Cruise Report

Understanding Hazardous Seafloor Sediment Flows
in the Congo Submarine Canyon, Offshore West Africa
RRS James Cook - JC187

Important Note:
The RRS James Cook's logged time in UTC (= GMT) and this is the timing system adopted here unless otherwise stated.

Contents

1 Introduction 5
2 Overall Aims 8
3 Executive Summary 8
4 Permits 9
5 People on Board. 10
5.1 Scientific Team 10
5.2 Technicians 10
5.3 Crew 10
6 Itinerary 11
7 Overview of Events (Cruise Narrative) 12
8 Methods: Tools and Techniques 18
8.1 Moorings 18
8.1.1 Methods for Deploying Moorings 18
8.1.2 NERC moorings 18
(From technical report by Paul Provost, Steve Whittle, Dave Childs, Tim Powell) 18
8.1.3 ANIITRA moorings 60
8.1.4 Triangulation 66
8.2 Multibeam Echo-Sounder (MBES) 93
8.2.1 Previous bathymetric surveys available to this cruise 93
8.2.2 Aims of multibeam surveying 93
8.2.3 Multibeam setup and processing 94
8.2.4 Path planning, layout, and recording 94
8.2.5 Locations, coverage, and performed surveys 95
8.2.6 Survey performance 99
8.3 Water Column Measurements 99
8.3.1 CTD and SVP data 99
8.3.2 CTD Instruments and calibration 99
8.3.3 Water samples 101
$8.4 \quad 3.5 \mathrm{kHz}$ sub-bottom profiler (CHIRP) 101
8.4.1 Previous sub-bottom surveys available to this cruise 101
8.4.2 Aim of Sub-bottom surveying 102
8.4.3 Sub-bottom setup and processing 102
8.4.4 Runtime Parameters 102
8.5 USBL Sonardyne 103
8.6 Piston corer 104
8.7 Mega-corer (interface corer) 107
8.7.1 Aim of mega-core sampling 107
8.7.2 Mega-core deployment 108
8.7.3 Subsampling using Trigger Weight Core liner 109
8.7.4 Subsampling for EPS and Clay Minerals 112
8.8 Ocean Bottom Seismometers 114
8.9 Vertical Hydrophone Array 117
9 Preliminary Findings 117
9.1 Moorings 117
9.1.1 Mooring site 8 117
9.2 Sediment Cores 117
9.2.1 Upper Canyon (Angolan waters) 120
9.2.2 International waters 136
$9.3 \quad 3.5 \mathrm{kHz}$ sub-bottom profiler (CHIRP) 147
9.4 CTD and water samples 147
9.4.1 CTD data 147
9.4.2 Water samples 171
10 References Cited 172
11 Appendix A: Summary of Events 173
12 Appendix B: GIS locations 182
13 Appendix C: Master Log Sheets 185
14 Appendix D. Distances from cores to target, ship's position and ship's corer's position 278

1 Introduction

Avalanches of sediment along the seafloor (called turbidity currents) dominate sediment transfer into much of the deep ocean, and form the largest sediment accumulations on Earth (called submarine fans). These spectacular underwater flows carve some of the deepest canyons and longest channel systems found on our planet, which can extend for hundreds to thousands of kilometers. The scale of turbidity currents is not the only reason they have global importance. Turbidity currents are sometimes very powerful, and travel with speeds of up to $20 \mathrm{~m} / \mathrm{s}$. They can break valuable seabed telecommunications cables that now carry over 99% of global data traffic, and which underpin the internet and many other aspects of our daily lives. These seabed sediment avalanches also play a globally important role in organic carbon transfer and burial, which affects longer-term climate change. Turbidity currents both supply key nutrients and physically disturb deep-sea ecosystems, which include biological diversity hot spots along submarine canyons.

However, despite their importance, there are remarkably few direct observations from turbidity currents in action, and they are thus poorly understood. This is a stark contrast to other major sediment transport processes, such as rivers. Down-canyon changes in turbidity current power, frequency, duration, and runout distance, are therefore hard to predict for geohazard assessment.

However, previous work at 2 km water depth in the Congo Canyon successfully made the first detailed (sub-minute) measurements of turbidity currents in the deep ocean (Cooper et al., 2013, 2016), using acoustic sensors called ADCPs (acoustic Doppler current profilers). These initial measurements produced a major advance in understanding of turbidity currents, including that powerful turbidity currents can be a week long, and are active for $\sim 30 \%$ of the time in the upper Congo Canyon (AzpirozZabala et al., 2017). This preliminary work showed that the Congo Canyon was an excellent location for subsequent more-detailed studies of turbidity currents, such as in this project.

Research cruise JC187 on the RRS James Cook is part of a scientific project funded by the UK Natural Environment Research Council (Grants NE/R001952/1 and NE/S010068/1), whose purpose is to measure and thus understand turbidity currents that form the submarine Congo Canyon, which extends into the deep ocean from the mouth of the Congo River (Fig. 1.1). This understanding will help to mitigate hazards to seabed telecommunication cables, or oil and gas pipelines and infrastructure, which cross the Congo submarine canyon. This includes the WAC, ACE and SACS cables that now underpin data transfer (and internet) to much of West Africa.

The scientific project comprises a series of four scientific research cruises using UK research vessels (e.g. RRS James Cook), which are owned by the UK's Natural Environment Research Council (NERC). The NERC-funded scientific project is led by Professor Talling at the University of Durham in the UK, and involves UK colleagues at the Universities of Hull, Southampton and Newcastle, together with the UK's National Oceanography Centre in Southampton. The project includes key partners at IFREMER in France, and GEOMAR in Germany, who are providing extra equipment and their expertise. The project also involves close collaboration with Angola Cables to disseminate results to submarine telecommunication cable operators in the region (e.g. via the West Africa Cable (WAC) consortium). In Angola, the project also involves the MTTI, IPMA and Ministry for Oil and Gas, amongst others.

Research cruise JC187 is the first of four research cruises. Its initial aim is to deploy 11 moorings anchored on the seabed (Figs. 1.1, 1.2, 1.3) that will measure the speed, frequency, runout distance, and character of turbidity currents along the Congo Canyon. Seven moorings were deployed at five locations in the upper canyon, and four moorings were deployed at four sites in the lower canyonchannel. Two ('Aniitra') moorings were provided by IFREMER, with the remaining 9 moorings provided by the NERC project. These 11 moorings will be recovered (along with their data), and then redeployed after a change of battery, by research vessels during future research cruises that are planned for 2020 and 2021. All moorings will be recovered by a research cruise planned for 2023. This will hopefully provide measurements of turbidity currents over a 4-year period (2019-23).

Figure 1.1: Map of the Congo Canyon, showing locations of the project's ADCP-moorings (arrows), Ocean Bottom Seismometers and 16-hydrophone array (circles). The map shows how moorings are located within two sets. The first set of moorings (2a-d) are in Angolan territorial waters in the upper canyon. The second set of moorings (4,5, 6, 7 and 8) are situated within deeper international waters.

FINAL 2019 MOORING ARRAY

Figure 1.2: Summary of the planned array of moorings and other sensors along the Congo Submarine Canyon, from shallower water (right) to deeper water (left). The height of each sensor is marked in meters above the seabed. ADCPs (300, 600 or 75 kHz frequency) are shown as black squares, together with sediment traps, CTD (water temperature and salinity) sensors, single hydrophone, and the acoustic releases triggered to recover the moorings (see key).

The second overall aim of this NERC project is to determine whether turbidity currents can be recorded successfully by hydrophones and geophones, which may then provide the basis for future low-cost systems to measure turbidity current activity. Unlike anchored moorings, hydrophones and geophones can be located outside the flow, and thus out of 'harm's way'. Research cruise JC187 deployed 12 Ocean Bottom Seismometers (OBS) that are typically used to measure offshore earthquakes, which comprise 'frames' that sit on the seabed (Fig. 1.4). Each OBS contains a geophone (to record ground shaking) and hydrophone (to record water-column noise). A prototype mooring with a vertical line of hydrophones was tested and deployed. Hydrophones on this array are located over 300 m above the seabed, and thus may have a better 'line of sight' for recording canyon floor flows, than the seabed OBS. A single hydrophone was also located directly above the flows on one of the ADCP-moorings. A series of standard oceanographic CTD (conductivity, temperature and pressure) sensors were placed on moorings (Fig. 1.2) to measure changes in seawater salinity and temperature, and to determine changes in pressure that indicate tilt or movement of moorings into deeper water.

In order to locate moorings in the best placed on the seabed, multibeam echo-sounder (MBES) bathymetric surveys were undertaken between mooring sites. This provided detailed bathymetric maps of the mooring sites needed to identify flatter and wider areas of the canyon floor. Such bathymetric mapping also documented how turbidity current sculpt the seabed, and comparisons to previously collected IFREMER bathymetric surveys may show how that seabed shape had changed.

CTD and SVP (sound velocity profiler) sensors were lowered from the vessel. As is standard practice, they are used to calibrate bathymetric surveys, which need information on sound velocity structure of the water column to obtain the highest resolution. We also tested whether ship-based CTD casts may can provide an extra way to measure active turbidity currents moving along the canyon. Watercolumn samples taken during these CTD casts tested whether we can directly measure sediment grainsize within moving turbidity currents, or the presence of microplastic particles in these flows.

Figure 1.2 provides a summary of the mooring design, and their locations. Each mooring contains one or more acoustic Doppler current profilers (ADCPs) with different frequencies. Multiple ADCP frequencies are used at the same site because this allows us to estimate sediment concentrations via inversion of ADCP backscatter. The ADCPs are broadly similar to those used in Cooper et al.'s (2013, 2016) in the upper canyon. A subset of 4 moorings also contain a sediment trap to measure the size of sediment carried by the flow. Sediment cores were collected from the canyon floor and terraces to analyse the deposits of sand and mud left behind by turbidity currents within the canyon.

Figure 1.3: Diagram illustrating a typical mooring design with buoyancy (syntactic buoy), 300 kHz $A D C P$, sediment trap, CTD sensor and anchor chain. The mooring is lowered (anchor first) to the seabed, and then recovered by triggering the acoustic release from the ship, such that the mooring floats back to the surface.

Figure 1.4: Deployment of an Ocean Bottom Seismometer (OBS) from a NERC vessel. The OBS is lowered to the seabed, and recovered via an acoustic release, triggered from the ship, which causes the OBS to float back to the sea surface (where it is collected).

2 Overall Aims

The first overall aim of the project is to understand the speed, frequency, runout distance, and character of turbidity currents within the Congo Canyon. We also seek to understand how turbidity currents form seafloor deposits, and sculpt seabed morphology. This information will help with geohazard assessment and planning of future submarine cable routes across the Congo Canyon.

The second overall aim is to determine whether hydrophones or geophones can record turbidity currents, and thus provide information on their frequency, duration or character.

A series of subsidiary aims include the following. The third aim is to understand how organic carbon is transferred, fractionated and buried by turbidity currents. The fourth aim is to test whether turbidity currents transport microplastic particles to the deep sea. A final aim is to understand the distribution and abundance of EPS (Extracellular Polymetric Substances) on the canyon floor, which is a sticky substance secreted by organisms that affect the cohesive properties of the seabed.

3 Executive Summary

Research cruise JC187 was very successful. It deployed 11 ADCP-moorings, 12 OBS and a hydrophone array along the Congo Canyon (Figs. 1.1 \& 1.2). This comprises 7 ADCP-moorings at 5 sites in the upper canyon, within Angolan waters (Fig. 1.5). A further 4 ADCP-moorings were then deployed at 4 sites within deeper International Waters (Figs. 1.1 \& 1.2). Triangulation showed that all 11 moorings were correctly placed on their targets along the narrow canyon floor. A total of 25 mega-cores ($\sim 50 \mathrm{~cm}$ long that capture the sediment-water interface) and 20 much longer (up to 15 m) piston cores. Mega-cores show that the canyon floor often has a surface layer of weak (fluid) mud, with sand underneath in the channel axis. Splitting and logging of piston cores did not take place on the vessel, but will provide further useful information. To help locate moorings, detailed ($5-15 \mathrm{~m}$ horizontal resolution) bathymetric surveys were completed between all 5 mooring sites in Angolan waters, along a $\sim 70 \mathrm{~km}$ length of the canyon. Detailed bathymetry was also collected along the entire canyon length within International Waters. These bathymetric surveys helped to locate moorings in wider parts of the canyon floor, and can be compared to previous less detailed surveys collected in 1998 by French colleagues at IFREMER. The moorings will now be recovered by a second NERC-funded cruise in OctDec 2020, and we will see whether the ADCPs and other sensors have recorded the frequency, runout and nature of turbidity currents moving down the canyon. Such data will be valuable for designing future submarine telecommunication cable routes, and assessing hazards to existing cables.

Figure 3.1. (A) Map of the upper Congo Canyon in the territorial waters of Angola alone. It shows Mooring Sites 2A-to-2E, OBS and core sites, plus the extent of multibeam surveys between sites. (B) Schematic diagram showing array of moorings deployed in Angolan water in the upper canyon, shown as an along canyon transect from shallow water to deep water. Also shown are positions of seabed cables on nautical charts, which we that we had to avoid, together with OBS, vertical hydrophone array, and core positions. The sensors on each mooring are summarised, as set out in the key above.

4 Permits

We are very grateful to the Angolan authorities for permitting scientific work in their territorial waters, and such permissions are critical for this science. We would also like to thank Joao Baptista, Rui Faria and their team at Angola Cables, who facilitated that process, together with the Angolan Ministry for Telecommunications (MTTI), Ministry for Foreign Affairs, Ministry for Oil and Gas, Hydrographic Office (IMPA), Angolan Navy and others for their assistance in Angola. Hospitality for visits by Talling and Dale Smith to Luanda was much appreciated. Although we did not manage to obtain permits to work in the waters of Gabon, Congo and Democratic Republic of Congo, we thank those who helped to submit those applications. We also thank Costa António Cula (Angola Cable Company), Ducerolde Carlos Nunes Neto (Faculty of Science), and Tresor Ilola Jorge (National Institute of Biodiversity and Conservation Areas (INBAC); Ministry of the Environment) for being a key part of JC187 as Observers.

5.1 Scientific Team

Day Shift (7am - 7pm)	Night Shift (7pm - 7am)
Peter Talling (Durham University, U.K.)	Ricardo de Silva Jacinto (IFREMER, Brest, France)
\quad Project Principle Investigator	- Watch leader
Ed Pope (Durham University, U.K.)	Maarten Heijnen (National Oceanography
Megan Baker (Durham University, U.K.)	Centre, U.K.)
Steve Simmons (Hull University, U.K.)	Sophie Hage (National Oceanography Centre,
Kate Heerema (Durham University, U.K.)	U.K.)
Sean Ruffell (Durham University, U.K.)	Claire McGee (Newcastle University, U.K.)
	Martin Hasenhündl (TU Wien, Austria)
	Ronan Apprioual (IFREMER, Brest, France)
	Anthony Ferrant (IFREMER, Brest, France)

Observers: Costa António Cula (Angola Cable Company), Ducerolde Carlos Nunes Neto (Facilty of Science), Tresor Ilola Jorge (National Institute of Biodiversity and Conservation Areas (INBAC), Ministry of the Environment)

5.2 Technicians

Paul Provost - Head mooring
Jez Evans - Head coring
Mark Maltby - Geophysical surveying
Steve Whittle - Moorings
Dave Childs - Moorings
Tim Powell - Moorings

5.3 Crew

Jim Gwinnell - Master
Andy Mahon - Chief Officer (security)
Mike Hood - Second Officer (medical)
Bryn Beaurain - Third Officer
Chris Uttley - Chief Engineer (safety)
Mick Murray - Second Engineer
Stewart Smith - Third Engineer
Gary Slater - Third Engineer
Conrad Laversuch - Electrician
Paul Lucas - Purser
Martin Harrison - Chief Petty Officer (science)

Will Richardson - Coring
Andy Cotmore - Coring
Andy Leadbeater - Coring
Ben Pitcairn - OBIC
Andy Clegg - OBIC
Martin Weeks - OBIC

Steve Duncan - Chief Petty Officer (deck)
Brian (Burt) Burton - Petty Officer (deck)
John Allen - Seaman
Peter Smyth - Seaman
Colin Atkinson - Seaman
Marshall Mackinnon - Seaman
Sean Angus - Engine Room Petty Officer
Darren Caines - Head Chef
Jacqui Waterhouse - Chef
Tina Carrilho Mantinha - Steward
Kevin Mason - Assistant Steward

Day	Time	Activity
Saturday $31^{\text {st }}$ August	$10: 00$ (local)	Depart Mindelo in Cape Verde
Monday $9^{\text {th }}$ September	$20: 00$	Arrived first work area in international waters
Thursday $12^{\text {th }}$ September	$19: 00$	Departed first work area
Saturday $14^{\text {th }}$ September	$10: 00$	Arrive in Luanda in Angola to collect observers
Saturday $14^{\text {th }}$ September	$15: 00$	Depart Luanda
Sunday $15^{\text {th }}$ September	$10: 00$	Arrive in second work area in Angolan waters
Sunday $22^{\text {nd }}$ September	10.00	Depart Angolan waters
Monday $23^{\text {rd }}$ September	02.00	Arrive in international waters
Monday $23^{\text {rd }}$ September	08.00	Depart international waters
Tuesday $24^{\text {th }}$ September	15.00	Arrive Luanda
Wednesday $25^{\text {th }}$ September	09.20	Arrive Angolan waters
Thursday $26^{\text {th }}$ September	07.20	Arrive International waters
Wednesday $2^{\text {nd }}$ October	$24: 00$	End Science activities
Monday $7^{\text {th }}$ October	$11: 00$	Arrive at Walvis Bay in Namibia

7 Overview of Events (Cruise Narrative)

This section provides a brief overview of what happened during cruise JC-187, followed by a detailed list of events in Appendix B. An electronic copy of the original master log sheets, which contain a full record of activities at all stations during the cruise, is provided by Appendix A.

Times are in UTC/GMT (i.e. ship's time) not local time.

Figure 7.1. Research cruise JC187 started at Mindelo in Cape Verde, and completed work on the Congo Canyon. There were 2 sets of boat transfers at Luanda in Angola, and it finished in Walvis Bay, Namibia.

Cruise JC187 started from Mindelo in Cape Verde on 31 ${ }^{\text {st }}$ August 2019. The science team arrived in Mindelo on $28^{\text {th }} / 29^{\text {th }}$ of August, whilst the vessel arrived there from Southampton a few days earlier.

The vessel departed Mindelo at 09.00 UTC (10.00 local) on August 31 ${ }^{\text {st }} 2019$.
$1^{\text {st }}$ to $9^{\text {th }}$ September: The vessel transited from Cape Verde to the first work area on the Congo Submarine Fan, located within International Waters.
$3^{\text {rd }}$ September (Tuesday): Transit interrupted by test of OBIC, NMFD and German OBS releases.
At Site T-1, we deployed and test 12 x acoustic releases for OBIC OBS at 1 km depth. We then deployed and tested NMFD acoustic releases and German OBS releases on CTD cast (4 km depth).
$5^{\text {th }}$ September (Thursday): Ceremony for crossing Equator: meeting with King Neptune and his Wife.

$9^{\text {th }}$ September: Arrived work area at 20.30 in International waters near NERC Mooring 8.

A SVP/CTD cast was followed by Multibeam Survey (MBS_42) near Site 42. By narrowing the total beam width, and making multiple passes of the same area, the ship-mounted multibeam can image the 5 m deep, and 4 km wide shallow channel seen on IFREMER's AUV survey. So, the ship mounted MBES data may have $2-5 \mathrm{~m}$ vertical resolution, and gridded at 5 m horizontally.

A series of sediments cores were taken close to Site 42. Mega-core MC-01 buried the frame in at least 1 m of very weak mud on the seabed, and failed to recover sediment. So wooden planks were added to the mega-corer frame to reduce immersion in this layer, for Megacore-2. Mega-core MC-02 eventually successfully recovered full tubes. Piston Core PC-01 was $\boldsymbol{\sim 9 . 6 m}$ long. It has a soft muddy top, organic rich, but some fine sand lower down.

NERC Mooring 8 ($\mathbf{3 0 0} \mathbf{~ k H z ~ A D C P) ~ w a s ~ d e p l o y e d ~ s m o o t h l y , ~ a n d ~ i t ~ t o o k ~ a b o u t ~} 23$ mins to sink $\sim 5 \mathrm{~km}$ to seabed. The vessel then circled the mooring, so that we can triangulate its position. The mooring was located on the seabed 56 m north of its release point. (Note that we subsequently recovered this mooring and moved it to a new site further up the channel).

10th $\mathbf{- 1 1}^{\text {th }}$ September: Work near Mooring 7 in International Waters.

We then transited from Mooring 8 (Site 42) to Mooring 7 (Site 40 - later moved slightly to Site 76). A Multibeam Survey (MBS_40) around Site 76 successfully resolved bars and where the channel narrows or widens, thus helping us to find the best sites for moorings and cores. Megacore MC-03 and Piston Core PC-02 were taken at Site 58, on a terrace near to Site 42 . Gas was present in the piston core, causing end cap to pop off.

We then took Megacore MC-04 and Piston Core PC-03 at Site 77 on the nearby channel floor, which are located about ~300 m upstream of NERC Mooring 7 deployed at Site 76. Our aim is to re-core these sites on later cruises, to see if there are new deposits.
$12^{\text {th }}$ September: Survey and deployment of German OBS-1 between Moorings 7 and 8. We completed a small Multibeam Survey (MBS_39) and then deployed German OBS-1 outside the channel at a site located about half-way from Mooring 7 to Mooring 6.

12 September: Initial work around Mooring Site 6. We transited to complete a Multibeam Survey (MBS_37) near Mooring 6, but only had time to deploy 4 OBIC prototype OBS, before leaving for a boat transfer of observers in Luanda. The prototype OBS were later recollected. Our aim was to test if these prototype OBS worked successfully at full ocean depth before they are used elsewhere.

Figure 7.2. Map of events during the first phase of work from $9^{\text {th }}$ to $12^{\text {th }}$ September.
$12^{\text {th }}$ to $\mathbf{1 3}^{\text {th }}$ September: 36 hour transit to Luanda for boat transfers, which went very smoothly. We picked up four Angolan Observers in Luanda, and Guy Dale-Smith from NERC also visited the vessel.

13 to $14^{\text {th }}$ September: Transit back to the work area in upper Congo Canyon (in Angolan waters).

Figure 7.3. After initial work within International waters, JC-187 transited to Luanda to pick up Angolan observers, and then resumed work in the upper Congo Canyon within Angolan waters.
$15^{\text {th }}$ to $16^{\text {th }}$ September: Arrived at work area (Site 83) in upper canyon at 10:00. CTD/SVP cast in canyon axis, including to test OBIC acoustic releases. This was followed by a Multibeam Survey (MBS_83) of the upper canyon, ending at the boundary of Angolan-only waters and those also claimed by DRC. The aim of this multibeam survey was to identify the best locations for moorings.
$16^{\text {th }}$ to $17^{\text {th }}$ September: A second multibeam survey of the upper canyon (MBS_83) ended at the boundary of waters claimed by Congo, and provided information for the remaining mooring sites. A prototype mooring with a vertical array of hydrophones was tested via deployment on the seabed. It was later collected, and after this successful test, then deployed elsewhere in the upper canyon.
$17^{\text {th }}$ to $19^{\text {th }}$ September: A transect of three pairs of mega-cores and piston cores were then collected near to what would later become Mooring 2E (NERC Moorings 2 and 9). The first pair of cores was on the canyon floor (MC-05 and PC-04 @ Site 49), and the other two sets of cores (MC-06 and PC-07 @ Site 90; MC07 and PC-08 at Site 51) were located on progressively higher terraces.

Four pairs of mega-cores and piston cores were then taken near Mooring 2C (Aniitra-2 and NERC Mooring-1). The first two pairs of cores (MC-08 and PC-07 @ Site 66; MC-09 and PC-08 @ Site 93) were located on the canyon floor, about 300m apart. A pair of cores (MC-10 and PC-09 @ Site 96) were then located on a very low (+20 m) elevation terrace above the thalweg. A final pair of cores (MC-11 and PC-10 @Site 87) were then located on a higher terrace to the south of the channel.

A pair of cores (MC-12 and PC-11 @ Site 48) were then taken between Moorings 2B and 2C, on the extensive high terrace $\mathbf{(+ 2 0 0 m}$) to the north of the main channel. A final mega-core (MC-13) was taken in the thalweg of an inset channel, just above where the canyon is blocked by a landslide.

19 ${ }^{\text {th }}$ September: The Aniitra-2 Mooring and NERC Mooring 1 (300 kHz) were deployed at Site 2C, at Sites 66 and 93. OBIC OBS-1 was then placed on a large terrace (+200 m; Site 87) near the moorings.

Figure 7.4. (A) Map of the upper Congo Canyon in the territorial waters of Angola alone. It shows Mooring Sites 2A-to-2E, OBS and core sites, plus the extent of multibeam surveys between sites. (B) Schematic diagram showing array of moorings deployed in Angolan water in the upper canyon, shown as an along canyon transect from shallow water to deep water. Also shown are positions of seabed cables on nautical charts, which we that we had to avoid, together with OBS, vertical hydrophone array, and core positions. The sensors on each mooring are summarised, as set out in the key above
$19^{\text {th }}$ to $\mathbf{2 0}^{\text {th }}$ September: We then returned to Site 99 , just up-canyon of the landslide-blockage, to obtain a further pair of mega-core and piston core in the channel axis (MC-14 and PC-12). A pair of cores were also then obtained at a nearby low (+40 m) terrace (MC-15 and PC-13 @ Site 45).

20 ${ }^{\text {th }}$ September: We then moved to Mooring Site 2B, where we first collected a pair of cores (MC-16 and PC-14 @ Site 97) in the channel axis, before deploying NERC Mooring-4 ($\mathbf{3 0 0} \mathbf{~ k H z) ~ a t ~ t h i s ~ s i t e . ~}$

We moved to the furthest up-canyon Mooring 2A. We first collected a pair of cores (MC-17 and PC15 @ Site 98) in the channel axis, before deploying NERC Mooring-4 ($300 \mathbf{k H z)}$ at this same site. Unfortunately, PC15 @ Site 98 came back bent, suggesting hard sand. We then deployed OBIC OBS2 at Site 5 on a terrace southwest of Mooring 2A.

A pair of OBS (OBIC-3 @ 104 and OBIC-4 @ 105) were then deployed on a lower and higher terrace respectively, located southwest of Mooring Site 2B.

A single piston core was taken close to Site 98 with a $\mathbf{6 m}$ barrel, where we had previously bent a 12 m core barrel. This is near Mooring 2A.
$\mathbf{2 1}^{\text {st }}$ September: We then moved to Mooring Site 2D, where we first collected a pair of cores (MC-18 and PC-17 @ Site 92) in the channel axis, before deploying Aniitra Mooring 3 at this site.

We transited to recover the prototype hydrophone array from Site 86, located outside the canyon adjacent to Mooring 2E. We then deployed NERC Mooring-9 (600 kHz) at Site 14, but did not deploy NERC Mooring-2 at a nearby site as we were unsure whether its IcListen hydrophone's battery was working (this was later resolved, and Mooring-2 was deployed nearby at Site 118). We tried a CTD cast (with water samples) to try to sample an active turbidity current in the channel near Site 14, but the channel seemed to be inactive.

22nd September: We were short on piston core liner, so 4 mega-cores were collected on a single channel bend, located upstream of Mooring 2D (Aniitra-3). Two pairs of cores targeted the channel axis (MC-19 and MC-21 @ Sites 107 and 109), and two pairs of cores were located on (point?) bars on the inner part of the channel bend (MC-20 and MC-22 @ Sites 108 and 110).

We then transited to a terrace above Mooring Site 2E, where we deployed OBIC OBS-5, and the Vertical Hydrophone Array in a location with good lines of sight down into the main channel.
$\mathbf{2 2}^{\text {nd }}$ to $\mathbf{2 3}^{\text {rd }}$ September: We then transited to International Waters, where we started a multibeam survey (MBS_113) from Mooring Site 5, including an initial CTD/SVP cast.

Figure 7.5. Map of events during the third and final phase of work from $22^{\text {nd }}$ September to $2^{\text {nd }}$ October.
$\mathbf{2 3}^{\text {rd }}$ to $\mathbf{2 4}^{\text {th }}$ September: However, due to a sad parental bereavement for a crew member, we then transited back to Luanda, where the crew member and Angolan observers had a boat transfer ashore. We were grateful to the Angolan observers, as this avoided a third transit back to Luanda later in the cruise.
$\mathbf{2 4}^{\text {th }}$ to $\mathbf{2 5}^{\text {th }}$ September: We transited back from Luanda to conclude work in the upper canyon. We finishing a small Multibeam Survey (MB_115), to better image the landslide that appears to block the canyon thalweg. We concluded work in the upper canyon by deploying NERC Mooring-2 (75 kHz, 300kHz and IcListen hydrophone) at Site 118 (300m up-canyon from Mooring-9) at Mooring Site 2E.
$\mathbf{2 5}^{\text {th }}$ to $\mathbf{2 8}^{\text {th }}$ September: We then transited from the upper canyon back to International Waters, arriving morning of the $25^{\text {th }}$. We finished off the multibeam survey (MBS_113) from Mooring Site 5 to Mooring Site 4, previously truncated due to the medical emergency. There was a CTD/SVP cast half way through the multibeam survey. Two pairs of cores were collected on the channel floor (MC-23 and PC-18), and then on a terrace (MC-24 and PC-19) near Mooring Site 5. We deployed OBIC OBS-6 near Mooring Site 5, and finally deployed NERC Mooring 5 (300 kHz ADCP) and triangulated its position. Two further cores were taken outside the channel on the open slope (MC-25 and PC-20).
$28^{\text {th }}$ to $29^{\text {th }}$ September: We transited from Mooring Site 5 , past Mooring Site 4 , to mooring Site 6 in deeper-waters. We deployed OBIC OBS-7 between Mooring Sites 5 and 4, and OBIC OBS-8 between Mooring Sites 4 and 6.

On reaching Mooring Site 6, we recovered the Prototype OBS; which were being tested for seaworthiness. We deployed OBS-9 near Mooring Site 6, before finally deploying NERC Mooring 6 (300 KHz ADCP) and triangulating.
$\mathbf{2 9}^{\text {th }}$ September to $\mathbf{1}^{\text {st }}$ October: We then completed a long multibeam survey (MBS_119) from Mooring Site 6 to Sites 38/39 (Half-way to Mooring Site 7) and back to Mooring Site 6. There was a CTD/SVP cast before this survey.

We then went back to Site 38/39, and completed a second long multibeam survey (MBS_121) that provided a single swath line from Site 38/39, past Mooring Site 7, and finishing at Mooring Site 8. There was a CTD/SVP-12 cast at Mooring Site 8.
$1^{\text {st }}$ to $\mathbf{2}^{\text {nd }}$ October: We then recovered NERC Mooring 8 from Mooring Site 8, onto the vessel. We then completed multibeam survey (MBS_122) from mooring 8 back to Mooring 7. Together with multibeam survey MBS_121, this provides a map of the terminal lobe and final part of the channel.

We deployed German OBS-2 at Mooring Site 7, and did an extra triangulation point to better constrain the seafloor location of Mooring 7 (our original triangulation had a large error).

We then transited to near Mooring Site 6, and completed a single swath multibeam survey (MBS_125) from Mooring Site 6 to Mooring Site 4. We then redeployed NERC Mooring-8 at Mooring Site 4, and OBIC OBS-10 near Mooring Site 4. We concluded with a multibeam survey (MBS_126) from Mooring 4 back towards Mooring 6, which zig-zags back across MBS_125.
$\mathbf{2}^{\text {nd }}-\mathbf{7}^{\text {th }}$ October: Science operations finished at midnight on $2^{\text {nd }}$, and we transited to Walvis Bay. We arrived in Walvis Bay on $7^{\text {th }}$ Oct., where science party disembarked, and technicians demobilised.

8 Methods: Tools and Techniques

8.1 Moorings

In the following sections we first describe the design and set up of NERC Moorings (Section 8.1.1), and this is followed by similar information on the ANIITRA moorings provided by IFREMER. We first set out two different methods for deploying moorings anchor-first or anchor-last, and their pros and cons.

8.1.1 Methods for Deploying Moorings

Moorings can be deployed in two different ways. First, the upper float and instruments can be streamed off the back deck, and the anchor is then deployed last. This anchor-last method is much safer and quicker; as the moorings wire is under very little tension on the back deck. However, currents within the entire water column profile can potentially cause the mooring to drift away from target. We therefore measured surface currents using the ship-mounted ADCP, and tried to factor in the amount they would deflect moorings, based on time taken to reach the seabed, current speed, and offsets seen during earlier mooring deployments. But we had no information on deep currents, including potentially active turbidity currents on the seabed. It was hoped that mooring was short, and had a very heavy anchor, and would thus have limited lateral drift. We also ensured that the ship ran-in towards the target site along the axis of the canyon-floor channel, which meant that if we missed the target in the direction of travel, the mooring would still fall onto the axis of the channel.

Alternatively, the mooring can be deployed anchor-first, with the mooring lowered to a few tens of meter above the seafloor before being released. An USBL placed on the wireline just above the release point provides information on position. The vessel will need to manoeuvre, such that the USBL at the end of the wireline is then positioned accurately over the target, and this may be tricky if the ship lacks DP. Our vessel has DP and was able to locate the USBL on the Aniitra moorings within a few meters. The anchor-first method has the advantage of dropping the mooring from much closer to the seabed, and this may increase precision, although note there is an uncertainty of $\sim 10 \mathrm{~m}$ at 4 km on the USBL ranging, plus uncertainty in positions of the USBL from the ship. However, during the anchor-first method, links comprising the mooring are progressively added on the back deck, using two winches and wires, to alternatively take the weight. This procedure has major safety implications, as there are taught wires under a heavy load on the back deck, and if any link breaks it is particularly dangerous.

We deployed Aniitra moorings anchor-first without problems, as they had a much lighter anchor weights of $\sim 500 \mathrm{~kg}$ (in air). But it was decided to deploy all NERC Moorings anchor-last, primarily for safety reasons, as they has far heavier anchors ($1,350 \mathrm{~kg}$ in air) that place a much greater strain on wires on the back deck. As summarised in the later section on triangulation of positions, we found that both methods achieved satisfactory results. For the anchor-last method, moorings were located within $10-80 \mathrm{~m}$ of targets at $4-5 \mathrm{~km}$ depth in International waters, and within $11-32 \mathrm{~m}$ in $\sim 2 \mathrm{~km}$ depth in the upper-canyon in Angolan waters. Thus we did not attempt to deploy NERC moorings anchorfirst during JC-187. If NERC moorings are to be deployed anchor last, their anchor weight is critical.

8.1.2 NERC moorings

(From technical report by Paul Provost, Steve Whittle, Dave Childs, Tim Powell)

Operations summary

The deck setup for the mooring deployments used the NMF 5T direct pull deck winch mounted on forward of the deck hatch. The mooring cable (wire) was fed aft directly from the 5 T deck winch with long lead to a sheave suspended from the port aft pedestal crane. A chain stopper with boss hook was attached to the deck in the 'red zone' for stoppering off the mooring. The moorings were deployed 'top first - anchor last'.

The anchors for all the moorings were deployed using another NMF 5T direct pull deck winch mounted on the starboard side forward of the red zone in line with the starboard 5T block on the luffing stern gantry and released using a SeaCatch TR8 release.

Once the moorings were release they were monitored to their seabed rest position using an IXSEA TT801 deck unit connected through the single element transducer on the starboard drop keel by a patch cable.

The taut moorings were triangulated after each deployment by ranging the release from three or four equidistant positions approximately the distance of one water depth away from the release position to accurately determine the anchor rest position. The positions given for each mooring are the triangulated (or quadangulated) position of the acoustic release above the resting position of the anchor on the seabed.

Instrument positions

The planned positions of the instruments as distance, in metres, above the seabed are shown below.
Table 8.1: Instrument heights above the seabed

Instrument	M 1	M 2	M 3	M 4	M 5	M 6	M 7	M 8 M8-R	M 9
CTD		153							
75kHz ADCP		152							
CTD	65	65	65	65	79	79	79	79	44
300kHz ADCP	65	65	65	65	79	79	79	79	
600kHz ADCP									44
CTD							30		34
Sediment trap							23		32
Hydrophone		50							
Release	61	32	61	61	75	75	20	75	30

Instrument set-ups

All instruments were set to UTC

SeaBird SBE37SMP Microcat CTDs

All SBE37SMP Microcat instruments were setup with the same configuration with a sampling interval every 450 seconds (8 samples per hour).

Mooring	Serial No.	Start time \& date
M1	7305	$18 / 09 / 2019,06: 00$
M2	7306	$18 / 09 / 2019,12: 00$
	7307	$18 / 09 / 2019,12: 00$
M3	7308	$18 / 09 / 2019,12: 00$
M4	7309	$18 / 09 / 2019,12: 00$
M5	7310	$10 / 09 / 2019,00: 00$
M6	7311	$10 / 09 / 2019,00: 00$
M7	7312	$10 / 09 / 2019,00: 00$
	7313	$10 / 09 / 2019,00: 00$
M8	7314	$10 / 09 / 2019,00: 00$
M9	7303	$18 / 09 / 2019,12: 00$
	7304	$18 / 09 / 2019,12: 00$

M8-R	7314	$01 / 10 / 2019,12: 00$

TRDI Workhorse Long Ranger 75 kHz ADCP
The Long Ranger 75kHzADCP was setup as below:

Mooring	Serial No.	Start time \& date
M2	22792	$24 / 09 / 2019,18: 00$

Pings per Ensemble: 3
Depth Cell Size (cm): 400
Ensemble period: 9 seconds
Number of bins: 42

TRDI Workhorse Sentinel 300kHz ADCP
The Sentinel 300 kHz ADCPs were setup as below:

Mooring	Serial No.	Start time \& date
M1	10689	$17 / 09 / 2019,18: 00$
M2	24505	$24 / 09 / 2019,18: 00$
M3	21028	$18 / 09 / 2019,18: 00$
M4	21029	$18 / 09 / 2019,18: 00$

Pings per Ensemble: 1
Depth Cell Size (cm): 150
Ensemble period: 11 seconds
Number of bins: 50

Mooring	Serial No.	Start time \& date
M5	23119	$10 / 09 / 2019,00: 00$
M6	24495	$10 / 09 / 2019,00: 00$
M7	24496	$10 / 09 / 2019,00: 00$
M8	24504	$10 / 09 / 2019,00: 00$

Pings per Ensemble: 1
Depth Cell Size (cm): 150
Ensemble period: 12 seconds
Number of bins: 57

M8-R	24504	$02 / 10 / 2019,08: 10$

Pings per Ensemble: 1
Depth Cell Size (cm): 150
Ensemble period: 12 seconds
Number of bins: 60

TRDI Workhorse Sentinel 600kHz ADCP
The Sentinel 600 kHz ADCP was setup as below:

Mooring	Serial No.	Start time \& date

M9	3725	$21 / 09 / 2019,12: 00$

Pings per Ensemble: 1
Depth Cell Size (cm): 75
Ensemble period: 11 seconds
Number of bins: 53

The complete setup parameters for each ADCP type and deployment are shown below:

Mooring number	1,2,3,4	5,6,7,8	9	8-R	2
ADCP Frequency	(300kHz)	(300kHz)	(600kHz)	(300kHz)	(75kHz)
Factory Settings	>CR1	>CR1	>CR1	>CR1	>CR1
Power Setting (low)					>CQ0
Flow Control	>CF11111	>CF11101	>CF11111	>CF11101	>CF11101
Heading Alignment	>EAO	>EAO	>EAO	>EAO	>EAO
Heading Bias	>EBO	>EBO	>EBO	>EBO	>EBO
Transducer Depth	>ED30000	>ED50000	>ED30000	>ED50000	>ED30000
Salinity	>ES35	>ES35	>ES35	>ES35	>ES35
Coordinate Transformation	>EX11111	>EX11111	>EX11111	>EX11111	>EX11111
Sensor Source	>EZ1111101	>EZ1111101	>EZ1111101	>EZ1111101	>EZ1111101
False Target Threshold Maximum	>WA50	>WA50	>WA50	>WA50	>WA50
Wide Band On	>WBO	>WBO	>WBO	>WBO	>WBO
Output Data Selection	>WD111100000	>WD111100000	>WD111100000	>WD111100000	>WD111100000
Blanking Distance	>WF176	>WF176	>WF88	>WF176	>WF704
Number of Depth Cells	>WN50	>WN57	>WN53	>WN60	>WN42
Pings per Ensemble	>WP1	>WP1	>WP1	>WP1	>WP3
Depth Cell Size	>WS150	>WS150	>WS75	>WS150	>WS400
Ambiguity Velocity	>WV300	>WV300	>WV300	>WV300	>WV300
Time Per Ensemble	>TE00:00:11.00	>TE00:00:12.00	>TE00:00:11.00	>TE00:00:12.00	>TE00:00:09.00
Time Between Pings	>TP00:11.00	>TP00:12.00	>TP00:11.00	>TP00:12.00	>TP00:03.00
Time of First Ping	$>$ TFyy/mm/dd hh:mm:ss	> TFyy/mm/dd hh:mm:ss	> TFyy/mm/dd hh:mm:ss	$>$ TFyy/mm/dd hh:mm:ss	TFyy/mm/dd hh:mm:ss
(Set) Keep Parameters	>CK	>CK	>CK	>CK	>CK

Acoustic Release IXBlue AR861 units

Prior to the mooring deployments all the acoustic releases were function tested to a depth equal to or greater than the deployment depth. For deployment, the releases were doubled up in parallel.

Sediment trap units

The sediment traps setup procedure is:
Connect USB timer cable to PC
Open software
Set delay time
Set sampling time
With carousel removed from housing, install batteries in carousel, and within 1 minute:

- plug in usb timer cable
- click open in software
- press 'Cycle Interval' Setting and then Display to confirm
- press 'Delay Time' Setting and then Display to confirm
- click green button (in Chinese) to close connection
- unplug USB timer cable and install in housing

Invert housing to watch counter plate rotate approx 180 degrees.
Close software - the software should be opened for each individual trap programming

The sediment trap was setup with 20 discs as below:

Moorings:
Setup up at:
Delay time:
Sampling interval:
$1^{\text {st }}$ sampling interval start:
$1^{\text {st }}$ disc drop time:
$2^{\text {nd }}$ sampling interval start: $\quad 01: 00$ 06/10/2019
There after discs drop at 01:00 on the following dates:
27/10/19
17/11/19
08/12/19
29/12/19
19/01/20
09/02/20
01/03/20
22/03/20
12/04/20
03/05/20
24/05/20
14/06/20
05/07/20
26/07/20
16/08/20
06/09/20
27/09/20
18/10/20
08/11/20

Mooring deployment details

M8 mooring

Deployment date: 10/09/19
Triangulated position on seabed:
Lat: $06^{\circ} 41.7523$ 'S
Long: $05^{\circ} 28.9595^{\prime} \mathrm{E}$
Depth: 4957m

Target Position:
Lat: $06^{\circ} 41.7815^{\prime} \mathrm{S}$
Long: $05^{\circ} 28.967^{\prime} \mathrm{E}$

Initial ship set-up: $\quad 700 \mathrm{~m}$ East of Deployment Position
Estimated fall-back: 10 m
Deployment start: 16:16
Ready to deploy (anchor on deck): 16:30
Anchor released: 16:49
Release Position:
Lat: $06^{\circ} 41.7^{\prime} \mathrm{S}$
Long: $05^{\circ} 28.8^{\prime} \mathrm{E}$
Fall Speed: $\quad 217 \mathrm{~m} / \mathrm{min}$
Anchor landed: $\quad 17: 14$
Release range depth: 4851m

Triangulation:

1	2	
Range: $6175 \mathrm{~m} / 6178 \mathrm{~m}$	Range: $6072 \mathrm{~m} / 6076 \mathrm{~m}$	Range: $6129 \mathrm{~m} / 6131 \mathrm{~m}$
Lat: $06^{\circ} 41.73468^{\prime} \mathrm{S}$	Lat: $06^{\circ} 40.08048^{\prime} \mathrm{S}$	Lat: $06^{\circ} 43.43808^{\prime} \mathrm{S}$
Long: $05^{\circ} 26.86864^{\prime} \mathrm{E}$	Long: $05^{\circ} 30.0500^{\prime} \mathrm{E}$	Long: $05^{\circ} 30.11802^{\prime} \mathrm{E}$

Final Anchor position 56 m N from target position.

Surface current of 0.2 knts NW ($370 \mathrm{~m} / \mathrm{hr}$). Freefall time of 25 mins . Surface current movement (370 x $(25 / 60))=154 \mathrm{~m}$. Mooring drifted 0.35 of surface current during freefall period.

Mooring 8 was recovered on 01/10/2019.

Released using AR861 serial no. 2302 at 07:29. Surfaced at 08:01, with an approximate ascent speed of $152 \mathrm{~m} / \mathrm{min}$.
The instruments were downloaded and restarted.

Instrument	Serial no.	Start	Stop	
SBE37SMP CTD	7314	$10 / 09 / 2019$, $00: 00$	$01 / 10 / 2019$, $08: 35: 46$	
WHS300kHz ADCP	24504	$10 / 09 / 2019$, $00: 00$	$01 / 10 / 2019$, $08: 49: 48$	153850 ensembles

The mooring was replaced as mooring 8-R (it was recovered and later redeployed at Site 4).

Deployment date: 11/09/19
Triangulated position on seabed:
Lat: $06^{\circ} 27.853^{\prime} \mathrm{S}$
Long: $06^{\circ} 02.787^{\prime} \mathrm{E}$
Depth: 4736m

Target Position:
Lat: $06^{\circ} 27.8623$ 'S
Long: $06^{\circ} 02.8346^{\prime} \mathrm{E}$

Initial ship set-up: 700m East of Deployment Position
Estimated fall-back: 0m
Deployment start: 19:36
Ready to deploy (anchor on deck): 20:00
Anchor released: 20:27
Release Position:
Lat: $06^{\circ} 27.85$ 'S
Long: $06^{\circ} 02.74$ 'E
Fall Speed: $\quad 207 \mathrm{~m} / \mathrm{min}$
Anchor landed: $\quad 20: 51$
Release range depth: 4720 m

Triangulation:

1	2	3
Range: 5920m	Range: 5818m	Range: 6026m
Lat: 06²7.86910'S	Lat: $06^{\circ} 26.10150 ' S$	Lat: 06²8.03590'S
Long: $06^{\circ} 00.86226^{\prime} \mathrm{E}$	Long: 0603.33834'E	Long: 0604.81104'E

Final Anchor position 78m WNW from target position.

Surface current of $0.5 \mathrm{knts} @ 99^{\circ} \mathrm{T}(926 \mathrm{~m} / \mathrm{hr})$. Freefall time of 24 mins . Surface current movement (926 $x(25 / 60))=370 \mathrm{~m}$. Mooring drifted 0.35 of surface current during freefall period for M8, predicted $370 \mathrm{~m} \times 0.35=122 \mathrm{~m}$ drift.

OBIC Hydrophone mooring (deployment 1)
Deployment date: 17/09/19
Triangulated position on seabed:
Lat: $\quad 05^{\circ} 49.2315^{\prime}$ S
Long: $11^{\circ} 06.0869^{\prime} \mathrm{E}$
Depth: 1279m

Target Position:
Lat: $05^{\circ} 49.227$ 'S
Long: $11^{\circ} 06.105^{\prime} \mathrm{E}$

Initial ship set-up: 1200m North West of Deployment Position, heading SW.
Estimated fall-back: 100 m
Deployment start: 09:14
Ready to deploy (anchor on deck): 09:41
Anchor released: 09:56
Release Position:
Lat: $\quad 05^{\circ} 49.25$ 'S
Long: $11^{\circ} 06.15^{\prime} \mathrm{E}$
Fall Speed: $\quad 160 \mathrm{~m} / \mathrm{min}$
Anchor landed: $\quad 10: 04$
Release range depth: 1270 m

Triangulation:

1	2	
Range: $2189 / 2194 \mathrm{~m}$	Range: $2099 / 2098 \mathrm{~m}$	Range: 2225 m
Lat: $05^{\circ} 49.7267^{\prime} \mathrm{S}$	Lat: 05ํ.48.41'S	Lat: $05^{\circ} 49.67^{\prime} \mathrm{S}$
Long: $11^{\circ} 06.9091^{\prime} \mathrm{E}$	Long: $11^{\circ} 05.73^{\prime} \mathrm{E}$	Long: $11^{\circ} 05.20^{\prime} \mathrm{E}$

Final Anchor position 34m WSW from target position.

Surface current of $0.2 \mathrm{knts} @ 315^{\circ} \mathrm{T}$.

OBIC Hydrophone mooring (deployment 1) was recovered on 21/09/19

M1 mooring

Deployment date: 19/09/19
Triangulated position on seabed:
Lat: $\quad 05^{\circ} 54.0186$ 'S
Long: $11^{\circ} 19.9042^{\prime} \mathrm{E}$
Depth: 1875m

Target Position:
Lat: $05^{\circ} 54.012$ 'S
Long: 11¹9.911'E

Initial ship set-up: 850m West of Deployment Position
Estimated fall-back: 0 m
Deployment start: 13:30
Ready to deploy (anchor on deck): 13:48
Anchor released: 13:51
Release Position:
Lat: $05^{\circ} 54.008$ 'S
Long: $11^{\circ} 19.942$ 'E
Fall Speed: $\quad 208 \mathrm{~m} / \mathrm{min}$
Anchor landed: $\quad 14: 00$
Release range depth: 1811m

Triangulation:

1	2	3	4
Range: 2344 m	Range: 2324 m	Range: 2420 m	Range: 2334 m
Lat: $05^{\circ} 53.456^{\prime} \mathrm{S}$	Lat: $05^{\circ} 54.569^{\prime} \mathrm{S}$	Lat: $05^{\circ} 54.619$ 'S	Lat: $05^{\circ} 53.485^{\prime} \mathrm{S}$
Long: $11^{\circ} 20.482^{\prime} \mathrm{E}$	Long: $11^{\circ} 20.465^{\prime} \mathrm{E}$	Long: $11^{\circ} 19.277^{\prime} \mathrm{E}$	Long: $11^{\circ} 19.311^{\prime} \mathrm{E}$

Final Anchor position 17m SW from target position.

Surface current of $0.2 \mathrm{knts}, 246^{\circ} \mathrm{T}$.

Deployment date: 20/09/19
Triangulated position on seabed:
Lat: $\quad 05^{\circ} 55.4548^{\prime} \mathrm{S}$
Long: $11^{\circ} 28.4072^{\prime} \mathrm{E}$
Depth: 1629m

Target Position:
Lat: $05^{\circ} 55.455^{\prime} \mathrm{S}$
Long: $11^{\circ} 28.413^{\prime} \mathrm{E}$

Initial ship set-up: $\quad 500 \mathrm{~m}$ WNW of Deployment Position, drop position 10 m past target position
Estimated fall-back: 10m
Deployment start: 07:42
Ready to deploy (anchor on deck): 07:52
Anchor released: 08:09
Release Position:
Lat: $\quad 05^{\circ} 55.4436^{\prime} \mathrm{S}$
Long: $11^{\circ} 28.4434$ 'E
Fall Speed: $\quad 203 \mathrm{~m} / \mathrm{min}$
Anchor landed: $\quad 08: 17$
Release range depth: 1577 m

Triangulation:

1	2	3	4
Range: 2351 m	Range: 2269 m	Range: 2285 m	Range: 2457 m
Lat: $05^{\circ} 54.7855^{\prime} \mathrm{S}$	Lat: $05^{\circ} 55.9198^{\prime} \mathrm{S}$	Lat: $05^{\circ} 56.0638^{\prime} \mathrm{S}$	Lat: $05^{\circ} 54.6375^{\prime} \mathrm{S}$
Long: $11^{\circ} 29.0700^{\prime} \mathrm{E}$	Long: $11^{\circ} 29.1564^{\prime} \mathrm{E}$	Long: $11^{\circ} 27.7530^{\prime} \mathrm{E}$	Long: $11^{\circ} 27.8020^{\prime} \mathrm{E}$

Final Anchor position 10m W from target position.

Surface current of $0.1 \mathrm{knts}, 248^{\circ} \mathrm{T}$.

Deployment date: 20/09/19
Triangulated position on seabed:
Lat: $05^{\circ} 57.2118$ 'S
Long: $11^{\circ} 33.2041^{\prime} \mathrm{E}$
Depth: 1565 m

Target Position:
Lat: $05^{\circ} 57.208$ 'S
Long: $11^{\circ} 33.198^{\prime} \mathrm{E}$

Initial ship set-up: 500m West of Deployment Position
Estimated fall-back: 0m
Deployment start: 14:55
Ready to deploy (anchor on deck): 15:05
Anchor released: 15:20
Release Position:
Lat: $05^{\circ} 57.2200$ 'S
Long: $11^{\circ} 33.2302^{\prime} \mathrm{E}$
Fall Speed: $\quad 203 \mathrm{~m} / \mathrm{min}$
Anchor landed: $\quad 15: 28$
Release range depth: 1517 m

Triangulation:

1	2	3	4
Range: 2143 m	Range: 2127 m	Range: 2126 m	Range: 2139 m
Lat: $05^{\circ} 56.6220^{\prime} \mathrm{S}$	Lat: $05^{\circ} 57.7604^{\prime} \mathrm{S}$	Lat: 05${ }^{\circ} 57.7878^{\prime} \mathrm{S}$	Lat: $05^{\circ} 56.6528^{\prime} \mathrm{S}$
Long: $11^{\circ} 33.7696^{\prime} \mathrm{E}$	Long: $11^{\circ} 33.7919^{\prime} \mathrm{E}$	Long: $11^{\circ} 32.6434^{\prime} \mathrm{E}$	Long: $11^{\circ} 32.6135^{\prime} \mathrm{E}$

Final Anchor position 13m ESE from target position.

Surface current of 1 knts to West, subsurface flow 0.2 knts to East

M9 mooring

Deployment date: 21/09/19
Triangulated position on seabed:
Lat: $05^{\circ} 50.2092$ 'S
Long: $11^{\circ} 02.163^{\prime} \mathrm{E}$
Depth: 2172m

Target Position:
Lat: $05^{\circ} 50.20$ 'S
Long: $11^{\circ} 02.16^{\prime} \mathrm{E}$

Initial ship set-up: 500m West of Deployment Position
Estimated fall-back: 0m
Deployment start: 14:23
Ready to deploy (anchor on deck): 14:29
Anchor released: 14:40
Release Position:
Lat: $05^{\circ} 50.1996$ 'S
Long: $11^{\circ} 02.1890^{\prime} \mathrm{E}$
Fall Speed: $\quad 203 \mathrm{~m} / \mathrm{min}$
Anchor landed: $\quad 14: 51$
Release range depth: 2150 m

Triangulation:

1	2	3	4
Range: 2975 m	Range: 2941 m	Range: 2948 m	Range: 2930m
Lat: $05^{\circ} 49.4151^{\prime} \mathrm{S}$	Lat: $05^{\circ} 50.9744^{\prime} \mathrm{S}$	Lat: 05 $51.0052^{\prime} \mathrm{S}$	Lat: $05^{\circ} 49.4496^{\prime} \mathrm{S}$
Long: $11^{\circ} 02.9397^{\prime} \mathrm{E}$	Long: $11^{\circ} 02.9318^{\prime} \mathrm{E}$	Long: $11^{\circ} 02.4194^{\prime} \mathrm{E}$	Long: $11^{\circ} 01.4019^{\prime} \mathrm{E}$

Final Anchor position 17m SSE from target position. M9 mooring is 323 m WNW of M2 mooring.

Surface current of $0.2 \mathrm{knts}, 346^{\circ} \mathrm{T}$

OBIC Hydrophone mooring (deployment 2)

Deployment date: 22/09/19
Triangulated position on seabed:
Lat: $\quad 05^{\circ} 50.7633$ 'S
Long: $11^{\circ} 01.5595^{\prime} \mathrm{E}$
Depth: 1939m

Target Position:
Lat: $05^{\circ} 50.771$ 'S
Long: $11^{\circ} 01.548^{\prime} \mathrm{E}$

Initial ship set-up: 900m West of Deployment Position
Estimated fall-back: 100 m
Deployment start: 07:11
Ready to deploy (anchor on deck): 07:38
Anchor released: 07:48
Release Position:
Lat: $\quad 05^{\circ} 50.7713$ 'S
Long: $11^{\circ} 01.6334$ 'E
Fall Speed: $\quad 150 \mathrm{~m} / \mathrm{min}$
Anchor landed: $\quad 08: 02$
Release range depth: 1924 m

Triangulation:

1	2	3	4
Range: 2934 m	Range: 2802 m	Range: 2816 m	Range: 2849 m
Lat: $05^{\circ} 51.3627^{\prime} \mathrm{S}$	Lat: $05^{\circ} 51.389$ 'S	Lat: $05^{\circ} 49.988^{\prime} \mathrm{S}$	Lat: $05^{\circ} 50.027^{\prime} \mathrm{S}$
Long: $11^{\circ} 02.5777^{\prime} \mathrm{E}$	Long: $11^{\circ} 00.674^{\prime} \mathrm{E}$	Long: $11^{\circ} 00.790^{\prime} \mathrm{E}$	Long: $11^{\circ} 02.404^{\prime} \mathrm{E}$

Final Anchor position 21m NE from target position.

Surface current of $0.2 \mathrm{knts}, 287^{\circ} \mathrm{T}$

M2 mooring

Deployment date: 25/09/19
Triangulated position on seabed:
Lat: $\quad 05^{\circ} 50.2313$ 'S
Long: $11^{\circ} 02.3357^{\prime} \mathrm{E}$
Depth: 2172m

Target Position:
Lat: $05^{\circ} 50.231$ 'S
Long: $11^{\circ} 02.353^{\prime} \mathrm{E}$

Initial ship set-up: $\quad 700 \mathrm{~m}$ West of Deployment Position
Estimated fall-back: 32m
Deployment start: 13:48
Ready to deploy (anchor on deck): 14:10
Anchor released: 14:19
Release Position:
Lat: $\quad 05^{\circ} 50.2337{ }^{\prime} \mathrm{S}$
Long: $11^{\circ} 02.3819$ '
Fall Speed: $\quad 181 \mathrm{~m} / \mathrm{min}$
Anchor landed: $\quad 14: 31$
Release range depth: 2148 m

Triangulation:

1	2	3	4
Range: 2937 m	Range: 2955 m	Range: 2900 m	Range: 2910 m
Lat: $05^{\circ} 49.4754^{\prime} \mathrm{S}$	Lat: $05^{\circ} 50.9932^{\prime} \mathrm{S}$	Lat: $05^{\circ} 50.9836^{\prime} \mathrm{S}$	Lat: $05^{\circ} 49.4821^{\prime} \mathrm{S}$
Long: $11^{\circ} 03.1112^{\prime} \mathrm{E}$	Long: $11^{\circ} 03.1258^{\prime} \mathrm{E}$	Long: $11^{\circ} 01.5972^{\prime} \mathrm{E}$	Long: $11^{\circ} 01.5833^{\prime} \mathrm{E}$

Final Anchor position 32m W from target position.
M 2 mooring is 323 m ESE of M9 mooring.

Surface current of $0.1 \mathrm{knts}, 225^{\circ} \mathrm{T}$

Deployment date: 28/09/19
Triangulated position on seabed:
Lat: $\quad 05^{\circ} 43.8825^{\prime}$ S
Long: $08^{\circ} 07.3028^{\prime} \mathrm{E}$
Depth: 4036m

Target Position:
Lat: $05^{\circ} 43.8735^{\prime} \mathrm{S}$
Long: $08^{\circ} 07.3156^{\prime} \mathrm{E}$

Initial ship set-up: 500m West of Deployment Position
Estimated fall-back: 0m
Deployment start: 06:14
Ready to deploy (anchor on deck): 06:24
Anchor released: 06:34
Release Position:
Lat: $\quad 05^{\circ} 43.8790 ' S$
Long: 08º7.3438'E
Fall Speed: $\quad 205 \mathrm{~m} / \mathrm{min}$
Anchor landed: $\quad 06: 55$
Release range depth: 4064m

Triangulation:

1	2	3	4
Range: 5060 m	Range: 5028 m	Range: 5044 m	Range: 5145 m
Lat: $05^{\circ} 42.6225^{\prime} \mathrm{S}$	Lat: $05^{\circ} 45.0878^{\prime} \mathrm{S}$	Lat: $05^{\circ} 44.9912^{\prime} \mathrm{S}$	Lat: $05^{\circ}{ }^{\circ} 42.5954^{\prime} \mathrm{S}$
Long: $08^{\circ} 08.3456^{\prime} \mathrm{E}$	Long: $08^{\circ} 08.3687^{\prime} \mathrm{E}$	Long: $08^{\circ} 06.1045^{\prime} \mathrm{E}$	Long: $08^{\circ} 06.1695^{\prime} \mathrm{E}$

Final Anchor position 28m SW from target position.

Surface current of $0.4 \mathrm{knts}, 273^{\circ} \mathrm{T}$

M6 mooring

Deployment date: 29/09/19
Triangulated position on seabed:
Lat: $\quad 05^{\circ} 52.1482{ }^{\prime}$ S
Long: $06^{\circ} 55.5175^{\prime} \mathrm{E}$
Depth: 4495m

Target Position:
Lat: $05^{\circ} 52.143 ' S$
Long: $06^{\circ} 55.521^{\prime} \mathrm{E}$

Initial ship set-up: 500m South West of Deployment Position
Estimated fall-back: 0m
Deployment start: 09:04
Ready to deploy (anchor on deck): 09:12
Anchor released: 09:15
Release Position:
Lat: $05^{\circ} 52.1214$ 'S
Long: $06^{\circ} 55.5395{ }^{\prime} \mathrm{E}$
Fall Speed: $\quad 205 \mathrm{~m} / \mathrm{min}$
Anchor landed: $\quad 09: 36$
Release range depth: 4403m

Triangulation:

1	2	3	4
Range: 5436m	Range: 5470m	Range: 5375m	Range: 5392m
Lat: $05^{\circ} 52.1383 ' S$	Lat: $05^{\circ} 50.3808^{\prime} \mathrm{S}$	Lat: $05^{\circ} 52.1597$ 'S	Lat: $05^{\circ} 53.8442$ 'S
Long: $06^{\circ} 53.7844{ }^{\text {E }}$	Long: $06^{\circ} 55.5376{ }^{\prime} \mathrm{E}$	Long: $06^{\circ} 57.1939 ' \mathrm{E}$	Long: $06^{\circ} 55.5160 ' \mathrm{E}$

Final Anchor position 11m SW from target position.

Surface current of $0.2 \mathrm{knts}, 340^{\circ} \mathrm{T}$

M8-R mooring (deployment 2)
Deployment date: 02/10/19
Triangulated position on seabed:
Lat: $05^{\circ} 45.4004^{\prime}$ S
Long: $07^{\circ} 40.4741^{\prime} \mathrm{E}$
Depth: 4299m

Target Position:
Lat: $05^{\circ} 45.4225 ' S$
Long: $07^{\circ} 40.4936^{\prime} \mathrm{E}$

Initial ship set-up: 500m West of Deployment Position
Estimated fall-back: 0m
Deployment start: 09:22
Ready to deploy (anchor on deck): 09:30
Anchor released: 09:42
Release Position:
Lat: $05^{\circ} 45.4214$ 'S
Long: $07^{\circ} 40.5158^{\prime} \mathrm{E}$
Fall Speed: $\quad 205 \mathrm{~m} / \mathrm{min}$
Anchor landed: $\quad 10: 02$
Release range depth: 4235m

Triangulation:

1	2	3	4
Range: 5311 m	Range: 5357 m	Range: 5269 m	Range: 5184 m
Lat: $05^{\circ} 44.2415^{\prime} \mathrm{S}$	Lat: $05^{\circ} 46.5528^{\prime} \mathrm{S}$	Lat: $05^{\circ} 46.5035^{\prime} \mathrm{S}$	Lat: $05^{\circ} 44.398^{\prime} \mathrm{S}$
Long: $07^{\circ} 41.7743^{\prime} \mathrm{E}$	Long: $07^{\circ} 41.8368^{\prime} \mathrm{E}$	Long: $07^{\circ} 39.1750^{\prime} \mathrm{E}$	Long: $07^{\circ} 39.192^{\prime} \mathrm{E}$

Final Anchor position 54m WNW from target position.

Surface current of $0.1 \mathrm{knts}, 261^{\circ} \mathrm{T}$

Mooring diagrams

Mooring M8
JC187
Deployment date: 10/09/19
Latitude:
$06^{\circ} 41.7523$ 'S
Longitude: $\quad 05^{\circ} 28.9595^{\prime} \mathrm{E}$
Water Depth: 4957m

Recovery date: 01/10/19
Descent speed: $205 \mathrm{~m} / \mathrm{min}$
Ascent speed: $152 \mathrm{~m} / \mathrm{min}$

XENON Light s/n: B1335
IRIDIUM Beacon s/n: H04-022 IMEI: 300234067941060

49" DWB Syntactic Float (6000 m) s/n: J19234-001
SBE37SMP Microcat s/n: 7314
TRDI 300kHz WHS ADCP (6000m) s/n: 24504

Figure 8.1. Diagram of NERC Mooring-8.

Mooring M7
JC187
Deployment date: 11/09/2019
Latitude: $\quad 06^{\circ} 27.853^{\prime}$ S
Longitude: $06^{\circ} 02.787^{\prime} \mathrm{E}$
Depth: 4736 m

XENON Light s/n: W06-005
IRIDIUM Beacon s/n: H04-021 IMEI: 300234067949240

49" DWB Syntactic Float (6000 m) s/n: J19172-001
SBE37SMP Microcat s/n: 7312
TRDI 300kHz WHS ADCP (6000m) s/n: 24496

Figure 8.2. Diagram of NERC Mooring-7.

OBIC Hydrophone Mooring JC187
Deployment date: 17/09/19
Latitude:
05²49.2315'S
Longitude: $\quad 11^{\circ} 06.0869^{\prime} \mathrm{E}$
Water Depth: 1279m
Reccovery date:

Acoustic release AR861
s/n: 2463
$\mathrm{s} / \mathrm{n}: 2464$

Figure 8.3. Diagram of Vertical Hydrophone Array (for initial test deployment).

Mooring M1
JC187
Deployment date: 19/09/19
Latitude: $\quad 05^{\circ} 54.0186$ 'S
Longitude: $\quad 11^{\circ} 19.9042^{\prime} \mathrm{E}$
Water Depth: 1875m
XENON Light s / n : B11-037
IRIDIUM Beacon s/n: H03-062
IMEI: $300234 \overline{06} 7943050$

44" DWB Syntactic Float (3500 m) s/n: J14360_001
SBE37SMP Microcat s/n: 7305
TRDI 300kHz WHS ADCP (6000m) s/n: 10689

Figure 8.4. Diagram of NERC Mooring-1.

Mooring M4
JC187
Deployment date: 20/09/19
Latitude $05^{\circ} 55.4548^{\prime}$ S
Longitude: $\quad 11^{\circ} 28.4072^{\prime} \mathrm{E}$
Water Depth: 1629m

XENON Light s/n: W06-007
IRIDIUM Beacon s/n: H03-060 IMEI: 300234067054490

44" DWB Syntactic Float (3500 m) s/n: J08432-002
SBE37SMP Microcat s/n: 7309
TRDI 300kHz WHS ADCP (6000 m) s/n: 21029

Figure 8.5. Diagram of NERC Mooring-4.

Mooring M3
JC187
Deployment date: 20/09/19
Latitude: $\quad 05^{\circ} 57.2118$ 'S
Longitude: $\quad 11^{\circ} 33.2041^{\prime} \mathrm{E}$
Water Depth: 1565m
XENON Light s / n : J12-028
IRIDIUM Beacon s/n: H03-059
IMEI: 300234068212600

44" DWB Syntactic Float $(3500 \mathrm{~m}) \mathrm{s} / \mathrm{n}$: J08432-001
SBE37SMP Microcat s / n : 7308
TRDI 300kHz WHS ADCP (6000 m) s/n: 21028

Figure 8.6. Diagram of NERC Mooring-3

Mooring M9
JC187
Deployment date: 21/09/2019
Latitude: $\quad 05^{\circ} 50.2092$ 'S
Longitude: $\quad 11^{\circ} 02.163^{\prime} \mathrm{E}$
Depth: 2172m

XENON Light s/n: S06-010 IRIDIUM Beacon s/n: H04-023 IMEI: 300234067941240

49" DWB Syntactic Float $(6000 \mathrm{~m}) \mathrm{s} / \mathrm{n}: \mathrm{J} 19234-002$
SBE37SMP Microcat s/n: 7303
TRDI 600kHz WHS ADCP (6000m) s/n: 3725

Figure 8.7. Diagram of NERC Mooring-9.

OBIC Hydrophone Mooring JC187
Deployment date: 22/09/19
Latitude: $05^{\circ} 50.7633^{\prime} \mathrm{S}$
Longitude: $\quad 11^{\circ} 01.5595^{\prime} \mathrm{E}$
Water Depth: 1939m

Figure 8.8. Diagram of Vertical Hydrophone Array (final deployment).

Mooring M2

JC187
Deployment date: 25/09/19 Latitude: $05^{\circ} 50.2313 ' S$
Longitude: $\quad 11^{\circ} 02.3357$ 'E
Water Depth: 2172m

IRIDIUM Beacon s/n: H04-024 IMEI: 300234068215720

SBE37SMP Microcat s/n: 7306
44" DWB Syntactic Float (3500m) s/n: J14225-001
TRDI 75kHz LR ADCP (3000m) s/n: 22792

XENON Light s / n : W06-006
34 " DWB Syntactic Float (3500 m) s/n: J14224-001
SBE37SMP Microcat s/n: 7307
TRDI 300kHz WHS ADCP (6000m) s/n: 24505

Ocean Sonics icListen Hydrophone s/n: 1949 Battery Pack (BP35-B3-G) s/n: 2388

Acoustic release AR861
$\mathrm{s} / \mathrm{n}: 1134$
$\mathrm{s} / \mathrm{n}: 2333$

Figure 8.9. Diagram of NERC Mooring-2.

Mooring M5
JC187
Deployment date: 28/09/19
Latitude: $\quad 05^{\circ} 43.8825^{\prime} \mathrm{S}$
Longitude: $\quad 08^{\circ} 07.3028^{\prime} \mathrm{E}$
Water Depth: 4036m

XENON Light s / n : A08-016 IRIDIUM Beacon s/n: H07-055 IMEI: 300234068812880

49" DWB Syntactic Float (6000 m) s/n: J18386-001
SBE37SMP Microcat s/n: 7310
TRDI 300kHz WHS ADCP (6000m) s/n: 23119

Figure 8.10. Diagram of NERC Mooring-5.

Mooring M6
JC187
Deployment date: 29/09/19
Latitude
$05^{\circ} 52.1482$ 'S
Longitude: $\quad 06^{\circ} 55.5175^{\prime} \mathrm{E}$
Water Depth: 4495m

XENON Light s/n: A1554
IRIDIUM Beacon s/n: H03-061 IMEI: 300234067943190

49" DWB Syntactic Float (6000 m) s/n: J18386-002
SBE37SMP Microcat s/n: 7311
TRDI 300 kHz WHS ADCP (6000 m) s/n: 24495

Figure 8.11. Diagram of NERC Mooring-6.

Mooring M8-R
JC187
Deployment date: 02/10/19
Latitude $05^{\circ} 45.4004$ 'S
Longitude: $\quad 07^{\circ} 40.4741^{\prime} \mathrm{E}$
Water Depth: 4299m

XENON Light s/n: B1335
IRIDIUM Beacon s/n: H04-022 IMEI: 300234067941060

49" DWB Syntactic Float (6000 m) s/n: J19234-001
SBE37SMP Microcat s/n: 7314
TRDI 300 kHz WHS ADCP (6000 m) s/n: 24504

Figure 8.12. Diagram of NERC Mooring-8, when redeployed.

8.1.2.1 ADCP set up

Acoustic Doppler Current Meters (ADCPs) are used to measure profiles of flow velocities, and can be used to estimate sediment concentrations via acoustic backscatter.

ADCPs on three different acoustic frequencies are employed in the project. The lower frequency 75 kHz instruments provide greater penetration through the water column, and can image the full thickness of the larger flows. The higher frequency 300 kHz and 600 kHz instruments provide a means of imaging the lower layers of the flows with a higher spatial resolution. The instruments record 3D velocity vectors in range bins (heights above the seabed) through the water column, but the accuracy of the measurements is influenced by the setup parameters, which were carefully considered before deployment. The standard deviation of the measurements decreases when larger bin sizes are chosen and by increasing the number of pings per ensemble. The settings chosen for each instrument therefore reflect trade-offs between spatial resolution, temporal resolution and the quality of the velocity measurements. The backscatter magnitudes, required for sediment concentration inversion, are additionally affected by the choice of bin size, the distance of the instrument above the seafloor and the transmit power. A sufficiently powerful backscattered signal from the water column and seafloor echo is required so that the reflected sound is above the electronic noise level and below the instrument saturation level. The expected backscatter values are also largely affected by the attenuation of sound by the material in suspension. The 2010 data collected by Chevron at 300 kHz and 75 kHz (Cooper et al., 2013, 2016) are a useful guide to expected acoustic backscatter behaviour.

Ambiguity velocity

All ADCPs are set with an ambiguity velocity of $3 \mathrm{~m} / \mathrm{s}$ which is above the recommended value of 1.75 m / s recommended by the deployment planning software, PlanADCP. This increase in the threshold is to allow recording of data where there is likely to be large differences in velocity across the instrument interrogation swath due to turbulence. The error values are recorded by the instrument and these can be used in post-processing, if deemed necessary, to screen out data with high vertical ambiguity.

Pings per ensemble

All NERC ADCPs are set to ping once per ensemble, with the exception of the 75 kHz ADCP. The standard deviation of the measurements can be reduced in post-processing by averaging across successive profiles. These settings are likely to produce a slightly different result to burst averaging in which the instrument records the mean profile of a number of pings triggered more closely together. However, we decided to preserve the higher temporal resolution of single ping profiles as previous deployments have demonstrated that changes in flow structure are sometimes observed between successive pings. The exception is the 75 kHz ADCP on mooring M 2 which averages 3 pings per profile as there is sufficient battery power on the low power setting chosen.

SD card storage and battery life

Each NERC instrument is fitted with 2×2 GB SD cards. The NERC 300 kHz and 600 kHz instruments are fitted with 1600 Wh batteries and the 75 kHz with $4 \times 1600 \mathrm{~Wh}$ batteries. ADCP settings are optimised for the cards and batteries to be used maximally but with sufficient capacity for the instruments to operate until at least early December 2020.

Pressure sensor

All NERC instruments are fitted with pressure sensors. A Seabird CTD sensor (which also measures pressure more precisely) was added to each mooring to aid in reconstructing depth, and hence precise mooring tilt or movement.

Bin size

A bin size of 1.5 m was chosen for the 300 kHz ADCPs. This is smaller than the 2 m bin size of the previous Chevron deployments in 2010 and 2013 (Cooper et al., 2013, 2016), but larger than the Monterey Coordinated Canyon Experiment (Paull et al., 2018) that used 1 m bins. A value of 1.5 m is
a compromise between maintaining a good signal-to-noise ratio at the same time as preserving spatial resolution. The same reasoning is applied to the 0.75 m bin size for the 600 kHz ADCP on mooring M9. The 4 m bin size for the 75 kHz instrument is the same as the 2010 Chevron setup.

Power setting

There is no option to change the transmit power on the 300 kHz and 600 kHz ADCPs instruments, but the 75 kHz can be set to lower power settings. The lowest power was chosen as this is the same as the 2010 Chevron setting and, at 150 m above the bed, the echo magnitude from the seafloor should be within the dynamic range of the instrument without causing saturation. This should enable the seafloor echo attenuation during the flows to be calculated by comparing with pre-flow echo magnitudes. This is necessary if we are to invert the data to solve for grain size and concentration using the method described in Azpiroz-Zabala et al. (2017). The low power setting also enables the instrument to be pinged at a faster rate, although the expected water column backscatter is likely to be relatively low between the flows. The low power setting was used in a previous study of the Var Canyon by IFREMER. These Var data suggests that water column backscatter at 75 kHz may be dominated by microturbulence associated with mixing in the region of the flow interface with the ambient water above.

The following figures show the set up files in PlanADCP for the ADCPs on NERC moorings.

Figure 8.13: Settings for 300 kHz ADCPs on NERC Moorings M5, M6, M7, and M8 (first deployment), located 80 m above seafloor.

PlanADCP (Expert) : [H:\Congo\2019\Deployment\ADCP scripts\deployment\Deep water 300k...

Figure 8.14: Settings for 300 kHz ADCPs on NERC Mooring M8-R (re-deployment), 80 m above seafloor.

Figure 8.15: Settings for 300 kHz ADCPS on NERC moorings M1, M2, M3 and M4, 65 m above seafloor.

Figure 8.16: Settings for 600 kHz ADCP on NERC mooring M9, located 65 m above seafloor

Figure 8.17: Settings for 75 kHz ADCP on NERC mooring M2, located 150 m above seafloor

8.1.2.2 Acoustic release

Twin acoustic releases were used on all moorings, with a second release in case the first fails. These acoustic releases were all initially tested during a dip attached to the CTD wire, during our transit. Note that we have tried to keep releases reasonable high above the seabed, as if they are engulfed in near-bed fast flow - both releases might be damaged ensuring no redundancy.

8.1.2.3 Sediment traps

Sediment traps provided by Hangzhou Sea \& Stream Technology Co., Ltd. were mounted on to NERC Mooring 9 (Angolan waters, GIS site 14) and NERC mooring 7 (International waters, GIS Site 76). For NERC mooring 9, the sediment trap was mounted 32 m above the seafloor, below the ADCP. The sediment trap on NERC mooring 7 was suspended 22 m above the seafloor and below the ADCP. Recent studies in Monterey Canyon have demonstrated that sediment traps can be used to obtain samples of sediment directly from the water column during turbidity current events (e.g., Maier et al., 2019). The height of the sediment traps was set to be low enough to sample sediment from turbidity current events, but high enough to not be caught within the powerful part of the flows, which may result in the mooring being dragged down the canyon. The slim sediment trap design was also motivated by the presence of powerful and prolonged turbidity currents.

The sediment trap is mounted upright, along the mooring wire, with the funnel on the top end. Sediment settles into the sediment trap through an open top funnel (0.26 m diameter) covered with a mesh, and accumulates in a clear plastic liner tube (1.50 m in length, 0.063 m diameter) inside the main tube (1.57 m in length; Fig. 8.18). The total length of the sediment trap is 2.50 m (Fig. 8.18). An intervalometer is suspended near the top of the funnel and dispenses 20 disks into the liner tube at a fixed time interval (Fig. 8.18). The disks are approx. 3 cm wide, smaller than the plastic liner, to allow for settling of the disk within the tube.

Figure 8.18: A) sediment trap on deck showing the acoustic releases just below the trap; B) Sediment trap and metal pole attached; C) top view of sediment trap showing mesh at the top of the funnel; D) clear plastic liner tube within the main tube.

In order to compare the deposits in the two sediment traps, the dispensing of the first disk and subsequent disks was set to occur at the same time. The dispensing of the first disk was delayed until the $6^{\text {th }}$ October 2019, by which time both sediment traps had been deployed. During the deployment period of the sediment traps, the disks were programmed to dispense every 21 days (Table 8.2), covering the entire deployment period. The sediment traps will be collected next year and it is hoped the whole core can be transported back to the UK to be logged using a multi-sensor core logger and x-ray computed tomography. New liner tube and sediment disks (and possibly oil for the intervalometer) are therefore required for the next cruise to redeploy the sediment traps.

The ANIITRA sediment trap is of a different set-up (see relevant chapter).
Table 8.2 Dates of deployment of the disks within the sediment traps.

Disk	Date released	Disk	Date released

1	$06 / 10 / 19$	11	$3 / 05 / 20$
2	$27 / 10 / 19$	12	$24 / 05 / 20$
3	$17 / 11 / 19$	13	$14 / 06 / 20$
4	$8 / 12 / 19$	14	$5 / 07 / 20$
5	$29 / 12 / 19$	15	$26 / 07 / 20$
6	$19 / 01 / 20$	16	$16 / 08 / 20$
7	$9 / 02 / 20$	17	$6 / 09 / 20$
8	$1 / 03 / 20$	18	$27 / 09 / 20$
9	$22 / 03 / 20$	19	$18 / 10 / 20$
10	$12 / 04 / 20$	20	$8 / 11 / 20$

Figure 8.19: Technical drawing of sediment trap. From Hangzhou Sea \& Stream Technology Co., Ltd.

8.1.2.4 IcListen Hydrophone (mounted onto NERC Mooring M-2)

This is an Ocean Sonics smart hydrophone unit. The smart hydrophone unit appeared to have a power issue, such that deployment of Mooring 2 was delayed. But this turned out to be misleading documentation, and it was resolved by communication with the manufacturer. A mounting bracket was fabricated by the sensors and moorings team, so that the hydrophone could be mounted directly onto the battery unit, rather than having to use the provided cable. The smart hydrophone was setup by the technicians from Ocean Bottom Instrumentation Consortium. It is set to record for 1 minute every hour, and is storing waveform data at 512 kHz , as well as spectral data.

8.1.2.5 Set-up of each mooring

Figure 8.20: Components within the moorings.

Figure 8.21: Mooring deployment. A) and E) ADCP and acoustic releases and lifted, and B) placed in the water. C) Wire is let out, and ADCP buoy and acoustic release trail behind the boat. D) When boat is nearly on target, the anchor is deployed into the water. When the boat is on target the anchor is released. The determination of targets also takes into account cross currents.

8.1.3 ANIITRA moorings

8.1.3.1 75 kHz ADCP set up

The low power setting was chosen for both Aniitra moorings to conserve battery power and enable a higher ping rate during the deployment. 6 m bins were chosen to maintain a usable signal-to-noise ratio for the full profile range to the bed, confirmed by PlanADCP and by modelling of the 75 kHz data acquired by Chevron in 2010. The signal is expected to be relatively weak near the seafloor in between the flows, but sufficient to resolve velocities. The accuracy of the velocities, i.e. low standard deviation, will be improved by the higher ping rate. Previous work in the Var canyon, and previous Congo Canyon data, suggests that this data may contain significant backscatter from microturbulence during the flows. However, the greater range of the 75 kHz instruments will provide full imaging of thicker flows, which are likely to extend above the 65 m deployment height of the 300 kHz ADCPs in the Angolan section of the canyon (Cooper et al., 2013, 2016; Azpiroz Zabala et al., 2017).

A low standard deviation of $3 \mathrm{~cm} / \mathrm{s}$ is predicted by PlanADCP for the deployment choice of 11 pings averaged in ensemble profiles 45 s apart.

Aniitra 2 and Aniitra 3 Advanced, Expert, Hardware Settings:

Aniitra 2 setup:

```
*T WinSC - [Ani2]
4 File Edit Functions View ADCP Window Help
```



```
[BREAK Wakeup A]
WorkHorse Broadband ADCP Version 50.40
Teledyne RD Instruments (c) 1996-2010
All Rights Reserved.
>RR
Recorder Directory:
Volume serial number for device #0 is 206f-6241
    No files found.
    Bytes used on device #0 = 0
Total capacity = 1023623168 bytes
Total bytes used = 0 bytes in 0 files
Total bytes free = 1023623168 bytes
>
[BREAK Wakeup A]
WorkHorse Broadband ADCP Version 50.40
Teledyne RD Instruments (c) 1996-2010
All Rights Reserved.
>CR1
[Parameters set to FACTORY defaults]
>CQO
>CF11101
>EA0
>EB0
>ED19000
>ES35
>EX11111
>EZ1111101
>WA50
>WB0
>WD111100000
>WF1000
>WN43
>WP11
>WS600
>WV300
>TE00:00:45.00
>TP00:03.00
>TF19/09/19 05:30:00
>CK
[Parameters saved as USER defaults]
>The command CS is not allowed in this command file. It has been ignored.
>The following commands are generated by this program:
>CF?
CF = 11101 ------------- Flow Ctrl (EnsCyc;PngCyc;Binry;Ser;Rec)
>CF11101
>RN Ani2_
>Cs
```

Aniitra 3 setup:

```
TNWinSC - [Ani3]
                \square
## File Edit Functions View ADCP Window Help % - a 
```



```
>RR
Recorder Directory:
Volume serial number for device #0 is 206f-6241
    No files found.
    Bytes used on device #0 = 0
Total capacity = 1023623168 bytes
Total bytes used = 0 bytes in 0 files
Total bytes free = 1023623168 bytes
[BREAK Wakeup A]
WorkHorse Broadband ADCP Version 50.40
Teledyne RD Instruments (c) 1996-2010
All Rights Reserved.
>CR1
[Parameters set to FACTORY defaults]
>CQ0
>CF11101
>EA0
>EB0
>ED20170
>ES35
>EX11111
>EZ1111101
>WA50
>WB0
>WD111100000
>WF1000
>WN43
>WP11
>WS600
>WV300
>TE00:00:45.00
>TP00:03.00
>TF19/09/21 06:59:00
>CK
[Parameters saved as USER defaults]
>The command CS is not allowed in this command file.
>The following commands are generated by this progra
>CF?
CF = 11101 --------------- Flow Ctrl (EnsCyc;PngCyc;
>CF11101
>RN Ani3_
>CS
Ready
```


8.1.3.2 Acoustic release

The Aniitra moorings have single acoustic releases at 18 m above the bed.

8.1.3.3 Sediment traps

The Aniitra mooring has a much larger sediment trap than that used on the NERC moorings, as well as a much lighter anchor (500 kg) weight than the NERC moorings ($1,350 \mathrm{~kg}$). It remains to be seen if drag due to this larger trap favours down canyon movement or tilt. The sediment trap is provided by Technicap (Fig. 8.24). It contains $24 \times 500 \mathrm{ml}$ sample bottles. A programmable motor ensures the rotation of the 24 bottle tray. The deployment period is divided into 24 equal periods and the start date is programmed. The start date of Aniitra 2 was set for the $01 / 11 / 19$ and each bottle set to collect sediment for one week. Anitra 3 was set to start 17/04/20, corresponding to the date that the Aniitra 2 sediment trap had finished collecting sediment. Each bottle in Aniitra 3 was also set to collect sediment for one week. The total sediment trap collection time equals 48 weeks.

Figure 8.22. Photograph of the sediment trap on the Aniitra mooring during deployment.

8.1.3.4 Set-up of each mooring

The two Ifremer moorings, Aniitra 2 and Aniitra 3, consist of an anchor, a single releaser, a sediment trap at 40 m above seabed, and a frame that holds a 75 kHz ADCP (Fig. 8.23). The anchor is composed of 500 kg of chain and the releaser is an Ixblue Oceano 2500 LIGHT TITANIUM AR861 CT. In addition to the ADCP, the Aniitra aluminium frame (Fig. 8.24) contains the external battery pack for the ADCP, a flashlight, a VHF radio and an ARGOS beacon. When in the water, the frame orientates itself with the current and the ADCP is mounted on a gimbal to keep it as vertical as possible. The mooring line consist of a 10 mm diameter Dyneema ${ }^{\circledR}$ (Ultra-High Molecular Weight Polyethylene) rope. This rope is reusable and can be adjusted on board; this is very useful if the mooring design changes just before deployment. The rope has a neutral weight in water and the breaking load is ~ 10 Ton. We now also use Dyneema ${ }^{\circledR}$ shackle that has a neutral weight, the buoyancy is therefore only required for the weight of the instruments. The position of the acoustic release is 15 m above the anchor, meaning that only a limited part of the mooring is left on the seabed.

Figure 8.23. Technical drawing of the Aniitra mooring design.

Figure 8.24. Main upper part of the Aniitra mooring comprising ADCP, battery, buoyancy etc.

8.1.3.5 Deployment

Due to the mounting of the ADCP and the shape of Aniitra, it is unsuitable to deploy the mooring using the anchor last method that was used for the NERC mooring deployment. Instead the anchor is lowered down on the winch and released approximately 30 meters above the seabed. For this deployment two winches are needed. See section 8.1.1. for a discussion of the advantages and disadvantages of anchor-first and anchor-last methods.

The three parts of the mooring line are connected together, and wound on the blue winch (winch 1) on the back deck. First, the anchor is deployed with the blue winch on the back deck. At the end of the first part of the mooring line, there is a special bridle that is connected to winch 2 to support the weight. When the main line is free, it can be connected under the first instrument (in this case the acoustic release). Winch 1 is now able to support the weight, and we proceed like this for the sediment trap. Once the mooring is fully constructed, it is lowered to the seafloor at a speed of 0.5 m / s. The winch is stopped when the USBL is 330 m above the seabed, and the mooring is then released.

8.1.4 Triangulation

It is important to know as accurately as possible where moorings are finally located on the canyon floor. Thus, NERC mooring positions were triangulated, by ranging from the ship to their acoustic releases. The position of the Aniitra moorings was taken as that of the USBL when released, although the Aniitra 2 mooring was also triangulated on its acoustic release from the vessel.

The usual triangulation method used on the RRS James Cook is three-point triangulation that takes three ranges to the acoustic release at equal distances from the moorings in different directions, together with a vertical depth range of the acoustic release beneath the ship. This method was initially used on the first mooring deployment, NERC M8, using the matlab graphical user interface script,
triangulate_v6, supplied by Paul Provost. Although this method appeared to work well on the first mooring, the script failed to provide a solution for mooring NERC M7. This was due to the ship not taking up positions that were at equal angular spacing around the circle described by the horizontal range from the mooring to the ship. The circles failed to overlap and a second method based on the three range trigonometric solution ("triangulo") was developed that calculated a solution based on the three ranges and positions of the ship. This method was additionally applied to the first three mooring locations: NERC M8, NERC M7, and the experimental hydrophone array.

All subsequent triangulations used four ranging positions at angular separations of 90 degrees around the circle described by an equal horizontal range to the mooring. To solve for four positions a matlab script was developed and adapted for each mooring location. This script triangulates four positions and calculates the mooring position as the centroid of the overlap of the four circles. The script additionally solves the direct trigonometric solution for all four combinations of three positions and ranges. The solution is determined as the arithmetic mean of the latitude and longitude of the four solutions. The filename of the matlab scripts used for each mooring are shown below:

Matlab scripts used for triangulation of mooring positions

Mooring/method	Paul's script	3 point trigonometric solution	4 point triangulation (circles) plus 4 x 3 point trigonometric solution
M1			Triangulo_M1_four_ranges
M2			Triangulo_M2_four_ranges
M3			Triangulo_M3_four_ranges
M4			Triangulo_M4_four_ranges
M5			Triangulo_M5_four_ranges
M6		Triangulo_M7	Triangulo_M6_four_ranges
M7	triangulation_v6	Triangulo_M8	
M8			
M8 Redeployment			Triangulo_M8_redeployment_four_ranges
M9			Triangulo_hydrophonearray_four_ranges
Hydrophone array			Triangulo_anitra2_four_ranges
Hydrophone array experiment	triangulation_v6	Triangulo_hydrophonearray_experiment	
Anitra 2			

Below are descriptions of the mooring triangulations in chronological order. For each mooring there is a table describing target and release positions, together with ship positions and ranges used in the triangulation. All NERC moorings positions were triangulated in addition to both deployments of the hydrophone array. The Aniitra 2 mooring position was also triangulated to provide a comparison with the USBL position given by the USBL beacon mounted on the mooring as it was lowered to the seafloor on the winch.

NERC Mooring M8: Deployed on $10^{\text {th }}$ September 2019

Mooring M8	Latitude	Longitude	Range (m)	Vertical range to release (m)
Target	-641.7815	528.967		
Release	-641.7818	528.9274		
Range point 1	-641.7347	526.8686	6177	
Range point 2	-640.0805	530.05	6074	
Range point 3	-643.4381	530.118	6130	
Range point 4				
Triangulated Position (triangulation_v6)	-641.7523	528.959		
Triangulated Position (3 point solution)	-641.752	528.963		
Triangulated Position (4 point circles)				
Triangulated Position (4 x 3 point solutions)				

Enter the longitude, latitude and depth of three pings (Convention N \& E are positive, S \& W are negative)

Fig 8.25. Triangulation_v6.m graphical user interface script showing target position, release position, ranging positions, ranges and depth used in the triangulation of NERC Mooring M8.

Figure 8.26. Triangulation_v6.m output showing target position, three ranging positions (blue circles), range circles (blue lines) for the triangulation of NERC Mooring M8.

Figure 8.27. Triangulation_v6.m output showing target position, release position and triangulated position of NERC Mooring M8.

Figure 8.28. Triangulo_M8.m output showing target position and triangulated position (left plot) and the distance from the target and the depth of the release determined by the direct trigonometric solution (right plot) for NERC Mooring M8.

NERC Mooring M7: Deployed on $11^{\text {th }}$ September

Tried these settings but it didn't work as circles didn't overlap, so used direct 3D solution method

Mooring M7	Latitude	Longitude	Range (m)	Vertical range to release (m)
Target	-627.8623	62.8346		
Release	-627.852	62.77		
Range point 1	-627.8666	60.86226	5920	
Range point 2	-626.1015	63.3383	5818	
Range point 3	-628.0359	64.811	6026	
Range point 4				
Triangulated Position (triangulation_v6)				
Triangulated Position (3 point solution)	Didn't work as circles didn't overlap			
Triangulated Position (4 point circles)	-627.8458	62.7939		
Triangulated Position (4 x 3 point solutions)				

Fig 8.29. Triangulation_v6.m graphical user interface script showing target position, release position, ranging positions, ranges and depth used in the triangulation of NERC Mooring M7.

Figure 8.30. Triangulo_M7.m output showing target position and triangulated position (left plot) and the distance from the target and the depth of the release determined by the direct trigonometric solution (right plot) for NERC Mooring M7.

Hydrophone array experiment: Deployed $17^{\text {th }}$ September:

Mooring Hydrophone array experiment	Latitude	Longitude	Range (m)	Vertical range to release (m)
Target	-549.227	116.105		
Release	-549.2523	116.1595		
Range point 1	-549.735	116.91	2192	
Range point 2	-548.41	115.73	2099	
Range point 3	-549.67	115.2	2224.7	
Range point 4				
Triangulated Position (triangulation_v6)	-549.2315	116.0869		
Triangulated Position (3 point solution)	-549.2356	116.0854		
Triangulated Position (4 point circles)				
Triangulated Position (4 x 3 point solutions)				

Figure 8.31. Triangulation_v6.m graphical user interface script showing target position, release position, ranging positions, ranges and depth used in the triangulation of the hydrophone array experiment.

Figure 8.32. Triangulation_v6.m output showing target position, three ranging positions (blue circles), range circles (blue lines) for the triangulation of the hydrophone array experiment mooring.

Figure 8.33. Triangulation_v6.m output showing target position, release position and triangulated position of the hydrophone array experiment mooring.

Figure 8.34. Triangulo_M7.m output showing target position and triangulated position (left plot) and the distance from the target and the depth of the release determined by the direct trigonometric solution (right plot) for the hydrophone experiment mooring.

IFREMER Aniitra 2：Deployed September 19th：

Mooring Aniitra 2	Latitude	Longitude	Range（m）	Vertical range to release（m）
Target	-554.0029	1119.76589		1854
Release	-553.9974	1119.75744		
Range point 1	-553.3777	1120.4253	2500	
Range point 2	-554.6635	1120.2819	2416	
Range point 3	-554.5305	1118.8634	2678	
Range point 4	-553.4156	1119.1639	2415.5	
Triangulated Position（triangulation＿v6）				
Triangulated Position（3 point solution）				
Triangulated Position（4 point circles）	-554.0008	1119.7661		
Triangulated Position（4 x 3 point solutions）	-554.0007	1119.7661		

```
# Figures -Figure 1
```



```
Figure \(1 \times\) Figure \(2 \times\)
```


Figure 8．35．Target，release and triangulated position of the Aniitra 2 mooring determined using the centroid of the intersection（shaded blue）of four range circles．

Figure 8.36. Zoom out of previous figure showing the full extent of the range circles from the four ranging positions.

Figure 8.37. Target, release, triangulated position and distance from target of the Aniitra 2 mooring determined by averaging the four direct trigonometric solutions (squares).

NERC Mooring M1: Deployed $19^{\text {th }}$ September:

Mooring M1	Latitude	Longitude	Range (m)	Vertical range to release (m)
Target	-554.012	1119.911		1811
Release	-554.008	1119.942		
Range point 1 NE	-553.4556	1120.4815	2345.5	
Range point 2 SE	-554.5709	1120.4674	2323.5	

Range point 3 SW	-554.61938	1119.27698	2420	
Range point 4 NW	$-5-53.48472$	1119.31142	2333.5	
Triangulated Position（triangulation＿v6）				
Triangulated Position（3 point solution）				
Triangulated Position（4 point circles）	-554.0186	1119.9042		
Triangulated Position（4 x 3 point solutions）	-554.0186	1119.9042		


```
Figure 1 }\times\not~\mathrm{ Figure 2 }\times\\\mathrm{ Mooring: M1 Distance from target =17.5115
```


田田日实

Figure 8．38．Target，release and triangulated position of NERC Mooring M1 determined using the centroid of the intersection（shaded blue）of four range circles．

Figure 8．39．Zoom out of previous figure showing the full extent of the range circles from the four ranging positions．

Fig. 8.40. Target, release, triangulated position and distance from target of the NERC Mooring M1 determined by averaging the four direct trigonometric solutions (squares).

NERC Mooring M4: Deployed $20^{\text {th }}$ September

Mooring M4	Latitude	Longitude	Range (m)	Vertical range to release (m)
Target	-555.455	1128.413		1577
Release	-555.44360	1128.44336		
Range point 1 NE	-554.7855	1129.0700	2350	
Range point 2 SE	-555.9198	1129.1564	2269.5	
Range point 3 SW	-556.06382	1127.75300	2284.5	
Range point 4 NW	-554.6375	1127.80202	2458	
Triangulated Position (triangulation_v6)				
Triangulated Position (3 point solution)				
Triangulated Position (4 point circles)	-555.4548	1128.4072		
Triangulated Position (4 x 3 point solutions)	-555.4549	1128.4074		

```
A Figure - Figure 
Eile Edit View Insert Iools Debug Desktop Window Help
```



```
\(\sqrt{\text { Figure } 1 \times} \times\) Figure 2 \(x\)
Mooring：M4 Distance from target \(=10.7081\)
Target \(=5^{\circ} 55.455^{\prime} \mathrm{S}, 11^{\circ} 28.413^{\prime} \mathrm{E}\)
```


Figure 8．41．Target，release and triangulated position of NERC Mooring M4 determined using the centroid of the intersection（shaded blue）of four range circles．

```
*) Figures-Figure 1
#Ele Edit Yiew Insert Iools Debug Desktop Window Help
Mooring：M4 Distance from target \(=\mathbf{1 0 . 7 0 8 1}\)
Target \(=5^{\circ} 55.455^{\prime} \mathrm{S}, 11^{\circ} 28.413^{\prime} \mathrm{E}\)
```


$\begin{array}{ll}\square & x \\ \sim \mid x\end{array}$

Figure 8．42．Zoom out of previous figure showing the full extent of the range circles from the four ranging positions．

Figure 8.43. Target, release, triangulated position and distance from target of the NERC Mooring M4 determined by averaging the four direct trigonometric solutions (squares).

NERC Mooring M3: Deployed 20 $^{\text {th }}$ September

Mooring M3	Latitude	Longitude	Range (m)	Vertical range to release (m)
Target	-557.208	1133.198		
Release	-557.22002	1133.23016		
Range point 1 NE	-556.622	1133.76955	2143	
Range point 2 SE	-557.76038	1133.79194	2127	
Range point 3 SW	-557.7878	1132.64336	2126	
Range point 4 NW	-556.65278	1132.61354	2139	
Triangulated Position (triangulation_v6)				
Triangulated Position (3 point solution)				
Triangulated Position (4 point circles)	-557.2118	1133.204		
Triangulated Position (4 x 3 point solutions)	-557.2118	1133.2041		

Figure 8．44．Target，release and triangulated position of NERC Mooring M3 determined using the centroid of the intersection（shaded blue）of four range circles．

Figure 8．45．Zoom out of previous figure showing the full extent of the range circles from the four ranging positions．

Figure 8.46. Target, release, triangulated position and distance from target of the NERC Mooring M3 determined by averaging the four direct trigonometric solutions (squares).

NERC Mooring M9: Deployment $\mathbf{2 2}^{\text {nd }}$ September

Mooring M9	Latitude	Longitude	Range (m)	Vertical range to release (m)
Target	-550.2	112.16		2150
Release	-550.1996	112.18904		
Range point 1	-549.4145	112.9396	2975	
Range point 2	-550.9744	112.9318	2941	
Range point 3	-551.0061	111.421	2947	
Range point 4	-549.4496	111.4019	2929	
Triangulated Position (triangulation_v6)				
Triangulated Position (3 point solution)				
Triangulated Position (4 point circles)	-550.2092	112.163		
Triangulated Position (4 x 3 point solutions)	-550.2092	112.163		

Figure 8.48. Zoom out of previous figure showing the full extent of the range circles from the four ranging positions.

Figure 8.49. Target, release, triangulated position and distance from target of the NERC Mooring M9 determined by averaging the four direct trigonometric solutions (squares).

Hydrophone array: Deployed $\mathbf{2 2}^{\text {nd }}$ September

Mooring Hydrophone array	Latitude	Longitude	Range (m)	Vertical range to release (m)
Target	-550.77	111.55		1929
Release	-550.775	111.63		
Range point 1	-551.36275	112.5777	2934	
Range point 2	-551.3895	110.674	2802	
Range point 3	-549.9885	110.79	2816	
Range point 4	-550.0275	112.40	2849	
Triangulated Position (triangulation_v6)				
Triangulated Position (3 point solution)				
Triangulated Position (4 point circles)	-550.7633	111.5595		
Triangulated Position (4 x 3 point solutions)	-550.7644	111.5589		

```
A. Figures - Figure 1
Eile Edit yiew Insert Iools Depug Destop Window Help
Mooring：Hydrophone array Distance from target \(=21.5626\)
Target \(=-5^{\circ} 50.77^{\prime} \mathrm{S}, 11^{\circ} 1.55^{\prime} \mathrm{E}\)
```


Figure 8．50．Target，release and triangulated position of the hydrophone array mooring determined using the centroid of the intersection（shaded blue）of four range circles．

```
A/ Figures - Figure 1
Eile Edit yiew Insert Iools Debug Desktop Window Help
```



```
Figure 1 }\times\mathrm{ Figure 2 x
Mooring：Hydrophone array Distance from target \(\mathbf{= 2 1 . 5 6 2 6}\)
Target \(=-5^{\circ} 50.77^{\prime} \mathrm{S}, 11^{\circ} 1.55^{\prime} \mathrm{E}\)
```


Figure 8．51．Zoom out of previous figure showing the full extent of the range circles from the four ranging positions．

Figure 8.52. Target, release, triangulated position and distance from target of the hydrophone array determined by averaging the four direct trigonometric solutions (squares).

NERC Mooring M2: Deployment $25^{\text {th }}$ September

Mooring M2	Latitude	Longitude	Range (m)	Vertical range to release (m)
Target	-550.231	112.353		2147.5
Release	-550.23374	11.2 .38194		
Range point 1 NE	-549.4754	113.1112	2936	
Range point 2 SE	-550.9332	113.1258	2955	
Range point 3 SW	-550.9836	111.5972	2900	
Range point 4 NW	-549.4821	111.5972	2910	
Triangulated Position (triangulation_v6)				
Triangulated Position (3 point solution)				
Triangulated Position (4 point circles)	-550.2313	112.3357		
Triangulated Position (4 x 3 point solutions)	-550.2313	112.3357		

```
A Figures - Figure 1
Eile Edit yiew Insert Iools Defug Desktop Window Help
Eile Edit Yiew Insert Iools Debug Deskop Window Help
Mooring：M2 Distance from target \(=\mathbf{3 2 . 0 0 4 2}\)
Target \(=5^{\circ} 50.2311^{\prime} \mathrm{S}, 11^{\circ} 2.353^{\prime} \mathrm{E}\)
```


- ${ }_{\sim}^{x}$

Figure 8．53．Target，release and triangulated position of NERC Mooring M2 determined using the centroid of the intersection（shaded blue）of four range circles．

Figure 8．54．Zoom out of previous figure showing the full extent of the range circles from the four ranging positions．

Figure 8.55. Target, release, triangulated position and distance from target of the NERC Mooring M2
NERC Mooring M5: Deployment 28 $^{\text {th }}$ September

Mooring M5	Latitude	Longitude	Range (m)	Vertical range to release (m)
Target	-543.87349	87.315559		
Release	-543.879	87.3438		
Range point 1 NE	-542.6225	88.34558	5059.5	
Range point 2 SE	-545.08784	88.36868	5028	
Range point 3 SW	-544.9912	86.1045	5055	
Range point 4 NW	-542.5954	86.1695	5145	
Triangulated Position (triangulation_v6)				
Triangulated Position (3 point solution)				
Triangulated Position (4 point circles)	-543.8825	87.3028		
Triangulated Position (4 x 3 point solutions)	-543.8821	87.3024		

Figure 8．56．Target，release and triangulated position of NERC Mooring M5 determined using the centroid of the intersection（shaded blue）of four range circles．

Figure 8．57．Zoom out of previous figure showing the full extent of the range circles from the four ranging positions．

Figure 8.58. Target, release, triangulated position and distance from target of the NERC Mooring M5 determined by averaging the four direct trigonometric solutions (squares).

NERC Mooring M6: Deployment 29 ${ }^{\text {th }}$ September

Mooring M6	Latitude	Longitude	Range (m)	Vertical range to release (m)
Target	-552.143	655.521		
Release	-552.12140	655.53954		
Range point 1 NE	-552.1383	653.7844	5436	
Range point 2 SE	-550.3808	655.5376	5470	
Range point 3 SW	-552.1597	657.1939	5375.5	
Range point 4 NW	-553.8442	655.516	5392.5	
Triangulated Position (triangulation_v6)				
Triangulated Position (3 point solution)				
Triangulated Position (4 point circles)	-552.1482	655.5175		
Triangulated Position (4 x 3 point solutions)	-552.148	655.5173		

Figure 8.60. Zoom out of previous figure showing the full extent of the range circles from the four ranging positions.

Figure 8.61. Target, release, triangulated position and distance from target of the NERC Mooring M6 determined by averaging the four direct trigonometric solutions (squares).

NERC Mooring M8 redeployment: Deployment $2^{\text {nd }}$ October

Mooring M8 redeployment	Latitude	Longitude	Range (m)	Vertical range to release (m)
Target	-545.42248	740.49355		
Release	-545.42138	740.51584		
Range point 1	-544.2415	741.7743	5311	
Range point 2	-546.5528	741.8368	5357	
Range point 3	-546.5035	739.1750	5269	
Range point 4	-544.398	739.192	5184.00	
Triangulated Position (triangulation_v6)				
Triangulated Position (3 point solution)				
Triangulated Position (4 point circles)	-545.4004	740.4741		
Triangulated Position (4 x 3 point solutions)	-545.4006	740.4744		

```
A Figures - Figure 1
Eile Edit Yiew Insert Iools Debug Destop Window Help
```



```
\(\sqrt{\text { Figure } 1 \times \text { Figure } 2} \times \mid\) Mooring：M8 redeployment Distance from target \(=54.2966\)
Target \(=5^{\circ} 45.4225^{\prime} \mathrm{S}, 7^{\circ} 40.4935^{\prime} \mathrm{E}\)
```


Figure 8．62．Target，release and triangulated position of NERC Mooring M8 determined using the centroid of the intersection（shaded blue）of four range circles．

Figure 8．63．Zoom out of previous figure showing the full extent of the range circles from the four ranging positions．

Figure 8.64. Target, release, triangulated position and distance from target of the NERC Mooring M8 determined by averaging the four direct trigonometric solutions (squares).

8.2 Multibeam Echo-Sounder (MBES)

8.2.1 Previous bathymetric surveys available to this cruise

Two sets of pre-existing bathymetric surveys from IFREMER were kindly made available for planning JC187. They were used as base maps to plan the cruise and select sites for higher resolution surveys. The first of these surveys is a 100 m grid size bathymetry available for the entire Congo Canyon system, obtained by IFREMER in 1998. The second dataset is a 50 m grid size bathymetry for parts of the system, mainly in the proximal part of the system, and a few smaller stretches further downstream. This was obtained by IFREMER in 1998 as well, but some areas were covered in higher resolution which was used to make this 50 m grid. The 50 m grid bathymetry covers the channel between $6.04^{\circ} \mathrm{S} 12.04^{\circ}$ E and $5.62^{\circ} \mathrm{S} 10.33^{\circ} \mathrm{E}$ (proximal); $5.88^{\circ} \mathrm{S} 9.74^{\circ} \mathrm{E}$ and $5.87^{\circ} \mathrm{S} 9.71^{\circ} \mathrm{E} ; 6.00^{\circ} \mathrm{S} 9.22^{\circ} \mathrm{E}$ and $5.83^{\circ} \mathrm{S} 8.59^{\circ}$ $\mathrm{E} ; 5.85^{\circ} \mathrm{S} 7.02^{\circ} \mathrm{E}$ and $5.90^{\circ} \mathrm{S} 6.84^{\circ} \mathrm{E} ; 6.45^{\circ} \mathrm{S} 6.11^{\circ} \mathrm{E}$ until past channel confinement.

8.2.2 Aims of multibeam surveying

The previously available $\geq 50 \mathrm{~m}$ gridded bathymetry could not resolve small-scale features on the canyon/channel floor. Additional surveys were undertaken during JC187 to improve the precision of our bathymetry basemaps. Two surveys types were undertaken.

First, surveys covering limited areas were designed. The principal aim of these surveys was to assess whether the pre-planned mooring deployment sites were appropriate, i.e., on flat areas of the canyon/channel floor or on terraces. This was essential to prevent side-lobe interference within the ADCP data and to ensure appropriate deployment (low slope angles) for the OBSs.

Second, longer along-channel surveys were performed. The aims of these surveys, in addition to instrument deployment, was to study the morphology of the channel in greater detail in order to identify features such as knickpoints, bars, mass failures and bend cut-offs. Identification of these features can subsequently be linked to observed flow characteristics from deployment instruments. They also enable future cruises to re-survey the same areas and produce difference maps.

8.2.3 Multibeam setup and processing

The surveys were performed using a Kongsberg EM122 deep water swath multibeam echosounder. Highest resolution data was generated by setting the swath to the narrowest setting: beam angle was set to 45° from the nadir, and a minimum possible beam width of 0.5°. SVPs were taken at the start of most surveys. A second SVP was performed halfway through some of the longer surveys. See section 8.3 on water column measurements for detailed locations and timings of the CTD and SVP drops. Incoming data were automatically corrected for the heave, roll and pitch of the ship. Recorded data was then processed using CARIS HIPS and SIPS software. Data were exported in geotiff format, referenced in the correct UTM zone, and then analysed in ArcGIS. This processing and exporting to GIS had to be performed very quickly in some cases, since exact deployment of instruments was based on it. Note that this procedure is not the final processing.

8.2.4 Path planning, layout, and recording

The surveys were planned using an along-channel line crossed by several transverse lines perpendicular to the along-channel line. This path lay-out ensures that all of the desired area is covered by swaths at 90° to one another and therefore prevents shadowing by the sidewalls of the channel. Line spacing of the transverse lines was dependent on water depth. The central 33% of the beam has the highest resolution. The paths are designed to overlap at least 66\%, so the entire area is covered by the central 33% of the swath.

Figure 8.65. Schematic diagram explaining how the desired overlap was determined.
The standard length of the transverse paths is 1 km (500 m to each side of the centre along-channel line). This can be longer to cover channel meanders, or to survey overbanks where OBS deployments are planned. Start and end points of the along-channel and transverse lines are communicated to the bridge, accompanied with a definition of which points make up a line. The along-channel line can consist of more points, in case it is not a straight line. Paths between defined survey lines were navigated according to the bridge's call on how to steam between different defined lines. All turns
made are outside the defined lines and the ship will be on speed and aligned with the defined line before reaching it. This led to the ship steaming ~ 0.5 nautical miles outside of the line before turning, adding 1 nautical mile to the length of the path per transverse line. The turn transitioning from the along-channel line to the transverse line took about 15 minutes. Surveys were performed at 6 knots. Survey time estimates can be constructed by using the path length, and the extra length for the turns and assuming an average speed of approximately 5.5 knots (speed drops in turns), for the entire path length. These estimates were than checked with the planned survey path constructed on the bridge. We also conducted a few single line surveys, with no transverse lines. These lines were designed to follow the channel thalweg.

We performed small surveys around mooring locations, solely for determining deployment sites. The along-channel lines in these surveys were 6 km long. In the deepest waters, a 6 km along-channel line is covered by 3 transverse lines with 2 km spacing in between. The more extensive surveys have variable lengths and can have a progressive decrease in line spacing as water depths become shallower.

Figure 8.66: Idealised standard multibeam path layout. Yellow stars are the coordinates and solid red lines defined paths, communicated to the bridge. The dashed red lines are the paths followed by the bridge between the lines.

8.2.5 Locations, coverage, and performed surveys

Site	Around sites	Water depth (m)	Length (km)	Transverse lines	Time (hh:mm)	Lat min (${ }^{\circ}$ S)	Lat max ($\left.{ }^{\circ} \mathrm{S}\right)$	Long min ($\left.{ }^{\circ} \mathrm{E}\right)$	Long max $\left({ }^{\circ} \mathrm{E}\right)$
67	42; 59; 75; 124	4950	6	3	02:06	6.667	6.728	5.452	5.514
68	$\begin{aligned} & \text { 40; 57; 58; 76; } \\ & 77 \end{aligned}$	4780	6	3	02:14	6.443	6.491	6.001	6.072
69	38; 39; 78	4677	6	3	02:17	6.179	6.242	6.427	6.469
71	36; 37	4470	6-16	3-4	03:40	5.83	5.932	6.799	6.973
83	$\begin{aligned} & \hline 4 ; 5 ; 6 ; 7 ; 8 ; 10 ; \\ & 11 ; 12 ; 44 ; 45 ; \\ & 46 ; 48 ; 66 ; 85 ; \\ & 87 ; 88 ; 93 ; 96 ; \\ & 97 ; 98 ; 99 ; \\ & 103 ; 104 ; 105 \\ & \hline \end{aligned}$	$\begin{aligned} & 1568- \\ & 1927 \end{aligned}$	35	35	19:56	5.883	5.969	11.262	11.575
84	13; 14; 86	$\begin{aligned} & 2070- \\ & 2290 \end{aligned}$	25	16	10:39	5.803	5.898	10.923	11.285

89	$\begin{aligned} & \text { 92; 100; 107; } \\ & \text { 108; 109; 110; } \\ & \text { 111; } \end{aligned}$	$\begin{aligned} & 1914- \\ & 2040 \end{aligned}$	15	12	7:25				
115	-	$\begin{aligned} & 833- \\ & 1588 \end{aligned}$	7	2	02:35	Survey was directly processed into 83, no separate available at the moment			
113	$\begin{aligned} & 32 ; 33 ; 41 ; 43 ; \\ & 52 ; 53 ; 101 ; \\ & 112 ; 114 \end{aligned}$	$\begin{aligned} & 4140- \\ & 4335 \end{aligned}$	66	34	29:05	5.693	5.831	7.577	8.178
119	35; 55; 56; 70	$\begin{aligned} & 4509- \\ & 4675 \end{aligned}$	62	31	20:54	5.874	6.199	6.435	6.912
121	-	$\begin{aligned} & 4681- \\ & 4961 \end{aligned}$	114	0	10:19	6.226	6.720	6.672	6.481
122	-		56	4	9:47				
125	102	$\begin{aligned} & 4353- \\ & 4489 \end{aligned}$	76	0	6:38	5.733	5.901	6.901	7.562
126	102		34	18	10:37				

Table: All performed surveys in chronological order. All the waypoints as communicated to the bridge are shown in the appendices. Colour coding in 'site' column: Red= standard survey; Blue=long survey; Yellow=single line survey; black=other.

Notes on surveys different from 'standard' survey around planned mooring site.

- Site 69: One of the transverse lines is extended to cover an OBS deployment location (site 38).
- Site 71: Some distance along the channel and a $2 \times 2 \mathrm{~km}$ block formed by a cross preceded the normal part of the survey. The entire along-channel distance is about 16 km , while the site covering the planned mooring deployment is defined by the usual 6 km line along the channel.
- \quad Site 83: This is a long survey covering the channel between the eastern edge of DRC waters until about $5.889^{\circ} \mathrm{S} 11.274^{\circ} \mathrm{E}$. It covers several instrument sites. It will be used to study the morphology of the canyon, and possible morphological change in the future.
- \quad Site 84: This is a longer survey covering the channel between $5.862907^{\circ} \mathrm{S} 11.139938^{\circ} \mathrm{E}$ and the western edge of Congo/Gabon waters. It will be used to study the morphology of the canyon, and possible morphological change in the future
- \quad Site 89: This survey completes the gap between the surveys of site 83 and 84 , between 5.889° S $11.274^{\circ} \mathrm{E}$ and $5.862907^{\circ} \mathrm{S} 11.139938^{\circ} \mathrm{E}$. It will be used to study the morphology of the canyon, and possible morphological change in the future. (Surveys 84 and 89 were processed together).
- \quad 115: This survey was planned after recognising a small lack of coverage of a desired location in survey 83.
- Site 113: This is a long survey spanning from the western edge of the Congo/Gabon international waters, to site 32 . It covers two mooring locations and the part of the channel between these two mooring locations (approximately 66 km).
- \quad Site 119: This is a long survey spanning between the surveys obtained at sites 69 and 71 . It is 62 km long, but does not cover any mooring locations.
- Site 121: This is a 114 km long single-line survey spanning from the survey at site 69 to the survey at site 67. It swings around survey 68, to get a slightly better coverage over an abandoned channel here. The end is made to fit the start of survey 122.
- Site 122: This survey is designed to cover the area just upstream of site 67. It is designed differently from other surveys. The area is covered by four 22 km long parallel lines that are spaced 3 km apart. The last line of the survey around the head scarp transitions into a single
line back up to site 68, making this area covered by two single lines. (Surveys 121 and 122 were processed together).
- \quad Site 125: This is a 76 km long single line survey between site 71 and 113. It was designed to fill the only missing gap along the channel thalweg in international water.
- Site 126: This is a long survey starting at the eastern side of site 113. It just consists of transverse lines over the single line performed in survey 125 . It is designed to use up any time at the end of the cruise. (Surveys 125 and 126 were processed together).

Figure 8.67: Location of longer surveys and total coverage. Grey shaded areas are areas where we did not work due to permits. We only worked in Angolan or International Waters.

Figure 8.67 (continued). (A) Map showing the area covered by 50 m and 100 m gridded IFREMER bathymetry in grey. Locations of bathymetry collected in upper canyon (b) and international waters (c) shown in colour. (B) Map showing bathymetry surveys by JC187 in the upper canyon in Angolan waters. (C) Map of bathymetric surveys collected by JC187 along the distal channel within International Waters.

8.2.6 Survey performance

The surveys were generally very successful. We were able to construct grid with 5 m resolution from the upper-canyon surveys in shallow ($<2,500 \mathrm{~m}$) water. In deeper-water (up to 4500 m), we typically gridded data successfully at 15 m horizontal resolution, but it was found that 5 m gridded data were possible in some areas.

The transverse lines helped reduce the noise, especially around the channel edges. Despite the traverse lines taking up the majority of the survey time and not adding a large amount of additional coverage, they were crucial for achieving the highest resolution data. This was due to the increase in point density for each grid cell, and the subsequent reduction in variability outside of the central 33%. The resulting bathymetric maps helped to decide on the exact mooring location. Several moorings were adjusted based on these newly obtained bathymetric survey results.

8.3 Water Column Measurements

8.3.1 CTD and SVP data

A CTD SBE-9 stainless steel frame from Sea-Bird was used for multiple purposes at 11 stations during the JC187 cruise.

The first purpose was to obtain vertical profiles, from close to the surface (5 m) to close to the sea floor ($\sim 5 \mathrm{~m}$), of the main properties of the water masses, that are sent and monitored from the ship through the CTD cable. The classical CTD triad, conductivity (C), hence salinity, temperature (T), and pressure based depth (D), is complemented by others sensors. The complementary parameters are the oxygen, fluorescence and both acoustic-based and optical-based turbidity.

The frame is also used to obtain water samples making use of its 24 Niskin bottles of 12 litres. The bottles sample the water on the way up to the surface at different depths, based on the vertical structure of the water properties shown by the real-time monitoring on the way down. The water is sub-sampled out of the Niskin bottles once the frame back on board (see Chapter 6.5.2).

Complementary, the current velocity is measured during the casts by a LADCP (Lowered Acoustic Doppler Current Profiler) sounding and listening downwards. LADCP data can be exploited to provide an estimation of the turbidity and the sediment concentration. This would need some calibrations against sampled sediments. Due to the turbulence produced behind the frame on its way back to the surface, LADCP data is not fully exploited on both ways, but only on its way down. During stationary stations, while water samples are collected, LADCP data remains exploitable.

The vertical position relative to the surface of the CTD frame is obtained from the pressure. Its vertical position relative to the seabed is obtained by an altimeter, whose range goes up to 100 m . An USBL beacon mounted on the frame provides its 3D location and hence a way to check, close to the sea bed, the local depth.

The CTD data provide the necessary parameters to quantify the vertical profile of the water density and hence of the sound celerity in the water. CTD casts were taken before the multi-beam surveys to minimize errors. But a Sound Velocity Profiler (SVP) mounted on the frame was specifically used for this purpose. In some cases, when the CTD cast was not possible, SVP profiles were obtained alone.

8.3.2 CTD Instruments and calibration

The set of instruments used and mounted on the CTD are indicated here after together with certain specifications and, if useful and available, some information about their calibration.

8.3.2.1 Altimeter

The Teledyne's Benthos PSA-916T (titanium) altimeter measures the vertical distance between the CTD-frame and the sea bed. It pings at 1 Hz rate a 14° conical signal of 200 kHz . It may be deployed to full ocean depth, and its measurement range is from 0 to 100 m . Typical bottom detection is around 75 m.

The altimeter is a critical instrument to bring the frame as close to sea bed as possible. If the altimeter signal is stable, thanks to DP position, fair sea and weather conditions, the frame may be approached up to 5 m close to the bed.

8.3.2.2 Temperature

Temperature is obtained with two SBE-3P Premium Temperature Titanium sensor from Sea-Bird Electronics. Their serial numbers are 03P5660 and 03P5700. Their calibration from March 2018 was done with 11 points between 1 and $31^{\circ} \mathrm{C}$.

8.3.2.3 Conductivity (Salinity)

The CTD-frame is equipped with two conductivity sensors. Their serial numbers are 3698 and 3873. The SBE-4C sensors, one aluminium, the other titanium, were calibrated in March 2018 at 35 PSU. The calibration is based on 6 points. The results are recorded in both conductivity (mSiemens/cm) and equivalent salinity (PSU).

8.3.2.4 Pressure

Two instruments are used to measure pressure (dB-decibar and m-meters of salt water). A SBE-05T (serial number 053085) calibrated in March 2018, and a SBE-09Plus digiquartz (serial 134949) calibrated in March 2019.

8.3.2.5 Oxygen

The dissolved oxygen sensor is a SBE 43 (serial 0709) calibrated in July 2018. The provided and recorded oxygen values are expressed in $\mu \mathrm{mol} / \mathrm{kg}$.

8.3.2.6 Turbidity

The turbidity, used as a proxy of the presence of sediment in suspension is obtained from two sensors of different nature.

A WetLabs C-star transmissometer with a titanium housing samples at 8 Hz the attenuation ($1 / \mathrm{m}$) of the acoustic signal, or transmittance) along a pathlength of 25 cm . The WetLabs have been calibrated by Sea-Bird in March 2018.

A WetLabs ECO BBRTD Scattering meter is also used to estimate turbidity and evaluate the concentration of sediment in suspension. This instrument is based on light scattering, as in a traditional OBS (Optical Back-Scatter). The radiance attenuation is used as a proxy for the turbidity and the sediment concentration. The recorded units are $\mathrm{m}^{-1} \mathrm{Sr}^{-1}$ (loss per metre and steradian). The present model is based on a 660 nm wavelength signal and may be used up to 6000 m of water depth. Its calibration (Serial BBRTD-168) is from May 2017.

8.3.2.7 Fluorescence

The CTD is also equipped with a fluorometer, a Chelsea Aquatrack MK3 (serial 088195). The fluorometer is useful in surface waters where it provides evidence of chlorophyll-a. Together with turbidimeters it provides some information on the nature of the turbidity (lack of transparency, both to sound and light) levels. Sediment related turbidity shows a low level of fluorescence. The Aquatrack MK3 was calibrated in Octobre 2018. The recorded data units is $\mu \mathrm{g} / \mathrm{l}$.

8.3.2.8 LADCP (velocity)

The Workhorse Monitor LADCP from Teledyne-RDI (serial 24466) is a 307.2 kHz to be used up to 6,000 m of water depth. Its certificate of conformance is from March 2017. Both temperature and pressure sensors are installed directly on the LADCP.

The LADCP is installed in the lower part of the CTD frame and oriented downwards. Its beam angle is of 20°. The single ping ensembles are obtained at 1 Hz . The ambiguity velocity is $\sim 2 \mathrm{~m} / \mathrm{s}$. The blank used is 5 m . The first has 7.17 m . The default bin size is 2 m , and there are 50 bins in total.

8.3.3 Water samples

The CTD (Conductivity, Temperature and Depth) frame on board holds 24 Niskin bottles (of 10 litres capacity each) mounted on the frame, which can be "fired" manually from a computer to trap water at specific depths. Up to 100 m above the seafloor, a 2 kHz altimeter is used to determine the height of the frame above the seafloor. However, there is a risk that the altimeter is measuring a hard rock surface underneath a fluid mud layer. The water depth measurements more than 300 m above the seafloor are determined using a pressure gauge, which is influenced by the salinity, temperature and latitude. At heights from $\sim 100 \mathrm{~m}$ to 300 m above the seafloor, a combination of pressure and wire out is used to determine the height above the seafloor. It should be noted that the sample depth is not equal to the water depth, as the Niskin bottles are mounted vertically on the frame, and the instruments measuring the water depth are mounted on the bottom of the frame. The offset is ~ 50 cm between the instruments and the bottom of the Niskin bottles ($\sim 90 \mathrm{~cm}$ tall).

We did not intend to take many water samples, and samples would only be taken for sediment measurements if the CTD was deployed in a (suspected) turbidity current. We therefore brought limited supplies ($12 x$ plastic bottles). Whilst at sea we also decided to collect water samples to test for the presence of microplastics. However, as this was a last-minute plan there were no adequate sampling bottles on board or a procedure in place. Beer bottles, 330 ml , London Pride or Heineken were used. The number of bottles, and water depths we sampled therefore changed between CTD casts.

We used glass (beer) bottles for the microplastic sampling. We scrubbed the labels off, and rinsed with tap water, boiling water and Milli-Q water before use. The caps for the glass bottles was layered tinfoil. The water samples were taken after 5 seconds of free flow of water from the Niskin bottles. The water samples were collected in the glass beer bottles for the microplastic sampling (1 or 3 bottles were collected depending on CTD) or 1 plastic bottle for suspended sediment sampling.

For the microplastics analysis, we also took samples for a standard. This should enable the microplastic input from our lab environment, as well as from the Niskin bottle itself, to be quantified. A Niskin bottle (\#1 on frame) was unhooked \& rinsed out once with milli-Q water, before filling up the Niskin bottle with milli-Q water (10 litres). Next, the Niskin bottle was left in the lab for 2 hours, to account for the time that would be taken between sampling at depth, resurfacing and subsampling during the normal microplastics water sampling protocol. Samples were taken in 3 beer bottles. (London pride and Heineken) and capped with tinfoil; following the exact same procedure as with the "normal" CTD water samples.

$8.4 \quad 3.5 \mathrm{kHz}$ sub-bottom profiler (CHIRP)

8.4.1 Previous sub-bottom surveys available to this cruise

Previous sub-bottom profile surveys have been conducted by IFREMER, using a CHIRP sub-bottom profiler (operating at frequencies from 1.8 to 5.3 kHz) between 1992 and 2011.

8.4.2 Aim of Sub-bottom surveying

The 3.5 kHz sub-bottom survey provide an additional dataset to try to understand the architecture of the canyon, including channel levees and terraces. Survey paths for the sub-bottom profiles were the same as the survey paths for the multibeam survey.

8.4.3 Sub-bottom setup and processing

The surveys were performed using a KONGSBERG SBP120 sub-bottom profiler operating in a $2.5-7 \mathrm{kHz}$ frequency range. A narrow beam width of 3° was used to ensure a high-resolution image. Data are automatically corrected for pitch, roll and heave of the ship, and saved in a SEG-Y format.

It is not possible to view SEG-Y files whilst onboard, and therefore it is not possible to analyse the data. However, any descriptions of the data have been made from the central window seen in Figure 5.3.1 below, whilst the data is being collected (Fig. 5.3.1). It may be useful to note that throughout the cruise the 'Automatic Slope Correction' was ticked off. This is because the correction was continually providing wrong depth readings at the beginning of the cruise.

Figure 8.68. Sub-bottom profile screenshot showing the system settings, as well as the survey data as it is collected. Note the lack of return signal shown within the canyon (white), compared to the data collected outside of the canyon.

8.4.4 Runtime Parameters

Transit Mode: Normal

Synchronisation: EM trigger
Acquisition Delay [ms]: 1581
Acquisition window [ms]: 100
Reduce EM<>SBP crosstalk: [tick]
Pulse form: Linear Chirp up
Sweep low frequency [Hz]: 2500
Sweep high frequency [Hz]: 7000
Minimum Pulse shape: [tick]
Pulse shape [\%]: 8
Source Power [dB]: 0; 0
Power ramping rate [dB/min]: 0.0
Beam Width Tx: Normal
Beam Width Rx: Normal
Number of beams: 3; 3
Beam Spacing [deg]: 3.0
Calculate Delay from depth: [tick]
Depth of transducer [m]: 1199
delay hysteresis [\%]: 10
Bottom Screen Position [\%]: 25.0
Automatic Slope Correction: Off
Slope along [deg]: 0
Slope Across [deg]: 0
Slope quality: 0
Bottom Incidence Range [ms]: 1607
normal Incidence Range [ms]: 1505
Transducer Sound Speed: 1527
Average Sound Speed: 1492.01
Bottom Sound Speed: 1487.7

8.5 USBL Sonardyne

USBL (Ultra-short baseline) is a range and bearing system that gives an underwater position of an acoustic transponder. The position is determined by measuring the time and phase of the received signal from the transponder by a ship-mounted transceiver, and it requires high quality vessel motion and timing data. The James Cook has two USBL transceivers mounted on retractable spars beneath the aft section of the ship's hull. A standard USBL transponder head is mounted 3.90 m to starboard, and a big head USBL transponder is mounted 1.98 m to port. USBL transponders were deployed during operations included CTD/SVP casts, multi-cores, piston cores and the anchor-first mooring deployments (Aniitra 2 and Aniitra 3).

CASIUS (Calibration of Attitude Sensors in the USBL System) calibration reports are available for both of the James Cook's USBL transceiver units. The reports were compiled from data acquired in November/December 2017 whilst the vessel moved around a transponder deployed on the seabed. Analysis of the observations provides a quantification of errors and corrections to improve the accuracy of the position of the seabed transponder. After application of the CASIUS corrections the error for the standard head transceiver is 0.53% of depth for 98.2% of beacon positions, and 1.47% of depth for 98.2% of beacon positions for the big head transceiver.

The port (big head) transceiver was initially deployed for USBL positioning during the first stage of the cruise in international waters. The starboard (standard head) transceiver was then deployed for all subsequent positioning in Angolan and International Waters.

8.6 Piston corer

The piston corer used on the James Cook is able to take sediment cores of up to 24 metres. The corer consists of a weight fitted with steel tubes (see Fig. 8.69), surrounding a PVC liner tube. Up to 4 sections of 6 m -long barrels can be fitted depending on the type of sediment being sampled. We typically used a 9 m-long barrel for coring into the canyon floor (which we suspected to be sandy) and a 12 m -long for the lobe, terraces and levees (which we suspected to be muddy). Longer barrels are chosen for softer sediment in order to protect the equipment, the winch onboard otherwise catches most of the force released when the piston is not slowed down by the underlying sediment. The corer is lowered on a wire to the seabed until a trigger weight, suspended from the corer weight, contacts the seabed. This operates a mechanism, which allows the corer to free-fall a distance pre-set by the length of trigger wire and sink into the sediment. The trigger weight captures the top part ($\sim 50 \mathrm{~cm}$) of the seabed sediment and can be used as a sediment core, although it can be either disturbed or empty (Fig. 8.69).

Figure 8.69. Left: Piston corer at sea surface, Right: Trigger core
On recovery, the piston core barrel is transferred from the outside of the boat to racks on the deck (Fig. 8.70). The heavy metal cone on the bottom end of the piston core barrel is removed, which includes the core catcher inside. We aimed to collect sediment included in the core catcher located at the bottom of the core if present (Fig. 8.71). Next, we pushed the PVC liner from the top (pulling from the bottom) exposing the PVC liner from the core barrel. (Fig. 8.72). We added a label on the long side (see below), and added a long arrow going through the new and old section, so that sections could be lined up in the lab later on. The PVC liner (containing the sediments) is then cut into 1.5 m long sections, which are typically the section lengths used in BOSCORF. Note that the PVC liner has joints,
hence we sometimes had to cut $<1.5 \mathrm{~m}$ long sections in order to cut on joints, as these are a weakness in the liner. Cutting sections required a core cutter; cheese wire in order to separate muddy sections, and end caps (Fig. 8.73). Sometimes blue roll and polystyrene was added to fill gaps on the ends, caused by air or water pockets. Once sections are cut, we put caps on each section end, secured with electric tape (Fig 8.74). We also used hammer and nail, to create a hole in the end caps, ensuring the core sections can depressurise and release gasses, without expanding (i.e. popping the caps off).

Each section was labelled as follows: JC187 - PC X - Section letter to letter - Section depth (measured from top to bottom once all sections are cut); X is the piston core number; letter starts from $A=$ bottom. Section depth starts from the top ($=0 \mathrm{~cm}$), and is cumulative downward. Section A is therefore the deepest end of the piston core (see Fig. 8.75).

We did not have any core splitting equipment on board, so all preliminary findings are based on observations on the section interfaces, and success of piston core penetration into the seabed.

Figure 8.70. Core is being put on deck

Figure 8.71. Collection of the core catcher sample into a plastic bag

Figure 8.72. Core on stand, ready to be removed from the steel tube barrel and split into sections

Figure 8.73. Cutting of core into 1.5 m sections, and use of a cheese wire.

Figure 8.74. Caps are put at the ends of each section

Figure 8.75. Labelling on each section (arrow pointing towards the top).

8.7 Mega-corer (interface corer)

8.7.1 Aim of mega-core sampling

Multi-cores are able to take high-quality, undisturbed samples of the top $\sim 0.6 \mathrm{~m}$ of the seabed and preserve the seabed-water interface. Multiple transects of mega-cores were collected to compare the channel thalweg and channel terraces; cores were also taken on the lobe. The mega-cores were collected to try to answer the following questions:

1. What are the depositional, sedimentological properties of the cores in the sub-environments of the canyon and can the depositional signatures be linked to flow processes?
2. How is organic carbon transported within the Congo Canyon?
3. Are microplastic present in the surface deposits within the Congo Canyon?
4. Can these cores be dated to improve our understanding of the Congo Canyon?
5. What is the distribution of EPS and clay mineral types within the Congo Canyon?

8.7.2 Mega-core deployment

A mega-corer is an instrument to which up to 12 core tubes can be attached; eight cores were attached to the frame for this cruise. Each tube has a diameter of 110 mm and a length of 600 mm . The multicorer is deployed by lowering the frame on a winch to the seafloor at a speed of $50 \mathrm{~m} / \mathrm{min}$ (Fig. 8.76 pushes the assembled cores into the sediment whilst the frame remains on the surface (Fig. 8.77). As the cores descend into the sediment, the top of the core is sealed with a lid, creating a vacuum. The cores are then lifted out of the sediment and as soon as the core is free of the seabed, the bottom seal snaps over the base of the core. The locking mechanism of both the top lid and bottom hatch is activated by the friction of the sediment, but when the core descends into fluid mud, the friction may not be high enough for the locking mechanism to be activated, resulting in over penetration. Over penetration of the multi-corer occurred at the first site, so a square wooden frame was fixed to the base of the frame to help the frame sit on the seabed and prevent further failed recoveries. The megacorer uses a unique hydrostatic damping system that slows the penetration rate down to approximately $10 \mathrm{~mm} / \mathrm{s}$.

When the mega-corer arrives on the deck, the cores are carefully removed from the frame and a rubber bung is placed into the base of the cores to hold the sediment in place (Fig. 8.77B, C). If seawater is present on top of the sediment within the core, this is carefully removed without disturbing the underlying sediment by siphoning with a small-diameter rubber tube. The cores are sampled by taking sub-cores or by taking syringes at specific sections within the cores. These methods are outlined below.

Figure 8.76: Sequence of events to obtain multicores: A) the multi-core prepared and ready to be deployed, B) Multicore back on deck, C) sediment cores are placed into the wooden rack with the bungs in place.

8.7.3 Subsampling using Trigger Weight Core liner

To look at the sedimentology of the cores, the organic carbon, microplastics and dating (questions 1 to 4 in section 6.8.1), sub-cores of multi-core tubes were taken using trigger weight core (TWC) liner. The TWC liner had a length of 0.6 m and a diameter of 60 mm . The liner was cleaned to remove grease
and loose plastic before use. The TWC liner is slowly pushed into the centre of the multi-core through to the base of the tube (Figs $8.76,8.78 \mathrm{~A}$). If there is any space between the sediment and the top of the TWC liner, the gap is filled with a polystyrene disks and blue roll. The top of the TWC liner is capped and labelled as the top (Fig. 8.78B). The TWC and multi-core tube are then carefully flipped upside down simultaneously (Fig. 8.78 C). The bung at the base of the multi-core is removed and the base of the TWC liner capped. The TWC liner is then carefully removed by holding the base of the liner and lifting up the multi-core tube (Fig. 8.78D). The core is cleaned and the caps secured with tape (Fig. $8.78 \mathrm{E}, \mathrm{F})$. After labelling, the cores are stored in the refrigerated reefer. Four sub-cores were taken for MC-02 to MC-04 and MC-25. To avoid running out of trigger weight core liner, the number of subcores was reduced to three for MC-05 to MC-08, MC-10 to MC13, MC-16, MC-18 to MC-22, and MC24. The following multi-cores were not successful in collecting 8 cores and the following sub-cores were taken: 2 sub-cores for MC-09, MC-15 and MC-17, 1 sub-core for MC-23, and no sub-cores for MC-01 and MC-14. MC-18

Sub-sampling trigger cores (yellow) that are carefully pushed into the multi-corer tubes.

Figure 8.77: sub-sampling of the multicores.

Figure 8.78: Photos demonstrating taking sub-cores using the trigger weight core liner. A) The core liner is slowly pushed into the centre of the multi-core. B) A cap is placed on the top of the core and labelled as the top of the core. C) The multi-core and core liner have carefully been turned upside down and the bung is removed. D) The core liner is held securely upright and the multi-core is pulled up. E) The base of the cap is cleaned and labelled. D) The completed sub-cores with the caps securely taped.

8.7.4 Subsampling for EPS and Clay Minerals

8.7.4.1 Aims and Objectives

How is detrital clay and EPS distributed in a turbidity system? What are the implications for flow behaviour, erodibility and how might that affect post-depositional fluid pathways?

When detrital clay (or early diagenetic) forms a thin coat around sand grains this inhibits blocky cement (such as quartz) formation and hence preserves the porosity to greater depths below "economic basement". Therefore, if we can predict the spatial distribution of detrital clay coats, we can also predict the distribution of porous intervals in subsurface. However, the attaching mechanism of clays on sand grains is not fully understood yet. Recently few studies showed that extracellular polymeric substance (EPS), secreted by diatoms or bacteria, is one of the key elements in the attaching process. This hypothesis will be tested by combining clean microbiological lab experiments with observations from recent systems.

The role of even small amounts of EPS has been documented to provide a strong control on erodibility (i.e. it binds the sediment and inhibits erosion) and may even regulate flow behaviour (enhance cohesion), but no studies to date have quantified the amount of EPS in turbidite systems or the deepsea. Our new samples therefore provide a valuable opportunity to make these first measurements.

The high-resolution sampling allows us to understand how the productivity of EPS varies from the sediment-water interface and within the sediment by centimetre intervals. It is still not fully understood how EPS impacts sediment stability/erodibility so capturing these high resolution horizons allows us to study the differences in EPS by depth and the implications for associated mineral distributions. As the clay samples have been taken at exactly the same depths, the relationship between the distribution of clays, mineralogy, EPS and grain size can be investigated. This study can help up further our understanding on the cohesion of sediment and how this impacts turbidity currents.

8.7.4.2 Sub-sampling method

Sub-sampling for EPS and clays was undertaken using "mini-cores" in the form of 8.5 cm long plastic syringes. The reasoning behind these mini-cores is to take undisturbed sediment samples from each selected horizon in each core. In the laboratory, each syringe sample can be cut into centimetre sections and analysed by depth. If the cores were composed of homogenous mud, the syringes were pushed into the sediment at $0-10 \mathrm{~cm} \mathrm{~cm}, 10-20 \mathrm{~cm}, 20-30 \mathrm{~cm}$ and $30-40 \mathrm{~cm}$ depth intervals to capture any potential differences in the clay composition and EPS abundance with depth. If the core contained heterogeneity, the syringes were occasionally taken at greater depths or at different points. The syringes often caught $\sim 6 \mathrm{~cm}$ of the sediment, but this varied depending on the consistency of the sediment. At each depth, 2 syringes were taken for EPS analysis and 2 were taken for clay mineral analysis.

To take the sub-samples for EPS and clays, the tube was placed onto a core stand by removing the bung at the base of the tube and quickly sliding the tube onto the stand (Fig. 8.77, Fig. 8.78A). Sometimes some sediment was lost from the base of the tube during this process. The diameter of the core stand was slightly less than that of a multi-core tube, this allowed the tube to be pushed down the core stand and sediment extruded from the top of the tube. A ring 10 cm high was used to divide the tube into the 10 cm slices that the syringes were pushed into. The ring was placed exactly
on the top of the multi-core (Fig. 8.78 B). When the tube was pushed down the core stand, the top of the core was pushed into the 10 cm -high ring (Fig. 8.78 C). When the sediment reaches the top of the ring, a core slicer was pushed between the top of the multi-core and the base of the 10 cm ring (Fig. 8.78 D). This 10 cm slice could then be subsampled by pushing the syringes into the top of this slice (Fig. 8.78 E). To preserve the EPS, the EPS cores were frozen at -20 C . The cores for clay mineral analysis were kept refrigerated in the reefer.

1.Core with ring
3. Slice core at ring
4. Syringe sample
5. Cap syringe

Figure 8.79: Method to subsample cores for EPS and clay. See text for details.

Figure 8.80: Photos of the method for sub-sampling the multi-core for EPS and clay: A) the multi-core is quickly slid onto the core pusher; B) the 10 cm -high ring is placed on top of the multi-core; C) the multi-core is pulled down and sediment enters the ring; D) a core cutter is pushed through the gap between the top of the multi-core and the ring; E) syringe is pushed into the top of the 10 cm slice of sediment.

8.8 Ocean Bottom Seismometers

Ocean Bottom Seismometers (OBS) contain a geophone to measure ground motion, and a hydrophone to measure acoustic noise in the water column. Typical (OBS) deployments are either active or passive seismic surveys. Passive seismicity aims is to record earthquakes below the seafloor. However, our aim is to determine whether hydrophones or geophones in the OBS can record turbidity currents moving down the canyon. This would be important because it could lead to ways of 'listening' for turbidity currents remotely, with sensors located safely outside the flow path.

The deployment sites of OBSs was thus chosen to be close to the channel, but not on the channelfloor, to safeguard the OBS equipment. Proximity to the channel is important to obtain the strongest possible signal from passing turbidity currents.

OBS deployments were conducted by OBIC (Ocean Bottom Instrumentation Consortium). A 20-foot container was shipped to Southampton for the port call, containing 15 OBS as well as the associated anchor weights, tools and equipment needed for deployments. Each standard OBS consists of a geophone pack with 3 Sercel L-28 geophones and a Hi-Tech HTI-90U Hydrophone, as well as an OBIC proprietary GPS-synchronised data recorder, and an acoustic burn-wire release unit.

The geophones have a resonant frequency of 4.5 Hz and a flat response to 1 kHz . The hydrophone has a flat frequency response between 2 Hz and 20 kHz . For this deployment, the upper frequencies of both sensors were limited by the sampling rate of the data-logger. At a sampling rate of 1 kHz frequencies up to ${ }^{\sim} 350 \mathrm{~Hz}$ should be recorded.

OBIC deployed 10 standard OBSs, recording three geophone channels and one hydrophone channel, all at 1 kHz , and outfitted with 512GB of storage. A sampling rate of 1 kHz is chosen out of battery and memory considerations. The battery life is expected to be roughly 8 months. The geophones are gimballed, so no matter the orientation of the OBS frame, the geophone itself will be level.

In addition, OBIC deployed four prototypes for a period of 18 days (12/09/2019-29/09/2019). These were similar to standard OBSs but with additional sensors such as Fluxgate magnetometers, and pressure gauges manufactured by Keller and Paroscientific.

Additionally, OBIC helped to prepare and deploy 2 GEOMAR OBSs. The GEOMAR OBSs were mounted with a $\mathrm{Hi}-\mathrm{Tech} \mathrm{HTI}-04$ hydrophone and a three channel Owen $(4.5 \mathrm{~Hz})$ Geophone, recording at 1 kHz onto 512GB of storage. The hydrophone can record lower frequencies than the hydrophone on the OBIC OBS. The geophones are not gimballed, and will remain with the same orientation as the OBS frame itself.

The following figures show the locations of OBSs deployed in Congo Canyon. This includes 2 German OBSs and 10 OBIC OBSs. Figure 8.81 shows the total array. Figure 8.82 shows all deployments in international waters, which includes most instruments: 2 German OBSs; 4x Prototype OBS and 5 standard OBIC OBSs. Figure 8.83 shows the upper canyon (OBIC OBS 1-4) only. Figure 8.84 shows OBIC OBS-5 only, and gives a clear idea of OBS deployment location relative to the canyon.

Figure 8.81. Map of total distribution of OBS.

Figure 8.82. Map of distribution of $O B S$ within International Waters.

Figure 8.83. Map of distribution of OBS in upper Upper Canyon within Angolan Waters.

Figure 8.84. Map of distribution of OBS in lower Upper Canyon within Angolan Waters

8.9 Vertical Hydrophone Array

OBIC also provided a Prototype Vertical Hydrophone Array (VHA). Usually, a VHA is used during active OBS deployments, to characterise an airgun signature. In our case, we are leaving the VHA on the seafloor, and trying to increase our chances of a clear line of sight by deploying multiple stacked hydrophones, covering ~ 56 vertical metres.

The VHA comprises 16 of the same hydrophones used in OBS. They are Hi-tech HTI-90U hydrophones, built into a purpose-built mooring cable at a 4 m spacing, and data recorders at either end, also recording at 1 kHz with 512 Gb of storage. Each hydrophone has a flat frequency response between 2 Hz and 20 kHz . For this deployment, the upper frequencies of both sensors were limited by the sampling rate of the data-logger. At a sampling rate of 1 kHz , frequencies up to $\sim 350 \mathrm{~Hz}$ should be recorded.

As this was the first deployment of the VHA system, it was initially deployed for 5 days (17/09/19 to $21 / 09 / 19$) to test the buoyancy, deployment and recovery methods and data quality. The data initially appears to be of good quality, with apparent signals and features. On section 2 of the VHA, 4 hydrophones were removed in order to save battery power, extending the data recording duration.

The VHA was then redeployed on 22/09/2019. The VHA contains 12 hydrophones, each recording at a different channel. The data is collected by a 4 channel logger (with an expected battery life of ~ 8 months) and an 8 channel logger (with an expected battery life of around 5 months). Within the VHA every fourth channel has double gain in case the signal of turbidity current flow is very quiet.

9 Preliminary Findings

9.1 Moorings

In most cases, there are no preliminary findings from moorings because they were only deployed onto the seabed. The moorings will be recovered by a subsequent cruise in Oct-Dec 2020, when their data can be downloaded. However, during JC187, we did briefly recover NERC Mooring 8 at Mooring Site 8, before moving it to Mooring Site 4. We can therefore discuss the initial three weeks of data collected by Mooring 8 , but no turbidity currents occurred at this most distal location at $\sim 5 \mathrm{~km}$ water depth.

9.1.1 Mooring site 8

The water column backscatter was exceptionally low, and velocity measurements only passed the threshold criteria in the upper $\sim 20 \mathrm{~m}$ of the imaged water column. There is no discernible movement in the water column during the deployment period, and extremely low levels of backscatter due to what must be very low levels of suspended sediment.

9.2 Sediment Cores

The following sections provide a preliminary description of each core and its location; including photos, locations, GIS maps and cross-section profiles. Table 9.1 and 9.2 respectively provide an overview of all the multi-cores and piston cores taken during JC187. The sediment cores are subdivided in two sections, within Angolan waters and international waters.

Table 9.1: Multi-core information. For further details please refer to master excel spreadsheet.

CORE NAME	SITE	ENVIRONMENT	NO. OF CORES
MC-01	42	Lobe	0
MC-02	42	Terrace	4
MC-03	58	Southern Terrace	4
MC-04	77	Thalweg	4
MC-05	49	Thalweg	3
MC-06	90	Terrace	3
MC-07	51	Terrace	3
MC-08	66	Thalweg	3 at 30cm recovery
MC-09	93	Thalweg	0
MC-10	96	Low Terrace (20 m above Thalweg)	3
MC-11	87	Terrace	3
MC-12	48	Terrace	3 at 40cm recovery
MC-13	99	Thalweg	1 at 20 cm recovery
MC-14	99	Thalweg	5 sediment bags
MC-15	45	S. Terrace +50 m above thalweg	2
MC-16	97	Thalweg	3
MC-17	98	Thalweg	3
MC-18	92	Thalweg	3
MC-19	107	Meander bend thalweg	3 at 20 cm recovery
MC-20	108	Meander bend thalweg	3 at 20 cm recovery
MC-21	109	Meander bend thalweg	3 at 50 cm recovery
MC-22	110	Thalweg of meander	3 at 30 cm recovery
MC-23	32	Thalweg	1
MC-24	53	Terrace	3 at 40 cm recovery
MC-25	54	10km away from channel	4 at 40 cm recovery

Table 9.2: Piston core information. For further details please refer to master excel spreadsheet.

CORE NAME		SITE	ENVIRONMENT	NO. OF SECTION
LENGTH (M)				
PC-01	42	Lobe	7	9.5
PC-02	58	Terrace	8	9.9
PC-03	77	Thalweg	2	1.9
PC-04	49	Thalweg	6	7.7
PC-05	90	Terrace	8	10
PC-06	51	Terrace	8	10.5
PC-07	66	Thalweg	5	6.5
PC-08	93	Thalweg	6	8
PC-09	96	Low terrace	8	9.6
PC-10	87	Terrace	11	15
PC-11	48	Terrace	11	14.8
PC-12	99	Thalweg	3	4
PC-13	45	Terrace	8	10.6
PC-14	97	Thalweg	2	2.8
PC-15	98	Thalweg	2	1.4
PC-16	106	Thalweg	1	1.5
PC-17	92	Thalweg	7	9.5
PC-18	32	Thalweg	6	7
PC-19	53	Terrace		
PC-20	54	10km away from channel	11	14.4

9.2.1 Upper Canyon (Angolan waters)

In total, 18 multi-cores and 14 piston cores were collected in the Angolan waters (Fig. 9.1).

B

Figure 9.1: A) Location of the Congo Canyon, offshore Congo and Angola, and the Congo Turbidite Study area. B) The proximal 2019 bathymetry study of the Angolan territorial waters, showing the proximal to distal coring locations (MC-17-05) and their associated depositional environments.

9.2.1.1 MC17 \& PC15, PC16 at Site 98

This site is the most proximal in the upper-canyon, and was taken in the centre of the straight part of the thalweg. MC17 is around 20 cm of greyish muds at the base overlain with 40 cm of homogenous brown muds. The barrel of PC15 was bent on recovery, suggesting a sandy seafloor. A 1.36 m long section was saved, which included sand, mud and organics. PC16 was a repeat from PC15. Only one 1.5 section was sand was recovered.

Figure 9.2: Left: Zoom-in showing location of MC17 and PC15-16. Right: Cross canyon profile at the location of MC17 and PC15-16.

MC-17-SITE -98 - thalweg - core consists of greyish muds at the base with a sharp contact between upper homogeneous fluid muds.

Figure 9.3: Picture of MC17.

9.2.1.2 MC16 \& PC14 at Site 97

This coring site is located $7-8 \mathrm{~km}$ downstream of MC17. The lower 10 cm of the MC16 has rip up mud clasts of organic rich mud and overlain with brown homogenous muds. The interface appears erosional and the mud clasts imply erosion taking place. PC14 is 2.8 m long, and is not yet split open.

Figure 9.4: Left: Zoom-in showing location of MC16 and PC14. Right: Cross canyon profile at the location of MC16 and PC14.

MC - 16 - SITE - 97 - Thalweg - Brown mud grading down into terrestrial rich organic horizon with extremely dark mud rip up clasts which were very well consolidated

Figure 9.5: Picture of MC16.

9.2.1.3 MC12 to 15 \& PC11 to 13

These cores are located around 5 km downstream from multi-corer 16, between mooring sites CD and 2C, near where a landslide has recently blocked the canyon. The cores form a channel transect within the thalweg, and also including the terrace. The 4 multi-cores show similarities in that they are organic rich based with abundant terrestrial material and some sandy horizons overlain by fluid rich mud and oxidised at the fluid interface. PC11 is $\sim 15 \mathrm{~m}$ long and include very compacted muddy core sections. All sections expanded by around 2-3 cm from their ends. PC12, located on the channel thalweg, is 4 m long. It is probably made of loose sand (lots of water was present in all sections, and core catcher was sandy). PC13 is 10.6 m long and is made of muddy sections.

Figure 9.6: Left: Zoom-in showing location of MC12 to 15 and PC11 to 13. Right: Cross canyon profile at the location of MC12 to 15 and PC11 to 13.

MC - 13 - SITE - 99- thalweg core TRANSECT - Homogenous brown mud with some terrestrial organics and a sandy horizon close to base of core

Figure 9.7: Multicore 13 at Site 99.

MC - 14 - SITE - 99- Thalweg core TRANSECT - Repeat of MC-13 - Extremely dark/black organic rich mudstone with black rip up mud clasts and some sands.

Figure 9.8: Multicore 14 at Site 99.

MC-12-SITE-48-Terrace TRANSECT - Homogenous muds with 10 cm Fe staining at the top. Some feint muddy clasts inside core liner.

Figure 9.9: Multicore 12 at Site 48.

9.2.1.4 MCO8 to 11 and PCO7 to 10 at Site 66, 93, 96 \& 87.

These cores are located near Mooring Site 2C. The thalweg multi-cores have a sandy base, rich in terrestrial organic material. MC-8 had around 25 cm of sandy interbeds with mud and the others were dominated by compact organic rich muds. MC-11 in the terrace is dominated by fluid mud and didn't appear to have much sand. PC07 is 6.5 m long. The base section (AB) seems to be sandy and woody. No note on the rest of the sections. PC08 is 8 m long, and mud was covering the piston corer and trigger corer. PC09 and PC010 are 9.6 m and 15 m long respectively. Both cores seem to include only muddy sections.

Figure 9.10: Left: Zoom-in showing location of MC08 to 11 and PC07 to 10. Right: Cross canyon profile at the location of MC08 to 11 and PCO7 to 10.

MC-08-SITE - 66 - Thalweg - TRANSECT - 3 Cores at 30 cm recovery - fluid mud at top of recovered core. Mud has a sharp transition with top sandy horizon and erosional on the sand below.

Fine sandy horizons (around 3 cm) interbedded with mud horizons. Erosional based sand with sharp transition top. Lower sand unit erosional top and base with muds.

Laminated horizon of mud interbedded with fine sands.

Base of core, small rip up organic/mud clasts (black in colour) mixed in with fine sand.

Figure 9.11: Multicore 8 at Site 66.

MC - 09- SITE - 66 - Thalweg TRANSECT - 20cm recovery on core. Base of core is extremely organic rich mudstones, well consolidated with a muddy fluid interface above.

Note: Localised heterogeneity occurs
Figure 9.12: Multicore 9 at Site 66.

MC - 11 - SITE - 87- Terrace - Homogenous dark brown muds with very little variability throughout the core. Some feint zones of oxidising fe.

Figure 9.13: Multicore 11 at Site 87.

9.2.1.5 MC18 and PC 17 at Site 92 - Thalweg

MC18 include fluidised mud with terrestrial organics grading down to sandy horizons with abundant terrestrial organic material. PC17 is 9.5 m long. Base section (AB) includes sand with abundant organics. Middle sections are made of silty mud with lots of organics. Top section is made of fluid mud.

Figure 9.14: Left: Zoom-in showing location of MC18 and PC17. Right: Cross canyon profile at the location of MC18 and PC17.

MC-18-SITE -92 - Thalweg - fluidised mud with terrestrial organics grading down to sandy horizons with terrestrial organic material.

Figure 9.15: Multicore 18 at Site 92.

9.2.1.6 MC19 to 22 at sites 107 to 110

These four multi-cores are on meander bend but inside channel thalweg, up-canyon from Mooring Site 2D. The multi-cores from this location are defined by mostly consolidated muds with an extremely rich organic base and sharp transition between both sediments. MC-21 and MC-22 (thalweg transect) had an extremely organic rich base with gas hydrates and an oily residue within. MC 19 was sandy at the base with homogenous brown mud on top.

Figure 9.16: Left: Zoom-in showing location of MC19 to 22. Right: Cross canyon profile at the location of MC19 to 22.

MC - 19-SITE - 107 - Thalweg - on meander bend but inside channel thalweg.

Figure 9.17: Multicore 18 at Site 92.
MC-20-SITE - 108 - Thalweg - on meander bend but inside channel thalweg.

No core image

MC - 21 - SITE - 109 - Thalweg - on meander bend but inside channel thalweg.
No core image
MC - 22 - SITE - 110 - Thalweg - on meander bend point-bar deposit.
No core image

9.2.1. 7 MCO5 to 07 and PCO4 to 06

Channel transect through terraces and thalweg around 10km downstream from previous sites. The thalweg (MC-5) is characterised by a stiff grey clay rich/potentially calcareous mud (marl) around 25 cm thick at the base with an erosional contact between the upper brown more fluid mud (35 cm thick) capped by the water interface. MC-6 on the lower terrace which is 165 m above the thalweg consists of slightly consolidated mud at the base grading up into fluid mud at the top of the core, similar to MC-7. PC04 is 7.7 m long and over-penetrated the seabed. Core appear to be composed of fluid mud, lots of water came out of the core section ends. PCO5 and is 10 m long and is muddy in all section ends
(dark brown homogeneous mud). PC06 is 10.5 m long and is made of dark brown homogeneous mud in all section ends. Core catcher includes mud and organics.

Figure 9.18: Left: Zoom-in showing location of MCO5 to 07. Right: Cross canyon profile at the location of MCO5 to 07.

MC-05-SITE -49 - Thalweg - base of core is characterised by a stiff grey clay rich/potentially calcarous mud (marl) around 25 cm thick with an erosional contact between the upper brown more fluid mud (35 cm thick) capped by the water interface.

Figure 9.19: Multicore 5 at site 49.

MC-06- SITE 90-Terrace TRANSECT - homogenous muds varying from extremely fluid at the top to more consolidated at the base but still fluidised.

Figure 9.20: Multicore 6 at site 90.

9.2.2 International waters

We collected 7 multi-cores and 6 piston cores in the international water, see Fig. 9.21 below for overview of the core locations. The sections below provide details for each of these cores from the most proximal site (channel) in international water down to the lobe.

Figure 9.21: Overview of the cores collected in International waters.

9.2.2.1 MC23-25 \& PC18-20

This site is located in the submarine channel, $\sim 400 \mathrm{~km}$ downstream of the last set of cores collected in the Angolan water. MC23 and PC18 are located in the channel thalweg. MC24 and PC19 are located on a northern terrace, 50 m above the thalweg. MC25 and PC20 are located $\sim 9 \mathrm{~km}$ to the South of the thalweg. These last 2 cores were collected to characterize the background sediment outside of the turbidity current system.

Only 1 core was recovered for MC23. It is made of homogeneous dark mud. PC18 is 7 m long. The bottom 3 sections are made of sand (based on the core ends). The top sections contain mud and silty/mud.

MC24 is made of homogeneous mud. PC19 is 13.8 m long and it shows dark consolidated mud in bottom half, overlain by more fluidised mud towards the top.

MC25 is made of consolidated mud for 35 cm , overlain by brown water with some flocs. PC20 is 14.3 m long and contains very consolidated dark mud.

Figure 9.22: Zoom-in and cross sections showing the locations of MC23 to 25 and PC 18 to 20.

MC-23-SITE 32-thalweg - only 1 complete core recovered from site. Likely over-penetration and locking mechanism failed where over-penetration occurred (a reflection of sandy substrate or undulating seafloor topography).

Figure 9.23: Multicore 23 at site 32.

MC-24- SITE 53- Terrace- 7 out of 8 cores recovered. Base of core is organic rich mudstones overlain by brownish red muds, potentially Fe rich. Contact is undulating and potentially erosive. Some woody/plant material at the top (bagged separately and refrigerated).

Figure 9.24: Multicore 5 at site 49.

MC-25- SITE 54- Outside turbidity current system

Figure 9.25: Multicore 25 at site 54.

9.2.2.2 MCO3, MCO4 \& PCO2, PCO3 at Site 58

This site is the most distal site in the submarine channel. It is >300 km far from cores MC023-25. MC04 and PCO3 are located in the channel thalweg, incised of about 40 m . MCO3 and PCO2 are situated 35 m above the channel thalweg, to the South-West of MC04, PCO3.

MCO4 is made of mud. PCO3 is $\sim 2 \mathrm{~m}$ long and includes sand at the base, overlain by mud.
MCO3 is made of homogeneous mud, with Fe at the top. PCO2 is $\sim 10 \mathrm{~m}$ long. No note on composition.

Figure 9.26: Left: Zoom-in showing positions of MCO3-04, and PCO2-03; Right: Cross section showing positions of MC03-04, and PCO2-03

MC-03- SITE 58 - terrace around 1.2 km away from thalweg

Homogenous muds with very little heterogeneity. Fe at top of core around 4 cm thick.

Figure 9.27: Multicore 3 at site 58.

MC-04- SITE - 77-Thalweg - Homogenous mud with some Fe staining at the fluid interface.

Figure 9.28: Multicore 4 at site 77.

9.2.2.3 MCO1, MCO2 \& PCO1 - Site 42

This site is located on lobe. MC01 failed. MC02 was collected at the same location as MC01.
MC02 was fully recovered and is composed of brown, homogeneous mud with a $\sim 10 \mathrm{~cm}$ thick organic rich, dark horizon.

PC01 is 9.5 m long. Core ends are muddy, and include lots of water.

Figure 9.29: Zoom-in showing positions of MCO1 (failed), MCO2 and PCO1.

MCO2 - SITE 42 - Lobe

Figure 9.30: Multicore 2 at site 42.

$9.3 \quad 3.5 \mathrm{kHz}$ sub-bottom profiler (CHIRP)

Some stratigraphy is visible outside of the canyon, however the images do not appear to be good enough to discern any features beyond the existence of the stratigraphy. We do not have the means to open SEGY data until we leave the ship, however the formatted SEGY data may provide more meaningful data of the subsurface.

Sub-bottom imaging within the canyon proved to be difficult due to a very low return signal. Two possible reasons for the lack of signal received by the ship may be due to the steep side walls of the canyon and/or the fluid mud layer within the canyon.

The steep side-walls and slopes within the canyon may result in the 3.5 kHz signal being reflected away from the vessel, resulting in the incomplete and false readings that the sub bottom profiler is then trying to interpret. Furthermore, fluid mud layers and homogenous muds within the canyon may result in very weak reflections due to a lower acoustic impedance contrast.

9.4 CTD and water samples

9.4.1 CTD data

The 12 CTD location (11 casts done) are indicated on Figure 9.31. All of them are above the canyon or the channel and the thalweg but CTD-01, mainly done to test acoustic releasers.

Figure 9.31: General map with the locations of the CTD casts. Cast CTD-1 was done during the transit and it is out of the map. Cast CTD-11 was cancelled due to cable problems: it is indicated because a log-sheet for this cast exists.

Table 9.3: Location and major station parameters for all casts. Btls = bottles. Blue text indicates USBL data and red text indicates data with problems or ambiguity.

Cast Nb.	Latitude	Longitude	Depth	GIS Site	Date	Bottles	Other
1	$6^{\circ} 39.334 \mathrm{~N}$	$17^{\circ} 12.692 \mathrm{E}$	4907	1	03/09/19	1 (test)	Test releasers
2	$6^{\circ} 40.207 \mathrm{~S}$	$5^{\circ} 28.471 \mathrm{E}$	4944	67	09/09/19	1 (test)	Test releasers
3	$6^{\circ} 15.226 \mathrm{~S}$	$6^{\circ} 27.215$ E	4660	78	12/09/19	-	Test releasers (*site 69 at CTD sheet)
4	$5^{\circ} 54.394 \mathrm{~S}$	$6^{\circ} 48.722 \mathrm{E}$	4527	71	12/09/19	-	-
5	$5^{\circ} 57.348 \mathrm{~S}$	$11^{\circ} 34.195 \mathrm{E}$	1568	83	15/09/19	-	Test releasers
6	$\begin{aligned} & 5^{\circ} 53.672 \mathrm{~S} \\ & 5^{\circ} 53.662 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 11^{\circ} 21.358 \mathrm{E} \\ & 11^{\circ} 21.354 \mathrm{E} \end{aligned}$	1828	88	15/09/19	12 bottles (3 leak)	Site 85 on CTD Sheet
7	$\begin{aligned} & 5^{\circ} 51.818 \mathrm{~S} \\ & 5^{\circ} 53.662 \mathrm{~S} \end{aligned}$	$\begin{gathered} 11^{\circ} 8.363 \mathrm{E} \\ 11^{\circ} 21.354 \mathrm{E} \end{gathered}$	2020	84	16/09/19	24 bottles (leak test)	Site 83 on CTD Sheet
8	$5^{\circ} 52.738 \mathrm{~S}$	$11^{\circ} 10.499 \mathrm{E}$	1970	92	21/09/19	5 bottles	-
9	$\begin{aligned} & 5^{\circ} 50.112 \mathrm{~S} \\ & 5^{\circ} 50.127 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 11^{\circ} 1.896 \mathrm{E} \\ & 11^{\circ} 1.108 \mathrm{E} \end{aligned}$	$\begin{aligned} & 2165 \\ & 2174 \end{aligned}$	14	21/09/19	9 bottles	All btls fired for frame balance
10	$\begin{aligned} & 5^{\circ} 43.543 \mathrm{~S} \\ & 5^{\circ} 43.546 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 8^{\circ} 9.488 \mathrm{E} \\ & 8^{\circ} 9.482 \mathrm{E} \end{aligned}$	$\begin{aligned} & 4133 \\ & 4133 \end{aligned}$	112	23/09/19	11 bottles	All btls fired for frame balance $1^{\text {st }}$ botl leaked
11	$5^{\circ} 45.320 \mathrm{~S}$	$7^{\circ} 47.600 \mathrm{E}$	4195	114	26/09/19	SVP done	Cable problem cast cancelled
12	$\begin{aligned} & 6^{\circ} 41.455 \mathrm{~S} \\ & 6^{\circ} 41.439 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 5^{\circ} 29.022 \mathrm{E} \\ & 5^{\circ} 29.007 \mathrm{E} \end{aligned}$	$\begin{aligned} & 4929 \\ & 4950 \end{aligned}$	124	01/10/19	12 bottles	All btls fired for frame balance

Table 9.4: Information on SVP drops, including file name.

Date	Time	Profile file name	Location
30/08/2019	14:51	168N25W.asvp (WOA13)	$16.83{ }^{\circ} \mathrm{N} 025.00^{\circ} \mathrm{W}$
01/09/2019	19:36	1209N2165W.asvp (WOA13)	$12.09^{\circ} \mathrm{N} 021.65^{\circ} \mathrm{W}$
02/09/2019	20:17	0863N01888W.asvp (WOA13)	$08.57^{\circ} \mathrm{N} 018.76^{\circ} \mathrm{W}$
03/09/2019	14:49	0665N01721W.asvp (SVP)	$06.65^{\circ} \mathrm{N} 017.21^{\circ} \mathrm{W}$
05/09/2019	08:48	0087N1262W.asvp (WOA13)	$00.89^{\circ} \mathrm{N} 012.52^{\circ} \mathrm{W}$
06/09/2019	10:02	0090S00827W.asvp (WOA13)	$00.90^{\circ} \mathrm{S} 008.27^{\circ} \mathrm{W}$
07/09/2019	08:48	0250S00448W.asvp (WOA13)	$02.50^{\circ} \mathrm{S} 004.48^{\circ} \mathrm{W}$
08/09/2019	05:41	0414S00060W.asvp (WOA13)	$04.14^{\circ} \mathrm{S} 000.60^{\circ} \mathrm{W}$
09/09/2019	23:42	0666S00547E.asvp (SVP)	$06.66^{\circ} \mathrm{S} 005.47^{\circ} \mathrm{E}$
12/09/2019	04:27	0625S00645E.asvp (SVP)	$06.25^{\circ} \mathrm{S} 006.45^{\circ} \mathrm{E}$
12/09/2019	13:51	0681S00681E.asvp (SVP)	$06.81^{\circ} \mathrm{S} 006.81^{\circ} \mathrm{E}$
15/09/2019	11:50	0596S01157E.asvp (SVP)	$05.96{ }^{\circ} \mathrm{S} 011.57^{\circ} \mathrm{E}$
15/09/2019	22:31	0589S01135E.asvp (SVP)	$05.89^{\circ} \mathrm{S} 011.35^{\circ} \mathrm{E}$
16/09/2019	14:01	0587S01114E.asvp (SVP)	$05.87^{\circ} \mathrm{S} 011.14^{\circ} \mathrm{E}$
21/09/2019	19:19	0583S01101E.asvp (SVP)	$05.83{ }^{\circ} \mathrm{S} 011.01^{\circ} \mathrm{E}$
23/09/2019	05:20	0572S008016E.asvp (SVP)	$05.72^{\circ} \mathrm{S} 008.02^{\circ} \mathrm{E}$

$25 / 09 / 2019$	$08: 11$	0596 S01157E.asvp (SVP)	$05.96^{\circ} \mathrm{S} \mathrm{011.57}^{\circ} \mathrm{E}$
$25 / 09 / 2019$	$16: 59$	0572 S008016E.asvp (SVP)	$05.72^{\circ} \mathrm{S} \mathrm{008.02}^{\circ} \mathrm{E}$
$26 / 09 / 2019$	$21: 57$	0576S00779E.asvp (SVP)	$05.76^{\circ} \mathrm{S} 007.79^{\circ} \mathrm{E}$
$29 / 09 / 2019$	$16: 10$	0589 S00689E.asvp (SVP)	$05.89^{\circ} \mathrm{S} 006.89^{\circ} \mathrm{E}$
$01 / 10 / 2019$	$07: 21$	0669 S00548E.asvp (SVP)	$06.69^{\circ} \mathrm{S} 005.48^{\circ} \mathrm{E}$

The raw data from the CTD casts is presented here after. A proximal location map indicates where the cast is located relatively to the main channel.

The data is plotted on six graphs. From left to right, these plots are: temperature, salinity, oxygen, turbidity (both Optical Back Scatter [OBS] and acoustic attenuation [Acoustic] are plotted), current velocity and current direction.

For simplicity and a better visualisation, current velocity and direction are smoothed by a moving average (500 values) along the vertical dimension (depth). A thin brick-colour line at each plot represents the cross section in the cast area. Cross sections are along the profiles shown on local maps.

LADCP data presented here is produced by the same routine for all plots. There is no data treatment and validation cast by cast, which will be necessary. That will be done in a post-processing phase and implies a better clock synchronisation, a pressure adjustment (between CTD and LADCP), and velocity correction close to the sea bed. Plotted data is a first glance.

Turbidity is not presented with units. There is no calibration of the sensors against reference NTU (normalized turbidity units) neither sediment concentrations. Raw OBS data is multiplied by 100 in order to provide on the same plot visual comparison to acoustic attenuation. A NTU calibration would be very interesting for future casts.

There is no bathymetry (neither local map or profile) to the first cast. So these are not shown.

Figure 9.32: Results from CTD-1.
9.4.1.2 CTD cast 2

Figure 9.33: Location of CTD-2.

Figure 9.34: Results from CTD-2.
9.4.1.3 CTD cast 3

Figure 9.35: Location of CTD-3.

Figure 9.36: Results of CTD-3.
9.4.1.4 CTD cast 4

Figure 9.37: Location of CTD-4.

Figure 9.38: Results of CTD-4.

Figure 9.39: Location of CTD-5.

Figure 9.40: Results of CTD-5.

Figure 9.41: Location of CTD-6.

Figure 9.42: Results of CTD-6.
9.4.1.7 CTD cast 7

Figure. 9.43: Location of CTD-7.

Figure 9.44: Results of CTD-7.
9.4.1.8 CTD cast 8

Figure 9.45: Location of CTD-8.

Figure 9.46: Results of CTD-8.
9.4.1.9 CTD cast 9

Figure 9.47: Location of CTD-9.

Figure 9.48: Results of CTD-9.
9.4.1.10 CTD cast 10

Figure 9.49: Location of CTD-10.

Figure 9.50: Results of CTD-10.
9.4.1.11 CTD cast 12

Figure 9.51: Location of CTD-12.

Figure 9.52: Results of CTD-12.

9.4.2 Water samples

Table 9.5 provides an overview of CTDs and the number of depths at which water samples have been taken. For more detailed data on the water samples, look into the master XLS sheet on coring data. The rationale for each CTD water sampling plan is outlined below. All water samples appeared to be clear when sampling, no matter the level of turbidity indicated by the CTD.

Table 9.5: Overview of CTD water samples.

CTD-06	CTD-08	CTD-09	CTD-10	CTD-12
10m ASB	6 m ASB	6 m ASB	70m ASB	20m ASB
20 m ASB	20m ASB	20 m ASB	100m ASB	40 m ABS
30m ASB	40m ASB	40m ASB	200m ASB	60 m ABS
40m ASB	60m ASB	60 m ASB	WD 3000	100 m ABS
100m ASB	100m ASB	100m ASB	WD 2500	300 m ABS
	WD 1601m	300m ASB	WD 1600m	WD 3000m
	WD 500m	WD 1601m	WD 500m	WD 1600m
	WD 50m	WD 500m	WD 200m	WD 500m
		WD 50m	WD 50m	WD 200m
			WD 25m	WD 50m
			WD 10m	WD 25m
				WD 10m

CTD-06
15/09/2019 at 20:30 GIS Site: 88 Water depth: 1829 m USBL (1825 ship)
We suspected the presence of a turbidity current due to an increase in the turbidity measurements and decrease in the transmissometer readings, and therefore focused on sampling close to the seabed. [Total 5 depths sampled; 1 glass bottle (330 ml) and 1 plastic bottle ($\sim 200 \mathrm{ml}$) per depth]

CTD-08.
On 21/09/2019 at 6:45 GIS Site: 92 Water depth: 2012 m pressure sensor (1983m ship)
We strongly suspected the presence of a turbidity current due to a very sharp turbidity increase from the seabed to 100 m above (see Fig. 9.46 in CTD section). We therefore adjusted sampling depths to cover the near-bed layer and the assumed thickness of the flow. It appeared on recovery of the bottles that no flow occurred as bottles were filled with clear water. [Total 8 depths sampled; 3 glass bottles $(330 \mathrm{ml}) \& 1$ plastic bottle (~200ml) per depth]

CTD-09

On 21/09/2019 at 19:00 GIS Site: 14 (not exactly on point) Water depth: ~2170 m
Trying to get the lateral variation of microplastics within the canyon and to get some samples with the epipelagic zone as well. We didn't record any major turbidity change, so the focus was on microplastics (not sediments). [Total 9 depths sampled; 3 glass bottles (330ml) per depth for Microplastics only].

An alternative plan was in place in case there was an increase of turbidity recorded with the CTD, which would require 4 bottles per depth: 3 for Microplastics, 1 for sediment.

6 m ASB; 20m ASB; 40m ASB; 60m ASB; 100m ASB; WD 1601m; WD 500m; WD 50m

CTD-10

On 23/09/2019 at 05:00 GIS Site: 11 Water depth: ~ 4140 m
Turbidity data looked constant all the down during the CTD dip (see Fig. 9.50 in CTD section). We therefore focused our sampling depths towards the surface. There was also a miscommunication that
water sampling was required during this CTD, leading to firing the first Niskin bottle too late (too high above seafloor). [Total 11 depths sampled; 3 glass bottles (330 ml)]

Original plan for constant turbidity: 6 m ASB; 40m ASB; 100m ASB; WD 3000; WD 2500; WD 1601m; WD 500m; WD 200m; WD 50m; WD 10m

An alternative plan was in place in case there was an increase of turbidity recorded with the CTD, which would require 4 bottles per depth: 3 for Microplastics, 1 for sediment.

6 m ASB; 20m ASB; 40m ASB; 60m ASB; 100m ASB; WD 3000; WD 2500; WD 1601m; WD 500m; WD 300m; WD 50m

CTD-12
On 01/10/2019 at 07:00 GIS site: 124 Water depth: ~4950m
No turbidity observed. The sampling plan focused on getting lateral variation in the lower water column and the upper water column.

10 References Cited

Azpiroz-Zabala, M., Cartigny, M.J.B., Talling, P.J., Parsons, D.R., Sumner, E.J., Clare, M.A., Simmons, S., Cooper, C., and Pope E.L., 2017. Newly recognised turbidity current structure can explain prolonged flushing of submarine canyons. Science Advances, 3, e1700200.

Cooper, C., Wood, J., and Andrieux, 0., 2013, Turbidity current measurements in the Congo Canyon. OTC 23992. Offshore Technology Conference, 6-9 May, Houston, Texas.

Cooper, C., Wood, J. Imran, J., Islam, A., Wright, P., Faria, R., Tati, A., Casey, Z., 2016. Designing for turbidity currents in the Congo Canyon. OTC 26919, Offshore Technology Conference, 2-5 May, Houston, Texas.

Paull, C.K., Talling, P.J., Maier, K., Parsons, D., Xu, J., Caress, D., Gwiazda, R., Lundsten, E., Anderson, K., Barry, J., Chaffey, M., O'Reilly, T., Rosenberger, K., Simmons, S., McCann, M., McGann, M., Kieft, B., Gales, J., Sumner, E.J., Clare, M.A., and Cartigny, M.J.B., 2018. Powerful turbidity currents driven by dense basal layers. Nature Communications, NCOMMS-18-09895A.

11 Appendix A: Summary of Events

Date	Start Time	End time	Duration (hrs)	Site	Event and equipment	Latitude	Longitude	Water Depth	Master Log Station Numbers	Zone (MS = Mooring Site)	Latitude	Longitude
Friday 31 Aug	10:00				Departed Mindelo in Cape Verde							
					TRANSIT FROM CAPE VERDE							
Mon 1 Sept	10:00	15:50	06:00	T-1	Tested various acoustic releases on SVP/CTD (Cast-1)	639.334 N	1712.692 W	4883	1-7		$6^{\circ} 39.334 \mathrm{~N}$	$17^{\circ} 12.692 \mathrm{~W}$
					TRANSIT FROM CAPE VERDE							
					WORK AREA I IN INTERNATIONAL WATERS							
Mon 9 Sept	20:00			67	Arrive Site 67 (1.6 NM from Site 42)	640.207 S	528.441 E	4957	8		$6^{\circ} 40.206905 \mathrm{~S}$	$5^{\circ} 28.47108 \mathrm{E}$
9 to 10 Sept	20:00	23:30	03:30	67	SVP/ CTD Cast -2 (for Multibeam Survey MB_42)	640.207 S	528.441 E	4957	9-12	MS-8	$6^{\circ} 40.206 \mathrm{~S}$	$5^{\circ} 28.472 \mathrm{E}$
Tues 10 Sept	23:30	02:15	02:00	67	Multibeam Survey at Site 42 (MBS_42)	640.207 S	528.441 E	4957	13-21	MS-8	$6^{\circ} 40.160 \mathrm{~S}$	$5^{\circ} 28.420 \mathrm{E}$
Tues 10 Sept	02:15	02:30	02:00	67 to 4	Transit from end multibeam survey to Site 42							
Tues 10 Sept	02:30	15:40	13:10	42	$2 \times$ Mega-cores and $1 \times$ Piston Core near Site 42 01 (no recovery); PC-01 (9 m); MC-02 (full)	$\begin{gathered} \mathrm{MC-} \\ 641.71 \mathrm{~S} \end{gathered}$	529.11 E	4952	22-31	MS-8		
Tues 10 Sept	04:48	18:50	02:30	75	Deployed NERC Mooring-8	641.71 S	529.11 E	4952	32-37	MS-8	$6^{\circ} 41.7523 \mathrm{~S}$	$5^{\circ} 28.959 \mathrm{E}$
Tues 10 Sept	18:50	22:00	03:10	75 to 68	Transit (35 NM)							
Tues 10 Sept	22:05			68	Arrive Site 68	628.589 S	60.660 E	4768				
10 to 11 Sept	22:05	00:24	02:30	68	Multibeam Survey at Site 40 (MBS_40) (SVP from Site 67)	${ }_{6}^{\text {cast }} 68.589 \mathrm{~s}$	60.660 E	4768	38-46	MS-7	$6^{\circ} 28.734 \mathrm{~S}$	$6^{\circ} 0.306 \mathrm{E}$
Wed 11 Sept	00:24	00:53	00:30	68 to 58	Transit from end multibeam survey to Site 58 (0.5 NM)							
Wed 11 Sept	00:53	09:00	08:10	58	$1 \times$ Mega-core and $1 \times$ Piston Core (terrace near Mooring 7 MC-03 (full); PC-02 (~9 m)	628.58 S	62.5 E	4764	47-52	MS-7		
Wed 11 Sept	09:00	10:20	01:20	58 to 77	Transit Site 58 to 77 (0.6 NM)							
Wed 11 Sept	10:20	19:00	08:40	77	$1 \times$ Mega-core and $1 \times$ Piston Core (thalweg near Mooring MC-04 (full); PC-03 (~9 m)	628.02 S	62.17 E	4780	53-58	MS-7		
Wed 11 Sept	19:30	22:00	03:00	76	Deploy NERC Mooring-7	628.02 S	62.17 E	4780	59-64	MS-7	$6^{\circ} 27.8458 \mathrm{~S}$	$6^{\circ} 2.7939 \mathrm{E}$
11 to 12 Sept	22:00	01:00	03:00	40 to 78	Transit (30 NM)							
Thur 12 Sept	01:00	04:00	03:00	78	SVP/CTD cast 3	614.671 s	627.289 E	4659	65-67	Between MS7 \& M56	$6^{\circ} 15.22554 \mathrm{~s}$	$6^{\circ} 27.21534 \mathrm{E}$
Thur 12 Sept	04:00	07:00	03:00	78 to 38	Multibeam Survey at site 39 (MBS_39)	614.671 S	627.289 E	4659	68-76	Between MS7 \& M56	$6^{\circ} 14.8758 \mathrm{~S}$	$6^{\circ} 27.279 \mathrm{E}$
Thur 12 Sept	07:30	07:50	00:20	38	Deploy German OBS-1	614.36 S	625.85 E	4636	77	Between MS7 \& MS6	$6^{\circ} 14.36178 \mathrm{~S}$	$6^{\circ} 25.85002 \mathrm{E}$
Thur 12 Sept	07:50	10:45	02:55	38 to 71	Transit (35 NM)							
Thur 12 Sept	10:45			71	Arrive Site 71 (near site 36)	553.171 S	654.371 E	4506				
Thur 12 Sept	10:45	13:30	02:45	71	SVP/CTD cast 4	553.171 S	654.371 E	4506	78-80	MS-6	$5^{\circ} 54.39672 \mathrm{~S}$	$6^{\circ} 48.7292 \mathrm{E}$
Thur 12 Sept	14:00	17:40	03:40	71	Multibeam Survey (MBS_37) at site 37 (Mooring 6)	553.171 s	654.371 E	4506	81-93	MS-6	$5^{\circ} 54.3594 \mathrm{~S}$	$6^{\circ} 48.27618 \mathrm{E}$
Thur 12 Sept	17:40	18:10	00:30	$\begin{array}{c\|} \hline 79,80,81, \\ 82 \\ \hline \end{array}$	Deploy $4 \times$ Prototype OBIC Moorings @ Sites 79,80,81 and	3254.12 S	737.97 E	4213	94-97	MS-6		
			trans	Sit to luan	NDA TO FOR BOAT TRANSFERS (ANGOLAN OBSERVERS) AND	CLEAR CUSTO	Ms					
				TRANS	IT BACK TO WORK AREA IN UPPER CANYON (IN ANGOLAN W	ATERS)						
Sun 15 Sept	10:00				Arrive on site 83	557.3534 S	1134.189 E	1595				
Sun 15 Sept	10:00	11:30	01:30:00	83	SVP/CTD Cast 5 in channel axis	557.3534 S	1134.189 E	1595	98-100		5057.34800 S	$11^{\circ} 34.19466 \mathrm{E}$
Sun 15 Sept	11:30	13:00	01:30:00	83	CTD cast to test OBIC acoustic release (to 1 km depth)	557.3534 S	1134.189 E	1595	101-103		$5^{\circ} 57.34818 \mathrm{~S}$	$11^{\circ} 34.1949 \mathrm{E}$
Sun 15 Sept				88	CTD/SVP Cast 6 during MBS-83; inc. 6 water samples	553.672 S	L1 21.357 E	1832	132-139	Upper-part of upper canyon	5053.67210 5	$11^{\circ} 21.35664 \mathrm{E}$
15 to 16 Sept	13:00	09:30	20:30:00	$83 \gg 83$	Multibeam survey (MBS_83) upper-canyon upper-part	557.3534 S	1134.189 E	1595	104-189	Upper-part of upper canyon	5057.24288 S	$11^{\circ} 33.81288 \mathrm{E}$
Mon 16 Sept	09:30	12:10	02:50	85 to 84	Transit (22NM)							
Mon 16 Sept	12:10	12:10		84	Arrive Site 84	551.7959 S	118.3618 E	2064	190			
Mon 16 Sept	12:10	13:50	01:30	84	SVP/CTD Cast 7 in channel axis	551.7959 S	118.3618 E	2064	191-193		$5^{\circ} 51.81900 \mathrm{~S}$	$11^{\circ} 8.36238 \mathrm{E}$
16 to17 Sept	13:50	08:20	18:30	84 to 89	Multibeam survey (MBS_84 \& MBS_89) upper-canyon lowe part	$551.7959 \text { S }$	118.3618 E	2064	194-258	Lower-part of upper canyon	$5^{\circ} 51.80322 \mathrm{~S}$	$11^{\circ} 8.42776 \mathrm{E}$
Tues 17 Sept	08:20	08:50	00:30	89 to 86	Transit (4NM)							

Tues 17 Sept	09:10	11:00	01:50	86	Deploy: Test of the Vertical Hydrophone Array - (outside canyon near Site 14)	549.227 S	116.105 E	1262	259-268	MS2E	$5^{\circ} 48.86970 \mathrm{~S}$	$11^{\circ} 5.58888 \mathrm{E}$
Tues 17 Sept	11:00	11:50	00:50	86 to 14	Transit (4NM)							
Tues 17 Sept	11:50			14/49	Arrive Site 49 (same as Site 14)	550.2 s	112.16 E	2159	269			
Tues 17 Sept	11:50	16:20	04:30	49	Mega-core (MC-05) and Piston Core (PC-04) (Thalweg)	550.2 S	112.16 E	2159	269-274	MS2E		
Tues 17 Sept	16:20	16:50	00:30	49 to 90	Transit (0.4 NM)							
Tues 17 Sepr	16:50			90	Arrive site 91	549.86 S	112.21 E	2058	275			
Tues 17 Sepl	17:10	21:00	04:30	90	Mega-core (MC-06) and Piston Core (PC-05) (Terraci	549.86 S	112.21 E	2058	274-280	MS2E		
Tues 17 Sept	21:00	22:00	01:00	90 to 51	Transit (1 NM)							
17 to 18 Sept	22:00	02:00	04:00	51	Mega-core (MC-07) and Piston Core (PC-06) (Terrace)	550.85 S	111.87 E	1931	281-286	MS2E		
Wed 18 Sept	02:00	04:00	02:00	51 to 66	Transit (17 NM)							
Wed 18 Sept	05:00	09:30	04:30	66	Mega-core (MC-08) and Piston Core (PC-07) (thalweg)	554.01 S	1119.68 E	1875	287-292	2C upstream		
Wed 18 Sept	09:30	10:00	00:30	66 to 93	Transit (0.5 NM)							
Wed 18 Sept	10:00	14:10	04:10	93	Mega-core (MC-09) and Piston Core (PC-08) (thalweg)	554.0135	119.811 E	1875	293-298	2C upstream		
Wed 18 Sept	14:10	14:40	00:30	93 to 96	Transit (0.5 NM)							
Wed 18 Sept	14:50	18:20	03:30	96	Mega-core (MC-10) and Piston Core (PC-09) (+20m terrace)	553.794 S	119.816 E	1849	299-304			
Wed 18 Sept	18:20	19:50	01:30	96 to 87	Transit (17 NM)							
Wed 18 Sept	19:20	22:50	03:30	87	Mega-core (MC-11) and Piston Core (PC-10) (south terrace)	554.594 S	119.912 E	1679	305-310			
Wed 18 Sept	22:50	23:50	01:00	87 to 48	Transit (7 NM)							
Thurs 19 sept	00:00	03:20	03:20	48	Mega-core (MC-12) and Piston Core (PC-11) (+200m north	554.75 S	1125.03 E	1348	311-316	2C upstream		
Thurs 19 sept	03:20	03:50	00:30	48 to 99	Transit (6 NM)							
Thurs 19 sept	04:10	05:50	01:40	99	Mega-core (MC-13) (thalweg - just up-canyon of blockage)	555.492 S	125.577 E	1670	317-319	2C upstream		
Thurs 19 sept	05:50	06:20	00:30	99 to 66	Transit (6 NM)							
Thurs 19 Sept	06:50	12:30	05:40	66	Deploy Aniitra-2 mooring (anchor first +USBL), triangulate	554.01 S	1119.68 E	1875	320-335	2 C	$5^{\circ} 54.00029 \mathrm{~S}$	$11^{\circ} 19.76589 \mathrm{E}$
Thurs 19 sept	12:30	13:00	00:30	66 to 103	Transit (250m...up canyon) to Site 93							
Thur 19 Sept	13:10	15:30	02:20	103	Deploy NERC Mooring-1 (300 kHz), triangulate	554.0135	119.811 E	1875	336-343	2 C	$5^{\circ} 54.0186 \mathrm{~S}$	$11^{\circ} 19.9042 \mathrm{E}$
Thur 19 Sept	15:30	15:50	00:20	103 to 87	Transit (0.6 NM)							
Thur 19 Sept	15:50	16:20	00:30	87	Deploy OBIC OBS-1	554.594 S	119.912 E	1679	344	2C	$5^{\circ} 54.59574 \mathrm{~S}$	$11^{\circ} 19.91160 \mathrm{E}$
Thur 19 Sept	16:20	16:50	00:30	87-99	Transit (5.6 NM)							
Thur 19 Sept	18:00	21:20	03:20	99	Mega-core (MC-14) and Piston Core (PC-12) (thalweg)	555.492 S	125.577 E	1670	345-350	2C upstream		
Thur 19 Sept	21:20	21:50	00:30	99 to 45	Transit (0.6 NM)							
19 to 20 sept	21:50	01:10	03:20	45	Mega-core (MC-15) and Piston Core (PC-13) (terrace)	555.82 S	1125.11 E	1709	351-356	2C upstream		
Fri 20 Sept	01:10	01:40	00:30	45 to 97	Transit (0.3 NM)							
Fri 20 Sept	03:00	07:00	04:00	97	Mega-core (MC-16) and Piston Core (PC-14) (thalweg)	555.455 S	128.413 E	1637	357-362	2B		
Fri 20 Sept	07:40	09:40	02:00	97	Deploy NERC Mooring-4 (300 kHz), triangulate	555.455 S	128.413 E	1637	363-370	2B	$5^{\circ} 55.4548 \mathrm{~S}$	$11^{\circ} 28.4072 \mathrm{E}$
Fri 20 Sept	09:40	10:40	01:00	97 to 98	Transit (5 NM)							
Fri 20 Sept	10:50	14:10	03:20	98	Mega-core (MC-17) and Piston Core (PC-15) (thalweg)	557.208 S	133.198 E	1575	371-376			
Fri 20 Sept	15:00	17:00	02:00	98	Deploy NERC Mooring-3 (300 kHz), triangulate	557.208 S	133.198 E	1575	377-384	2A	$5^{\circ} 57.2118 \mathrm{~S}$	$11^{\circ} 33.204 \mathrm{E}$
Fri 20 Sept	17:00	17:30	00:30	98 to 5	Transit (2 NM)							
Fri 20 Sept	17:30	17:45	00:15		Deploy OBIC OBS-2 near site 98	557.81 S	1131.71 E	1134	385	2A	$5^{\circ} 57.80958 \mathrm{~S}$	$11^{\circ} 31.70058 \mathrm{E}$
Fri 20 Sept	17:45	18:00	00:15	5 to 104	Transit (3.5 NM)							
Fri 20 Sept	18:00	18:15	00:15	104	Deploy OBIC OBS-3 near site 97 (lower elevation site)	555.958 S	127.269 E	1564	386	2B	$5^{\circ} 55.971 \mathrm{~S}$	$11^{\circ} 27.280 \mathrm{E}$
Fri 20 Sept	18:15	18:30	00:15	104 > 105	Transit (1.5 NM)							
Fri 20 Sept	18:30	18:45	00:15	105	Deploy OBIC OBS-4 near site 97 (high site)	554.483 S	127.406 E	1260	387	2B	$5^{\circ} 54.485 \mathrm{~S}$	$11^{\circ} 27.397 \mathrm{E}$
Fri 20 Sept	18:45	20:00	01:15	105 to 106	Transit (9 NM)							
Fri 20 Sept	20:00	21:00	01:00	106	1 piston core (PC-16; 6 m barrel) at Site 98	557.208 S	133.198 E	1575	388-390	2A		
20 to 21 Sept	21:00	00:00	03:00	106 to 92	Transit (22 NM)							
Sat 21 Sept	00:00	04:50	04:50	92	Mega-core (MC-18) and Piston Core (PC-17) (thalweg)	552.737 S	110.499 E	2017	391-396	2D		
Sat 21 Sept	04:50	07:30	02:40	92	CTD cast 8 and water column sampling with 8 bottles	552.737 S	110.499 E	2017	397-406	2 D	$5^{\circ} 52.738 \mathrm{~S}$	$11^{\circ} 10.499 \mathrm{E}$
Sat 21 Sept	08:00	11:00	03:00	92	Deploy Aniitra-3 Mooring (anchor first)	552.737 S	110.499 E	2017	407-415	2 D	$5^{\circ} 52.7352 \mathrm{~S}$	$11^{\circ} 10.4954 \mathrm{E}$
Sat 21 Sept	11:00	11:30	00:30	2	\|Transit (9 NM)							

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Sat 21 Sept \& 11:30 \& 13:00 \& 01:30 \& 86 \& Recover vertical hydrophone array after test period \& 549.227 S \& 116.105 E \& 1262 \& 416-421 \& 2E \& $5^{\circ} 49.1887 \mathrm{~S}$ \& $11^{\circ} 05.93766 \mathrm{E}$

\hline Sat 21 Sept \& 13:00 \& 13:30 \& 00:30 \& 86 to 14 \& Transit (4 NM) \& \& \& \& \& \& \&

\hline Sat 21 Sept \& 14:20 \& 16:30 \& 02:10 \& 14 \& Deploy NERC Mooring-9 (600 kHz ADCP), triangulate \& 550.2 S \& 112.16 E \& 2171 \& 422-430 \& 2 E \& $5^{\circ} 50.2092 \mathrm{~S}$ \& $11^{\circ} 2.163 \mathrm{E}$

\hline Sat 21 Sept \& 17:00 \& 19:00 \& 02:00 \& near 14 \& CTD cast 9 with 9 water column samples (**near 14) \& 550.2 \& 112.16 \& 2171 \& 431-441 \& 2 E \& $5^{\circ} 50.11150 \mathrm{~S}$ \& $11^{\circ} 1.89473 \mathrm{E}$

\hline Sat 21 Sept \& 18:30 \& 19:00 \& 00:30 \& 14 to 107 \& Transit [7 NM] \& \& \& \& \& \& \&

\hline Sat 21 Sept \& 20:00 \& 22:00 \& 02:00 \& 107 \& Megacore (MC-19) at Site 107 (thalweg on bend) \& 551.395 S \& 118.892 E \& 2054 \& 442-444 \& near 2D \& \&

\hline Sat 21 Sept \& 22:00 \& 22:30 \& 00:30 \& 107-108 \& Transit [200 m] \& \& \& \& \& \& \&

\hline Sat 21 Sept \& 22:10 \& 00:00 \& 02:00 \& 108 \& Megacore (MC-20) at Site 108 (terrace on bend) \& 551.422 S \& 118.786 E \& 2057 \& 445-447 \& near 2D \& \&

\hline Sun 22 Sept \& 00:00 \& 00:30 \& 00:30 \& 108-109 \& Transit [300 m] \& \& \& \& \& \& \&

\hline Sun 22 Sept \& 00:30 \& 02:30 \& 02:00 \& 109 \& Megacore (MC-21) at Site 109 (thalweg on bend) \& 551.580 S \& 118.684 E \& 2057 \& 448-450 \& near 2D \& \&

\hline Sun 22 Sept \& 02:30 \& 02:50 \& 00:20 \& 109-110 \& Transit (100 m) \& \& \& \& \& \& \&

\hline Sun 22 Sept \& 02:50 \& 04:50 \& 02:00 \& 110 \& Megacore (MC-22) at Site 110 (terrace on bend) \& 551.619 S \& 118.702 E \& 2057 \& 451-453 \& near 2D \& \&

\hline Sun 22 Sept \& 04:50 \& 05:20 \& 00:30 \& 110-51 \& Transit (7 NM) \& \& \& \& \& \& \&

\hline Sun 22 Sept \& 05:30 \& 05:50 \& 00:20 \& 51 \& Deploy OBIC OBS-5 \& 550.85 S \& 111.87 E \& 1931 \& 454 \& 2 E \& 5` 50.84958 S \& $11^{\circ} 1.87302 \mathrm{E}$

\hline Sun 22 Sept \& 05:50 \& 06:20 \& 00:30 \& 51 to 13 \& Transit (0.5 NM) \& \& \& \& \& \& \&

\hline Sun 22 Sept \& 07:10 \& 09:30 \& 02:20 \& 13 \& Deploy vertical hydrophone array, triangula \& 550.77 S \& 111.55 E \& 1933 \& 455-464 \& 2 E \& 550.71194 S \& $11^{\circ} 1.11204 \mathrm{E}$

\hline Sun 22 Sept \& 09:30 \& 09:30 \& \& \& TRANSIT BACK TO INTERNATIONAL WATERS \& \& \& \& \& \& \&

\hline 22 to 23 Sept \& 09:30 \& 02:00 \& 16:30 \& 13-112 \& Transit [175 NM] \& \& \& \& \& \& \&

\hline Mon 23 Sept \& 02:00 \& \& \& 112 \& Arrive Site 112 (just before old site 32) \& 543.543 S \& 89.487 E \& 4138 \& \& \& \&

\hline Mon 23 Sept \& 02:00 \& 05:00 \& 03:00 \& 112 \& SVP/CTD cast 10 with 11 water samples (close to site 32) \& 543.543 S \& 89.487 E \& 4138 \& 466-479 \& MS5 \& $5^{\circ} 43.54302 \mathrm{~S}$ \& $8^{\circ} 9.48768 \mathrm{E}$

\hline Mon 23 Sept \& 05:30 \& 08:10 \& 02:30 \& 113/114 \& 3 hr Multibeam Survey (MBS_113) \& 543.841 s \& 88.782 E \& 4116 \& 480-485 \& MS5 \& $5^{\circ} 43.94850 \mathrm{~S}$ \& $8^{\circ} 9.66600 \mathrm{E}$

\hline 23-24 sept \& \& \& \& \& SURVEY TRUNCATED - TRANSIT TO LUANDA \& \& \& \& \& \& \&

\hline 24-25 Sept \& \& \& \& \& TRANSIT FROM LUANDA BACK TO SITE 115 \& \& \& \& \& \& \&

\hline Wed 25 Sept \& \& \& \& 115 \& ARRIVE SITE 15 (Angola waters) \& 556.47 S \& 1125.18 E \& 1508 \& 486 \& \& $5^{\circ} 58.7452 \mathrm{~S}$ \& $11^{\circ} 24.28812 \mathrm{E}$

\hline Wed 25 Sept \& 09:20 \& 11:45 \& 02:25 \& 115 \& Short Multibeam Survey (MBS_115) at landslide (Site 115 in very close to Site 46) \& 556.47 S \& 1125.18 E \& 1508 \& 486-502 \& MS2C \& $5^{\circ} 58.7452 \mathrm{~S}$ \& $11^{\circ} 24.28812$

\hline Wed 25 Sept \& 11:45 \& 13:50 \& 02:05 \& 115-118 \& Transit (24 NM) \& \& \& \& \& \& \&

\hline Wed 25 Sept \& 13:50 \& 16:10 \& 02:20 \& 118 \& Deploy NERC Mooring-2 ($75+300 \mathrm{kHz}$), triangulate differs slightly from Site 14 to avoid Mooring 9 \& 550.2 S \& 112.16 E \& 2171 \& 503-513 \& MS2E \& $5^{\circ} 50.2313 \mathrm{~S}$ \& $11^{\circ} 2.3357 \mathrm{E}$

\hline 25/26 Sept \& 16:10 \& 07:20 \& 15:10 \& 118-116 \& Transit (174 NM) to International Waters \& \& \& \& \& \& \&

\hline Thur 26 Sept \& 07:20 \& 18:30 \& 11:10 \& 116-114 \& Multibeam Survey (MBS_113) Continue
where it was truncated on 23 Sept. \& $$
\begin{aligned}
& 1 \text { from } \\
& 547.301
\end{aligned}
$$ \& 80.3517 \& 4167 \& 514-543 \& MS5 \& $55^{\circ} 47.24004 \mathrm{~S}$ \& $8^{\circ} 0.24222 \mathrm{E}$

\hline Thur 26 Sept \& 18:30 \& 19:00 \& 00:30 \& 114 \& CTD Cast - xx \& 545.182 S \& 747.623 E \& 4278 \& 544-547 \& MS5 \& $5^{\circ} 45.32022 \mathrm{~S}$ \& $7^{\circ} 47.60160 \mathrm{E}$

\hline 26 to 27 Sept \& 19:00 \& 14:00 \& 19:00 \& 116-116 \& | Multibeam Survey (MBS_113)
 location of CTD cast | Continue |
| :---: | :---: | \& \[

$$
\begin{aligned}
& 1 \text { from } \\
& 547.301
\end{aligned}
$$
\] \& 80.3517 \& 4167 \& 548-594 \& MS5 \& \&

\hline Fri 27 Sept \& 14:00 \& 14:15 \& 00:15 \& 116-32 \& Transit [1.3 NM] \& \& \& \& \& \& \&

\hline Fri 27 Sept \& 14:15 \& 21:00 \& 06:45 \& 32 \& Mega-core (MC-23) and piston core (PC-18) \& 544.15 \& 88.23 E \& 4150 \& 595-600 \& MS5 \& 5044.10068 S \& $8^{\circ} 8.23146 \mathrm{E}$

\hline Fri 27 Sept \& 21:00 \& 21:45 \& 00:45 \& 32 to 53 \& Transit [0.5 NM] \& \& \& \& \& \& \&

\hline 27 to 28th \& 21:45 \& 04:40 \& 06:55 \& 53 \& Mega-core (MC-24) and piston core (PC-19) \& 543.71 S \& 88.21 E \& 4071 \& 601-606 \& MS5 \& $5^{\circ} 43.7199 \mathrm{~S}$ \& $8^{\circ} 8.21070 \mathrm{E}$

\hline Sat 28 Sept \& 04:40 \& 05:20 \& 00:40 \& 53 to 33 \& Transit [1.3 NM] \& \& \& \& \& \& \&

\hline Sat 28 Sept \& 05:20 \& 05:40 \& 00:20 \& 33 \& Deploy OBIC OBS-6 \& 545.26 S \& 87.63 E \& 4027 \& 607 \& MS5 \& $5^{\circ} 45.2514 \mathrm{~S}$ \& $8^{\circ} 7.63398 \mathrm{E}$

\hline Sat 28 Sept \& 05:40 \& 05:55 \& 00:15 \& 53 to 120 \& Transit [1.3 NM] \& \& \& \& \& \& \&

\hline Sat 28 Sept \& 06:20 \& 09:00 \& 02:40 \& 120 \& Deploy NERC Mooring 5, and triangulate \& 543.87349 \& 87.315559 ¢ \& 4150 \& 608-616 \& MS5 \& $5^{\circ} 43.8825 \mathrm{~S}$ \& $8^{\circ} 7.3028 \mathrm{E}$

\hline Sat 28 Sept \& 09:00 \& 09:30 \& 00:30 \& 120-54 \& Transit [4 NM] \& \& \& \& \& \& \&

\hline Sat 28 Sept \& 09:50 \& 16:50 \& 07:00 \& 54 \& Mega-core (MC-25) and piston core (PC-20) \& 549.23 S \& 88.7 E \& 4044 \& 617-622 \& MS5 \& $5^{\circ} 49.22946 \mathrm{~S}$ \& $8^{\circ} 8.70966 \mathrm{E}$

\hline Sat 28 Sept \& 16:50 \& 18:50 \& 02:00 \& 54-101 \& Transit (17 NM) \& \& \& \& \& \& \&

\hline Sat 28 Sept \& 18:50 \& 19:10 \& 00:20 \& 101 \& Deploy OBIC OBS-7 between Mooring Sites 5 and 4 \& 545.87 S \& 751.904 E \& 4101 \& 623 \& Between MS4 and 5 \& $5^{\circ} 45.86940 \mathrm{~S}$ \& $7^{\circ} 51.91638 \mathrm{E}$

\hline Sat 28 Sept \& 19:10 \& 22:20 \& 03:10 \& 101-102 \& Transit (35 NM) \& \& \& \& \& \& \&

\hline Sat 28 Sept \& 22:20 \& 22:40 \& 00:20 \& 102 \& OBIC OBS-8 (between Mooring Sites 4 and 6) \& 546.482 S \& 716.147 E \& 4325 \& 624 \& Between MS4 and MS6 \& $5^{\circ} 46.49400 \mathrm{~S}$ \& 70 16.13196 E

\hline 28 to 29 Sept \& 22:40 \& 00:15 \& 02:35 \& 102-79 \& Transit (25 NM) \& \& \& \& \& \& \&

\hline
\end{tabular}

Sun 29 Sept	00:15	07:50	07:35	$\begin{array}{\|c\|} \hline \text { Sites } 79, \\ 80,81,82 \end{array}$	Recovered OBIC Prototype Moorings	553.7946 S	654.9477 E	4416	625-636	MS6	$5^{\circ} 53.667$ S	$6^{\circ} 55.09146 \mathrm{E}$
Sun 29 Sept	07:50	08:10	00:20	82-37	Transit (1.6 NM)							
Sun 29 Sept	08:10	08:20	00:10	Site 37	Deploy OBIC OBS-9 (near Mooring Site 6)	554.87 S	653.41 E	4470	637	MS6	$5^{\circ} 54.86810 \mathrm{~S}$	$6^{\circ} 53.91830 \mathrm{E}$
Sun 29 Sept	08:20	09:00	00:40	37-117	Transit (3.4 NM)							
Sun 29 Sept	09:00	11:50	02:50	Site 117	Deploy NERC Mooring 6, and triangulate very close to Site 36)	${ }_{5}^{117} 52.143 \mathrm{~S}$	655.521 E	4476	638-647	MS6	$5^{\circ} 52.1482 \mathrm{~S}$	$6^{\circ} 55.5175 \mathrm{E}$
Sun 29 Sept	11:50	12:40	00:50	117-119	Transit [2 NM]							
Sun 29 Sept	12:40	16:00	03:20	119	SVP cast xxx (near Mooring Site 6)	553.372 S	53.3138 E	4516	648-650	MS6	$5^{\circ} 53.36958 \mathrm{~S}$	6 $6^{\circ} 53.39646 \mathrm{E}$
29 to 30 Sept	16:00	13:20	21:20	119-119	Multibeam Survey (MBS_119) from Mooring Site 6 to S 38/39 and back to Moorine Site 6	553.372 S	53.3138 E	4516	651-731	MS6 > 38/39 > MS6	$5^{\circ} 53.40582 \mathrm{~S}$	$6^{\circ} 53.38650 \mathrm{E}$
Mon 30 Sept	13:20	16:30	03:10	119-121	Transit [30 NM]							
30 to 1 Oct	16:30	02:50	10:20	121-124	Multibeam Survey (MBS_121) Swath Line from Site 38/39 to Mooring Site 8	$\begin{array}{\|l\|} \hline \text { Single } \\ 614.6837 \mathrm{~S} \\ \hline \end{array}$	627.4863 E	4594	732-744	38/39 > MS7 > MS8	$6^{\circ} 14.33472 \mathrm{~S}$	$6^{\circ} 27.94530 \mathrm{E}$
Tues 1 Oct	02:50	07:00	04:10	124	CTD-12 for Multibeam Survey MBS_122 and MBS_121 (500 m from Mooring Site 8)	641.456 S	529.021 E	4957	745-759	MS8	$6^{\circ} 41.45406 \mathrm{~S}$	$5^{\circ} 29.02146 \mathrm{E}$
Tues 1 Oct	07:00	08:20	01:20	75	Recovered NERC Mooring 8	641.71 S	529.11 E	4952	760-765	M 58	$6^{\circ} 41.51544 \mathrm{~S}$	$5^{\circ} 29.00646 \mathrm{E}$
	08:20	09:00	00:40	75-122	Transit [2.7 NM]							
Tues 1 Oct	09:00	18:50	09:50	122-40	Multibeam Survey (MBS_122) from Mooring Site 8 to 7	639.5277 S	530.4924 E	4958	766-775	MS8	$6^{\circ} 39.24432 \mathrm{~S}$	$5^{\circ} 31.23677 \mathrm{E}$
Tues 10 Oct	18:50	19:10	00:20	40 to 58	Transit [2NM]							
Tues 1 Oct	19:10	19:20	00:10	58	German OBS-2 near site 7	628.58 S	62.500 E	4742	776	MS7	$6^{\circ} 28.57302 \mathrm{~S}$	$6^{\circ} 2.49018 \mathrm{E}$
Tues 10 ct	19:20	19:30	00:10	58	Extra (fourth) triangulation point on Mooring 7	628.573 S	62.490 E	4642	777	MS7	$6^{\circ} 28.57302 \mathrm{~S}$	$6^{\circ} 2.49018 \mathrm{E}$
Oct 1 to 2	19:30	01:40	06:10	58 to 125	Transit [65 NM]							
Wed 2 Oct	01:40	09:20	07:40	125-123	Multibeam Survey MBS_125 (single swath line along chanrel) from Mooring Site 6 to Mooring Site 4	$\begin{array}{\|l\|} \hline \text { el) } \\ 51.4240 \mathrm{~S} \\ \hline \end{array}$	57.0363 E	4433	778-800	MS6 to MS4	$5^{\circ} 51.40464 \mathrm{~S}$	$6^{\circ} 56.85228 \mathrm{E}$
Wed 2 Oct	09:20	12:00	03:40	123	(Re)Deployed Mooring 8-R at Mooring Site 4	545.413 S	740.491 E	4327	801-808	MS4	$5^{\circ} 45.4004 \mathrm{~S}$	$7{ }^{\circ} 40.4741 \mathrm{E}$
Wed 2 Oct	12:00	12:30	00:30	123 to 43	Transit [1 NM]							
Wed 2 Oct	12:30	12:40	00:10	43	Deploy OBIC OBS-10 near Mooring Site 4	544.12 S	737.97 E	4213	809	MS4	$5^{\circ} 44.11220 \mathrm{~S}$	$7^{\circ} 37.96914 \mathrm{E}$
Wed 2 Oct	12:40	13:30	00:50	43 to 126	Transit \{1 NM]							
Wed 2 Oct	13:30	00:00	10:30	126-	Multibeam Survey - West from Mooring 4 (MBS_126)	546.0293 S	733.5961 E	4221	810-846	West from MS4	$5^{\circ} 46.35972 \mathrm{~S}$	$7^{\circ} 33.52650 \mathrm{E}$
					SCIENCE FINISHES 24:00 WEDS 2ND OCT							
					Transit to Walvis Bay (${ }^{5} 5$ days) ARRIVE WALVIS BAY 7th Oct							
		KEY			MOORING DEPLOYMENT OR RECOVERY							
					MULTIBEAM SURVEY OR SVP/CTD CAST							
					OBS OR HYDROPHONE ARRAY DEPLOYMEN*							

The following continuation of the same tables also give the USBL coordinates.

SUMMARY TABLE OF EVENTS: CI coordinates from Master Log sheets

Event and equipment	Latitude	Longitude	Comments
Departed Mindelo in Cape Verde			Coordinates selected from master log sheets: Moorings = when anchor is dropped, CTD = at seabed or USBL, Cores = USBL given in comments, OBS = when dropped, multibeam =
TRANSIT FROM CAPE VERDE			start of surveys
Tested various acoustic releases on SVP/CTD (Cast-1)	$6^{\circ} 39.334 \mathrm{~N}$	$17^{\circ} 12.692 \mathrm{~W}$	
TRANSIT FROM CAPE VERDE			
WORK AREA IN INTERNATIONAL WATERS			
Arrive Site 67 (1.6 NM from Site 42)	$6^{\circ} 40.206905 \mathrm{~s}$	$5^{\circ} 28.47108 \mathrm{E}$	
SVP/CTD Cast -2 (for Multibeam Survey MB_42)	$6^{\circ} 40.206 \mathrm{~S}$	$5^{\circ} 28.472 \mathrm{E}$	
Multibeam Survey at site 42 (MBS_42)	$6^{\circ} 40.160 \mathrm{~S}$	$5^{\circ} 28.420 \mathrm{E}$	
Transit from end multibeam survey to Site 42			
$2 \times$ Mega-cores and $1 \times$ Piston Core near Site 42 01 (no recovery); PC-01 (9 m); MC-02 (full)	Mc-		MC01 USBL: Depth $=4956.2 \mathrm{~m} ; 6^{\circ} 41.70255 \mathrm{~S} ; 5^{\circ} 29.10085 \mathrm{E} ;$ PC01 Depth $=4955.9 \mathrm{~m}, 6^{\circ} 41.70447 \mathrm{~S} ; 5^{\circ} 29.10622 \mathrm{E} ;$ MC02 Depth $=4956 \mathrm{~m} ; 6^{\circ} 41.70071 \mathrm{~S} ; 5^{\circ} 29.10581 \mathrm{E}$
Deployed NERC Mooring-8	$6^{\circ} 41.7523 \mathrm{~S}$	$5^{\circ} 28.959 \mathrm{E}$	Final triangulated Position of Mooring 8
Transit (35 NM)			
Arrive Site 68			
Multibeam Survey at Site 40 (MBS_40) from Site 67)	$\begin{aligned} & \text { cast } \\ & 6^{\circ} 28.734 \mathrm{~S} \end{aligned}$	$6^{\circ} 0.306 \mathrm{E}$	
Transit from end multibeam survey to Site 58 (0.5 NM)			
$1 \times$ Mega-core and $1 \times$ Piston Core (terrace near Mooring MC-03 (full); PC-02 (~9 m)			MC03 USBL $4760 \mathrm{~m} ; 6^{\circ} 28.55832 \mathrm{~S} ; 6^{\circ} 2.50591 \mathrm{E} ;$ PCO2 USBL: Depth $=4761.1 \mathrm{~m} ; 6^{\circ} 28.56373 \mathrm{~S} ; 5^{\circ} 2.48820 \mathrm{E}$
Transit Site 58 to 77 (0.6 NM)			
$1 \times$ Mega-core and $1 \times$ Piston Core (thalweg near Mooring MC-04 (full); PC-03 (~9 m)):		MC04 USBL: Depth $=4795.1 \mathrm{~m} ; 6^{\circ} 27.88847 \mathrm{~S} ; 6^{\circ} 3.17800 \mathrm{E} ;$ PC03 USBL: Depth $=4789.5 \mathrm{~m} ; 6^{\circ} 27.89049 \mathrm{~s} ; 6^{\circ} 3.18138 \mathrm{E}$
Deploy NERC Mooring-7	$6^{\circ} 27.8458 \mathrm{~S}$	$6^{\circ} 2.7939 \mathrm{E}$	Changed from Site 40 to avoid channel bar
Transit (30 NM)			
SVP/CTD cast 3	$6^{\circ} 15.22554 \mathrm{~S}$	$6^{\circ} 27.21534 \mathrm{E}$	
Multibeam Survey at site 39 (MBS_39)	$6^{\circ} 14.8758 \mathrm{~S}$	6027.279 E	
Deploy German OBS-1	$6^{\circ} 14.36178 \mathrm{~S}$	$6^{\circ} 25.85002 \mathrm{E}$	
Transit (35 NM)			
Arrive Site 71 (ear site 36)			
SVP/CTD cast 4	$5^{\circ} 54.39672 \mathrm{~S}$	$6^{\circ} 48.7292 \mathrm{E}$	
Multibeam Survey (MBS_37) at site 37 (Mooring 6)	$5^{\circ} 54.3594 \mathrm{~S}$	$6^{\circ} 48.27618 \mathrm{E}$	
Deploy $4 \times$ Prototype OBIC Moorings @ Sites 79,80,81 and	2		
IDA TO FOR BOAT TRANSFERS (ANGOLAN OBSERVERS) AND CLEAR CUSTOMS			
IT BACK TO WORK AREA IN UPPER CANYON (IN ANGOLAN WATERS			
Arrive on site 83			
SVP/CTD Cast 5 in channel axis	557.34800 S	$11^{\circ} 34.19466 \mathrm{E}$	
CTD cast to test OBIC acoustic release (to 1 km depth)	5^57.34818 S	$11^{\circ} 34.1949 \mathrm{E}$	
CTD/SVP Cast 6 during MBS-83; inc. 6 water samples	$5^{\circ} 53.67210 \mathrm{~S}$	$11^{\circ} 21.35664 \mathrm{E}$	
Multibeam survey (MBS_83) upper-canyon upper-part	5^57.24288 S	$11^{\circ} 33.81288 \mathrm{E}$	CTD USBL: $5^{\circ} 53.66225$ S $11^{\circ} 21.35426$ E; Depth: 1829 m
Transit (22NM)			
Arrive Site 84			
SVP/CTD Cast 7 in channel axis	$5^{\circ} 51.81900 \mathrm{~S}$	$11^{\circ} 8.36238 \mathrm{E}$	CTD USBL: $5^{\circ} 51.81078,11^{\circ} 8.36094,2028.5 \mathrm{~m}$
Multibeam survey (MBS_84 \& MBS_89) upper-canyon low part	$5^{\circ} 51.80322 \mathrm{~S}$	$11^{\circ} 8.42776 \mathrm{E}$	
Transit (4NM)			
Deploy: Test of the Vertical Hydrophone Array - (outside canyon near Site 14)	548.86970 S	$11^{\circ} 5.58888 \mathrm{E}$	

Transit (4NM)			
Arrive Site 49 (same as Site 14)			
Mega-core (MC-05) and Piston Core (PC-04) (Thalweg)			MC05 USBL: $5^{\circ} 50.207777,11^{\circ} 2.15793,2170.1 \mathrm{~m} ;$ PC04 USBL: $5^{\circ} 50.19211511 ; 11^{\circ} 2.14898 ; 2172.9 \mathrm{~m}$
Transit (0.4 NM)			
Arrive site 91			
Mega-core (MC-06) and Piston Core (PC-05) (Terrac			MC06 USBL: $5^{\circ} 50.44126 \mathrm{~S} ; 11^{\circ} 1.85302 \mathrm{Ej} 2006.7 \mathrm{~m} ;$ PCO5 USBL: $5^{\circ} 50.44345 ; 11^{\circ} 1.85372 ; 2005 \mathrm{r}$
Transit (1 NM)			
Mega-core (MC-07) and Piston Core (PC-06) (Terrace)			MC07 USBL: $5^{\circ} 50.85375 ; 11^{\circ} 1.87510 ; 1932 \mathrm{~m} ;$ PC06 USBL: $5^{\circ} 50.85375 ; 11^{\circ} 1.97274$; depth $=1936 \mathrm{~m}$
Transit (17 NM)			
Mega-core (MC-08) and Piston Core (PC-07) (thalweg)			MC08 USBL: $5^{\circ} 54.00673$; $11^{\circ} 19.66128$; depth $=1829 \mathrm{~m}$; PC07 - to check!
Transit (0.5 NM)			
Mega-core (MC-09) and Piston Core (PC-08) (thalweg)			MC09 USBL $5^{\circ} 54.00543 ; 11^{\circ} 19.78924$ Depth 1868 m; PC08 USBL $5^{\circ} 54.01074 ; 11^{\circ} 19.79823$
Transit (0.5 NM)			
Mega-core (MC-10) and Piston Core (PC-09) (+20m terrace)			MC10 USBL $5^{\circ} 53.78998 ; 11^{\circ} 19.80659$ Depth 1851 m; PC09 USBL $5^{\circ} 53.79099 ; 11^{\circ} 19.80451$; Depth 1849.6m
Transit (17 NM)			
Mega-core (MC-11) and Piston Core (PC-10) (south terrace)			MC11 USBL $5^{\circ} 54.59294 ; 11^{\circ} 19.90275 ;$ Depth 1664m; PC10 ${ }^{\circ}{ }^{\circ} 54.58923 ; 11^{\circ} 19.90627$; Depth 1666.2 m
Transit (7 NM)			
Mega-core (MC-12) and Piston Core (PC-11) (+200m north t	terrace)		MC12 USBL $5^{\circ} 54.74808 ; 11^{\circ} 25.02303 ;$ Depth 1345.1m; PC11 USBL $5^{\circ} 54.74836 ; 11^{\circ} 25.02176 ;$ Depth 1346.9 m
Transit (6 NM)			
Mega-core (MC-13) (thalweg - just up-canyon of blockage)			MC13 USBL 555.49192; $11^{\circ} 25.56407$ at 1668.8 m
Transit (6 NM)			
Deploy Aniitra-2 mooring (anchor first + USBL), triangulate	$5^{\circ} 54.00029 \mathrm{~S}$	$11^{\circ} 19.76589$ 号	USBL: $5^{\circ} 54.00029 ; 11^{\circ} 19.76589$ at 1525 m (not then triangulated)
Transit (250m....up canyon) to Site 93			
Deploy NERC Mooring-1 $(300 \mathrm{kHz})$, triangulate	$5^{\circ} 54.0186 \mathrm{~S}$	$11^{\circ} 19.9042 \mathrm{E}$	Final triangulated Mooring-1 position
Transit (0.6 NM)			
Deploy OBIC OBS-1	554.59574 S	$11^{\circ} 19.91160 \mathrm{E}$	
Transit (5.6 NM)			
Mega-core (MC-14) and Piston Core (PC-12) (thalweg)			PC12 USBL: $5^{\circ} 55.4986611^{\circ} 25.56585,1661.9 \mathrm{~m} ;$ MC14 USBL $5^{\circ} 55.48218 ; 11^{\circ} 25.55578$ at 1666.7 m
Transit (0.6 NM)			
Mega-core (MC-15) and Piston Core (PC-13) (terrace)			MC15 USBL $5^{\circ} 55.82225 ; 11^{\circ} 25.09653$ at 1660.5 m; PC13 USBL $5^{\circ} 55.81493 ; 11^{\circ} 25.09275 ;$ Depth 1665.5 m
Transit (0.3 NM)			
Mega-core (MC-16) and Piston Core (PC-14) (thalweg)			MC16 USBL $5^{\circ} 55.45089 ; 11^{\circ} 28.40406$ at 1634.5 m; PC14 USBL $5^{\circ} 55.45178 ; 11^{\circ} 28.40134 ;$ Depth 1626.8 m
Deploy NERC Mooring-4 (300 kHz), triangulate	$5^{\circ} 55.4548 \mathrm{~S}$	$11^{\circ} 28.4072 \mathrm{E}$	Final triangulated Mooring-4 position
Transit (5 NM)			
Mega-core (MC-17) and Piston Core (PC-15) (thalweg)			MC17 USBL: $5^{\circ} 57.2091,11^{\circ} 33.18347$, depth 1575 m ; PC USBL: $5^{\circ} 57.208,11^{\circ} 33.19582$, depth 1570 m
Deploy NERC Mooring-3 (300 kHz), triangulate	$5^{\circ} 57.2118 \mathrm{~S}$	$11^{\circ} 33.204 \mathrm{E}$	Final triangulated Mooring-3 position
Transit (2 NM)			
Deploy OBIC OBS-2 near site 98	557.80958 S	$11^{\circ} 31.70058 \mathrm{E}$	
Transit (3.5 NM)			
Deploy OBIC OBS-3 near site 97 (lower elevation site)	5*55.971 S	$11^{\circ} 27.280 \mathrm{E}$	
Transit (1.5 NM)			
Deploy OBIC OBS-4 near site 97 (high site)	554.485 S	$11^{\circ} 27.397 \mathrm{E}$	
Transit (9 NM)			
1 piston core (PC-16; 6 m barrel) at Site 98			PC16 USBL 5 ${ }^{\circ} 57.25966 ; 11^{\circ} 33.36511$; Depth 1576.8m
Transit (22 NM)			
Mega-core (MC-18) and Piston Core (PC-17) (thalweg)			MC18 USBL: $5^{\circ} 52.74190,11^{\circ} 10.48663$, depth $2016.5 \mathrm{~m} ;$ PC17 USBL $5^{\circ} 52.73597 ; 11^{\circ} 10.49102 ;$ Depth 2020.1 m
CTD cast 8 and water column sampling with 8 bottles	$5^{\circ} 52.738 \mathrm{~S}$	$11^{\circ} 10.499 \mathrm{E}$	
Deploy Aniitra-3 Mooring (anchor first)	$5^{\circ} 52.7352 \mathrm{~S}$	$11^{1} 10.4954 \mathrm{E}$	USBL: $5^{\circ} 52.735,11^{\circ} 10.495$ (not triangulated, just USBL on mooring)
Transit (9 NM)			
Recover vertical hydrophone array after test period	$5^{\circ} 49.1887 \mathrm{~S}$	$11^{\circ} 05.93766 \mathrm{E}$	
Transit (4 NM)			

Deploy NERC Mooring-9 (600 kHz A ACP), triangulate	$5^{\circ} 50.2092 \mathrm{~s}$	${ }^{11^{\circ} 2.163 \mathrm{E}}$	Final ltriangulated Mooring-9 position
CTD cast 9 with 9 water column samples (** near 14)	$5^{\circ} 50.11150 \mathrm{~S}$	110 1.89473 E	USBL $5^{\bullet} 50.126883,11^{1} .90832$
Transit [7 NM]			
Megacore (MC-19) at S Site 107 (thalweg on bend)			MC-19 USBL: $5^{\circ} 51.40276,11^{\circ} 8.88621$ @ 2054.2m
Transit [200 m]			
Megacore (MC-20) at Site 108 (terrace on bend)			MC20 USBL: $5^{\circ} 51.42858,11^{\circ} 8.77749$ @ 2055.9m
Transit [300 m]			
Megacore (MC-21) at Site 109 (thalweg on bend)			MC21 USBL: $5^{5} 51.585011 .11^{\text {® }}$.68930 @ 2056.5m
Transit (100 m)			
Megacore (MC-22) at Site 110 (terrace on bend)			MC22 USBL: $5^{\circ} 51.61920,11^{\circ} 8.70400$ @ 2056.5m
Transit (7 NM)			
Deploy OBIC OBS-5	$5^{\circ} 50.84958 \mathrm{~s}$	${ }^{11^{\circ} 1.87302 \mathrm{E}}$	
Transit (0.5 NM)			
Deploy vertical hydrophone array, triangula	$5^{\circ} 50.71194 \mathrm{~S}$	${ }^{11^{\circ} 1.11204 \mathrm{E}}$	
TRANSIT BACK To International waters			
Transit [175 NM]			
Arrive Site 112 (just before old site 32)			
SVP/CTD cast 10 with 11 water samples (close to site 32)	$5^{\circ} 43.54302 \mathrm{~s}$	$88^{\circ} 9.48768 \mathrm{E}$	CTD USBL $5^{\circ} 43.54605,8^{\circ 9} .48242,13 \mathrm{~m} \mathrm{ABS}$
$3 \mathrm{hr} \mathrm{Multibeam} \mathrm{Survey} \mathrm{(MBS} \mathrm{_} \mathrm{\left._113\right)}$	$5^{\circ} 43.94850 \mathrm{~s}$	$8{ }^{\circ 9} .66600 \mathrm{E}$	
SURVEY TRUNCATED - TRANSIT TO LUANDA			
TRANSIT FROM LUANDA BACK TO SITE 115			
ARRIVE SITE 15 (Angola waters)	${ }^{5 \times 58.74525}$	$11^{\circ} 24.28812$	
Short Multibeam Survey (MBS_115) at landslide (Site 115 in very close to Site 46)	$5^{\circ} 58.7452 \mathrm{~s}$	$11^{\circ} 24.28812$ ¢	
Transit (24 NM)			
Deploy NERC Mooring-2 $(75+300 \mathrm{kHz})$, triangulate differs slightly from Site 14 to avoid Mooring 9	$5{ }^{\circ} 50.2313 \mathrm{~S}$	$11^{\circ} 2.3357 \mathrm{E}$	Final triangulated Mooring-2 position
Transit (174 NM) to international Waters			
Multibeam Survey (MBS_113) Continue where it was truncated on 23 Sept	$\begin{aligned} & \text { trom } \\ & 5^{\circ} 47.24004 \mathrm{~S} \end{aligned}$	$8^{\circ} 0.24222 \mathrm{E}$	
CTD Cast - xx	$5^{\circ} 45.32022 \mathrm{~s}$	$7^{\circ} 47.60160 \mathrm{E}$	
Multibeam Survey (MBS_113) Continue	from		
location of CTD cast			
Transit [1.3 NM]			
Mega-core (MC-23) and piston core (PC-18)	$5^{\circ} 44.10068$ S	$8^{88.23146 E}$	MC-23 USBL $5^{\circ} 44.09221,8^{\circ} 8.21884 ;$ PC-18 USBL $5^{\circ} 44.236538^{\circ} 8.06768$
Transit [0.5 NM]			
Mega-core (MC-24) and piston core (PC-19)	$5^{\circ} 43.71995$	$8^{\circ} 8.21070 \mathrm{E}$	MC-24 USBL $5^{\circ} 43.71279,8^{8} 8.20819$; PC-19 USBLL $5^{\circ} 43.6999078^{\circ} 8.20575$
Transit [1.3 NM]			
Deploy OBIC OBS-6	$5^{\circ} 45.2514 \mathrm{~S}$	$88^{\circ} 7.63398 \mathrm{E}$	
Transit [1.3 NM]			
Deploy NERC Mooring 5, and triangulate	$5^{\circ} 43.8825 \mathrm{~s}$	8 $8^{\circ} 7.3028 \mathrm{E}$	Final ltriangulated Mooring-5 position
Transit [4 NM]			
Mega-core (MC-25) and piston core (PC-20)	$5^{\circ} 49.22946 \mathrm{~S}$	8*8.70966E	MC-25 USBLL5 $49.22455,8^{\circ} 8.70782$; PC-18 USBL L $5^{\circ} 49.216648^{\circ} 8.69629$
Transit (17 NM)			
Deploy OBIC OBS-7 between Mooring Sites 5 and 4	$5^{\circ} 45.86940 \mathrm{~S}$	$7^{\circ} 51.91638 \mathrm{E}$	
Transit (35 NM)			
OBIC OBS-8 (between Mooring Sites 4 and 6)	$5^{\circ} 46.49400 \mathrm{~S}$	$7^{\circ} 16.13196 \mathrm{E}$	
Transit (25 NM)			
Recovered OBIC Prototype Moorings	$5^{\circ} 53.667 \mathrm{~s}$	$6^{\circ} 55.09146 \mathrm{E}$	
Transit (1.6 NM)			
Deploy OBIC OBS-9 (near Mooring site 6)	$5^{\circ} 54.86810 \mathrm{~s}$	6053.91830 E	

Transit (3.4 NM)			
Deploy NERC Mooring 6, and triangulate very close to Site 36)	${ }_{5}{ }^{117} 52.1482 \mathrm{~S}$	$6^{\circ} 55.5175 \mathrm{E}$	Final triangulated Mooring-6 position
Transit [2 NM]			
SVP cast Xxx (near Mooring Site 6)	$5^{\circ} 53.36958 \mathrm{~S}$	$6^{\circ} 53.39646 \mathrm{E}$	CTD was broken - so used SVP only
Multibeam Survey (MBS_119) from Mooring Site 6 to S 38/39 and back to Moorine Site 6	$5^{\circ} 53.40582 \mathrm{~S}$	$6^{\circ} 53.38650 \mathrm{E}$	
Transit [30 NM]			
Multibeam Survey (MBS_121) Swath Line from Site 38/39 to Mooring Site 8	${ }^{\text {Sing }}{ }^{\circ} 14.33472 \mathrm{~S}$	$6^{\circ} 27.94530 \mathrm{E}$	
CTD-12 for Multibeam Survey MBS_122 and MBS_121 (500m from Mooring Site 8)	$6^{\circ} 41.45406 \mathrm{~S}$	$5^{\circ} 29.02146 \mathrm{E}$	CTD fixed, water samples taken
Recovered NERC Mooring 8	$6^{\circ} 41.51544 \mathrm{~S}$	$5^{\circ} 29.00646 \mathrm{E}$	Just recovered....moved from Site 42 to 75 for deployment
Transit [2.7 NM]			
Multibeam Survey (MBS_122) from Mooring Site 8 to 7	$6^{\circ} 39.24432 \mathrm{~S}$	$5^{\circ} 31.23677 \mathrm{E}$	
Transit [2NM]			
German OBS-2 near Site 7	$6^{\circ} 28.57302 \mathrm{~S}$	$6^{\circ} 2.49018 \mathrm{E}$	
Extra (fourth) triangulation point on Mooring 7	$6^{\circ} 28.57302 \mathrm{~S}$	$6^{\circ} 2.49018 \mathrm{E}$	
Transit [65 NM]			
Multibeam Survey MBS_125 (single swath line along chan from Mooring Site 6 to Mooring Site 4	$5^{2} 51.40464$ S	$6^{\circ} 56.85228 \mathrm{E}$	
(Re)Deployed Mooring 8-R at Mooring Site 4	$5^{\circ} 45.4004 \mathrm{~S}$	$7^{\circ} 40.4741 \mathrm{E}$	Final triangulated Mooring-8-R position
Transit [1 NM]			
Deploy OBIC OBS-10 near Mooring Site 4	$5^{\circ} 44.11220 \mathrm{~S}$	$7^{\circ} 37.96914 \mathrm{E}$	
Transit \{1 NM]			
Multibeam Survey - West from Mooring 4 (MBS_126)	$5^{\circ} 46.35972 \mathrm{~S}$	$7^{\circ} 33.52650 \mathrm{E}$	
SCIENCE FINISHES 24:00 WEDS 2ND OCT			
Transit to Walvis Bay (~5 days) ARRIVE WALVIS BAY 7th Oct			

ARRIVE WALVIS BAY 7th Oct
MOORING DEPLOYMENT OR RECOVERY
MULTIBEAM SURVEY OR SVP/CTD CAST
OBS OR HYDROPHONE ARRAYDEPLOYM

T-1	639.334 N	1712.692 W	4883	CTD with acoustic releases	Tested acoustic releases with OBS and Mooring, via dips on the CTD.	international
5	557.81 S	1131.71 E	1144	OBIC OBS-2 (near Mooring Site 2A)	OBS on terrace a few NM down-canyon from Site 2A	
7	555.84 S	1124.42 E	1792	$\xrightarrow{>}$	Original planned position of Mooring 2 c , but moved as too close to a submarine cable position	Angola
8	554.47 S	1125.25 E	1323	>	Original OBS site on northern terrace but not used	Angola
9	550.16 S	1124.42 E	350	OBIC OBS-2	Old VA position; high on canyon shoulder; now an OBS site as VA has poor or no line of sight	Angola
12	556.34 S	1129.82 E	1690	>	Original Mooring Site 2b, but JC187 survey shows canyon floor too narrow for mooring deployment	Angola
13	550.77 S	111.55 E	1933	Vertical Hydrophone Array (near Site 2E)	Deployment of Vertical Hydrophone Array on terrace near Mooring Site 2E	Angola
14	550.2 S	112.16 E	2171	NERC Mooring 9 (600 kHz)	Mooring Site 2E chosen from JC187 survey; Same as Core Site 49; (just down-canyon from Site 118 for Mooring-2)	Angola
32	544.1 S	88.23 E	4150	MC-23, PC-18	Megacore 23 and Piston Core 18 near Mooring Site 5 (now moved to Site 120 from 32)	international
33	545.26 S	87.63 E	4027	OBIC OBS-6 (near mooring Site 5)	OBIC OBS-6 located on terrace near Mooring Site 5	international
35	555.06 S	645.52 E	4525	>	Original position of Mooring 6, moved to Site 117	international
36	552.13 S	655.5 E	4495	>	Mooring 6 adjusted from Site 36 to Site 117	international
37	554.87 S	653.41 E	4470	OBIC OBS-9 (near mooring Site 6)	OBS-9 on terrace near mooring 6	international
38	614.36 S	625.85 E	4638	German OBS-2	OBS between Mooring Sites 6 and 7	international
40	628.02 S	62.17 E	4780	>	Original Mooring Site 7 (Dennilou et al. AUV survey Site A); Moved slightly to Site 75 after JC187 multibeam survey	international
41	544.93 S	738.03 E	4314	$>$	Original position of Mooring Site 4, but moved to Site 123	international
42	641.71 S	529.11 E	4952	3 cores: MC01, MC02, PC-01 (near Mooring 8)	Mooring 8 moved slightly to Site 75; $2 \times$ megacores, $1 \times$ piston core; Dennilou et al. AUV Survey C	international
43	544.12 S	737.97 E	4213	OBIC OBS-10 (Near Mooring 4)	OBS-10 located near Mooring Site 4	international
45	555.82 S	1125.11 E	1709	MC-15, PC-13 (terrace between Sites 2C and 2B)	megacore 15 and Piston Core 13, on terrace between Sites 2 C and 2B.	Angola
48	554.75 S	1125.03 E	1348	MC-11, PC-10 (high terrace, between 2C and 2B)	Megacore and Piston core on high (+200 m) northern terrace between Mooring sites 2C and 2B	Angola
49	550.2 S	112.16 E	2159	MC-05, PC-04; channel thalweg near site 2E	Megacore 05 and Piston Core 04 in channel thalweg (same place as site 14 and NERC Mooring 9)	Angola
50	549.86 S	112.21 E	2058	>	replaced by nearby Site 90.	Angola
51	550.85 S	111.87 E	1931	1C-07, PC-06; OBS-5; terrace above Mooring Site 2 E	Megacore 07 and Piston Core 06, and OBIC OBS-5 on terrace above Mooring Site 2E	Angola
53	543.71 S	88.21 E	4071	MC24, PC-19 (terrace near Mooring Site 5)	Megacore 24 and Piston Core 19 on terrace nera Mooring Site 5	international
54	549.23 S	88.7 E	4044	1C25, PC-20 (outside channel near Mooring Site 5)	Megacore and Piston Core entirely outside the channel, near Mooring Site 5	international
58	628.58 S	62.5 E	4764	C-03, PC-02; German OBS-2 (terrace by Mooring 7)	Terrace near Mooring 7; mega-core (MC-03) and piston core (PC-02); German OBS-2	international
66	554.01 S	1119.68 E	1875	MC-08, PC-07; Aniitra-2 (75 kHz) Mooring	Mooring Site 2C; with Aniitra-2 mooring; and megacore 08 and piston core 07; near Site 93	Angola
67	640.207 S	528.441 E	4957	CTD/SVP Cast -2; Start Multibeam survey MBS_42	SVP/CTD Cast-2: Multibeam Survey MBS_42 start	International
68	628.589 S	60.660 E	4768	Start Multibeam survey MBS_40	Multibeam Survey MBS_40 start	International
69	614.671 S	627.289 E	4659	Start Multibeam survey MBS_39 (near Site 38)	SVP/CTD Cast at Site 78, Multibeam Survey MBS_39 start	International
70	556.546 S	644.847 E	4547	>	redundant point for start of MBS_37 (small survey near mooring Site 6), now moved to Site 71?	International
71	553.171 S	654.371 E	4506	CTD/SVP Cast-4; Start Multibeam survey MBS_37	SVP/CTD Cast-4: Multibeam Survey MBS_37 start	International
72	545.223 S	736.434 E	4234	>	Dedundent point for start of MBS_113 Multibeam Survey - not in logs? 41 is near Mooring Site 4	International
73	543.586 S	84.457 E	4108	$>$	Dedundent point for start of MBS_113 Multibeam Survey - not in logs? 32 is near Mooring Site 5	International
75	641.7815 S	528.967 E	4966	NERC Mooring-8 (300 kHz)	NERC Mooring 8; adjusted from Site 42 by 300 m	international
76	627.8623 S	62.8346 E	4794	NERC Mooring-7 (300 kHz)	NERC Mooring 7 - adjusted slightly from Site 40	International
77	627.8899 S	63.1773 E	4793	MC-04 and PC-03 (thalweg near Mooring 7)	Cores in thalweg near Mooring 7 (replace site 57)	International
78	615.2162 S	627.2735 E	4691	CTD/SVP Cast -3	CTD/SVP cast-3 before survey near German OBS-1 at Site 38 \& Site 69; within channel thalweg	international
79	553.7946 S	654.9477 E	4448	Proto_OBS_A	Deployed and recovered OBIC Prototype OBS-A	international
80	554.1732 S	654.9466 E	4454	Proto_OBS_B	Deployed and recovered OBIC Prototype OBS-B	international
81	554.1731 S	655.366 E	4454	Proto_OBS_C	Deployed and recovered OBIC Prototype OBS-C	international
82	553.7961 S	655.366 E	4449	Proto_OBS_D	Deployed and recovered OBIC Prototype OBS-D	international
83	557.3534 S	1134.1890 E	1595	Start Multibeam Survey (MBS-83) in Upper Canyon	SVP/CTD Cast-5 in channel axis; Multibeam Survey MBS-83 start, Survey to boundary with DRC waters;	Angola
84	551.7959 S	118.3618 E	2064	Start Multibeam Survey (MBS-84) in Upper Canyon	SVP/CTD Cast-7 in channel axis; Multibeam Survey MBS-84 and MBS-89 start, to boundary with Congo waters;	Angola
85	555.5676 S	1125.0887 E	1752	>	Not used - CTD and SVP mid survey of MBS-84 and MBS_89 in Upper Canyon	International
86	549.227 S	116.105 E	1262	Vertical Hydrophone Array (Test Deployment)	Deployment and recovery of the vertical hydrophone array to test it works	Angola
87	554.594 S	1119.912 E	1679	MC-11, PC-10; OBIC OBS-1	Megacore 11 and Piston Core 10 and OBIC OBS-1 on southern terrace, between Mooring Site 2C and 2B	Angola
88	553.67198 S	1121.35676 E	1840	CTD and SVP	CTD and SVP mid survey (adjusted position of site 85)	Angola
89	551.790048 S	118.483529	2060	Start Multibeam survey between 83 and 84	This survey was evertually combined within MBS_84	Angola

90	550.452624 S	111.858662 E	2008	MC-06 and PC-05 on terrace near site 2E	Megacore 06 and Piston Core 05 on terrace (replaces Site 50, and near Mooring Site 2E)	Angola
92	552.737 S	1110.499 E	2017	Aniitra-3 Mooring; MC-18, PC-17 (also Site 111)	Mooring Site 2D, with Aniitra-3 mooring (adjusted slightly to Site 111), and megacore 18 and piston core 17.	Angola
93	554.013 S	1119.811 E	1875	MC-09, PC-08 (channel thalweg near Site 2C)	300 m up-canyon from Site 66 (with Aniitra-2 mooring).	Angola
94	550.143 S	112.009 E	1875	>	unused core site in thalweg just down canyon of site 14 mooring	Angola
95	554.013 S	1119.811 E	1869	>	unused core site near Site 66	Angola
96	553.794 S	1119.816 E	1849	MC-10, PC-09 (+20m terrace near Site 2C)	on low northern terrace, 20 m above thalweg; near Mooring Site 2C	Angola
97	555.455 S	1128.413 E	1637	NERC Mooring-4 (300 kHz); MC-16, PC-14	Mooring Site 2B, with Megacore 16 and Piston Core 14.	Angola
98	557.208 S	1133.198 E	1575	NERC Mooring-3 (300 kHz); MC-17, PC-15	Mooring Site 2B, with Megacore 16 and Piston Core 14 (which bent). Closest to boundary with DRC waters.	Angola
99	555.492 S	1125.577 E	1670	MC13, MC14, and PC-12	Thalweg of small inset channel just upstream of landslide blockage, between Sites 2C and 2B	Angola
100	551.868 S	1110.773 E	1850	>	OBS near Mooring Site 4, now moved to Site 43	Angola
101	545.87 S	751.904 E	4101	OBIC OBS-7 (between Mooring Sites 5 and 4)	OBIC OBS-7 (between Mooring Sites 5 and 4)	International
102	546.482 S	716.147 E	4325	OBIC OBS-8 (between Mooring Sites 4 and 6)	OBIC OBS-8 (between Mooring Sites 4 and 6)	International
103	554.012 S	1119.911 E	1875	NERC Mooring-1 (300 kHz)	loacted 250 m up-canyon from Aniitra-2 mooring at Site 66	Angola
104	555.958 S	1127.269 E	1564	OBIC OBS-3 (near Mooring Site 2B, lower tarrace)	Lower of two OBIC OBS sites on either side of mooring NERC-4 at Site 93 (+120m above thalweg)	Angola
105	554.483 S	1127.406 E	1260	OBIC-OBS-4 (near Mooring Site 2B, higher Terrace)	Higher of two OBIC OBS sites on either side of mooring NERC-4 at Site 93 (+420m above thalweg)	Angola
106	557.257 S	1133.381 E	1575	PC-16 in channel thalweg	replaces previously bent piston core, at site 98 of NERC Mooring-3	Angola
107	551.395 S	118.892 E	2054	MC-19 (set of 4 MCs on bend) - thalweg	detailed sudy of bar/thalweg	Angola
108	551.422 S	118.786 E	2057	MC-20 (set of 4 MCs on bend)- bar	detailed sudy of bar/thalweg	Angola
109	551.580 S	118.684 E	2057	MC-21 (set of 4 MCs on bend)	detailed sudy of bar/thalweg	Angola
110	551.619 S	118.702 E	2057	MC-22 (set of 4 MCs on bend)	detailed sudy of bar/thalweg	Angola
111	552.734 S	1110.5 E	2017	djusted position of Aniitra-3 mooring (near site 92)	Slightly adjusted position of final Aniitra-3 mooring drop	Angola
112	543.507967 S	89.489147 E	4138	CTD/SVP Cast 10, near Multibeam Survey MBS_113	CTD/SVP Cats - 10 before MB survey MBS_113 from Mooring Site 5 to Mooring Site 4	International
113	543.841021 S	88.781887 E	4116	Start Multibeam Survey MBS-113	Multibeam Survey MBS_113 from Mooring Site 5 to Mooring Site 4.	International
114	545.182367 S	747.623199 E	4278	CTD/SVP Cast During MBS-113	CTD/SVP cast during Multibeam Survey 113 (from Mooring Site 5 to 4) During survey line 13 @ Site 114	International
115	557.789099 s	1124.393967 E	841	Start Multibeam Survey MBS_115	Short extra multibeam survey of landslide blockage in upper canyon	Angola
116	547.301 S	80.351 E	4167	Position that MB_113 survey broken off/restarted	Position that MB_113 survey broken off/restarted	International
117	552.143 S	655.521 E	4499	NERC Mooring-6 (300 kHz)	Adjusted slightly from original position at Site 36, which itself was moved from Site 35	International
118	550.2313 S	112.3357 E	2170	NERC Mooring-2 (adjusted position)	Slightly adjusted position of NERC Mooring-2 (to avoid previously deployed NERC Mooring-9)	Angola
119	553.3723 S	653.31376 E	4516	CTD/SVP Cast; start of Multibeam Survey MBS_119	CTD/SVP Cast; start of Multibeam Survey MBS_119 from Mooring 6 towards Site 38	International
120	543.873493 S	87.315559 E	4153	NERC Mooring-5 (300 kHz)	NERC Mooring 5 position adjusted slightly from Site 32	International
121	614.6837 S	627.4863 E	4688	Start of Mulbeam Survey MBS_121	Start of Multibeam Survey MBS_121, single swath line from Site 38 to Mooring Site 8	International
122	639.5277 S	530.4924 E	4958	Start of Multibeam Survey MBS_122	Start of Multibeam Survey MBS_122, set of parallel swaths from mooring Site 8 to Mooring Site 7	International
123	545.413 S	740.491 E	4327	(Re)deploy Mooring 8 at Mooring Site 4	Adjusted Mooring Site 4 - slightly east.	International
124	641.456 S	529.021 E	4957	CTD/SVP near Site 42 (Mooring 8)	Needed to move 500m to avoid hitting mooring 8	International
125	551.4240 S	657.0363 E	4433	tart of Multibeam Survey MBS_125 (NE from Site 4)	Start of single swath Multibeam Survey MBS_125 from Mooring Site 6 to Mooring Site 4	International
126	546.0293 S	733.5961 E	4221	Start of final multibeam survey to W from Site 4	Multibeam Survey (zig-zagging) from Mooring Site 4 towards Mooring Site 6	International

Cruise JC187		Date: 03/09/19 and 09/09/10 (from Station 8)		Sheet No. 1		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	$\begin{aligned} & \text { Depth } \\ & (\mathrm{m}) \end{aligned}$	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
Station 1	T-1	10.00	$6^{\circ} 39.33390 \mathrm{~N}$	$17^{\circ} 12.69234 \mathrm{~W}$	4882	CTD-01 deployment with test of NMFD (national marine facilities Deployment) acoustic releases and German OBS acoustic releases
Station 2	T-1	11.34	$6^{\circ} 39.334 \mathrm{~N}$	$17^{\circ} 12.692 \mathrm{~W}$	4883	CTD-01 at seabed, acoustic release started for NMFD releases
Station 3	T-1	12.01	$6^{\circ} 39.3336 \mathrm{~N}$	$17^{\circ} 12.6924 \mathrm{~W}$	4883	CTD-01 at seabed, acoustic release started for German OBS releases
Station 4	T-1	13.50	$6^{\circ} 39.3338 \mathrm{~N}$	$17^{\circ} 12.69240 \mathrm{~W}$	4883	CTD-01 back on deck, all acoustic releases successful
Station 5	T-1	14.32	$6^{\circ} 39.33402 \mathrm{~N}$	$17^{\circ} 12.69210 \mathrm{~W}$	4882	Deployment with test of OBIC prototype (to check leaking) and OBS acoustic releases
Station 6	T-1	14.52	$6^{\circ} 39.33432 \mathrm{~N}$	$17^{\circ} 12.69174 \mathrm{~W}$	4883	OBS acoustic release test started. All test successful and Completed by 15.28. Comment from OBS guys "some difficult conditions"
Station 7	T-1	15.49	$6^{\circ} 39.33120 \mathrm{~N}$	$17^{\circ} 12.68802 \mathrm{~W}$	4883	OBS back on deck
Station 8	67	20.02	$6^{\circ} 40.206905 \mathrm{~S}$	$5^{\circ} 28.47108 \mathrm{E}$	4930	Arrival at Site 67 - Start of working area (40.207 28.441)

Station 9	67	20.12	$6^{\circ} 40.207$ S	$5^{\circ} 28.4725$	4921	CTD-02 @ surface to go down
Station 10	67	21.44	$6^{\circ} 40.206$	$5^{\circ} 28.472$	4923	CTD-02 on the way testing releases
Cruise JC187		Date: 09/09/19 \& 10/09/2019 (from STA 13)		Sheet No. 2		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
Station 11	67	21.58	$6^{\circ} 40.206$	$5^{\circ} 28.472$	4923	Water sample at 4930 m , then coming up (4944m corrected depth) CTD-02
Station 12	67	23.28	$6^{\circ} 40.206$	$5^{\circ} 28.471$	4925	CTD-02 @ surface
Station 13	67	00.08	$6^{\circ} 40.160$	$5^{\circ} 28.420$	4924	$\begin{aligned} & \hline \text { Start of line: } \text { MBS_42_L01 } \rightarrow 0193 \\ & \text { 35S_42_L01 } \rightarrow 20190910000809 \end{aligned}$
Station 14	67	00.44	$6^{\circ} 43.248$	$5^{\circ} 29.815$	4923	End of previous Line (ST13), start of line: MBS_42_L02 \rightarrow 0194; 35S_42_LO2 $\rightarrow 20190910004536$
Station 15	67	00.59	$6^{\circ} 43.188$	$5^{\circ} 29.790$	4924	End of previous Line (ST14), start of line: MBS_42_L03 \rightarrow 0195; 35S_42_L03 $\rightarrow 20190910005938$
Station 16	67	01.03	$6^{\circ} 43.980$	$5^{\circ} 30.216$	4926	End of previous Line (ST15), start of line: MBS_42_L04 \rightarrow 0196; 35S_42_L04 $\rightarrow 20190910010346$
Station 17	67	01.18	$6^{\circ} 41.462$	$5^{\circ} 29.606$	4928	End of previous Line (ST16), start of line: MBS_42_LO5 \rightarrow 0197; 35S_42_LO5 $\rightarrow 20190910011838$
Station 18	67	01.29	$6^{\circ} 41.902$	$5^{\circ} 28.660$	4930	End of previous Line (ST17), start of line: MBS_42_L06 \rightarrow 0198; 35S_42_L06 $\rightarrow 20190910012918$

Station 19	67	01.44	$6^{\circ} 40.404$	$5^{\circ} 27.998$	4924	End of previous Line (ST18), start of line: MBS_42_LO7 \rightarrow 0199; 35S_42_L07 \rightarrow 20190910014411
Station 20	67	01.53	$6^{\circ} 40.050$	$5^{\circ} 28.826$	4925	End of previous Line (ST19), start of line: MBS_42_L08 \rightarrow 0200; 35S_42_L08 $\rightarrow 20190910015316 ~$
Station 21	67	02.14	$6^{\circ} 41.617$	$5^{\circ} 29.064$	4928	End of previous Line (ST20), end of MultiBeam and 3.5 Survey for Site 42

Cruise JC187		Date: 10/09/2019		Sheet No. 3		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
Station 22	42	02.30	$6^{\circ} 41.70564 \mathrm{~S}$	$5^{\circ} 29.10570 \mathrm{E}$	4928	Multi-corer at sea surface Core name: JC187-MC01
Station 23	42	04.31	$6^{\circ} 41.70924 \mathrm{~S}$	$5^{\circ} 29.11074 \mathrm{E}$	4928	Multi-corer at sea bottom JC187-MC01 USBL: Depth $=4956.2 \mathrm{~m} ; 6^{\circ} 41.70255 \mathrm{~S} ; 5^{\circ} 29.10085 \mathrm{E}$ Difference USBL SHIP: USBL 23 m NW of ship
Station 24	42	06.25	$6^{\circ} 41.70912 \mathrm{~S}$	$5^{\circ} 29.11044 \mathrm{E}$	4928	Multi-corer back on deck JC187-MC01 Tubes empty, corer covered in clay/fluid mud to the top
Station 25	42	07.30	$6^{\circ} 41.70966 \mathrm{~S}$	$5^{\circ} 29.11002 \mathrm{E}$	4928	Piston-corer at sea surface Core name : JC187-PC01
Station 26	42	09.04	$6^{\circ} 41.708825 \mathrm{~S}$	$5^{\circ} 29.10966 \mathrm{E}$	4978.3	Piston-corer stopped 100m above seafloor JC187-PC01 USBL: Depth $=4840.4$ m; $6^{\circ} 41.7077$ S; $5^{\circ} 29.11809 \mathrm{E}$
Station 27	42	09.09	$6^{\circ} 41.70948 \mathrm{~S}$	$5^{\circ} 29.10984 \mathrm{E}$	4928.4	Piston-corer at sea bottom, peak tension 6.3 Te JC187PC01USBL: Depth $=4955.9 \mathrm{~m} ; 6^{\circ} 41.70447 \mathrm{~S} ; 5^{\circ} 29.10622 \mathrm{E}$. Difference USBL SHIP: USBL 12 m NW of ship

Station 28	42	10.57	$6^{\circ} 41.71008$ S	$5^{\circ} 29.11056 \mathrm{E}$	4928.9	Piston-corer back on deck JC187-PC01
Station 29 (EP)	42	11.45	$6^{\circ} 41.70948$ S	$5^{\circ} 29.10966 \mathrm{E}$	4929	Multi-corer at sea surface JC187-MC02
Station 30 (MB)	42	13.46	$6^{\circ} 41.70896$ S	$5^{\circ} 29.11013 \mathrm{E}$	4956	Multi-corer at sea bottom, Wire out $=4987.4 \mathrm{~m}$, Peak tension ~ 5 USBL: Depth $=4956$ m; $6^{\circ} 41.70071$ S; $5^{\circ} 29.10581$ E Difference USBL SHIP: USBL 18m NW of ship
Station 31 (SR)	42	15.41	$6^{\circ} 41.70924 \mathrm{~S}$	$5^{\circ} 29.10966 \mathrm{E}$	4928.9	Multi-corer on deck 8 cores, all full!
Station 32 (SR)	N/A start position/run up	16.19	$6^{\circ} 41.78058$	$5^{\circ} 29.32824$	4928	Mooring buoy in water at surface JC187 NERC Mooring 8
Cruise JC187		Date: 10/09/2019		Sheet No. 4		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
Station 33 (SR)	75	16.50	$6^{\circ} 41.78184$	$5^{\circ} 28.92738$	4971	Chain/anchor dropped JC187 NERC Mooring 8
Station 34 $(S R)$	75	17.24	$6^{\circ} 41.77398$	$5^{\circ} 28.62676$	4929.7	By this time anchor on sea floor (not sure exact timing, took ~15 mins) Lat and long of boat not mooring JC187 NERC Mooring 8
Station 35 (EP)	75	17.44	$6^{\circ} 41.73365$	$5^{\circ} 26.86542$	4929.7	Stopped at triangulation point 1 JC187 NERC Mooring 8
Station 36 (SS)	75	18.16	$6^{\circ} 40.08048$	$5^{\circ} 30.04308$	$\begin{aligned} & 4929.7 \\ & \text { (?) } \end{aligned}$	Stopped at triangulation point 2 JC187 NERC Mooring 8
Station 37	75	18.48	$6^{\circ} 43.43700$	$5^{\circ} 30.11826$	" "	Stopped at triangulation point 3

						JC187 NERC Mooring 8
Station 38	68	22.05	$6^{\circ} 28.734$	$6^{\circ} 0.306$	4747	$\begin{aligned} \hline \text { Start of line: } \text { MBS_40_L01 } \rightarrow 0219 \\ \text { 35S_40_L01 } \rightarrow 20190910220502 \end{aligned}$
Station 39	68	22.44	$6^{\circ} 27.355$	$6^{\circ} 3.920$	4743	End of previous Line (ST38), start of line: MBS_40_LO2 \rightarrow 0220; 35S_40_LO2 $\rightarrow 20190910224454$
Station 40	68	23.00	$6^{\circ} 27.119$	$6^{\circ} 3.570$	4745	End of previous Line (ST39), start of line: MBS_40_LO3 \rightarrow 0221; 35S_40_LO3 $\rightarrow 20190910230008$
Station 41	68	23.09	$6^{\circ} 28.040$	$6^{\circ} 3.911$	4730	End of previous Line (ST40), start of line: MBS_40_LO4 \rightarrow 0222; 35S_40_L04 $\rightarrow 20190910230657$
Station 42	68	23.30	$6^{\circ} 28.486$	$6^{\circ} 2.350$	4738	End of previous Line (ST41), start of line: MBS_40_L05 \rightarrow 0223; 35S_40_LO5 $\rightarrow 20190910233013$
Station 43	68	23.40	$6^{\circ} 27.410$	$6^{\circ} 1.918$	4749	End of previous Line (ST42), start of line: MBS_40_L06 \rightarrow 0224; 35S_40_L06 $\rightarrow 20190910234100$
Cruise JC187		Date: 10/09/2019 11/09/2019 (from STA 45)		Sheet No. 5		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
Station 44	68	23.59	$6^{\circ} 28.108$	$6^{\circ} 0.470$	4745	End of previous Line (ST43), start of line: MBS_40_L07 \rightarrow 0225; 35S_40_LO7 $\rightarrow 20190910235921$
Station 45	68	00.09	$6^{\circ} 29.105$	$6^{\circ} 0.884$	4743	End of previous Line (ST44), start of line: MBS_40_L08 \rightarrow 0226; 35S_40_LO8 $\rightarrow 20190911000925$
Station 46	68	00.24	$6^{\circ} 28.530$	$6^{\circ} 2.413$	4737	End of previous Line (ST45), end of MultiBeam and 3.5 Survey for Site 40
Station 47	58	00.53	$6^{\circ} 28.58040$	$6^{\circ} 2.49948$	4737	Megacorer at sea surface

						JC187-MC03
Station 48	58	02.44	$6^{\circ} 28.58062 \mathrm{~S}$	$6^{\circ} 2.49007 \mathrm{E}$	4737	Megacorer at sea bottom JC187-MC03 USBL: Depth $=4759 \mathrm{~m} ; 6^{\circ} 28.55770 \mathrm{~S} ; 5^{\circ} 2.49279 \mathrm{E} \rightarrow$ written at time USBL Checked: $4760 \mathrm{~m} ; 6^{\circ} 28.55832 \mathrm{~S} ; 6^{\circ} 2.50591 \mathrm{E} \rightarrow$ checked later Difference USBL SHIP: USBL 44m NW of ship
Station 49	58	04.34	$6^{\circ} 28.58080 \mathrm{~S}$	$6^{\circ} 2.49916 \mathrm{E}$	4737	Megacorer back on deck JC187-MC03
Station 50	58	05.32	$6^{\circ} 28.58040 \mathrm{~S}$	$6^{\circ} 2.49972 \mathrm{E}$	4737	Piston corer at sea surface JC187-PC02
Station 51	58	07.18	$6^{\circ} 28.58034 \mathrm{~S}$	$6^{\circ} 2.49984 \mathrm{E}$	4736.5	Piston-corer at sea bottom JC187-PC02 Pull out $=6.7 \mathrm{Te}$ USBL: Depth $=4761.1 \mathrm{~m} ; 6^{\circ} 28.56373 \mathrm{~S} ; 5^{\circ} 2.48820 \mathrm{E} \rightarrow$ written at time USBL Checked: $4746.4 \mathrm{~m} ; 6^{\circ} 28.57833 \mathrm{~S} ; 5^{\circ} 2.49718 \mathrm{E} \rightarrow$ checked later
Station 52	58	09.05	$6^{\circ} 28.58094 \mathrm{~S}$	$6^{\circ} 2.50014 \mathrm{E}$	4736.6	Piston core back on deck JC187-PC02
Station 53	77	10.19	$6^{\circ} 27.890045 \mathrm{~S}$	$6^{\circ} 3.17964 \mathrm{E}$	4740	Multi core at sea surface JC187-MC04
Station 54	77	12.19	$6^{\circ} 27.89034 \mathrm{~S}$	$6^{\circ} 3.17964 \mathrm{E}$	4750.7	Multi core at sea bottom JC187-MC04 Cable out 4832.1 USBL: Depth $=4795.1$ m; $6^{\circ} 27.88847 \mathrm{~S} ; 6^{\circ} 3.17800 \mathrm{E}$
Cruise JC187		Date: 11/09/19 ${ }^{\text {a }}$ (${ }^{\text {a }}$ Sheet No. 6				
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
Station 55	77	14.24	$6^{\circ} 27.89016 \mathrm{~S}$	$6^{\circ} 3.17922 \mathrm{E}$	4751	Multicore back on deck JC187-MC04 8 tubes full

Station 56	77	15.08	$6^{\circ} 27.889004 \mathrm{~S}$	$6^{\circ} 3.18000 \mathrm{E}$	4743.7	Piston core at sea surface JC187-PC03
Station 57	77	16.41	$6^{\circ} 27.8905 \mathrm{~S}$	$6^{\circ} 3.17982 \mathrm{E}$	4757	Piston core at seabed JC187-PC03 Cable out - 4794; cable tension 5.6 USBL: Depth $=4789.5 \mathrm{~m} ; 6^{\circ} 27.89049 \mathrm{~S} ; 6^{\circ} 3.18138 \mathrm{E}$
Station 58	77	19.04	$6^{\circ} 27.8902 \mathrm{~S}$	$6^{\circ} 3.1800 \mathrm{E}$	4744	Piston core at sea surface JC187-PC03 Fish vire(?) caught on cable on way up
Station 59	$\begin{aligned} & \text { n/a run-up, } \\ & \text { start position } \end{aligned}$	19.36	$6^{\circ} 27.85164 \mathrm{~S}$	$6^{\circ} 3.15210 \mathrm{E}$	4731	Mooring buoy in water at surface JC - NERC Mooring 7
Station 60	76	20.27	$6^{\circ} 27.85170 \mathrm{~S}$	$6^{\circ} 2.73930 \mathrm{E}$	4765	Chain/anchor dropped JC - NERC Mooring 7
Station 61	76	20.53	$6^{\circ} 27.85014 \mathrm{~S}$	$6^{\circ} 2.46228 \mathrm{E}$	4765	Mooring anchor at seafloor / waiting for triangulation JC - NERC Mooring 7
Station 62	76	21.10	$6^{\circ} 27.86910 \mathrm{~S}$	$6^{\circ} 0.86226 \mathrm{E}$	Not pinging	Triangulation stop 1 / range 5920 m JC - NERC Mooring 7
Station 63	76	21.35	$6^{\circ} 26.10318 \mathrm{~S}$	$6^{\circ} 3.33884 \mathrm{E}$	Not pinging	Triangulation stop 2 / range 5818 m JC - NERC Mooring 7
Station 64	76	22.01	$6^{\circ} 28.03800 \mathrm{~S}$	$6^{\circ} 4.80954 \mathrm{E}$	Not pinging	Triangulation stop 3 / range 6026 m JC - NERC Mooring 7
Station 65	78	00.57	$6^{\circ} 15.225185 \mathrm{~S}$	$6^{\circ} 27.21498 \mathrm{E}$	4645	CTD-03 deployment - at sea surface
Cruise JC187		Date: 12/09/2019 ${ }^{\text {a }}$ (Sheet No. 7				

Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
Station 66	78	02.26	$6^{\circ} 15.22554 \mathrm{~S}$	$6^{\circ} 27.21534 \mathrm{E}$	$\begin{aligned} & 4629 \\ & \text { Cor. } \\ & 4683 \end{aligned}$	CTD-03 at 4640 m (cable out) water depth (deepest point designed For CTD) plus release test
Station 67	78	04.00	$6^{\circ} 15.22548 \mathrm{~S}$	$6^{\circ} 27.21546 \mathrm{E}$	surface	CTD-03 on deck
Station 68	69	04.47	$6^{\circ} 14.8758$ S	$6^{\circ} 27.279 \mathrm{E}$	4671	Start of line MBS_39_L01 $\boldsymbol{\rightarrow} 0256$ $\text { 35S_39_L01 } \boldsymbol{\rightarrow} 20190912044954$
Station 69	69	05.27	$6^{\circ} 10.77414$ S	$6^{\circ} 27.45386 \mathrm{E}$	4671	End of previous line, start of line MBS_39_LO2 $\boldsymbol{\rightarrow} 0257$ $\text { 35S_39_LO2 } \boldsymbol{\rightarrow} 20190912052739$
Station 70	69	05.45	$6^{\circ} 11.407056 \mathrm{~S}$	$6^{\circ} 27.63070 \mathrm{E}$	4593	End of previous line, start of line MBS_39_L03 $\boldsymbol{\rightarrow} 0258$ 35S_39_LO3 $\boldsymbol{\rightarrow} 20190912054544$
Station 71	69	05.53	$6^{\circ} 11.4041 \mathrm{~S}$	$6^{\circ} 26.868$ E	4587	End of previous line, start of line MBS_39_LO4 $\boldsymbol{\rightarrow} 0259$ 35S_39_LO4 $\boldsymbol{\rightarrow} 20190912055340$
Station 72	69	06.13	$6^{\circ} 13.03784 \mathrm{~S}$	$6^{\circ} 26.83464 \mathrm{E}$	4603	End of previous line, start of line MBS_39_L05 $\boldsymbol{\rightarrow} 0260$ 35S_39_L05 $\boldsymbol{\rightarrow} 20190912061328$
Station 73	69	06.24	$6^{\circ} 13.04688 \mathrm{~S}$	$6^{\circ} 27.86826$ E	4595	End of previous line, start of line MBS_39_L06 $\boldsymbol{\rightarrow} 0261$ $\text { 35S_39_L06 } \boldsymbol{\rightarrow} 20190912062400$
Station 74	69	06.42	$6^{\circ} 14.66774 \mathrm{~S}$	$6^{\circ} 27.83424 \mathrm{E}$	4588	End of previous line, start of line MBS_39_L07 $\boldsymbol{\rightarrow} 0262$ 35S_39_L07 $\boldsymbol{\rightarrow} 20190912064231$
Station 75	69	06.52	$6^{\circ} 14.61132 \mathrm{~S}$	$6^{\circ} 26.80854 \mathrm{E}$	4602	End of previous line, start of line MBS_39_LO8 $\boldsymbol{\rightarrow} 0263$

						35S_39_L08 $\boldsymbol{\rightarrow} 20190912065252$
Station 76	69	07.04	$6^{\circ} 14.36862 \mathrm{~S}$	$6^{\circ} 25.67562 \mathrm{E}$	4609	End of line MS and 35S
Cruise JC187		Date: 12/09/2019 ${ }^{\text {a }}$ (Sheet No. 8				
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
Station 77	38	07.31	$6^{\circ} 14.36178 \mathrm{~S}$	$6^{\circ} 25.85002 \mathrm{E}$	4606.8	German OBS-1 deployment dropped off deck side
Station 78	71	10.45	$5^{\circ} 54.3942 \mathrm{~S}$	$6^{\circ} 48.72150 \mathrm{E}$	4514	CTD-04 deployment at sea surface
Station 79	71	12.13	$5^{\circ} 54.39672 \mathrm{~S}$	$6^{\circ} 48.7292 \mathrm{E}$	4499.5	CTD-04 at deepest point. Cable out: 4510
Station 80	71	13.33	$5^{\circ} 54.39660 \mathrm{~S}$	$6^{\circ} 48.72156 \mathrm{E}$	4480.9	CTD-04 on deck
Station 81	37	14.05	$5^{\circ} 54.3594 \mathrm{~S}$	$6^{\circ} 48.27618 \mathrm{E}$	4526.4	Start of line MBS_37_L01 $\boldsymbol{\rightarrow} 0272$ $\text { 35S_37_L01 } \boldsymbol{\rightarrow} 201909140120$ Questionable sub-bottom data, did not look good on screen
Station 82	37	15.02	$5^{\circ} 54.92466 \mathrm{~S}$	$6^{\circ} 54.03684 \mathrm{E}$	4439.7	Start of line MBS_37_L02 $\boldsymbol{\rightarrow} 0273$ $\text { 35S_37_L02 } \boldsymbol{\rightarrow} 201909150306$
Station 83	37	15.22	$5^{\circ} 55.63338 \mathrm{~S}$	$6^{\circ} 53.34852 \mathrm{E}$	4452	Start of line MBS_37_L03 $\boldsymbol{\rightarrow} 0274$ $\text { 35S_37_L03 } \boldsymbol{\rightarrow} 201909152236$
Station 84	37	15.36	$5^{\circ} 54.29718$ S	$6^{\circ} 53.45406 \mathrm{E}$	4439.9	Start of line MBS_37_L04 $\boldsymbol{\rightarrow} 0275$ $\text { 35S_37_LO4 } \boldsymbol{\rightarrow} 201909153637$

Station 85	37	15.47	$5^{\circ} 53.23062 \mathrm{~S}$	$6^{\circ} 54.30222 \mathrm{E}$	4429.1	Start of line MBS_37_LO5 $\rightarrow 0276$ 35S_37_L05 $\rightarrow 201909154750$
Station 86	37	16.20	$5^{\circ} 50.99316 \mathrm{~S}$	$6^{\circ} 56.83800 \mathrm{E}$	4467.3	Start of line MBS_37_L06 $\rightarrow 0277$
35S_37_L06 $\rightarrow 201909162051$						

Cruise JC187		Date: $12 / 09 / 19$ 19255		Sheet No. 9		
Station Number (JC187/Station x)		Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
Station 88	37	16.36	$5^{\circ} 51.24858$ S	$6^{\circ} 56.83800 \mathrm{E}$	4467	Start of line MBS_37_L08 $\boldsymbol{\rightarrow} 0279$ $\text { 35S_37_L08 } \boldsymbol{\rightarrow} 201909163613$
Station 89	37	16.57	$5^{\circ} 52.33434 \mathrm{~S}$	$6^{\circ} 55.79814 \mathrm{E}$	4415	$\begin{aligned} & \hline \text { Start of line MBS_37_L09 } \rightarrow 0280 \\ & \text { 35S_37_L09 } \rightarrow 201909165748 \end{aligned}$
Station 90	37	17.03	$5^{\circ} 51.87168 \mathrm{~S}$	$6^{\circ} 55.38378 \mathrm{E}$	4413.4	$\begin{aligned} \hline \text { Start of line MBS_37_L10 } \rightarrow 0281 \\ \text { 35S_37_L10 } \rightarrow 201909170339 \end{aligned}$
Station 91	37	17.25	$5^{\circ} 52.86708 \mathrm{~S}$	$6^{\circ} 54.10866 \mathrm{E}$	4428.9	$\begin{aligned} & \hline \text { Start of line MBS_37_L11 } \rightarrow 0282 \\ & \text { 35S_37_L11 } \rightarrow 201909172519 \end{aligned}$
Station 92	37	17.32	$5^{\circ} 53.34736 \mathrm{~S}$	$6^{\circ} 54.58122 \mathrm{E}$	4415.9	Start of line MBS_37_L12 $\boldsymbol{\rightarrow} 0283$ $\text { 35S_37_L12 } \boldsymbol{\rightarrow} 201909173213$

						End of survey (this line not in survey)
Station 93	37	17.45	$5^{\circ} 54.07720 \mathrm{~S}$	$6^{\circ} 54.94846 \mathrm{E}$	4436	End of line MBS_37_L12 End of multibeam and 3.5 survey (confusion that line 12 was not in survey, so ended this line to be sure)
Station 94	79	17.40	$5^{\circ} 53.78424 \mathrm{~S}$	$6^{\circ} 54.94698 \mathrm{E}$	4429	Prototype OBS-A deployed
Station 95	80	17.48	$5^{\circ} 54.13656 \mathrm{~S}$	$6^{\circ} 54.94224 \mathrm{E}$	4478 (?)	Prototype OBS-B deployed
Station 96	81	17.58	$5^{\circ} 54.15300 \mathrm{~S}$	$6^{\circ} 55.37352 \mathrm{E}$	4345 (?)	Prototype OBS-C deployed
Station 97	82	18.11	$5^{\circ} 53.89464 \mathrm{~S}$	$6^{\circ} 55.43009 \mathrm{E}$	4429	Prototype OBS-D deployed
Cruise JC187		Date: 15/09/19 19258		Sheet No. 10		
Station Number (JC187/Station x)	Site Numbe (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
Station 98	83	10.06	$5^{\circ} 57.24562$	$11^{\circ} 34.18212$	1507	CTD-05 deployment at sea surface. CTD deployed on edge of channel Boat had to move into centre of channel
Station 99	83	10.46	$5^{\circ} 57.34800$	$11^{\circ} 34.19466$	1568	CTD-05 at bottom, cable out $=1539 \mathrm{~m}$, testing acoustic releases Increase in turbidity in bottom ~300 m - nepheloid layer?
Station 100	83	11.35	$5^{\circ} 57.34890$	$11^{\circ} 34.19388$	1571	CTD-05 back on deck

Station 101	83	11.52	$5^{\circ} 57.34800$	$11^{\circ} 34.19454$	1573	Acoustic release test at sea surface (delay in deployment $\sim 5-10$ mins finding correct equipment)
Station 102	83	12.17	$5^{\circ} 57.34818$	$11^{\circ} 34.1949$	1572	Acoustic releases at 1000 m water depth and tested (multibeam And single beam turned off) test ends 12.27
Station 103	83	12.49	$5^{\circ} 57.34848$	$11^{\circ} 34.19388$	1566	Acoustic releases back on deck
Station 104	83	13.31	$5^{\circ} 57.24288$	$11^{\circ} 33.81288$	1501	Start of line MBS_83_L01 $\boldsymbol{\rightarrow} 0303$ $\text { 35S_83_L01 } \boldsymbol{\rightarrow} 20190915125357$ *Potential turbidity current observed in multibeam backscatter image*
Station 105	83	13.35	$5^{\circ} 57.15990$	$11^{\circ} 33.56989$	1499	No new filename was saved for 3.5S L01 (name had already been saved during parameter change) New name for this line: 35S_83_L01B $\rightarrow 20190915133509$
Station 106	83	13.45	$5^{\circ} 56.60702$	$11^{\circ} 32.08700$	1509	Changed parameters for 3.5 S so 3 new filenames assigned $\text { 35S_83_LO2 } \rightarrow \text { 20190915134444/20190915134456/ }$ 20190915134549 This is all still part of LO1

Cruise JC187		Date: 15/09/2019$19528$		Sheet No. 11		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
Station 107	83	13.59	$5^{\circ} 56.47890$	$11^{\circ} 31.43676$	1589	Start of line: MBS_83_LO2 $\boldsymbol{\rightarrow} 0304$ $\text { 35S_83_L02b } \rightarrow 20190915135908$

Station 108	83	14.17	$5^{\circ} 56.28750$	$11^{\circ} 29.51802$	1603	Start of line: MBS_83_L03 $\boldsymbol{\rightarrow} 0305$ $\text { 35S_83_L03 } \boldsymbol{\rightarrow} 20190915141737$
Station 109	83	14.32	$5^{\circ} 55.42464$	$11^{\circ} 28.44960$	1637	Start of line: MBS_83_L04 $\boldsymbol{\rightarrow} 0306$ $\text { 35S_83_LO4 } \boldsymbol{\rightarrow} 20190915143220$
Station 110	83	14.49	$5^{\circ} 55.49406$	$11^{\circ} 26.82792$	1610	Start of line: MBS_83_L05 $\boldsymbol{\rightarrow} 0307$ $\text { 35S_83_L05 } \boldsymbol{\rightarrow} 20190915145001$
Station 111	83	15.21	$5^{\circ} 55.2414$	$11^{\circ} 23.59254$	1708	Start of line: MBS_83_L06 $\boldsymbol{\rightarrow} 0308$ $\text { 35S_83_L06 } \boldsymbol{\rightarrow} 20190915152148$
Station 112	83	15.53	$5^{\circ} 53.95896$	$11^{\circ} 20.81130$	1667	Start of line: MBS_83_L07 $\boldsymbol{\rightarrow} 0309$ $\text { 35S_83_L07 } \boldsymbol{\rightarrow} 20190915155338$
Station 113	83	16.43	$5^{\circ} 54.0021$	$11^{\circ} 15.937$	1533	Start of line: MBS_83_L08 $\boldsymbol{\rightarrow} 0310$ $\text { 35S_83_L08 } \boldsymbol{\rightarrow} 20190915164245$
Station 114	83	16.59	$5^{\circ} 54.09882$	$11^{\circ} 16.06320$	1533	Start of line: MBS_83_L09 $\boldsymbol{\rightarrow} 0311$ $\text { 35S_83_L09 } \boldsymbol{\rightarrow} 20190915165953$
Station 115	83	17.03	$5^{\circ} 53.70432$	$11^{\circ} 16.06683$	1792	Start of line: MBS_83_L10 $\boldsymbol{\rightarrow} 0312$ $\text { 35S_83_L10 } \boldsymbol{\rightarrow} 20190915170337$
Station 116	83	17.10	$5^{\circ} 52.97100$	$11^{\circ} 16.0777$	1834	Start of line: MBS_83_L11 0313 $\text { 35S_83_L11 } \boldsymbol{\rightarrow} 20190915171043$
Station 117	83	17.20	$5^{\circ} 53.0220$	$11^{\circ} 16.76814$	1820	Start of line: MBS_83_L12 $\boldsymbol{\rightarrow} 0314$ $\text { 35S_83_L12 } \boldsymbol{\rightarrow} 20190915172011$
Cruise JC187		Date: 15/09/2019 ${ }^{\text {S }}$ Sheet No. 12				

Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
Station 118	83	17:40	$5^{\circ} 55.005$	$11^{\circ} 16.78338$	1415	$\left.\begin{array}{rl} \text { EOL/SOL: } \mathrm{MBS}-83-\mathrm{L} 25 & \rightarrow 0315 \\ & 3.5 \mathrm{~S}-83-\mathrm{L} 25 \end{array}\right) 20190915174051$
Station 119	83	17:51	$5^{\circ} 54.75120$	$11^{\circ} 17.48766$	1548	$\begin{aligned} \text { EOL/SOL: MBS }-83-\text { L25 } & \rightarrow 0316 \\ 3.5 S-83-L 25 & \rightarrow 20190915175143 \end{aligned}$
Station 120	83	18:05	$5^{\circ} 53.28600$	$11^{\circ} 17.42778$	1742	$\begin{aligned} \text { EOL/SOL: } \mathrm{MBS}-83-\text { L25 } & \rightarrow 0317 \\ 3.5 S-83-\text { L25 } & \rightarrow 20190915180540 \end{aligned}$
Station 121	83	18:14	$5^{\circ} 53.36520$	$11^{\circ} 18.15432$	1504	$\begin{aligned} \text { EOL/SOL: MBS - } 83-\text { L25 } & \rightarrow 0318 \\ 3.5 \mathrm{~S}-83-\mathrm{L} 25 & \rightarrow 20190915181454 \end{aligned}$
Station 122	83	18:28	$5^{\circ} 54.66672$	$11^{\circ} 18.17364$	1511	$\begin{aligned} \hline \text { EOL/SOL: MBS - } 83-\text { L25 } & \rightarrow 0319 \\ 3.5 S-83-L 25 & \rightarrow 20190915182801 \end{aligned}$
Station 123	83	18:37	$5^{\circ} 54.49404$	$11^{\circ} 18.84810$	1571	$\begin{aligned} \hline \text { EOL/SOL: MBS - } 83-\text { L25 } & \rightarrow 0320 \\ 3.5 \mathrm{~S}-83-\mathrm{L} 25 & \rightarrow 20190915183712 \end{aligned}$
Station 124	83	18:48	$5^{\circ} 53.29224$	$11^{\circ} 18.83706$	1464	$\begin{aligned} \hline \text { EOL/SOL: MBS }-83-\text { L25 } & \rightarrow 0321 \\ 3.5 S-83-L 25 & \rightarrow 20190915184846 \end{aligned}$
Station 125	83	19:00	$5^{\circ} 53.41194$	$11^{\circ} 19.53558$	1538	$\begin{aligned} \text { EOL/SOL: MBS - } 83-\text { L25 } & \rightarrow 0322 \\ 3.5 S-83-L 25 & \rightarrow 20190915190007 \end{aligned}$
Station 126	83	19:12	$5^{\circ} 54.65926$	$11^{\circ} 19.46282$	1662	$\begin{aligned} \text { EOL/SOL: MBS }-83-\text { L25 } & \rightarrow 0323 \\ 3.5 \mathrm{~S}-83-\mathrm{L} 25 & \rightarrow 20190915191202 \end{aligned}$
Station 127	83	19:22	$5^{\circ} 54.422385$	$11^{\circ} 20.22576$	1647	$\begin{aligned} \hline \text { EOL/SOL: MBS - } 83-\text { L25 } & \rightarrow 0324 \\ 3.5 S-83-L 25 & \rightarrow 20190915192213 \end{aligned}$

Station 128	83	19:34	$5^{\circ} 53.15032$	$11^{\circ} 20.22660$	1534	$\begin{aligned} \hline \text { EOL/SOL: MBS }-83-\text { L25 } & \rightarrow 0325 \\ 3.5 S-83-L 25 & \rightarrow 20190915193455 \end{aligned}$
Cruise JC187		Date: 15/09/2019		Sheet No. 13		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
STN129	83	19:45	$5^{\circ} 53.19366$	$11^{\circ} 20.68662$	1707	$\begin{aligned} \hline \text { EOL/SOL: MBS }-83-\text { L24 } & \rightarrow 0326 \\ 3.5 S-83-L 24 & \rightarrow 20190915194457 \end{aligned}$
STN130	83	19:56	$5^{\circ} 20.35136$	$11^{\circ} 20.61624$	1562	$\begin{aligned} \text { EOL/SOL: } \text { MBS }-83-\text { L25 } & \rightarrow 0327 \\ 3.5 S-83-L 25 & \rightarrow 20190915195634 \end{aligned}$
STN131	83	20:06	$5^{\circ} 54.2520$	$11^{\circ} 20.67965$	1460	$\begin{aligned} & \text { EOL/SOL: MBS }-83-\text { L26 } \rightarrow 0328 \\ & \quad 3.5-83-\text { L26 } \rightarrow 20190915200559 \end{aligned}$
STN132	88	20:38	$5^{\circ} 53.67210$	$11^{\circ} 21.35664$	1832	CTD-06 at sea surface (boat is in a fixed position and we keep recording Line 26 on the MB and 3.5 surveys)
STN133	88	21:28	$5^{\circ} 53.67216$	$11^{\circ} 21.35705$	1825	CTD-06 at sea bottom USBL: $5^{\circ} 53.66225 \mathrm{~S} 11^{\circ} 21.35426 \mathrm{E}$ Depth: $1829 \mathrm{~m} ; 1^{\text {st }}$ water sample at 6 m above seafloor
STN134	88	21:32	$5^{\circ} 53.67199$	$11^{\circ} 21.35722$	1825	CTD-06 at $1819 \mathrm{~m} ; 2^{\text {nd }}$ water sample, at 10 m above seafloor
STN135	88	21:34	$5^{\circ} 53.67181$	$11^{\circ} 21.35688$	1825	CTD-06 at $1809 \mathrm{~m} ; 3^{\text {rd }}$ water sample at 20 m above seafloor
STN136	88	21:36	$5^{\circ} 53.67222$	$11^{\circ} 21.35686$	1825	CTD-06 at $1799 \mathrm{~m} ; 4^{\text {th }}$ water samples at 30 m above seafloor
STN137	88	21:38	$5^{\circ} 53.67212$	$11^{\circ} 21.35603$	1825	CTD-06 at $1789 \mathrm{~m} ; 5^{\text {th }}$ water sample at 40 m above seafloor

STN138	88	21:41	$5^{\circ} 53.67235$	$11^{\circ} 21.35670$	1825	CTD-06 at $1729 \mathrm{~m} ; 6^{\text {th }}$ water sample at 100 m above seafloor
STN139	88	22:15	$5^{\circ} 53.67210$	$11^{\circ} 21.35676$	1825	CTD-06 back at sea surface
Cruise JC187	Date: 15/09/2019 16/09/2019 (from STN147)			Sheet No. 14		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
STN140	83	22:30	$5^{\circ} 53.67168$	$11^{\circ} 21.35760$	1842	Resume line: MBS_83_L26 \rightarrow now 0330 35S_83_L26 \rightarrow now 20190915223514
STN141	83	22:41	$5^{\circ} 53.37720$	$11^{\circ} 21.61626$	1491	$\begin{aligned} & \text { EOL/SOL: MBS - } 83-\text { L27 } \rightarrow 0331 \\ & \quad 3.5-83-\text { L27 } \rightarrow 20190915223514 \end{aligned}$
STN142	83	22:53	$5^{\circ} 53.81844$	$11^{\circ} 21.84090$	1493	$\begin{aligned} & \text { EOL/SOL: MBS -83-L28 } \rightarrow 0332 \\ & 3.5-83-\text { L28 } \rightarrow 20190915225311 \end{aligned}$
STN143	83	23:10	$5^{\circ} 55.04898$	$11^{\circ} 21.14304$	1381	$\begin{aligned} & \text { EOL/SOL: MBS - } 83-\text { L29 } \rightarrow 0333 \\ & \qquad 3.5-83-L 29 \rightarrow 20190915231002 \end{aligned}$
STN144	83	23:21	$5^{\circ} 55.20162$	$11^{\circ} 21.82980$	1426	$\begin{aligned} & \text { EOL/SOL: MBS - } 83-\text { L3O } \rightarrow 0334 \\ & 3.5-83-\text { L30 } \rightarrow 20190915232058 \end{aligned}$
STN145	83	23:36	$5^{\circ} 53.77080$	$11^{\circ} 22.52844$	1363	$\begin{aligned} & \text { EOL/SOL: MBS }-83-\text { L31 } \rightarrow 0335 \\ & 3.5-83-\text { L31 } \rightarrow 20190915233616 \end{aligned}$
STN146	83	23.44	$5^{\circ} 54.07872$	$11^{\circ} 22.97730$	1508	$\begin{aligned} & \text { EOL/SOL: MBS - } 83-\text { L32 } \rightarrow 0336 \\ & 3.5-83-\mathrm{L} 32 \rightarrow 20190915234433 \end{aligned}$

STN147	83	00:04	$5^{\circ} 55.73712$	$11^{\circ} 22.23750$	1344	$\begin{aligned} & \hline \text { EOL/SOL: MBS -83-L33 } \rightarrow 0337 \\ & \quad 3.5-83-\text { L33 } \rightarrow 20190916000417 \end{aligned}$
STN148	83	00:14	$5^{\circ} 56.04312$	$11^{\circ} 22.87014$	1486	$\begin{aligned} & \text { EOL/SOL: MBS - } 83-\text { L34 } \rightarrow 0338 \\ & 3.5-83-\text { L34 } \rightarrow 20190916001153 \end{aligned}$
STN149	83	00:33	$5^{\circ} 54.25068$	$11^{\circ} 23.47110$	1474	$\begin{aligned} & \text { EOL/SOL: MBS - } 83-\text { L35 } \rightarrow 0339 \\ & \quad 3.5-83-\text { L35 } \rightarrow 20190916003308 \end{aligned}$
STN150	83	00:46	$5^{\circ} 54.95526$	$11^{\circ} 23.55018$	1574	$\begin{aligned} & \text { EOL/SOL: MBS }-83-\text { L36 } \rightarrow 0340 \\ & \qquad 3.5-83-\text { L36 } \rightarrow 20190916004618 \end{aligned}$
Cruise JC187		Date: 16/09/2019 ${ }^{\text {S }}$ Sheet No. 15				
Station Number (JC187/Station x)	Site Number (as on GIS)	$\begin{gathered} \text { Time } \\ \text { In GMT } \end{gathered}$	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
STN151	83	01:01	$5^{\circ} 56.22844$	$11^{\circ} 23.65620$	1414	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_83_L37 } \rightarrow 0341 \\ \text { 3.5_83_L37 } \rightarrow 20190916010137 \end{aligned}$
STN152	83	01:09	$5^{\circ} 56.29056$	$11^{\circ} 24.17784$	1513	$\begin{aligned} \hline \text { EOL/SOL: } \mathrm{MBS} _83 _L 38 & \rightarrow 0342 \\ 3.5 _83 _L 38 & \rightarrow 20190916010952 \end{aligned}$
STN153	83	01:33	$5^{\circ} 54.00000$	$11^{\circ} 24.04230$	1270	$\begin{aligned} \hline \text { EOL/SOL: } \mathrm{MBS} \text { _83_L39 } & \rightarrow 0343 \\ \text { 3.5_83_L39 } & \rightarrow 20190916013322 \end{aligned}$
STN154	83	01:44	$5^{\circ} 54.01704$	$11^{\circ} 24.73000$	1258	$\begin{aligned} \hline \text { EOL/SOL: } \mathrm{MBS} _83 _L 40 & \rightarrow 0344 \\ 3.5 _83 _L 40 & \rightarrow 20190916014450 \end{aligned}$
STN155	83	02:11	$5^{\circ} 56.38440$	$11^{\circ} 24.72000$	1675	$\begin{aligned} & \hline \text { EOL/SOL: } \text { MBS_83_L41 } \rightarrow 0345 \\ & \text { 3.5_83_L41 } \rightarrow 20190916021105 \end{aligned}$

STN156	83	02:19	$5^{\circ} 56.26572$	$11^{\circ} 25.22256$	1514	$\begin{aligned} & \hline \text { EOL/SOL: } \text { MBS_83_L42 } \rightarrow 0346 \\ & 3.5 _83 _L 42 ~ \rightarrow 20190916021917 \end{aligned}$
STN157	83	02:41	$5^{\circ} 54.02136$	$11^{\circ} 25.25568$	1313	$\begin{aligned} & \text { EOL/SOL: } \text { MBS_83_L43 } \rightarrow 0347 \\ & \text { 3.5_83_L43 } \rightarrow 20190916024151 \end{aligned}$
STN158	83	02:51	$5^{\circ} 54.38490$	$11^{\circ} 25.71624$	1304	$\begin{aligned} & \text { EOL/SOL: MBS_83_L44 } \rightarrow 0348 \\ & \quad \text { 3.5_83_L44 } \rightarrow 20190916025143 \end{aligned}$
STN159	83	03:12	$5^{\circ} 56.24844$	$11^{\circ} 25.78740$	1454	$\begin{aligned} & \hline \text { EOL/SOL: } \text { MBS_83_L45 } \rightarrow 0349 \\ & 3.5 _83 _L 45 ~ \rightarrow 20190916031207 \end{aligned}$
STN160	83	03:20	$5^{\circ} 56.18082$	$11^{\circ} 26.33046$	1432	$\begin{aligned} & \hline \text { EOL/SOL: } \text { MBS_83_L46 } \rightarrow 0350 \\ & 3.5 _83 _L 46 ~ \rightarrow 20190916032044 \end{aligned}$
STN161	83	03:35	$5^{\circ} 54.81808$	$11^{\circ} 26.27004$	1300	$\begin{aligned} & \text { EOL/SOL: } \text { MBS_83_L47 } \rightarrow 0351 \\ & 3.5 _83 _L 47 ~ \rightarrow 20190916033504 \end{aligned}$
Cruise JC187		Date: 16/09/2019 ${ }^{\text {S }}$ Sheet No. 16				
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
STN162	83	03:43	$5^{\circ} 54.86999$	$11^{\circ} 26.80668$	1396	$\begin{aligned} & \hline \text { EOL/SOL: } \text { MBS_83_L48 } \rightarrow 0352 \\ & 3.5 _83 _L 48 ~ \rightarrow 20190916034347 \end{aligned}$
STN163	83	03:59	$5^{\circ} 56.24994$	$11^{\circ} 26.89590$	1403	$\begin{aligned} & \text { EOL/SOL: } \text { MBS_83_L49 } \rightarrow 0353 \\ & 3.5 _83 _L 49 ~ \rightarrow 20190916045918 \end{aligned}$
STN164	83	04:08	$5^{\circ} 56.14500$	$11^{\circ} 27.41448$	1495	$\begin{aligned} & \hline \text { EOL/SOL: } \text { MBS_83_L50 } \rightarrow 0354 \\ & 3.5 _83 _L 50 ~ \rightarrow 20190916030804 \end{aligned}$

STN165	83	04:22	$5^{\circ} 54.75336$	$11^{\circ} 27.34440$	1255	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_83_L51 } \rightarrow 0355 \\ \text { 3.5_83_L51 } \rightarrow 20190916042233 \end{aligned}$
STN166	83	04:30	$5^{\circ} 54.83706$	$11^{\circ} 27.88710$	1500	$\begin{aligned} & \hline \text { EOL/SOL: } \text { MBS_83_L52 } \rightarrow 0356 \\ & \text { 3.5_83_L52 } \rightarrow 20190916043056 \end{aligned}$
STN167	83	04:45	$5^{\circ} 56.26710$	$11^{\circ} 27.97374$	1266	$\begin{aligned} & \hline \text { EOL/SOL: } \text { MBS_83_L53 } \rightarrow 0357 \\ & \text { 3.5_83_L53 } \rightarrow 20190916044522 \end{aligned}$
STN168	83	04:51	$5^{\circ} 56.11440$	$11^{\circ} 28.41190$	1340	$\begin{aligned} \hline \text { EOL/SOL: MBS_83_L54 } \rightarrow 0358 \\ \text { 3.5_83_L54 } \rightarrow 20190916045136 \end{aligned}$
STN169	83	05:05	$5^{\circ} 54.74646$	$11^{\circ} 28.71810$	1434	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_83_L55 } \rightarrow 0359 \\ \text { 3.5_83_L55 } \rightarrow 20190916050612 \end{aligned}$
STN170	83	05:14	$5^{\circ} 55.054165$	$11^{\circ} 29.24706$	1291	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_83_L56 } \rightarrow 0360 \\ \text { 3.5_83_L56 } \rightarrow 20190916051441 \end{aligned}$
STN171	83	05:31	$5^{\circ} 56.59998$	$11^{\circ} 28.70798$	1240	$\begin{aligned} & \hline \text { EOL/SOL: } \text { MBS_83_L57 } \rightarrow 0361 \\ & 3.5 _83 _L 57 ~ \rightarrow 20190916053050 \end{aligned}$
STN172	83	05:50	$5^{\circ} 55.38180$	$11^{\circ} 29.48724$	1345	$\begin{aligned} \hline \text { EOL/SOL: } \mathrm{MBS} \text { _83_L58 } \rightarrow 0362 \\ \text { 3.5_83_L58 } \rightarrow 20190916055011 \end{aligned}$
Cruise JC187		Date: 16/09/2019 ${ }^{\text {S }}$ Sheet No. 17				
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
STN173	83	06:09	$5^{\circ} 57.13686$	$11^{\circ} 29.55294$	1491	$\begin{aligned} & \text { EOL/SOL: MBS_83_L59 } \rightarrow 0363 \\ & \quad \text { 3.5_83_L59 } \rightarrow 2019091606060911 \end{aligned}$

STN174	83	06:31	$5^{\circ} 55.62932$	$11^{\circ} 30.10872$	1267	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_83_L60 } \rightarrow 0364 \\ \text { 3.5_83_L60 } \rightarrow 20190916063047 \end{aligned}$
STN175	83	06:38	$5^{\circ} 55.63682$	$11^{\circ} 30.58368$	1264	$\begin{aligned} & \hline \text { EOL/SOL: } \text { MBS_83_L61 } \rightarrow 0365 \\ & \text { 3.5_83_L61 } \rightarrow 20190916063756 \end{aligned}$
STN176	83	06:53	$5^{\circ} 55.571462$	$11^{\circ} 30.46290$	1390	$\begin{aligned} & \hline \text { EOL/SOL: } \text { MBS_83_L62 } \rightarrow 0366 \\ & \text { 3.5_83_L62 } \rightarrow 20190916065305 \end{aligned}$
STN177	83	06.59	$5^{\circ} 57.19770$	$11^{\circ} 30.91986$	1178	$\begin{aligned} & \text { EOL/SOL: MBS_83_L63 } \rightarrow 0367 \\ & \quad \text { 3.5_83_L63 } \rightarrow 20190916065901 \end{aligned}$
STN178	83	17.14	$5^{\circ} 55.66350$	$11^{\circ} 31.03308$	1249	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_83_L64 } \rightarrow 0368 \\ \text { 3.5_83_L64 } \rightarrow 20190916071410 \end{aligned}$
STN179	83	17.20	$5^{\circ} 55.7236$	$11^{\circ} 31.50780$	1171	$\begin{aligned} & \text { EOL/SOL: } \mathrm{MBS} _83 _L 65 ~ \rightarrow 0369 \\ & \text { 3.5_83_L65 } \rightarrow 20190916072033 \end{aligned}$
STN180	83	07.31	$5^{\circ} 56.74356$	$11^{\circ} 31.41366$	1478	$\begin{aligned} \hline \text { EOL/SOL: } \mathrm{MBS} \text { _83_L66 } \rightarrow 0370 \\ \text { 3.5_83_L66 } \rightarrow 20190916073104 \end{aligned}$
STN181	83	08.04	$5^{\circ} 56.18196$	$11^{\circ} 32.53278$	1096	Line 68 to 69 missed as not programmed into autopilot. Decided not to go back and complete this line as this is an OBS site and the original base map is good
STN182	83	08.05	$5^{\circ} 56.18196$	$11^{\circ} 32.53278$	1168	$\begin{aligned} & \text { EOL/SOL: MBS_83_L67 } \rightarrow 0371 \\ & \quad \text { 3.5_83_L67 } \rightarrow 20190916080612 \text { (line } 70-71 \text {) } \end{aligned}$
STN183	83	08.19	$5^{\circ} 57.45882$	$11^{\circ} 32.13192$	1245.4	$\begin{aligned} & \text { EOL/SOL: MBS_83_L68 } \rightarrow 0372 \\ & \quad 3.5 \text { _83_L68 } \rightarrow 20190916081950 \text { (line } 71-72 \text {) } \end{aligned}$
Cruise JC187		Date: 16/09/19$19259$		Sheet No. 18		

Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
STN184	83	08.27	$5^{\circ} 57.6204$	$11^{\circ} 32.59476$	1378.5	$\begin{aligned} & \hline \text { EOL/SOL: } \text { MBS_83_L69 } \rightarrow 0373 \\ & 3.5 _83 _L 69 ~ \rightarrow 20190916082808 \end{aligned}$
STN185	83	08.41	$5^{\circ} 56.17668$	$11^{\circ} 33.05076$	1130.2	$\begin{aligned} & \text { EOL/SOL: MBS_83_L70 } \rightarrow 0374 \\ & \qquad 3.5 \text { _83_L70 } \rightarrow 20190916084228 \end{aligned}$
STN186	83	08.51	$5^{\circ} 56.43606$	$11^{\circ} 33.47508$	1347.1	$\begin{aligned} & \hline \text { EOL/SOL: } \text { MBS_83_L71 } \rightarrow 0375 \\ & 3.5 _83 _L 71 \rightarrow 20190916085107 \end{aligned}$
STN187	83	09.03	$5^{\circ} 57.71988$	$11^{\circ} 33.06096$	13.69	$\begin{aligned} & \text { EOL/SOL: } \text { MBS_83_L72 } \rightarrow 0376 \\ & 3.5 _83 _L 72 ~ \rightarrow 20190916090359 \end{aligned}$
STN188	83	09.13	$5^{\circ} 57.87504$	$11^{\circ} 33.51114$	1318	$\begin{aligned} & \hline \text { EOL/SOL: } \text { MBS_83_L73 } \rightarrow 0377 \\ & 3.5 _83 _ \text {_73 } \end{aligned} \frac{20190916091400}{}$
STN189	83	09.27	$5^{\circ} 56.65320$	$11^{\circ} 33.90348$	1353.4	END OF SURVEY EOL/SOL: MBS_83_L74 $\boldsymbol{\rightarrow} 0378$ $\text { 3.5_83_L74 } \rightarrow 20190916092712$
STN190	84	12.07	$5^{\circ} 51.815$	$11^{\circ} 8.36094$	2060	Arrive at site 84
STN191	84	12.23	$5^{\circ} 51.81900$	$11^{\circ} 8.36202$	2054	CTD-07 at surface
STN192	84	13.08	$5^{\circ} 51.81900$	$11^{\circ} 8.36238$	2030	CTD-07 at seabed USBL: $5^{\circ} 51.81078,11^{\circ} 8.36094,2028.5 \mathrm{~m}$
STN193	84	13.46	$5^{\circ} 51.81870$	$11^{\circ} 8.36238$	2034	CTD-07 back on deck

STN194	84	14.14	$5^{\circ} 51.80322$	$11^{\circ} 8.42776$	2034	$\begin{aligned} & \text { SOL: MBS_84_L75 } \rightarrow 0383 \\ & \quad \text { 35S_83_L75 } \rightarrow 20191916141442 \text { *saved as line } 83 \text { until L78 } \end{aligned}$
Cruise JC187		Date: 16/09/2019 ${ }^{\text {S }}$ Sheet No. 19				
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
STN195	84	14.39	$5^{\circ} 51.661$	$11^{\circ} 5.8995$	2085	$\begin{aligned} & \text { EOL/SOL: MBS_84_L76 } \rightarrow \text { 0384 } \\ & \text { 35S_83_L76 } \boldsymbol{\rightarrow} 20190916143954 \end{aligned}$
STN196	84	15.04	$5^{\circ} 50.6330$	$11^{\circ} 3.7200$	2009	$\begin{aligned} & \text { EOL/SOL: MBS_84_L77 } \rightarrow \text { 0385 } \\ & \text { 35S_83_L77 } \rightarrow 20190916150436 \end{aligned}$
STN197	84	15:37	$5^{\circ} 49.75002$	$11^{\circ} 0.59998$	1962	$\begin{aligned} & \text { EOL/SOL: MBS_84_L78 } \rightarrow 0386 \\ & \quad \text { 35S_84_L78 } \boldsymbol{\rightarrow} 20190916153727 \end{aligned}$
STN198	84	16:28	$5^{\circ} 48.63706$	$10^{\circ} 55.74342$	2249	$\begin{aligned} & \text { EOL/SOL: MBS_84_L79 } \rightarrow 0387 \\ & \quad 35 S _84 _ \text {L79 } \end{aligned}$
STN199	84	16:42	$5^{\circ} 48.410$	$10^{\circ} 56.46288$	2253	$\begin{aligned} & \hline \text { EOL/SOL: MBS_84_L80 } \rightarrow 0388 \\ & \quad \text { 35S_84_L80 } \rightarrow 20190916164221 \end{aligned}$
STN200	84	16:56	$5^{\circ} 49.76196$	$10^{\circ} 56.15346$	1908	$\begin{aligned} & \hline \text { EOL/SOL: MBS_84_L81 } \rightarrow 0389 \\ & \quad \text { 35S_84_L81 } \rightarrow 20190916165615 \end{aligned}$
STN201	84	17.07	$5^{\circ} 49.80324$	$10^{\circ} 57.02340$	2155	$\begin{aligned} & \text { EOL/SOL: MBS_84_L82 } \rightarrow 0390 \\ & \quad \text { 35S_84_L82 } \rightarrow 20190916170807 \end{aligned}$
STN202	84	17.24	$5^{\circ} 48.201065$	$10^{\circ} 57.42522$	1952	$\begin{aligned} & \hline \text { EOL/SOL: MBS_84_L83 } \rightarrow 0391 \\ & \quad \text { 35S_84_L83 } \rightarrow 20190916172452 \end{aligned}$

STN203	84	17.36	$5^{\circ} 48.38670$	$10^{\circ} 58.24638$	2055	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_84_L84 } \rightarrow 0392 \\ \\ \text { 35S_84_L84 } \rightarrow 20190916173610 \end{aligned}$
STN204	84	17.51	$5^{\circ} 49.95822$	$10^{\circ} 57.91218$	1941	$\begin{aligned} & \text { EOL/SOL: MBS_84_L85 } \rightarrow 0393 \\ & \quad \text { 35S_84_L85 } \rightarrow 20190916175149 \end{aligned}$
STN205	84	18.04	$5^{\circ} 59.88382$	$10^{\circ} 58.79100$	2250	$\begin{aligned} & \text { EOL/SOL: MBS_84_L86 } \rightarrow \text { 0394 } \\ & \quad \text { 35S_84_L86 } \rightarrow 20190916180456 \end{aligned}$
Cruise JC187		Date: 16/09/2019 ${ }^{\text {S }}$ Sheet No. 20				
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
STN206	84	18:18	$5^{\circ} 48.61122$	$10^{\circ} 59.07786$	1911	$\begin{aligned} & \text { EOL/SOL: MBS_84_L87 } \rightarrow 0395 \\ & \quad \text { 35S_84_L87 } \rightarrow 20190916181817 \end{aligned}$
STN207	84	18:29	$5^{\circ} 48.82060$	$10^{\circ} 59.92770$	1858	$\begin{aligned} & \text { EOL/SOL: MBS_84_L88 } \rightarrow 0396 \\ & \quad \text { 35S_84_L88 } \rightarrow 20190916182958 \end{aligned}$
STN208	84	18:52	$5^{\circ} 50.91684$	$10^{\circ} 59.46288$	1973	$\begin{aligned} \hline \text { EOL/SOL: MBS_84_L89 } & \rightarrow 0397 \\ & \text { 35S_84_L89 } \end{aligned}$
STN209	84	18:58	$5^{\circ} 50.88012$	$10^{\circ} 59.83134$	1901	$\begin{aligned} & \hline \text { EOL/SOL: MBS_84_L90 } \rightarrow 0398 \\ & \quad 35 \text { S_84_L90 } \rightarrow 20190916185839 \end{aligned}$
STN210	84	19:07	$5^{\circ} 50.40366$	$11^{\circ} 0.42342$	1973	$\begin{aligned} & \text { EOL/SOL: MBS_84_L91 } \boldsymbol{\rightarrow} \text { 0399 } \\ & \quad \text { 35S_84_L91 } \boldsymbol{\rightarrow} 20190916190722 \end{aligned}$
STN211	84	19:24	$5^{\circ} 48.97710$	$11^{\circ} 0.85644$	2047	$\begin{aligned} & \hline \text { EOL/SOL: MBS_84_L92 } \rightarrow 0400 \\ & \quad \text { 35S_84_L92 } \rightarrow 20190916192424 \end{aligned}$

STN212	84	19:34	$5^{\circ} 49.30428$	$11^{\circ} 1.50090$	1991	$\begin{aligned} & \hline \text { EOL/SOL: MBS_84_L93 } \rightarrow 0401 \\ & \quad \text { 35S_84_L93 } \rightarrow 20190916193414 \end{aligned}$
STN213	84	19:54	$5^{\circ} 51.26466$	$11^{\circ} 1.27560$	1792	$\begin{aligned} & \text { EOL/SOL: MBS_84_L94 } \rightarrow 0402 \\ & \quad \text { 35S_84_L94 } \rightarrow 20190916195441 \end{aligned}$
STN214	84	20:05	$5^{\circ} 51.30000$	$11^{\circ} 1.95828$	1811	$\begin{aligned} & \text { EOL/SOL: MBS_84_L95 } \rightarrow \text { 0403 } \\ & \qquad \text { 35S_84_L95 } \rightarrow 20190916200506 \end{aligned}$
STN215	84	20:29	$5^{\circ} 49.44456$	$11^{\circ} 2.33700$	1817	$\begin{aligned} & \text { EOL/SOL: MBS_84_L96 } \rightarrow \text { 0404 } \\ & \quad \text { 35S_84_L96 } \rightarrow 20190916202934 \end{aligned}$
STN216	84	20:42	$5^{\circ} 49.71930$	$11^{\circ} 3.14070$	1900	$\begin{aligned} & \hline \text { EOL/SOL: MBS_84_L97 } \rightarrow 0405 \\ & \quad \text { 35S_84_L97 } \rightarrow 20190916204205 \end{aligned}$
Cruise JC187		Date: 16/09/2019 ${ }^{\text {S }}$ Sheet No. 21				
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
STN217	84	21:00	$5^{\circ} 51.51999$	$11^{\circ} 2.69574$	1800	$\begin{aligned} & \text { EOL/SOL: MBS_84_L98 } \boldsymbol{\rightarrow} \text { 0406 } \\ & \quad \text { 35S_84_L98 } \boldsymbol{\rightarrow} 20190916210038 \end{aligned}$
STN218	84	21:09	$5^{\circ} 51.70014$	$11^{\circ} 3.28890$	1811	$\begin{aligned} & \text { EOL/SOL: MBS_84_L99 } \rightarrow 0407 \\ & \quad \text { 35S_84_L99 } \rightarrow 20190916210920 \end{aligned}$
STN219	84	21:29	$5^{\circ} 49.85588$	$11^{\circ} 4.03320$	1641	$\begin{aligned} & \text { EOL/SOL: MBS_84_L100 } \rightarrow 0408 \\ & \quad \text { 35S_84_L100 } \rightarrow 20190916212932 \end{aligned}$
STN220	84	21:39	$5^{\circ} 50.25816$	$11^{\circ} 4.85160$	1633	$\begin{aligned} & \text { EOL/SOL: MBS_84_L101 } \rightarrow 0409 \\ & \text { 35S_84_L101 } \boldsymbol{\rightarrow} 20190916213908 \end{aligned}$

STN221	84	22:01	$5^{\circ} 52.33152$	$11^{\circ} 3.68460$	1772	$\begin{aligned} \hline \text { EOL/SOL: MBS_84_L102 } \rightarrow 0410 \\ \text { 35S_84_L102 } \rightarrow 20190916220034 \end{aligned}$
STN222	84	22:10	$5^{\circ} 52.58083$	$11^{\circ} 4.45362$	1752	$\begin{aligned} & \text { EOL/SOL: MBS_84_L103 } \rightarrow \text { 0411 } \\ & \quad \text { 35S_84_L103 } \boldsymbol{\rightarrow} 20190916221001 \end{aligned}$
STN223	84	22:36	$5^{\circ} 50.43222$	$11^{\circ} 5.70342$	1528	$\begin{aligned} & \text { EOL/SOL: MBS_84_L104 } \rightarrow 0412 \\ & \quad \text { 35S_84_L104 } \boldsymbol{\rightarrow} 20190916223521 \end{aligned}$
STN224	84	22:45	$5^{\circ} 50.89614$	$11^{\circ} 6.30090$	1684	$\begin{aligned} & \text { EOL/SOL: MBS_84_L105 } \rightarrow \text { 0413 } \\ & \quad \text { 35S_84_L105 } \boldsymbol{\rightarrow} 20190916224522 \end{aligned}$
STN225	84	23:03	$5^{\circ} 52.6888$	$11^{\circ} 5.42592$	1824	$\begin{aligned} & \text { EOL/SOL: MBS_84_L106 } \boldsymbol{\rightarrow} \text { 0414 } \\ & \quad \text { 35S_84_L106 } \boldsymbol{\rightarrow} 20190916230335 \end{aligned}$
STN226	84	23:18	$5^{\circ} 57.5360$	$11^{\circ} 6.67614$	1784	$\begin{aligned} & \text { EOL/SOL: MBS_84_L107 } \rightarrow 0415 \\ & \quad \text { 35S_84_L107 } \rightarrow 20190916231821 \end{aligned}$
STN227	84	23:38	$5^{\circ} 50.63210$	$11^{\circ} 6.79926$	1616	$\begin{aligned} \hline \text { EOL/SOL: MBS_84_L108 } & \rightarrow 0416 \\ & \text { 35S_84_L108 } \rightarrow 20190916233816 \end{aligned}$
Cruise JC187	Date: 16/09/2019 (from STA 229) \& 17/09/2019Sheet No. 22					
Station Number (JC187/Station x)	Site Number (as on GIS)	$\begin{gathered} \text { Time } \\ \text { In GMT } \end{gathered}$	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
STN228	84	23:48	$5^{\circ} 50.41764$	$11^{\circ} 7.58412$	1614	$\begin{aligned} & \text { EOL/SOL: MBS_84_L109 } \rightarrow 0417 \\ & \quad \text { 35S_84_L109 } \boldsymbol{\rightarrow} 20190916234743 \end{aligned}$
STN229	84	00:09	$5^{\circ} 52.52160$	$11^{\circ} 7.51099$	1707	EOL/SOL: MBS_84_L110 0418 $^{\text {a }}$

						35S_84_L110 $\rightarrow 20190917000942$
STN230	84	00:22	$5^{\circ} 52.66026$	$11^{\circ} 8.26194$	1819	$\begin{aligned} & \text { EOL/SOL: MBS_84_L111 } \rightarrow 0419 \\ & \quad \text { 35S_84_L111 } \rightarrow 20190917002159 \end{aligned}$
STN231	84	00:41	$5^{\circ} 51.13854$	$11^{\circ} 8.38422$	1713	$\begin{aligned} & \text { EOL/SOL: MBS_84_L112 } \rightarrow 0420 \\ & \quad \text { 35S_84_L112 } \rightarrow 20190917004115 \end{aligned}$
STN232	84	00:55	$5^{\circ} 51.65292$	$11^{\circ} 7.73724$	1930	$\begin{aligned} & \text { EOL/SOL: MBS_84_L113 } \rightarrow 0421 \text { = turn for next survey } \\ & \quad 35 \text { S_84_L113 } \rightarrow 2019091700 \text { =turn for next survey } \end{aligned}$
STN233	89	00:56	$5^{\circ} 51.72829$	$11^{\circ} 7.86018$	2112	$\begin{aligned} & \text { EOL/SOL: MBS_89_L01 } \rightarrow 0422 \text { = start of survey } 89 \\ & \quad \text { 35S_89_L01 } \rightarrow 20190917005647 \text { = start of survey } 89 \end{aligned}$
STN234	89	02:31	$5^{\circ} 52.76400$	$11^{\circ} 17.23124$	1447	EOL/SOL: MBS_89_LO2 $\rightarrow 0424$!line missing (but still ok for survey); 35S_89_LO2 $\rightarrow 20190917023130$
STN235	89	02:47	$5^{\circ} 52.19952$	$11^{\circ} 16.41906$	1529	$\begin{aligned} & \text { EOL/SOL: MBS_89_L03 } \rightarrow \text { 0425 } \\ & \quad \text { 35S_89_L03 } \rightarrow 20190917024714 \end{aligned}$
STN236	89	03:03	$5^{\circ} 53.83501$	$11^{\circ} 16.24068$	1709	$\begin{aligned} & \text { EOL/SOL: MBS_89_LO4 } \rightarrow 0426 \\ & \text { 35S_89_L04 } \rightarrow 20190917030345 \end{aligned}$
STN237	89	03:12	$5^{\circ} 53.35869$	$11^{\circ} 15.57192$	1688	$\begin{aligned} & \text { EOL/SOL: MBS_89_L05 } \rightarrow \text { 0427 } \\ & \quad 35 S \text { _89_L05 } \rightarrow 20190917031321 \end{aligned}$
STN238	89	03:35	$5^{\circ} 53.25772$	$11^{\circ} 15.79314$	1442	$\begin{aligned} & \text { EOL/SOL: MBS_89_L06 } \rightarrow \text { 0428 } \\ & \text { 35S_89_L06 } \rightarrow 20190917033542 \end{aligned}$
Cruise JC187		Date: 17/09/2019 ${ }^{\text {S }}$ Sheet No. 23				
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	$\begin{gathered} \hline \text { Longitude } \\ \text { (degree, DM) } \end{gathered}$	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)

STN239	89	03:43	$5^{\circ} 51.26478$	$11^{\circ} 15.05940$	1533	$\begin{aligned} & \text { EOL/SOL: MBS_89_L07 } \rightarrow 0429 \\ & \quad \text { 35S_89_L07 } \rightarrow 20190917034432 \end{aligned}$
STN240	89	04:05	$5^{\circ} 53.27934$	$11^{\circ} 14.85300$	1574	$\begin{aligned} & \text { EOL/SOL: MBS_89_L08 } \rightarrow 0430 \\ & \text { 35S_89_L08 } \rightarrow 20190917040449 \end{aligned}$
STN241	89	04:12	$5^{\circ} 53.28034$	$11^{\circ} 14.13028$	1635	$\begin{aligned} & \text { EOL/SOL: MBS_89_L09 } \rightarrow 0431 \\ & \quad \text { 35S_89_L09 } \rightarrow 20190917041234 \end{aligned}$
STN242	89	04:31	$5^{\circ} 51.48038$	$11^{\circ} 14.32524$	1678	$\begin{aligned} & \text { EOL/SOL: MBS_89_L10 } \rightarrow 0432 \\ & \text { 35S_89_L10 } \rightarrow 20190917043149 \end{aligned}$
STN243	89	04:40	$5^{\circ} 51.52020$	$11^{\circ} 13.58820$	1579	$\begin{aligned} & \text { EOL/SOL: MBS_89_L11 } \rightarrow 0433 \\ & \quad \text { 35S_89_L11 } \rightarrow 20190917044014 \end{aligned}$
STN244	89	04:58	$5^{\circ} 53.15976$	$11^{\circ} 13.41126$	1729	$\begin{aligned} & \text { EOL/SOL: MBS_89_L12 } \rightarrow 0434 \\ & \text { 35S_89_L12 } \rightarrow 20190917045752 \end{aligned}$
STN245	89	05:06	$5^{\circ} 53.11230$	$11^{\circ} 12.68700$	1725	$\begin{aligned} & \text { EOL/SOL: MBS_89_L13 } \rightarrow 0435 \\ & \quad \text { 35S_89_L13 } \rightarrow 20190917050605 \end{aligned}$
STN246	89	05:25	$5^{\circ} 51.32240$	$11^{\circ} 12.90132$	1484	$\begin{aligned} & \text { EOL/SOL: MBS_89_L14 } \rightarrow 0436 \\ & \text { 35S_89_L14 } \rightarrow 20190917052533 \end{aligned}$
STN247	89	05:34	$5^{\circ} 51.35694$	$11^{\circ} 12.15306$	1656	$\begin{aligned} & \text { EOL/SOL: MBS_89_L15 } \rightarrow 0437 \\ & \text { 35S_89_L15 } \rightarrow 20190917053450 \end{aligned}$
STN248	89	05:52	$5^{\circ} 52.98678$	$11^{\circ} 11.98740$	1696	$\begin{aligned} & \text { EOL/SOL: MBS_89_L16 } \rightarrow 0438 \\ & \text { 35S_89_L16 } \rightarrow 20190917055241 \end{aligned}$

STN249	89	06:00	$5^{\circ} 53.03814$	$11^{\circ} 11.29008$	1644	$\begin{aligned} & \text { EOL/SOL: MBS_89_L17 } \rightarrow 0439 \\ & \text { 35S_89_L17 } \rightarrow 20190917060013 \end{aligned}$
Cruise JC187	Date: 17/09/2019$19260$			Sheet No. 24		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
STN250	89	06:19	$5^{\circ} 51.27504$	$11^{\circ} 11.44812$	1769	$\begin{aligned} & \text { EOL/SOL: MBS_89_L18 } \rightarrow \text { 0440 } \\ & \quad 35 S \text { _89_L18 } \rightarrow 20190917061938 \end{aligned}$
STN251	89	06:28	$5^{\circ} 51.21594$	$11^{\circ} 11.70370$	1650	$\begin{aligned} & \text { EOL/SOL: MBS_89_L19 } \rightarrow \text { 0441 } \\ & \text { 35S_89_L19 } \rightarrow 20190917062824 \end{aligned}$
STN252	89	06:50	$5^{\circ} 53.33724$	$11^{\circ} 10.50042$	1616	$\begin{aligned} & \text { EOL/SOL: MBS_89_L20 } \rightarrow 0442 \\ & \quad 35 S _89 _L 20 \rightarrow 20190917065014 \end{aligned}$
STN253	89	06.58	$5^{\circ} 53.27592$	$11^{\circ} 9.76086$	1630	$\begin{aligned} & \text { EOL/SOL: MBS_89_L21 } \boldsymbol{\text { M }} \text { 0443 } \\ & \quad 35 S \text { _89_L21 } \boldsymbol{\rightarrow} 20190917065845 \end{aligned}$
STN254	89	07.23	$5^{\circ} 50.90004$	$11^{\circ} 10.03183$	1720	$\begin{aligned} & \text { EOL/SOL: MBS_89_L22 } \rightarrow \text { 0444 } \\ & \text { 35S_89_L22 } \boldsymbol{\rightarrow} 20190917072309 \end{aligned}$
STN255	89	07.31	$5^{\circ} 50.8080$	$11^{\circ} 9.2938$	1763	$\begin{aligned} & \text { EOL/SOL: MBS_89_L23 } \rightarrow \text { 0445 } \\ & \quad 35 S \text { _89_L23 } \boldsymbol{\rightarrow} 20190917073127 \end{aligned}$
STN256	89	07.55	$5^{\circ} 53.15544$	$11^{\circ} 9.06738$	1667	$\begin{aligned} & \text { EOL/SOL: MBS_89_L24 } \boldsymbol{\rightarrow} \text { 0446 } \\ & \text { 35S_89_L24 } \rightarrow 20190917075548 \end{aligned}$

STN257	89	08.11	$5^{\circ} 52.25574$	$11^{\circ} 8.43234$	1814	$\begin{aligned} & \text { EOL/SOL: MBS_89_L25 } \rightarrow \text { 0447 } \\ & \quad 35 S \text { _89_L25 } \rightarrow 20190917081115 \end{aligned}$
STN258	89	08.21	$5^{\circ} 51.21282$	$11^{\circ} 8.54832$	1836.5	$\begin{aligned} & \text { EOL/SOL: MBS_89_L26 } \rightarrow \text { 0448 } \\ & \text { 35S_89_L26 } \boldsymbol{\rightarrow} 20190917082137 \text { END OF SURVEY } \end{aligned}$
STN259	86	09.14	$5^{\circ} 48.86970$	$11^{\circ} 5.58888$	1306	Start of Hydrophone Array. $1^{\text {st }}$ buoy to touch surface of water.
STN260	86	09.21	$5^{\circ} 48.89940$	$11^{\circ} 5.63364$	1341	$1^{\text {st }}$ data recorder in water + deployment of hydrophone array
Cruise JC187		Date: 17/09/2019$19260$		Sheet No. 25		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
STN 261	86	09.25	$5^{\circ} 48.92076$	$11^{\circ} 5.67756$	1306	$2^{\text {nd }}$ data recorder at surface of water
STN 262	86	09.37	$5^{\circ} 49.03638$	$11^{\circ} 5.84430$	1304	$3{ }^{\text {rd }}$ set of buoys in water at surface
STN 263	86	09.41	549.06920	$11^{\circ} 5.89176$	1302	All equipment at water surface apart from anchor
STN 264	86	09.56	$5^{\circ} 49.25228$	$11^{\circ} 6.15954$	1264	Anchor for hydrophone array deployed
STN 265	86	10.06	$5^{\circ} 49.26078$	$11^{\circ} 6.17202$	1300	Anchor on seabed
STN 266	86	10.22	$5^{\circ} 49.72794$	$11^{\circ} 6.90888$	1300	Triangulation stop 1 Range (distance between anchor and boat): $2189 \mathrm{~m}-2184 \mathrm{~m}$

STN 267	86	10.43	$5^{\circ} 48.41610$	$11^{\circ} 5.72544$	1300	Triangulation stop 2 Range: 2098-2099 m
STN 268	86	10.58	$5^{\circ} 49.67142$	$11^{\circ} 5.19342$	1300	Triangulation stop 3 Range: 2221-2229 m, missed target by 34 m
STN 269	49	11.49	5*50.1996	$11^{\circ} 2.15952$	2115	Multicore at sea surface JC187-MC05 2 knots current at surface
STN 270	49	12.51	$5^{\circ} 50.19942$	$11^{\circ} 2.1604$	2147	Multicore at seabed, cable out $=2183.8 \mathrm{~m}$ JC187-MC05 USBL: $5^{\circ} 50.207777,11^{\circ} 2.15793,2170.1 \mathrm{~m}$ peak tension: 2.5 Te
STN 271	49	13.48	5 ${ }^{\circ} 50.1989$	$11^{\circ} 2.15934$	2135	Multicore back on deck JC187-MC05 8 full tubes
Cruise JC187		$\begin{aligned} & \text { Date: } 17 / 09 / 2019 \\ & 19260 \end{aligned}$		Sheet No. 26		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
STN 272	49	14:36	$5^{\circ} 50.19948$	$11^{\circ} 2.16006$	2127	Piston corer at sea surface (12 m barrel) JC187 - PC04
STN 273	49	15:25	$5^{\circ} 50.19972$	$11^{\circ} 2.15988$	2159	JC187 - PC04 at sea bottom. Pull-out - 3.87 Te USBL: $5^{\circ} 50.19211511 ; 11^{\circ} 2.14898 ; 2172.9 \mathrm{~m}$
STN 274	49	16:18	$5^{\circ} 50.19978$	$11^{\circ} 2.15994$	2151	Piston corer at sea surface JC187 - PC04
STN 275	90	17:10	$5^{\circ} 50.44950$	$11^{\circ} 1.85892$	2014	Multi-corer at sea surface JC187 - MC06

STN 276	90	18:06	$5^{\circ} 50.4500$	$11^{\circ} 1.85900$	2010	Multi-corer at sea bottom JC187 - MC06 USBL: $5^{\circ} 50.44126$ S; $11^{\circ} 1.85302 \mathrm{E} ; 2006.7$ m
STN 277	90	19:00	$5^{\circ} 50.45004$	$11^{\circ} 1.85958$	2003	Multi-corer back on deck JC187-MC06
STN 278	90	19:31	$5^{\circ} 50.44932$	$11^{\circ} 1.85754$	2015	Piston corer at sea surface JC187 - PC05
STN 279	90	20:22	$5^{\circ} 50.45009$	$11^{\circ} 1.85971$	2013	Piston corer at seabed JC187 - PC05 USBL: $5^{\circ} 50.44345 ; 11^{\circ} 1.85372 ; 2005 \mathrm{~m}$
STN 280	90	21:00	$5^{\circ} 50.45064$	$11^{\circ} 1.85982$	2009	Piston corer back on deck JC187- PC05
STN 281	51	21:57	$5^{\circ} 50.86218$	$11^{\circ} 1.99142$	1940	Multi-corer at sea surface JC187-MC07
STN 282	51	22:50	$5^{\circ} 50.86285$	$11^{\circ} 1.88387$	1943	Multi corer at bottom JC187-MC07 USBL: $5^{\circ} 50.85375 ; 11^{\circ} 1.87510 ; 1932 \mathrm{~m}$
Cruise JC187	Date: 17/09/2019; 18/09/2019; Sheet No. 27 19260 \&19261					
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
STN 283	51	23:47	$5^{\circ} 50.86152$	$11^{\circ} 1.88262$	1943	Multicorer back on deck JC187-MC07
STN 284	51	00:28	$5^{\circ} 50.86200$	$11^{\circ} 1.88220$	1943	Piston corer at sea surface JC187-PC06

STN 285	51	01:19	$5^{\circ} 50.86254$	$11^{\circ} 1.88232$	1943	Piston corer at sea bottom JC187-PC06 USBL: $5^{\circ} 50.85375 ; 11^{\circ} 1.97274$; depth $=1936 \mathrm{~m}$
STN 286	51	02:03	$5^{\circ} 50.86212$	$11^{\circ} 1.88232$	1943	Piston corer at sea surface JC187-PC06
STN 287	66	04:56	$5^{\circ} 54.01236$	$11^{\circ} 19.67988$	1845	Multicore at sea surface JC187-MC08
STN 288	66	05:51	$5^{\circ} 54.01308$	$11^{\circ} 19.67904$	1856	Multicore at sea bottom JC187-MC08 USBL: $5^{\circ} 54.00673$; $11^{\circ} 19.66128$; depth $=1829 \mathrm{~m}$
STN 289	66	06.48	$5^{\circ} 54.01272$	$11^{\circ} 19.67946$	1852	Multicore back on deck JC187-MC08
STN 290	66	07.39	$5^{\circ} 54.01296$	$11^{\circ} 19.67922$	1853	Piston Core at surface JC187-PC07
STN 291	66	08.37	$5^{\circ} 54.0128$	$11^{\circ} 19.679$	1850	Piston Core at bottom. JC187-PC07 USBL $5^{\circ} 50.19211 ; 11^{\circ} 2.14898$. Pull out: 4.15 Cable out: $1850 \rightarrow$ written at time; USBL Checked: $5^{\circ} 54.00890 \mathrm{~S} ; 11^{\circ} 19.6413 \mathrm{E} ; 1877 \mathrm{~m} \rightarrow$ checked later
STN 292	66	09:27	$5^{\circ} 54.0129$	$11^{\circ} 19.67999$	1857	Piston core @ Surface JC187-PC07
STN 293	93	10.08	$5^{\circ} 54.01038$	$11^{\circ} 19.81086$	1872	Multicore at sea surface JC187-MC09
Cruise JC187		Date: 18/09/2019 19261		Sheet No. 28		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)

STN 294	93	11.05	$5^{\circ} 54.01032$	$11^{\circ} 19.81116$	1834	Multicore at seabed JC187-MC09 USBL $5^{\circ} 54.00543 ; 11^{\circ} 19.78924$ Depth 1868 m
STN 295	93	11.57	$5^{\circ} 54.01074$	$11^{\circ} 19.81113$	1853	Multicore on deck JC187-MC09 6 empty, 2 containing consolidated mud
STN 296	93	12.42	$5^{\circ} 54.01008$	$11^{\circ} 19.81074$	1865	Piston Core at surface JC187-PC-08, Deployment
STN 297	93	13.22	$5^{\circ} 54.0104$	$11^{\circ} 19.8108$	1868	Piston Core at bottom. JC187-PC-08. USBL $5^{\circ} 54.01074 ; 11^{\circ} 19.79823$. Pull out: 4.33 Cable out: 1845 m
STN 298	93	14.10	$5^{\circ} 54.01044$	$11^{\circ} 19.81116$	1856	Piston core @ Surface JC187-PC-08
STN 299	96	14.49	$5^{\circ} 53.7947$	$11^{\circ} 19.81554$	1850	Multicore at sea surface JC187-MC10
STN 300	96	15.37	$5^{\circ} 53.79438$	$11^{\circ} 19.8162$	1848	Multicore at seabed JC187-MC10 USBL $5^{\circ} 53.78998 ; 11^{\circ} 19.80659$ Depth 1851 m
STN 301	96	16:26	$5^{\circ} 53.79384$	$11^{\circ} 19.81656$	1843	Multicore on deck JC187-MC10 Success
STN 302	96	17:00	$5^{\circ} 53.79402$	$11^{\circ} 19.81584$	1851	Piston Core at surface JC187-PC-09, Deployment
STN 303	96	17:35	$5^{\circ} 53.79334$	$11^{\circ} 19.81652$	1848	Piston Core at bottom. JC187-PC-09. Cable out: 1824m USBL $5^{\circ} 53.79099$; $11^{\circ} 19.80451$; Depth 1849.6m; Pull out: 4.02
STN 304	96	18:16	$5^{\circ} 53.794$	$11^{\circ} 19.816$	1851	Piston core @ Surface JC187-PC-09
Cruise JC187	$\begin{aligned} & \text { Date: 18/09/2019 - 19/09/2019; } \\ & \text { 19261-19262 } \end{aligned}$			Sheet No. 29		

Station Number (JC187/Station x)	Site Number (as on GIS)	$\begin{gathered} \text { Time } \\ \text { In GMT } \end{gathered}$	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
STN 305	87	19:18	$5^{\circ} 54.59222$	$11^{\circ} 19.91190$	1673	Multicore at sea surface JC187-MC11, Deployment
STN 306	87	20:06	$5^{\circ} 54.59394$	$11^{\circ} 19.91166$	1673	Multicore at seabed JC187-MC11; Cable out: 1679.4m USBL $5^{\circ} 54.59294 ; 11^{\circ} 19.90275$; Depth 1664m; Pull out: 2.30
STN 307	87	20:55	$5^{\circ} 54.59304$	$11^{\circ} 19.91274$	1672	Multicore on deck JC187-MC11 5 empty, 3 containing mud
STN 308	87	21:25	$5^{\circ} 54.59280$	$11^{\circ} 19.91340$	1672	Piston Core at surface JC187-PC-10, Deployment
STN 309	87	22:04	$5^{\circ} 54.59304$	$11^{\circ} 19.91160$	1673	Piston Core at bottom. JC187-PC-10. Cable out: 1640 m USBL $5^{\circ} 54.58923$; $11^{\circ} 19.90627$; Depth 1666.2 m; Pull out: 3.8
STN 310	87	22:44	$5^{\circ} 54.59370$	$11^{\circ} 19.91160$	1672	Piston core @ Surface JC187-PC-10
STN 311	48	00:05	$5^{\circ} 54.73890$	$11^{\circ} 25.02858$	1344	Multicore at sea surface JC187-MC12, Deployment
STN 312	48	00:47	$5^{\circ} 54.74988$	$11^{\circ} 25.02929$	1345	Multicore at seabed JC187-MC12; Cable out: 1352m USBL $5^{\circ} 54.74808 ; 11^{\circ} 25.02303$; Depth 1345.1 m ; Pull out: 2.0
STN 313	48	01:28	$5^{\circ} 54.74970$	$11^{\circ} 25.02960$	1345	Multicore on deck JC187-MC12 8 successful, containing mud
STN 314	48	02:04	$5^{\circ} 54.75000$	$11^{\circ} 25.02948$	1345	Piston Core at surface JC187-PC-11, Deployment

STN 315	48	02:39	$5^{\circ} 54.75000$	$11^{\circ} 25.02948$	1343	Piston Core at bottom. JC187-PC-11. Cable out: 1325.2 m USBL $5^{\circ} 54.74836 ; 11^{\circ} 25.02176$; Depth 1346.9 m; Pull out: 4.6
Cruise JC187		Date: 19/09/2019$19262$		Sheet No. 30		
Station Number (JC187/Station x)	Site Number (as on GIS)	$\begin{gathered} \text { Time } \\ \text { In GMT } \end{gathered}$	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
STN 316	48	03:18	$5^{\circ} 54.74940$	$11^{\circ} 25.02990$	1342	Piston core @ Surface JC187-PC-11
STN 317	99	04:11	$5^{\circ} 55.49172$	$11^{\circ} 25.57614$	1670	Multicore at sea surface JC187-MC13, Deployment
STN 318	99	04:57	$5^{\circ} 55.49182$	$11^{\circ} 25.57681$	1662	Multicore at seabed JC187-MC13; Cable out: 1683 m USBL $5^{\circ} 55.49192 ; 11^{\circ} 25.56407$ at $1668.8 \mathrm{~m} ; \Delta=23.53 \mathrm{~m} 269.8^{\circ}$
STN 319	99	05:46	$5^{\circ} 55.49184$	$11^{\circ} 25.57662$	1668	Multicore on deck JC187-MC13 Back on deck, 3 successful cores, containing mud
STN 320	66	06:54	$5^{\circ} 53.99$	$11^{\circ} 19.80$	1870	Aniitra 2 - Starting to put anchor in water
STN 321	66	07:04	$5^{\circ} 53.99978$	$11^{\circ} 19.80321$	1864.5	Aniitra 2 - Sediment trap in water
STN 322	66	07:21	$5^{\circ} 53.99992$	$11^{\circ} 19.80208$	1866.1	Aniitra 2 - ADCP suspended
STN 323	66	07:23	$5^{\circ} 53.99940$	$11^{\circ} 19.80204$	1820.6	Aniitra 2 - ADCP in water
STN 324	66	07.28	$5^{\circ} 52.99939$	$11^{\circ} 19.80194$	1865.5	Aniitra 2 - USBL in water

STN 325	66	08:03	$5^{\circ} 54.00150$	$11^{\circ} 19.80234$	1837	Aniitra 2 - Winch tracking mechanism broke - deployment paused at 686m.
STN 326	66	09:20	$5^{\circ} 54.00150$	$11^{\circ} 19.80234$	1837	Aniitra 2 - Winch tracking mechanism fixed. Deployment resumed
Cruise JC187		Date: 19/09/2019$19262$		Sheet No. 31		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
STN 327	66	09.57	$5^{\circ} 54.00120$	$11^{\circ} 19.80198$	1844	Aniitra 2 - Stopped to moves ship to correct USBL position USBL: $5^{\circ} 53.9974 ; 11^{\circ} 19.75744$ at 1495.7 m cable out: 1533.9 m
STN 328	66	10.20	$5^{\circ} 54.00130$	$11^{\circ} 19.81842$	1862.7	Aniitra 2 - released on seafloor USBL: $5^{\circ} 54.00029 ; 11^{\circ} 19.76589$ at 1525 m cable out: 1564.9
STN 329	66	10.25	$5^{\circ} 54.00130$	$11^{\circ} 19.81842$	1869	Aniitra 2 - Checking position, depth of acoustic releases (16 m Above the anchor) $=1854 \mathrm{~m}$. Depth $=1870 \mathrm{~m}$
STN 330	66	10:58	$5^{\circ} 5400162$	$11^{\circ} 19.81830$	1863.8	USBL detached from wire
STN 331	66	11:00	$5^{\circ} 54.00108$	$11^{\circ} 19.81848$	1858.6	Cable back on deck
STN 332	66	11:31	$5^{\circ} 53.37570$	$11^{\circ} 20.42754$	1606.4	Aniitra 2 - Triangulation 1, NE Range $=2500 \mathrm{~m}, 2490 \mathrm{~m}$
STN 333	66	11:47	$5^{\circ} 54.6635$	$11^{\circ} 20.2819$	1606	Aniitra 2 - Triangulation 2, SE $\text { Range = } 2416 \mathrm{~m}, 2416 \mathrm{~m}$

STN 334	66	12:05	1) $5^{\circ} 54.528665^{\circ}$ 2) $5^{\circ} 54.5359$	1) $11^{\circ} 18.87138$ 2) $11^{\circ} 18.8432$	1606	Aniitra 2 - Triangulation 3, SW Range: 1) 2678 m; 2) 2702 m
STN 335	66	12:30	1) $5^{\circ} 53.41854$ 2) $5^{\circ} 53.41650$	1) $11^{\circ} 19.16730$ 2) $11^{\circ} 19.16424$	N/A	Aniitra 2 - Triangulation 4, NW Range: 1) 2415 m; 2) 2416 m
STN 336	103	13.13	$5^{\circ} 54.10008$	$11^{\circ} 19.48038$	1863	NERC mooring 1 Buoy in water
STN 337	103	13.48	$5^{\circ} 54.01578$	$11^{\circ} 19.89500$	1868	NERC mooring 1 Anchor in water

Cruise JC187		Date: 19/09/19$19262$		Sheet No. 32		
Station Number (JC187/Station X)	Site Number (as on GIS)	Time In GMT	$\begin{gathered} \text { Latitude } \\ \text { (degree, DM) } \end{gathered}$	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
338	103	13.51	$5^{\circ} 54.00738$	$11^{\circ} 19.93764$	1858	NERC mooring 1 Anchor dropped
339	103	14.01	$5^{\circ} 54.00678$	$11^{\circ} 19.94154$	1862	NERC mooring 1 Anchor on seafloor, depth 1811 m
340	103	14.23	$5^{\circ} 53.45394$	$11^{\circ} 20.48328$	1862	Triangulation stop 1, NE Range: 234-2344 m
341	103	14.43	$5^{\circ} 54.57234$	$11^{\circ} 20.46744$	1862	Triangulation stop 2 Range: 2323-2324 m

342	103	15.09	$5^{\circ} 54.2010$	$11^{\circ} 19.27470$	1863	Triangulation stop 3 Range: 2420 m
343	103	15.30	$5^{\circ} 53.48412$	$11^{\circ} 19.31292$	1863	Triangulation stop 4 Range: $2333-2334 \mathrm{~m}$
344	87	16.07	$5^{\circ} 54.59574$	$11^{\circ} 19.91160$	1670	OBS-1 dropped
345	99	18.07	$5^{\circ} 55.49208$	$11^{\circ} 25.57620$	1667.1	Piston core at surface PC-012
346	99	18.45	$5^{\circ} 55.49166$	$11^{\circ} 25.57656$	1669.1	Piston core at seabed PC-012 max cable: 1645 m USBL: $5^{\circ} 55.49866 ~ 11^{\circ} 25.56585,1661.9 \mathrm{~m}, \mathrm{max} \mathrm{tension}=4.5 \mathrm{Te}$ 347 348
99	19.53	$5^{\circ} 55.49172$	$11^{\circ} 25.57647$	1667	Multicore at sea surface JC187-MC14, Deployment	

Cruise JC187		Date: \quad 19/09/2019-20/09/2019; 19262-19263		Sheet No. 33		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
349	99	20.41	$5^{\circ} 55.49274$	$11^{\circ} 25.57686$	1666	Multicore at seabed JC187-MC14; Cable out: 1686.1 m USBL $5^{\circ} 55.48218 ; 11^{\circ} 25.55578$ at $1666.7 \mathrm{~m} ; \Delta=43.07 \mathrm{~m} 296.5^{\circ}$
350	99	21.26	$5^{\circ} 55.49166$	$11^{\circ} 25.57578$	1668	Multicore on deck JC187-MC14 All 8 partly filled with mud/sand

351	45	21.51	$5^{\circ} 55.81806$	$11^{\circ} 25.11438$	1667	Multicore at sea surface JC187-MC15, Deployment
352	45	22.36	$5^{\circ} 55.81855$	$11^{\circ} 25.11463$	1666.8	Multicore at seabed JC187-MC15
353	45	23.24	$5^{\circ} 55.81740$	$11^{\circ} 25.11564$	1667	Multicore on deck JC187-MC15
354	45	23.56	$5^{\circ} 55.81776$	$11^{\circ} 25.11516$	1667	Piston Core at surface JC187-PC-13, Deployment
355	45	00.37	$5^{\circ} 55.81908$	$11^{\circ} 25.11204$	1667	Piston Core at bottom. JC187-PC-13. $\Delta=36.35 \mathrm{~m} 282.5^{\circ}$
356	97	03.07	$5^{\circ} 55.45500$	$11^{\circ} 28.41300$	1633	Multicore at sea surface JC187-MC16, Deployment
357	97	03.59	$5^{\circ} 55.45560$	$11^{\circ} 28.41246$	1635	Multicore at seabed JC187-MC16; Cable out: 1653.1 m
358						

Cruise JC187	Date: 20/09/2019 19263				Sheet No. 34	
Station Number (JC187/Station x)	Site Number	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	

	(as on GIS)					
360	97	05.25	$5^{\circ} 55.455$	$11^{\circ} 28.411$	1634	Piston Core at surface JC187-PC-14, Deployment
361	97	06.05	$5^{\circ} 55.45500$	$11^{\circ} 28.41162$	1645	Piston Core at bottom. JC187-PC-14. $\Delta=21.51 \mathrm{~m} 292.8^{\circ}$ USBL $5^{\circ} 55.45178 ; 11^{\circ} 28.40134$; Depth 1626.8m; Pull out: 4.1te
362	97	06.59	$5^{\circ} 55.45512$	11 ${ }^{\circ} 28.41240$	1636	Piston core @ Surface JC187-PC-14
363	97	07.45	$5^{\circ} 55.5530$	$11^{\circ} 28.1444$	1632	NERC mooring 4 Buoy in water
364	97	08.07.30	$5^{\circ} 55.4493$	$11^{\circ} 28.41486$	1632	NERC mooring 4 Anchor chain in water
365	97	08.09	$5^{\circ} 55.44360$	$11^{\circ} 28.44336$	1628.9	NERC mooring 4 Anchor dropped
366	97	08.20	$5^{\circ} 55.438$	$11^{\circ} 28.4529$	1637	NERC mooring 4 On bed
367	97	08.43	$5^{\circ} 54.7882$	$11^{\circ} 29.0759$	1403	Triangulation stop 1, NE NERC mooring 4
368	97	09.04	$5^{\circ} 55.9190$	$11^{\circ} 29.1577$	1403	Triangulation stop 2, SE NERC mooring 4
369	97	09.24	$5^{\circ} 56.0614$	$11^{\circ} 27.7640$	1358.3	Triangulation stop 3, SW NERC mooring 4
370	97	09.40	$5^{\circ} 54.6601$	$11^{\circ} 27.8332$	1243.5	Triangulation stop 4, NW NERC mooring 4

Cruise JC187		Date: 20/09/2019$19263$		Sheet No. 35		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
371	98	10.52	$5^{\circ} 57.205$	$11^{\circ} 33.195$	1569	Multi core at surface MC-17
372	98	11.39	$5^{\circ} 57.205$	$11^{\circ} 33.194$	1567	MC-17 at seabed. Cable out: 1585, pull out: 2.27 USBL: $5^{\circ} 57.2091,11^{\circ} 33.18347$, depth 1575 m
373	98	12.26	$5^{\circ} 57.206$	$11^{\circ} 33.194$	1582	Multi core back on deck MC-17
374	98	13.00	$5^{\circ} 57.209$	$11^{\circ} 33.197$	1561	Piston core @ Surface JC187-PC-15
375	98	13.35	$5^{\circ} 57.207$	$11^{\circ} 33.198$	1564	Piston core at seabed JC187-PC-15. Cable out: 1550, pullout: 3.81 USBL: $5^{\circ} 57.208,11^{\circ} 33.19582$, depth 1570 m
376	98	14.09	$5^{\circ} 57.208$	$11^{\circ} 33.198$	1570	Piston core @ Surface JC187-PC-15
377	98	14.58	$5^{\circ} 57.11892$	$11^{\circ} 32.95422$	1578	NERC mooring 3 Buoy in water
378	98	15.18	$5^{\circ} 57.20604$	$11^{\circ} 33.19266$	1569	NERC mooring 3 Anchor chain in water
379	98	15.20	$5^{\circ} 57.22002$	$11^{\circ} 33.23016$	1565	NERC mooring 3 Anchor dropped

380	98	15.28	$5^{\circ} 57.22194$	$11^{\circ} 33.2334$	1572	NERC mooring 3 On bed
381	98	15.49	$5^{\circ} 56.62146$	$11^{\circ} 33.76866$	1572	Triangulation stop 1, NE
$5^{\circ} 56.62182$	$11^{\circ} 33.76956$		NERC mooring 3 Range: $2142 \mathrm{~m}, 2142 \mathrm{~m}, 2143 \mathrm{~m}$			

Cruise JC187		Date: 20/09/2019 -21/09/2019; 19263-19264		Sheet No. 36			
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)	
382	98	16:08	$\begin{aligned} & 5^{\circ} 57.76026 \\ & 5^{\circ} 57.76026 \end{aligned}$	$\begin{aligned} & 11^{\circ} 33.79152 \\ & 11^{\circ} 33.79176 \end{aligned}$	1572	Triangulation Range: 2127, 2128, 2127 m	SE
383	98	16:32	$\begin{aligned} & 5^{\circ} 57.78924 \\ & 5^{\circ} 57.78858 \end{aligned}$	$\begin{aligned} & 11^{\circ} 32.63778 \\ & 11^{\circ} 32.64216 \end{aligned}$	1573	Triangulation Stop Range: $2132,2126,2126 m$	SW
384	98	16:54	$\begin{aligned} & 5^{\circ} 56.65320 \\ & 5^{\circ} 56.65230 \end{aligned}$	$\begin{aligned} & 11^{\circ} 32.61456 \\ & 11^{\circ} 32.61348 \end{aligned}$	1573	Triangulation Stop 4. NW Range: 2139, 2139, 2139m	
385	5	17:31	$5^{\circ} 57.80958$	$11^{\circ} 31.70058$	1130.8	OBIC OBS-2 Deployed	
386	104	18:17	$5^{\circ} 55.971$	$11^{\circ} 27.280$	1567	OBIC OBS-3 Deployed	
387	105	18:40	$5^{\circ} 54.485$	$11^{\circ} 27.397$	1260	OBIC OBS-4 Deployed	
388	106	19:55	$5^{\circ} 57.25164$	$11^{\circ} 33.36948$	1580	Piston Core at surface JC187-PC-16, Deployment	
389	106	20:28	$5^{\circ} 57.25140$	$11^{\circ} 33.36924$	1583	Piston Core at bottom. JC187-PC-16. $\Delta=15.30 \mathrm{~m}$ USBL $5^{\circ} 57.25966$; $11^{\circ} 33.36511$; Depth 1576.8 m ; Pull out: 3.1 t	207.6°

390	106	21.11	$5^{\circ} 57.25044$	$11^{\circ} 33.36954$	1578	Piston Core back on deck. JC187-PC-16.
391	92	23.59	$5^{\circ} 52.74012$	$11^{\circ} 10.49388$	1982	Multi core at surface MC-18
392	92	00.58	$5^{\circ} 52.74072$	$11^{\circ} 10.49370$	1991	MC-18 at seabed. Cable out: 2037.1, $\Delta=26.1 \mathrm{~m} \mathrm{262.1}{ }^{\circ}$

Cruise JC187		Date: 21.09 .2019 19264		Sheet No. 37		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	$\begin{gathered} \text { Latitude } \\ \text { (degree, DM) } \end{gathered}$	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
393	92	01:55	$5^{\circ} 52.74030$	$11^{\circ} 10.49382$	1985	Multi core back on deck MC-18
394	92	02:55	$5^{\circ} 52.73676$	$11^{\circ} 10.50006$	1983	Piston Core at surface JC187-PC-17, Deployment
395	92	03:50	$5^{\circ} 52.73814$	$11^{\circ} 10.49850$	1989	Piston Core at bottom. JC187-PC-17 $\Delta=15.37 \mathrm{~m}$ 273.9 ${ }^{\circ}$. Cable Out: 2004.4 m USBL $5^{\circ} 52.73597$; $11^{\circ} 10.49102$; Depth 2020.1m; Pull out: 4.8 t
396	92	04:50	$5^{\circ} 53.73718$	$11^{\circ} 10.49940$	1983	Piston Core back on deck. JC187-PC-17.
397	92	05:53	$5^{\circ} 52.737$	$11^{\circ} 10.499$	1977	CDT-08 at surface
398	92	06.37	$5^{\circ} 52.738$	$11^{\circ} 10.499$	1983	CTD-08 @ bottom, 5m above bed. CTD pressure depth $-2012 \mathrm{~m}, 1^{\text {st }}$ water sample bottle 1.
399	92	06.39	$5^{\circ} 52.738$	$11^{\circ} 10.499$	1983	CTD-08, 20 m above sea bed. $2^{\text {nd }}$ water sample - bottle 2.

400	92	06.42	$5^{\circ} 52.738$	$11^{\circ} 10.499$	1983	$\begin{array}{lc} \hline \text { CTD-08, } & 40 \mathrm{~m} \\ 3^{\text {rd }} \text { water sample - bottle } 3 . \end{array}$	above	sea	bed.
401	92	06.44	$5^{\circ} 52.738$	$11^{\circ} 10.499$	1983	CTD-08, 60 m $4^{\text {th }}$ water sample - bottle 4.	above	sea	bed.
402	92	06.46	$5^{\circ} 52.737$	$11^{\circ} 10.499$	1983	CTD-08, 100 m $5^{\text {th }}$ water sample - bottle 5 .	above	sea	bed.
403	92	06.54	$5^{\circ} 52.737$	$11^{\circ} 10.499$	1983	CTD-08, 1600 m $6^{\text {th }}$ water sample - bottle 6 .		water	depth.

Cruise JC187		Date: 21/09/2019$19264$		Sheet No. 38		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
404	92	07.14	$5^{\circ} 52.73737$	$11^{\circ} 10.49895$	1982	CTD-08 500m water depth $7^{\text {th }}$ water sample - bottle 7 .
405	92	07.26	$5^{\circ} 52.73756$	$11^{\circ} 10.49877$	1985	$\begin{aligned} & \text { CTD-08 } 50 \mathrm{~m} \text { water depth } \\ & 8^{\text {th }} \text { water sample - bottle } 8 . \end{aligned}$
406	92	07.30	$5^{\circ} 52.73742$	$11^{\circ} 10.49886$	1986	CTD-08 back on deck
407	92	08.13	$5^{\circ} 52.7248$	$11^{\circ} 10.52460$	1976	Aniitra 3 sediment trap in water
408	92	08.31	$5^{\circ} 52.74001$	$11^{\circ} 10.52640$	1985	Aniitra 3 ADCP lifted from deck
409	92	08.35	$5^{\circ} 52.73418$	$11^{\circ} 10.52652$	1978	Aniitra 3 ADCP in water

410	92	08.42	$5^{\circ} 52.73340$	$11^{\circ} 10.52676$	1979	Aniitra 3 USBL in water
411	92	10.00	$5^{\circ} 52.74288$	$11^{\circ} 10.52532$	1990	Aniitra Cable stopped at 1680m (Cable out)
412	92	10.04	$5^{\circ} 52.74168$	$11^{\circ} 10.52442$	1991	Aniitra Started moving 20m ESE
413	92	$10: 09: 50$	$5^{\circ} 52.74756$	$11^{\circ} 10.53504$	1991	Aniitra 3-Mooring released. USBL: $5^{\circ} 52.735,11^{\circ} 10.495$.$\quad$ Cable out 1680m
414	92	10.22	$5^{\circ} 52.74756$	$11^{\circ} 10.53504$	1991	Aniitra 3 Range to acoustic release: 2003m

Cruise JC187		Date: 21/09/2019$19264$		Sheet No. 39			
Station Number (JC187/Station x)	Site Number (as on GIS)	$\begin{gathered} \text { Time } \\ \text { In GMT } \end{gathered}$	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)	
415	92	10.54	$5^{\circ} 52.749$	$11^{\circ} 10.5341$	1986	Aniitra Cable onboard	
416	86	11.32	$5^{\circ} 49.1887$	$11^{\circ} 05.93766$	1306	Arrive on site for hydrophone recovery	
417	86	11.39	$5^{\circ} 49.05726$	$11^{\circ} 06.10416$	1292.6	Hydrophone Acoustic 1353m range before release	release
418	86	11.52	$5^{\circ} 49.07664$	$11^{\circ} 06.15588$	1290.5	Hydrophone release command sent	
419	86	12.01	$5^{\circ} 49.08$	$11^{\circ} 06.16$	1290	Hydrophone visible at sea surface	

420	86	12.20	$5^{\circ} 49.18$	$11^{\circ} 05.97$	1290	Hydrophone first buoy on deck.
421	86	12.53	$5^{\circ} 49.44561$	$11^{\circ} 06.05958$	1290	Hydrophone array completely on deck
422	14	14.23	$5^{\circ} 50.19816$	$11^{\circ} 01.92546$	$\begin{aligned} & 2047 \\ & \text { (?) } 74 \end{aligned}$	NERC Mooring 9.Orange buoy dropped. Depth reading off due to bubbles
423	14	14.24	$5^{0} 50.19786$	$11^{\circ} 01.92774$	2071	NERC Mooring 9. Acoustic release in water
424	14	14.37	$5^{\circ} 50.19996$	$11^{\circ} 2.15028$	2172	NERC Mooring 9. Anchor in water
425	14	14.40	$5^{\circ} 50.19960$	$11^{\circ} 2.18904$	2151	NERC Mooring 9 Anchor released
Cruise JC187		Date: 21/09/2019$19264$		Sheet No. 40		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
426	14	14.52	$5^{\circ} 50.19978$	$11^{\circ} 2.19960$	2126	NERC mooring 9 Anchor on seafloor, acoustic release @ 2150m
427	14	15.18	$5^{\circ} 49.4148$	$11^{\circ} 2.9397$	2126.8	Triangulation stop 1, NE NERC mooring 9 Range: 2975m, 2975m
428	14	15.44	$\begin{aligned} & 5^{\circ} 50.97150 \\ & 5^{\circ} 50.97246 \end{aligned}$	$\begin{aligned} & 11^{\circ} 2.93208 \\ & 11^{\circ} 2.93118 \end{aligned}$	2126.8	Triangulation stop 2, SE NERC mooring 9 Range: 2941m, 2941m

429	14	16.10	$\begin{aligned} & 5^{\circ} 51.00450 \\ & 5^{\circ} 51.00600 \end{aligned}$	$\begin{aligned} & \hline 11^{\circ} 1.41978 \\ & 11^{\circ} 1.42104 \end{aligned}$	2126.8	Triangulation stop 3, SW NERC mooring 9 Range: 2948m, 2947.7m	
430	14	16.35	$\begin{aligned} & 5^{\circ} 49.44950 \\ & 5^{\circ} 49.44948 \end{aligned}$	$11^{\circ} 1.40268$ $11^{\circ} 1.40184$	2126.8	Triangulation stop 4, NW NERC mooring 9 Range: 2928.4-2930.4m, 2928.5-2930.4m	
431	$14 \quad$ (not exactly on pt)	17.08	$5^{\circ} 50.11152$	$11^{\circ} 1.89486$	2167	CDT-09 at surface	
432	14 (not exactly on pt)	17.56	$5^{\circ} 50.11150$	$11^{\circ} 1.89473$	6171	CTD-09 @ bottom, 6m ABS, Altimeter 5.8m, CTD depth - 2168m USBL $5^{\circ} 50.12683,11^{\circ} 1.90832,1^{\text {st }}$ water sample bottle 1.	
433	$\begin{array}{lr} \hline 14 & \text { (not } \\ \text { exactly on pt) } \end{array}$	17.58	$5^{\circ} 50.11149$	$11^{\circ} 1.8949$	2181	CTD-09, $20 \mathrm{~m} \quad$ above \quad sea \quad bed, $2^{\text {nd }}$ water sample - bottle 2.	20.2m
434	14 (not exactly on pt)	18.01	$5^{\circ} 50.11152$	$11^{\circ} 1.8958$	2170	CTD-09, $40 \mathrm{~m} \quad$ above sea $3^{\text {rd }}$ water sample-bottle 3.	39.8m
435	$\begin{array}{lr} \hline 14 & \text { (not } \\ \text { exactly on } p t) \end{array}$	18.03	$5^{\circ} 50.11128$	$11^{\circ} 1.89528$	2181	CTD-09, $60 \mathrm{~m} \quad$ above sea bed, $4^{\text {th }}$ water sample-bottle 4 .	59.6m
436	$\begin{array}{lr} 14 & \text { (not } \\ \text { exactly on } p t) \end{array}$	18.07	$5^{\circ} 50.11128$	$11^{\circ} 1.89564$	2119	CTD-09, 100 m above sea bed, Altimeter 98.6 m , cable out: $5^{\text {th }}$ water sample - bottle 5 .	2063m

Cruise JC187		Date: \quad 21/09/2019-22/09/2019, 19264-19265		Sheet No. 41								
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)						
437	$\begin{array}{lr} \hline 14 & \text { (not } \\ \text { exactly on pt) } \end{array}$	18.14	$5^{\circ} 50.11092$	$11^{\circ} 1.89586$	2159	$\begin{aligned} & \text { CTD-09, } \\ & 6^{\text {th }} \text { wate } \end{aligned}$	300m above mple - bottle 7.		bed,	cable	out:	1763m

438	$\begin{array}{lr} \hline 14 & (\text { not } \\ \text { exactly on } p t) \end{array}$	18.18	$5^{\circ} 50.11158$	$11^{\circ} 1.89510$	2149	CTD-09, 1601 m water depth, cable $7^{\text {th }}$ water sample - bottle 6.		$1601 \mathrm{~m}$
439	$\begin{array}{lr} 14 & \text { (not } \\ \text { exactly on pt) } \end{array}$	18.37	$5^{\circ} 50.11194$	$11^{\circ} 1.89552$	2119	CTD-09, 500 m $8^{\text {th }}$ water sample - bottle 8.		depth
440	$\begin{array}{lr} 14 & \text { (not } \\ \text { exactly on } p t) \end{array}$	18.44	$5^{\circ} 50.11158$	$11^{\circ} 1.89600$	2115	CTD-09, 50 m water $9^{\text {th }}$ water sample - bottle 9.		depth
441	$\begin{array}{lr} \hline 14 & (\text { not } \\ \text { exactly on } p t) \end{array}$	18.55	$5^{\circ} 50.11164$	$11^{\circ} 1.89600$	2158	CTD-09 back on deck		
442	107	20.03	$5^{\circ} 51.39636$	$11^{\circ} 8.89206$	2054	MC-19 at surface		
443	107	20.58	$5^{\circ} 51.39510$	$11^{\circ} 8.89242$	2053	MC-19 at seabed. Cable out: 2076.1, Pull out: 2.4 Te USBL: $5^{\circ} 51.40276,11^{\circ} 8.88621 @ 2054.2 \mathrm{~m}, \Delta=21.33 \mathrm{~m} 219.0^{\circ}$		
444	107	21.54	$5^{\circ} 51.39594$	$11^{\circ} 8.89188$	2054	MC-19 back on deck 5 cores partly filled with mud		
445	108	22.13	$5^{\circ} 51.42288$	$11^{\circ} 8.78610$	2052	MC-20 at surface		
446	108	23.08	$5^{\circ} 51.42210$	$11^{\circ} 8.78622$	2044	MC-20 at seabed. Cable out: 2077.1m, Pull out: 2.6 Te USBL: $5^{\circ} 51.42858,11^{\circ} 8.77749 @ 2055.9 \mathrm{~m}, \Delta=23.24 \mathrm{~m} 229.9^{\circ}$		
447	108	00.07	$5^{\circ} 51.42156$	$11^{\circ} 8.78574$	2050	MC-20 back on deck 5 cores partly filled with mud		

Cruise JC187		Date: 22/09/2019$19265$		Sheet No. 42		
Station Number (JC187/Station x)	Site Number	Time In GMT	$\begin{gathered} \text { Latitude } \\ \text { (degree, DM) } \end{gathered}$	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)

	(as on GIS)					
448	109	00.28	$5^{\circ} 51.57996$	$11^{\circ} 8.68440$	1921	MC-21 at surface
449	109	01.27	$5^{\circ} 51.57972$	$11^{\circ} 8.68470$	1931	MC-21 at seabed. Cable out: 2077.1m, Pull out: 2.4 Te USBL: $5^{\circ} 51.58501,11^{\circ} 8.68930 @ 2056.5 \mathrm{~m}, \Delta=12.41 \mathrm{~m} 156.3^{\circ}$
450	109	02.26	$5^{\circ} 51.57888$	$11^{\circ} 8.68482$	2028	MC-21 back on deck
451	110	02.48	$5^{\circ} 51.61950$	$11^{\circ} 8.70258$	2067	MC-22 at surface
452	110	03.45	$5^{\circ} 51.61872$	$11^{\circ} 8.70294$	2041	MC-22 at seabed. Cable out: 2077.1m, Pull out: 2.65 Te USBL: $5^{\circ} 51.61920,11^{\circ} 8.70400$ @ $2056.5 \mathrm{~m}, \Delta=5.70 \mathrm{~m} 182.7^{\circ}$
453	110	04.42	$5^{\circ} 51.61974$	$11^{\circ} 8.70228$	2046	MC-22 back on deck All 8 partly filled
454	51	05.53	$5^{\circ} 50.84958$	$11^{\circ} 1.87302$	1945	OBIC OBS-05 Deployed
455	13	07.11	$5^{\circ} 50.71194$	$11^{\circ} 1.11204$	1945	Hydrophone deployment Top yellow head float in the water
456	13	07.19	$5^{\circ} 50.71938$	$11^{\circ} 1.1958$	1943	Hydrophone deployment First array of floats and data logger in The water
457	13	07.21	$5^{\circ} 50.72382$	$11^{\circ} 1.20846$	1945	Hydrophone deployment second array of floats in the water
458	13	07.38	$5^{\circ} 50.75280$	$11^{\circ} 1.46550$	1945	Hydrophone deployment third array of floats plus acoustic releases

Cruise JC187		Date: 22/09/2019-23/09/2019, 19265-19266		Sheet No. 43		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
459	13	07.48	$5^{\circ} 50.77134$	$11^{\circ} 1.63344$	1939	Hydrophone deployment - Anchor deployment/drop
XXX	XX	XX	XX	XX	XX	XXX
460	13	08.02	$5^{\circ} 50.77398$	$11^{\circ} 1.65744$	1939.8	Hydrophone deployment array on seafloor 1953m, stabilised
461	13	08.20	$5^{\circ} 51.36222$	$11^{\circ} 2.57760$	1939	Triangulation stop 1, SE Hydrophone array Range: 2934m
462	13	08.43	$5^{\circ} 51.39072$	$11^{\circ} 0.67644$	Not ping	Triangulation stop 2, SW Hydrophone array Range: 2802
463	13	09.03	$5^{\circ} 49.98858$	$11^{\circ} 0.79002$	Not ping	Triangulation stop 3, NW Hydrophone array Range: 2816m
464	13	09.24	$5^{\circ} 50.02728$	$11^{\circ} 2.40480$	Not ping	Triangulation stop 4, NE Hydrophone array Range: 2849m
465	13	09.59	$5^{\circ} 50.06842$	$11^{\circ} 2.17614$	2081	Beginning transit to International Water
466	112	02.14	$5^{\circ} 43.54332$	$8^{\circ} 9.48828$	4081	CDT-10 at surface
467	112	03.31	$5^{\circ} 43.54302$	$8^{\circ} 9.48768$	4082	CTD-10 @ bottom,13m ABS, Altimeter 13m, CTD depth - 4133m USBL $5^{\circ} 43.54605,8^{\circ} 9.48242$

| 468 | 112 | 03.35 | $5^{\circ} 43.54318$ | $8^{\circ} 9.48766$ | 4082 | CTD-10,
 $1^{\text {st }}$ water sample - bottle 1. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: |

477	112	04.59	$5^{\circ} 43.54195$	$8^{\circ} 9.47968$	4081	CTD-10, 25 m water $10^{\text {th }}$ water sample - bottle 9 .	depth,	depth	CTD	24.7 m
478	112	05.01	$5^{\circ} 43.54194$	$8^{\circ} 9.47917$	4081	CTD-10, 10 m water $11^{\text {th }}$ water sample - bottle 9 .	depth,	depth	CTD	10.8m
479	112	05.04	$5^{\circ} 43.54314$	$8^{\circ} 9.48780$	4081	CTD-10, back on deck				

Cruise JC187		$\begin{aligned} & \text { Date:23/09/19 } \\ & 19266 \end{aligned}$		Sheet No. 45		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
480	113	05.38	$5^{\circ} 43.94850$	$8^{\circ} 9.66600$	3973	$\begin{aligned} \text { EOL/SOL: MBS }-113-\text { LO1 } & \rightarrow 0566 \\ 3.5 S-113-\text { L01 } & \rightarrow 20190923053735 \end{aligned}$
481	113	06.48	$5^{\circ} 43.58891$	$8^{\circ} 2.26008$	4135	$\begin{aligned} \text { EOL/SOL: MBS }-113-\text { LO2 } & \rightarrow 0567 \\ 3.5 S-113-L 02 & \rightarrow 20190923064842 \end{aligned}$
482	113	06.58	$5^{\circ} 44.16300$	$8^{\circ} 1.41324$	4150	$\begin{aligned} \text { EOL/SOL: MBS }-113-\text { LO3 } & \rightarrow 0568 \\ 3.5 S-113-\text { L03 } & \rightarrow 20190923065932 \end{aligned}$
483	113	07.32	$5^{\circ} 47.27816$	$8^{\circ} 0.44501$	4174	$\begin{aligned} \text { EOL/SOL: MBS }-113-\text { LO4 } & \rightarrow 0569 \\ 3.5 S-113-\text { L04 } & \rightarrow 20190923073253 \end{aligned}$
484	113	07.34	$5^{\circ} 47.30064$	$8^{\circ} 0.35166$	4167	$\begin{aligned} \text { EOL/SOL: MBS }-113-\text { LO5 } & \rightarrow 0570 \\ 3.5 S-113-\text { LO5 } & \rightarrow 20190923073434 \end{aligned}$
485	113	08.09	$5^{\circ} 47.03982$	$7^{\circ} 56.81172$	4158	$\begin{aligned} \text { EOL/SOL: MBS - } 113-\text { LO6 } & \rightarrow 0572 \text { SURVEY SUSPENDED } \\ 3.5 S-113-\text { L06 } & \rightarrow 20190923080938 \end{aligned}$

486	115	09.18	$5^{\circ} 58.7452$	$11^{\circ} 24.28812$	587	Arrive on site for Multibeam for landslide
487	115	09.20	$5^{\circ} 58.574$	$11^{\circ} 24.30486$	637	$\begin{aligned} \text { EOL/SOL: MBS }-115-\text { LO1 } & \rightarrow 0578 \\ 3.5 S-115-L 01 & \rightarrow 20190925093015 \end{aligned}$
488	115	09.43	$5^{\circ} 56.18172$	$11^{\circ} 24.58098$	1665	$\begin{aligned} \text { EOL/SOL: } \mathrm{MBS}-115-\text { LO2 } & \rightarrow 0579 \\ 3.5 S-115-\text { LO2 } & \rightarrow 20190925094317 \end{aligned}$
489	115	09.58	$5^{\circ} 56.41900$	$11^{\circ} 25.79458$	1368	$\begin{aligned} \text { EOL/SOL: } \mathrm{MBS}-115-\mathrm{LO3} & \rightarrow 0580 \\ 3.5 S-115-\mathrm{L} 03 & \rightarrow 20190925095849 \end{aligned}$
490	115	10.01	$5^{\circ} 56.5946$	$11^{\circ} 25.834$	/	$\begin{aligned} \text { EOL/SOL: } \mathrm{MBS}-115-\text { LO4 } & \rightarrow 0581 \\ 3.5 S-115-\text { LO4 } & \rightarrow 20190925100124 \end{aligned}$

Cruise JC187		$\begin{aligned} & \text { Date: 25/09/2019 } \\ & 19268 \end{aligned}$		Sheet No. 46		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
491	115	10.07	$5^{\circ} 57.16098$	$11^{\circ} 25.62732$	1055	$\begin{aligned} \text { EOL/SOL: } \mathrm{MBS}-115-\mathrm{LO5} & \rightarrow 0582 \\ 3.5 \mathrm{~S}-115-\mathrm{L} 05 & \rightarrow 20190925100751 \end{aligned}$
492	115	10.10	$5^{\circ} 57.22344$	$11^{\circ} 25.36834$	1014	$\begin{aligned} \text { EOL/SOL: MBS }-115-\text { LO6 } & \rightarrow 0583 \\ 3.5 S-115-\text { L06 } & \rightarrow 20190925101044 \end{aligned}$
493	115	10.23	$5^{\circ} 57.01521$	$11^{\circ} 24.05411$	1045	$\begin{aligned} \text { EOL/SOL: MBS }-115-\text { LO7 } & \rightarrow 0584 \\ 3.5 S-115-\text { L07 } & \rightarrow 20190925102307 \end{aligned}$

494	115	10.35	$5^{\circ} 56.67450$	$11^{\circ} 22.80170$	1204	$\begin{aligned} \text { EOL/SOL: MBS }-115-\text { LO8 } & \rightarrow 0585 \\ 3.5 S-115-\text { L08 } & \rightarrow 20190925103533 \end{aligned}$
495	115	10.51	$5^{\circ} 55.83024$	$11^{\circ} 21.50628$	1170	$\begin{aligned} \text { EOL/SOL: MBS }-115-\text { LO9 } & \rightarrow 0586 \\ 3.5 S-115-\text { L09 } & \rightarrow 20190925105113 \end{aligned}$
496	115	10.55	$5^{\circ} 55.56888$	$11^{\circ} 21.10566$	1262	$\begin{aligned} \text { EOL/SOL: } \mathrm{MBS}-115-\mathrm{L} 10 & \rightarrow 0587 \\ 3.5 \mathrm{~S}-115-\mathrm{L} 10 & \rightarrow 20190925105544 \end{aligned}$
497	115	10.58	$5^{\circ} 55.31522$	$11^{\circ} 21.11130$	1311	$\begin{aligned} \text { EOL/SOL: MBS }-115-\text { L11 } & \rightarrow 0588 \\ 3.5 S-115-\text { L11 } & \rightarrow 20190925105843 \end{aligned}$
498	115	11.12	$5^{\circ} 54.23100$	$11^{\circ} 22.62406$	1631	$\begin{aligned} \text { EOL/SOL: MBS }-115-\text { L12 } & \rightarrow 0589 \\ 3.5 S-115-\text { L12 } & \rightarrow 20190925111248 \end{aligned}$
499	115	11.14	$5^{\circ} 54.298800$	$11^{\circ} 22.70274$	1747	$\begin{aligned} \text { EOL/SOL: MBS }-115-\text { L13 } & \rightarrow 0590 \\ 3.5 S-115-\text { L13 } & \rightarrow 20190925111428 \end{aligned}$
500	115	11.26	$5^{\circ} 55.22680$	$11^{\circ} 23.17506$	1708	$\begin{aligned} \text { EOL/SOL: MBS }-115-\text { L14 } & \rightarrow 0591 \\ 3.5 S-115-\text { L14 } & \rightarrow 20190925112615 \end{aligned}$
501	115	11.28	$5^{\circ} 55.44066$	$11^{\circ} 23.10900$	1765	$\begin{aligned} \text { EOL/SOL: } \mathrm{MBS}-115-\mathrm{L} 15 & \rightarrow 0592 \\ 3.5 \mathrm{~S}-115-\mathrm{L} 15 & \rightarrow 2019092512811 \end{aligned}$

Cruise JC187		Date: 25/09/2019$19268$		Sheet No. 47		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)

502	115	11.45	$5^{\circ} 56.509$	$11^{\circ} 21.509$	1000	End of Survey
503	118	13.48	$5^{\circ} 50.2026$	$11^{\circ} 1.95894$	2153	Float (little yellow buoy) in water at surface JC187 NERC Mooring 2
504	118	13.53	$5^{\circ} 50.2078$	$11^{\circ} 2.01744$	2122	First ADCP mooring buoy in water at surface JC187 NERC Mooring 2
505	118	13.57	$5^{\circ} 50.21226$	$11^{\circ} 2.09274$	2152	Second ADCP mooring buoy in water at surface JC187 NERC Mooring 2
506	118	14.05	$5^{\circ} 50.21928$	$11^{\circ} 2.18880$	2118	Acoustic release in water JC187 NERC Mooring 2
507	118	14.18	$5^{\circ} 50.23116$	$11^{\circ} 2.34786$	2102	Anchor in water JC187 NERC Mooring 2
508	118	14.19	$5^{\circ} 50.23374$	$11^{\circ} 2.38194$	2103	Anchor dropped JC187 NERC Mooring 2
509	118	14.31	$5^{\circ} 50.23458$	$11^{\circ} 2.38980$	2125	Anchor on seafloor JC187 NERC Mooring 2
510	118	14.57	$5^{\circ} 49.4754$	$11^{\circ} 3.11124$	2125	Triangulation point 1 JC187 NERC Mooring 2
511	118	15.21	$5^{\circ} 50.993$	$11^{\circ} 3.126$	1917	Triangulation point 2 JC187 NERC Mooring 2
512	118	15.43	$5^{\circ} 50.984$	$11^{\circ} 1.597$	1941	Triangulation point 3 JC187 NERC Mooring 2

Cruise JC187		Date: 25/09/2019 26/09/19; 19268/9		Sheet No. 48 (NB. The MB and 3.5 survey file numbers saved are not subsequential for long Lines (i.e. L07), the computer automatically sub-saves files after certain time/file size)		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
513	118	16.07	$5^{\circ} 49.482$	$11^{\circ} 01.583$	1979	Triangulation point 4 JC187 NERC Mooring 2
514	N/A	$\begin{aligned} & 07.19 \\ & (26 / 09) \end{aligned}$	$5^{\circ} 47.294$	$8^{\circ} 3.456$	4044	Just before arriving back at MB survey_113
515	113	07.36	547.24004	$8^{\circ} 0.24222$	4048	Return to MBS and 3.5 survey suspended 23/09
516	113	07.43	$5^{\circ} 47.17386$	$7^{\circ} 59.4424$	4069	$\begin{aligned} & \hline \text { EOL/SOL: MBS_113_L07 } \rightarrow 0598 \\ & \text { 3.5S_113_L07 } \rightarrow 20190926074351 \end{aligned}$
517	113	10.11	$5^{\circ} 45.31432$	$7^{\circ} 44.32458$	4270	$\begin{aligned} \hline \text { EOL/SOL: MBS_113_L08 } & \rightarrow 0601 \\ \text { 3.5S_113_L08 } & \rightarrow 20190926101141 \end{aligned}$
518	113	11.02	$5^{\circ} 44.77482$	$7^{\circ} 38.98272$	4253	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_LO9 } \rightarrow 0602 \\ \text { 3.5S_113_L09 } \rightarrow 20190926110247 \end{aligned}$
519	113	11.39	$5^{\circ} 45.87348$	$7^{\circ} 35.38578$	4203	$\begin{aligned} \hline \text { EOL/SOL: MBS_113_L10 } & \rightarrow 0603 \\ \text { 3.5S_113_L10 } & \rightarrow 20190926113959 \end{aligned}$
520	113	11.55	$5^{\circ} 45.2877$	$7^{\circ} 35.7156$	4199	$\begin{aligned} \hline \text { EOL/SOL: MBS_113_L11 } & \rightarrow 0604 \\ \text { 3.5S_113_L11 } & \rightarrow 20190926115508 \end{aligned}$
521	113	12.12	$5^{\circ} 46.83672$	$7^{\circ} 36.18096$	4211	$\begin{aligned} \hline \text { EOL/SOL: MBS_113_L12 } & \rightarrow 0605 \\ \text { 3.5S_113_L12 } & \rightarrow 20190926121303 \end{aligned}$

522	113	12.27	$5^{\circ} 46.03680$	$7^{\circ} 37.07016$	4203	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L13 } \rightarrow 0606 \\ \text { 3.5S_113_L13 } \rightarrow 20190926122704 \end{aligned}$
523	113	12.48	$5^{\circ} 43.9272$	$7^{\circ} 36.41016$	4233	$\begin{aligned} \text { EOL/SOL: MBS_113_L14 } & \rightarrow 0607 \\ \text { 3.5S_113_L14 } & \rightarrow 20190926124819 \end{aligned}$

Cruise JC187		Date: 26/09/2019$19269$		Sheet No. 49		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
524	113	13.05	$5^{\circ} 43.76082$	$7^{\circ} 37.48698$	4206	$\begin{aligned} \text { EOL/SOL: } \text { MBS_113_L15 } & \rightarrow 0608 \\ \text { 3.5S_113_L15 } & \rightarrow 20190926130438 \end{aligned}$
525	113	13.28	$5^{\circ} 45.88920$	$7^{\circ} 38.17218$	4195	$\begin{aligned} \text { EOL/SOL: MBS_113_L16 } & \rightarrow 0609 \\ \text { 3.5S_113_L16 } & \rightarrow 20190926132803 \end{aligned}$
526	113	13.42	$5^{\circ} 45.34181$	$7^{\circ} 39.11292$	4188	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L17 } & \rightarrow 0610 \\ \text { 3.5S_113_L17 } & \rightarrow 20190926134200 \end{aligned}$
527	113	13.54	$5^{\circ} 44.06598$	$7^{\circ} 38.73186$	4194	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L18 } & \rightarrow 0611 \\ \text { 3.5S_113_L18 } & \rightarrow 20190926135359 \end{aligned}$
528	113	14.10	$5^{\circ} 44.11686$	$7^{\circ} 40.10820$	4188	$\begin{aligned} \text { EOL/SOL: } \text { MBS_113_L19 } & \rightarrow 0612 \\ \text { 3.5S_113_L19 } & \rightarrow 20190926141124 \end{aligned}$
529	113	14.35	$5^{\circ} 46.40112$	$7^{\circ} 39.87234$	4197	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L20 } & \rightarrow 0613 \\ \text { 3.5S_113_L20 } & \rightarrow 20190926143441 \end{aligned}$

530	113	14.47	$5^{\circ} 46.48770$	$7^{\circ} 40.95870$	4180	$\begin{aligned} \hline \text { EOL/SOL: MBS_113_L21 } & \rightarrow 0614 \\ \text { 3.5S_113_L21 } & \rightarrow 20190926144733 \end{aligned}$
531	113	15.11	$5^{\circ} 44.08606$	$7{ }^{\circ} 41.20440$	4182	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L22 } & \rightarrow 0615 \\ \text { 3.5S_113_L22 } & \rightarrow 20190926151139 \end{aligned}$
532	113	15.23	$5^{\circ} 44.32182$	$7^{\circ} 42.26454$	4168	$\begin{aligned} \text { EOL/SOL: } \text { MBS_113_L23 } & \rightarrow 0616 \\ \text { 3.5S_113_L23 } & \rightarrow 20190926152449 \end{aligned}$
533	113	15.48	$5^{\circ} 46.59600$	$7^{\circ} 42.03774$	4199	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L24 } & \rightarrow 0617 \\ \text { 3.5S_113_L24 } & \rightarrow 20190926154800 \end{aligned}$
534	113	16.02	$5^{\circ} 46.20510$	$7^{\circ} 43.1514$	4150	$\begin{aligned} \hline \text { EOL/SOL: MBS_113_L21 } & \rightarrow 0618 \\ \text { 3.5S_113_L21 } & \rightarrow 20190926160201 \end{aligned}$

Cruise JC187		Date: 26/09/2019$19269$		Sheet No. 50		
Station Number (JC187/Station x)	Site Number (as on GIS)	$\begin{gathered} \text { Time } \\ \text { In GMT } \end{gathered}$	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
535	113	16.24	$5^{\circ} 53.87362$	7043.39558	4159	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L26 } & \rightarrow 0619 \\ \text { 3.5S_113_L26 } & \rightarrow 20190926162411 \end{aligned}$
536	113	16.41	$5^{\circ} 44.6427$	$7^{\circ} 44.39292$	4127	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L27 } \rightarrow 0620 \\ \text { 3.5S_113_L27 } \rightarrow 20190926164103 \end{aligned}$
537	113	16.56	$5^{\circ} 46.11186$	$7^{\circ} 44.25282$	4148	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L28 } & \rightarrow 0621 \\ \text { 3.5S_113_L28 } & \rightarrow 20190926165630 \end{aligned}$

538	113	17.10	$5^{\circ} 46.1774$	$7^{\circ} 45.31890$	4136	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L29 } & \rightarrow 0622 \\ \text { 3.5S_113_L29 } & \rightarrow 20190926171028 \end{aligned}$
539	113	17.25	$5^{\circ} 44.55180$	$7^{\circ} 45.51972$	4121	$\begin{aligned} \text { EOL/SOL: MBS_113_L30 } & \rightarrow 0623 \\ 3.5 S _113 _L 30 & \rightarrow 20190926172548 \end{aligned}$
540	113	17.38	$5^{\circ} 44.77526$	$7^{\circ} 46.57866$	4131	$\begin{aligned} \hline \text { EOL/SOL: MBS_113_L31 } \rightarrow 0624 \\ \text { 3.5S_113_L31 } \rightarrow 20190926173812 \end{aligned}$
541	113	17.54	$5^{\circ} 46.36638$	$7^{\circ} 46.38906$	4133	$\begin{aligned} \text { EOL/SOL: MBS_113_L32 } & \rightarrow 0625 \\ \text { 3.5S_113_L32 } & \rightarrow 20190926175404 \end{aligned}$
542	113	18.04	$5^{\circ} 46.50084$	$7^{\circ} 47.46594$	4114	$\begin{aligned} \hline \text { EOL/SOL: MBS_113_L33 } & \rightarrow 0626 \\ \text { 3.5S_113_L33 } & \rightarrow 20190926180445 \end{aligned}$
543	113	18.25	$5{ }^{\circ} 45.32010$	$7{ }^{\circ} 47.60028$	4243	$\begin{aligned} \hline \text { EOL/SOL: MBS_113_L34 } \rightarrow 0627 \\ \text { 3.5S_113_L34 } \rightarrow 20190926182508 \end{aligned}$
544	114	18.29	$5{ }^{\circ} 45.32112$	$7{ }^{\circ} 47.60040$	4188	At site CTD \rightarrow CTD-11 cancelled as problem with wire. SVP run For multibeam
545	114	18.57	$5^{\circ} 45.32076$	$7^{\circ} 47.60016$	4305	SVP @ surface (to be deployed)

Cruise JC187		Date: 27/09/2019, 19269-19270	Sheet No. 51		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)
(Include any exact USBL positions here)					

546	114	20.25	$5^{\circ} 45.32022$	$7^{\circ} 47.60160$	4190	SVP @ bottom, cable out: 4100m
547	114	21.44	$5^{\circ} 45.32040$	7047.60094	4192	SVP @ back on deck
548	113	21.59	$5^{\circ} 45.26130$	$7^{\circ} 47.59296$	4204	$\begin{aligned} & \text { Resume line: MBS_113_L34 } \rightarrow 0630 \\ & \qquad \text { 3.5S_113_L34 } \rightarrow 20190926182508 \end{aligned}$
549	113	22.10	$5^{\circ} 44.37186$	$7^{\circ} 47.75040$	4131	$\begin{aligned} \text { EOL/SOL: MBS_113_L35 } & \rightarrow 0631 \\ \text { 3.5S_113_L35 } & \rightarrow 20190926221008 \end{aligned}$
550	113	22.25	$5^{\circ} 45.02550$	$7^{\circ} 48.74472$	4117	$\begin{aligned} \text { EOL/SOL: } \text { MBS_113_L36 } & \rightarrow 0632 \\ \text { 3.5S_113_L36 } & \rightarrow 20190926222532 \end{aligned}$
551	113	22.52	$5^{\circ} 47.58768$	$7^{\circ} 48.47640$	4119	$\begin{aligned} & \hline \text { EOL/SOL: } \text { MBS_113_L37 } \rightarrow 0633 \\ & \text { 3.5S_113_L37 } \rightarrow 20190926225248 \end{aligned}$
552	113	23.12	$5^{\circ} 47.24220$	$7^{\circ} 49.54860$	4107	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L38 } & \rightarrow 0634 \\ \text { 3.5S_113_L38 } & \rightarrow 20190926231233 \end{aligned}$
553	113	23.40	$5^{\circ} 44.33700$	$7^{\circ} 49.91580$	4117	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L39 } & \rightarrow 0635 \\ \text { 3.5S_113_L39 } & \rightarrow 20190926234026 \end{aligned}$
554	113	23.52	$5^{\circ} 44.37936$	$7^{\circ} 50.9673$	4108	$\begin{aligned} \text { EOL/SOL: MBS_113_L40 } & \rightarrow 0636 \\ \text { 3.5S_113_L40 } & \rightarrow 20190926235209 \end{aligned}$
555	113	00.26	$5^{\circ} 47.66490$	$7^{\circ} 50.61030$	4107	$\begin{aligned} \hline \text { EOL/SOL: MBS_113_L41 } & \rightarrow 0637 \\ \text { 3.5S_113_L41 } & \rightarrow 20190927002655 \end{aligned}$
556	113	00.42	$5^{\circ} 47.12244$	$7^{\circ} 51.74048$	4101	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L42 } & \rightarrow 0638 \\ \text { 3.5S_113_L42 } & \rightarrow 20190927004208 \end{aligned}$

Cruise JC187		Date: 27/09/2019$19270$		Sheet No. 52		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
557	113	01.11	$5^{\circ} 44.31288$	$7^{\circ} 52.08162$	4102	$\begin{aligned} \hline \text { EOL/SOL: MBS_113_L43 } & \rightarrow 0639 \\ \text { 3.5S_113_L43 } & \rightarrow 20190927011113 \end{aligned}$
558	113	01.27	$5^{\circ} 44.13174$	$7^{\circ} 53.17446$	4102	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L44 } & \rightarrow 0640 \\ \text { 3.5S_113_L44 } & \rightarrow 20190927012707 \end{aligned}$
559	113	02.14	$5^{\circ} 48.71847$	$7^{\circ} 52.64244$	4095	$\begin{aligned} \hline \text { EOL/SOL: MBS_113_L45 } & \rightarrow 0641 \\ \text { 3.5S_113_L45 } & \rightarrow 20190927021406 \end{aligned}$
560	113	02.27	$5^{\circ} 48.79182$	$7^{\circ} 53.73234$	4081	$\begin{aligned} \text { EOL/SOL: MBS_113_L46 } & \rightarrow 0642 \\ \text { 3.5S_113_L46 } & \rightarrow 20190927022711 \end{aligned}$
561	113	02.59	$5^{\circ} 45.48282$	$7^{\circ} 54.14814$	4088	$\begin{aligned} \text { EOL/SOL: } \text { MBS_113_L47 } & \rightarrow 0643 \\ \text { 3.5S_113_L47 } & \rightarrow 20190927025949 \end{aligned}$
562	113	03.13	$5^{\circ} 45.84872$	$7^{\circ} 55.19232$	4074	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L48 } & \rightarrow 0644 \\ \text { 3.5S_113_L48 } & \rightarrow 20190927031327 \end{aligned}$
563	113	03.52	$5^{\circ} 49.83048$	$7^{\circ} 54.71478$	4082	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L49 } & \rightarrow 0645 \\ \text { 3.5S_113_L49 } & \rightarrow 20190927035221 \end{aligned}$
564	113	04.05	$5^{\circ} 49.73106$	$7^{\circ} 55.77384$	4065	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L50 } & \rightarrow 0646 \\ \text { 3.5S_113_L50 } & \rightarrow 20190927040533 \end{aligned}$
565	113	04.44	$5^{\circ} 45.70806$	$7^{\circ} 56.30802$	4068	EOL/SOL: MBS_113_L51 $\rightarrow 0647$

					3.5S_113_L51 \rightarrow 20190927044407	
566	113	04.57	$5^{\circ} 46.08987$	$7^{\circ} 57.33900$	4056	EOL/SOL: MBS_113_L52 \rightarrow 0648
3.5S_113_L52 \rightarrow 20190927045726						

Cruise JC187		Date: 27/09/2019$19270$		Sheet No. 53		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
568	113	05.44	$5^{\circ} 47.83110$	$7^{\circ} 58.21200$	4040	$\begin{aligned} \hline \text { EOL/SOL: MBS_113_L54 } & \rightarrow 0650 \\ \text { 3.5S_113_L54 } & \rightarrow 20190927054425 \end{aligned}$
569	113	06.04	$5^{\circ} 45.98148$	$7^{\circ} 58.45416$	4051	$\begin{aligned} \text { EOL/SOL: MBS_113_L55 } & \rightarrow 0651 \\ \text { 3.5S_113_L55 } & \rightarrow 20190927060516 \end{aligned}$
570	113	06.18	$5^{\circ} 46.2308$	$7^{\circ} 59.46984$	4043	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L56 } & \rightarrow 0652 \\ \text { 3.5S_113_L56 } & \rightarrow 20190927061859 \end{aligned}$
571	113	06.48	$5^{\circ} 48.40752$	$7^{\circ} 59.23304$	4044	$\begin{aligned} \text { EOL/SOL: } \text { MBS_113_L57 } & \rightarrow 0653 \\ \text { 3.5S_113_L57 } & \rightarrow 20190927064446 \end{aligned}$
572	113	06.59	$5^{\circ} 48.19041$	$8^{\circ} 0.36198$	4047	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L58 } & \rightarrow 0654 \\ \text { 3.5S_113_L58 } & \rightarrow 20190927065957 \end{aligned}$

573	113	07.17	$5^{\circ} 46.68036$	$8^{\circ} 0.5331$	4154	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L59 } & \rightarrow 0655 \\ \text { 3.5S_113_L59 } & \rightarrow 20190927071751 \end{aligned}$
574	113	$07.41 \quad-$ ish	?	?	?	EOL/SOL: Accidently started new line at some point in sub-bottom $\text { 3.5S_113_L60 } \rightarrow 20190927074118$
575	113	07.46	$5^{\circ} 46.50972$	$8^{\circ} 1.60002$	4028	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L61 } & \rightarrow 0656 \\ \text { 3.5S_113_L61 } & \rightarrow 20190927074623 \end{aligned}$
576	113	08.07	$5^{\circ} 45.97152$	$7^{\circ} 59.81400$	4040	$\begin{aligned} \text { EOL/SOL: } \text { MBS_113_L62 } & \rightarrow 0657 \\ \text { 3.5S_113_L62 } & \rightarrow 20190927080703 \end{aligned}$
577	113	08.22	$5^{\circ} 44.96544$	$8^{\circ} 0.23508$	4033	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L63 } & \rightarrow 0658 \\ \text { 3.5S_113_L63 } & \rightarrow 20190927082200 \end{aligned}$
578	113	08.52	$5^{\circ} 45.77472$	$8^{\circ} 2.96112$	4026	$\begin{aligned} \text { EOL/SOL: MBS_113_L64 } & \rightarrow 0659 \\ \text { 3.5S_113_L64 } & \rightarrow 20190927085235 \end{aligned}$

Cruise JC187		$\begin{aligned} & \text { Date:27/09/2019 } \\ & 19270 \end{aligned}$		Sheet No. 54		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
579	113	09.06	$5^{\circ} 44.59914$	$8^{\circ} 2.85960$	4014	$\begin{aligned} \text { EOL/SOL: } \text { MBS_113_L65 } & \rightarrow 0660 \\ \text { 3.5S_113_L65 } & \rightarrow 20190927090631 \end{aligned}$
580	113	09.31	$5^{\circ} 43.89738$	$8^{\circ} 0.46944$	4030	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L66 } & \rightarrow 0661 \\ \text { 3.5S_113_L66 } & \rightarrow 20190927093114 \end{aligned}$

581	113	10.00	$5^{\circ} 42.57900$	$8^{\circ} 2.30178$	4017	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L67 } \rightarrow 0662 \\ \text { 3.5S_113_L67 } \rightarrow 20190927100046 \end{aligned}$
582	113	10.18	$5^{\circ} 44.32750$	$8^{\circ} 2.30880$	4011	$\begin{aligned} \text { EOL/SOL: } \text { MBS_113_L68 } & \rightarrow 0663 \\ \text { 3.5S_113_L68 } & \rightarrow 20190927101835 \end{aligned}$
583	113	10.32	$5^{\circ} 44.43192$	$8^{\circ} 3.37974$	4014	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L69 } & \rightarrow 0664 \\ \text { 3.5S_113_L69 } & \rightarrow 20190927103200 \end{aligned}$
584	113	10.50	$5^{\circ} 42.52832$	$8^{\circ} 3.37740$	4020	$\begin{aligned} & \text { EOL/SOL: } \text { MBS_113_L70 } \rightarrow 0665 \\ & \text { 3.5S_113_L70 } \rightarrow 20190927105014 \end{aligned}$
585	113	11.03	$5^{\circ} 42.57318$	$8^{\circ} 4.46844$	4014	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L71 } \rightarrow 0666 \\ \text { 3.5S_113_L71 } \rightarrow 20190927110349 \end{aligned}$
586	113	11.25	$5^{\circ} 44.60964$	$8^{\circ} 4.45920$	4004	$\begin{aligned} \text { EOL/SOL: } \text { MBS_113_L72 } & \rightarrow 0667 \\ \text { 3.5S_113_L72 } & \rightarrow 20190927112528 \end{aligned}$
587	113	11.38	$5^{\circ} 44.453$	$8^{\circ} 5.55816$	4013	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L73 } & \rightarrow 0668 \\ \text { 3.5S_113_L73 } & \rightarrow 20190927113851 \end{aligned}$
588	113	11.56	$5^{\circ} 42.68388$	$8^{\circ} 5.52660$	4015	$\begin{aligned} \text { EOL/SOL: } \text { MBS_113_L74 } & \rightarrow 0669 \\ \text { 3.5S_113_L74 } & \rightarrow 20190927115622 \end{aligned}$
589	113	12.10	$5^{\circ} 42.76440$	$8^{\circ} 6.63100$	4009	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L75 } \rightarrow 0670 \\ \text { 3.5S_113_L75 } \rightarrow 20190927121054 \end{aligned}$

| Cruise
 JC187 | Date: 27/09/19
 19270 | Sheet No. 55 |
| :--- | :--- | :--- | :--- |

Station Number (JC187/Station x)	Site Number (as on GIS)	$\begin{gathered} \text { Time } \\ \text { In GMT } \end{gathered}$	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
590	113	12.41	$5^{\circ} 45.61488$	$8^{\circ} 6.50772$	4027	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L76 } & \rightarrow 0671 \\ \text { 3.5S_113_L76 } & \rightarrow 20190927124100 \end{aligned}$
591	113	12.56	$5^{\circ} 45.94410$	$8^{\circ} 7.58208$	4024	$\begin{aligned} \hline \text { EOL/SOL: MBS_113_L77 } & \rightarrow 0672 \\ \text { 3.5S_113_L77 } & \rightarrow 20190927125617 \end{aligned}$
592	113	13.22	$5^{\circ} 43.21956$	$8^{\circ} 7.82814$	3997	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_113_L78 } & \rightarrow 0673 \\ \text { 3.5S_113_L78 } & \rightarrow 20190927132237 \end{aligned}$
593	113	13.39	$5^{\circ} 42.7698$	$8^{\circ} 8.79462$	3996	$\begin{aligned} \text { EOL/SOL: MBS_113_L79 } & \rightarrow 0674 \\ \text { 3.5S_113_L79 } & \rightarrow 20190927133943 \end{aligned}$
594	113	13.55	$5^{\circ} 44.270$	$8^{\circ} 8.784$	3986	$\begin{gathered} \text { EOL/SOL: MBS_113_80 } \rightarrow 0675 \text { END OF SURVEY } \\ \text { 3.5S_113_L80 } \rightarrow 20190927135604 \end{gathered}$
595	32	14.15	$5^{\circ} 44.08512$	$8^{\circ} 8.24130$	4096	Multicore on deck to be deployed JC187-MC-23
596	32	15.59	$5^{\circ} 44.10068$	$8^{\circ} 8.23146$	4116	Multicore @ seabed JC187-MC23 cable out: 4185 m pull out: 4.32 USBL: $5^{\circ} 44.09221 \mathrm{~S}, 8^{\circ} 8.21884 \mathrm{E}$, depth 4175 m
597	32	17.43	$5^{\circ} 44.10066$	$8^{\circ} 8.23134$	4098	JC187-MC23 back on deck 7 bottles empty. Over penetration bases could not close
						Odd pull out, may have juddered along the seafloor 1 full tube, homogenous mud
598	32	18.28	$5^{\circ} 44.10048$	$8^{\circ} 8.23086$	4132	JC187-PC18 at surface, 12 m barrel

599	32	19.43	$5^{\circ} 44.10090$	$8^{\circ} 8.23128$	4098	JC187-PC18 @ bottom cable out: 4185 m pull out: 5.4
USBL: $5^{\circ} 44.23653 \mathrm{~S}, 8^{\circ} 8.06768 \mathrm{E}$, depth 4107.5 m						

Cruise JC187		Date: 27/09/2019-28/09/2019; 19270-19271		Sheet No. 56		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
600	32	21.02	$5^{\circ} 44.10012$	$8^{\circ} 8.23038$	4097	JC187-PC18 back on deck, slightly band barrel 7 m core, sandy
601	53	21.47	$5^{\circ} 43.71996$	$8^{\circ} 8.21088$	4207	MC-24 at surface
602	53	23.27	$5^{\circ} 43.7199$	$8^{\circ} 8.21070$	4196	MC-24 at seabed. Cable out: 4093 m USBL: $5^{\circ} 43.71279,8^{\circ} 8.20819$ @ $4061.2 \mathrm{~m}, \Delta=13.89 \mathrm{~m} 340.5^{\circ}$
603	53	01.07	$5^{\circ} 43.7203$	$8^{\circ} 8.21070$	4157	MC-24 back on deck 8 cores with interface and layered mudrich sediment
604	53	01.31	$5^{\circ} 43.71078$	$8^{\circ} 8.21058$	4361	JC187-PC19 at surface, 18 m barrel
605	53	03.08	$5^{\circ} 43.71078$	$8^{\circ} 8.21040$	4210	JC187-PC19 @ bottom cable out: 4059.5m pull out: 6.3Te USBL: $5^{\circ} 43.69907,8^{\circ} 8.20575$, depth 4060 m
606	53	04.39	$5^{\circ} 43.71000$	$8^{\circ} 8.21010$	4214	JC187-PC19 back on deck
607	33	05.39	$5^{\circ} 45.25146$	$8^{\circ} 7.63398$	4014	OBS-06 released

608	120	06.17	$5^{\circ} 43.80126$	$8^{\circ} 7.06044$	4142	NERC Mooring 5. Sphere on the water
609	120	06.31	$5^{\circ} 43.86276$	$8^{\circ} 7.28220$	4124.5	NERC Mooring 5. In the water ready to release
610	120	06.34	$5^{\circ} 43.88013$	$8^{\circ} 7.34379$	4141	NERC Mooring 5 Anchor released

Cruise JC187		Date: 28/09/2019$19271$		Sheet No. 57		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
611	120	6.41	$5^{\circ} 43.88238$	$8^{\circ} 7.35612$	4139.5	NERC Mooring 5 Anchor going down
612	120	7.00	$5^{\circ} 43.88310$	$8^{\circ} 7.35654$	4073	NERC Mooring 5 Anchor on the ground. 4046 m water depth
613	120	7.22	1) $5^{\circ} 42.62148$ 2) $5^{\circ} 42.62388$	$\begin{aligned} & 8^{\circ} 8.34618 \\ & 8^{\circ} 8.34456 \end{aligned}$	N/A	NERC Mooring 5 Triangulation point 1, NE 1) 5062 ; 2) 5061,5058
614	120	7.56	1) $5^{\circ} 45.08934$ 2) $5^{\circ} 45.08784$	$\begin{aligned} & 8^{\circ} 8.36844 \\ & 8^{\circ} 8.36868 \end{aligned}$	N/A	NERC Mooring 5 Triangulation point 2, SE 1) 5031 ; 2) 5028
615	120	8.26	1) $5^{\circ} 44.99820$ 2) $5^{\circ} 44.99124$	$\begin{aligned} & 8^{\circ} 6.10422 \\ & 8^{\circ} 6.10422 \end{aligned}$	N/A	NERC Mooring 5 Triangulation point 3, SW 1) 5055 ; 2) 5054
616	120	8.54	1) $5^{\circ} 42.59526$	$8^{\circ} 6.16992$	N/A	NERC Mooring 5 Triangulation point 4, NW

			2) $5^{\circ} 42.59496$	$8^{\circ} 6.16920$		1) 5145 ; 2) 5145
617	54	9.53	$5^{\circ} 49.22934$	$8^{\circ} 8.70882$	4034	JC187-MC25 At sea surface
618	54	11.35	$5^{\circ} 49.22946$	$8^{\circ} 8.70966$	4034	JC187-MC25 Cable out: 4069 m , pull out: 4.19 USBL: $5^{\circ} 49.22455,8^{\circ} 8.70782$, depth: 4041 m
619	54	13.17	$5^{\circ} 49.22964$	$8^{\circ} 8.70918$	4034	JC187-MC25 Core at surface, 8 full tubes
620	54	14.06	$5^{\circ} 49.22958$	$8^{\circ} 8.70048$	4044	JC187-PC20 Core at surface
621	54	15.25	$5^{\circ} 49.23036$	$8^{\circ} 8.70060$	4035	JC187-PC20 at seabed. Cable out: 4035.5 m , Max Te 6.1 Te USBL: $5^{\circ} 49.21664,8^{\circ} 8.69629$, depth: 4021.2 m

Cruise JC187		Date: 29/09/2019; 19271-19272				
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
622	54	16.49	$5^{\circ} 49.23012$	$8^{\circ} 8.70036$	4039	JC187-PC20 Back on deck
623	101	19.03	$5^{\circ} 45.86940$	$7^{\circ} 51.91638$	4084	OBS-07 released
624	102	22.35	$5^{\circ} 46.49400$	$7^{\circ} 16.13196$	4305	OBS-08 released
625	79	00.46	$5^{\circ} 53.667$	$6^{\circ} 55.09146$	4416	Recover OBIC prototype moorings OBS

					One mooring released already (45m/min)	
626	79	02.05	$5^{\circ} 53.670$	$6^{\circ} 55.01982$	4441	OBS mooring on surface, flash visible
627	79	02.18	$5^{\circ} 53.73834$	$6^{\circ} 54.98454$	Not pingin g	OBS Prototype back on deck, 1/4
628	80	02.25	$5^{\circ} 53.77098$	$6^{\circ} 54.99192$	Not pingin g	Releasing second OBS
629	80	04.30	$5^{\circ} 54.0307$	$6^{\circ} 54.9175$	Not pingin g	OBS Prototype back on deck, 2/4
630	81	04.39	$5^{\circ} 54.030$	$5^{\circ} 54.0579$	$6^{\circ} 55.0998$	Not pingin g
631						OBS @ surface

Cruise JC187		Date: 29/09/2019 19272		Sheet No. 59 Station Number (JC187/Station x)	Site Number (as on GIS)
Time	Latitude In GMT (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)	

633	81	06.??	$5^{\circ} 54.131$	$6^{\circ} 55.351$	Not pinging	OBS Prototype back on deck, 3/4
634	82	06.06	$5^{\circ} 53.6280$	$6^{\circ} 55.432$	Not pinging	OBS prototype released
635	82	07.36	$5^{\circ} 53.66004$	$6^{\circ} 55.43844$	Not pinging	OBS prototype on sea surface
636	82	07.51	$5^{\circ} 53.46256$	$6^{\circ} 55.46268$	Not pinging	OBS Prototype back on deck, 4/4
637	37	08.18	$5^{\circ} 54.86820$	$6^{\circ} 53.41830$	4442	OBS-9 deployed (near NERC mooring 6)
638	117	09.04	$5^{\circ} 52.27008$	$6^{\circ} 55.38432$	4482	NERC Mooring 6 Float in water
639	117	09.05	$5^{\circ} 52.24422$	$6^{\circ} 55.41450$	4457	NERC Mooring 6 ADCP float in water
640	117	09.12	$5^{\circ} 52.15446$	$6^{\circ} 55.50822$	4470	NERC Mooring 6 Anchor in water
641	117	09.15	$5^{\circ} 52.12140$	$6^{\circ} 55.53954$	4476	NERC Mooring 6 Anchor dropped
642	117	09.38	$5^{\circ} 52.11114$	$6^{\circ} 55.55004$	4430	NERC Mooring 6 Anchor on seafloor, range: 4403 m, 4402 m
643	117	10.04	$5^{\circ} 52.14198$	$6^{\circ} 53.78484$	/	NERC Mooring 6 Triangulation point 1, west, 5436 m

Cruise JC187		Date: 29/09/2019$19272$		Sheet No. 60 **During this line the Multibeam stopped logging for 20 mins, but luckily we Already have this data!		
Station Number (JC187/Station x)	Site Number (as on GIS)	$\begin{gathered} \text { Time } \\ \text { In GMT } \end{gathered}$	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
644	117	10.37	$\begin{aligned} & 5^{\circ} 50.38686 \\ & 5^{\circ} 50.38074 \end{aligned}$	$\begin{aligned} & 6^{\circ} 55.53768 \\ & 6^{\circ} 55.53762 \end{aligned}$	/	NERC Mooring 6 North Triangulation point 2, 1) 5461 m, 5463 m, 2) $5469 \mathrm{~m}, 5471 \mathrm{~m}$
645	117	11.14	$\begin{aligned} & 5^{\circ} 52.15422 \\ & 5^{\circ} 52.15536 \end{aligned}$	$\begin{aligned} & 6^{\circ} 57.18360 \\ & 6^{\circ} 57.18596 \end{aligned}$	/	NERC Mooring 6 East boat still moving so values discarded Triangulation point 3, 1) 5359 m, 2) 5563 m
646	117	11.14	$\begin{aligned} & 5^{\circ} 52.15962 \\ & 5^{\circ} 52.15962 \end{aligned}$	$\begin{aligned} & 6^{\circ} 57.19416 \\ & 6^{\circ} 57.19440 \end{aligned}$	/	NERC Mooring 6 East Triangulation point 3, 1) $5375 \mathrm{~m}, 5479 \mathrm{~m}, 2) 5375 \mathrm{~m}$
647	117	11.49 (?)	$\begin{aligned} & 5^{\circ} 53.84496 \\ & 5^{\circ} 53.84412 \end{aligned}$	$\begin{aligned} & 6^{\circ} 55.51590 \\ & 6^{\circ} 55.51614 \end{aligned}$	/	NERC Mooring 6 South Triangulation point 3, 1) 5393 m, 2) $5392 \mathrm{~m}, 5393 \mathrm{~m}$
648	$\begin{aligned} & 100 \mathrm{~m} \text { E of } \\ & 119 \end{aligned}$	12.41	$5^{\circ} 53.36958$	$6^{\circ} 53.39646$	4483	Deployment of SVP @ sea surface
649	$\begin{aligned} & 100 \mathrm{~m} \text { E of } \\ & 119 \end{aligned}$	14.17	$5^{\circ} 53.37216$	$6^{\circ} 53.39694$	4479	SVP @ seabed (cable out 4400 m)
650	$\begin{aligned} & 100 \mathrm{~m} \mathrm{E} \text { of } \\ & 119 \end{aligned}$	15.58	$5^{\circ} 53.37270$	$6^{\circ} 53.39718$	4482	SVP back on deck
651	119	16.31	$5^{\circ} 53.40582$	$6^{\circ} 53.38650$	4493	$\begin{aligned} \hline \text { EOL/SOL: MBS_119_L01 } \rightarrow 0714 * * \\ \text { 35S_119_L01 } \rightarrow 20190929163145 \end{aligned}$
652	119	17.37	$5^{\circ} 54.47874$	$6^{\circ} 47.01702$	4533	EOL/SOL: MBS_119_L02 $\rightarrow 0717$

\(\left.\begin{array}{|l|l|l|l|l|l|l|}\hline \& \& \& \& \& 35S_119_L02 \rightarrow 20190929173712

\hline 653 \& 119 \& 17.52 \& 5^{\circ} 55.06662 \& 6^{\circ} 45.52698 \& 4551 \& EOL/SOL: MBS_119_L03 \rightarrow 0718

35S_119_L03 \rightarrow 20190929175213\end{array}\right]\)| |
| :---: |
| 654 |

Cruise JC187		Date: 29/09/2019 19272		Sheet No. 61 Station 656-665 skipped because of a typo		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
655	119	19.29	$6^{\circ} 3.23358$	$6^{\circ} 39.15186$	4558	$\begin{aligned} & \text { EOL/SOL: MBS_119_L05 } \rightarrow 0721 \\ & \quad \text { 35S_119_L05 } \rightarrow 20190929192858 \end{aligned}$
666	119	20.08	$6^{\circ} 5.40024$	$6^{\circ} 35.42001$	4526	$\begin{aligned} & \text { EOL/SOL: MBS_119_LO6 } \rightarrow 0722 \\ & \text { 35S_119_L06 } \rightarrow 20190929200829 \end{aligned}$
667	119	20.47	$6^{\circ} 5.52990$	$6^{\circ} 31.10682$	4595	$\begin{aligned} & \text { EOL/SOL: MBS_119_LO7 } \rightarrow 0723 \\ & \qquad \text { 35S_119_L07 } \rightarrow 20190929204737 \end{aligned}$
668	119	21.08	$6^{\circ} 6.27816$	$6^{\circ} 29.061305$	4613	$\begin{aligned} & \text { EOL/SOL: MBS_119_L08 } \rightarrow 0724 \\ & \quad \text { 35S_119_L08 } \rightarrow 20190929210748 \end{aligned}$
669	119	21.54	$6^{\circ} 10.90800$	$6^{\circ} 27.50592$	4563	$\begin{aligned} & \text { EOL/SOL: MBS_119_L09 } \rightarrow 0725 \\ & \qquad \text { 35S_119_L09 } \rightarrow 20190929214416 \end{aligned}$

670	119	22.06	$6^{\circ} 10.19202$	$6^{\circ} 27.15312$	4560	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_119_L10 } \rightarrow 0726 \\ \text { 35S_119_L10 } \rightarrow 20190929220726 \end{aligned}$
671	119	22.23	$6^{\circ} 10.61167$	$6^{\circ} 28.79820$	4566	$\begin{aligned} & \text { EOL/SOL: MBS_119_L11 } \rightarrow 0727 \\ & \qquad \text { 35S_119_L11 } \rightarrow 20190929222351 \end{aligned}$
672	119	22.34	$6^{\circ} 9.56543$	$6^{\circ} 28.82163$	4556	$\begin{aligned} & \hline \text { EOL/SOL: } \text { MBS_119_L12 } \rightarrow 0728 \\ & \text { 35S_119_L12 } \rightarrow 20190929223449 \end{aligned}$
673	119	22.53	$6^{\circ} 8.98398$	$6^{\circ} 26.93032$	4560	$\begin{aligned} & \text { EOL/SOL: MBS_119_L13 } \rightarrow 0729 \\ & \qquad \text { 35S_119_L13 } \rightarrow 20190929225350 \end{aligned}$
674	119	23.04	$6^{\circ} 8.04354$	$6^{\circ} 27.62214$	4547	$\begin{aligned} & \text { EOL/SOL: MBS_119_L14 } \rightarrow 0730 \\ & \text { 35S_119_L14 } \rightarrow 20190929230505 \end{aligned}$
675	119	23.32	$6^{\circ} 8.62230$	$6^{\circ} 29.43984$	4561	$\begin{aligned} & \text { EOL/SOL: MBS_119_L15 } \rightarrow 0731 \\ & \text { 35S_119_L15 } \rightarrow 20190929232337 \end{aligned}$

Cruise JC187		Date: 29/09/2019-30/09/2019, 19272-19273		Sheet No. 62		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
676	119	23.32	$6^{\circ} 7.52524$	$6^{\circ} 29.51943$	4556	$\begin{aligned} \text { EOL/SOL: MBS_119_L16 } & \rightarrow 0732 \\ \text { 35S_119_L16 } & \rightarrow 20190929233259 \end{aligned}$
677	119	23.52	$6^{\circ} 6.87000$	$6^{\circ} 27.49248$	4554	$\begin{aligned} \hline \text { EOL/SOL: MBS_119_L17 } & \rightarrow 0733 \\ \text { 35S_119_L17 } & \rightarrow 20190929235249 \end{aligned}$

678	119	00.11	$6^{\circ} 5.58576$	$6^{\circ} 28.53864$	4557	$\begin{aligned} \hline \text { EOL/SOL: MBS_119_L18 } & \rightarrow 0734 \\ 35 S _119 _L 18 & \rightarrow 20190930001220 \end{aligned}$
679	119	00.31	$6^{\circ} 7.08324$	$6^{\circ} 29.73300$	4543	$\begin{aligned} \text { EOL/SOL: MBS_119_L19 } & \rightarrow 0735 \\ \text { 35S_119_L19 } & \rightarrow 20190930003212 \end{aligned}$
680	119	00.42	$6^{\circ} 6.43109$	$6^{\circ} 30.25284$	4543	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_119_L20 } \rightarrow 0736 \\ \text { 35S_119_L20 } \rightarrow 20190930004235 \end{aligned}$
681	119	00.55	$6^{\circ} 5.01043$	$6^{\circ} 29.77788$	4550	$\begin{aligned} \text { EOL/SOL: MBS_119_L21 } \rightarrow 0737 \\ \text { 35S_119_L21 } \rightarrow 20190930005623 \end{aligned}$
682	119	01.07	$6^{\circ} 4.273432$	$6^{\circ} 30.83176$	4541	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_119_L22 } & \rightarrow 0738 \\ \text { 35S_119_L22 } & \rightarrow 20190930010757 \end{aligned}$
683	119	01.25	$6^{\circ} 6.32190$	$6^{\circ} 31.41570$	4540	$\begin{aligned} \text { EOL/SOL: MBS_119_L23 } & \rightarrow 0739 \\ \text { 35S_119_L23 } & \rightarrow 20190930012551 \end{aligned}$
684	119	01.35	$6^{\circ} 6.25806$	$6^{\circ} 32.21532$	4532	$\begin{aligned} \hline \text { EOL/SOL: MBS_119_L24 } & \rightarrow 0740 \\ \text { 35S_119_L24 } & \rightarrow 20190930013514 \end{aligned}$
685	119	01.50	$6^{\circ} 6.46656$	$6^{\circ} 32.17758$	4535	$\begin{aligned} \text { EOL/SOL: MBS_119_L25 } & \rightarrow 0741 \\ \text { 35S_119_L25 } & \rightarrow 20190930015011 \end{aligned}$
686	119	02.02	$6^{\circ} 4.73220$	$6^{\circ} 33.24840$	4523	$\begin{aligned} \hline \text { EOL/SOL: MBS_119_L26 } & \rightarrow 0742 \\ \text { 35S_119_L26 } & \rightarrow 20190930020216 \end{aligned}$

| Cruise
 JC187 | Date: 30/09/2019
 19273 | Sheet No. 63 |
| :--- | :--- | :--- | :--- |

Station Number (JC187/Station x)	Site Number (as on GIS)	$\begin{gathered} \text { Time } \\ \text { In GMT } \end{gathered}$	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
687	119	02.19	$6^{\circ} 6.34818$	$6^{\circ} 33.32610$	4527	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_119_L27 } \rightarrow 0743 \\ \text { 35S_119_L27 } \rightarrow 20190930021909 \end{aligned}$
688	119	02.30	$6^{\circ} 6.21480$	$6^{\circ} 34.38138$	4515	$\begin{aligned} \text { EOL/SOL: } \text { MBS_119_L28 } & \rightarrow 0744 \\ \text { 35S_119_L28 } & \rightarrow 20190930023052 \end{aligned}$
689	119	02.46	$6^{\circ} 4.54200$	$6^{\circ} 34.35480$	4520	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_119_L29 } & \rightarrow 0745 \\ \text { 35S_119_L29 } & \rightarrow 20190930024640 \end{aligned}$
690	119	02.59	$6^{\circ} 4.65060$	$6^{\circ} 35.40618$	4510	$\begin{aligned} \text { EOL/SOL: MBS_119_L30 } & \rightarrow 0746 \\ \text { 35S_119_L30 } & \rightarrow 20190930025938 \end{aligned}$
691	119	03.18	$6^{\circ} 6.12750$	$6^{\circ} 35.86530$	4501	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_119_L31 } \rightarrow 0747 \\ \text { 35S_119_L31 } \rightarrow 20190930031821 \end{aligned}$
692	119	03.32	$6^{\circ} 5.47782$	$6^{\circ} 36.71166$	4504	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_119_L32 } & \rightarrow 0748 \\ \text { 35S_119_L32 } & \rightarrow 20190930023212 \end{aligned}$
693	119	03.52	$6^{\circ} 3.57138$	$6^{\circ} 35.67036$	4510	$\begin{aligned} \hline \text { EOL/SOL: MBS_119_L33 } & \rightarrow 0749 \\ \text { 35S_119_L33 } & \rightarrow 20190930035216 \end{aligned}$
694	119	04.04	$6^{\circ} 3.20940$	$6^{\circ} 36.65952$	4504	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_119_L34 } & \rightarrow 0750 \\ \text { 35S_119_L34 } & \rightarrow 20190930040443 \end{aligned}$
695	119	04.25	$6^{\circ} 5.04576$	$6^{\circ} 37.74750$	4511	$\begin{aligned} \text { EOL/SOL: MBS_119_L35 } & \rightarrow 0751 \\ \text { 35S_119_L35 } & \rightarrow 20190930042547 \end{aligned}$
696	119	04.38	$6^{\circ} 4.42212$	$6^{\circ} 38.62380$	4507	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_119_L36 } & \rightarrow 0752 \\ \text { 35S_119_L36 } & \rightarrow 20190930043825 \end{aligned}$

697	119	04.56	$6^{\circ} 2.64912$	$6^{\circ} 37.59234$	4505	EOL/SOL: MBS_119_L37 $\rightarrow 0753$
35S_119_L37 $\rightarrow 20190930045639$						

Cruise JC187		Date: 30/09/2019$19273$		Sheet No. 64		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
698	119	05.09	$6^{\circ} 2.35632$	$6^{\circ} 38.68104$	4501	$\begin{aligned} \hline \text { EOL/SOL: MBS_119_L38 } & \rightarrow 0754 \\ \text { 35S_119_L38 } & \rightarrow 20190930050939 \end{aligned}$
699	119	05.27	$6^{\circ} 3.98388$	$6^{\circ} 39.62898$	4504	$\begin{aligned} \text { EOL/SOL: MBS_119_L39 } & \rightarrow 0755 \\ \text { 35S_119_L39 } & \rightarrow 20190930052753 \end{aligned}$
700	119	05.45	$6^{\circ} 2.85744$	$6^{\circ} 40.55844$	4497	$\begin{aligned} \hline \text { EOL/SOL: MBS_119_L40 } & \rightarrow 0756 \\ \text { 35S_119_L40 } & \rightarrow 20190930054517 \end{aligned}$
701	119	06.02	$6^{\circ} 1.70004$	$6^{\circ} 39.21222$	4498	$\begin{aligned} \hline \text { EOL/SOL: MBS_119_L41 } & \rightarrow 0757 \\ \text { 35S_119_L41 } & \rightarrow 20190930060223 \end{aligned}$
702	119	06.13	$6^{\circ} 0.97308$	$6^{\circ} 40.05444$	4497	$\begin{aligned} \hline \text { EOL/SOL: MBS_119_L42 } & \rightarrow 0758 \\ \text { 35S_119_L42 } & \rightarrow 20190930061344 \end{aligned}$
703	119	06.32	$6^{\circ} 2.24112$	$6^{\circ} 41.53002$	4498	$\begin{aligned} \text { EOL/SOL: MBS_119_L43 } & \rightarrow 0759 \\ \text { 35S_119_L43 } & \rightarrow 20190930063240 \end{aligned}$
704	119	06.44	$6^{\circ} 1.36446$	$6^{\circ} 42.14003$	4496	$\begin{aligned} \hline \text { EOL/SOL: MBS_119_L44 } & \rightarrow 0760 \\ \text { 35S_119_L44 } & \rightarrow 20190930064422 \end{aligned}$

705	119	07.03	$6^{\circ} 0.04182$	$6^{\circ} 40.66114$	4491	EOL/SOL: MBS_119_L45 $\rightarrow 0761$ 35S_119_L45 $\rightarrow 20190930070327$
706	119	07.14	$5^{\circ} 59.32062$	$6^{\circ} 41.45130$	4481	EOL/SOL: MBS_119_L46 $\rightarrow 0762$ 35S_119_L46 $\rightarrow 20190930071447$
707	119	07.32	$6^{\circ} 0.44406$	$6^{\circ} 42.76878$	4487	EOL/SOL: MBS_119_L47 $\rightarrow 0763$ 35S_119_L47 $\rightarrow 20190930073213$
708	119	07.44	$5^{\circ} 59.53308$	$6^{\circ} 43.36066$	4477	EOL/SOL: MBS_119_L48 $\rightarrow 0764$ 35S_119_L48 $\rightarrow 20190930074402$

Cruise JC187		Date: 30/09/19 19273		Sheet No. 65		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
709	119	08.07	$5^{\circ} 57.95928$	$6^{\circ} 41.49054$	4477	$\begin{aligned} \hline \text { EOL/SOL: MBS_119_L49 } & \rightarrow 0765 \\ \text { 35S_119_L49 } & \rightarrow 20190930080725 \end{aligned}$
710	119	08.18	$5^{\circ} 57.13794$	$6^{\circ} 42.23178$	4463	$\begin{aligned} \hline \text { EOL/SOL: MBS_119_L50 } & \rightarrow 0766 \\ \text { 35S_119_L50 } & \rightarrow 20190930081811 \end{aligned}$
711	119	08.40	$5^{\circ} 58.65270$	$6^{\circ} 43.98128$	4468	$\begin{aligned} \text { EOL/SOL: MBS_119_L51 } & \rightarrow 0767 \\ \text { 35S_119_L51 } & \rightarrow 20190930084005 \end{aligned}$
712	119	08.52	$5^{\circ} 57.81900$	$6^{\circ} 44.70660$	4459	$\begin{aligned} \hline \text { EOL/SOL: MBS_119_L52 } & \rightarrow 0768 \\ \text { 35S_119_L52 } & \rightarrow 20190930085234 \end{aligned}$

713	119	09.13	$5^{\circ} 56.37012$	$6^{\circ} 42.98730$	4463	$\begin{aligned} \hline \text { EOL/SOL: MBS_119_L53 } & \rightarrow 0769 \\ \text { 35S_119_L53 } & \rightarrow 20190930091354 \end{aligned}$
714	119	09.29	$5^{\circ} 56.27484$	$6^{\circ} 44.24502$	4456	$\begin{aligned} \text { EOL/SOL: MBS_119_L54 } & \rightarrow 0770 \\ \text { 35S_119_L54 } & \rightarrow 20190930092939 \end{aligned}$
715	119	09.43	$5^{\circ} 56.83632$	$6^{\circ} 45.5400$	4455	$\begin{aligned} \hline \text { EOL/SOL: MBS_119_L55 } & \rightarrow 0771 \\ \text { 35S_119_L55 } & \rightarrow 20190930094335 \end{aligned}$
716	119	09.59	$5^{\circ} 55.46064$	$6^{\circ} 46.01922$	4455	$\begin{aligned} \text { EOL/SOL: MBS_119_L56 } & \rightarrow 0772 \\ \text { 35S_119_L56 } & \rightarrow 20190930095918 \end{aligned}$
717	119	10.12	$5^{\circ} 54.55986$	$6^{\circ} 44.84346$	4459	$\begin{aligned} \hline \text { EOL/SOL: MBS_119_L57 } & \rightarrow 0773 \\ \text { 35S_119_L57 } & \rightarrow 20190930101254 \end{aligned}$
718	119	10.36	$5^{\circ} 53.86158$	$6^{\circ} 46.89558$	4453	$\begin{aligned} \text { EOL/SOL: } \text { MBS_119_L58 } & \rightarrow 0774 \\ \text { 35S_119_L58 } & \rightarrow 20190930103618 \end{aligned}$
719	119	10.50	$5^{\circ} 55.27806$	$6^{\circ} 47.15922$	4455	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_119_L59 } & \rightarrow 0775 \\ \text { 35S_119_L29 } & \rightarrow 20190930105055 \end{aligned}$

Cruise JC187		Date: 30/09/19$19273$		Sheet No. 66		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
720	119	11.03	$5^{\circ} 54.80101$	$6^{\circ} 48.13998$	4445	$\begin{aligned} \hline \text { EOL/SOL: MBS_119_L60 } & \rightarrow 0776 \\ \text { 35S_119_L60 } & \rightarrow 20190930110315 \end{aligned}$

721	119	11.13	$5^{\circ} 53.72034$	$6^{\circ} 47.96160$	4457	$\begin{aligned} \hline \text { EOL/SOL: MBS_119_L61 } & \rightarrow 0777 \\ \text { 35S_119_L61 } & \rightarrow 20190930 \end{aligned}$
722	119	11.26	$5^{\circ} 53.46606$	$6^{\circ} 48.99036$	4450	$\begin{aligned} \text { EOL/SOL: MBS_119_L62 } & \rightarrow 0778 \\ \text { 35S_119_L62 } & \rightarrow 20190930112633 \end{aligned}$
723	119	11.40	$5^{\circ} 54.94596$	$6^{\circ} 49.26924$	4453	$\begin{aligned} \hline \text { EOL/SOL: MBS_119_L63 } & \rightarrow 0779 \\ \text { 35S_119_L63 } & \rightarrow 20190930114038 \end{aligned}$
724	119	11.50	$5^{\circ} 54.63504$	$6^{\circ} 50.30232$	4444	$\begin{aligned} \text { EOL/SOL: MBS_119_L64 } & \rightarrow 0780 \\ \text { 35S_119_L64 } & \rightarrow 20190930115025 \end{aligned}$
725	119	12.05	$5^{\circ} 52.95300$	$6^{\circ} 49.99518$	4451	$\begin{aligned} \hline \text { EOL/SOL: MBS_119_L65 } & \rightarrow 0781 \\ \text { 35S_119_L65 } & \rightarrow 20190930120538 \end{aligned}$
726	119	12.17	$5^{\circ} 52.76544$	$6^{\circ} 51.04686$	4443	$\begin{aligned} \text { EOL/SOL: MBS_119_L66 } & \rightarrow 0782 \\ \text { 35S_119_L66 } & \rightarrow 20190930121735 \end{aligned}$
727	119	12.35	$5^{\circ} 54.50922$	$6^{\circ} 51.35394$	4443	$\begin{aligned} \hline \text { EOL/SOL: MBS_119_L67 } & \rightarrow 0783 \\ \text { 35S_119_L67 } & \rightarrow 20190930123545 \end{aligned}$
728	119	12.47	$5^{\circ} 54.23418$	$6^{\circ} 52.39116$	4435	$\begin{aligned} \text { EOL/SOL: MBS_119_L68 } & \rightarrow 0784 \\ \text { 35S_119_L68 } & \rightarrow 20190930124740 \end{aligned}$
729	119	13.01	$5^{\circ} 52.68636$	$6^{\circ} 52.11504$	4442	$\begin{aligned} \hline \text { EOL/SOL: MBS_119_L69 } & \rightarrow 0785 \\ \text { 35S_119_L69 } & \rightarrow 20190930130145 \end{aligned}$
730	119	13.14	$5^{\circ} 52.68042$	$6^{\circ} 53.20422$	4434	$\begin{aligned} \hline \text { EOL/SOL: MBS_119_L70 } & \rightarrow 0786 \\ \text { 35S_119_L70 } & \rightarrow 20190930131452 \end{aligned}$

Cruise JC187		Date: 30/09/19$19273$		Sheet No. 67		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
731	119	13.25	$5^{\circ} 53.70642$	$6^{\circ} 53.36688$	4428	End of Survey 119, Transit
732	121	16.30	$6^{\circ} 14.33472$	$6^{\circ} 27.94530$	4591	$\begin{array}{ll} \hline \text { SOL: } & \text { MBS_121_L01 } \rightarrow 0791 \\ & \text { 35S_121_L01 } \rightarrow 20190930163050 \end{array}$
733	121	17.05	$6^{\circ} 16.48422$	$6^{\circ} 24.98250$	4665	$\begin{aligned} \text { EOL/SOL: MBS_121_LO2 } & \rightarrow 0792 \\ \text { 35S_121_L02 } & \rightarrow 20190930170554 \end{aligned}$
734	121	17.32	$6^{\circ} 19.05672$	$6^{\circ} 24.73146$	4694	$\begin{aligned} \hline \text { EOL/SOL: MBS_121_LO3 } & \rightarrow 0793 \\ \text { 35S_121_L03 } & \rightarrow 20190930173210 \end{aligned}$
735	121	18.12	$6^{\circ} 21.69372$	$6^{\circ} 21.40902$	4681	$\begin{aligned} \hline \text { EOL/SOL: MBS_121_L04 } & \rightarrow 0794 / 0795 \\ \text { 35S_121_L04 } & \rightarrow 20190930181209 \end{aligned}$
736	121	19.38	$6^{\circ} 23.86530$	$6^{\circ} 12.48546$	4732	$\begin{aligned} \hline \text { EOL/SOL: MBS_121_L05 } & \rightarrow 0796 \\ \text { 35S_121_L05 } & \rightarrow 20190930193832 \end{aligned}$
737	121	20.34	$6^{\circ} 26.91456$	$6^{\circ} 7.26000$	4757	$\begin{aligned} \hline \text { EOL/SOL: MBS_121_L06 } & \rightarrow 0797 \\ \text { 35S_121_L06 } & \rightarrow 20190930203430 \end{aligned}$
738	121	21.15	$6^{\circ} 27.06618$	$6^{\circ} 2.67810$	4740	$\begin{aligned} \text { EOL/SOL: MBS_121_L07 } & \rightarrow 0798 \\ \text { 35S_121_L07 } & \rightarrow 20190930211543 \end{aligned}$
739	121	21.49	$6^{\circ} 28.56354$	$5^{\circ} 59.34930$	4745	$\begin{aligned} \text { EOL/SOL: MBS_121_L08 } & \rightarrow 0799 \\ \text { 35S_121_L08 } & \rightarrow 20190930214932 \end{aligned}$

740	121	22.19	$6^{\circ} 29.79666$	$5^{\circ} 56.51340$	4759	EOL/SOL: MBS_121_L09 $\rightarrow 0800$ 35S_121_L09 \rightarrow 20190930221938
741	121	23.18	$6^{\circ} 31.02336$	$5^{\circ} 50.67840$	4798	EOL/SOL: MBS_121_L10 $\rightarrow 0801 / 0802$ 35S_121_L10 $\rightarrow 20190930231834 ~$

Cruise JC187		Date: 01/10/2019$19274$		Sheet No. 68		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
742	121	00.23	$6^{\circ} 32.05344$	$5^{\circ} 43.90036$	4825	$\begin{aligned} \text { EOL/SOL: MBS_121_L11 } & \rightarrow 0803 \\ \text { 35S_121_L11 } & \rightarrow 20191001002320 \end{aligned}$
743	121	00.53	$6^{\circ} 33.11898$	$5^{\circ} 40.98072$	4828	$\begin{aligned} \text { EOL/SOL: MBS_121_L12 } & \rightarrow 0804 / 0805 \\ \text { 35S_121_L12 } & \rightarrow 20191001005321 \end{aligned}$
744	121	02.49	$6^{\circ} 38.10418$	$5^{\circ} 29.67414$	4913	End of Survey 121
745	124	03.32	$6^{\circ} 41.45406$	$5^{\circ} 29.02146$	4929	CTD-12 at surface (CTD 11 is the one cancelled but still Numbered as such by CTD team)
746	124	05.07	$6^{\circ} 41.45581$	$5^{\circ} 29.02103$	4928	CTD-12 @ bottom, 6.5m ABS USBL $6^{\circ} 41.43945,5^{\circ} 29.00677$ @ 4949.8m
747	124	05.10	$6^{\circ} 41.4555$	$5^{\circ} 29.02110$	4928	CTD-12 @ 20m above sea bed, water sample - bottle 1-2 USBL $6^{\circ} 41.44304,5^{\circ} 29.00822$ @ 4937.5m
748	124	05.14	$6^{\circ} 41.45598$	$5^{\circ} 29.02110$	4929	CTD-12 @ 40m above sea bed, water sample - bottle 3-4

						USBL $6^{\circ} 41.44593,5^{\circ} 29.00926$ @ 4917.4m
749	124	05.16	$6^{\circ} 41.45604$	$5^{\circ} 29.02116$	4929	CTD-12 @ 60m above sea bed, water sample - bottle 5-6 USBL $6^{\circ} 41.44467,5^{\circ} 29.00569$ @ 4897m
750	124	05.19	$6^{\circ} 41.45616$	$5^{\circ} 29.02086$	4928	CTD-12 @ 100m above sea bed, water sample - bottle 7-8 USBL $6^{\circ} 41.44243,5^{\circ} 29.01327$ @ $4856.7 m$
751	124	05.25	$6^{\circ} 41.45622$	$5^{\circ} 29.02104$	4929	CTD-12 @ 300m above sea bed, water sample - bottle 9-10 USBL $6^{\circ} 41.44319,5^{\circ} 29.01091$ @ 4654.3m
752	124	05.54	$6^{\circ} 41.45586$	$5^{\circ} 29.02110$	Not pingin g	CTD-12 @ 3000m water depth, water sample - bottle 11-12 USBL $6^{\circ} 41.44469,5^{\circ} 29.00747$ @ $3093.5 m$

Cruise JC187		Date: 01/10/2019$19274$		Sheet No. 69		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
753	124	06.20	$6^{\circ} 41.45574$	$5^{\circ} 29.02104$	Not pinging	CTD-12 @ 1600m water depth, water sample - bottle 13-14 USBL $6^{\circ} 41.44930,5^{\circ} 29.01289$ @ 1606.2 m
754	124	06.41	$6^{\circ} 41.45592$	$5^{\circ} 29.02134$	Not pinging	CTD-12 @ 500m water depth, water sample - bottle 15-16 USBL $6^{\circ} 41.45131$, $5^{\circ} 29.0154$ @ 502 m
755	124	06.47	$6^{\circ} 41.45592$	$5^{\circ} 29.02116$	Not pinging	CTD-12 @ 200m water depth, water sample - bottle 17-18 USBL $6^{\circ} 41.44953,5^{\circ} 29.01580$ @ 201.4 m

756	124	06.54	$6^{\circ} 41.45583$	$5^{\circ} 29.02130$	Not pinging	CTD-12 @ 50m water depth, water sample - bottle 19-20 USBL $6^{\circ} 41.44951,5^{\circ} 29.01530$ @ 51 m
757	124	06.56	$6^{\circ} 41.45586$	$5^{\circ} 29.02110$	Not pinging	CTD-12 @ 25m water depth, water sample - bottle 21-22 USBL 6º41.45054, $5^{\circ} 29.01493$ @ 25.7 m
758	124	06.58	$6^{\circ} 41.45562$	$5^{\circ} 29.02110$	Not pinging	CTD-12 @ 10m water depth, water sample - bottle 23-24 USBL $6^{\circ} 41.45035,5^{\circ} 29.01488$ @ 10.7 m
759	124	07.03	$6^{\circ} 41.45574$	$5^{\circ} 29.02094$	Not pinging	CTD-12 @ back on deck
760	42	07.15	$6^{\circ} 41.45604$	$5^{\circ} 29.02044$	Not pinging	JC187 NERC Mooring 8 Range test-1 for release (4823)
761	42	07.22	$6^{\circ} 41.51616$	$5^{\circ} 29.00610$	Not pinging	JC187 NERC Mooring 8 Range test-2 for release (4871)
762	42	07.29	$6^{\circ} 41.51544$	$5^{\circ} 29.00646$	Not pinging	JC187 NERC Mooring 8 Acoustic release triggered $155 \mathrm{~m} / \mathrm{min}$ rise rate
763	42	08.01	$6^{\circ} 41.5490$	$5^{\circ} 28.99116$	Not pinging	JC187 NERC Mooring 8 Seen at sea surface

Cruise JC187		Date: 01/10/2019$19274$		Sheet No. 70		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	$\begin{gathered} \text { Latitude } \\ \text { (degree, DM) } \end{gathered}$	$\begin{gathered} \text { Longitude } \\ \text { (degree, DM) } \end{gathered}$	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)

764	42	08.20	$6^{\circ} 41.60052$	$5^{\circ} 28.88484$	4928	JC187 NERC Mooring 8 Grappling line caught
765	42	08.22	$6^{\circ} 41.52$	$5^{\circ} 28.91$	4926	JC187 NERC Mooring 8 Mooring back on deck
766	122	09.00	$6^{\circ} 39.24432$	$5^{\circ} 31.23674$	4922	Start of survey MBS_122_L01 $\boldsymbol{\rightarrow} 0810$ $\text { 35S_122_L01 } \rightarrow 20191001090043$
767	122	10.56	$6^{\circ} 34.30548$	$5^{\circ} 42.28776$	4846	$\begin{aligned} \text { EOL/SOL: MBS_122_LO2 } & \rightarrow 0812 \\ \text { 35S_122_L02 } & \rightarrow 20191001105644 \end{aligned}$
768	122	11.13	$6^{\circ} 35.87346$	$5^{\circ} 42.78966$	4835	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_122_LO3 } & \rightarrow 0813 \\ \text { 35S_122_L03 } & \rightarrow 2019100111306 \end{aligned}$
769	122	13.17	$6^{\circ} 41.29854$	$5^{\circ} 30.50694$	4925	$\begin{aligned} \text { EOL/SOL: MBS_122_L04 } & \rightarrow 0816 \\ \text { 35S_122_L04 } & \rightarrow 20191001131754 \end{aligned}$
770	122	13.36	$6^{\circ} 42.65916$	$5^{\circ} 31.49172$	4919	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_122_LO5 } & \rightarrow 0817 \\ \text { 35S_122_L05 } & \rightarrow 20191001133642 \end{aligned}$
771	122	15.38	$6^{\circ} 37.43454$	$5^{\circ} 43.20768$	4840	$\begin{aligned} \text { EOL/SOL: } \text { MBS_122_LO6 } & \rightarrow 0820 \\ \text { 35S_122_L06 } & \rightarrow 20191001153838 \end{aligned}$
772	122	16.26	$6^{\circ} 32.7556$	$5^{\circ} 45.43092$	4818	$\begin{aligned} \hline \text { EOL/SOL: MBS_122_L07 } & \rightarrow 0821 \\ \text { 35S_122_L07 } & \rightarrow 20191001162658 \end{aligned}$
773	122	17.17	$6^{\circ} 32.60652$	$5^{\circ} 50.77002$	4780	$\begin{aligned} \hline \text { EOL/SOL: MBS_122_L08 } & \rightarrow 0822 \\ \text { 35S_122_L08 } & \rightarrow 20191001171730 \end{aligned}$
774	122	18.26	$6^{\circ} 30.73758$	$5^{\circ} 57.79014$	4781	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_122_LO9 } & \rightarrow 0824 \\ \text { 35S_122_L09 } & \rightarrow 201910011182659 \end{aligned}$

Cruise JC187		Date: 01/10/2019-02/10/2019, 19274-19275		Sheet No. 71		
Station Number (JC187/Station x)	Site Number (as on GIS)	$\begin{gathered} \text { Time } \\ \text { In GMT } \end{gathered}$	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
775	122	18.47	$6^{\circ} 30.05442$	$6^{\circ} 59.82030$	4766	End of Survey 122: MBS_122_L10 $\rightarrow 0825$ $\text { 35S_122_L10 } \rightarrow 20191001184704 \rightarrow \text { TRANSIT }$
776	58	19.22	$6^{\circ} 28.57302$	$6^{\circ} 2.49018$	4742	German OBS released
777	58	19.24	$6^{\circ} 28.57302$	$6^{\circ} 2.49018$	4742	Triangulation for mooring 7
778	125	01.41	$5^{\circ} 51.40464$	$6^{\circ} 56.85228$	4412	$\begin{array}{\|l} \hline \text { SOL: MBS_125_L01 } \rightarrow 0834 \\ \text { 35S_125_L01 } \rightarrow 20191002014119 \end{array}$
779	125	02.08	$5^{\circ} 51.64452$	$6^{\circ} 59.64222$	4405	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_125_LO2 } & \rightarrow 0835 \\ \text { 35S_125_L02 } & \rightarrow 20191002020810 \end{aligned}$
780	125	02.41	$5^{\circ} 50.49180$	$7{ }^{\circ} 2.99622$	4384	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_125_LO3 } & \rightarrow 0836 \\ \text { 35S_125_L03 } & \rightarrow 20191002024135 \end{aligned}$
781	125	03.00	$5^{\circ} 50.59218$	$7^{\circ} 5.00532$	4370	$\begin{aligned} \text { EOL/SOL: } \text { MBS_125_LO4 } & \rightarrow 0837 \\ \text { 35S_125_L04 } & \rightarrow 20191002030059 \end{aligned}$
782	125	03.12	$5^{\circ} 50.74428$	$7^{\circ} 6.37840$	4360	$\begin{aligned} \text { EOL/SOL: } \text { MBS_125_LO5 } & \rightarrow 0838 \\ \text { 35S_125_L05 } & \rightarrow 20191002031257 \end{aligned}$
783	125	03.30	5 49.52000	$7{ }^{\circ} 7.57128$	4351	$\begin{aligned} & \hline \text { EOL/SOL: } \text { MBS_125_L06 } \rightarrow 0839 \\ & \text { 35S_125_L06 } \rightarrow 20191002032959 \end{aligned}$
784	125	03.41	$5^{\circ} 48.33060$	$7^{\circ} 8.04204$	4342	EOL/SOL: MBS_125_L07 $\rightarrow 0840$

						35S_125_L07 \rightarrow 20191002034157

Cruise JC187		Date: 02/10/2019$19275$		Sheet No. 72		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
785	125	04.05	$5^{\circ} 46.73944$	$7^{\circ} 9.94098$	4337	$\begin{aligned} \hline \text { EOL/SOL: MBS_125_L08 } & \rightarrow 0841 \\ \text { 35S_125_L08 } & \rightarrow 20191002040515 \end{aligned}$
786	125	04.18	$5^{\circ} 45.94984$	$7^{\circ} 11.22408$	4327	$\begin{aligned} \hline \text { EOL/SOL: MBS_125_L09 } & \rightarrow 0842 \\ \text { 35S_125_L09 } & \rightarrow 20191002041935 \end{aligned}$
787	125	04.43	$5^{\circ} 45.67638$	$7^{\circ} 12.74118$	4328	$\begin{aligned} \hline \text { EOL/SOL: MBS_125_L10 } & \rightarrow 0843 \\ \text { 35S_125_L10 } & \rightarrow 20191002043421 \end{aligned}$
788	125	04.49	$5^{\circ} 46.23750$	$7^{\circ} 14.28756$	4328	$\begin{aligned} \text { EOL/SOL: MBS_125_L11 } & \rightarrow 0844 \\ \text { 35S_125_L11 } & \rightarrow 20191002045019 \end{aligned}$
789	125	05.09	$5^{\circ} 45.53383$	$7^{\circ} 16.22544$	4328	$\begin{aligned} \text { EOL/SOL: MBS_125_L12 } & \rightarrow 0845 \\ \text { 35S_125_L12 } & \rightarrow 20191002051034 \end{aligned}$
790	125	05.30	$5^{\circ} 46.49274$	$7^{\circ} 18.06570$	4296	$\begin{aligned} \text { EOL/SOL: MBS_125_L13 } & \rightarrow 0846 \\ \text { 35S_125_L13 } & \rightarrow 20191002053136 \end{aligned}$
791	125	05.47	$5^{\circ} 46.74012$	$7^{\circ} 19.76958$	4291	$\begin{aligned} \hline \text { EOL/SOL: MBS_125_L14 } & \rightarrow 0847 \\ \text { 35S_125_L14 } & \rightarrow 20191002054831 \end{aligned}$

\(\left.\begin{array}{|l|l|l|l|l|l|l|}\hline 792 \& 125 \& 06.02 \& 5^{\circ} 46.96896 \& 7^{\circ} 21.27990 \& 4287 \& EOL/SOL: MBS_125_L15 \rightarrow 0848

35S_125_L15 \rightarrow 20191002060311\end{array}\right]\)| 35S_125_L16 \rightarrow 20191002062340 |
| ---: |

Cruise JC187		Date: 02/10/2019$19275$		Sheet No. 73 **Thought end of survey but actually continued straight along the channel for A bit, so made new end of survey when the boat turned.		
Station Number (JC187/Station x)	Site Number (as on GIS)	$\begin{gathered} \text { Time } \\ \text { In GMT } \end{gathered}$	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
796	125	07.03	$5^{\circ} 47.46600$	$7^{\circ} 26.90442$	4259	$\begin{aligned} \hline \text { EOL/SOL: MBS_125_L19 } & \rightarrow 0852 \\ \text { 35S_125_L19 } & \rightarrow 20191002070307 \end{aligned}$
797	125	07.28	$5^{\circ} 47.58642$	$7^{\circ} 29.55348$	4235	$\begin{aligned} \hline \text { EOL/SOL: MBS_125_L20 } & \rightarrow 0853 \\ \text { 35S_125_L20 } & \rightarrow 20191002072814 \end{aligned}$
798	125	07.45	$5^{\circ} 46.27716$	$7^{\circ} 30.73770$	4232	$\begin{aligned} \text { EOL/SOL: MBS_125_L21 } & \rightarrow 0854 \\ \text { 35S_125_L21 } & \rightarrow 20191002074516 \end{aligned}$
799	125	08.14	$5^{\circ} 45.50430$	$7^{\circ} 33.64230$	4281	$\begin{aligned} \hline \text { EOL/SOL: } \text { MBS_transit } \rightarrow 0855^{* *} \\ \text { 35S_transit } \rightarrow 20191002081429 \end{aligned}$

800	125	08.19	$5^{\circ} 45.36060$	$7^{\circ} 34.14660$	4300	$\begin{aligned} \hline \text { EOL/SOL: MBS_transit_transit } \rightarrow 0856 \text { End of survey } \\ \text { 35S_transit_transit } \rightarrow 20191002081946 \end{aligned}$
801	123	09.24	$5^{\circ} 45.30564$	$7^{\circ} 40.25784$	4311	JC187 NERC Mooring 8-R ADCP and acoustic release in water
802	123	09.40	$5^{\circ} 45.40458$	$7^{\circ} 40.48188$	4288	JC187 NERC Mooring 8-R Anchor in water
803	123	09.42	$5^{\circ} 45.42138$	$7^{\circ} 40.51584$	4299	JC187 NERC Mooring 8-R Anchor released
804	123	10.02	$5^{\circ} 45.42960$	$7^{\circ} 40.53060$	4218	JC187 NERC Mooring 8-R Anchor on seafloor (4236 m)
805	123	10.34	$5^{\circ} 45.42142$	$7{ }^{\circ} 41.77434$	4218	JC187 NERC Mooring 8-R Triangulation 1, NE
806	123	11.07	$5^{\circ} 46.55316$	$7^{\circ} 41.83650$	4220	JC187 NERC Mooring 8-R Triangulation 2, SE
Cruise JC187		Date: 02/10/2019$19275$		Sheet No. 74		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
807	123	11.36	$5^{\circ} 46.5035$	$7^{\circ} 39.1750$	4204	JC187 NERC Mooring 8-R Triangulation 3, SW
808	123	12.00	$5^{\circ} 44.39814$	$7^{\circ} 39.19170$	N/A	JC187 NERC Mooring 8-R

						Triangulation 4, NW
809	43	12.36	$5^{\circ} 44.11220$	$7^{\circ} 37.96914$	4196	OBS-10 deployed
810	126	13:23	$5^{\circ} 46.35972$	$7^{\circ} 33.52650$	4208	Start of Survey MBS_126_L01 $\rightarrow 0860$ SOL 35S_126_LO1 $\rightarrow 20191002132354$
811	126	13:37	$5^{\circ} 45.09312$	$7^{\circ} 33.64464$	4216	$\begin{array}{ll} \hline \text { EOL/SOL } & \text { MBS_126_LO2 } \rightarrow 0861 \\ & \text { 35S_126_L02 } \rightarrow 20191002133749 \end{array}$
812	126	13:53	$5^{\circ} 45.04693$	$7^{\circ} 32.54484$	4228	$\begin{array}{ll} \hline \text { EOL/SOL } & \text { MBS_126_LO3 } \rightarrow 0862 \\ & \text { 35S_126_L03 } \rightarrow 20191002135350 \end{array}$
813	126	14:10	$5^{\circ} 46.75152$	$7^{\circ} 32.47982$	4216	$\begin{array}{ll} \hline \text { EOL/SOL } & \text { MBS_126_LO4 } \rightarrow 0863 \\ & \text { 35S_126_L04 } \rightarrow 20191002141044 \end{array}$
814	126	14:23	$5^{\circ} 46.77750$	$7^{\circ} 31.37380$	4222	EOL/SOL MBS_126_LO5 $\rightarrow 0864$ 35S_126_L05 $\rightarrow 20191002142304$
815	126	14:39	$5^{\circ} 45.01944$	$7^{\circ} 31.46520$	4234	$\begin{array}{ll} \hline \text { EOL/SOL } & \text { MBS_126_L06 } \rightarrow 0865 \\ & \text { 35S_126_L06 } \rightarrow 20191002143954 \end{array}$
816	126	14:50	$5^{\circ} 44.91504$	$7^{\circ} 30.37728$	4238	$\begin{aligned} \hline \text { EOL/SOL } & \text { MBS_126_L07 } \rightarrow 0866 \\ & \text { 35S_126_L07 } \rightarrow 20191002145200 \end{aligned}$
817	126	15:33	$5^{\circ} 49.12338$	$7^{\circ} 30.18354$	4248	$\begin{aligned} \hline \text { EOL/SOL } & \text { MBS_126_L08 } \rightarrow 0867 \\ & \text { 35S_126_L08 } \rightarrow 20191002153307 \end{aligned}$

Cruise JC187		Date: 02/10/2019 19275	Sheet No. 75

Station Number (JC187/Station x)	Site Number (as on GIS)	$\begin{gathered} \text { Time } \\ \text { In GMT } \end{gathered}$	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
818	126	15.48	$5^{\circ} 48.82386$	$7^{\circ} 29.12388$	4237	$\begin{array}{ll} \hline \text { EOL/SOL } & \text { MBS_126_LO9 } \rightarrow 0868 \\ & \text { 35S_126_L09 } \rightarrow 20191002154759 \end{array}$
819	126	16.10	$5^{\circ} 46.42140$	$7^{\circ} 29.23848$	4238	$\begin{aligned} \hline \text { EOL/SOL } & \text { MBS_126_L10 } \rightarrow 0869 \\ & \text { 35S_126_L10 } \rightarrow 20191002161049 \end{aligned}$
820	126	16.23	$5^{\circ} 46.42410$	$7^{\circ} 28.14372$	4251	EOL/SOL MBS_126_L11 $\rightarrow 0870$ 35S_126_L11 $\rightarrow 20191002162332$
821	126	16.47	$5^{\circ} 48.54012$	$7^{\circ} 28.03452$	4245	$\begin{aligned} \hline \text { EOL/SOL } & \text { MBS_126_L12 } \rightarrow 0871 \\ & \text { 35S_126_L12 } \rightarrow 20191002164718 \end{aligned}$
822	126	16.59	$5^{\circ} 48.4952$	$7^{\circ} 28.94858$	4240	EOL/SOL MBS_126_L13 $\rightarrow 0872$ 35S_126_L13 $\rightarrow 20191002165932$
823	126	17.23	$5^{\circ} 46.02654$	$7^{\circ} 27.09690$	4259	EOL/SOL MBS_126_L14 $\rightarrow 0873$ 35S_126_L14 $\rightarrow 20191002172336$
824	126	17.40	$5^{\circ} 45.74580$	$7^{\circ} 26.02818$	4258	EOL/SOL MBS_126_L15 $\rightarrow 0874$ 35S_126_L15 $\rightarrow 20191002174048$
825	126	18.05	$5^{\circ} 48.24328$	$7^{\circ} 25.88874$	4249	EOL/SOL MBS_126_L16 $\rightarrow 0875$ 35S_126_L16 $\rightarrow 20191002180511$
826	126	18.19	$5^{\circ} 47.64390$	$7^{\circ} 24.84162$	4228	EOL/SOL MBS_126_L17 $\rightarrow 0876$ 35S_126_L17 $\rightarrow 20191002181922$
827	126	18.41	$5^{\circ} 45.26040$	$7^{\circ} 24.95622$	4275	EOL/SOL MBS_126_L18 $\rightarrow 0877$ 35S_126_L18 $\rightarrow 20191002184142$

828	126	18.55	$5^{\circ} 45.33408$	$7^{\circ} 23.85870$	4269	EOL/SOL MBS_126_L19 $\rightarrow 0878$
35S_126_L19 \rightarrow 20191002185500						

Cruise JC187		Date: 02/10/2019$19275$		Sheet No. 76		
Station Number (JC187/Station x)	Site Number (as on GIS)	$\begin{gathered} \text { Time } \\ \text { In GMT } \end{gathered}$	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
829	126	19.16	$5^{\circ} 47.522390$	$7^{\circ} 23.75514$	4263	$\begin{array}{ll} \hline \text { EOL/SOL } & \text { MBS_126_L20 } \rightarrow 0879 \\ & \text { 35S_126_L20 } \rightarrow 20191002191642 \end{array}$
830	126	19.29	$5^{\circ} 47.11494$	$7^{\circ} 22.67814$	4276	$\begin{aligned} \hline \text { EOL/SOL } & \text { MBS_126_L21 } \rightarrow 0880 \\ & \text { 35S_126_L21 } \rightarrow 20191002192912 \end{aligned}$
831	126	19.47	$5^{\circ} 45.29856$	$7^{\circ} 22.77900$	4276	EOL/SOL MBS_126_L22 $\rightarrow 0881$ 35S_126_L22 $\rightarrow 20191002194706$
832	126	20.05	$5^{\circ} 46.48476$	$7^{\circ} 21.64602$	4284	EOL/SOL MBS_126_L23 $\rightarrow 0882$ 35S_126_L23 $\rightarrow 20191002200548$
833	126	20.21	$5^{\circ} 48.11586$	$7^{\circ} 21.55626$	4297	EOL/SOL MBS_126_L24 $\rightarrow 0883$ 35S_126_L24 $\rightarrow 20191002202134$
834	126	20.33	$5^{\circ} 47.89074$	$7^{\circ} 20.48268$	4318	$\begin{aligned} \hline \text { EOL/SOL } & \text { MBS_126_L25 } \rightarrow 0884 \\ & \text { 35S_126_L25 } \rightarrow 20191002203323 \end{aligned}$
835	126	20.51	$5^{\circ} 45.95580$	$7^{\circ} 20.58246$	4294	EOL/SOL MBS_126_L26 $\rightarrow 0885$ 35S_126_L26 $\rightarrow 20191002205121$

836	126	21.07	$5^{\circ} 45.50826$	$7^{\circ} 19.50204$	4291	EOL/SOL	$\begin{aligned} & \text { MBS_126_L27 } \rightarrow 0886 \\ & \text { 35S_126_L27 } \rightarrow 20191002210722 \end{aligned}$
837	126	21.30	$5^{\circ} 47.84680$	$7^{\circ} 19.39554$	4307	EOL/SOL	$\begin{aligned} & \text { MBS_126_L28 } \rightarrow 0887 \\ & \text { 35S_126_L28 } \rightarrow 20191002213022 \end{aligned}$
838	126	21.42	$5^{\circ} 47.78832$	$7^{\circ} 18.31080$	4312	EOL/SOL	$\begin{aligned} & \text { MBS_126_L29 } \rightarrow 0888 \\ & \text { 35S_126_L29 } \rightarrow 20191002214141 \end{aligned}$
839	126	22.04	$5^{\circ} 45.41178$	$7^{\circ} 18.40746$	4233	EOL/SOL	$\begin{aligned} & \text { MBS_126_L30 } \rightarrow 0889 \\ & \text { 35S_126_L30 } \rightarrow 20191002220452 \end{aligned}$

Cruise JC187		Date: 02/10/2019$19275$		Sheet No. 77		
Station Number (JC187/Station x)	Site Number (as on GIS)	Time In GMT	Latitude (degree, DM)	Longitude (degree, DM)	Depth (m)	Equipment Deployed (Events) \& Comments (Include any exact USBL positions here)
840	126	22.16	$5^{\circ} 45.47855$	$7^{\circ} 17.33628$	4303	$\begin{array}{ll} \hline \text { EOL/SOL } & \text { MBS_126_L31 } \rightarrow 0890 \\ & \text { 35S_126_L31 } \rightarrow 20191002221653 \end{array}$
841	126	22.33	$5^{\circ} 47.15010$	$7^{\circ} 17.26272$	4311	$\begin{array}{ll} \hline \text { EOL/SOL } & \text { MBS_126_L32 } \rightarrow 0891 \\ & 35 S _126 _ \text {L32 } \rightarrow 20191002223357 \end{array}$
842	126	22.51	$5^{\circ} 45.77920$	$7^{\circ} 16.25868$	4307	$\begin{aligned} \hline \text { EOL/SOL } & \text { MBS_126_L33 } \rightarrow 0892 \\ & \text { 35S_126_L33 } \rightarrow 20191002225156 \end{aligned}$
843	126	23.06	$5^{\circ} 44.31528$	$7^{\circ} 16.30404$	4313	$\begin{array}{ll} \hline \text { EOL/SOL } & \text { MBS_126_L34 } \rightarrow 0893 \\ & \text { 35S_126_L34 } \rightarrow 201910022230178 \end{array}$

\(\left.\begin{array}{|l|l|l|l|l|l|l|}\hline 844 \& 126 \& 23.29 \& 5^{\circ} 44.94822 \& 7^{\circ} 16.19578 \& 4390 \& EOL/SOL MBS_126_L35 \rightarrow 0894

35S_126_L35 \rightarrow 20191002233000\end{array}\right]\)| MBS_126_L36 $\rightarrow 0895$ |
| :--- |
| 35S_126_L36 \rightarrow 20191002234703 |

14 Appendix D. Distances from cores to target, ship's position and ship's corer's position

This section provides information on how close cores from their targets, and to the ship's position.
Figure D-1 shows a plot of distance to target (given in GIS to bridge) from the USBL on corer (at time it was dropped), against water depth. The cores are all located within < 45 m of their target, and typically < 25 m from that target.

Figure D-2 shows the distance from the ship's position (at the time the core was dropped) to that of the USBL on the corer, against water depth. Again, the cores are located $<45 \mathrm{~m}$ from the ship's position, and often $<25 \mathrm{~m}$ from that position. The ship was typically $\sim 2-6 \mathrm{~m}$ of its target coordinates.

Figure D-3 shows the distance from the mega-corer and piston corer on the ship's starboard deck, and the USBL. Note that the ship's position is defined as a point in the Gravimeter room with the GRU. This point is 13 m from position on the starboard side of the ship, where we actually deploy the piston corer or mega-corer. Thus, there is a 13 m offset at 120° between ship's position (gravimeter room) and were we drop cores on the starboard side of the vessel. Thus, the ships heading was recovered from the ship's gyro (sgyr file recorded by ship's TECHSAS system). Within the GIS, an adjustment of 13 m at 120° from that heading of the ship. So, if the ships heading was 200°, then 13 m at 320 degrees was added to the ship's position., to find the position of the corer on the starboard deck. The distance from the corer to the USBL position was then plotted on Fig. D-3. This resulted in significantly shorter distances between USBL, targets and position of corer.

The corer was typically less than 15 m from the USBL (Fig. D-3), for both upper canyon and deep-water sites, although in a few cases to ranges up to 40 m .
Note that the USBL system for locating objects itself has an uncertainty of about 0.5% water depth, which is 10 m at $2,000 \mathrm{~m}$, and 20 m at $4,000 \mathrm{~m}$. Thus the offset between location of corer and USBL site is almost within those errors of the USBL system itself. This suggests that the dominant term in the offset may be the uncertainties in the USBL system, and cores are rather close to the target (+/-5-15 m).

There does not appear to be a strong correlation between water depth and distance from ship to target or USBL. This is perhaps because the strongest currents (that cause the corer to drift from the vessel) are near the sea surface, and there is little drift in the deep-ocean, or because other factors dominate the error from core to target positions.

There was also no strong difference between mega-corer and piston corer, which is surprising, as the mega-corer is lighter than the piston corer ($\sim 1 T$ head weight), and might be expected to drift more. But it is possible that both types of corer land close to targets, and the offset then results mainly from the USBL system (which would affect piston and mega corer equally).

In future years, it may be possible to adjust the ship's position to bring the core (and USBL) even closer to the seabed target, as is done for an anchor-first mooring. Thus, we may be able to reduce these uncertainties substantially, and place cores even closer to their seabed targets.

Fig. D-1. Distance from USBL on corer from original coordinates of target given to the bridge.

Fig. D-2. Distance of USBL on corer from the position of the ship (measured at the GRU in the Gravimeter Room - which is ~13m from where cores dropped) at time of release, against water depth.

Figure D-3. Distance from the location of the corer on the ship's starboard side to the USBL on the core (i.e. where core dropped). This includes adjustment of $13 m$ at 120° from ship's heading, from GPS position of ship (gravimeter room) to where the corer is located on the side of ship.

Target Site	Station	Core	USBL lat	USBL long	USBL Depth (m)	Distance(m) target to USBL	Direction from target	Ship to USBL distance (m)) ships position lat	ship long	distance ship to target	ships heading	Distance USBL to ship's corer (m)
42	23	MC01	-6.6950425	5.485014167	4956	22	NW	22	-641.709345	529.11074	2	187	10
42	27	PC01	-6.6950745	5.485103667	4956	12	nw	11	-641.70948	529.10984	2	188	5
42	30	MC02	-6.6950118	5.485096833	4956	19	nw	17	-641.70896	529.11013	1	200	8
48	312	MC12	-5.912468	11.417051	1345	20	nw	12	-5 54.749885	1125.02929	8	164	1
48	315	PC11	-5.912473	11.417029	1347	22	nw	14	-554.75000	1125.02948	8	164	1
98	375	PC15	-5.9534667	11.55326367	1570	4	w	5	-5 57.207	1133.198	2	125	8
98	372	MC17	-5.953485	11.553058	1575	27	w	21	-5 57.205	1133.194	9	125	8
106	389	PC16	-5.954361	11.556093	1577	31	w	18	-5 57.25140	1133.36924	23	130	14
97	361	PC14	-5.924196	11.473356	1627	18	NW	16	-555.45500	1128.41162	3	170	3
97	358	MC16	-5.924182	11.473401	1635	22	NW	22	-555.45560	1128.41246	1	172	9
45	352	MC15	-5.930371	11.418276	1661	35	w	34	-555.81855	1125.11463	3	066	29
99	346	PC12	-5.924978	11.426097	1662	24	w	24	-555.49166	1125.57656	1	094	13
87	306	MC11	-5.909882	11.331713	1664	17	Nw	17	-554.59394	1119.91166	2	172	4
45	355	PC13	-5.930249	11.418212	1666	41	w	36	-555.81908	1125.11204	6	174	23
87	309	PC10	-5.909821	11.331771	1666	14	NW	12	-554.59304	1119.91160	2	171	3
99	349	MC14	-5.924703	11.42593	1667	43	NW	44	-555.49274	1125.57686	1	235	38
99	318	MC13	-5.924865	11.426068	1669	23	w	23	-555.49182	1125.57681	1	148	11
66	288	MC08	-5.900112	11.327688	1829	38	w	35	-554.01308	1119.67904	12	186	21
96	303	PC09	-5.896516	11.330075	1850	21	NW	22	-5 53.79334	1119.81652	2	160	10
96	300	MC10	-5.8965	11.33011	1851	19	NW	22	-553.79438	119.8162	1	160	7
93	294	Mc09	-5.900091	11.329821	1868	42	w-Nw	41	-554.01032	1119.81116	5	181	28
93	297	PC08	-5.900179	11.329971	1868	24	W-NW	22	-5 54.0104	1119.8108	5	156	10
66	291	PC07	-5.900148	11.327735	1877	33	w	28	-554.0128	1119.679	12	181	15
51	282	MCO7	-5 50.86285	111.88387	1932	12	SE	23	-5 50.85375	111.8751	35	199	10
51	285	PCO6	-5 50.85375	111.87274	1936	9	SE	24	-550.86254	111.88232	33	199	12
90	279	PC05	-5.840724	11.030895	2005	19	NW	16	-550.45009	111.85971	5	195	5
90	276	MC06	-5.840688	11.030884	2007	23	Nw	19	-550.4500	111.85900	5	200	7
92	392	MC18	-552.7419	1110.48663	2017	14	w	10	-552.74072	1110.49370	12	160	4
92	395	PC17	-552.73597	1110.49102	2020	24	sw	23	-552.73814	1110.4985	2	160	3
107	443	MC19	-5.856713	11.148103	2054	18	sw	17	-5 51.3951	118.89242	1	100	5
108	446	MC20	-5.857143	11.146292	2056	20	sw	20	-551.4221	118.78622	0	110	7
110	452	MC22	-5.86032	11.145073	2057	4	SE	2	-551.61872	118.70294	2	140	15
109	449	MC21	-5 51.58501	118.68930	2077	13	SE	13	-5 51.57972	118.68470	1	140	23
49	270	MC05	-5.836796	11.035966	2170	22	s	16	-5 50.19942	112.1604	6	056	6
49	273	PCO4	-5.836535	11.035816	2173	20	w	25	-550.19972	112.15988	6	200	12
54	621	PC20	-5 49.21664	88.69629	4021	25	NW	26	-549.23036	88.7006	4	220	13
54	618	MC25	-5.8204092	8.145130333	4041	14	NE	14	-549.22946	88.70966	10	220	4
53	605	PC19	-5.7283178	8.1367625	4060	17	N	23	-543.71078	88.21040	5	215	11
53	602	MC24	-5.7285465	8.136803167	4061	9	s	14	-543.7199	88.2107	22	210	4
58	48	Mсоз	-628.55770	62.49279	4759	42	N-NW	44	-628.58062	62.500007	5	205	30
58	51	PCO2	-6.4760622	6.04147	4761	34	N-NW	38	-628.58034	62.49984	5	195	24
77	57	PCO3	-6.4648415	6.053023	4790	8	N	3	-627.8905	63.17982	5	200	15
77	54	MC04	-6.464745	6.052966667	4795	3	N	4	-627.89034	63.17964	4	180	6
32	599	PC18	-544.23653	88.06768	4108	394	Typo on USBL position?	398	-544.10090	88.23128	2		
32	596	MC23	-544.09221	88.21884	4185	25		28	-544.10068	88.23146	2	175	15

Table D-1. Distances from target to USBL on corer (drop site), ship's position to USBL on corer, and location on corer on ship's starboard deck to USBL on corer.

