Cruise Report: R/V Oceanus 432

Woods Hole to Woods Hole October 19 – 26, 2006

Line W: A continuing program of ocean measurements

Background

This cruise constitutes one element of an ongoing observational program – Line W – funded by the U.S. National Science Foundation to investigate the characteristics and consequences of interannual variations in the Northwest Atlantic's deep western boundary current (DWBC). This study is documenting for an initial 4-year period, the temperature, salinity, tracer and velocity variations of the DWBC upstream of its Gulf Stream crossunder point. Line W includes a 5-mooring array of instruments situated in the DWBC flow regime on the continental slope south of Woods Hole and is augmented by twice-yearly occupations of a hydrographic section along this line (Figure 1). A companion research program by U.K. investigators is sampling bottom pressure variability at each of our mooring sites (and an additional site shoreward of the shallowest mooring) plus two additional lines crossing the DWBC to the east of Line W. The moored array, which consists of 3 McLane profilers and 2 moorings of current meters plus T/C sensors, is designed to quantify changes in DWBC water properties, stratification (potential vorticity) and transport. A sixth mooring of current meters, deployed in the mean axis of the Gulf Stream along Line W was added in spring 2005 (This mooring, named GUSTO-05, is maintained by Dr. M. McCartney and funded by WHOI's Ocean and Climate Change Institute.) Shipboard observations using CTD, LADCP and discrete sampling for salinity, oxygen, CFCs, SF₆ and I^{129} measure the water column properties at high spatial resolution to help verify that the array resolves interannual signals.

Cruise Summary

R/V Oceanus cruise # 432 Departed Woods Hole on 19 October 2006. Returned to Woods Hole on 26 October 2006. Number of CTD/LADCP/Rosette stations occupied: 21 (of 26 planned).

Science party

Chief Scientist: Ruth Curry (WHOI) CTD operations: Margaret Cook, Beatriz Pena-Molino, Jane Dunworth-Baker (WHOI) LADCP : Dan Torres, George Tupper (WHOI) CFC chemistry: Bill Smethie, Eugene Gorman, Guy Mathieu, David Ho (LDEO) Hydrography (salts and oxygens): Dave Wellwood (WHOI)

Cruise Narrative

The cruise tracked along a line between the continental shelf south of Woods Hole and Bermuda (Figure 1). Of 26 proposed stations, 21 were successfully occupied (see Table 1). Weather was a limiting factor: CTD operations were suspended by the Captain three times due to high winds and seas. A Seabird 911 CTD system equipped with dual temperature/conductivity sensors and 1- dissolved oxygen sensor was used for all casts. A rosette sampler and 21 ten-liter bottles were used to obtain water samples at discrete depths; these were subsequently analyzed for salinity, oxygen, CFC and SF₆ concentrations. Between stations 10-18, one liter samples were collected for shore-based analysis of Iodine-129 in the deep overflow waters. The LADCP consisted of one downward looking broadband ADCP and one upward looking 300 kHz (Workhorse) transducer from RDI. Between casts, data were downloaded from the instruments. Underway ADCP data were collected with an RDI 75 kHz system. Underway meteorological data included wind speed and direction, precipitation, short wave radiation, and barometric pressure. Air temperature and humidity were unavailable due to equipment problems. Sea surface temperature and salinity were collected along the cruisetrack with a SBE45 thermosalinograph. Bathymetry was logged by a Knudsen 12 kHz system.

Stations 1-3 were acquired on the continental shelf in water depths < 200 m. On **Station 4**, the rosette malfunctioned (software problem) and no water samples were collected. At Station 6, the secondary temperature/conductivity sensors exhibited spiky behavior below 1300 db, but primary sensors continued to work well. By Station 10, the chemists were backlogged with samples and requested a delay on the next cast for ~2 hours. On site at Station 11, the Captain shut down deck operations (wind and seas beyond limits) just as the package was to be launched (12-hour delay). CTD operations were resumed ~0800 next morning. The Gulf Stream north wall was situated between Stations 13 and 14. Upon arrival at Station 14, deck operations were suspended due to deteriorating weather conditions (~1830 local). A decision was made to run south rather than loiter in the Gulf Stream. By midnight, winds begin to drop. At 0530, southward progress was halted and ctd work was begun again at 0630 local. The next 18 hours provided an excellent weather window while the Gulf Stream stations (14 - 17) were occupied from south to north. Before Station 15 (9016), the O2 sensor was replaced. On Station 17 (at Gulf Stream north wall) the LADCP (downward looking) unit would not initialize and was replaced with a Workhorse unit. This unit malfunctioned (one of 4 beams not working) likely resulting in a velocity profile of poor quality. The malfunctioning unit was replaced before the next cast with a backup Workhorse resulting in an acceptable profile. The southward transect was resumed at Station 18. On Station 22, the ctd deployment was cancelled based upon deteriorating conditions. At this time, the ship turned and headed for home.

Acknowledgements

We greatly appreciate the efforts and professionalism of Captain Diego Mello and the crew of *R/V Oceanus* in facilitating the science objectives of this cruise. The science team of Maggie Cook, Beatriz Pena-Molino, George Tupper, Jane Dunworth-Baker, Dan Torres, Dave Wellwood, Bill Smethie, Eugene Gorman, Guy Mathieu, and David Ho safely deployed, recovered, sampled the CTD/rosette package, and analysed water samples around the clock and in various weather conditions. Thanks to all for their perseverence and good humor in

completing this work. Line W is supported by the National Science Foundation (grant no. OCE-0241354) and contributes to the U.S. CLIVAR and U.K. RAPID programs.

Figure 1. Left panel: locations of 21 CTD profiles acquired during OC432; background color depicts bathymetry. Right panel: cruise track overlain on sea surface temperature (source AVHRR, 6 days ending Oct 18).

Table 1. Summary of CTD station locations.

Sta#	Lin Cast	e_W R/V Ocean # Date Time C	us 432 October 2006 ode Lat Lon	Nav Depth (m)
1	1	101906 2154	BE 40 17.35 N 070 1	2.07 W GPS 91
1	1	101906 2157	BO 40 17.36 N 070 1	L2.07 W GPS
1	1	101906 2202	EN 40 17.37 N 070 1	L2.06 W GPS
2	1	101906 2338	BE 40 08.63 N 070 C	07.16 W GPS 118
2	1	101906 2342	BO 40 08.67 N 070 0	07.17 W GPS
2	1	101906 2347	EN 40 08.71 N 070 ()7.18 W GPS
3	1 1	102006 0105	BE 39 59.83 N 069 5	59.90 W GPS 100
3	1	102006 0109	EN 39 59.76 N 069 5	59.97 W GPS
4	1	102006 0209	BE 39 54.35 N 069 5	55.57 W GPS 690
4	1	102006 0221	BO 39 54.31 N 069 5	55.45 W GPS
4	1	102006 0243	EN 39 54.24 N 069 5	55.24 W GPS
5	1	102006 0331	BE 39 51.43 N 069 5	54.27 W GPS 1060
5	1	102006 0352	BO 39 51.24 N 069 5	54.34 W GPS
5	1	102006 0413	EN 39 51.12 N 069 5	54.40 W GPS
6	1	102006 0524	BE 39 47.07 N 069 5	51.01 W GPS 1/18
6	1	102006 0622	EN 39 46 73 N 069 5	52 03 W GPS
7	1	102006 0748	BE 39 42.16 N 069 4	8.04 W GPS 2084
7	1	102006 0824	BO 39 42.27 N 069 4	48.31 W GPS
7	1	102006 0913	EN 39 42.39 N 069 4	18.69 W GPS
8	1	102006 1117	BE 39 28.57 N 069 3	38.49 W GPS 2416
8	1	102006 1201	BO 39 28.36 N 069 3	38.84 W GPS
8	1	102006 1303	EN 39 28.08 N 069 3	39.37 W GPS
9	1	102006 1504	BE 39 20.99 N 069 3	32.27 W GPS 2508
9	1	102006 1548	BU 39 21.02 N 069 3	32.30 W GPS
10	1	102000 1039	BF 39 5 17 N 069 2	2.48 W GPS 3004
10	1	102006 1938	BO 39 5.29 N 069 2	21.35 W GPS
10	1	102006 2042	EN 39 5.48 N 069 2	21.67 W GPS
11	1	102106 1212	BE 38 49.55 N 069	12.97 W GPS 3253
11	1	102106 1327	BO 38 49.25 N 069	15.83 W GPS
11	1	102106 1502	EN 38 49.07 N 069	18.80 W GPS
12	1	102106 1802	BE 38 33.99 N 068	58.59 W GPS 3485
12	1	102106 1905	BU 38 33.07 N 068	58.86 W GPS
13	1	102106 2013	BF 38 19 43 N 068	51 74 W GPS 3811
13	1	102106 2319	BO 38 19.62 N 068	50.85 W GPS
13	1	102206 0035	EN 38 19.97 N 068	50.48 W GPS
14	1	102206 0959	BE 37 22.59 N 068	13.27 W GPS 4710
14	1	102206 1122	BO 37 21.91 N 068	13.93 W GPS
14	1	102206 1257	EN 37 21.03 N 068	14.44 W GPS
15	1	102206 1520	BE 37 37.14 N 068	22.41 W GPS 4558
15	1	102206 1838	BU 37 30.72 N 008	21.10 W GPS
16	1	102206 2016	BF 37 51 39 N 068	20.54 W GPS 30 77 W GPS 4344
16	1	102206 2131	BO 37 51.21 N 068	29.14 W GPS
16	1	102206 2259	EN 37 50.84 N 068	27.30 W GPS
17	1	102306 0223	BE 38 5.29 N 068 4	1.88 W GPS 4081
17	1	102306 0336	BO 38 5.96 N 068 3	39.40 W GPS
17	1	102306 0507	EN 38 6.13 N 068 3	37.10 W GPS
18	1	102306 1252	BE 37 8.25 N 068	3.74 W GPS 4861
18	1	102306 1415	BU 37 7.63 N 068	5.04 W GPS
19	1	102306 1352	BF 36 53 46 N 067	54 18 W GPS 4892
19	1	102306 1943	BO 36 51 19 N 067	55 06 W GPS
19	1	102306 2131	EN 36 48.73 N 067	56.71 W GPS
20	1	102306 2317	BE 36 39.39 N 067	44.82 W GPS 4913
20	1	102406 0048	BO 36 38.25 N 067	46.62 W GPS
20	1	102406 0242	EN 36 38.27 N 067	47.86 W GPS
21	1	102406 0616	BE 36 12.50 N 067	27.01 W GPS 4935
21	1	102406 0739	BO 36 11.74 N 067	27.58 W GPS
21	1	102406 0920	EN 36 10.88 N 067	28.61 W GPS