data from engineering units by applying the sensors manufacturer's calibrations stored in the XMLCON, and outputs the data in an ASCII format (cast data as a .cnv file, and bottle data as .ros). The oxygen hysteresis correction option was selected, and therefore this correction was not done later in mexec.

- Align: this script shifts selected sensors' data in time, relative to pressure. This is required for sensors with a slower response time, and when extra time is required for the water parcel to reach the sensor (e.g. going through additional lengths of hose). The primary and secondary conductivities require a small shift of 0.073 seconds. In our setup, this was done in real-time by the deck-unit for the primary sensor and by the SeaBird software for the secondary sensor.

- CellTM: this module is run to remove conductivity cell thermal mass effects from the measured conductivity. Sea-Bird recommended constants ( $\alpha$ =0.03 and 1/ $\beta$ =7) were used.

Processed CTD data were automatically copied on the shared network drive data\_on\_memory. The script ctd\_linkscript\_ar304 was used to copy files from the network drive and set up additional symbolic links to filenames following mexec convention. At the end of the cruise the 1hz and 2db mstar netcdf are convert into matlab format by using the script convert\_mexec\_files\_to\_mat.m.

The different steps of the MATLAB mexec processing are summarized in the table below.

## Table 13. Matlab MEXEC processing steps.

|   | Script<br>ctd_linkscript ( in terminal) |                | Example outfiles                              | Description                                                                                                                                  |
|---|-----------------------------------------|----------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                         |                | ASCII_FILES/<br>ctd_ar304_nnn_ctm.cnv         | copy files from the network drive and set up<br>symbolic links to filenames following mexec<br>convention.                                   |
|   |                                         | msam_01        | sam_ar304_nnn.nc                              | creation of empty sample files using templates/sam_ar304_varlist.csv                                                                         |
|   | ar304                                   | mctd_01        | ctd_ar304_nnn_raw.nc                          | conversion of raw 24Hz cnv data file to mstar netCDF format                                                                                  |
|   | all_part1_a                             | mctd_02a_ar304 | ctd_ar304_nnn_raw.nc                          | converts variable names from SBE to mstar names<br>using the file <i>ctd_ar304_renamelist.csv</i> and add<br>the cast position from nav data |
| Х | ctd                                     | mctd_02b_ar304 | ctd_ar304_nnn_24hz.nc                         | applies oxygen hysteresis correction                                                                                                         |
| х |                                         | mctd_03_ar304  | ctd_ar304_nnn_1hz.nc<br>ctd_ar304_nnn_psal.nc | average to 1Hz and calculation of salinity and potential temperature                                                                         |
|   | ar304                                   | mdcs_01        | dcs_ar304_nnn.nc                              | creates an empty file to store the cast metadata (start, bot. and end)                                                                       |
|   | art2_a                                  | mdcs_02        | dcs_ar304_nnn.nc                              | find scan number corresponding to bottom of file                                                                                             |
|   | ctd_all_p                               | mdcs_03g_dy078 | dcs_ar304_nnn.nc<br>ctd_ar304_nnn_surf.nc     | run to inspect profiles, hand-select cast start and end times                                                                                |
| х |                                         | mctd_04        | ctd_ar304_nnn_2db.nc                          | averages data to 2db bins                                                                                                                    |
|   |                                         | mfir_01        | fir_ar304_nnn_bl.nc                           | get bottle firing information from the Sea-Bird .bl<br>file and extract the matching CTD data based on                                       |
|   |                                         | mfir_02        | fir_ar304_nnn_time.nc                         | scan numbers                                                                                                                                 |
| х |                                         | mfir_03        | fir_ar304_nnn_ctd.nc                          |                                                                                                                                              |
| х |                                         | mfir_04        | sam_ar304_nnn.nc                              |                                                                                                                                              |
|   |                                         | mbot_00        | bot_ar304_01.csv                              | create bottle files; add CTD data, bottle firing                                                                                             |
|   |                                         | mbot_01        | bot_ar304_nnn.nc                              | firings in the BOT and SAM files.                                                                                                            |
|   | mbot_02                                 |                | sam_ar304_nnn.nc                              |                                                                                                                                              |
|   | mctd_checkplots                         |                | Control-check plots                           | Script to visually checked the CTD data                                                                                                      |
|   |                                         | mdcs_05        |                                               | Populate ctd cast positions into various ctd files<br>(fir_*.nc, sal_*.nc, sam_a*.nc, dcs_*.nc, ctd_*.nc)                                    |
|   |                                         | moxy_01_ar30   | oxy_ar304_nnn.nc                              | Read bottle oxygen data from csv file<br>(ctd/BOTTLE_OXY/) and create .nc file                                                               |
|   |                                         | moxy_02_ar30   | sam_ar304_nnn.nc                              | Paste oxygen data into mstar sample file                                                                                                     |
|   | moxy_02_oxykg_ar30                      |                | sam_ar304_nnn.nc                              | Convert bottle oxy data from umol/l to umol/kg and paste into sam file (to be run after moxy_02)                                             |

| Script                                 | Example outfiles | Description                                                                                                                                    |
|----------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| msal_01                                | sal_ar304_nnn.nc | Read bottle salinity data from csv file<br>(ctd/BOTTLE_SAL/) and create .nc file                                                               |
| <br>msal_02                            | sam_ar304_nnn.nc | Past salinity data into mstar sample file                                                                                                      |
| mnut_01_ar304                          | nut_ar304_nnn.nc | Read unique reference numbers from csv files<br>(ctd/BOTTLE_NUT/) and create .nc file                                                          |
| mnut_02_ar304                          | sam_ar304_nnn.nc | Paste nutrient reference sample number into the mstar sample file                                                                              |
| msam_apend_dy078 OR<br>msam_update_all | sam_ar304_all.nc | Append the cast sample file into the global<br>sample file.<br>OR In case of reprocessing, the cast updated the<br>appended global sample file |

# 15 CTD Oxygen Calibration

Stuart Cunningham, Clare Johnson, Loic Houpert, 17th July 2018

Sensor raw voltages [V] are converted to dissolved oxygen concentrations [ $\mu$ mol/kg] using the Sea-Bird DO calibration (equation 1), which is a modified version of the Owens and Millard (1985) equation.

• The calibration slope term (*Soc*), which changes as the sensor sensitivity is modified, typically by fouling.

• An electronic offset term (*Voffset*) related to the voltage output observed at a zero-oxygen signal is unique to each sensor and is constant.

• A third-order polynomial component that compensates for changes in the sensor's sensitivity as a function of temperature remains constant.

• An exponential term that compensates for the instantaneous changes in the sensitivity of the sensor with changes in pressure (*E*) can be modified to fine tune deep-ocean oxygen data.

Following recommendations in SBE Application Note No. 64-3 (Revised August 2014) *SBE 43 Dissolved Oxygen (DO) Sensor – Hysteresis Corrections* were also applied. In Seabird Data Processing Data Conversion module (DatCnv) we convert to DO applying both Tau in (equation 1) and hysteresis corrections (equation 2) using the default window size of two seconds for oxygen calculations. We did not investigate whether Tau improved or degraded signal-to-noise in deep water. Data Conversion first applies a hysteresis correction on SBE 43 voltage values, and then uses the corrected voltages to convert to DO. Therefore, both columns of output DO data (voltage and concentration) contain data that have been corrected for hysteresis.

SBE 64-3 states that default hysteresis coefficients are adequate for most applications and for higher accuracy ( $\pm 1 \mu mol/kg$ ), H1 and H3 can be fine-tuned if a complete profile (downcast and upcast) is available, preferably to greater than 3000 meters. We did not have

adequate deep profile data to assess this and made polynomial corrections to oxygen hysteresis station-by-station to ensure zero bias between down and up oxygen profiles.

Output units for DO concentration are chosen to match those from the Winkler water sample analysis, here [ $\mu$ mol/kg].

Table 14. SBE 43 Sensors deployed on AR304. The SBE 43 is calibrated using SeaBirds' Equation (1) with the coefficients listed in this table (a modified version of the Owens & Millard (1985) equations). Hysteresis corrections (Equation 2) using the Nominal Coefficients.

| Sensor s/n            | Calibration<br>Date | Sea-BIRD DO calibration<br>COEFFICIENTS | NOMINAL COEFFICIENTS |
|-----------------------|---------------------|-----------------------------------------|----------------------|
| 0113 [stns 0 &        | 9/5/17              | Soc = 0.4615                            | D1 = 1.92634e-4      |
| 1;primary<br>channel] |                     | Voffset = -0.5045                       | D2 = -4.64803e-2     |
|                       |                     | Tau20 = 1.00                            | H1 = -3.300000e-2    |
|                       |                     | A = -3.4961e-003                        | H2 = 5.00000e+3      |
|                       |                     | B = 1.5746e-004                         | H3 = 1.45000e+3      |
|                       |                     | C = -2.3216e-006                        |                      |
|                       |                     | E nominal = 0.036                       |                      |
| 0930 [stns            | 17/1/18             | Soc = 0.5407                            | D1 = 1.92634e-4      |
| all];<br>secondary    |                     | Voffset = -0.4973                       | D2 = -4.64803e-2     |
| channel               |                     | Tau20 = 1.37                            | H1 = -3.300000e-2    |
|                       |                     | A = -4.8314e-003                        | H2 = 5.00000e+3      |
|                       |                     | B = 2.4829e-004                         | H3 = 1.45000e+3      |
|                       |                     | C = -3.7331e-006                        |                      |
|                       |                     | E nominal = 0.036                       |                      |
| 0712 [stns 2          | 24/3/17             | Soc = 0.4732                            | D1 = 1.92634e-4      |
| onward;<br>primary    |                     | Voffset = -0.5163                       | D2 = -4.64803e-2     |
| channel]              |                     | Tau20 = 0.97                            | H1 = -3.300000e-2    |
|                       |                     | A = -3.6809e-003                        | H2 = 5.00000e+3      |
|                       |                     | B = 1.8661e-004                         | H3 = 1.45000e+3      |
|                       |                     | C = -2.6322e-006                        |                      |
|                       |                     | E nominal = 0.036                       |                      |

Sea-Bird dissolved oxygen equation

$$O_{2} = \left\{ S_{OC} \times \left( V + V_{offset} + tau(T, P) \times \frac{\partial V}{\partial t} \right) \right\} \times O_{xsol}(T, S) \times \left( 1.0 + A \times T + B \times T^{2} + C \times T^{3} \right) \times e^{\left( \frac{E \times P}{K} \right)}$$

## (Equation 1)

Where: V is SBE43 output voltage signal [volts];  $\P V / \P t$  is the time derivative of SBE43 output signal [volts/second];  $tau(T, P) = tau20 \ e^{(D1\ P+D2\ [T-20])}$  is the sensor time constant; T,P,S = CTD temperature [°C], pressure (dbar), salinity (psu);  $O_{xsol}(T,S)$  is oxygen saturation; K is absolute temperature [K]; Soc, Voffset (voltage at zero oxygen signal), A, B, C, E, tau20 are calibration coefficients fit to 18 point calibration at Factory; D1 and D2 are characteristics of the SBE43 sensor.

Hysteresis Algorithm using Oxygen Voltage Values:

D = 1 + H1 \* (exponential(P(i) / H2) - 1) C = exponential (-1 \* (Time(i) - Time(i-1)) / H3) Oxygenvolts (i) = OxVolt(i) + Voffset Oxnewvolts (i) = {(Oxygenvolts (i) + (Oxnewvolts (i-1) \* C \* D)) - (Oxygenvolts (i-1) \* C)} / D Oxfinalvolts (i) = Oxnewvolts (i) - Voffset (Equation 2)

#### where

• **i** = indexing variable (must be a continuous time series to work; can be performed on bin averaged data), where i = 1:end (end is largest data index point plus 1).

- P(i) = pressure (decibars) at index point i.
- Time(i) = time (seconds) from start of index point i.

• **OxVolt(i)** = SBE 43 oxygen voltage output directly from sensor, with no calibration or hysteresis corrections, at index point i.

• Voffset = correction for an electronic offset that is applied to voltage output of sensor. Voffset correction is always negative (see factory calibration sheet for this coefficient). Voffset is added to raw voltages prior to hysteresis correction. At end of hysteresis corrections, Voffset is removed prior to data conversion using SBE 43 calibration equation (see Oxfinalvolts( i )).

• **Oxygenvolts (i)** = dissolved oxygen voltage value with Voffset correction (made prior to hysteresis correction) at index point i.

• D and C are temporary variables used to simplify expression in processing loop.

• **H1** = amplitude of hysteresis correction function. Default = -0.033, range = -0.02 to -0.05 (varies from sensor to sensor).

• H2 = function constant or curvature function for hysteresis. Default = 5000.

• H3 = time constant for hysteresis (seconds). Default = 1450, range = 1200 to 2000 (varies from sensor to sensor).

• Oxnewvolts(i) = hysteresis-corrected oxygen value at index point i.

• **Oxfinal**volts(i) = hysteresis-corrected oxygen value at index point i with Voffset removed. This step is necessary prior to computing oxygen concentration using SBE 43 calibration equation.

Notes:

• Scan 0 –You cannot calculate Oxfinalvolts (i) for scan 0, because the algorithm requires information about the previous scan, so skip scan 0 when correcting for hysteresis.

• Scan 1 - When calculating Oxfinalvolts (i) for scan 1, make the following assumption about values from scan 0: Oxnewvolts (0) = Oxygenvolts (0).

## 15.1 CTD SBE43 Sensor Calibrations to Bottle Oxygens

Calibrations have been done with bottle and CTD oxygens in units of  $\mu$ mol/kg. Bottle oxygen samples were sampled on stations 1-30, thereafter every even number CTD was analysed (Figure 11).

Calibration of the SBE43 requires the computation of the botoxy/uxoy ratio as a correction, accounting for the change in output response of the sensor due to fouling. Here we compute this ratio and apply this to the SBE43 output values (rather than changing the Soc coefficient and rerunning the DatCnv module). Seabird state that a correction ratio > 1.0 indicates sensor is fouling (drifting low). Further if the correction factor is greater than 15-20% of original factory Soc (Table 15), the sensor may need to be returned for factory service.

Calibration Determination:

We used scripts: *sbe43\_sam\_oxy\_cal\_03.m* & *sbe43\_sam\_oxy\_cal\_stn1\_primary.m* 

- 1. Exclude data outliers
- 2. Examine bottle and uoxy data and oxy\_diff (botoxy-uxoy) differencies as a function of pressure.
- 3. Plot oxy\_ratio (botoxy/uoxy) against botoxy and; oxy\_diff against station number.
- 4. Apply oxy\_ratio correction to uxoy and replot.
- 5. Determine a final correction to uoxy as a function of pressure and plot final residuals against pressure.

Table 15. Corrections determined from comparison of upcast CTD oxygen to bottle oxygen. Apply Ratio correction then Press\_corr. Botoxy-uoxy are the final residual statistics of calibrated CTD oxygen. Oxygen Units:  $\mu$ mol/kg. Note that the correction ratios imply that sensors 0113, 0712 and 0930 are within 4%, 7% and 1% of factory calibrations respectively.

| Sensor s/n          | Ratio<br>(press>0dbar):<br>(botoxy/uoxy)<br>Mean±SD | Press Corr<br>Uoxy_corr = P1<br>+ P2xpress | Ratio<br>(press>1400dbar):<br>(botoxy/uoxy)<br>Mean±SD | Press Corr<br>Uoxy_corr = P1<br>+ P2xpress | Botoxy-<br>uoxy (final<br>calibration)<br>Mean±SD |
|---------------------|-----------------------------------------------------|--------------------------------------------|--------------------------------------------------------|--------------------------------------------|---------------------------------------------------|
| 0113 (1)            | 1.0479±0.01611                                      | -0.56, +0.00049                            | 1.0507±0.02647                                         | -1.26, +0.00049                            | 0.0±4.08                                          |
| 0712 (1)            | 1.0729±0.01212                                      | -0.99, +0.00115                            | 1.0782±0.012802                                        | -2.29, +0.00160                            | 0.0±2.84                                          |
| 0930 (2) STNS: 1-19 | 1.0152±0.009578                                     | -0.6, +0.0010                              | 1.0177±0.012034                                        | -1.23, +0.00102                            | 0.0±2.36                                          |
| 0930 (2) 20-90      | 1.0085±0.012547                                     | -1.74, +0.00190                            | 1.0167±0.011771                                        | -3.88, +0.00190                            | 0.0±2.92                                          |



Figure 12. SBE43: Bottle oxygen – uoxygen 1 after ratio and pressure residual calibrations. Ratio correction uses bottles > 1400 dbar. Pressure correction across full range of pressures.

# 15.2 Correction of Residual Hysteresis Between CTD Oxygen down and upcast

Calibration of the CTD oxygen is developed by a comparison of bottle oxygens to upcast CTD oxygens at bottle stops. For this to be applied to the down cast CTD oxygen it is important that there is no hysteresis between down and up CTD profiles.

After application of the default SeaBird hysteresis corrections as described above, we noted a small difference remained between down and upcast CTD oxygens as evaluated at equivalent pressures on down and up. This residual was of order  $\pm 1.5 \mu$ mol/kg in the mean, but could be two or three times this value at mid-depth (~1000-2500 dbar).

The principal improvement is to remove any mean oxygen bias between up and down profiles.

## seb43\_oxy\_cal\_hysteresis.m

- 1. Match down and upcast CTD profiles on press and compute oxygen differences.
- 2. Fit a second order polynomial to the oxygen difference.
- 3. Plot the parameters of this fit as a function of depth and station number.



Apply the fit and plot the new oxygen residuals.

Figure 13. Polynomial coefficients for the oxygen differences between up and down casts. CTD station number on x axis.







Figure 15. Comparison of CTD statistics for uncorrected (black) and corrected (red) data.

# 16 MSTAR computer setup & Data archiving/backups

Loic Houpert

# 16.1 Data Share & Public Disks

All scientific cruise data were stored on a network drive *data\_on\_memory* organised with a standard template of folders. All the CTD and underway data (ADCP, multibeam, echosounder, metocean,...) were backed up at the end of the cruise on the SAMS workstation and on external hard drive. In addition the network drive *science\_share* was used to shared data, figures, documents between the scientists.

# 16.2 Visiting Workstations from SAMS

The SAMS workstation used for scientific processing and archiving of data was a Linux workstation (running OS Lubuntu 16.04) and was installed on shore before the AR304 cruise. A clone of the hard drive was installed on a second Linux workstation which was brought on board as a backup system.

The ship network drives *science\_share and data\_on\_memory* were mounted on the SAMS workstation using these commands:

sudo mount -t cifs //10.100.100.30/science\_share /mnt/public -o username=science,rw

sudo mount -t cifs //10.100.100.30/data\_on\_memory /mnt/armstrong -o username=science

Backups were made automatically every hour on external 2TB hard drives attached to the SAMS workstations, by using Back In Time (a free backup software similar to Time Machine on Mac). Back In Time uses rsync as a backend and has the characteristic feature of using hard links for files that are identical in snapshots at different times, thus using disk space just once for files that remained unchanged. Advantages of the hard link method are that it is easy to look at snapshots of the system at different times and to remove old snapshots.

# 17 Appendix

# 17.1 Mooring Recovery Log sheets 17.1.1EB1

#### OSNAP - MOORING LOGSHEET

**RECOVERY EB1** 

Cruise AR30-04 [NB all times recorded in GMT, all dates dd/mm/yyyy] Mooring id Rockall Trough EB1

Anchor drop position:

Latitude: 57.1005°N Longitude: -9.5638°E Corrected water depth (at anchor launch): 1817m

-----

Date 07/07/2018

Site arrival time 7:45 End time

Start time 0500

Longitude \_\_\_\_

| Start positio | on: |
|---------------|-----|
| Latitude      |     |

| Item                                              |   | S/N                  | Comments                  | Time  |
|---------------------------------------------------|---|----------------------|---------------------------|-------|
| McLane 12"                                        |   | T.                   |                           | 0505  |
| 15 ni polyprop 🖉                                  |   | 1                    |                           |       |
| 10 x 17" glass                                    |   | 1                    |                           | 08.27 |
| 5m chain                                          |   | 1                    |                           | -0-4  |
| RAS-500 14262<br>RAS-500-frame<br>SeaFET/ODO      | / | 14262-01<br>721-0117 | Heavy forling             | 0836  |
| SBE37 SMP                                         |   | 11343                |                           |       |
| 1 m chain                                         | V | /                    |                           |       |
| 31" syn 1500 m and<br>Iridium beacon and<br>Light | / | B11-044<br>B11-035   |                           | 0842  |
| 4 ni chain                                        | / | 1                    |                           | - 1   |
| Nortek on load bar                                | ~ | 11069                |                           | 11    |
| 41 + 100 m wire                                   |   | 7                    |                           |       |
| SBE37 SMP<br>(2 m down wire)                      | V | 11342                |                           | 0845  |
| Nortek on load bar                                | ~ | 11042                | Arenome or one transducer | 0850  |
| 241 m wire                                        |   | 1                    |                           |       |
| SBE37 SMP<br>(6 m down wire)                      | 1 | 11341                |                           | 0852  |
| 1 m chain                                         | ~ |                      |                           |       |
| 40" synt 1500 m and                               |   | 1                    |                           | 0 858 |

## OSNAP - MOORING LOGSHEET

## RECOVERY EB1

3

1

| Tridium bencon and             | B11-047 |                                   |        |
|--------------------------------|---------|-----------------------------------|--------|
| Light                          | B11-028 | Big functes of 3/16 round         |        |
| 4 m chain                      |         | bould                             | 10 10  |
| Nortek on load har             | 11047   | 67 3/16 line on deck !            |        |
| 65 + 78 nt wire                | 1       | IX 1/4 line on dech               |        |
| SBE37 SMP                      | 11338   | No additional MC-ODO              |        |
| (5 m down wire)                |         | instrument for this depth (500 m) | 89.15  |
| 6 x 17" glass                  | 1       |                                   | 0416   |
| 248 m wire                     | h       |                                   |        |
| SBE37 SMP                      | 11335   |                                   | 240/2  |
| (7 m down wire)                |         |                                   |        |
| SBE37-ODO (1 m down<br>wire)   | 15254   |                                   | 0911   |
| SBE37-ODO (200 m down<br>wire) | 14987   |                                   | 0424   |
| 4 x 17" glass                  |         |                                   |        |
| Nortek on load har             | 11055   |                                   | 0926   |
| 349 m wire                     | 1       |                                   |        |
| SBE37 SMP                      | 11334   |                                   | 09.78  |
| (6 m down wire)                |         |                                   |        |
| SBE37 SMP<br>(245 m down wire) | 11330   |                                   | 0933   |
| 2 x 17" glass                  | 1       |                                   |        |
| Swivel                         | 1       |                                   |        |
| Nortek on load bar             | 11046   |                                   | 09446  |
| 138 m wire                     | 1       |                                   |        |
| 4 x 17" glass                  | 1 -     |                                   |        |
| 274 m wire                     | 1       |                                   |        |
| SBE37 SMP                      | 11327   |                                   |        |
| (6 m down wire)                |         |                                   | 09.4Z- |
| SBE37-ODO (100 m down<br>wire) | 15298   |                                   | 09/12  |
| SBF37 SMP                      | 11325   |                                   | uptor  |
| (165 m down wire)              |         |                                   | 0953   |
| Nortek on load har             | 13018   |                                   | 3455   |
| 10 + 5 m wire                  | L       |                                   |        |
| 8 x 17" glass                  |         |                                   |        |
| A/R and                        | 1999    | ARM 0B16                          |        |
| A/R                            | 1758    | ARM 1A0D                          |        |

## OSNAP - MOORING LOGSHEET

#### RECOVERY EB1

| 5 m chain        | 1 |              |  |
|------------------|---|--------------|--|
| Anchor – 2100 kg |   | Porred 1887- |  |

Comments to be written overleaf

07:45:05 1 887m. 07:45:30. 1843.24. 07:45:30. 1843.24. 07:47:00 No ons. Ro ons. 07:47:45 16:02.7. 1597.7. :19:00. 1484.5 1474.9m. 52:00 131).7. 1307.7.

### OSNAP - MOORING LOGSHEET

#### RECOVERY WB1

Mooring id Rockall Trough WB1

Cruise AR30-04 [NB all times recorded in GMT, all dates dd/mm/yyyy]

### Anchor drop position:

Latimde: 57.4694°N Longitude: -12.7056°E Corrected water depth (at anchor launch): 1601m

| Date 0610712018                         | Site |
|-----------------------------------------|------|
| Start time Roleased 1:41, Jon broy 8:08 | End  |
| Start position:                         |      |
| Latitude                                | Loc  |

e arrival time <u>07:30</u> d time \_\_\_\_\_

Longitude \_\_\_\_\_

| Item                                                              | S/N                              | Comments                  | Time    |
|-------------------------------------------------------------------|----------------------------------|---------------------------|---------|
| McLane 12"                                                        | 1                                |                           | 8:08    |
| 15 at paly prop                                                   | 7                                |                           |         |
| 4 x 17" glass                                                     | 1                                | 2 A                       | 8.24    |
| 45 m wire                                                         |                                  |                           | í l     |
| SBE37 SMP<br>(4 m down wire)                                      | 11290                            | - Physical Street Barrier | 8:24    |
| 31" synt 1500 m and<br>Iridium Beacou <b>and</b><br>Ligh <u>i</u> | 7<br>J1OJL 1<br>B1 <u>1</u> =049 | 2                         | 8:32    |
| S m chain                                                         |                                  |                           |         |
| Nortek on load bar                                                | 11021                            |                           | 8:37    |
| 145 m wire                                                        | 1                                | 10.0                      |         |
| SBE37 SMP<br>(6 m down wire)                                      | 11289                            |                           | 8:39    |
| 234 m wite                                                        | /                                |                           |         |
| SBE37 SMP<br>(2 m down wire)                                      | 11288                            | 1 2 3 6                   | · 8: 12 |
| 40" synt 1500 m and<br>Iridium beacon and<br>Light<br>5 m chain   | /<br>JO1NK1<br>B11-032<br>/      | e. ***                    | a       |
| Swizel                                                            | 7                                | <u> </u>                  |         |
| Nortek on load bar                                                | 9859                             |                           | 1 2     |
| 65 m wite                                                         | 1                                |                           |         |
| SBE37 SMP<br>(5 m down wire)                                      | 11287                            |                           | 8.53    |
| 364 m wirg                                                        | 7                                |                           | v .     |
| SBE37 SMP                                                         | 10577                            |                           | 8:史     |
|                                                                   |                                  |                           |         |



## OSNAP-MOORING LOGSHEET

Ŧ

### RECOVERY WB1

| (192 m down wire)              |              | 1                    | 1    |
|--------------------------------|--------------|----------------------|------|
| 65 m wire                      | 1            |                      |      |
| 5 x 17" glass                  | 7            | 1 1 1/               | 9:04 |
| Nortek on load bar             | 11026        | anula                |      |
| 201 m wire                     | 7            | 1-1 NTHE 10560       |      |
| SBE37 SMP (6 m down<br>wire)   | 3276         |                      |      |
| 4 x 17" glass                  | 6            |                      | 9.16 |
| Swivel                         | 6            |                      |      |
| 143 m wire                     | 6            | NH AL                |      |
| SBE37 SMP<br>(48 m down wire)  | 9375         | Mangkesi             | 3:16 |
| 4 x 17" glass                  | 1            |                      |      |
| Nortek on load bar             | 9854         |                      | 0130 |
| 215 m wite                     | 1            |                      |      |
| SBE37 SMP<br>(149 m down wire) | 10560        | <u> </u>             | 3:04 |
| 2 x 17" glass                  | E.           |                      |      |
| Nortek on load bar             | 11029        | Baly MSSUS & photos  | 0935 |
| 15 m wire                      | 1            | 1                    |      |
| SBE37 SMP<br>(5 m down wire)   | 9377         |                      | 6937 |
| 8 x 17" glass                  | T.           |                      |      |
| A/R and<br>A/R and             | 1137<br>1752 | ARM 0825<br>ARM 1A07 | 0939 |
| 5 m chain                      | 1            |                      |      |
| Anchor – 2100 kg               | 4            |                      |      |
| <u></u>                        | ,            |                      |      |

#### Comments to be written below or overleaf

@ red vin mark: no instrument, but no clamp marks on will (previous mork) ours one black





# 17.2 Mooring Deployment Log sheets 17.2.1 EB1







# 17.2.2 IB3

|       |                                                 |                    | A                         |            |
|-------|-------------------------------------------------|--------------------|---------------------------|------------|
|       | OSNAP – MOORING LOG                             | SHEET              | DEPLO                     | DYMENT IB3 |
|       | Cruise AR30-04<br>[NB all times recorded in GMT | F, all dates dd/mr | Mooring id Iceland        | Basin IB3  |
|       | Date 3/7/18                                     |                    | Site arrival time 1411    |            |
|       | Setup distance 4.0m                             |                    |                           |            |
|       | Start time 1414                                 |                    | End time 1/278            |            |
|       | Start unie 1 · er                               |                    | Elio alle                 |            |
|       | Start position:                                 |                    |                           |            |
|       | Latitude                                        |                    | Longitude                 |            |
|       |                                                 |                    |                           |            |
|       | Item                                            | S/N                | Comments                  | Time       |
|       | McLane 12"                                      | /= '               |                           | 11.10-     |
|       | 15 m nolvoron                                   | ić.                |                           | 1415       |
|       | D = 5 <sup>th</sup> elses                       | 2                  |                           | 14         |
|       | 2 x 17" glass                                   |                    |                           | 11 1/2     |
|       | 44 m 3/16" ins                                  | £                  |                           | . !(       |
| 0.010 | SBE37 SMP 50<br>(& m down wire)                 | 9378               |                           | 1416       |
| 20960 | 2x ADCP 1500m 44" 95<br>(xm down wire)          | B11-045<br>B11-027 | 1HET 3000 234 060 476 980 | 1424 3/    |
|       | 5 m chain                                       | /                  |                           | - 41       |
|       | Swivel                                          | 1                  |                           | - (1       |
|       | 197 m 3/16" lns                                 | 1                  | T I an attack             | 11 11      |
|       | SPE27 SMP 160                                   | 1000               | - wi cenquisi             |            |
|       | (5 m down wire)                                 | 13019              |                           | 11         |
|       | SBE37 SMP 200                                   | 10561              | 1 c jour                  | 1. 28      |
|       | (100 m down wire)                               | 10305              |                           | 14 28      |
|       | 8 x 17" glass                                   | 1                  |                           | 1437       |
|       | Swivel                                          | 7                  |                           | - u -      |
|       | 587 m 3/16" ins                                 | L                  | The land                  | 1          |
|       | SBE37 SMD 350                                   | 10001              | 1 wo veryan               |            |
|       | (44 m down wire)                                | 13022              |                           | 1439       |
|       | SBE37 SMP 500                                   | 8081               |                           | 11.1.2     |
|       | (194 m down wire)                               | 0002               | E unicipin                | 1442       |
|       | SBE37 SMP 700                                   | 人0579              |                           | 1449       |
|       | (394 m down wire)                               |                    |                           | 1          |
|       | - A 17 Binss                                    |                    |                           | 1455       |
|       | 594 m 3/16" ins                                 | <i>R</i>           | True tar all.             |            |
|       | SBE37 SMP 900                                   | 11324              | 12                        | 1456 30    |
|       | (5 m down wire)                                 | 11001              |                           |            |
|       | (304 m down wire)                               | 11 321             |                           | 15 44      |
|       | A x 17" alace                                   |                    |                           | 10000      |

### OSNAP-MOORING LOGSHEET

DEPLOYMENT IB3

| Nortek on load bar 1496           | 9822               | 1                                  | 151030   |
|-----------------------------------|--------------------|------------------------------------|----------|
| 395 m 1 4" ins                    |                    |                                    | - X      |
| SBE37 SMP 1500<br>(5 m down wire) | 8080               |                                    | 15" 1"5  |
| 4 x 17" glass                     |                    |                                    | 1521     |
| Swivel                            | 1                  |                                    |          |
| 395 m 1/4" ins                    | 7                  | Two Lengths                        |          |
| SBE37 SMP 1900<br>(5 m down wire) | 10578              |                                    | 1522     |
| 4 x 17" glass                     |                    |                                    | 1532     |
| Noriek on load bar 2297           | 6723               |                                    | 1532     |
| 495 m 1 4" ins                    | 1                  |                                    |          |
| SBE37 SMP 2300<br>(5 m down wire) | 11340              |                                    | 1534     |
| 2 x 17" glass                     | 1                  |                                    | 1546     |
| Nortek on load bar 2-446          | 11034              |                                    | 1546     |
| 5 m 1/4" ins                      | 1                  | R CLOUP C                          |          |
| 28 m 1/4" ins                     | 1                  |                                    |          |
| SBE37 SMP 2800<br>(5 m down wire) | 11336              |                                    | 1548     |
| 6 x 17" glass                     |                    |                                    | 15 52    |
| 1.5 m chain                       |                    |                                    |          |
| A/R and<br>A/R                    | SN 1253<br>SN 1272 | ANN 1808 REC 1955<br>HANYOSED DESS | 15 59    |
| 10 m chain                        | 1                  |                                    |          |
| Anchor – 1900 kg (dry<br>weight)  |                    | <i>a.</i>                          | 16-27.50 |

Anchor drop position: Langitude 24021.325 (Time 16:27:30) Latitude 57° 59.564 2864 Uncorrected water depth (at anchor launch) <u>286</u> Corrected water depth (at anchor launch) <u>2854</u> AQ -> other conumen Comments to be written overleaf IB3 Vulleteration - 20-14 RO East position: Lat 57°59,615 Lon 24° 19.007 SN 2000 SN 1759 ARM OB17 ARM LAOS 3609.1m 20:14:455 3609 1 m 3609 1 m 52.9801N 570 59.406 N Andor Seubed 240 21.204'W -24.3534 W Fallbach 318m



| Iceland B                | asin IB3 - 2 | 10-Jul-2017<br>11:30<br>Page # 2 / 4         |                                    |                            |
|--------------------------|--------------|----------------------------------------------|------------------------------------|----------------------------|
| depth<br>(Incl. stratch) | component    | S/N rope /<br>& Leng                         | Distance from<br>th lower rope and | in/out of water<br>comment |
|                          |              | 46 top<br>594n                               | n shae-link-shae                   |                            |
| 901 m                    | SBE37 SMP    | 900                                          | 9                                  |                            |
| 1199 m                   | SBE37 SMP    | 1200                                         | 2                                  |                            |
| 1492 m                   | 4x17* class  | #6 boti                                      | om shac-link-shac                  |                            |
|                          |              |                                              | 00                                 |                            |
| 1496 m                   | Nortek on lo | adizser (estimate                            | e)                                 |                            |
|                          |              | 47 top<br>395n<br>1/4° in                    | s shac-link-shac                   |                            |
| 502 m                    | SBE37 SMP    | 1500<br>#7 bott                              | iom                                |                            |
| 1893 m                   | 4x17" glass  |                                              | o shac-link-shac<br>O<br>O         |                            |
|                          |              | 46 top<br>395m<br>1/4* in                    | s s                                |                            |
| 902 m                    | SBE37 SMP    | 1900                                         | 9                                  |                            |
| 2293 m                   | 4x17" glass  | WE LOUT                                      | om shac-bhk-shac                   |                            |
| 2297 m.                  | Nortek on lo | a <b>d 255</b> r (estimate<br>#9 top<br>495m | e) shac-link-shac                  |                            |
| 2303 m                   | SBE37 SMP    | 2300                                         |                                    |                            |



## 17.2.3 IB4

# ONSITE 1200 417/18

START DEPLOY 121510






BUD M4 had long. Wie wrapped wound hip loom. [14A. 03 miles from larger position: Anchor drop position: Time: 15: 11:55 Lat: 57°59.425'N Water Depth uncorrected (292 21° 08.910'N

Anchor Seabed Position (after Krilateration) Lat: 57.9839N Lon: -21.1461°W Unconected wel 2929m Fallback 152m

1

Selup 1 SAM On site 2830 Stert 0848

5/7/18







WISI DEPLOY. Servo PUST. SITE GARNUAL DATE 01-Dec-2016 12:01 Page # 2 / 4 Rockall Trough W81 - 2017 v02 in/out of water comment rope # & Langih Distance liners forwar rope and depih (ncl. stretch) component svi 13:32 994 m Nortek on load@ar (estimate) 9879 a7 top 201m 0.15" lm 13:33 SEE37 SMP 1000 1000 m 14368 #7 tooliona 1197 m 4x17" glass #8.600 143mi 143mi 13:46 1248 m SEE37 SMP 1250 1337 b 47m d 48 be Sera 1345 m 4x17\* glass d 000 Nortak on load268r (estimate) 1353 1349 m 1853 19 XD 215m 13:58 SBE37 SMP 1500 149 m d 1499 m 14353 b #9 tostam shap-lok-2x17" glass 1588 m d a 14:04 1588 m Nortek on load@ar (catimate) FIG top 15m Vici he 9213 14:05 /SBE37 SMP 1575 5 m み. 1573 m 14354 Q #10 bolium shap-link-shap 8x17\* glass 1564 m 000000000

|      |                | Rockall T       | rough WB1 - 201                                                      | 7 v02              |                        |                                         | 01-Dec-2016 |       |  |
|------|----------------|-----------------|----------------------------------------------------------------------|--------------------|------------------------|-----------------------------------------|-------------|-------|--|
|      |                | danih           |                                                                      | rape 4             | Oistance from          | 12:01<br>Page # 3/4<br>Inviout of water |             |       |  |
|      |                | (inst. stretch) | component and                                                        | & Length           | tower rope and         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | umment      |       |  |
|      |                |                 |                                                                      |                    | raz ing shas<br>A Shas | IN AI                                   | <i>I</i> ∧  |       |  |
|      | 14:17.         | 1593 m          | AR-2                                                                 | stur-12            | 2_                     | 326 43                                  | 85-1B85     |       |  |
|      |                |                 |                                                                      | #12 5m<br>chari=13 | ra Bhao                | 7-6  1.A                                | 10          |       |  |
|      |                | 1588 m          | Anchor 2100 kg (4<br>(Wzt wzight = 1527kg)<br>(Safe walght = 2009kg) | )                  |                        |                                         |             |       |  |
|      | Anicher d      | hop t           | me = 15:0                                                            | )4.50              |                        |                                         | AS AT.M     | Ran   |  |
|      | wd             | 1537            | mr.                                                                  | we u               | mean 1                 | 599 <i>m</i>                            | 10;01:00    | 1369. |  |
| ::to | 15129 '0       | 0               |                                                                      | 1<1                | 1200                   | 16.25.86 6                              | 07:30       | 530.  |  |
| D    | 2587           | 9 m             |                                                                      | 1 * -              | 1.04.0                 | 1625.7n                                 | 08:00       | 669   |  |
|      | 2893.          | 64              |                                                                      |                    | 14:30.                 | 1028.8                                  | 62'20       | 688   |  |
|      | 15:39:3        | ,6              |                                                                      |                    |                        | 1625.5 m.                               | 0,00        | 7 80  |  |
|      | 2583.4         |                 |                                                                      |                    | 15:00                  | 1626.8-                                 | 69:00       | 854   |  |
|      | 2582.0         | ( n             | `                                                                    |                    | Set                    |                                         | 09:30.      | 944   |  |
| 7    |                |                 |                                                                      |                    |                        | *                                       |             | 983   |  |
| ).   | 16:05:         | 60              |                                                                      |                    |                        |                                         | 10 200      | 1032  |  |
|      | 2334.          | Jm.             |                                                                      |                    |                        |                                         |             | 1051  |  |
|      | 16:05:3        | Ð.              |                                                                      |                    |                        |                                         | 0:30        | 1126- |  |
|      | 2373.5         | 3 m             |                                                                      |                    |                        |                                         | 11 :00      | 126   |  |
|      | 2:373.         | ų.              |                                                                      |                    |                        |                                         |             | 122   |  |
| 3)   | 16:26:00       |                 |                                                                      |                    |                        |                                         | 11:30       | 130   |  |
|      | 2481.          | 4 12            |                                                                      |                    |                        |                                         | 12:00       | 136   |  |
|      | 16.1.26:       | 30              | 16:2                                                                 | 7:30               |                        |                                         |             | 13    |  |
|      | 2478.<br>2478. | 4-6-1           | 2768                                                                 | 8,4                |                        |                                         | \$ 13:00    | 1.52  |  |
|      | 1              | 95.0            | 26.8                                                                 | 7.8                |                        |                                         |             | 154   |  |

#### 17.2.6 WB2



| Rockell T                        | rough WB2                                   | - 2017                            |                    | 01-Dec-2016<br>12:24<br>Page # 2 / 3 |       |                |                  |
|----------------------------------|---------------------------------------------|-----------------------------------|--------------------|--------------------------------------|-------|----------------|------------------|
| <b>clepth</b><br>(Incl. stretch) | component                                   | 6NN                               | rope #<br>& Longth | Distance from<br>Jamer rope and      |       | in/out<br>comm | ol water<br>vent |
|                                  |                                             |                                   | All 20m            | 199.5ec                              |       |                |                  |
| 1799 m                           | Anohor 7<br>(Wat weight =<br>(Sele weight - | 100 kg (dky i<br>609kg)<br>704kg) | nsight)            | i 34 She                             | 18:37 | 35             |                  |
| 18:41                            | .00                                         | 588                               | ~                  | 602 m                                |       |                |                  |
| 18:42                            | :00                                         | 720                               | m                  | 734 m                                |       |                |                  |
| 18.43                            | : 00                                        | 830                               | m                  | 848m                                 |       |                |                  |
| 18:44                            | 00                                          | 950                               | ~~                 | 963 m                                |       |                |                  |
| 12:45                            | .00                                         | 1065                              | m                  | 1096-20                              |       |                |                  |
| 18.46                            | ω.                                          | 1178                              | m                  | 1132m                                |       |                |                  |
| 18:47                            | Ø                                           | 1230                              | m                  | 1304 m                               |       |                |                  |
| 18:48:                           | 00                                          | 1410                              | m                  | 1421 m                               |       | 4-1            |                  |
| 48:43:                           | 00                                          | 1526                              | 00                 | 1539                                 |       |                |                  |
| 18:50:                           | 00                                          | 1644                              | lan                | 11 scon                              |       |                |                  |
| 18:51:                           | 20                                          | 1760                              | (m)                | JAT Jam                              |       |                |                  |
| 18:52:                           | 00                                          | 1800                              | m                  | 1800 m                               |       |                |                  |
|                                  |                                             |                                   |                    |                                      |       |                |                  |
|                                  |                                             |                                   |                    |                                      |       |                |                  |
|                                  |                                             |                                   |                    |                                      |       |                |                  |
|                                  |                                             |                                   |                    | 2                                    |       |                |                  |
|                                  |                                             |                                   |                    |                                      |       |                |                  |

# **17.3 Trilateration** 17.3.1 EB1



17.3.2 IB3

Trilateration Survey using: tri<sub>p</sub>os<sub>I</sub>B3.txt

ected water depth: 2864m. Release Height: 10m. Transducer dept Red = anchor seabed position. 57.9901N -24.3534W.



17.3.3 IB4







85

#### 17.3.6 WB2



### 17.4 Examples of instrument setup files

#### 17.4.1 SeaBird SBE-37

```
OutputExecutedTag=n
S>
S>Outputformat=3
S>
S>DS
SBE37SM-RS232 v4.1 SERIAL NO. 9372 08 Jul 2018 18:34:41
vMain = 13.53, vLith = 2.98
samplenumber = 0, free = 559240
not logging, stop command
sample interval = 1800 seconds
data format = converted engineering alternate
transmit real-time = no
sync mode = no
pump installed = yes, minimum conductivity frequency = 3318.4
S>
S>Datetime=07082018183445
S>
S>
S>SAMPLENUMBER=0
this command will modify memory pointers
repeat the command to confirm
SAMPLENUMBER=0
S>
S>OUTPUTSAL=N
S>
S>SAMPLEINTERVAL=3600
S>
S>BAUDRATE=38400
repeat the command at 38400 baud to confirm
BAUDRATE=38400
baud rate change is confirmed
S>
S>OUTPUTSV=N
S>
S>SYNCMODE=N
S>
S>TXREALTIME=N
S>
S>SAMPLEINTERVAL=1800
S>
S>STARTDATETIME=07092018120000
<start dateTime = 09 Jul 2018 12:00:00/>
S>
S>STARTLATER
<!--start logging at = 09 Jul 2018 12:00:00, sample interval = 1800 seconds-->
S>
S>DS
SBE37SM-RS232 v4.1 SERIAL NO. 9372 08 Jul 2018 18:35:51
vMain = 13.51, vLith = 2.98
samplenumber = 0, free = 559240
not logging, waiting to start at 09 Jul 2018 12:00:00
```

sample interval = 1800 seconds
data format = converted engineering alternate
transmit real-time = no
sync mode = no
pump installed = yes, minimum conductivity frequency = 3318.4
S>

#### 17.4.2 Nortek Aquadopp

------

------

Deployment : osnap Current time : 04/07/2018 10:09:01 Start at : 04/07/2018 11:00:00 Comment:

-----

Measurement interval (s) : 3600 Average interval (s): 60 Blanking distance (m): 0.50 Measurement load (%): 4 Power level : HIGH Diagnostics interval(min): 720:00 **Diagnostics samples : 20** Compass upd. rate (s) : 1 Coordinate System : ENU Speed of sound (m/s) : 1500 Salinity (ppt) : N/A Analog input 1 : NONE Analog input 2 : NONE Analog input power out : DISABLED Raw magnetometer out : OFF File wrapping : OFF TellTale : OFF AcousticModem : OFF Serial output : OFF Baud rate : 9600 \_\_\_\_\_

Assumed duration (days) : 730.0 Battery utilization (%) : 79.0 Battery level (V) : 13.8 Recorder size (MB) : 9 Recorder free space (MB) : 8.973 Memory required (MB) : 1.9 Vertical vel. prec (cm/s) : 1.4 Horizon. vel. prec (cm/s) : 0.9

Instrument ID : AQD 9877 Head ID : A6L 5240 Firmware version : 3.37

Aquadopp Deep Water Version 1.40.14 Copyright (C) Nortek AS

#### 17.4.3 Workhorse ADCP

[BREAK Wakeup A] WorkHorse Broadband ADCP Version 50.36 Teledyne RD Instruments (c) 1996-2009 All Rights Reserved. >RR Recorder Directory: Volume serial number for device #0 is a4ae-2016

No files found.

Bytes used on device #0 = 0 Volume serial number for device #1 is a4ae-2016

No files found.

Bytes used on device #1 = 0 Total capacity = 2045181952 bytes Total bytes used = 0 bytes in 0 files Total bytes free = 2045181952 bytes

> [BREAK Wakeup A] WorkHorse Broadband ADCP Version 50.36 Teledyne RD Instruments (c) 1996-2009 All Rights Reserved. >CR1 [Parameters set to FACTORY defaults] >CF11111 >EA0 >EBO >ED19700 >ES35 >EX11111 >EZ1111101 >WA50 >WB0 >WD111100000 >WF176 >WN28 >WP42 >WS400 >WV175 >TE01:00:00.00 >TP01:25.71 >TF18/07/02 18:00:00 >CK [Parameters saved as USER defaults] >The command CS is not allowed in this command file. It has been ignored. >The following commands are generated by this program: >CF? CF = 11111 ------ Flow Ctrl (EnsCyc;PngCyc;Binry;Ser;Rec) >CF11111 >RN ib5dn >cs

# 17.5 Post-cruise extraction and chemical analysis of RAS samples

#### Clare Johnson, John Beaton

Due to time pressures and the risk of sample loss, the decision was made to leave the sample bags on the RAS and return this to SAMS for sample removal. The hope being that because it was essentially a closed system, that this would be less risky than trying to remove the samples on board.

## 17.5.1 Sample removal

Two people are required for the sample removal. After removing the sample bags from the RAS, water was decanted for nutrient analysis. Two 60 ml acid-cleaned vials were rinsed and then filled. These samples were frozen until analysis for nitrite, nitrate, phosphate and silicate. The remaining water was allocated to carbon analysis. Unfortunately the RAS sample bags are permeable to gas; as such the sample bags were stored inside a second plastic bag filled with DI water. (DI water was chosen due to its low carbon chemistry). Samples were stored in the cool and dark before analysis within 7 days of removal. The RAS sample bags can be removed and processed at a rate of three to five per hour on shore; however, if bags are difficult to remove (e.g. due to a larger sample volume), or have leaks that need to be sealed, this can slow the process considerably. The removal procedure is described in detail below, we thank Pete Brown (NOC) for his help in establishing this procedure.

Equipment needed: (1) PPE – samples are spiked with mercuric chloride, and any unfilled sample bags have concentrated mercuric chloride in the RAS tubing; (2) 60 ml plastic syringe with tubing and connector for RAS sample tube (provided in RAS spares kit); (3) acid-cleaned nutrient vials; (4) ~30 cm silicon tubing; (5) 140x382 mm plastic bag, twist seal (VWR 129-9815); (6) plastic caps, ¼"-28 flat bottom, ETFE (Kinesis Ltd P-755); (7) weighing scales; (8) electrical tape; (9) bucket; (10) paper, pencil, marker pen, blue roll etc. Removal steps:

(1) remove 4 white plastic bars, and 8 short white plastic bars at the top of the RAS to get access to the RAS sample containers.

- (2) For each RAS sampling container in turn:
  - (a) check sample container number on: (i) top-plate of frame, (ii) white tags on upper tubing, (iii) white tags on lower tubing, (iv) central multi-port valve. These should all be the same. Note number on log sheet.
  - (b) unscrew tubing at bottom of RAS sampling container.
  - (c) gently lift RAS sampling container out through the top plate
  - (d) tip RAS sampling container so top is slightly downward.
  - (e) loosen sampling container cap by twisting RAS sampling container, not the cap. Remaining DI water in the sampling container will drain.

(f) slide the sample bag slightly out of the RAS sample container and close the screwvalve at the top of the RAS sample bag.

(g) slide the sample bag out the sampling container, any remaining DI water will drain. If the bag is stuck, use the syringe with the RAS connector to 'push' the sample bag out the container.

(h) gently dry the sample bag and carefully inspect for any leaks [during this deployment, small leaks occurred at the top or bottom of the sample bags along the heat seals (6/40 samples) and around the on/off valve join (1/40 samples)]
(i) if any leaks are found, carefully seal with electrical tape and note on log sheet.
(j) weigh RAS sample bag, and photograph. Note any bubbles on log sheet. Bubbles are easier to spot when the RAS sample bag is horizontal and dry.
(k) Take subsamples for nutrient analysis (we took two vials)

Take subsamples for nutrient analysis (we took two vials)

(i) rinse a 30 cm length of silicon tubing in DI water and attach to sample bag

spigot.

(ii) lightly press on the sample bag and then open screw-valve so sample flows through the silicon tubing. Take care that no air flows back up the tubing and into the sample bag when opening and closing the valve. This can be avoided by maintaining light pressure on the sample bag.(iii) rinse nutrient sample vials in sample and fill leaving room for expansion if freezing. Ensure nutrient containers are labelled (e.g. RAS xxx).

(iv) close sample bag screw-valve, remove silicon tubing and screw black plastic cap onto sample bag spigot.

(I) save remaining sample for carbon analysis by storing under water to reduce gas exchange through the permeable plastic sample bag

(i) ensure that black plastic cap has been added to sample bag spigot.
(ii) place sample bag upside down into labelled (e.g. RAS xxx) swirl-top plastic bag. Add second pencil label in outer bag as back-up. Gently fill plastic bag with DI water trying to avoid bubbles until it just covers the sample bag.

(iii) tightly roll over the swirl-top plastic bag top once, squeeze it gently to exclude air, roll over the top a second time, relax the pressure on the plastic bag, and roll over the top another 1-2 times. Twist together wire to seal.(iv) place filled swirl-top plastic bags vertically inside a small rigid plastic case. Do not pack the bags too tightly or the seal at the top of the plastic bag can fail.

(3) Repeat step 2 for all RAS sample containers (1-48).

(4) Store the nutrient vials in a freezer unless immediate analysis. Store the carbon samples in a cool dark place and analyse as soon as possible.

#### 17.5.2 RAS performance

The modifications made to the RAS frame prior to deployment worked well, no sample containers were broken and all tubing was intact. We thank Darren Rayner (NOC) with his help in these modifications. A plate was added to support the sample containers from the bottom rather than rely on them being held in place by the top plate only. Additionally, all tubing, which is only connected using a quarter-turn, was taped and the tubing carefully cable-tied to the RAS frame. Despite these modifications making the RAS much more robust, I feel that using the RAS in a deep sea mooring is pushing the RAS right to the limits of its capability. This is particularly true for anchor-last tall moorings where the RAS is deployed

near the top of the mooring: the deployment necessitates the RAS being towed through the water whilst the remainder of the mooring is deployed.

40 out of the 42 scheduled samples collected the full ~500 ml, sample volumes ranged from 454-573 ml, with an average of 511 ml. Sample volumes were estimated by (mass full sample bag – mass empty sample bag)/1.027. One sample (26) only partially collected (~250 ml) due to the screw-valve at the top of the sample bag not being fully opened, and an additional sample (25) did not collect at all due to the intake tubing being trapped and pinched below the screw-down restraining bars on the top of the RAS. The RAS was recovered before samples 43-48 were due to collect. Worryingly some of the sample bags that were in positions 43-48, that should have been empty, had water in them (43: 19 ml; 44: 136 ml; 45: 93 ml; 46: 0 ml; 47: 101 ml; 48:53 ml). This raises the possibility that other sample bags could have been filled at multiple times and therefore samples are cross-contaminated.

Analysis of the RAS metadata showed that the pump worked extremely hard during samples 25 and 26 (mean I during pumping 197 and 187 mA respectively compared to 75-95 mA for other samples). Correspondence with McLane suggests that during samples 25 and 26 the seal in the central multi-valve was overcome enabling water to simultaneously enter multiple sample bags; however, they were unable to replicate the high pump currents and multi-port valve failure in their laboratory despite blocking intake tubing. Additionally, tests at SAMS confirmed that the multi-port valve on our RAS was performing correctly. Although this does not mean that the seal was not temporarily overcome during samples 25 and 26, it does tell us that our multi-port valve itself is not broken. We continue to investigate this, for example to see if there is any pattern to samples relative to the port positions on the multi-port valve. Additionally, we are hoping that the nutrient and carbon data will help identify if there was or was not cross contamination.

The performance of the RAS bags was also patchy. We did not use the bags provided by McLane because these are unsuitable for carbon analysis (Pete Brown, NOC, personal communication). As such we used the same modified bags used by the NERC ABC project from Plastic Film Enterprizes. One or two small leaks were found in 8 out of the 40 sample bags: 7 bags had small leaks at the heat seal either at the top or bottom of the bag, with the remaining bag having a leak around the join between the bag and the screw-valve. One bag had severe multiple leaks and the sample was lost. Additionally, 13 out of 40 bags has small bubbles in. Both the leaks and bubbles were only spotted by carefully drying and examining the sample bags. Further leaks were noted during sample analysis.