#### **CRUISE REPORT**

#### R/V Seward Johnson Cruise No. SJ-08-03

# RAPID/MOCHA Program April 4-30, 2008 Ft. Pierce to Ft. Pierce, Florida, USA

#### **1. Introduction and Objectives**

The RAPID/MOCHA program is a joint research effort between the National Oceanography Centre (Southampton, U.K.), the University of Miami's Rosenstiel School of Marine and Atmospheric Science (RSMAS), and NOAA's Atlantic Oceanographic and Meteorological Laboratory (AOML). The objective of this program is to establish a pre-operational measurement system to continuously observe the strength and structure of the Atlantic meridional overturning circulation across the basin at 26° N. The U.K. program is referred to as "RAPID-MOC" and is a part of the U.K. Rapid Climate Change Program (RAPID) funded by the National Environmental Research Council (NERC). The U.S. program is referred to as "MOCHA" (Meridional Overturning Circulation and Heat-flux Array) and is funded by the National Science Foundation (NSF). NOAA contributes significantly to the effort through its Western Boundary Time Series Program.

The goals of cruise SJ-08-03 were to:

- 1) Service the "western boundary array" of the RAPID/MOCHA transbasin observing system, consisting of 8 sites with current meter/CTD moorings, several including co-located bottom-pressure moorings;
- 2) Conduct hydrographic (CTDO<sub>2</sub>) and direct current profiling (lowered-ADCP, "LADCP") stations along the 26.5° N mooring section off Abaco, Bahamas; and along sections in the Northwest Providence Channel and Florida Current at 27° N, including continuous shipboard ADCP observations; and
- 3) Retrieve data from 5 bottom pressure/inverted echo sounder (PIES) sites via acoustic telemetry

### 2. Cruise Synopsis

The cruise was split into two legs to accommodate the large amount of mooring gear that had to be carried on the ship. Leg 1 was from Ft. Pierce, FL to Freeport, Bahamas, from Apr. 4-20. During this leg the CTD work was completed (except the NW Providence section, which had to be skipped due to lack of time), and the U.S moorings were serviced. Leg 2 was from Freeport to Ft. Pierce, from Apr. 22-30, during which the U.K. moorings were serviced. During the intermediate port stop in Freeport, Apr. 20-21, the U.K mooring gear was loaded and the recovered U.S mooring gear was offloaded for temporary storage. On leg 2, before returning to Ft. Pierce, the ship again stopped in

Freeport to offload the U.K. gear for transshipment and reload the U.S. gear for transit to Ft. Pierce.

Leg 1 began with occupation of the Florida Current CTDO<sub>2</sub>/LADCP section at 27° N enroute to Freeport, Bahamas to clear in for research in Bahamian waters. This section measures the outflow through the Straits of Florida where AOML monitors the Florida Current volume transport via submarine electromagnetic cable.

After departing Freeport, the ship proceeded to deep water offshore of Abaco where the 26.5° N section was occupied, consisting of 23 CTDO<sub>2</sub>/LADCP stations extending from Abaco to 72° W. This section sampled the Deep Western Boundary Current and Antilles Current region east of the Bahamas and is part of an ongoing time series of these currents collected since 1984 by the AOML group. The CTDO<sub>2</sub>/LADCP stations collected on this section are also important for calibration of results from the western boundary moored array.

Following completion of the Abaco section, U.S. mooring servicing operations were commenced from east to west across the RAPID/MOCHA array. U.S. mooring sites WB3 and WB5 were successfully serviced, but at site WB0 the mooring had to be recovered after deployment due to a malfunctioning acoustic release, and this was later redeployed on Leg 2. Acoustic telemetry from the AOML PIES sites A, B, and C was also accomplished. Due to rough weather the PIES telemetry at PIES site "D" had to be postponed to Leg 2, and the PIES at site "E" had to be recovered because it could not be communicated with (and had also stopped its normal pinging cycle).

The ship returned to Freeport on April 20<sup>th</sup> to load mooring equipment from the U.K. mooring team, and departed Freeport again on April 22nd. U.K. mooring sites WBA, WB1, WB2, and WB4 were successfully serviced, and an additional mooring was deployed at site WBH2. U.S. mooring WB0 was also redeployed on this leg, and data telemetry from PIES site "D" was successfully accomplished. A number of "cal-dip" CTD casts were also performed on this leg (as well as on leg 1) to provide high –quality calibrations for the moored T-S recorders (SeaBird micro-cats) used on the moorings. The ship returned to Freeport on April 29<sup>th</sup> to offload all U.K. gear and reload U.S. gear for the return transit to Ft. Pierce, and clear out of the Bahamas. On the return trip to Florida the ship steamed across the 27° N Florida Current section while sampling the current with shipboard ADCP and XBT profiles. Cruise disembarked in Ft. Pierce April 30<sup>th</sup>.

# **3. Scientific Personnel**

| Leg 1 (April 4-20, 2000). |            |                 |  |  |  |
|---------------------------|------------|-----------------|--|--|--|
| Name                      | Position   | Organization    |  |  |  |
|                           |            |                 |  |  |  |
| Bill Johns                | Ch. Sci.   | RSMAS/ U. Miami |  |  |  |
| Lisa Beal                 | Scientist  | RSMAS/ U. Miami |  |  |  |
| Jonathan Molina           | Scientist  | RSMAS/ U. Miami |  |  |  |
| Robert Jones              | Technician | RSMAS/ U. Miami |  |  |  |
| Mark Graham               | Technician | RSMAS/ U. Miami |  |  |  |
| Ben Shaw                  | Student    | RSMAS/ U. Miami |  |  |  |
| Rafael Schiller           | Student    | RSMAS/ U. Miami |  |  |  |
| Wilson Mendoza            | Student    | RSMAS/ U.Miami  |  |  |  |
| Chris Meinen              | Scientist  | NOAA/ AOML      |  |  |  |
| Carlos Fonseca            | Scientist  | NOAA/ AOML      |  |  |  |
| Ulises Rivero             | Technician | NOAA/ AOML      |  |  |  |
| Andy Stefanick            | Technician | NOAA/ AOML      |  |  |  |
|                           |            |                 |  |  |  |

# Leg 1 (April 4-20, 2008):

# Leg 2 (April 22-30, 2008):

| Leg 2 (April 22-30, 2008): |                                                                                                                                                                                       |  |  |  |  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Position                   | Organization                                                                                                                                                                          |  |  |  |  |
|                            |                                                                                                                                                                                       |  |  |  |  |
| Ch. Sci.                   | RSMAS/ U. Miami                                                                                                                                                                       |  |  |  |  |
| Scientist                  | RSMAS/ U. Miami                                                                                                                                                                       |  |  |  |  |
| Technician                 | RSMAS/ U. Miami                                                                                                                                                                       |  |  |  |  |
| Scientist                  | NOAA/ AOML                                                                                                                                                                            |  |  |  |  |
| Technician                 | NOAA/ AOML                                                                                                                                                                            |  |  |  |  |
| Scientist                  | NOC Southampton                                                                                                                                                                       |  |  |  |  |
| Scientist                  | NOC Southampton                                                                                                                                                                       |  |  |  |  |
| Scientist                  | NOC Southampton                                                                                                                                                                       |  |  |  |  |
| Scientist                  | IFM Hamburg                                                                                                                                                                           |  |  |  |  |
| Technician                 | NOC Southampton                                                                                                                                                                       |  |  |  |  |
| Technician                 | NOC Southampton                                                                                                                                                                       |  |  |  |  |
| Technician                 | NOC Southampton                                                                                                                                                                       |  |  |  |  |
| Technician                 | NOC Southampton                                                                                                                                                                       |  |  |  |  |
| Scientist                  | FSU                                                                                                                                                                                   |  |  |  |  |
| Technician                 | FSU                                                                                                                                                                                   |  |  |  |  |
|                            | Position<br>Ch. Sci.<br>Scientist<br>Technician<br>Scientist<br>Technician<br>Scientist<br>Scientist<br>Scientist<br>Scientist<br>Technician<br>Technician<br>Technician<br>Scientist |  |  |  |  |

# 3. Cruise Operations

# 3.1 Mooring Operations

## **Mooring Recoveries**

Seven taut-line subsurface moorings were successfully recovered from the locations listed in Table 1 and shown in Figure 1a. These moorings contained a mixture of current meters, Acoustic Doppler Current Profilers (ADCPs), and temperature/salinity recorders. Additionally, two bottom lander moorings (UK sites WBL3 and WBL4), containing only high-precision bottom pressure sensors, were successfully recovered. The University of Miami moorings (sites WB0, WB3, and WB5 in Table 1) had been deployed previously in September 2006 aboard the R/V Seward Johnson, while the NOC moorings (sites WBA, WB1, WB2, and WB4) had been deployed previously on the NOAA R/V Ronald Brown in March 2007. All mooring recoveries went smoothly and without incident, except for WB4, which had lost its near-surface flotation during deployment period and took several hours to come to the surface with the remaining buoyancy. Also, there were more than usual difficulties in communicating with some of the acoustic releases on both the U.S. and U.K. moorings, but eventually all the tautwire moorings were successfully released from the bottom. A bottom lander mooring previously deployed at U.S. site WB3 could not be released from the bottom, after many attempts, and is presumed lost.

Finally, a bottom lander at U.S. site WB5, that had been intended for recovery on this cruise, was left in the water to continue recording data, as the PIES at this site had stopped working and had to be recovered ahead of plan.

| Mooring | Mooring | Latitude   | Longitude  | Depth        | Date of    |
|---------|---------|------------|------------|--------------|------------|
| Site    | Number  | (°N)       | (°W)       | ( <b>m</b> ) | Recovery   |
| WBA     | 2007/04 | 26° 31.48' | 76° 52.17' | 600          | 04/23/2008 |
| WB0     | M371    | 26° 30.48' | 76° 50.52' | 1015         | 04/19/2008 |
| WB1     | 2007/01 | 26° 29.90' | 76° 49.30' | 1400         | 04/23/2008 |
| WB2     | 2007/02 | 26° 30.62' | 76° 44.66' | 3892         | 04/24/2008 |
| WB3     | M372    | 26° 29.66' | 76° 29.93' | 4840         | 04/17/2008 |
| WB4     | 2006/05 | 26° 32.26' | 76° 08.89' | 4824         | 04/27/2008 |
| WB5     | M373    | 26° 30.00' | 71° 58.30' | 5297         | 04/13/2008 |
| WBL3    | 2006/08 | 26° 30.42' | 76° 44.66' | 3880         | 04/24/2008 |
| WBL4    | 2006/05 | 26° 30.02' | 76° 02.95' | 4810         | 04/27/2008 |

Table 1. Mooring Recoveries

### **Mooring Deployments**

A total of 12 moorings (8 taut-wire moorings and 4 bottom landers) were deployed at the locations listed in Table 2 and shown in Figure 1b. All deployments operations went smoothly except for U.S. site WBA on the first leg, which had to be recovered shortly

after deployment due to a malfunctioning acoustic release. This mooring was successfully redeployed on the second leg.

Mooring WB5 contained an experimental surface telemetry buoy intended to provide near-real time data from all of the instruments on the mooring. The instrument data is relayed via inductive up-wire telemetry to a subsurface controller/logger in the main subsurface flotation unit at 50 m depth, which then relays the data via conducting S-tether cable to a surface telemetry buoy. The other moorings contain only internally recording instruments whose data is recovered after the moorings are retrieved.

WB5 had to be deployed in relatively rough sea conditions (winds 25-35 kts, seas 7-8 ft.) due to an approaching weather system with conditions expected to worsen over for the next 2 days. The surface telemetry buoy was apparently damaged during deployment, since no data telemetry messages were successfully received from the unit after deployment. Visual inspection of the surface buoy the following morning confirmed that the satellite antenna had been broken, and therefore the surface buoy was recovered from the top of the mooring and replaced with a dummy float. Surveying of the on-bottom position of all moorings (except for the bottom landers) was successfully completed after each mooring deployment.

| Mooring | Mooring | Latitude   | Longitude  | Depth        | Date of    |
|---------|---------|------------|------------|--------------|------------|
| Site    | Number  | (°N)       | (°W)       | ( <b>m</b> ) | Deployment |
| WBA     |         | 26° 31.52' | 76° 52.12' | 598          | 04/23/2008 |
| WB0     | M381    | 26° 30.34' | 76° 50.49' | 1001         | 04/23/2008 |
| WB1     |         | 26° 30.00' | 76° 49.23' | 1380         | 04/25/2008 |
| WB2     |         | 26° 30.12' | 76° 44.52' | 3891         | 04/26/2008 |
| WBH2    |         | 26° 27.90' | 76° 39.03' | 4737         | 04/26/2008 |
| WB3     | M382    | 26° 29.53' | 76° 30.04' | 4858         | 04/18/2008 |
| WB4     |         | 26° 24.92' | 75° 41.90' | 4705         | 04/28/2008 |
| WB5     | M383    | 26° 30.33' | 71° 58.23' | 5293         | 04/14/2008 |
| WBL3    |         | 26° 30.41' | 76° 44.66' | 3887         | 04/24/2008 |
| WBLB    |         | 26° 29.93' | 76° 29.64' | 4887         | 04/24/2008 |
| WBL4    |         | 26° 24.25' | 75° 42.59' | 4705         | 04/28/2008 |
| WBL5    | M384    | 26° 30.44' | 71° 58.86' | 5239         | 04/14/2008 |

| Table 2. | Mooring | Deployments |
|----------|---------|-------------|
|----------|---------|-------------|

### **3.2 Inverted Echo Sounders**

NOAA maintains a line of inverted echo sounders (IES) along 26° 30' N as part of its Western Boundary Time Series project. Some of the instruments are also equipped with bottom pressure sensors (PIES), and one has both a bottom pressure sensor and a single

point current meter 50 m above the bottom (C-PIES). No deployment or recovery operations were planned for this cruise, but one PIES (site E) had to be recovered after it was determined the instrument was no longer sampling, and could not be communicated with acoustically. Acoustic data telemetry was successfully conducted at four other PIES sites. The activities involving inverted echo sounders are summarized in Table 3.

| Site | Instrument | Latitude (°N) | Longitude (°W) | Depth (m) | Activity  |
|------|------------|---------------|----------------|-----------|-----------|
|      | type       |               |                |           |           |
| Α    | PIES       | 26° 30.9'     | 76° 50.0'      | 1092      | Telemetry |
| В    | PIES       | 26° 29.5'     | 76° 28.2'      | 4804      | Telemetry |
| С    | PIES       | 26° 30.1'     | 76° 05.2'      | 4761      | Telemetry |
| D    | CPIES      | 26° 30.2'     | 75° 42.3'      | 4690      | Telemetry |
| Е    | PIES       | 26° 29.9'     | 72° 00.3'      | 5233      | Recovery  |

#### Table 3. PIES Operations

# 4. CTDO<sub>2</sub>/LADCP Stations

A total of 45 CTDO<sub>2</sub> stations were conducted during the cruise (Table 4, Figure 2a and 2b). At each station, profiles of temperature, salinity (conductivity), and dissolved oxygen concentration were collected from the surface to within approximately 20 m of the bottom, using a Sea-Bird SBE-911plus CTD system. Water samples for calibration of the salinity and dissolved oxygen profiles were collected using a 24-bottle Rosette system containing 10 liter Niskin bottles. Current profiles were also measured using a paired downward-looking 150 kHz Broadband and upward-looking 300 kHz Workhorse Acoustic Doppler Current Profiling 'hybrid" system (LADCP) for all stations on the Abaco line (stations 13-35), and at one of the instrument calibration stations (station 10, see below). A second LADCP system consisting of paired upward and downward looking 300 kHz ADCPs was used for most of the remaining stations, including the Straits of Florida section (stations 1-9) and calibration casts 36-43. No LADCP data was collected on calibration casts 11-12 and 44-45. First pass processing of LADCP data was done using Visbeck version IX.4 software with navigation data only, which requires manually clipping off the on-deck data using RDI's WINADCP to obtain sensible profiles. Second pass processing was completed with version IX.4, including processed CTD station data and on-station shipboard ADCP data.

Some of the  $CTDO_2$  casts were used to perform calibration checks on the temperature, salinity, and pressure measurements obtained from various moored instruments (SBE Microcats and Aanderaa RCM current meters) after their recovery or prior to deployment. Acoustic releases were also attached to the frame and tested on several of these stations. During these casts, the outer rack of Niskin bottles was removed from the Rosette to accommodate the moored instruments and the CTD package was lowered to

3000-4000m with 5 minute bottle stops during the package retrieval. These casts were not part of the regular  $CTDO_2/LADCP$  hydrographic sampling performed on the cruise and are indicated by an asterisk (\*) in Table 4.

| Station | Date     | Time<br>(UTC) | Latitude<br>(°N) | Longitude<br>(°W) | Depth<br>(m) |
|---------|----------|---------------|------------------|-------------------|--------------|
| 1       | 04/04/08 | 1833          | 27.005           | 79.933            | 153          |
| 2       | 04/04/08 | 2051          | 27.002           | 79.867            | 258          |
| 3       | 04/04/08 | 2241          | 27.002           | 79.784            | 382          |
| 4       | 04/05/08 | 0010          | 26.999           | 79.686            | 528          |
| 5       | 04/05/08 | 0152          | 27.004           | 79.618            | 634          |
| 6       | 04/05/08 | 0351          | 27.001           | 79.503            | 760          |
| 7       | 04/05/08 | 0557          | 27.000           | 79.380            | 655          |
| 8       | 04/05/08 | 0747          | 27.003           | 79.284            | 611          |
| 9       | 04/05/08 | 0910          | 27.002           | 79.200            | 478          |
| 10*     | 04/08/08 | 0234          | 25.952           | 76.896            | 3472         |
| 11*     | 04/08/08 | 0708          | 25.943           | 76.912            | 3473         |
| 12*     | 04/08/08 | 1135          | 25.933           | 76.927            | 1107         |
| 13      | 04/08/08 | 1719          | 26.523           | 76.88             | 511          |
| 14      | 04/08/08 | 1844          | 26.516           | 76.832            | 1120         |
| 15      | 04/08/08 | 2022          | 26.500           | 76.743            | 3832         |
| 16      | 04/09/08 | 0004          | 26.500           | 76.656            | 4578         |
| 17      | 04/09/08 | 0526          | 26.500           | 76.566            | 4835         |
| 18      | 04/09/08 | 1022          | 26.497           | 76.474            | 4847         |
| 19      | 04/09/08 | 1535          | 26.495           | 76.346            | 4838         |
| 20      | 04/09/08 | 2022          | 26.500           | 76.218            | 4817         |
| 21      | 04/10/08 | 0055          | 26.500           | 76.086            | 4804         |
| 22      | 04/10/08 | 0538          | 26.499           | 75.900            | 4747         |
| 23      | 04/10/08 | 1026          | 26.499           | 75.703            | 4693         |
| 24      | 04/10/08 | 1545          | 26.500           | 75.499            | 4689         |
| 25      | 04/10/08 | 2106          | 26.503           | 75.304            | 4644         |
| 26      | 04/11/08 | 0143          | 26.501           | 75.083            | 4613         |
| 27      | 04/11/08 | 0650          | 26.503           | 74.800            | 4542         |
| 28      | 04/11/08 | 1158          | 26.501           | 74.517            | 4490         |
| 29      | 04/11/08 | 1719          | 26.498           | 74.239            | 4535         |
| 30      | 04/11/08 | 2329          | 26.503           | 73.871            | 4731         |
| 31      | 04/12/08 | 0516          | 26.500           | 73.501            | 4970         |
| 32      | 04/12/08 | 1105          | 26.500           | 73.133            | 5048         |
| 33      | 04/12/08 | 1713          | 26.500           | 72.768            | 5140         |
| 34      | 04/12/08 | 2243          | 26.500           | 72.383            | 5191         |
| 35      | 04/13/08 | 0425          | 26.501           | 71.990            | 5291         |
| 36*     | 04/19/08 | 0008          | 26.473           | 76.508            | 3472         |

 Table 4. CTDO2 Station Locations

| 0427 | 0 1 1 1                                      |                                                              |                                                                                                  |
|------|----------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 0427 | 26.464                                       | 76.505                                                       | 3475                                                                                             |
| 1722 | 26.490                                       | 76.808                                                       | 1114                                                                                             |
| 2212 | 26.041                                       | 76.837                                                       | 3966                                                                                             |
| 0329 | 26.212                                       | 76.740                                                       | 3960                                                                                             |
| 0040 | 26.500                                       | 76.599                                                       | 3974                                                                                             |
| 0541 | 26.482                                       | 76.598                                                       | 3959                                                                                             |
| 0155 | 26.460                                       | 76.635                                                       | 3962                                                                                             |
| 0304 | 26.499                                       | 76.579                                                       | 3998                                                                                             |
| 1546 | 26.393                                       | 75.676                                                       | 3471                                                                                             |
|      | 2212<br>0329<br>0040<br>0541<br>0155<br>0304 | 221226.041032926.212004026.500054126.482015526.460030426.499 | 221226.04176.837032926.21276.740004026.50076.599054126.48276.598015526.46076.635030426.49976.579 |

\* Instrument calibration casts

#### 5. Underway Measurements

#### Thermosalinograph

Values of surface temperature and salinity were continuously monitored and logged on the ship's computer using a Sea-Bird temperature-conductivity recorder installed in the ship's seawater intake line.

#### Shipboard Acoustic Doppler Current Profiler

Upper ocean currents were continuously measured with two different Acoustic Doppler Current Profilers (ADCPs) mounted in the ship's transducer well. One was a 150 kHz Ocean Surveyor ADCP and the other was a 38 kHz Ocean Surveyor ADCP. The depth range of good velocity data typically extended to 220 m below the vessel for the 150 kHz ADCP, and 1000 m for the 38 kHz ADCP, depending on sea state conditions. One of the beams of the 150 kHz ADCP was malfunctioning during the entire cruise, but the 3-beam solutions obtained from the 3 functioning beams appeared otherwise good. The POSMV 3-D navigation system used for the ADCPS was improperly calibrated during the first part of leg 1 (for the outbound Florida Straits section along 27° N), but was properly calibrated for the remainder of the cruise after careful repositioning of one of the antennas and recalibration of the system. Details of the shipboard and lowered ADCP operations on the cruise are contained in a separate (internal) report prepared by Dr. Lisa Beal, which can be made available on request.

#### 6. Preliminary Results

The LADCP data acquired across the Florida Current (Figure 3) show the typical surface intensified velocity core of the current with maximum speeds near 2.0 m/s. However in this section the flow appears atypically strong over the shallow part of the section near Florida. Evidence is also found for a weak (southward) countercurrent near the bottom along the Florida continental slope.

The LADCP section east of Abaco (Figure 4) shows evidence of the Deep Western Boundary Current (DWBC) at depths below about 1000 m between Abaco and 75.5° W, with a nearly uniform vertical structure and with maximum speeds near 30 cm/s. Atypical features of the section include the absence of an "Antilles" Current, which is normally found flowing northward just offshore of Abaco with a subsurface core near 400 m, and a small eddy-like circulation centered near 700 m depth just offshore of the Bahamas escarpment. Farther offshore, a banded structure of reversing currents is found suggestive of planetary waves or additional eddy features of larger zonal scale.

### 7. Release of Project Data

In accordance with the provisions specified in the cruise prospectus and application for foreign clearances, the full data results from this experiment will be provided to the Commonwealth of the Bahamas according to the following schedule:

### Shipboard Measurements

All shipboard measurements, including underway data records and CTDO<sub>2</sub>/LADCP station data, will be provided within 1 year of the termination of the cruise (May, 2009).

### Moored Instrumentation

Time series data records from the moored instruments will be provided within 2 years of recovery of the instruments (nominally May, 2010).

### 8. Acknowledgements

The support and able assistance provided by the Captain and crew of the *R/V Seward Johnson*, operated by the Harbor Branch Oceanographic Institution, is gratefully acknowledged. Support for the scientific research was provided by the U.S. National Science Foundation, the NOAA Office of Global Programs, and the U.K. National Environmental Research Council. The Commonwealth of the Bahamas graciously granted privileges to conduct scientific research in their territorial waters.

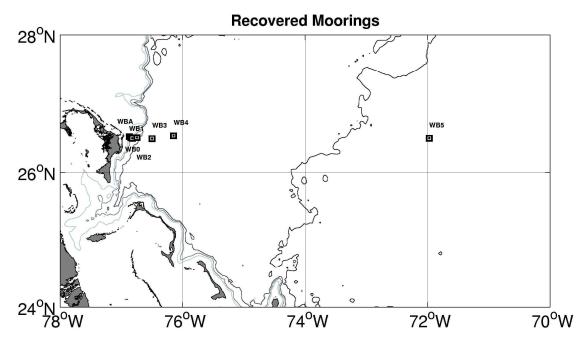



Figure 1a. Moorings recovered on cruise SJ-08-03. Additional "bottom lander" moorings were recovered at sites WB2 and WB4 (not shown).

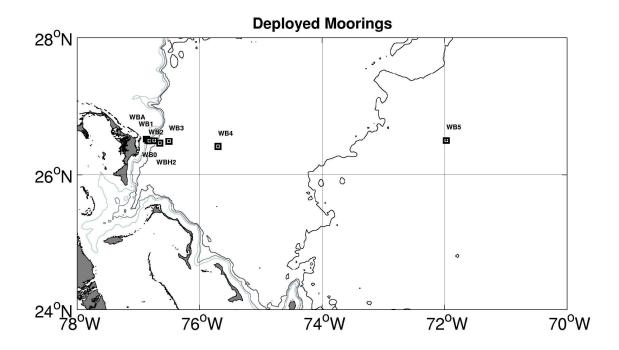



Figure 1b. Moorings deployed on cruise SJ-08-03. Additional "bottom lander" moorings were deployed at sites WB2, WB3, WB4 and WB5 (not shown).

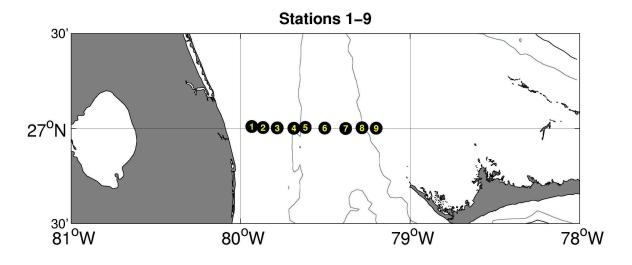



Figure 2a. CTDO2/LADCP stations 1-9, occupied on April 4-5, 2008.

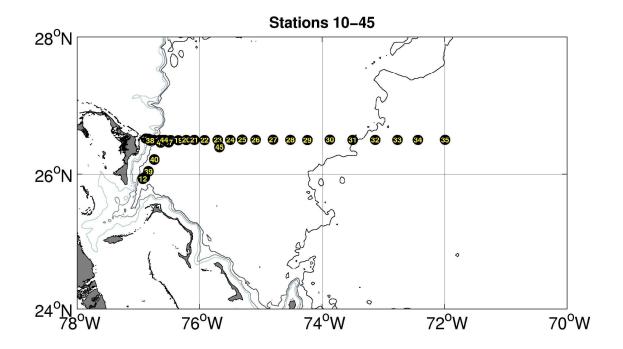



Figure 2b. CTDO2/LADCP stations 10-45, occupied on April 8-28, 2008.

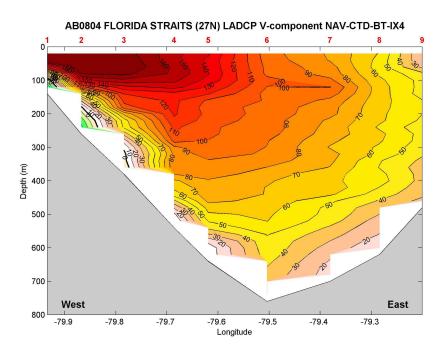



Figure 3. Gulf Stream at 27°N, stations 1-9, April 4-5, 2008.

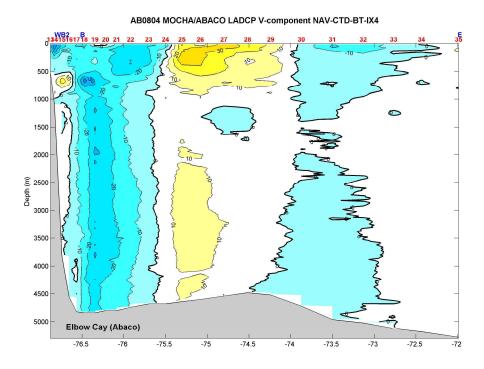



Figure 4. Meridional velocity section offshore of Abaco, contoured from LADCP velocity profiles at stations 13-35, April 8-13, 2008.