PROGRAMME

26 June – 15 July 2016

Ports
Loading: Aberdeen, 20 June 2016
Departure: Scrabster, 26 June 2016
Half-landing: Lerwick, 4 July 2016 (TBC)
Arrival and unloading: Aberdeen, 15 July 2016

In setting the survey programme and specific objectives, etc the Scientist-in-Charge needs to be aware of the restrictions on working hours and the need to build in adequate rest days and rest breaks as set out in Marine Scotland’s Working Time Policy (Lab Notice 34/03). In addition, the Scientist-in-Charge must formally review the risk assessments for the survey with staff on-board before work is commenced.

In the interest of efficient data management it is now mandatory to return the Survey Report, to I Gibb and the Survey Summary Report (old ROSCOP form) to M Geldart, within four weeks of a survey ending. In the case of the Survey Summary Report a nil return is required, if appropriate

Personnel

S. Lusseau (SIC)
M. Stewart
S. O’Connell
H. Holah
R. G Mules (Part 1)
M. Fourrier (Part 1)
E. Barreto (Part 2)
M. Campbell (Part 2)
C. Puglia (Student, University of Aberdeen)

Estimated days by project: 20 days – RV1612 (20387)

Sampling Gear
Midwater trawls PT160 x 3
Seabird 19plus CTD
GoPro cameras x 2 with underwater housings and lights
Scanmar trawl eye sensor
Objectives

- To conduct an acoustic survey to estimate the abundance and distribution of herring in the north western North Sea and north of Scotland between 58°30' - 62°N and from the shelf edge to 2ºE, excluding Faroese waters. In addition acoustic transects will be carried out in Moray Firth to estimate abundance of herring and sprat.

- To obtain biological samples for echosounder trace identification using a pelagic trawl.

- To obtain samples of herring (and sprat) for biological analysis, including age, length, weight, sex, maturity, ichthyophonus infection and stock identity for herring caught west of 4ºW (photos for morphometric stock ID analysis and tissue samples for genetic analysis).

- To test feasibility of using GoPro cameras mounted in the net and on a dropframe to further aid in species identification in the echogram scrutiny process.

- To obtain hydrographic data for comparison with the horizontal and vertical distribution of herring (and sprat).

Procedure

All fishing gear and scientific equipment will be loaded onto the vessel on 20 June in Aberdeen. The vessel will depart from Scrabster on 25 June and, after required vessel drills, make passage to Scapa Flow, Orkney Islands, where calibration of all echosounders will take place (approximately 8-12 hours at anchor). Crew training and trial deployments of fishing gear will take place en route as required by the fishing master.

On 26 June the vessel will return to Scrabster to allow E. Armstrong to leave the vessel. From here the vessel will make passage to the start of the first transect and follow a pattern of parallel transects running east/west, at normal steaming speed (10.5 knots), progressing northwards, between the 200m contour to the west and 04ºW.

The whole survey area is bounded by 58°30' - 62°N and 04ºW - 02ºE to the 200 m contour. Coverage of Moray Firth will also be required this year. Transect spacing is 15 nm depending on herring densities encountered in previous years. The proposed Scotia survey design is shown in Figure 1. This may be adapted during the survey to maximize area coverage given the time available.

A 24 hour mid survey break will take place on approximately 4 July in Lerwick (TBC) to allow for the transfer of staff and to comply with the WTD policy. A scientific crew change will take place with E Barreto and M Campbell joining the vessel and R. G. Mules and M. Fourrier leaving. A calibration will be conducted around the mid survey break in a suitable location or in Orkney at the end of the survey if time permits.

Acoustic data will be collected at four frequencies (18, 38, 120 and 200 kHz) between 03:00 and 23:00 hours. Fish shoals seen on the echosounder will be identified using a pelagic trawl (PT160). Survey trawling operations will be carried out between two and four times per day at any time between 03:00 and 23:00 using the standard PT160 trawl. Samples of all species
caught will be measured for length to partition the echo integral amongst species and size classes for target strength functions. Fish will also be weighed to establish a length-weight relationship. Otoliths will be collected from a sub-sample of the herring according to the following length stratified scheme to determine age; two per 0.5 cm class below 22 cm, five per 0.5 cm class from 22.5-27.5 cm and ten per 0.5 cm class for 28.0 cm and above. For each herring in the subsample the state of maturity, gonad weight, liver weight, whole and gutted weight, presence of food in the stomach as well as the presence of Ichthyophonus infection will be recorded. The maturity scale used throughout the survey will be the Scottish 8 stage scale. Where sprat is encountered 5 per 0.5cm length class will be sampled for age, weight, sex and maturity.

In the area west of 4ºW, in addition to the above described sampling, random sampling of 120 fish above 24 cm length will be carried out for each haul with photographs taken for morphometric stock identification analysis and a tissue sample taken for genetic analysis. Otoliths from these fish will, subsequent to aging, be made available for morphometric analysis. After photographing them, and where possible, these randomly sampled fish will make up part of the standard sampling for herring. Additional fish will be collected to ensure the relevant numbers of fish are collected per strata for acoustic data analysis.

A GoPro camera and underwater lights will be mounted in the trawl as required to aid in species identification in the echogram scrutiny process by delivering additional information on time of capture of and composition of the catch. A GoPro camera will also be deployed manually on a small drop frame on echotrajectories to investigate the feasibility of using this technique to verify species composition of echosounder traces in untrawlable areas. This exercise will be conducted with the vessel in DP.

Where required, a vertical hydro dip will be carried out immediately following a pelagic trawl, this will require the vessel to use its DP system to remain on station. The decision to carry out vertical dips will be based on the requirement to achieve one station in each ICES rectangle.

The ship’s thermosalinograph will be run continuously to obtain sea surface temperature and salinity throughout the survey area.

Normal contact will be maintained with the Marine Laboratory. Radio and e-mail contact will also be maintained with the other vessels taking part in the coordinated survey.

Submitted:
S. Lusseau
13 June 2016

Approved:
I. Gibb
18 June 2016.
Figure 1: Area to be covered and proposed preliminary survey track Scotia 0916S (approximately half of these transects to be covered by other vessel) and others might be added depending on available survey time.