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Cruise summary 
 
Research cruise 

The Geotraces West Atlantic cruise leg 2; 64PE321 on RV Pelagia started 11 June 
2010 departing from St George (Bermuda) and ended in Fortaleza (Brazil) on 07 July 2010 
with Micha Rijkenberg (Royal NIOZ) as chief scientist.  

 
Cruise narrative 

During leg 2 of the Geotraces cruise a total of 22 stations were conducted of which 1 
was a test station (st 20), 14 normal stations (st 22, 24, 25, 27, 28, 29, 31, 32, 34, 35, 37, 38, 
39, 41), 4 superstations (st 23, 26, 33, 40) and 3 were hyperstations (st 21, 30, 36) (Figure 1). 
A test station was conducted to check system performance and to rinse the UC CTD. Normal 
stations typically consisted of 1 CTD 25L and 1 UC CTD to the bottom. Superstations were 
defined by the additional use of in situ pumps and the sampling of Pa/Th. Hyperstations 
consisted typically of 2 x CTD 25 L to the bottom, 2 x UC CTD to the bottom, 1 shallow 
(~500 m) CTD 25L cast and the use of the in situ pumps.  

 The ship stayed at UTC (-3) throughout the cruise. The slightly curved cruise track 
resulted from the optimization of the amount of station time relative to the amount of 
steaming time necessary to reach our final destination, Fortaleza (Brazil), while staying 
outside the exclusive economic zones of a large diversity of Caribbean and South American 
countries. 

    

 
 
 

Figure 1: The cruise track of 64PE321, red circles indicate normal stations (station 20 was a 
test station), pink squares indicate superstations and green circles indicate hyperstations. 



GEOTRACES Cruise 64PE321 

 

5 

 

RV Pelagia departed from St George (Bermuda) on the 11th of June to take in fuel at 
Carcer (Bermuda). RV Pelagia left Bermuda on the 12th of June. That same afternoon a test 
station (st 20) was carried out to test both rosette systems and to clean the UC CTD. From 
experience during 64PE319 we knew that one rinse is sufficient to clean the UC CTD with 
respect to trace metals such as iron (Fe), aluminium (Al) and manganese (Mn). The first 
hyperstation (st 21), at the Bermuda Atlantic Time-series Study site (BATS), started that same 
day. BATS was originally planned for the first leg of Geotraces (64PE319) but was cancelled 
due to storm. The importance of station 21 (BATS) lay in its function as a cross over station 
for various GEOTRACES cruises resulting in opportunities for  inter-comparison of a diverse 
set of parameters. Hyperstation 36 was a cross-over station with RV Meteor cruise M81/1 
(GEOTRACES cruise A11, 4th February until 8th March 2010, chief scientist M. Frank, IFM-
GEOMAR, Kiel). The location choice of hyperstation 30 was based on the equal distance 
between this station relative to station 21 and station 36. The location choice of the 
superstations, i.e. the use of in situ pumps, was simply based on the creation of a regular 
sampling pattern. 

The weather conditions were excellent during the whole expedition. During the first 
week the wind force was about 3 Beaufort, see Figure 2. On 18/06/2010 we entered a region 
influenced by the trade winds with wind forces between about 4 and 5 Beaufort.  

 

 
 
Figure 2: Boxplot of the true windspeed (m/s) during 64PE321. 
 

The air temperature increased within a few days after the start of the cruise from about 
23-24°C to about 28°C, see Figure 3. As a consequence high volume samples collected in 
inferior containers were lost due to leakage after a temperature related increase in pressure. To 
prevent further sample loss high volume samples were as much as possible stored inside air-
conditioned parts of the ship or inside temperature controlled containers. In the future, it is 
advised that the quality of the high volume sample containers is tested before being used on 
board. 
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Figure 3: Boxplot of the air temperature (°C) during 64PE321. 
 

An interesting aspect of leg 2 was our encounter with water masses consisting of 
seawater mixed with Amazon river water. Although the mouth of the Amazon is located at the 
equator, the first encounter of low salinity surface waters with a green-black color (Figure 4) 
was at latitude ~ 17°N - 13°N (st 31, 32, 33), see Figure 5. A second encounter with surface 
waters affected by Amazon river input was at latitude 6°N-4°N (st 37, 38). 

 
 

 
 

Figure 4: On the left clear blue surface seawater at 28°05’N and 67°30’W and on the right the 
green black surface seawater affected by Amazon river outflow at 05°55’N and 46°25’W. 
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Figure 5: Salinity at 10 m depth in relation to latitude during 64PE321. Data from bottle #24 
of the UC CTD and the CTD 25L frames. 
 

Overall, the second leg of the Geotraces cruise with Pelagia was a successful cruise 
with many samples taken and all planned stations executed. 
 
Description of sample equipment and deployment 

On board we used two rosette systems. Both systems were deployed to deep ocean 
waters by a 17.7 mm diameter Kevlar hydrowire with seven independent internal 
signal/conductor cables (Cousin Trestec S.A.) that were controlled onboard. One rosette 
system was used for ultra clean trace metal sampling and consisted of an all-titanium frame 
with 24 sample bottles of 27 L each made of PVDF plastic (UC CTD; UCC in the cruise 
summary file). Sampling of the UC CTD occurred in a class 100 clean-room container (de 
Baar et al., 2008). The second rosette system consisted of 24 new Niskin-type samplers of 
25L each mounted on a new stainless steel rosette sampler (CTD 25L, ROS in the cruise 
summary file). Seven in situ pumps (AWI) were used for the collection of particulate matter. 
Underway surface seawater sampling was executed by pumping seawater into a trace metal 
clean laboratory container using a Teflon diaphragm pump connected by an acid-washed 
braided PVC tubing to a towed fish positioned at approximately 3 m depth alongside the ship. 
The fish was deployed daily, typically just before or after a station. Other parameters 
measured underway were the navigation parameters, weather parameters and sea-surface 
water temperature. Salinity was measured but due to technical problems not logged in Casino 
(the ships monitoring system of underway parameters, e.g. wind, water & air temperature, 
salinity etc.) and as a consequence the data was lost. Aerosol samples were taken by two 
aerosol samplers on the top deck of Pelagia. For more details see section 2.2 for the list of 
parameters, and appendix 2 Station list and Devices list. 

Challenges during the deployment of the equipment included: i) failing conductivity, 
temperature and oxygen sensors due to problems with a cable on the CTD 25L system (st 21, 
23), ii) at station 24 the CTD 25L touched the bottom resulting in atypical nutrient values for 
some Niskin bottles, and iii) failing data logging of the SBE21 system by Casino from 



GEOTRACES Cruise 64PE321 

 

8 

 

11/07/2010 to 15/07/2010 and after electricity problems on 01-02/07/2010. Furthermore, due 
to the high centre of gravity of the UC CTD, a danger exists that the UC CTD frame topples 
sideways during rough weather. However, such adverse weather conditions were not 
encountered during the second leg of Geotraces. 
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1. General introduction of the GEOTRACES project 
 
 

The goal of the GEOTRACES project is to re-visit in 2010-2011 the West Atlantic 
GEOSECS-1972 cruise to produce complete ocean sections of (A) novel trace elements and 
several isotopes, (B) transient tracers of global change, (C) microbial biodiversity and 
metabolism, and (D) interpretation by ocean modelling where the ocean observations A-C 
serve for verification of the models. 

Many of these 'tracers in the sea' are the first-ever ocean sections (sub-projects A, (B), 
C), while others (sub-project B) will allow unravelling of transient global changes over the 
past ~35 years by comparison with data of 1972-1973 GEOSECS and later cruises (notably 
1981-1983 TTO, WOCE 1990's; CLIVAR). 
 
A) Trace elements and isotopes of the international GEOTRACES program 

The first-ever high resolution Atlantic deep section of trace metals Fe, Al, Zn, Mn, Cd, 
Cu, Co, Ni, Ag were sampled, in conjunction with lower resolution sampling for Rare Earths, 
natural isotopes 234Th, 230Th, 231Pa, 223Ra, 224Ra, 226Ra, 228Ra, 227Ac and 
anthropogenic isotopes 129I, 99Tc, 137Cs, 239,240Pu, 238Pu. 

More than thirty years after GEOSECS the techniques for ultraclean sampling in a 
time efficient manner (De Baar et al., 2008) and final analyses have improved enormously. 
Nowadays it is feasible to determine for the first time ever the oceanic distributions of key 
trace metals, other trace elements, and various isotopes, along ocean sections throughout the 
full 4-6 km depth of the oceans. In the GEOTRACES Science Plan (www.geotraces.org) we 
have defined 6 key trace metals Fe, Al, Zn, Mn, Cd, Cu, which, together with additional 
metals Co, Ni, Ag is investigated with high priority in the GEOTRACES West Atlantic Ocean 
sections. The distribution and biological availability of Fe is strongly controlled by its 
physical-chemical speciation within seawater, where colloids and Fe-organic complexes are 
dominant actors. For phytoplankton growth, Cu at the cell wall acts in reductive dissociation 
of Fe-organic complexes, hence facilitates Fe uptake. This may partly explain the nutrient-
type distribution of Cu in the oceans. The external sources of Fe into the oceans are either 
from above (dust) and below (sediments) and will be constrained by Al and Mn for aeolian 
dust input and sedimentary redox cycling sources, respectively. Iron enhances phytoplankton 
growth, which in turn controls the biological pump for uptake of CO2 from the atmosphere. 
Due to fossil fuel burning the CO2 also increases in ocean waters and this may affect 
phytoplankton ecophysiology, with key links of metals Fe and Zn in overall photosynthesis 
and in carbonic anhydrase, respectively, where Cd and Co may substitute for Zn in the latter 
carbonic anhydrase. 
 
B) Global change of anthropogenic CO2 invasion and other transient anthropogenic tracers 
 

Water masses, circulation and mixing are defined by classical S, T, p combined with 
datasets of dissolved nutrients and O2, as well as transient tracers DIC, CFCs, novel SF6, 
3H/3He and 13CO2, 14CO2 also to derive 'ages' of a water mass. The invasion of transients is 
mostly in the North Atlantic Ocean and partly overlaps with warming of upper ocean waters, 
and with the increase of CO2 inventory, hence ocean acidification. 

Aim is the determination of anthropogenic CO2 inventory by measurements of DIC, 
Alkalinity and transient radiocarbon, and interpretation relying also on other transients 
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(CFC's; SF6; 3H/3He; other noble gases) measured by international partners. The overarching 
hypothesis is the very obvious statement: The best possible estimate of the inventory of 
anthropogenic CO2 in the Atlantic Ocean can be achieved by optimizing between a suite 
of transient tracers and approaches, for optimal concordance between them. 

The first major objective is to quantify the inventory of anthropogenic CO2 along the 
transect in the West Atlantic Ocean by a suite of different approaches, as follows: 
(i) simple (or simplistic) comparison of DIC inventories over the period between 1981-1983 
and 2009-2010, as to derive an inventory increase over this circa three decades time interval; 
(ii) instantaneous back calculations using DIC, nutrients, O2, by several methods like delta 
C*, TROCA, eMLR; 
(iii) combinations of DIC data and one or more transient tracers. 

Each one of these approaches requires insight and skill, but is in itself quite feasible to 
pursue. Afterwards these various findings will be evaluated, and the most promising 
approaches will be applied for an expansion both in time and in space, by developing a time 
history of increasing anthropogenic CO2 inventory in the complete North Atlantic Ocean 
basin, also relying on preceding data in the CARINA database. This expansion towards a 
basin wide estimate will be in conjunction with the sub-project D. global ocean modelling. 
 
C) Microbial oceanography: biodiversity and turnover rates of prokaryotes, eukaryotes and 
viruses 

 
Biodiversity, abundance and metabolic rates of microbes (eukaryotes, prokaryotes and 

viruses) were determined in the meso- and bathypelagic ocean. Particularly, the role of 
chemoautotrophy in the deep ocean is investigated as it might represent an unrecognized 
source of dark ocean ‘primary productivity’. 
 The main objective of the proposed study is to mechanistically understand the 
dynamics in diversity and function of the meso- and bathypelagic food web in relation to 
hydrodynamic conditions in distinct deep-water masses of the North Atlantic and at water-
mass boundaries where diversity hotspots are expected to occur as predicted by the ecotone 
concept. The main objective translates into the following specific objectives: 
i) To link phylogenetic prokaryotic diversity to selected prokaryotic functions relevant for the 
dark ocean’s biogeochemical fluxes (remineralisation of organic matter, organic matter 
production, ectoenzymatic activity, etc.) using a combination of approaches. 
ii) To differentiate between the distribution of abundant and rare prokaryotic taxa and to 
determine the significance of rare taxa for the functioning of the community. 
iii) To determine the extent of the recently discovered archaeal chemoautotrophy in the meso- 
and bathypelagic realm. 
iv) To relate dynamics in abundance and activity of the dark ocean biota to changes in the 
quantity and quality of the organic matter, water mass age and remineralisation activity. 
v) To determine the expression of selected functional genes for Archaea and Bacteria 
indicative of major metabolic pathways using targeted Q-PCR analyses in specific deep-water 
masses. 
vi) To assess the role of viruses as compared to protists as consumers of prokaryotes.  

The overarching hypothesis is that the seemingly homogenous water column of the 
dark ocean is highly structured due to the hydrodynamics of the different water masses. Each 
water mass carries its specific biogeochemical characteristics and allows the expression of 
distinct diversity and function patterns of the dark ocean biota. At the interface and mixing 
zones of deepwater masses, persistent deep-sea ecotones exist, representing ‘hotspots’ in 
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diversity and activity of microbes with significant influence on the overall biogeochemical 
cycles of the dark ocean. 
 
D) Ocean Biogeochemical Climate Modelling 
 

The above datasets A,B,C are in mutual support and moreover combine to serve for 
Ocean Biogeochemical Climate Modelling towards more rigorous, integrated understanding 
of processes including the role of the Atlantic Ocean in global change. 
 
 
References 
 
de Baar, H.J.W., Timmermans, K.R., Laan, P., De Porto, H.H., Ober, S., Blom, J.J., Bakker, 

M.C., Schilling, J., Sarthou, G., Smit, M.G. and Klunder, M., 2008. Titan: A new 
facility for ultraclean sampling of trace elements and isotopes in the deep oceans in the 
international Geotraces program. Marine Chemistry, 111(1-2): 4-21. 
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2. Participants and parameters 
 
2.1.  List of participants 
 
1 Micha Rijkenberg PI  NIOZ; BIO-Chemical Oceanography 
2 Sander Asjes   NIOZ; MTEC 
3 Karel Bakker   NIOZ; GEO 
4 Merce Bermejo   Universitat Autònoma de Barcelona 
5 Marie Boyé   LEMAR IUEM  
6 Daniele de Corte  NIOZ/RuG 
7 Santiago Gonzalez  NIOZ; BIO-Chemical Oceanography 
8 Steven van Heuven  Ocean Ecosystems, Univ.Groningen (RuG) 
9 Patrick Laan   NIOZ; BIO-Chemical Oceanography 
10 Oliver Lechtenfeld  AWI 
11 Rob Middag   NIOZ; BIO-Chemical Oceanography 
12 Kerstin Olbrich   University of Vienna 
13 Viena Puigcorbé  Universitat Autònoma de Barcelona 
14 Lesley Salt   NIOZ; BIO-Chemical Oceanography 
15 Patrick Schmidt   University Bremen (UB) 
16 Veronique Schoemann  NIOZ; BIO-Chemical Oceanography 
17 Eva Sintes   University of Vienna 
18 Leon Wuis   NIOZ; MTEC 
19 Taichi Yokokawa  NIOZ; BIO-Chemical Oceanography 
 
For complete addresses and email see Appendix 1 
 

 
 

Figure 6: Scientists and crew of GEOTRACES leg 2 (64PE321) on the RV Pelagia in the East 
Atlantic Ocean. 
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2 .2. List of parameters 
 
 

sample equipment 

collected by 
responsible for   
analysis and data & parameters  

     

UC CTD (UCC)     
Library metals totals  P. Laan  P. Laan, H de Baar 

Library metals dissolved  P. Laan  P. Laan, H de Baar 

Nuts  K. Bakker  K. Bakker 

unfiltered Fe  P. Laan  P. Laan, L Gerringa 

Fe  P. Laan  P. Laan, M. Rijkenberg 

Mn  R. Middag  R. Middag 

Al  R. Middag  R. Middag 

Fe ultra filtration  M. Rijkenberg  P. Laan, M. Rijkenberg 

Fe Speciation  V. Schoemann, M. Rijkenberg   L. Gerringa 

Ag  P. Laan  E. Achterberg 

Pt  P. Laan  A. Cobelo 

Co, Zn, Cd  M. Boye  M. Boye 

Co‐speciation  M. Boye  M. Boye 

Cd Isotopes  P.Laan  M. Rehkamper 

Nd  P.Laan  T. van Flierdt/M. Frank 

234 Th  V. Puigcorbe  V. Puigcorbe, M. van der Loeff 

210Pb and 210Po  V. Puigcorbe, M. Bermejo  P. Masque 

DOM  O. Lechtenfeld  O. Lechtenfeld 

Si‐isotopes  P. Laan, R. Middag  L. Pichevin 

T Fe and Zn isotopes  V. Schoemann  J. de Jong, V. Schoemann 

DFe and Zn isotopes  V. Schoemann  J. de Jong, V. Schoemann 

Fe, Cu, Zn  V. Schoemann  J. de Jong, V. Schoemann 

14C/13C  S. van Heuven, L. Salt  H. Meijer 
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25 L CTD (ROS) 

CFC  P. Schmidt    R. Steinfeldt 

O2  S. van Heuven, L. Salt    S. van Heuven, L. Salt 

DIC‐ALK  S. van Heuven, L. Salt    S. van Heuven, L. Salt 

DOC  O. Lechtenfeld    O. Lechtenfeld 

DON  / FDOM  S. Gonzalez     

Nutrients  K. Bakker    K. Bakker 

nitrate isotopes  K. Bakker    D. Sigman 

BA / Vir/ Abundance  D. De Corte    D. De Corte 

3H‐Leu / Bacterial prod.  T. Yokokawa    T. Yokokawa 

14C‐DIC / Archaeal Prod.  S. Gonzalez    T. Yokokawa 

3H‐FISH  T. Yokokawa    T. Yokokawa 

14C‐FISH  S. Gonzalez    T. Yokokawa 

FISH  D. De Corte    T. Yokokawa 

DNA  T. Yokokawa    T. Yokokawa 

POC  T. Yokokawa    T. Yokokawa 

Nitrification/NH3  T. Yokokawa    T. Yokokawa 

Burst Size  D. De Corte    D. De Corte 

Viral production/Decay  D. De Corte    D. De Corte 

qPCR Nitrifiers  K. Olbrich    P. Berube 

Enzymatic activity  E.Sintes/ K. Olbrich    E. Sintes 

230Th and 231Pa   M. Bermejo    M. Rutgers van der Loeff 

226 Ra  V. Puigcorbe, O. Lechtenfeld   M. Rutgers van der Loeff 

Ac Ra, Cs (large‐volume)  V. Puigcorbe, M. Bermejo  Ac  P. Masque, M. Rutgers vd Loeff, 

      W. Geibert 

    Ra  P. Masque, M. Rutgers vd Loeff 

    Cs  P. Masque 

Pu, Cs, Np (20L)  V. Puigcorbe, M. Bermejo    T. Kenna 

I‐129 and Tc  V. Puigcorbe, M. Bermejo    P. Masque 

       

In Situ Pumps       

230Th and 231Pa, partic.  O. Lechtenfeld, P. Schmidt  231Pa 230Th M. Rutgers van der Loeff 

we try to save a fraction for Nd    eps Nd  T. vd Fliert 

    biogenic opal M. Rutgers van der Loeff 

    carbonate  M. Rutgers van der Loeff 

226Ra/228Ra  O. Lechtenfeld, P. Schmidt    M. Rutgers van der Loeff 

       

Dust collectors        

Dust  P. Schmidt, R. Middag    Alex Baker 

       

FISH       

Pt  R. Middag    A. Cobelo 

Pb‐isotopes  R. Middag    M. Rehkamper 
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3. Analyses and measurements  
 
3.1. General parameters and Data management 
 
3.1.1. Data Management  
 
Steven van Heuven 
 

A MATLAB script was written that allowed straightforward concatenation of CTD 
bottle files (SeaBird's standard .btl format) and user-provided datasets (listing either 
measurement results or notifications of which samples were collected). The fully automatic 
nature of the script, together with the very simple requirements of the data suppliers facilitated 
regular updating of the shipboard 'merged dataset' as new data came in. Output consisted of a 
single large datafile and of sectionplots of all submitted parameters, which allowed for 
convenient monitoring of data quality. Profiles of selected parameters were made that allowed 
for comparison of the two CTD frames. Many of the figures provided in this cruise report are 
unaltered output of this script. 
 
 
3.1.2. CTD systems 
 
Kley France winch 
 
Leon Wuis 
 

Although we did all stations and casts during the Geotraces cruise from Bermuda to 
Fortaleza there were still some technical problems with the Kley France winch. The first 
problem was the random loss of electricity caused by failure of an encoder on one of the HF 
motors. The function of the encoder was to check the turning direction and speed of the 
winch/motor. After replacement the winch functioned fine again. Another technical problem 
was the powerpack of the Kley France winch. As a result of problems with the air-
conditioning resulting in temperatures over 60°C the electricity equipment failed. The 
problem with the air-conditioning was solved by thawing of the heat exchanger and removal 
of the air filters which blocked the air inlet. After these adaptations the powerpack worked 
fine during the rest of the voyage. 
 
UC CTD and CTD 25L 
 
Sander Asjes 
 

There were several small problems with the seabird system in the beginning of the 
cruise. At station 21 cast 5 the seabird pump on the CTD 25L stopped working at several 
depths. The problem was a cable connector which was subsequently replaced. A second 
problem on 14 June (station 22) translated in several errors occurring in the seabird system of 
the CTD 25L. Replacement of  the interconnection cable between the Kevlar cable and the 
probe solved these errors. 
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The UC CTD had no problems at all during the cruise. The CTD 25L didn’t have any 
problems after the replacements of the cable connector and the interconnection cable for the 
remainder of the cruise. 
 
 
3.1.3. Nutrient Measurements  
 
Karel Bakker, Laboratory for Nutrient Analysis, Royal N.I.O.Z. 
 
Summary 
 

On this cruise, more than 1000 samples were analyzed on Phosphate, Silicate, Nitrate 
and Nitrite. Analyses typically were processed within three hours after sampling. 
 

During the cruise there were about 4000 analysis processed on a Seal Analytical 
QuAAtro Auto-analyzer. The different nutrients were determined colorimetrical as described 
by Grashoff et all. (1983). 
 
Methods 
 

Samples were obtained from a CTD 25L sampler with 24 bottles of 25 Liter each and 
an UC CTD with 24 bottles of 27 Liter. All samples were collected directly after the DIC and 
DOC -sampling in 125 ml polypropylene bottles, and sub sampled unfiltered in the lab 
container for 15N in glass vials which were immediately frozen at -18° C, (for Patrick Rafter) 
and for  nutrients in 5 ml polyethylene vials. The nutrient samples were analyzed within 3 
hours on a Quatro auto-analyzer. Calibration standards were prepared freshly every day 
diluted from stock solutions of the different nutrients in 0.2µm filtered low nutrient seawater 
(LNSW). The LNSW is surface seawater depleted for most nutrients, only containing some 
0.10uM silicate as background. LNSW is also used as baseline water for the analysis in-
between the samples. Each run of the system had a correlation coefficient for 9 calibration 
points of at least 0.9999. The samples were measured from the lowest to the highest 
concentration in order to keep carry-over effects as small as possible, so from surface to deep 
waters. Prior to analysis, in two hours all samples and standards were brought to room 
temperature of 23° C, concentrations were recorded in µM per Liter at this temperature. 

In every run a daily freshly diluted mixed nutrient standard, containing silicate, 
phosphate and nitrate a so called nutrient-cocktail, was measured in triplicate. Secondly a 
natural sterilized Reference Nutrient Sample (RMNS Kanso, Japan) containing a known 
concentration of silicate, phosphate, nitrate and nitrite in Pacific Ocean water, was analyzed in 
triplicate every run. The cocktail and the RMNS were both used to monitor the performance 
of the analysis. Finally the RMNS was used to adjust all data to obtain the final data set, so all 
referred to the same RMNS values for each analysis, and made data comparable to the first 
leg of GEOTRACES and to other data.  

From every station the deepest sample is sub sampled for nutrients in duplicate, the 
duplicate sample-vials were all stored dark at 4 C, and measured again with the next station, 
for statistics. 
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Chemistry 
 
Silicate reacts with ammonium molybdate to a yellow complex, after reduction with ascorbic 
acid, the obtained blue silica-molybdenum complex is measured at 800nm. Oxalic acid is used 
to prevent formation of the blue phosphate-molybdenum. 
Phosphate reacts with ammonium molybdate at pH 1.0, and potassium antimonyl-tartrate is 
used as an inhibitor. The yellow phosphate-molybdenum complex is reduced by ascorbic acid 
and measured at 880nm. 
Nitrate plus nitrite (NOx) is mixed with an imidazol buffer at pH 7.5 and reduced by a 
copperized cadmium column to nitrite. The nitrite is diazotated with sulphanylamide and 
naphtylethylene diamine to a pink colored complex and measured at 550nm. 
Nitrate is calculated by subtracting the nitrite value of the nitrite channel from the NOx value. 
Nitrite is diazotated with sulphanylamide and naphtylethylenediamine to a pink colored 
complex and measured at 550nm. 
 
Described by K. Grasshoff et al, 1983. Methods of seawater analysis. Verlag Chemie GmbH, 
Weinheim.  
 
Statistics of the analysis of this cruise 
 
In table below; the typical statistics of triplicate analysis on 4 depth-levels taken from the Last 
CTD Station 41, analyzed in one run: 

 
 PO4 Si NOx NO2 

UNIT µmol/L µmol/L µmol/L µmol/L 
 

Surface Bottle 24    
AVERAGE 0.056 0.82 0.01 0.014 

STDEV 0.001 0.00 0.00 0.002 
CV % 2.05 0.19 44.1 10.4 

 
Surface Bottle 20    

AVERAGE 0.076 0.84 0.07 0.066 
STDEV 0.001 0.01 0.00 0.002 
CV % 1.32 0.78 2.34 2.27 

 
Bottle 16     

AVERAGE 1.522 9.84 22.93 0.019 
STDEV 0.003 0.02 0.08 0.006 
CV % 0.17 0.18 0.33 31.6 

 
Bottle13     

AVERAGE 2.350 29.46 35.18 0.011 
STDEV 0.004 0.02 0.05 0.001 
CV % 0.19 0.08 0.15 5.41 

 
Bottle 1     

AVERAGE 1.363 35.23 20.18 0.009 
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STDEV 0.002 0.06 0.04 0.002 
CV % 0.11 0.17 0.22 27.0 

 
 

The standard deviation and C.V. of RMNS in-between different runs: 
 
PO4: 0.011 µM C.V.  0.66% of average concentration of 1.650 µM 
Si    : 0.37 µM C.V.  0.62% of average concentration of 59.86 µM 
NOx: 0.122 µM C.V.  0.54% of average concentration of 22.60 µM 
NO2: 0.009 µM C.V.  2.38% of average concentration of 0.389 µM 
 
The CV of the duplicate samples (bottle 1’s) in-between runs after correction with 
RMNS 
 
PO4: 0.015 µM C.V.  0.92% at average concentration of 1.60 µM 
Si    : 0.39 µM C.V.  0.69% at average concentration of 59.95 µM  
NOx:  0.12 µM C.V.  0.52% at average concentration of 23.60 µM 
NO2: 0.010 µM C.V.  64.7% at average concentration of 0.015 µM 
 
Problems during the cruise 
 

Due to the high temperatures outside the lab container, the air-conditioning had to cool 
down much more intensively than during leg 1. Those temperature changes caused a long 
periodic sinus on the results of the first three days near Bermuda, both on the base line as on 
the measured peaks. By decoupling the contact airflow with the analyzer, by insulation and by 
blocking the internal fan of the instrument itself, the amplitude of the sinus was reduced to 
acceptable levels. For PO4 the amplitude went down from +/- 0.02 µM for PO4 and for NO2 
to smaller than 0.007 µM, for silicate and nitrate this amplitude was less of a problem because 
of the observed higher values. However this means that the data of the first 5 stations would 
need a manual correction for this sinus, and this will be done later at NIOZ. 
 
Remark: 

To improve the analysis of the nutrients in the near surface waters (above 200 meter) 
even further we will use the lower part of the calibration line with the low nutrient standard 
additions to increase the accuracy. 
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3.1.4. Dissolved oxygen 

Lesley Salt, Steven van Heuven 

Water samples were taken from the CTD 25L at every station for the determination of 
concentrations of dissolved oxygen, in order to calibrate the CTD sensor of that CTD frame. 
Samples were taken from a minimum of three depths. Additional samples at three depths were 
taken from the UC CTD to verify the calibration of the UC CTD to the CTD 25L. Samples 
were drawn into volume-calibrated ~120ml Pyrex glass bottles using Tygon tubing, flushing 
the bottle with at least 3 times its volume. Addition of chemicals was performed immediately 
afterwards, after which glass stoppers were secured in place with an elastic band. The samples 
were stored underwater and in the dark at 24-25ºC. Analysis of series of circa 35 samples at a 
time took place at the same temperature.  
 

The determination of the volumetric dissolved oxygen concentration of water samples 
was performed colourimetrically by measuring the absorbance of iodine at 460nm on a 
Hitachi U-1100 Spectrophotometer (see Su-Chen Pai et al., Marine Chemistry 41 (1993), 343-
351). The spectrophotometer was calibrated using standards of seawater spiked with known 
amounts of KIO3 (a stock solution of KIO3 of concentration 73.344M was used). The R2 value 
of the calibration line was never less than 0.9999, with an average standard deviation of the 
residuals between the calibration line and the calibration standards of ±0.5 µmol l-1. The 
absorbance and the voltage of the photo-cell were recorded manually and oxygen values 
calculated later, expressed in µmol l-1, for later conversion to µmol kg-1 when calibrated 
salinity values become available. Technical malfunctions meant that samples from stations 
26-29 were unable to be accurately analyzed. 
 

At each station at least one sample was taken in duplicate. The standard deviation (1 
S.D.) of circa 20 replicates was 0.85 µmol l-1, after discarding 3 samples with unacceptable 
replicate differences of >2 µmol l-1. The differences between additional samples taken from 
the UCC and those sampled from the same depths on the CTD 25L show a standard deviation 
of 4.7 µmol l-1.  
 

No reference standard exists for the measurement of dissolved oxygen and it is thus 
difficult to ascertain the accuracy of the analyses, despite the care taken in the preparation of 
the stock solution of KIO3. To alleviate this shortcoming, subsamples of a 20l sample of deep-
ocean water, brought to equilibrium with the atmosphere, were analyzed during the cruise. 
These ‘quality’ controls were measured during three series of analysis to confirm the stock KI 
concentration. The standard deviation of the difference between these samples and their 
theoretical values was 0.6 µmol l-1 indicating an average 100.4% recovery of oxygen in 
samples. 
 

Subsequent utilization of the bottle oxygen measurements for the calibration of the 
CTD frames' oxygen sensors will be performed back at NIOZ by prof. Hendrik van Aken.  
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3.2. Analyses and Measurements of key parameters 
 
A. Metals and isotopes 
 
3.2.A.1. Dissolved Fe 
 
Patrick Laan 
 
Work at sea 
 

Dissolved iron (DFe) concentrations of  21 stations with 24 depths each, were 
measured directly on board by an automated Flow Injection Analysis (FIA) after a modified 
method of De Jong et al. 1998. For some selected stations also Fe filtered into three different 
size fractions were measured directly on board. In addition, unfiltered samples from 12 
stations were acidified and stored to determine the total Fe concentrations in the NIOZ 
laboratory after 6-12 months of dissolution. A cubic meter vessel was filled overnight at the 
4th of July. This water will be brought back to NIOZ and can be used as medium for culture 
experiments or used as calibration water in the future. 

Filtered (0.2μm) and acidified (pH 1.8, 2ml/L 12M Baseline grade Seastar HCl) 
seawater was concentrated on a column containing aminodiacetid acid (IDA).This material 
binds only transition metals and not the interfering salts. After washing the column with 
ultrapure water, the column is eluted with diluted hydrochloric acid. After mixing with 
luminol, peroxide and ammonium, the oxidation of luminol with peroxide is catalyzed by iron 
and a blue light is produced and detected with a photon counter. The amount of iron is 
calculated using a standard calibration line, where a known amount of iron is added to low 
iron containing seawater. Using this calibration line a number of counts per nM iron is 
obtained. Samples were analyzed in triplicate and average DFe concentrations and standard 
deviation are given. Concentrations of  DFe measured during the 64PE321 cruise ranged from 
66 pM in the oligotrophic surface waters up to 2.03 nM in the deep water and some high 
surface areas. The standard deviation varied between 0% and 12% (the latter being 
exceptional), but was on average 2.1% and generally < 5% in samples with DFe 
concentrations higher than 0.1nM. Since samples containing less than 0.06nM DFe values are 
near the detection limit of the system; the standard deviation of these measurements were 
higher than the average value. 

The average blank was determined at 0.008nM±0.009nM and was defined as a sample 
loaded for 5 seconds and measured daily. The average limit of detection was determined at 
0.013nM±0.0nM  and  was defined as 3*standard deviation of the mean blank and measured 
daily. To better understand the day to day variation duplicate samples were measured after at 
least 24h as a so called profile check. The differences between these measurements were 
rather large, in the order of 5-20%, while the largest differences were measured in samples 
with low DFe concentrations. To correct for this day to day variation a so-called lab standard 
sample was measured daily. All data will be corrected for the mean average of this value after 
the cruise and all data presented so far is uncorrected for this day to day variation. The 
consistency of the FIA system over the course of the day was verified using a drift standard. 
Drift has been observed  and seemed to be variable from day to day. All data will be corrected 
for this daily drift after the cruise and all results so far are not corrected. A certified SAFe 
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standard (Johnson et al. 2007) for the long term consistency and absolute accuracy was 
measured on a regular basis. 

 

 
  

Figure 7: Profiles of dissolved iron versus depth. 

 
Preliminary results  
 

Figure 7 shows 2 depth profile obtained during the 64PE321 cruise. Station 21 is a 
profile sampled at the Bermuda Atlantic Time series Study (BATS) station. Low surface 
values and a minor subsurface maximum corresponding with the oxygen minimum zone. 
Station 33 is more south and has a surface maximum which corresponds to the low salinity 
Amazon outflow water. Also the oxygen minimum zone have been shifted more to the surface 
and increased relative to the BATS station. 
 

We have had a lot of problems during the cruise with the temperature controlled 
laboratories and during this cruise drift in the analyses during the day was observed. Data 
presented here is not corrected yet for this drift. This will be done in the home laboratory. It is 
extremely important to maintain a constant temperature during the analyses. 
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3.2.A.2. Size fractionation of iron 
 
Micha J.A. Rijkenberg, Loes J.A. Gerringa, Patrick Laan 
 
Introduction 

 
Iron (Fe) is a critical nutrient for oceanic primary productivity. It’s an important 

element in many proteins, enzymes and pigments. Due to its low solubility, Fe limits 
phytoplankton growth in large parts of the ocean (Martin and Fitzwater, 1988; de Baar et al. 
1990). Notwithstanding its low solubility concentrations of dissolved Fe (DFe, < 0.2 m) are 
higher than predicted by its solubility product alone and vary widely over the water column 
and across the surface ocean. This variation in DFe concentrations can be explained by i) the 
chemistry of Fe in the dissolved phase, ii) the proximity of Fe sources, and iii) biological 
processes (e.g. high DFe at the oxygen minimum).  

DFe consists of several distinguishable and measurable fractions such as a truly 
soluble Fe fraction (Fe(III) and Fe(II)), a truly soluble organically complexed Fe fraction and 
a colloidal Fe fraction. These different size fractions are often defined by the pore size of the 
filters and may vary with study. 

We used size fractionation (filters with 0.2 m, 0.1 m, 0.02 m and 1000 kDa pore 
size) to investigate the distribution of the different size fractions of Fe over the water column, 
the interplay between these fractions, and the relation between relative differences in Fe 
concentration of the size fractions and environmental parameters such as the excess organic 
Fe-binding ligand concentration, oxygen etc.  
    
Materials and methods 
 

Filtered seawater (0.2 m, Sartobran 300 cartridges) samples of different depths, 
representing the entire water column, were sampled from the ultraclean titanium CTD (de 
Baar et al. 2008). Two types of filters were used for further size fractionation, namely 0.02 
and 0.2 m Anotop alumina syringe filters and 1000 kDa hollow fiber filters (Mitsubishi). 
Using a pump speed of 1 ml/min, the 0.02 and 0.1 m Anotop alumina syringe filters were 
cleaned with 30 ml 0.1% HCl (Merck, Suprapur), 60 ml MQ (18.2 MΩ) and 60 ml of sample 
before sample collection (Ussher et al. 2010). The 1000 kDa hollow fibre filters were pre-
cleaned in the home laboratory with 10 ml quartz-distilled HCl (5 ml/min), 10 ml MQ water 
(5 ml/min), 60 ml HCl (Merck, suprapur) (20 ml/day), 210 ml MQ water (7 ml/min) followed 
by storage in 0.025% HCl (Merck, suprapur) until use. Before use the 1000 kDa hollow fibre 
filters were cleaned with 210 ml 0.05% HCl (Merck, suprapur) (7 ml/min), 210 ml MQ water 
(7 ml/min) and 210 ml sample (7 ml/min) before sample collection. Samples filtered with the 
0.02 and 0.1 Anotop alumina syringe filters were only measured for DFe (see cruise report of 
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Patrick Laan) while samples filtered with 1000 kDa hollow fibre filters were measured for 
DFe and organic Fe-binding ligand concentration (FeL). 
 
Samples for ultra filtration 
 

Samples for ultra filtration were taken at hyperstations (Table 1). 
 
Table 1) Water column samples taken from the ultraclean titanium UC CTD at hyperstations 

station cast bottles filter sampled 
for 

21 1 2, 4, 6, 8, 9, 11, 14, 16, 20, 22, 24 0.02 & 0.2 

m 

DFe 

21 1 2, 4, 6, 8, 9, 11, 14, 16, 20, 22, 24 1000 kDa DFe & 
FeL 

30 1 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 1000 kDa DFe & 
FeL 

36 1 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 1000 kDa DFe & 
FeL 

 

Results 
 
Results are not yet available. 
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3.2.A.3. Organic speciation of Fe 

Véronique Schoemann, Micha Rijkenberg, Patrick Laan and Loes Gerringa  

Introduction  

  Iron limits primary production in up to 40% of open ocean waters. The distribution 
and biological availability of Fe in seawater is strongly controlled by its physical-chemical 
speciation, for which colloids and Fe-organic complexes are playing key roles. In order to 
study the distribution of chemical species of Fe, the chemical speciation is determined in two 
different size fractions, the <0.2 µm and the <1000kDa filtered fractions over the whole water 
column. Special attention was given to sample the Amazon plume during the present 
GEOTRACES Western Atlantic cruise leg 2 (64PE321). 

Sampling 

  Samples were collected along the whole water column (12-14 depths from surface to 
bottom) with the NIOZ Titan ultraclean UC CTD at stations 21 (BATS station), 24, 26, 30, 
32, 36, 38 and 40. Some additional surface water samples were taken with a towed fish and at 
station 37, where fresh water inputs were detected by decreased salinities. These samples are 
complementary to samples that have been processed during the previous GEOTRACES 
Western Atlantic cruise leg 1 (64PE319). 

Method 

  The samples have been analysed on board of the RV Pelagia, except samples from 
station 40 and the ultrafiltered (<1000kDa) samples, which are kept frozen until analysis at 
NIOZ home laboratory. The natural ligand characteristics were determined by applying a 
complexing ligand titration with addition of iron (from 0 to 8 nM of Fe added) in buffered 
seawater (mixed NH3/NH4OH borate buffer, 5 mM). The competing ligand ‘TAC’ (2-(2-
Thiazolylazo)-p-cresol) with a final concentration of 10 µM was used and the complex 
(TAC)2-Fe was measured after equilibration by cathodic stripping voltammetry (CSV) (Croot 
and Johansson, 2000). The electrical signal recorded with this method (nA) was converted to 
a concentration (nM), upon which the ligand concentration and the binding strength will be 
estimated using the non-linear regression of the Langmuir isotherm (Gerringa and al., 1995).
 The voltammetric equipment consisted of a µAutolab potentiostat (Type II and III, 
Ecochemie, The Netherlands), a mercury drop electrode (model VA 663 from Metrohm) and 
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a new autosampler. All equipment was protected against electrical noise by a current filter 
(Fortress 750, Best Power). 

Results 

Results of a titration obtained at station 21 (BATS) is given as an example in Figure 8. 
The titration data will be further processed at the home laboratory in order to estimate ligand 
concentration and the conditional binding constant.  

Figure 8: An example of titration obtained at station 21.  
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3.2.A.4. Dissolved Al and Mn  
 
Rob Middag 
 
Introduction 
 

Dissolved Al is a trace metal with a scavenged-type distribution and an extreme 
difference between the extremely low concentrations in the North Pacific and the elevated 
concentrations in the North Atlantic; varying by greater than two orders-of-magnitude (Orians 
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and Bruland, 1985). The distribution of dissolved Al in surface waters of the open ocean is 
influenced by atmospheric dust inputs (Measures et al., 2008) and variations in the intensity 
of removal by scavenging. The surface distribution of dissolved Al can potentially be a tracer 
of atmospheric Fe inputs. For Al there is no known biological function within the cell, but it 
has been shown Al is build into the siliceous frustules of diatoms (Gehlen et al., 2002). The 
incorporation of Al in the frustules decreases the solubility of the frustule (e.g. Van 
Bennekom et al., 1991, Gehlen et al., 2002), making the frustule more durable. Al is known to 
co-vary with Si, but this co-variance disappears with aging of the water masses and depends 
on the sources and sinks of both Al and Si (Middag et al., in press a). 

Dissolved Mn is a trace metal with a scavenged-type distribution due the formation of 
insoluble oxides in oxygenated sea water and the distribution of Mn is strongly influenced by 
external inputs. Dissolved Mn can be a tracer of hydrothermal sources and of reducing 
sediment input. Like dissolved Al, the distribution of dissolved Mn can potentially provide 
insight into Fe inputs as Mn and Fe can come from the same sources. Dissolved Mn is a trace 
nutrient that has been suggested to become quite important for phytoplankton (especially 
diatoms) under low Fe conditions (Peers and Price, 2004; Middag et al., in press b).  
 
Work at sea 
 
 Dissolved Al and dissolved Mn were measured directly using shipboard FIA 
measurements. In a continuous FIA system, the acidified pH 1.8, filtered (0.2 µm) seawater is 
buffered to pH 5.5 and 8.5 for Al and Mn, respectively. The metals are concentrated on a 
column which contains the column material aminodiacetid acid (IDA). This material binds 
only transition metals and not the interfering salts. After washing of the column with ultra 
pure water (MQ) the column is eluted with diluted acid.  
 The Al is determined using lumogallion after Brown and Bruland (2008). Lumogallion 
is a fluorometric agent and reacts with aluminium. The change in the fluorescence detected by 
a fluorometer is used as a measure for the dissolved Al concentration. 
 In order to verify the consistency of the analysis, every day a sample was measured 
from a 25 liter tank that was filled in the beginning of the cruise. Also a duplicate sample was 
taken every cast and this sample was analysed with the samples of the next cast to further 
check for inter daily variation. Furthermore, SAFe and GEOTRACES seawater samples were 
analysed daily and the values are consistent with those found previously. 
 The Mn is detected using the chemoluminescence method of Doi et al. 2004. The 
oxidation of luminol by hydrogen peroxide produces a blue light. This oxidation reaction is 
catalyzed by manganese and the increase in the production of blue light is detected by a 
photon counter and used as a measure for the dissolved Mn concentration.  
 Also for Mn similar consistency checks as for Al have been performed with samples 
from the 25 liter tank and duplicate samples. Also SAFe and GEOTRACES seawater was 
analysed which was consistent with the values found previously. The daily consistency of the 
system was verified using a so-called drift standard. 
 
Preliminary results 
 

Concentrations of Al were high in the surface waters south of Bermuda (> 40 nM) and 
decreased in the southward direction towards the Amazon plume with values around~25 nM. 
There was an mid depth minimum of Al around 1000 m depth, followed by and increase with 
depth to concentrations of Al of around 25 nM. In the deepest bottom waters concentrations 
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of Al decreased again below 20 nM (see Figure 9). A subsurface maximum was observed in 
the northern part of the transect between 200 and 500 meter depth.  

Concentrations of Mn were elevated in the surface waters with concentration >3 nM, 
also in the Amazon plume. With depth the concentrations of Mn decreased to low 
concentrations in the deep basin (see Figure 10). Lowest concentrations of Mn (<0.1 nM) 
were found in the deepest bottom waters. 

 

 
 
Figure 9. Dissolved Al (nM) versus depth (m) at station 27. Error bars represent standard 
deviation of triplicate measurement (~1%). 
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Figure 10. Dissolved Mn (nM) versus depth (m) at station 27. Error bars representing standard 
deviation of triplicate measurement are not visible on this scale (~1%). 
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3.2.A.5. Trace Metal and major Ion Input by Aerosols 

Rob Middag 
  
Introduction  
 
 The input of airblown dust particles (aerosols) into surface waters will be assessed by 
collection of marine aerosols in combination with a settling model and estimation of partial 
dissolution of aerosol components into surface seawater. Shipboard collection of the aerosols 
was done by Patrick Schmidt and Rob Middag. This project is in collaboration with Dr. Alex 
Baker (University of East Anglia), relying on his expertise and equipment and he’ll analyse 
the aerosols for trace metals in his laboratory. There is a close link with the distributions of Al 
in surface waters as they are determined as independent tracer for aerosol input. 
 
Work at sea 
 

In total 22 trace metal and 22 major ion filters were collected. 
 
Preliminary results 
 

Results will not be available till the filters have been transported to the University of 
East Anglia and analysed over there. The filters will stay on Pelagia till Texel in a -20 °C 
freezer. 
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3.2.A.6. Iron (Fe), zinc (Zn) and their stable isotopes in seawater of the 
western North Atlantic. 
 
Véronique Schoemann2, Jeroen de Jong1,2, Nadine Mattielli1,  
 

1Université Libre de Bruxelles (ULB), Department of Earth and Environmental Sciences 
CP160/02, Avenue F.D. Roosevelt 50, B-1050, Brussels, Belgium 
2Royal Netherlands Institute for Sea Research, Department of Biological Oceanography, PO 
Box 59, 1790 AB, Den Burg (Texel), The Netherlands. 
 
Introduction 
 

The availability of bio-active trace metals such as Fe, Zn, Co, Cu and Mn may limit 
primary productivity and the associated uptake of carbon over large areas of the ocean. They 
play hence an important role in the carbon cycle, and changes in their supply to the surface 
ocean may have had a significant effect on atmospheric carbon dioxide concentrations over 
glacial–interglacial cycles (Martin, 1990). 

Since recent years a continuing scientific effort was initiated by the development of 
sensitive multicollector ICP-MS and TIMS techniques to expand isotope geochemistry 
research into the oceanic realm. Apart from the traditional isotopic systems (e.g. Pb, Nd, Sr 
and Hf) also the so-called non-traditional isotopes receive increased attention, in particular Li, 
B, Mg, Si, Ca, Fe, Cu, Zn, Mo and Cd. The idea is that biogeochemical processes in the ocean 
interior leave distinct isotopic signatures, which may provide a means of tracking these 
processes. The first ocean profiles for Fe (Lacan et al. 2008), Cu and Zn (Bermin et al. 2006) 
were recently published. 

In order to study the distribution and behavior of iron, zinc and their isotopes in 
seawater in the western North Atlantic, samples have been collected at three stations along a 
north-south transect during the GEOTRACES Western Atlantic leg 2 (64PE321) onboard the 
RV Pelagia. Those samples complement a set of samples previously taken during the 
GEOTRACES Western Atlantic leg 1 (64PE319). Iron and zinc concentrations will be 
measured along three whole water column profiles and iron and zinc isotopic composition 
will be determined at six selected depths of two of the 3 sampled stations. We hope to shed 
some light on isotopic signatures of biological processes e.g. autotrophic/heterotrophic uptake 
and remineralization; or abiotic processes, such as physico-chemically driven 
dissolution/precipitation processes associated with atmospheric input, river input, organic 
complexation, oxygen minimum, sediment redox processes. Special attention was given to 
sample Amazon influenced surface seawater. 

 
Sampling for TM concentration measurement. 

 
Water column samples were collected at 21 to 24 depths at stations (Nos. 21, 23 and 

30) with the NIOZ ‘Titan’ ultraclean CTD (‘UCC’) (De Baar et al. 2008), equipped with a 
Seabird CTD package, oxygen sensor, fluorimeter and transmissiometer. Samplers were 24 
PVDF tubes of 27L of a completely new design with piston controlled externally closeable 
end caps. 

Inside a class 100 clean air van, 250 mL sub-samples for total dissolvable (unfiltered) 
and dissolved (filtered) iron and zinc concentrations were collected from each UCC sampler. 
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The filtration was carried out with Sartorius Sartobran P filtration cartridges of 0.2 µm pore 
size.  

All samples were acidified to pH = 1.9 (1mL acid per liter of sample) with subboiling 
(Analab) double-distilled ultrapure 14M nitric acid (HNO3).  

 
Sampling for iron isotopic ratio measurement 
  

Seawater samples were directly filtered from the UCC samplers through 0.2 µm pore 
size 142 mm diameter polycarbonate membrane filter with polycarbonate filtration units 
(GeoTech) in 20L Nalgene low density polyethylene carboys using about 0.5-1 bar N2 
overpressure. The filtrate was acidified to pH 1.9 and the filters stored at -20 °C. 
 
Analytical methods 
 

TM concentrations. Iron and zinc concentrations will be measured at ULB by multi-
spike isotope dilution multi-collector inductively coupled mass spectrometry (MC-ICP-MS) 
using a Nu Plasma mass spectrometer. To this end, samples are amended with pure Fe-54, 
Cu-65 and Zn-67 spikes prior to simultaneous pre-concentration/separation on a resin with the 
NTA functional group (Lohan et al. 2005, de Jong et al. 2008). 
 

Fe and Zn isotopic ratio measurement. Using the same Nu Plasma mass 
spectrometer, iron and zinc isotopic compositions of the dissolved phase will be measured 
after a recently developed lanthanum hydroxide co-precipitation technique (de Jong et al. in 
prep.), followed by purification of the sample by ion exchange chromatography with the 
BioRad AG-MP1 anion exchange resin. For the determination of the Fe and Zn isotopic 
compositions of particulate matter, the filters will be acid-digested in a nitric 
acid/hydrofluoric acid/hydrogen peroxide digestion, and purified with the aforementioned 
resin as well (de Jong et al. 2007).  
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3.2.A.7.  The cobalt cycle in the North West Atlantic 

Marie Boyé  
 
Laboratoire des Sciences de l’Environnement Marin, Institut Universitaire Européen de la 
Mer, 29280 Plouzané, France. Email: marie.boye@univ-brest.fr 
 
Introduction  
 
 Cobalt (Co) is among trace metals selected in the GEOTRACES Science Plan an 
essential micronutrient. Its internal cycle is described by combining a nutrient-like cycling 
like that of major nutrient phosphate, with additional (versus P) removal of Co from deep 
waters by a scavenging term (Saito and Moffett, 2002 ; Ellwood, 2008). At times it displays 
surface-water depletion indicative of biological utilization, such as in the oligotrophic central 
Atlantic (Saito and Moffett, 2002). It also correlates with phosphate there (Saito and Moffett, 
2002) where the cobalt uptake relative to phosphate uptake is more than an order of 
magnitude higher in the surface waters than in the northeast Pacific (Martin and Gordon, 
1988; Martin et al., 1989). This implies an increased biological importance of cobalt in the 
oligotrophic Atlantic. Its cycle in the deep ocean can be controlled by the competition 
between its scavenging removal on settling particles and its stabilization in solution by the 
complexation with organic Co(III)-binding ligands. In surface waters the organic 
complexation of cobalt may also serve to stabilize dissolved Co, preventing its microbial co-
oxidation with manganese, an important removal pathway for cobalt in coastal environments 
(Moffett and Ho, 1996), and slowing down its scavenging process on settling particles. 
Among the potential external sources of Co in the section, the natural dust input may be an 
insignificant Co source in the Sargasso Sea (Saito and Moffett, 2002), unlike any input of 
anthropogenic aerosols (Thuróczy et al., 2010). Reversely the plume of the Amazon spreading 
northward is potentially an important source of Co into the surface waters of the section 
similarly to the Hudson River Estuary in the northeast American coast (Tovar-Sanchez et al., 
2004). Furthermore increase of cobalt concentrations in the northward flow of the Gulf 
Stream along the south-eastern American continental shelf waters has been reported (Windom 
and Smith, 1972). Hence the transportation from continental shelf and slope waters towards 
the open ocean may be an additional external source of Co along the section. Next the deep 
section will reveal internal processes of the Co cycle such as remineralisation and scavenging, 
as well as external inputs by reductive dissolution within sediment and diffusion into 
overlying bottom waters. Finally the cobalt concentrations in the well characterized water 
masses crossed along the section, such as NADW, AAIW, AABW, will be compared to their 
levels in the source region of these waters. This will reveal Co dynamics over water-masses 
transportation in deep oceans.  
 



GEOTRACES Cruise 64PE321 

 

33 

 

Field work 
 
 Cobalt was sampled in the waters using the ultraclean sampling facilities of NIOZ for 
trace metals and several other variables, with ultraclean 24 large volume (27 L) samplers on 
TITAN a titanium frame with CTD and other sensors for oxygen, light transmission (inverse 
for particles abundance), and a clean container holding the UC CTD frame. 
 Dissolved cobalt was sampled at 15 deep casts among the 20 hydrocasts achieved along 
the section from Bermuda to the Equator. Unfiltered samples later used to estimate particulate 
Co (as the difference between unfiltered and filtered fractions) and samples to determine the 
organic speciation of cobalt were sampled at 9 hydrocasts. The vertical resolution for the three 
parameters was 12-14 depths throughout the whole water column. 
 Dissolved cobalt was measured directly on board at 9 deep casts in filtered (0.2 µm), 
acidified (pH~1.9-2) and UV-digested samples by FIA-Chemiluminescence method with 
toyopearl preconcentrating column and acidified ammonium acetate (pH 4) as a column 
conditioning step prior to  the sample loading and the rinse steps, following the method 
adapted by Shelley et al., 2010 (after Cannizzaro et al., 2000). Concentrations were estimated 
by two daily calibrations made at the start and the end of a series of samples. The accuracy of 
the method was evaluated by determining dissolved cobalt in acidified North Pacific deep and 
surface seawater samples from the Sampling and Analysis of Iron (SAFe) program. The 
method yields mean values of 2 ± 0.2 pM in surface and 24.3 ± 3 pM in deep which is in 
excellent agreement with the SAFe consensus values of 2.7 ± 1.3 pM and 26.9 ± 4.7 pM, in 
surface and deep reference waters respectively. BATS station was sampled in the complete 
water column (e.g., 24 depths) where DCo will be analysed by J. Bown back to the home lab 
and intercalibrated with published distributions of cobalt recorded at this time serie (Saito and 
Moffett, 2001 ; Shelley et al., 2010 ; Milne et al., 2010). 
 Total dissolvable cobalt will be analysed in the unfiltered, acidified and UV-digested 
samples within the 6-12 coming months in the home lab by FIA-Chemiluminescence method 
(Shelley et al., 2010). 
 The organic speciation of Co will be measured in the home lab in filtered (0.2 µm) and 
frozen- stored samples (-20°C) by Cathodic Stripping Voltammetry after Ellwood et al. 
(2005; 2001). 
 
Preliminary results 
 
 Dissolved cobalt distribution at depth suggested low surface value in the euphotic layer 
(<6 pM), an increase of cobalt concentrations in the oxygen minimum zone to maximum 
values at depth and either a decrease towards deep waters or an uniform concentration at 
around 55-60 pM.  
 The plume of Amazon may represent a significant source of dissolved cobalt in the thin 
surface layer of fresh waters offshore with a DCo signature of 15-20 pM (Figure 11) as 
compared to < 6 pM in surface at stations not impacted by Amazon waters. Furthermore it 
seemed to be no strong evidence of an atmospheric input of Co along the section.  
 DCo was typically ranging between 55 and 60 pM in the core of AAIW (Figure 11). In 
deeper waters DCo was about 50 pM in NADW (Figure 11), possibly without showing a 
meridian trend. In the Antarctic Bottom Waters DCo was lower than in overlying deep waters, 
typically of ~20 pM (Figure 11). 
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Figure 11 – Distribution of dissolved cobalt (pM) at depth (m) at Station#32. 
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3.2.A.8. Natural and anthropogenic radionuclides. 

Viena Puigcorbé, Mercè Bermejo, Oliver Lechtenfeld 
 
Objectives 
 

The geochemistry group collected samples for analysis of a suite of natural and 
anthropogenic radionuclides. 
 
Natural radionuclides:   

The nuclide pairs 234Th/238U and 210Po/210Pb provide information on export production. 
In a closed system, a radioactive isotope should be in secular equilibrium with its progeny, but 
if the parent is soluble and its decay products are particle-reactive, then they can be removed 
by uptake by particles and the reactive daughter nuclide will be deficient in seawater relative 
to the concentration of its parent. Disequilibria among the activities of these tracer pairs 
indicate exportation to deeper waters and these disequilibria can be used to derive the flux of 
particles that are removed from the surface layer on time scales of weeks (half life of 234Th: 
24 days) to months  (half life 210Po: 138 days).  

231Pa and 230Th are produced at a fixed activity ratio throughout the water column. As 
a result of a difference in particle reactivity, 231Pa is carried further by ocean currents before it 
is removed by scavenging than 230Th. It is therefore hoped that 231Pa/230Th ratios in sediments 
can be used to reconstruct deep water ventilation but this application is presently intensively 
debated because of the possible influence of other factors like particle rain rate and particle 
composition. The deep water formation area we visit in this cruise is the area where we have 
most chance that the effect of deep water ventilation can be distinguished. We therefore 
determined the distribution of the isotopes in the water column (sampled with the regular 
CTD 25L) and in suspended particles (sampled with the in situ pumps). Moreover we 
collected subsamples from the suspended matter (punched from the filters) for the 
determination of carbonate and biogenic silica. After digestion of the filters and during the 
isotope separation by ion exchange we envisage to collect a fraction containing Nd for isotope 
determination by the group of Tina vd Flierdt. 

228Ra is a tracer that is produced in sediments and is released into the ocean both in 
shallow shelf sediments and in the deep sea. 227Ac is also released by sediments, but primarily 
from the deep sea while the shelf source is small.  227Ac is therefore a tracer for deep 
upwelling and diapycnal mixing in deep waters. Worldwide the amount of profiles where this 
isotope has been measured is very low. At three stations we have collected samples  for the 
analysis of 228Ra and 227Ac by passing 60-120L of water through MnO2 coated acrylic fiber. 
Moreover we have equipped the in situ pumps with a MnO2-coated cartridge in order to 
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collect radium isotopes. This technique is not quantitative but is used here to determine the 
228Ra/226Ra ratio. 
 
Anthropogenic radionuclides 

The anthropogenic radionuclides 137Cs, 239Pu, 240 Pu, 237Np and 139I have been 
introduced to the oceans primarily as a result of atmospheric and surface testing of nuclear 
weapons in the late 1950’s and early 1960’s and also through the discharge of nuclear wastes 
into the sea or by nuclear accidents. The isotopes of interest, in addition to being transient 
tracers, exhibit a range of Kd values (sediment water distribution coefficients, Pu>Np, Cs), 
and geochemical behaviors as well as provide a means to resolve different sources of 
radioactive contamination. This will allow us to address processes such as advection (new 
water mass tracers), determine sources and sinks (characteristic isotopic signatures), as well 
as study processes related to scavenging and particle dynamics across a range of contrasting 
regions. 

By comparing radionuclide distributions, isotopic composition, inventories, and 
inventory ratios of particle reactive (Pu) to conservative (Cs and Np) elements, we will learn 
first order information about rates of scavenging and transport of these nuclides that is 
complementary to that gained through the study of other trace elements and their isotopes. 
 
Work at Sea 
 

234Th/238U and 210Po/210Pb 
 
Total 234Th:  Viena Puigcorbé 

The water samples were analyzed following the procedures of Buesseler et al. (2001) 
as adapted by Cai et al., (2006) but omitting the heating step. From ten depths along the 
profile, 4L samples were collected and acidified with 5mL of nitric acid (65%).  For stations 
29 and 36 higher resolution profiles of 15 depths were done. A 230Th spike was added and 
after that we waited 12h for the equilibration before we raised the pH to 8.5 adding ammonia 
and produced a MnO2 precipitate through the addition of KMnO4 and MnCl2. We used QMA 
filters to retain the precipitate. The filters were dried and prepared for beta counting putting a 
piece of plastic foil in contact with the sample and above that a piece of Al foil to block the 
lower energetic beta radiation. Having done that, their beta activity was measured in a RISØ 
beta counter.  

At station 27 we collected 5 deep samples (3000m) in order to be able to do the 
calibration. At this depth 234Th and 238U should be in secular equilibrium, which means that 
both isotopes have the same activity. The expected 234Th activity is then given by the known 
activity of its parent 238U. 
 
POC/234Th ratios: Oliver Lechtenfeld and Viena Puigcorbé 

For the determination of the POC/234Th ratio on sinking particles we collected >50 µm 
particles at the export depth of 100m at all deployments of the in situ pumps. The material 
was washed off the screen with filtered seawater and an aliquot was filtered over a 1.2 µm 
silver filter. Moreover, at selected stations we filtered 4-8L samples from the  CTD 25L from 
100-150m over combusted QMA or silver filters for the determination of POC/234Th on the 
total suspended material. Filters were beta counted on board for 234Th. POC will be 
determined later in the home laboratory.  
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Total 210Po/210Pb:  Viena Puigcorbé 
Recent studies like Stewart et al. (2007) and Verdeny et al. (2008) combine the use of 

234Th/238U  with these two tracers to study the POC export. The combined use of both tracer 
pairs can give us a more robust approach to study the particle settling along the water column. 
We collected 3 profiles of 10 depths each and 2 profiles of 15 depths. The depths were the 
same as used for the analysis of 234Th in order to be able to compare both results. Each sample 
was collected in 10L cubitainers and, after tapping the water,  they were acidified with 20 mL 
of hydrochloric acid (32%). A 209Po spike was added, along with a Pb2+ spike and a Fe3+ 
carrier. After that we waited 12h for the equilibration before we raised the pH to 8.5 adding 
ammonia. After the precipitation, the water was removed until they were able to be 
transferred to a smaller bottles (250mL) and then they were stored until the arrival to 
Universitat Autònoma de Barcelona (UAB) were later processing steps will be realized and 
they will be measured by alpha spectrometry. 
 

231Pa and 230Th :  Mercè Bermejo and Oliver Lechtenfeld 
 
Dissolved 231Pa and 230Th   Mercè Bermejo  

Samples for dissolved 231Pa and 230Th were collected at 7 stations from the CTD 25L. 
At each station we sampled 10 water depths, 20L each. Samples were filtered through supor 
filters (142 mm, 0.45 µm). Before using the supor filters we have cleaned them by soaking in 
hydrochloric acid (10 %, double distilled quality) for 24 h and rinsing them 6 times with 
Milli-Q water. The filtrate was collected in an acid cleaned canister. Samples were acidified 
to pH 2 by addition of 20 mL nitric acid (65 %, double distilled quality). Samples were 
packed in plastic bags and cardboard boxes and stored in the container on deck of RV Pelagia 
until arrival at home. At the home lab samples will be spiked with internal standards 233Pa and 
229Th, and extraction of Pa and Th from the dissolved phase will be done by iron co-
precipitation. Chemical separation and purification of Pa and Th will be done by column 
chromatography. Pa and Th isotopes will be analyzed on a ICP-mass spectrometer. 
 
Particulate 231Pa and 230Th  : In -situ pumps   Oliver Lechtenfeld 

For the collection of particulate matter we have deployed in situ pumps at 6 stations. 6 
pumps were equipped with 142 mm 0.8 µm supor filters and distributed over the entire water 
column.  A 7th pump was equipped with a 293 mm diameter 50 µm screen and deployed at 
100m. This sample was used only  for the determination of the POC/234Th ratio of large 
sinking particles (see section on 234Th). The electronics of the pumps are very sensitive to 
moisture in the pump container positioned on deck. To avoid possible malfunctioning a 1.5 
kW heater was installed in the container to make it drier. At the beginning of the cruise leg, 
the supor filters (142 mm, 0.8 µm) were cleaned by soaking them in an acid bath (10 % HCl, 
double distilled quality) for 24 h and rinsing them 6 times with Milli-Q water. Each in-situ 
pump is equipped with one filterhead containing one 0.8 µm supor filter. The programmed 
pumping duration was 2.5 h. The volume of water that was pumped through the filter was 
recorded by a flowmeter and varied between 238 and 768 L (with 0.8 µm filter) and about 
1900 L (with 50 µm screen), out of 42 deployments four failed due to corroded spots on the 
timer board, and one due to a broken supor filter and a leaking tube connection. After 
deployment and recovery on deck the filterheads were disassembled from the in-situ pumps 
and taken to the lab. Before opening the filterhead, the remaining water on the supor filter was 
sucked off with a water jet pump. Then the supor filter was taken out from the filterhead. Four 
subsamples were taken from each filter. To avoid contamination the subsampling work was 
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done under a laminar flow bench. A triangle-shaped section (1/6th of the filter size) was cut 
out; then three subsamples (each 22 mm or 23 mm diameter) were punched out from this filter 
triangle. The three small subsamples are meant for analysis of opal and carbonate 
concentrations (analysis at home lab) and for 234Th activity (analysis on board by counting the 
beta decay). The remaining 5/6th of the filter is for analysis of particulate 231Pa, 230Th and Nd 
isotopes. They are stored at 5°C. At the home lab the filters will be acid digested and 231Pa 
and 230Th will be analyzed by isotope dilution as described in the previous section for 
dissolved samples. 
 
228Ra and 227Ac: Viena Puigcorbé, Mercè Bermejo 

At all deployments of the in situ pumps, we have used one MnO2-coated cartridge in 
each pump for the determination of the 228Ra/226Ra ratio.  For 226Ra analysis by BaSO4-
coprecipitation a profile of 6 20-L samples was sampled at stations 35 and 38. At 3 
“hyper”stations (21, 30 and 36) we have collected large volume samples, varying from 75L at 
great depths to 125L at shallow depths with the CTD 25L. In addition, we collected at these 
stations a 120L surface water sample from the ship’s seawater supply. To make data 
management easy and be able to relate the samples, which were collected from the ship’s 
seawater supply, to the environmental parameters measured by the CTD’s these samples have 
been given the cast name corresponding with the cast closets in time to this sample. The water 
was passed over MnO2 coated acrylic fiber to adsorb radium and actinium. These samples will 
be analyzed for Ra isotopes and Ac by delayed coincidence counting and alpha and gamma 
spectroscopy in the home laboratories. The effluent of the fiber was used for analysis of 
anthropogenic radionuclides. 
 
Anthropogenic radionuclides:  Viena Puigcorbé, Mercè Bermejo 
 
239,240Pu, 137Cs and 237Np 

We collected 20L of unfiltered seawater samples for the analysis of these 
radionuclides at 5 stations (21, 25, 30, 36 and 39), 10 depths per profile. The depths were 
distributed over the water column. The samples were acidified with 60mL of ultrapure 
hydrochloric acid 6M and stored until the arrival to Texel where they will be sent to Columbia 
University where Tim Kenna is going to analyze them.  
 
129I 

In order to analyze this anthropogenic radionuclide, 3L of water were collected at 10 
depths over the water column at 4 stations (21, 25, 30, 36 and 39). The samples were stored 
without acidifying them. 
 
137Cs 

The water used for the analysis of 137Cs at UAB was the effluent of the fiber used to 
retain Ra and Ac isotopes (explained above). These samples were collected at 3 “hyper” 
stations (21, 30 and 36). The volume of the three shallower samples was 100L whereas 60L 
was used for the 4 deeper ones. We had to deploy 2 CTD 25L casts in order to have enough 
water to do a 6 depths profile. As mentioned above, we also collected surface water (120L) 
from the ship’s seawater supply. The samples were acidified using 2mL of nitric acid (65%) 
per L of sample and a spike of stable Cs was added. After 12h to let the sample equilibrate, 
we added ~30g of AMP (ammonium molybdophosphate) and stirred well with a Teflon rod. 
The Cs- AMP complex precipitated (~24h) and when the water was clear, we removed it, 
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keeping the yellow precipitate and transferring it to smaller bottles until the sample fitted the 
wished volume (<500mL). The 500mL bottles with the precipitate were stored until they can 
be analyzed in the home laboratory.  
  
Preliminary results 
 

234Th activity on in situ pump filters:  Oliver Lechtenfeld 
The oven dry subsamples from the in situ pump supor filters have been analysed for 

234Th activity by beta counting. 234Th is produced in seawater at a constant rate from the decay 
of dissolved 238U. Soon after its production, 234Th adsorbs to particles which are suspended in 
seawater, because thorium is nearly insoluble in seawater and very particle reactive. We did 
not determine directly (by weighing the filters) the concentration of suspended particles in the 
water column. Instead, we could use the particulate 234Th activity as a tracer for the relative 
particle concentrations. Higher 234Th activity indicates a higher concentration of suspended 
particles and vice versa. These results will be compared with the results of the 
transmissometer. 

 
 

 
Figure 12. displays the particulate 234Th activities in the water column of all 7 ISP stations. 
231Pa/230Th will be determined on the same filter samples at the home lab. 
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3.2.A.9. DOM & trace metals 
 
Oliver Lechtenfeld 
 
Objectives 
 

Most of marine DOC (90-95%) is present in the deep-sea and represents a refractory 
background with low concentrations of 35-45 µM DOC (HANSELL, 2002) and average 
residence times of several thousand years (WILLIAMS and DRUFFEL, 1987). It is initially 
formed by primary producers (land plants, plankton) from atmospheric CO2 and transported 
by rivers into the oceans or released either directly by plankton organisms or is formed during 
their decomposition. As a consequence of the persistent nature of degraded DOM a large 
amount of carbon which initially was derived from the atmosphere gets stored in the ocean, 
circulates within the ocean currents and serves as a buffer in the organic carbon cycle. Most 
refractory organic compounds are then distributed over the world oceans via the global ocean 
conveyor belt and are trapped from active cycles for many thousands of years. Semi-labile 
compounds, on the other hand, can be mineralized to CO2 by photo- or microbial degradation 
in the deep ocean. Hundreds of years later the mineralization products are eventually released 
as CO2 into the atmosphere in upwelling regions where deep water masses again equilibrate 
with the atmosphere. 

Recent progress in ultrahigh-resolution Fourier transform ion cyclotron resonance 
mass spectrometry (FT-ICR-MS) promises major advances in the chemical characterisation of 
DOM and the development of new molecular tracers (e.g. KOCH et al., 2005; STENSON et al., 
2003) and DOM response to photo- and microbial degradation and modification (KUJAWINSKI 
et al., 2004). 

Additionally, coupling reversed-phase chromatography (RP-HPLC) with trace-metal 
selective plasma mass spectrometry (ICP-MS) will provide extensive insights in the 
complexation of trace metals by organic ligands. This method aims at the detection of stable 
metal-DOM complexes which could inhibit (or force) microbial degradation of certain DOM 
fractions. Studying the behavior of these complexes with the formation and pathway of 
NADW is therefore a major task. Finally, structural and stability information for both parts 
(inorganic, biogeochemical relevant trace metals as well as biologically reworked, refractory 
organic matter) can be derived from these techniques. 
 
Work at Sea 

 
At 14 stations the Titan team collected for us 0.2 µm filtered samples from the UC 

CTD at 6 depths: 25 m, 75 m, 250 m, 1250 m, 2000 m and bottom. Once in a while a sample 
from the towed fish was taken to have an additional surface sample prior or after a CTD 
station. Total number of samples leg 2: 89. Each time one 0.5 L sample was collected in 
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LDPE bottles and frozen (-20°C) immediately for the RP-HPLC-ICP-MS study of 
complexation of trace metals by organic ligands at AWI. A second 0.5 L sample was acidified 
to pH=2 and passed over a PPL-column to extract DOM. These columns were stored frozen at 
-20°C for their later analysis with FT-ICR-MS for the molecular-level characterization of 
DOM. Sampling for DOM was generally coordinated with the sampling for DOC. Total 
number of DOC samples for leg 2: 331 duplicates. 
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3.2.B.  CO2 and other transient anthropogenic tracers 
 
3.2.B.1. Dissolved Inorganic Carbon, Total Alkalinity 
 
Steven van Heuven, Lesley Salt 

 
Sampling and analysis for carbonate system parameters broadly followed the standard 

operating procedures outlined by Dickson et al., 2007. 
 

Specifically, water samples of 0.6l were collected from the Large Volume CTD at one 
cast of every station, at all of 24 depths, into borosilicate sample bottles with plastic caps, 
using silicone tubing. In each profile, three duplicate samples were collected, generally at 
shallow, intermediate and deep parts of the profile. Samples analysis commenced immediately 
after collection. Analysis of profiles was in all cases completed within 16 hours after 
sampling. All analyses were performed on a VINDTA 3C (Versatile INstrument for the 
Determination of Total Alkalinity, designed and built by Dr. L. Mintrop, Marine Analytics 
and Data, Kiel, Germany). DIC was measured simultaneously on two instruments, referred to 
as A and B (VINDTA #14 and #17, respectively), however with regard to TA, the majority of 
stations were only measured on B(17). These instruments were slightly modified: the 
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peristaltic sample pump was replaced with an overpressure system (~0.5 bar overpressure) 
and a 1 meter long (though coiled) 1/8" stainless steel counter-flow heat exchanger that was 
placed between the sampling line and the circulation circuit. This setup allows for the rapid, 
convenient and bubble-free loading of the pipettes with sample of 25ºC (±0.1ºC), irrespective 
of the samples' initial temperature.  
 

Surface samples were analysed first, as were the duplicate samples. After analysis of 
the first ~10 samples (i.e., the shallowest ~500m), the remainder of the profile was measured 
deep-to-shallow. This assured that any 'startup drift' in the coulometric cells does not affect 
the deep samples, nor are they impacted by potential problems that coulometric cells 
sometimes experience at the end of a long run (~35 samples in total). 
 

The use of two machines increases our confidence in final results, and allows 
demonstration and quantification of measurement errors of the machines that would otherwise 
go unnoticed. No formal analysis and correction of the result have been performed yet. Such a 
report on the treatment of the carbon data will, in due time, be available as a separate report. 
On station 40, in addition to the regular sampling scheme, 6 depths were also sampled in 
triplicate. The samples were stored in 250ml borosilicate bottles and poisoned with 0.125ml 
of 50% saturated HgCl2 for later, external and further internal, analysis. This will hopefully 
validate our data further. 
 
Dissolved inorganic carbon (DIC)  
 

DIC was determined by coulometric titration. An automated extraction line takes a 
20ml subsample which is subsequently purged of CO2 in a stripping chamber containing ~1ml 
of ~8.5% phosphoric acid (H3PO4). A stream of nitrogen carries the CO2 gas into a 
coulometric titration cell via a condenser and acid trap, to strip the gas flow of any water. The 
CO2 reacts with the cathode solution in the cell to form hydroxyethylcarbamic acid, which is 
then titrated with hydroxide ions (OH-) generated by the coulometer. The current of the 
coulometer is then integrated over the duration of the titration to obtain the total amount of 
carbon titrated. Calibration of the coulometers was done using a gas-loop calibration system 
(GLCS) that feeds known quantities of pure CO2 to the coulometer. Additionally, certified 
reference material (CRM, Batch #100) obtained from dr. Andrew Dickson at Scripps Institute 
of Oceanography (San Diego, California) was used for quality control.  
 
Total Alkalinity (TA)  
 

Determinations of TA were performed by acid titration that combines aspects from 
both the commonly used ‘closed cell' method and the ‘open cell’ method, following the 
VINDTAs standard settings. A single 20L batch of acid of ~0.1M and salinity 35 was 
prepared to be used by both VINDTAs. Potential drift in acid strength due to HCl-gas loss to 
acid vessel headspace is not accounted for. Acid samples were collected for post-cruise 
determination of acid strength.  
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3.2.B.2.  pH 

Lesley Salt, Steven van Heuven 

pH measurements were made spectrophotometrically, using a SAMI pH instrument 
(Sunburst Sensors), modified for discrete sample analysis. A subsample of a few ml was 
drawn from the same bottle as DIC and TA just before VINDTA analysis. This subsample is 
transported through a coil in the SAMI housing, which has a throughflow of water from a 
25ºC water bath. The temperature in the housing is monitored with each measurement and it is 
assumed to be equal to the sample temperature by the time the sample reaches the 
measurement cell.  
 

The indicator meta-cresol purple is added to the flowing sample and the absorbance’s 
of the mixture at 730, 578 and 434nm are determined, following the SAMI's default protocol. 
pH is then calculated using the following equation: 
 
 pH = pK2 + log10[(A1/A2 - 1(HI-)/2(HI-)) / 
      1(I2

-)/1(HI-)-(A1/A2) 2(I2
-)/2(HI-)]   

 
Where  represents the extinction coefficient ratios for m-cresol purple, A the measured 
absorbance’s, and I the indicator dye. Drift was monitored by occasionally measuring TRIS-
buffer, made up to 0.8M according to Dickson et al., 2007. The CRM's used for TA and DIC 
quality control were also analysed on the SAMI as an extra control, again just before 
VINDTA analysis. 
 
 
3.2.B.3.  12C/13C, 12C/14C 

Steven van Heuven, Lesley Salt 

Samples were collected for shore based determination of carbon isotope ratios at the 
Centre for Isotope Research (CIO) at the University of Groningen. At each station, duplicate 
samples were collected from all bottles of the Ultra Clean CTD, i.e., 2x24 samples per station. 
At station 40, in addition to regular samples, six depths were taken in triplicate and given the 
same treatment as regular samples. 
 

Significant risk of contamination of the samples was present during this cruise because 
14C-spiking experiments were performed for analysis of microbial production. The initial 
spiking of microbial cultures was followed after 72 hours by acidification and filtration of 
acidified samples. During both activities, but especially the latter, large amounts of 14CO2 are 
evolved, that were evacuated from the isotope container and vented onto deck. From there the 
14CO2 is expected to have reached the hold of the ship in some concentration, although it is 
likely that most 14CO2 was blown away by the wind. However, significant care was taken to 
avoid any work on the natural-14C samples in the ~20 hours after spiking activities. 
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Preparation, sampling and storage: 
 

Sample bottles were prepared as short as possible before sampling. Empty sample 
bottles (200ml brown glass 'medicine' bottles, acquired through Blockland Packaging, NL, not 
treated in any way before the cruise) were stored in their original shrink-wrapping (in batches 
of 14), while screw caps and bottle neck inserts were repackaged from bulk into Ziploc'ed 
batches of 50, before leaving port. Shortly (<3h) before UC-CTD came on deck, bottles were 
removed from shrink-wrapping and insert and caps were placed, using gloves. 

Bottles were rinsed, gently filled using silicone tubing, flushed with ~1-2 times their 
volume and capped with a ~3% headspace. After collecting, samples and sampling trays were 
rinsed off with about 2 liters of distilled water to remove salt water. Within 60 minutes, all 
samples were poisoned using 0.1ml of 50% HgCl2, which required the samples to be reopened 
briefly (<10s). Care was taken to avoid contact between samples and the pipette tip. New 
pipette tips were used for each station. Bottle neck and screw caps were parafilmed and stored 
in batches of ~85 per crate. Crates are stored in thick trash bags and stored at ~25ºC.  

All material for sampling and poisoning was kept in Ziploc bags between use and 
sampling tubes stored in 0.1M HCl solution and rinsed before use.  
 
Preliminary results 
 

A preliminary analysis (between cruises 64PE319 and 64PE321) of a full-depth subset 
of samples of station 17 shows no obvious contamination, with 14C/12C ratios between 91% 
and 106% of "modern" ratios. These numbers will be converted into ∆C14 for comparison 
with historical datasets. The particular analysis series appears to have been jeopardized by 
insufficient compaction of the graphite targets, resulting in a low carbon yield, but this 
problem is expected to be solved before analysis of the full set of samples.  
 
 
3.2.B.3.  Chlorofluorocarbons 

Patrick Schmidt 
 
Introduction 
  

Chlorofluorocarbons (CFCs) are anthropogenic trace gases that enter the ocean by gas 
exchange with the atmosphere. The evolution of these transient tracers in the ocean interior is 
determined by their temporal increase in the atmosphere since the middle of the last century 
and the formation, advection and mixing processes of intermediate, deep and bottom water. 
Hence, these transient tracers enable to determine transit times, i.e. the time elapsed since the 
water has left the surface mixed layer. 
 
Work at sea, water sampling, and analyzes in the IUP Bremen laboratories 
  

In total 418 samples for chlorofluorocarbons (CFC-11 and CFC-12) distributed on 20 
deep profiles along the entire section were taken. Water samples from the CTD 25L system 
were collected into 100 ml glass ampoules and sealed off after a CFC free headspace of pure 
nitrogen had been applied. The CFC samples are shipped home for analysis in the CFC-
laboratory at the IUP Bremen. The determination of CFC concentration will be accomplished 
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by purge and trap sample pre-treatment followed by gas chromatographic (GC) separation on 
a capillary column and electron capture detection (ECD). The amount of CFC degassing into 
the headspace will be accounted for during the measurement procedure in the lab. The system 
will be calibrated by analyzing several different volumes of a known standard gas. 
Additionally the blank of the system will be analyzed regularly. Due to limited measurement 
capacity and high number of samples analyzed in the laboratory, measurement will be 
probably finished in 2011. 
 
Expected results 
  

Chlorofluorocarbons (CFCs) are gaseous, anthropogenic tracers that enter the ocean by 
gas exchange with the atmosphere. The evolution of these transient tracers in the ocean 
interior is determined by their temporal increase in the atmospheric and by the formation and 
mixing processes of the deep water. The total inventories of CFCs in the deep water reflect 
the accumulation of CFCs carried by its surface near source water masses. Together with the 
known atmospheric CFC evolution, CFC inventories allow, thus,  estimating the renewal or 
formation rates of recently formed deep water. 

Other methods using CFCs as age tracers include transit time distributions (TTDs, or 
age spectra). By applying a “mean age”, a “width of the age”, and, if appropriate, a tracer free 
(i.e. “old”) component, this dating method accounts for advection and mixing, other than the 
“CFC-ratio age” approach, which accounts – as a first approach – for advection and tracer 
free dilution only. This improves the estimates of ventilation time scales, mixing parameters, 
and ventilation or formation rates significantly. To constrain the parameters of the TTD well, 
it is valuable is to use transient tracers from different observation times (e.g. CFC time series). 
Furthermore, the derived TTDs can be used to estimate the input, internal transfer, and storage 
of anthropogenic CO2. 
 
 

3.2.C.  Microbial oceanography: biodiversity and turnover rates of 
prokaryotes, eukaryotes and viruses 

 
3.2.C.1. Prokaryotic Activity in the major water masses of the northern 
North Atlantic 
 
Leg 1 participant: Thomas Reinthaler1, Taichi Yokokawa1,2, Daniele De Corte1,3 
 
Leg 2 participant: Daniele De Corte1,3, Kerstin Olbrich1, Eva Sintes1, Taichi Yokokawa1,2 
 

1Department of Marine Biology, Faculty of Life Sciences, University of Vienna, Austria 
2Netherlands Institute for Sea Research (NIOZ), the Netherlands 
3Royal University of Groningen (RUG), the Netherlands 
 
Introduction 
 
 About 75% of the ocean is deeper than 200 m, however, most concepts on the 
interaction between the physical and chemical environment and the biota are derived from the 
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relatively thin ocean surface layer. Moreover the link between prokaryotic activity and 
biogeochemistry in the dark ocean is not firmly established despite recent studies that 
highlight the role of Bacteria and Archaea in the cycling of organic and inorganic matter in 
the dark ocean (Baltar et al., 2009a;  Herndl et al., 2005b; Reinthaler et al., 2006). Among 
others, the observation that the most important source of substrate for prokaryotes, i.e. DOC, 
is not depleted (Barber, 1986) led to the longstanding view that microbes in the deep are 
dormant or even dead (Jannasch and Wirsen, 1973). This paradigm is challenged, however, by 
recent evidence suggesting that prokaryotes in the dark ocean are as active (or even more 
active) as compared to the sunlit surface (Kirchman et al., 2007; Reinthaler et al., 2006; 
Varela et al., 2008).  

Despite the major insights gained from studies on microbial activity in the surface 
ocean, knowledge on the microbial processing of organic matter and nutrients in the dark 
ocean is still in its infancy due to the lack of data. For this reason the IPCC called attention to 
the fact that it is not possible to parameterize prokaryotic activity for an enhanced 
understanding of the global ocean carbon cycle (Intergovernmental Panel on Climate Change, 
2001) and an interdisciplinary workshop of experts on integrating biogeochemistry and 
ecosystems in a changing ocean emphasized to study the interactions of the physics, 
chemistry and biology on an interdisciplinary basis (IMBER IMBIZO 
http://www.imber.info/IMBIZO1.html). In this respect Geotraces provides a unique 
opportunity to compare trace metal concentrations and biogeochemical measurements 
conducted during the cruise with the prokaryotic activity found in the pelagic ocean.  
Objectives 
 

1. To assess the abundance of prokaryotes and viruses in the water column of the North 
Atlantic. 

2. To study the heterotrophic production and chemoautotrophic production of 
prokaryotes in the major deep water masses of the North Atlantic. 

3. To assess the community composition of prokaryotes in the major deep water masses 
 
 
Methods 

 
Generally, samples were taken at every occupied station (total of 14) and at 7 depth 

layers. The depth layers were chosen to cover the bottom waters, the Denmark Strait 
Overflow Water (DSOW), the North Atlantic Deep Water (NADW), the Labrador Sea Water 
(LSW). Additionally the oxygen minimum zone, the base of the euphotic zone (~250m) and 
the subsurface at 50m were sampled. Samples were transferred from the CTD 25L bottles into 
acid rinsed polycarbonate bottles. Filtration and/or fixing of samples was done within 15 min 
after sampling the CTD 25L. 
 
Particulate organic carbon (TR and TY) 

 
Samples of seawater were taken for each water mass studied and filtered onto pre-

combusted (450°C, 12 hours) 25 mm Whatman GF/F filters. The volumes taken were 4 L for 
the shallower depths (50 and 100 m) and 10 L for the rest. The filters were wrapped in pre-
combusted aluminium foil and frozen at –20°C until processed. In the laboratory the filters 
will be thawed and dried overnight at 65°C and packed in pre-combusted nickel sleeves. The 
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carbon analyses will be performed on a Perkin Elmer-2400 CHN elemental analyzer, 
according to the JGOFS protocol (UNESCO, 1994).  
 
Prokaryotic abundance (DDC) 

 
To evaluate the dynamic of the microbial food web samples for prokaryotic and viral 

abundance were collected in every station and depth from the surface to the bottom layers. 1.5 
ml of samples were fixed with glutaraldehyde (final concentration 0.5%), frozen in liquid 
nitrogen and stored at -80°C. The abundance of prokaryotes and viruses will be measured by 
flow cytometry (Beckton Dickinson) after nucleic acid staining with SyBR-Green I. The 
abundance will be estimated using an internal standard of fluorescent beads, and will be 
corrected by calculating the flow rate. 
 
Prokaryotic heterotrophic production using the filter method (TR and Santiago 
Gonzales, NIOZ) 

 
Immediately after the recovery of the CTD 25L, samples for microbial heterotrophic 

production and DIC fixation measurements were collected from the Niskin bottles. Samples 
were taken at 50 m, 250 m, 400 or 500 m, 1250 m, 2000 m, 3000 m, 4000 m depth. 
Processing of the samples, from collecting water from the Niskin bottles to incubating the 
samples with the radiolabeled tracers in temperature-controlled incubators, took less than 15 
min. 

Microbial heterotrophic production was measured by incubating 5-40 ml of seawater 
(depending on the depth) in triplicate with 5 nM [3H]-leucine (final concentration, specific 
activity 120 Ci mmol-1, American Radiolabeled Chemicals) in the dark at in situ temperature 
(±1°C) for 1 to 24 h. Duplicate formaldehyde-killed blanks were treated in the same way as 
the samples. Incubations were terminated by adding formaldehyde (2% final concentration) to 
the samples. Samples and blanks were filtered through 0.2-µm polycarbonate filters 
(Whatman Nuclepore, 25 mm filter diameter) supported by cellulose acetate filters (Millipore, 
HA, 0.45-µm pore size). Subsequently, the filters were rinsed twice with 5% ice-cold 
trichloroacetic acid, twice with Milli-Q and with 80% Ethanol. Subsequently filters were 
dried, 8 ml of scintillation cocktail (FilterCount, Canberra-Packard) added, and after about 18 
h counted on board in a liquid scintillation counter (Perkin Elmer Tricarb). The instrument 
was calibrated with internal and external standards. The blank-corrected leucine incorporation 
rates were converted into microbial carbon production using the theoretical conversion of 1.55 
kg mol-1 leucine incorporated (Kirchman, 1993; Simon and Azam, 1989). 

DIC fixation was measured via the incorporation of [14C]-bicarbonate (3.7 x 106 Bq, 
Amersham) in 50 ml seawater samples. Triplicate samples and formaldehyde-fixed blanks 
were incubated in the dark at in situ temperature for 72 h. Incubations were terminated by 
adding glutaraldehyde (2% final concentration) to the samples, filtered onto 0.2-µm 
polycarbonate filters and rinsed with 10 ml 0.2 µm filtered seawater. Subsequently, the filters 
were fumed with concentrated HCl for 12 h. The filters were then processed as described 
above and counted in the scintillation counter for 10 min. The resulting mean disintegrations 
per minute (DPM) of the samples were corrected for the mean DPM of the blanks and 
converted into organic carbon fixed over time and corrected for the natural DIC. 
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Prokaryotic heterotrophic production using the microcentrifuge method (TY) 
 
 3H-leucine incorporation rate was determined as a proxy for prokaryotic production 
(Kirchman 2001, Methods in microbiology, vol. 30). Triplicate subsamples (1.5 mL) 
dispensed into screw-capped centrifuge tubes amended with 10 nmol L-1 (final concentration) 
of [3H]-leucine (Cat#: ART0840, American Radiolabeled Chemicals, Inc.) and incubated at in 
situ temperature (± 2ºC) in the dark. One trichloroacetic acid (TCA) killed blank was prepared 
for each sample. Incubation periods were 1 hour and 24 hours for the upper (0 – 250 m) and 
deeper (300 – bottom) water layers, respectively. After the incubation, proteins were TCA 
(final conc. 5%) extracted twice by centrifugation (14000 rpm, 10 min), followed by the 
extraction with ice-cold 80% ethanol. The samples were radioassayed with a liquid 
scintillation counter (Tri-Carb 3100TR, PerkinElmer) using Ultima-GOLD (Packard) as 
scintillation cocktail. Quenching was corrected by External standard channel ratio. The 
disintegrations per minute (DPM) of the TCA-killed blank was subtracted from the average 
DPM of the samples, and the resulting DPM was converted into leucine incorporation rates. 
 
MICRO-CARD-FISH (TR, SG and TY) 
 

The relative abundance and activity of the major prokaryotic groups will be 
determined by MICRO-CARD-FISH analysis. Fifty milliliters were incubated with 3H-
Leucine of high specific activity (10nM final concentration). After the incubations, the life 
samples were fixed by adding paraformaldehyde (2% final concentration) and, subsequently, 
stored at 4ºC in the dark for 18 h. Thereafter the samples were filtered onto 0.2-µm 
polycarbonate filters and stored at -80ºC.  
 The analysis of MICRO-CARD-FISH samples in the lab will be done as described 
elsewhere (Teira et al. 2004; see also http://www.microbial-oceanography.eu/methods.htm). 
To evaluate the relative abundance and activity of Bacteria we will use a probe mix of 
EUB338-II-III (EUB338: 5’-GCT GCC TCC CGT AGG AGT-3’, EUB338-II: 5’-GCA GCC 
ACC CGT AGG TGT-3’, EUB338-III: 5’-GCT GCC ACC CGT AGG TGT-3’, see Daims et 
al., 1999). To target Crenarchaea we will use a probe mix of CREN537 and GI554 
(CREN537: 5’-TGA CCA CTT GAG GTG CTG-3’, Teira et al., 2004; GI554: 5’-TTA GGC 
CCA ATA ATC MTC CT-3’, Massana et al., 1997 ). To cover Euryarchaea we will use the 
probe EURY806 (5’-CAC AGC GTT TAC ACC TAG-3’; Teira et al., 2004). To evaluate 
unspecific hybridization of probes and background fluorescence we will use antisense probes. 
 Microautoradiography will be performed on previously hybridized filter sections and 
processed as described in Teira et al. (2004). The slides will be examined under an 
epifluorescence microscope equipped with a 100-W mercury lamp and appropriate filter sets 
for DAPI and Alexa488. The presence of silver grains surrounding cells will be recorded by 
using the transmission mode of the microscope. The data will be expressed as percent of 
DAPI-stained cells.  
 
Prokaryotic community composition (TR and TY) 
 
 The prokaryotic community composition of Bacteria and Archaea will be determined by 
T-RFLP analysis as described in Moeseneder et al. (2001). Seawater samples 10 L were 
collected onto 0.22-µm Sterivex filter units (Millipore). The filter units were stored at -80ºC 
for later analysis in the lab. The total RNA will be extracted from the filter units using a bead 
beating protocol and the RNeasy Mini Kit (Quiagen). The DNA will be removed by DNAse 
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and a subsequent PCR amplification on the treated samples will be used to check for 
remaining DNA contamination. The quality of the RNA will be checked by the Experion 
microfluidics automated electrophoresis system (BioRad). The total RNA will be reverse 
transcribed into cDNA. Subsequently, the reverse transcribed 16S rRNA gene fragments of 
Bacteria and Archaea will be amplified by PCR using fluorescently 5’-end labeled forward 
and revers primer pairs. Bacteria will be amplified using the primer pair 27F-1492R (27F: 5’-
AGA GTT TGA TCC TGG CTC AG-3’; 1492R: 5’-GGT TAC CTT GTT ACG ACT T-3’; 
Lane, 1991 ) and archaeal 16S rRNA gene fragments will be amplified using the primer pair 
21F-958R (21F: 5’-TTC CGG TTG ATC CYG CCG GA-3’; 958R: 5’-YCC GGC GTT GAM 
TCC AAT T-3’; DeLong, 1992 ). The PCR fragments will be cut using the restriction enzyme 
HhaI and then analyzed using the GeneScan mode of a capillary sequencer (ABI 3130XL). 
The resulting peaks in the electropherogram of the Genescan software represent the 
predominating phylotypes in the sample. The data will be converted to presence/absence 
matrixes and similarities between communities will be analyzed using the Primer software 
(Primer-E). 
 
Viral Production (DDC) 
 

The main task was to evaluate the viral production and the viral decay through 
different depths and water masses. 5 L water samples were collected at Station 6, 10, 15, three 
depths at each station, varying from 50 to 4500 m. 

The samples were filtered through 0.22 µm tangential flow ultrafiltration Vivaflow 
filters to separate the bacteria from the viruses; we obtained two fractions: the bacterial 
fraction (viruses free) > 0.22 µm and the viruses < 0.22 µm.  
 The bacterial fraction was used for the viral production experiments. Six 300 mL 
subsamples of the bacterial fraction were collected in polycarbonate bottles and two 
treatments were carried on in triplicate to distinguish the lysogenic and the lytic cycles: with 
and without addition of Mitomycin C (final concentration 1 g ml-1) respectively. The 
samples were incubated at in situ temperature for 48 hours. 1.5 ml subsamples were collected 
from each bottle every 4-6 hours, fixed with glutaraldehyde (final concentration 0.5%), frozen 
in liquid nitrogen and stored at -80°C. The abundance of prokaryotes and viruses abundance 
will be estimated by flow cytometry after Sybr-Green I staining. The viral production rate 
(viruses mL-1h-1) will be estimated from the increase in viral abundance over a period of time. 
 
Viral decay (DDC) 
 
 To study the viral decay rates, the water samples were filtered through 0.2 µm by 
tangential flow ultrafiltration. Samples for viral enumeration were taken and fixed with 
glutaraldehyde (final concentration 0.5%) every 12 h during 144 h. Viral abundance will be 
estimated by flow cytometry after Sybr-Green I staining. 
 
Ectoenzymatic activity of prokaryotic communities (ES and KO) 
 
 The ectoenzymatic activity of prokaryotic organisms was determined adding a specific 
substrate attached to a fluorochrome to water samples of 6 or 24 different depths. The samples 
were incubated in the dark at in situ temperature during 24-96 h, depending on the expected 
enzymatic activity. The substrates used were 4-methylumberlliferyl (MUF)-alpha-glucoside, 
MUF-beta-glucoside, MUF-phosphate and 4-methylcoumarinyl-7-amide (MCA)-
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leucineaminopeptide, to assess the ectoenzymatic activity of alpha-glucosidase, beta-
glucosidase, phosphatase and leucine-aminopeptidase, respectively. Fluorescence is observed 
after enzymatic splitting of the substrate and the fluorochrome. The activity of the different 
enzymes is linearly related to the fluorescence and was detected on the spectrofluorometer 
using an excitation wavelength 365 nm and an emission of 445 nm. Fluorescence will be 
transformed to substrate concentrations by using a standard curve in which the fluorochromes 
(MUF and MCA) were added to 0.2 µm filtered sample water (Acrodisc® Syringe Filter) at 
concentrations ranging from 2.5 to 100 nM. The cleavage activity will be calculated from the 
change of each substrate concentration over time.  
 
Results 
 

POC analysis will be done in the labs of the NIOZ. The biological parameters will be 
analyzed at the Department of Marine Biology in Vienna. 
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Appendix 1. 

Address list of scientist involved in data collection and 
analysis 
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Marine Biogeochemistry; School of Ocean & Earth Science 
National Oceanography Centre Southampton; University of Southampton 
Southampton SO14 3ZH 
United Kingdom 
Tel Direct: 02380-593199 
Tel Secretary: 02380-592011 
FAX: 02380-593059 
 
de Baar, Hein: NIOZ; Hein.de.Baar@nioz.nl 
Royal Netherlands Institute for Sea Research  
P.O. Box 59 1790 AB Den Burg The Netherlands  
telephone 31 222 369465 telefax 31 222 319674 
University of Groningen 
Department Ocean Ecosystems 
P.O. Box 14, 9750 AA Haren (Groningen) 
secretariat phone: 31 50 363 2259 
 
Baker, Alex: UEA; Alex.Baker@uea.ac.uk 
School of Environmental Sciences 
University of East Anglia 
Norwich NR4 7TJ  
United Kingdom 
phone: + (0)1603 591529 
fax: + (0)1603 591327 
 
Karel Bakker: NIOZ, Karel.Bakker@nioz.nl 
 
Bermejo, Mercé: mercedes.bermejo@campus.uab.es (See Pere Masque) 
 
Berube, Paul: pmberube@MIT.EDU 
Postdoctoral Associate 
Chisholm Laboratory 
Massachusetts Institute of Technology 
Department of Civil and Environmental Engineering, USA 
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Universitaire Europaen de la Mer (IUEM) 
Technopole Brest-Iroise 
Place Nicolas Copernic 
29280 PlouzanÃ©- FRANCE 
Phone: 33 2 98 49 86 51 - Fax : 33 2 98 49 86 45  
 
Cobelo, Antonio: acobelo@iim.csic.es 
Marine Biogeochemistry Research Group 
Instituto de Investigacións Mariñas (IIM-CSIC) 
Rúa Eduardo Cabello 6 
36208 Vigo (Spain) 
Tel. +34 986 231 930 Ext 145 
Fax +34 986 292 762 
 
de Corte, Daniele; daniele.de.corte@nioz.nl 
(see Gerhard Herndl) 
 
van de Flierdt, Tina: tina.vandeflierdt@imperial.ac.uk 
Department of Earth Science and Engineering 
Royal School of Mines 
Imperial College London 
South Kensington Campus 
Exhibition Road 
London SW7 2AZ 
phone:+44 2075941290 
 
Frank, Martin: mfrank@ifm-geomar.de 
Wischhofstraße 1-3 
24148 Kiel 
Room 8/D-111 
Phone: 0049 431 600 2218 
Fax: 0049 431 600 2925 
 
Gonzalez, Santiago: NIOZ; Santiago.Gonzalez@nioz.nl 
 
Gerringa, Loes J.A., NIOZ; Loes.Gerringa@nioz.nl 
Royal Netherlands Institute for Sea Research 
BIO 
PO Box 59 1790 AB Den Burg 
The Netherlands 
tel 31(0)222369436 
fax 31(0)222319674 
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tel +31-50-3634760   fax +31-50-3634738 
 
Herndl, Gerhard: gerhard.herndl@univie.ac.at 
Professor, Chair of Marine Biology 
University of Vienna 
Althanstrasse 14 
A-1090 Vienna 
Austria 
phone: +43-(0)1-4277-57100 
cell phone: +43-699-1908-1166 
fax: +43-(0)1-4277-9571 
 
and 
Dept. of Biological Oceanography 
Royal Netherlands Institute for Sea Research (NIOZ) 
P.O. Box 59 
1790 AB Den Burg 
The Netherlands 
 
de Jong, Jeroen: jdejong@ulb.ac.be 
Université Libre de Bruxelles 
Department of Earth and Environmental Sciences CP 160/02 
Unit Isotopes, Petrology and Environment 
Avenue F.D. Roosevelt 50 
1050 Brussels 
Belgium 
PHONE: 
+32-2-650-2236 (office) 
+32-2-650-4169 (Nu Plasma mass spec room) 
FAX: +32-2-650-3748 
 
Kenna, Timothy C.: tkenna@ldeo.columbia.edu 
Doherty Associate Research Scientist 
Lamont-Doherty Earth Observatory 
Department of Geochemistry 
Geochemistry 71 
61 Rt. 9W 
P.O. Box 1000 
Palisades, NY 10964 
USA 
Ph. 845-365-8513 
Fax 845-365-8155 
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Kirchner, Sven: AWI; sven.kretschmer@awi.de 
 Alfred Wegener Institute for Polar and Marine Research 
Marine Geochemistry 
Am Handelshafen 12 
27570 Bremerhaven, Germany 
 
Laan, Patrick: NIOZ; email: Patrick.Laan@nioz.nl 
 
Lechtenfeld, Oliver: Oliver.Lechtenfeld@awi.de  
Alfred Wegener Institute for Polar and Marine Research 
Marine Geochemistry 
Am Handelshafen 12 
27570 Bremerhaven, Germany 
 
Masque, Pere: Pere.Masque@uab.cat 
Institut de Ciència i Tecnologia Ambientals - Departament de Física 
Universitat Autònoma de Barcelona 
08193 Bellaterra. Spain 
Telf: +34 93 581 19 15; 
Cell: +34 679 50 02 32; Intern: 6853 
Fax: +34 93 581 21 55 
 
Meijer, Harro:  h.a.j.meijer@rug.nl 
Centrum voor Isotopen Onderzoek (CIO) 
Energy and Sustainability Research Institute Groningen (ESRIG) Rijksuniversiteit Groningen 
Nijenborgh 4, 9747 AG  Groningen, Netherlands 
tel +31-50-3634760   fax +31-50-3634738 
 
Middag, Rob: NIOZ; email: rob.middag@nioz.nl 
 
Olbrich, Kerstin: kerstin.olbrich@univie.ac.at (see Gerard Herndl) 
University of Vienna 
 
van Ooijen, Jan: NIOZ; email: jan.van.Ooijen@nioz.nl 
 
Pichevin, Laetitia: laetitia.pichevin@ed.ac.uk 
The University of Edinburgh 
Address: Grant Institute, The King’s Buildings, West Mains Road, 
Edinburgh EH9 3JW 
Phone: 0044 131 650 5980 
 
Puigcorbe, Viena: Viena.Puigcorbe@uab.cat (see Pere Masque) 
 
Rehkamper, Mark: markrehk@imperial.ac.uk 
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Reinthaler, Thomas: thomas.reinthaler@univie.ac.at 
University of Vienna 
Faculty of Life Sciences - Ecology Center 
Department of Marine Biology 
Althanstrasse 14 
1090 Vienna 
Austria 
 
Rijkenberg, Micha: NIOZ, email: micha.rijkenberg@nioz.nl 
 
Rutgers van der Loeff, Michiel: AWI; mloeff@awi.de 
Alfred Wegener Institute for Polar and Marine Research 
Marine Geochemistry 
Am Handelshafen 12 
27570 Bremerhaven, Germany 
cell phone nr: +49 15110709368 
 
Salt, Lesley: NIOZ; email:lesley.salt@nioz.nl 
 
Schmidt, Patrick: Universitat Bremen; psbschmidt@googlemail.com 
(See Steinfeldt) 
 
Schoemann, Veronique: NIOZ; email: Veronique.schoemann@nioz.nl 
 
Sigman, Daniel: sigman@princeton.edu 
Dept. of Geosciences 
Guyot Hall 
Princeton University 
Princeton, NJ 08544 
tel: 609-258-2194 
fax: 609-258-5242 
cell: 609-658-2077 
 
Sintes, Eva: eva.sintes@univie.ac.at 
University of Vienna 
Faculty of Life Sciences - Ecology Center 
Department of Marine Biology 
Althanstrasse 14 
1090 Vienna 
Austria 
 
de Souza, Gregory: desouza@erdw.ethz.ch 
Institute of Geochemistry and Petrology 
ETH Zurich, NW C81.1, Clausiusstrasse 25,  
8092 Zurich, Switzerland 
Tel: +41-44-632-6082 
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Steinfeldt, Reiner; rsteinf@physik.uni-bremen.de 
Universitaet Bremen, FB 1  
Abt. Ozeanographie  
Postfach 330440 
D-28334 Bremen 
Germany 
Tel: +49 (0)421 218-62154 
Fax: +49 (0)421 218-7018 
 
Weiss, Dominik: d.weiss@imperial.ac.uk 
 
Yokakawa, Taichi: NIOZ; taichi.yokakawa@nioz.nl 
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Appendix 2. Station list & devices deployment 
 
CTD 25L is the high volume 25L CTD 
UCCTD is the ultra clean CTD 
ISP are the in situ pumps 
 
Station_cast  Device  Action  Date  Time  Latitude  Longitude 

20_1  CTD25L  Begin   12/06/2010 19:00:56  32.229178  ‐64.494357 

20_1  CTD25L  Bottom   12/06/2010 19:03:09  32.228985  ‐64.494135 

20_1  CTD25L  End   12/06/2010 19:06:56  32.228735  ‐64.493522 

20_2  UCCTD  Begin   12/06/2010 19:30:48  32.228407  ‐64.492357 

20_2  UCCTD  Bottom   12/06/2010 20:04:15  32.228343  ‐64.49225 

20_2  UCCTD  End   12/06/2010 20:37:48  32.228878  ‐64.49175 

21_1  CTD25L  Begin   13/06/2010 0:53:33  31.666667  ‐64.166997 

21_1  CTD25L  Bottom   13/06/2010 2:07:45  31.666632  ‐64.166742 

21_1  CTD25L  End   13/06/2010 3:37:25  31.666445  ‐64.166793 

21_2  UCCTD  Begin   13/06/2010 3:47:54  31.666845  ‐64.166795 

21_2  UCCTD  Bottom   13/06/2010 5:09:15  31.666875  ‐64.166407 

21_2  UCCTD  End   13/06/2010 6:56:14  31.666765  ‐64.166395 

21_3  CTD25L  Begin   13/06/2010 7:05:38  31.666568  ‐64.166455 

21_3  CTD25L  Bottom   13/06/2010 7:21:02  31.666437  ‐64.16651 

21_3  CTD25L  End   13/06/2010 7:44:48  31.666505  ‐64.166717 

21_4  ISP  Begin   13/06/2010 7:59:14  31.666198  ‐64.166817 

21_4  ISP  Pump started   13/06/2010 10:36:21  31.666537  ‐64.166395 

21_4  ISP  Pump stopped  13/06/2010 13:10:35  31.666768  ‐64.166143 

21_4  ISP  End   13/06/2010 14:59:46  31.666392  ‐64.166665 

21_5  CTD25L  Begin   13/06/2010 15:29:41  31.667057  ‐64.166432 

21_5  CTD25L  Bottom   13/06/2010 16:46:11  31.666657  ‐64.16657 

21_5  CTD25L  End   13/06/2010 17:59:08  31.666578  ‐64.166558 

22_1  UCCTD  Begin   14/06/2010 11:53:29  29.61562  ‐66.529925 

22_1  UCCTD  Bottom   14/06/2010 13:20:28  29.615588  ‐66.52951 

22_1  UCCTD  End   14/06/2010 15:09:36  29.615778  ‐66.529818 

22_2  CTD25L  Begin   14/06/2010 15:19:30  29.615662  ‐66.529718 

22_2  CTD25L  Bottom   14/06/2010 16:42:19  29.615608  ‐66.52949 

22_2  CTD25L  End   14/06/2010 18:30:13  29.615672  ‐66.529517 

23_1  UCCTD  Begin   15/06/2010 11:30:45  28.090858  ‐67.501617 

23_1  UCCTD  Bottom   15/06/2010 12:56:01  28.09188  ‐67.500755 

23_1  UCCTD  End   15/06/2010 14:32:52  28.090815  ‐67.501965 

23_2  CTD25L  Begin   15/06/2010 14:52:07  28.090553  ‐67.50137 

23_2  CTD25L  End   15/06/2010 16:10:01  28.090813  ‐67.501605 

23_3  ISP  Begin   15/06/2010 16:42:11  28.090873  ‐67.501663 

23_3  ISP  Pump started   15/06/2010 19:01:30  28.090752  ‐67.501462 

23_3  ISP  Pump stopped  15/06/2010 21:33:21  28.090645  ‐67.501497 

23_3  ISP  End   16/06/2010 0:10:11  28.090523  ‐67.50214 
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Station_cast  Device  Action  Date  Time  Latitude  Longitude 

23_4  CTD25L  Begin   16/06/2010 0:22:45  28.090533  ‐67.501515 

23_4  CTD25L  Bottom   16/06/2010 1:38:09  28.090753  ‐67.50206 

23_4  CTD25L  End   16/06/2010 3:17:24  28.090778  ‐67.501593 

24_1  UCCTD  Begin   16/06/2010 14:22:51  26.239138  ‐67.804632 

24_1  UCCTD  Bottom   16/06/2010 15:45:13  26.238773  ‐67.804327 

24_1  UCCTD  End   16/06/2010 17:36:11  26.238722  ‐67.804268 

24_2  CTD25L  Begin   16/06/2010 17:48:28  26.238652  ‐67.804392 

24_2  CTD25L  Bottom   16/06/2010 19:08:52  26.238472  ‐67.804122 

24_2  CTD25L  End   16/06/2010 21:52:28  26.238785  ‐67.804018 

25_1  UCCTD  Begin   17/06/2010 16:21:08  24.714485  ‐67.072785 

25_1  UCCTD  Bottom   17/06/2010 17:52:42  24.714722  ‐67.072768 

25_1  UCCTD  End   17/06/2010 19:49:07  24.714255  ‐67.072688 

25_2  CTD25L  Begin   17/06/2010 19:56:29  24.714313  ‐67.072607 

25_2  CTD25L  Bottom   17/06/2010 21:27:55  24.714622  ‐67.072758 

25_2  CTD25L  End   17/06/2010 23:05:06  24.714745  ‐67.072838 

26_1  UCCTD  Begin   18/06/2010 12:23:55  23.274647  ‐65.552702 

26_1  UCCTD  Bottom   18/06/2010 13:52:59  23.274707  ‐65.553323 

26_1  UCCTD  End   18/06/2010 16:06:49  23.275002  ‐65.552822 

26_2  CTD25L  Begin   18/06/2010 16:13:38  23.274763  ‐65.552918 

26_2  CTD25L  Bottom   18/06/2010 17:48:25  23.274755  ‐65.553068 

26_2  CTD25L  End   18/06/2010 19:34:25  23.274832  ‐65.55348 

26_3  ISP  Begin   18/06/2010 19:43:59  23.274903  ‐65.553448 

26_3  ISP  Pump started   18/06/2010 22:33:08  23.274515  ‐65.552628 

26_3  ISP  Pump stopped  19/06/2010 1:04:07  23.275227  ‐65.553447 

26_3  ISP  End   19/06/2010 3:12:15  23.27468  ‐65.55336 

27_1  UCCTD  Begin   19/06/2010 17:53:53  22.340743  ‐63.583362 

27_1  UCCTD  Bottom   19/06/2010 19:32:32  22.34059  ‐63.583125 

27_1  UCCTD  End   19/06/2010 21:32:26  22.34097  ‐63.583165 

27_2  CTD25L  Begin   19/06/2010 21:44:01  22.341102  ‐63.583282 

27_2  CTD25L  Bottom   19/06/2010 23:15:51  22.340878  ‐63.583352 

27_2  CTD25L  End   20/06/2010 1:09:09  22.340692  ‐63.583965 

28_1  CTD25L  Begin   20/06/2010 14:09:05  21.776198  ‐61.843225 

28_1  CTD25L  Bottom   20/06/2010 15:42:01  21.776427  ‐61.84375 

28_1  CTD25L  End   20/06/2010 17:41:34  21.776398  ‐61.843107 

28_2  UCCTD  Begin   20/06/2010 17:52:04  21.77661  ‐61.843237 

28_2  UCCTD  Bottom   20/06/2010 19:29:36  21.77681  ‐61.84336 

28_2  UCCTD  End   20/06/2010 21:58:00  21.777135  ‐61.84297 

29_1  UCCTD  Begin   21/06/2010 16:48:07  20.455577  ‐59.532287 

29_1  UCCTD  Bottom   21/06/2010 18:14:40  20.454313  ‐59.530968 

29_1  UCCTD  End   21/06/2010 20:14:01  20.454308  ‐59.530608 

29_2  CTD25L  Begin   21/06/2010 20:21:57  20.45435  ‐59.530822 

29_2  CTD25L  Bottom   21/06/2010 20:37:32  20.454195  ‐59.531023 

29_2  CTD25L  End   21/06/2010 21:30:04  20.454407  ‐59.531003 
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Station_cast  Device  Action  Date  Time  Latitude  Longitude 

30_1  CTD25L  Begin   22/06/2010 14:37:56  18.57224  ‐57.612363 

30_1  CTD25L  Bottom   22/06/2010 14:53:37  18.572495  ‐57.612353 

30_1  CTD25L  End   22/06/2010 15:25:17  18.572743  ‐57.61215 

30_2  UCCTD  Begin   22/06/2010 15:46:57  18.572503  ‐57.612185 

30_2  UCCTD  Bottom   22/06/2010 17:17:41  18.572402  ‐57.612063 

30_2  UCCTD  End   22/06/2010 19:08:16  18.572293  ‐57.61234 

30_3  CTD25L  Begin   22/06/2010 19:19:52  18.57246  ‐57.612313 

30_3  CTD25L  Bottom   22/06/2010 20:42:36  18.572143  ‐57.612327 

30_3  CTD25L  End   22/06/2010 22:34:03  18.572468  ‐57.611903 

30_4  ISP  Begin   22/06/2010 22:52:48  18.572373  ‐57.612183 

30_4  ISP  Pump started   23/06/2010 1:30:43  18.572582  ‐57.611887 

30_4  ISP  Pump stopped  23/06/2010 4:01:01  18.572172  ‐57.612057 

30_4  ISP  End   23/06/2010 5:51:34  18.572283  ‐57.612093 

30_5  CTD25L  Begin   23/06/2010 6:07:21  18.572607  ‐57.612223 

30_5  CTD25L  Bottom   23/06/2010 7:31:18  18.572323  ‐57.612155 

30_5  CTD25L  End   23/06/2010 9:11:39  18.572052  ‐57.6117 

30_6  UCCTD  Begin   23/06/2010 9:33:08  18.564638  ‐57.60612 

30_6  UCCTD  Bottom   23/06/2010 11:07:32  18.56456  ‐57.60612 

30_6  UCCTD  End   23/06/2010 13:13:52  18.56427  ‐57.605565 

31_1  UCCTD  Begin   24/06/2010 11:16:52  16.830833  ‐56.268777 

31_1  UCCTD  Bottom   24/06/2010 12:49:20  16.831883  ‐56.268383 

31_1  UCCTD  End   24/06/2010 14:59:44  16.831218  ‐56.268187 

31_2  CTD25L  Begin   24/06/2010 15:06:50  16.831188  ‐56.268535 

31_2  CTD25L  Bottom   24/06/2010 16:39:29  16.831547  ‐56.268853 

31_2  CTD25L  End   24/06/2010 18:30:00  16.831512  ‐56.268637 

32_1  UCCTD  Begin   25/06/2010 11:37:17  14.880428  ‐54.802502 

32_1  UCCTD  Bottom   25/06/2010 13:01:47  14.879442  ‐54.803318 

32_1  UCCTD  End   25/06/2010 15:00:51  14.879848  ‐54.802807 

32_2  CTD25L  Begin   25/06/2010 15:12:42  14.879908  ‐54.802893 

32_2  CTD25L  Bottom   25/06/2010 16:37:19  14.880128  ‐54.802965 

32_2  CTD25L  End   25/06/2010 18:27:35  14.879842  ‐54.80308 

33_1  UCCTD  Begin   26/06/2010 9:08:54  13.161565  ‐53.420695 

33_1  UCCTD  Bottom   26/06/2010 10:30:42  13.16181  ‐53.421037 

33_1  UCCTD  End   26/06/2010 12:18:22  13.162215  ‐53.421695 

33_2  CTD25L  Begin   26/06/2010 12:25:46  13.16227  ‐53.421497 

33_2  CTD25L  Bottom   26/06/2010 14:35:57  13.161895  ‐53.420862 

33_2  CTD25L  End   26/06/2010 16:31:31  13.16181  ‐53.42125 

33_3  ISP  Begin   26/06/2010 16:51:54  13.161803  ‐53.421365 

33_3  ISP  Pump started   26/06/2010 19:01:29  13.161728  ‐53.421158 

33_3  ISP  Pump stopped  26/06/2010 21:34:35  13.161952  ‐53.420718 

33_3  ISP  End   26/06/2010 23:38:07  13.1619  ‐53.42102 

34_1  UCCTD  Begin   27/06/2010 14:02:17  11.372247  ‐52.045452 

34_1  UCCTD  Bottom   27/06/2010 15:18:53  11.372933  ‐52.045477 



GEOTRACES Cruise 64PE321 

 

61 

 

Station_cast  Device  Action  Date  Time  Latitude  Longitude 

34_2  CTD25L  Begin   27/06/2010 17:27:08  11.372305  ‐52.045123 

34_2  CTD25L  Bottom   27/06/2010 18:46:52  11.372443  ‐52.045398 

34_2  CTD25L  End   27/06/2010 20:30:46  11.37286  ‐52.045057 

35_1  UCCTD  Begin   28/06/2010 11:09:28  9.54559  ‐50.468612 

35_1  UCCTD  Bottom   28/06/2010 12:23:39  9.545913  ‐50.469465 

35_1  UCCTD  End   28/06/2010 14:07:08  9.546245  ‐50.468992 

35_2  CTD25L  Begin   28/06/2010 14:16:57  9.546235  ‐50.46864 

35_2  CTD25L  Bottom   28/06/2010 15:56:51  9.545448  ‐50.468977 

35_2  CTD25L  End   28/06/2010 17:18:01  9.546268  ‐50.46935 

36_1  UCCTD  Begin   29/06/2010 11:15:49  7.765993  ‐48.882982 

36_1  UCCTD  End   29/06/2010 12:22:55  7.766165  ‐48.88343 

36_2  UCCTD  Begin   29/06/2010 14:14:35  7.766273  ‐48.88266 

36_2  UCCTD  Bottom   29/06/2010 15:25:18  7.766425  ‐48.883542 

36_2  UCCTD  End   29/06/2010 17:05:56  7.766245  ‐48.88365 

36_3  CTD25L  Begin   29/06/2010 17:13:48  7.766358  ‐48.883647 

36_3  CTD25L  Bottom   29/06/2010 18:22:45  7.766662  ‐48.883463 

36_3  CTD25L  End   29/06/2010 19:59:01  7.766253  ‐48.883463 

36_4  ISP  Begin   29/06/2010 22:37:13  7.76588  ‐48.883563 

36_4  ISP  Pump started   29/06/2010 22:37:20  7.76591  ‐48.883582 

36_4  ISP  Pump stopped  30/06/2010 0:53:23  7.766973  ‐48.88386 

36_4  ISP  End   30/06/2010 2:31:01  7.76635  ‐48.884183 

36_4  ISP  End   30/06/2010 2:42:27  7.766008  ‐48.883045 

36_5  CTD25L  Begin   30/06/2010 2:52:35  7.76646  ‐48.88298 

36_5  CTD25L  Bottom   30/06/2010 3:05:12  7.766247  ‐48.882778 

36_5  CTD25L  End   30/06/2010 3:47:48  7.766263  ‐48.883457 

36_6  UCCTD  Begin   30/06/2010 3:58:54  7.766438  ‐48.883467 

36_6  UCCTD  Bottom   30/06/2010 5:10:56  7.766467  ‐48.88349 

36_6  UCCTD  End   30/06/2010 6:55:13  7.766585  ‐48.883703 

36_7  CTD25L  Begin   30/06/2010 7:08:03  7.766793  ‐48.883785 

36_7  CTD25L  Bottom   30/06/2010 8:21:26  7.766402  ‐48.88335 

36_7  CTD25L  End   30/06/2010 9:41:25  7.766038  ‐48.883773 

37_1  UCCTD  Begin   01/07/2010 11:11:51  5.977332  ‐46.416647 

37_1  UCCTD  Bottom   01/07/2010 12:12:36  5.978762  ‐46.416803 

37_1  UCCTD  End   01/07/2010 13:47:57  5.978568  ‐46.417473 

37_2  CTD25L  Begin   01/07/2010 13:56:18  5.978832  ‐46.417543 

37_2  CTD25L  Bottom   01/07/2010 14:58:30  5.977388  ‐46.41675 

37_2  CTD25L  End   01/07/2010 16:30:54  5.977325  ‐46.41649 

38_1  CTD25L  Begin   02/07/2010 16:52:22  3.977483  ‐43.755627 

38_1  CTD25L  Bottom   02/07/2010 17:57:32  3.974895  ‐43.752653 

38_1  CTD25L  End   02/07/2010 19:37:13  3.973565  ‐43.751973 

38_2  UCCTD  Begin   02/07/2010 19:45:06  3.973302  ‐43.751487 

38_2  UCCTD  Bottom   02/07/2010 20:55:16  3.973583  ‐43.751058 

38_2  UCCTD  End   02/07/2010 22:30:26  3.972892  ‐43.750657 
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Station_cast  Device  Action  Date  Time  Latitude  Longitude 

39_1  UCCTD  Bottom   03/07/2010 15:22:55  2.544362  ‐41.699655 

39_1  UCCTD  End   03/07/2010 17:02:59  2.544683  ‐41.699692 

39_2  CTD25L  Begin   03/07/2010 17:11:07  2.545127  ‐41.700307 

39_2  CTD25L  Bottom   03/07/2010 18:18:48  2.544697  ‐41.699588 

39_2  CTD25L  End   03/07/2010 20:02:08  2.545995  ‐41.700032 

40_1  UCCTD  Begin   04/07/2010 12:50:09  1.1472  ‐39.686865 

40_1  UCCTD  Bottom   04/07/2010 13:57:11  1.146613  ‐39.686022 

40_1  UCCTD  End   04/07/2010 16:05:08  1.147298  ‐39.686748 

40_2  CTD25L  Begin   04/07/2010 16:18:57  1.147228  ‐39.686035 

40_2  CTD25L  Bottom   04/07/2010 17:28:22  1.147232  ‐39.686442 

40_2  CTD25L  End   04/07/2010 19:08:25  1.147462  ‐39.686582 

40_3  ISP  Begin   04/07/2010 19:17:28  1.147342  ‐39.686158 

40_3  ISP  Pump started   04/07/2010 21:40:24  1.146535  ‐39.685978 

40_3  ISP  Pump stopped  05/07/2010 0:13:09  1.147108  ‐39.685765 

40_3  ISP  End   05/07/2010 1:48:10  1.147213  ‐39.68628 

41_1  UCCTD  Begin   05/07/2010 9:20:42  0.71611  ‐38.967057 

41_1  UCCTD  Bottom   05/07/2010 10:15:50  0.715548  ‐38.966903 

41_1  UCCTD  End   05/07/2010 11:59:56  0.71614  ‐38.967853 

41_2  CTD25L  Begin   05/07/2010 12:11:35  0.714798  ‐38.966255 

41_2  CTD25L  Bottom   05/07/2010 13:18:23  0.715753  ‐38.966023 

41_2  CTD25L  End   05/07/2010 15:01:22  0.716275  ‐38.965972 
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Appendix 3. Samples taken from FISH 
 
 
Samples taken from the fish:  
 
A = dissolved platina group metals 
B = total platina group metals 
C = total Pb 
D = dissolved cadmium 
E = dissolved Nd 
 
 
Operation 
ID station 
book 

Latitude 
(North) 
(3) 

Longitude 
(West) 
(3) 

Date Time 
(UTC)

Time 
(ship 
time) 

sampled for 

321_FISH13 - - 13/06/10 18:30 15:30 A, B, C, D 
- (2) 29°42,30 66°26,10 14/06/10 11:00 08:00 A, C 
321_FISH14 - - 16/06/10 03:50 00:50 A, C 
321_FISH16 - - 16/06/10 23:40 20:40 A, C 
321_FISH16 - - 17/06/10 11:00 08:00 A, B, C 
321_FISH17 - - 18/06/10 11:25 08:25 A, C 
321_FISH18 - - 19/06/10 17:00 14:00 A, C 
321_FISH19 - - 20/06/10 13:40 10:40 A, C 
321_FISH20 - - 21/06/10 (1) (1) A, C 
321_FISH21 - - 22/06/10 12:55 09:55 A, C, D 
321_FISH22 - - 24/06/10 19:15 16:15 A, B, C, E 
321_FISH23 - - 25/06/10 19:10 16:10 A, C 
321_FISH24 - - 26/06/10 23:55 20:55 A, C 
321_FISH25 - - 27/06/10 12:45 09:45 A, C 
321_FISH26 - - 28/06/10 17:45 14:45 A, C 
- (2) - - 30/06/10 10:20 07:20 A, B, C, D 
321_FISH28 - - 01/07/10 17:05 14:05 C, E 
- (2) 04°10,99 44°01,82 02/07/10 13:40 10:40 A, C 
- (2) 02°36,71 41°47,91 03/07/10 13:15 10:15 C 
- (2) 01°10,64 40°43,77 04/07/10 12:00 09:00 A, B, C, D 
321_FISH31 00°41,99 38°57,95 05/07/10 15:15 12:15 C 
       

(1) To recover the time that the FISH sample was taken on 21/06/10 we have to wait till 
the samples are back from Pelagia. The sample would have been taken between 14:34 
(321_FISH20) and 16:30 (Station 29_1) on 21/06/10. 

(2) No entries in Casino logbook. 
(3) Due to problems with the network and Casino it was sometimes decided to include the 

latitude and longitude.  
 
 


