RV Charles Darwin Cruise Report:

Cruise 64CD153B

Mozambique Channel, 12 November –27 November 2003

H. Ridderinkhof Chief Scientist

Royal NIOZ, Texel, 2004

Table of contents

nr.	Chapter	page
1	Cruise Narrative	4
1.1	Highlights	4
1.2	Cruise Summary Information	4
1.3	Scientific Programme and Methods	12
1.4	Major Problems Encountered during the Cruise	17
1.5	List of Cruise Participants	18
2	Underway Measurements	19
3	Hydrographic Measurements -Descriptions, Techniques, and Calibrations	21
4	Multicore geochemistry	24
5	Sediment trap sampling	25
6	Organic contaminants sampling	25
	Acknowledgements	26
	Appendix A (cruise summary file)	
	Appendix B (mooring information file)	

The research reported here is part of the Dutch Long-term Ocean Climate Observations (LOCO) program. LOCO is funded by the Netherlands Organisation for Scientific Research (NWO)

1 Cruise Narrative

1.1 Highlights

- a: RV Charles Darwin cruise CD153B in the Mozambique Channel
- b: Expedition Designation (EXPOCODE): 64CD153B

c:	Chief Scientist:	Dr. ir. Herman	Ridderinkhof
	Royal Netherland	ls Institute for Se	ea Research (NIOZ)
	P.O. Box 59		
	1790AB Den Bur	rg/Texel	
	The Netherlands		
	Telephone:	31(0)222-3694	23
	Telefax:	31(0)222-3196	74
	e-mail:	rid@nioz.nl	
d:	Ship: RV Charle	s Darwin,	Call Sign: PGRQ
	length 66 m.		
	beam 12.8 m		
	draft 4 m		
	maximum speed	12.5 knots	
e:	Ports of Call: Vi	ctoria (Seychelle	es) to Durban (South Africa)
f:	Cruise dates: No	vember 12, 2003	8 to November 27, 2003

1.2 Cruise Summary Information

Summary

Early in the morning on Wednesday 12 November 2003 RV Charles Darwin left her anchor position near the harbor of Victoria and headed for the Mozambique Channel to deploy moorings and perform hydrographic observations as well as geochemical sampling at the narrowest section of the Mozambique Channel. In order to reach deep water as soon as possible for the underway deployment of APEX floats, the vessel first followed a westward course during roughly 24 hours. From Thursday 13/11/03 till Sunday 16/11/03 a SSW-ward course was followed to the work area. From Thursday 13/11/03 till Saturday 15/11/03, when the northern entrance of the Mozambique Channel was reached, APEX floats were deployed regularly at a mutual distance of 40-50 nm. These deployments of APEX floats were

done in the framework of an observational programme financed by Germany and led by prof. F. Schott and dr. J. Fischer from Kiel.

On Sunday 16/11/03 a hydrographic station was occupied, mainly for testing the instrumentation. During this day the functioning of the ADCP's to be deployed in the moorings was checked and it was discovered that some of these (newly acquired) instruments did not function. Therefore it was decided not to start with the deployment of moorings on Monday but first to occupy some hydrographic stations along the mooring section.

On Monday 17/11/03 the work along the mooring section in the Mozambique Channel started at the eastern, Madagascar, side of the channel. First two hydrographic stations were occupied in which the second (CTD station 2) failed because of a fault on the CTD wire. In the afternoon the first mooring, LMC8, was deployed with instrumentation according to the original plan. During the day, after communicating with RDI and testing all ADCP's, it became clear that 3 ADCP's (out of 10 available) did not function and could not be deployed. Therefore the original plan for the distribution of ADCP's and current meters on the 7 moorings was adapted slightly. During nighttime two hydrographic stations were occupied in which again one of these (CTD station 3) failed because of a fault on the CTD wire. Then, the CTD wire was shortened with a few hundred meters and no failure happened during the remaining observations.

On Tuesday 18/11/03 two moorings were deployed (LMC9 and LMC7) and one CTD station was occupied. After this day no further technical problems were encountered and a regular schedule was followed. From Wednesday 19/11/03 till Saturday 22/11/03 the program for each day consisted of one mooring deployment, 1-2 Multicore stations for bottom sampling and 2-3 CTD stations at 10 nm distance while moving towards the western, Mozambican, side of the channel. At all CTD stations bottle sampling was done at regular depth intervals for the on board determination of nutrients and oxygen. On Sunday 23/11/03 the final CTD station, 2 Multicore stations and one mooring deployment (LMC4) on the slope near the African continental shelf were carried out before the Charles Darwin set course to Durban at 11.00 in the morning.

During almost the entire cruise, starting just after departure from the Seychelles and finishing on Tuesday evening, 25/11/03, underway surface sampling was carried out with an interval of 6 hours in between sampling. Part of these samples were analysed on board to determine the dissolved nutrient concentrations and, for part of the track, also the total dissolved carbon and oxygen. At the same stations, an intensive filtration program was carried out for onshore measurement of organic Nitrogen and Carbon concentration and stable isotope composition, as well as total suspended matter and biogenic silica concentration. This underway sampling was strongly intensified when the vessel passed through an eddy in the centre of the Mozambique Channel on Monday 24/11/03. The position of this eddy was derived from daily satellite-altimetry maps as sent to the ship from Royal NIOZ by e-mail. The exact location of the boundaries of the eddy was estimated from the beginning and ending of the strong cross-currents as experienced by the officers on the bridge, starting early Monday morning and finishing late Monday evening.

The Charles Darwin arrived at the Durban pilot station on Thursday morning, 08.00, and the scientific crew debarked on the same day.

Cruise Track

The cruise was carried out from Victoria, Seychelles to Durban, South Africa. The main work area was at the narrowest section of the Mozambique Channel where hydrographic sections were performed and moorings deployed. The complete cruise track is shown in figure 1.

Figure 1. Cruise track of RV Charles Darwin cruise 64CD153B

Hydrographic Stations

A total of 18 CTD casts was recorded, including one test cast prior to arrival at the work area. On all of these casts, water samples were taken for the determinations of nutrient, dissolved oxygen and, less frequently, salinity. A lowered Acoustic Doppler Current Profiler (LADCP) was attached to the CTD frame to measure vertical profiles of the current speed and direction. The positions of the hydrographic stations along the mooring sections are indicated in figure 2.

At the hydrographic stations the SBE9/11+ CTD was lowered with a speed of about 1 m/s. Due to the use of an altimeter we were able to sample to within quite a short distance from the bottom (on average 10 m).

Figure 2. Distribution of hydrographic stations. The isobaths at 200, 500, 1000, 2000 and 3000 m are indicated. Note that one station was shifted slighly southward due to the close proximity of the French island Juan de Nova

Hydrographic Sampling

During the up-cast of each CTD/rosette station up to 25 water samples were taken at regular depth intervals. The samples were analysed for nutrients and oxygen. On 12 of the CTD stations filtrations for organic Nitrogen and Carbon were carried out at 4 to 6 depths in the upper water column, across the deep chlorophyll maximum. For calibration purposes also regularly, but less frequent, samples were analysed for salinity. The vertical distribution of the sampling locations is indicated in table 1.

Depth (m)	Samples
Bottom	Oxygen, nutrients
2500	Salinity, oxygen, nutrients
2000	Oxygen, nutrients
1500	Oxygen, nutrients
1250	Oxygen, nutrients
1000	Oxygen, nutrients
900	Oxygen, nutrients
800	Oxygen, nutrients
700	Oxygen, nutrients
600	Oxygen, nutrients
500	Oxygen, nutrients
400	Oxygen, nutrients
300	Oxygen, nutrients
200	Oxygen, nutrients
150	Oxygen, nutrients
100	Oxygen, nutrients
50	Oxygen, nutrients
25	Oxygen, nutrients
10	Oxygen, nutrients
Fluorescence max	Oxygen, nutrients

Table 1. Depths at which bottle samples were collected

Deployment of APEX floats

APEX floats were launched during transit from the Seychelles to the entrance of the Mozambique Channel. These observations form part of a German research program led by prof. Fritz Schott and dr. Juergen Fischer from Kiel. 10 Floats were launched every 40-50 nm after the Charles Darwin had reached the deep ocean to the west of the Mascarene plateau. The position of the deployment of these floats is indicated on the map in Figure 3.

Figure 3. Positions where APEX floats were launched, including their serial numbers.

Moorings

The major goal of this cruise was the deployment of long-term moorings at the narrowest part of the Mozambique Channel, more or less evenly distributed over the entire section. These moorings are deployed for a period of 4.5- 5 years. Each 1.5 years these sub-surface moorings will be serviced. 7 moorings are equipped with ADCP's, current meters and T-S sensors. Passive sampler cages for the determination of organic pollutants were attached to some of the mooring cables. In addition, one mooring with 2 sediment traps and a turbidity sensor (OBS) was deployed. The position of the moorings and the location and type of instruments in the cross-section is shown in figure 5. The measuring interval of the physical instruments ranges from 5 minutes (T-S sensors), 12 minutes (OBS), 15 minutes (current meters) to 30 minutes (ADCP's). The cups in the sediment traps collect distinct samples over 24 intervals of 21 days. These moorings are scheduled to be recovered and redeployed in March-April 2005.

Detailed information on the moorings is given in the list in appendix B.

Figure 5. Position of long-term moorings in Mozambique Channel (top) and vertical distribution of the instruments (bottom).

Multicore stations

On the western, Mozambican, side of the section 7 Multicore stations were sampled. The bottom samples were sliced to determine the vertical distribution of pore water nutrients and total dissolved carbon in the cores and to determine the composition of the core top sediments for the best suited location of the sediment trap mooring. Both the deepest station near the centre of the channel and the shallowest station near the continental shelf were less succesful because the Multicore penetrated too

deeply into the bottom sediment for proper geochemical profiling. Figure 6 shows the positions of the Multicore stations.

Figure 6. Position of the Multicore stations at the western side of the section.

Underway stations

During almost the entire cruise, surface samples were taken each 6 hours. During the passage of an eddy in the central part of the Mozambique Channel this sampling scheme was intensified to one surface sample per hour. The position where surface samples have been taken is indicated in Figure 7.

Figure 7. Locations where surface samples have been taken

1.3 Scientific Programme and Methods

The goal of this CD153B cruise was 1) to start with long-term monitoring of the currents, some hydrographic properties, organic contaminants and vertical particle fluxes at the narrowest section of the Mozambique Channel 2) to obtain detailed information on the hydrography along this section and 3) to obtain information on the sediment biogeochemistry along the western side of the channel.

Long-term observations with moorings (see figure 5)

To adress the first goal 8 moorings were deployed across the Mozambique channels. Of these, 7 moorings were more or less evenly distributed across the channel and these moorings were equipped with recording ADCP's, current meters and T-S sensors. The observations are planned for a period of 4-4.5 years and will be used to determine the water- and heat transport through the channel. During a previous pilot experiment it was found that the currents are dominated by southward migrating anticyclonic eddies which fill more or less the entire section. Therefore the original design (also based on the availability of instruments) was such that the top of 6 moorings, at 600 m below surface, was equipped with a Long Ranger ADCP. However, one day prior to the scheduled start of the deployments, 3 ADCP's appeared not to function. It was decided to decrease the number of ADCP's on the top of the moorings from 6 to 4 and near the bottom on the western side from 4 to 3. The near-bottom ADCP's on the western side (moorings 5A, 6,7) are intended to observe the magnitude of the undercurrent carrying NADW equatorward, as discovered during the pilot experiment. One mooring, 5A, extends to 100 m below surface in order to have near surface observations on the (variations in) temperature and salinity. After examination of all Multicore-tops, the sediment trap mooring was deployed in between moorings 5A and 6. These observations will be used to determine the influence of passing eddies on settling fluxes of particles from the upper ocean and resuspension fluxes of particles from the ocean floor (see below). On several moorings near the center of the channel where the currents are expected to be strongest passive sampler cages have been attached to the mooring cable to observe organic pollutants, see below.

Organic contaminants sampling using passive sampler cages

Knowledge on concentrations of dissolved organic contaminants in the water phase is crucial for understanding the role of the oceans in the global fate of these compounds, because the aqueous concentrations of organics are closely related to their thermodynamic potential. Existing models identify the tropical and temperate regions as evaporation zones for organics, and the poles as a final sink, where most of these compounds will condense. In these models it is assumed that the ocean is vertically wellmixed with respect to organics, but no data is available to check whether this assumption makes sense at all. In addition, it is assumed, but not tested, that deep ocean currents that are directed from the poles towards the equator play no role in the redistribution of organics on a global scale. The aim of contaminant sampling within the LOCO program is to test whether passive sampling is a convenient technique for measuring aqueous concentrations of organic contaminants on (semi-) permanent moorings, and to validate or disproof some of the basic assumptions in the current global fate models.

Hydrographic observations

The second goal was addressed by obtaining CTD stations with bottle samples along the entire mooring section. The distance between stations varied between 15 nm at the eastern side and 10 nm at the western side of the channel. The short distance at the western side mainly reflects our interest in the size and magnitude of the equatorward undercurrent along this slope. During a previous cruise the distance between stations was too large to be able to determine the size of the, possibly distinct, undercurrents at intermediate levels (about 1000-1500 m) and in the deepest part of the channel (2000-2500 m). The present observations can be used to address this question.

Biogeochemical cycling

The motivation for the third goal was simply that very little information is available on the biogeochemical cycling in this area, especially with regard to the composition and geochemistry of the seafloor sediment. Therefore bottom samples along the continental slope were taken with a Multicore at locations centred around the prospective deployment site of the sediment trap mooring. Since the bulk of the settling particle fluxes arriving on the ocean floor is generated by biological export production from the upper ocean, both surface and subsurface waters were filtered to determine the concentration and stable isotope composition of the particulate organic carbon and nitrogen as well as the concentration of total suspended matter and biogenic silica. Together with nutrient and total dissolved carbon measurements in both the water column and in the sediment, they will allow to determine the (re)mineralisation fluxes of organic and inorganic matter on different time scales and in different hydrographic regimes.

Preliminary Results

Hydrographic observations

Figure 8 shows a T-S plot of all observations as obtained along the mooring section in the Mozambique Channel and Figure 9 shows oxygen concentrations as a function of depth.

Figure 8. Temperature as a function of salinity along the mooring section in the Mozambique Channel

Figure 9. Oxygen concentration at the mooring section

Salty and warm tropical surface water (Indian Central Water) is found in the upper few hundred meters. At intermediate levels relatively salt, low oxygen water of Red Sea origin is found. Below 2000 m, relatively high salinity and oxygen values are found which point to the presence of North Atlantic Deep Water. This is confirmed by the high silica values (not shown)

Figure 10 Density distribution below 1000 m at the western, African, side of the Mozambique Channel

The density distribution along the slope at the western side of the channel suggests that two distinct cores of equatorward undercurrents are present, one centred around 1400 m depth and one in the deepest part of channel. In between the horizontal density gradient, associated with these currents is much weaker.

Multicore geochemistry, preliminary results

First results show that, from the deepest part of the Mozambique Channel to the shallower staitons on the Mozambique Margin, pore water nitrate and ammonium profiles reflect the increased input of organic matter from the shelf (fig.1). At the shallower stations MC5 and MC6, nitrate is used to depletion, resulting in the accumulation of ammonium in the deeper layers of the sediment.

Fig. 11: Profiles of dissolved nitrate (solid triangles) and dissolved ammonium (open squares) along the multicore transect in the Mozambique Channel.

From a third 10cm-diameter core, the top sediment was sieved to obtain information on the composition of the sediment.

1.4 Major Problems Encountered during the Cruise

One day before the deployment of the moorings was scheduled to commence, it was discovered that 3 new acquired LR-ADCP's did not function due to empty batteries. After communicating with RDI and several checks it appeared that these instruments leak considerable energy while powered down. Therefore it was decided not to deploy these instruments and to adapt the mooring design slightly.

Two times a fault in the CTD wire occurred which required shortening of the wire, the first time it was shortened with a few meters, the second time it was shortened with a few hundred meters. The consequence is that CTD observations at station 2 and at the deeper part of station 3 are not available

1.5 Lists of Cruise Participants

Scientific crew

Name	Institute	Nationality	Function/
			Speciality
Herman	NIOZ	NL	Chief scientist
Ridderinkhof			
GeertJan	NIOZ	NL	Sediment traps,
Brummer			Surface & CTD
			sampling
Erica Koning	NIOZ	NL	Multicoring,
			Surface sampling
Sharyn Crawford	NIOZ	NL	Chemical
			analyses
Karel Bakker	NIOZ	NL	Nutrients, oxygen
Leon Wuis	NIOZ	NL	Moorings
Karel Bakker	NIOZ	NL	Moorings
Jack Schilling	NIOZ	NL	Moorings
Theo Hillebrand	NIOZ	NL	Mooring
			instruments
Virginia	University	NL	PhD student –
Palastanga	Utrecht		CTD-oxygen
Janine Nauw –	University	NL	PostDoc –
van der Vegt	Utrecht		CTD-oxygen
Jonathan Short	SOC	UK	CTD
Peter Keen			
Robert	SOC	UK	Mooring winch
MacLachlan			
Chris Crowe	SOC	UK	Mooring winch
Emma Northrop	SOC	UK	Mooring winch
Martin Bridger	SOC	UK	Computer support

2 Underway Measurements

Navigation

Differential GPS receiver for the determination of the position. The data from the receiver were recorded every ten seconds in the underway data logging system. Regularly no signal was achieved for a period of a few hours. This occurred almost every day.

Echo Sounding

The 3.5 kHz echo sounder was used on board to determine the water depth. The uncorrected depths from this echo sounder were recorded in the underway data logging system.

Thermo-Salinograph Measurements

The Sea Surface Temperature, Salinity, Fluorescence and optical transmission were measured continuously with an AQUAFLOW thermo-salinograph system with the water intake at a depth of about 2 m.

Underway sampling

Every 6 hours along the most of the cruise track (Fig. 7), surface water was sampled from a separate outlet of the thermo-salinograph system and filtered using three different set-ups:

1. For nitrogen stable isotopes, nitrogen and total carbon concentration, 8 liters of surface water were filtered through 25 mm diameter Gelman A/E glass fibre filters (P/N 61630, lot 00541) with a nominal pore size of 1.2 μ m, that were transferred to glass vials and stored frozen at -70°C.

2. For organic carbon stable isotopes and organic carbon concentration, 2 liters were filtered through 13 mm diameter Gelman A/E glass fibre filters (P/N 61628, lot 01044) with a nominal pore size of 1.2 μ m, that were transferred to glass vials and stored frozen at -70°C.

3. For total suspended matter and biogenic silica, 3 liters were filtered through 47 mm pre-weighed polycarbonate filters with a defined 0.45μ m pore size, that were transferred to Gelman Analyslides and stored frozen at -20°C.

At the same time a 6ml sample taken directly from the outlet, was syringe-filtered over 0.2 μ m Acrodiscs and transferred to a ponyvial and stored at 4°C in the dark, prior to shipboard nutrient analysis (see below). During the survey of the large anti-cyclonic eddy "Tulip", additional samples were taken for total dissolved carbon, that were pre-filtered as for the nutrients, and transferred to glass vials and poisoned with a drop of saturated HgCl₂. Also samples were taken and analysed shipboard for dissolved oxygen concentration (see below).

Vessel mounted ADCP measurements

A 150 kHz vessel mounted ADCP (RDI) recorded the current field continuously. However, these data require considerable effort to become a coherent set. The post-processing includes calibration with data from the lowered ADCP.

3 Hydrographic measurements - Descriptions, Techniques, and Calibrations

Rosette Sampler and Sampler Bottles

A 25 position rosette sampler was used, fitted with Niskin sampler bottles. The general behaviour of the samplers was good. Only a few samples are considered to be suspect because of sampler failure. No errors in the functioning of the rosette sampler itself were detected.

Salinity Measurements

Water was drawn from the samplers into a 0.5 litre glass sample bottle for the salinity determination after 3 times rinsing. The sample bottles had a massive rubber stopper as well as a screw lid. Salinity of water samples (SALNTY) was determined on board by means of an Guildline Autosal 8400A salinometer. The salinometer was used in a laboratory container, fitted with an air conditioning system. This kept the surrounding air temperature constant within 1°C. The readings of the instrument were performed by computer, giving the average and statistics of 10 consecutive readings. For each sample 3 salinity determinations were carried out. From each deep CTD/rosette cast an extra duplicate sample was drawn. Salinity determinations from the duplicate samples obtained from independent runs were used to determine the reproducibility of the salinity determination.

Oxygen Measurements

For the oxygen determination water samples were drawn in pre calibrated 120 ml pyrex glass bottles. Before drawing the sample each bottle was flushed with at least 3 times its volume. The determination of the volumetric dissolved oxygen concentration of water samples was carried out by means of measuring the formed Iodine colour at 460nm on a Traacs 800 continuous flow spectro-photometer, combined with a stand alone home made sampler (NIOZ) based on Winkler technique, [see Su-Chen Pai et al., Marine Chemistry 41 (1993), 343-351]. All bottles for measurement were covered with parafilm against evaporation and shielded for the light by PVC caps, to prevent light induced Iodine forming.

A stock solution of KIO_3 was used in the analysis spiked to so called seawaterblanks (reversed order addition of the Winkler chemicals) to obtain a calibration line, with a $R^2=1.0000$ for 4 calibrants in each run, to calibrate the used spectrophotometer. The stock solution was stored in an air tight water saturated container (100% humidity) to prevent evaporation.

At each cast duplicate samples were taken from the deepest Rosette-bottle, in order to determine the inter variability between the daily runs of the analysis. Baseline- and gain-drift of the spectrophotometer is corrected by the used AACE software. To obtain accuracy in between the runs a stock-standard of IO₃ (Baker Dilut-IT) is measured and as a control a so-called reference bottle, bottled according Winkler from one big saturated container (50l oceanwater). The reference give a narrow banded signal of +/- 0.7 μ Mol on a level of 206 μ Mol O₂ between the runs and better than 0.24 μ Mol within a run. From the

volumetric oxygen concentration in μ Mol/dm³ the densimetric oxygen concentration in μ Mol/kg (OXYGEN) was determined by dividing the sample density at sample temperature and salinity.

Nutrient Measurements

From all sampler bottles samples were drawn for the determination of the nutrients silica, nitrite, nitrate and phosphate. The samples were collected in polyethylene sample bottles after three times rinsing. The samples were stored dark and cool at 4°C. All samples were analysed for the nutrients silicate, phosphate, nitrate and ammonium within 12 hours with an autoanalyzer based on colorimetry. The lab container was equipped with a Technicon TRAACS 800 autoanalyzer. The samples, taken from the refrigerator, were directly pored in open polyethylene vials (6ml) and put in the auto sampler-trays. A maximum of 60 samples in each run were analysed.

The different nutrients were measured colorimetrical as described by Grashoff (1983);

• Silicate reacts with ammoniummolybdate to a yellow complex, after reduction with ascorbic acid the obtained blue silica-molybdenum complex was measured at 800nm (oxalic acid was used to prevent formation of the blue phosphate-molybdenum).

• Phosphate reacts with ammoniummolybdate at pH 1.0, and potassiumantimonyltartrate was used as an inhibitor. The yellow phosphate-molybdenum complex was reduced by ascorbic acid to blue and measured at 880nm.

• Nitrate was mixed with a buffer imidazole at pH 7.5 and reduced by a copperized-cadmium coil (efficiency> 98%) to nitrite, and measured as nitrite (see nitrite). The reduction-efficiency of the cadmium-column was measured in each run.

• Ammonium is reacted to a coupled indophenol hypochlorite complex described by Helder and de Vries, measured at 630nm .

Calibration standards were prepared by diluting stock solutions of the different nutrients in the same nutrient depleted surface ocean water as used for the baseline water. The standards were kept dark and cool in the same refrigerator as the samples. Standards were prepared fresh every two days. Each run of the system had a correlation coefficient for the standards off at least 0.9998. The samples were measured from the surface to the bottom to get the smallest possible carry-over-effects. In every run a mixed control nutrient standard containing silicate, phosphate and nitrate in a constant and well known ratio, a so-called nutrient-cocktail, was measured, as well as control standards, sterilized in an autoclave or gamma radiation. These standards were used as a guide to check the performance of the analysis and the gain factor of the autoanalyzer channels. As a result for silica there will be a recalculation of about 1.5% later in the lab, after checking the standard. The reduction-efficiency of the cadmium-column in the nitrate lane was measured in each run.

The autoanalyzer determined the volumetric concentration (μ Mol/dm³) at a temperature of 24°C. In order to obtain the densimetric concentration in μ Mol/kg the volumetric concentrations were divided by the density of sea water at 24°C, sample salinity, and zero sea pressure.

Dissolved Inorganic Carbon

Some CTD stations were sampled for DIC to be measured at home.

Samples were filtered over 0.45µm and put in a glass vial (4ml) containing 15µl saturated HgCL2 as a preservative. Measurement will be done home, using a spectrophotometric-method described by Stoll and Bakker (Marine Chemistry 2001).

CTD Data Collection and Processing

The SBE 9/11+ CTD was fitted with temperature sensor SN2118 and conductivity sensor SN995. For the data collection SEASAVE software, version 4.224, supplied by SBE, was used. The CTD data were recorded with a frequency of 24 data cycles per second. On-line a correction was applied for the sampling time difference due to the forced flushing through a tube system between temperature and salinity sensor. After each CTD cast the data were copied to a hard disk of the ship's computer network, and a daily back-up copy was made on tape. Back on Texel these data have been downloaded into the NIOZ computer network. Separate copies of the back up were taken directly from Durban to Texel.

The up-cast data files were sub-sampled to produce files with CTD data corresponding to each water sample, taken with the rosette sampler. After the determination of the final calibration of the CTD system these values were corrected accordingly.

After the cruise the raw down-cast CTD data were processed with the software supplied by SBE. A correction was applied for the temperature change between the temperature and conductivity sensor due to heat exchange with the flushing tube and conductivity sensor, and for different response times of both sensors. Mean values of the readings were produced for 1 dbar pressure intervals. Consecutively the parameter values in physical units were determined using the final calibration constants.

4 Multicore geochemistry

Particulate organic matter settling at the sea floor is recycled in the upper layer of the sediment, thereby releasing dissolved nutrients in the upper layers of the sediments. Oxygen supplies the energy needed for this process; when oxygen is depleted, dissolved nitrate will be used as an oxidant. The build-up of dissolved nutrients in the pore waters results in fluxes from the sediment into the overlying water, where concentrations are generally low.

To investigate nutrient fluxes across the sediment -water interface, seven multicore stations were sampled along the mooring transect in the Mozambique Channel. The positions of the multicore stations, water depth and sediment recovery are listed below.

Station #	Water depth	Pos. latitude	Pos. longitude	Sediment
	(m)			recovery
MC1	2662	16° 50.00 S	41° 23.50 E	Too full
MC2	2488	16° 47.77 S	41° 08.00 E	Good
MC3	2247	16° 43.44 S	40° 50.95 E	Good
MC4	2082	16° 40.67 S	40° 40.31 E	Good
MC5	1817	16° 37.29 S	40° 27.16 E	Good
MC6	1535	16° 34.02 S	40° 13.11 E	Good
MC7	1071	16° 31.70 S	40° 03.08 E	Too full

At all stations, samples were taken with a NIOZ multicorer, equipped with 8 6cm-id cores and 4 10cm-id cores. Immediately upon arrival on deck, the cores were transferred to the temperaturecontroled lab, maintained at bottom water temperatures (4°C). For pore water extraction, four 6cm-id cores were sliced using a high-precision hydraulic slicer that positions up to four cores simultanuously. Cores were sliced in 0.25cm slices for the 0-1cm depth interval, in 0.5cm slices for the 1-3cm depth interval, in 1 cm slices for the 3-7cm depth interval and in 2cm slices below 7cm depth. For each depth interval, sediment slices were pooled and centrifuged for 10 minutes at 3000 rpm to extract the pore water. The extracted pore waters were filtered through 0.45µm Acrodisc filters and analyzed onboard ship for dissolved silicate, nitrate, ammonium and phosfate. Samples for dissolved inorganic carbon were collected and will be analyzed at home.

From the other 4 6cm-diameter cores, sediment samples were collected for porosity and organic carbon and nitrogen at intervals corresponding with those samples for the pore waters. Furthermore, samples were collected at 0-0.5, 0.5-1, 1-2, 2-3, 4-6 and 13-17cm depth intervals to be analyzed for ²³⁴Thorium.

Two 10cm-diameter cores were tranferred to the cold lab upon arrival on deck. In the cold lab, the cores were equipped with a stirring device leaving no headspace. The cores were sampled at 3 hour intervals for 18 hrs. to determine the flux of dissolved silicate, nitrate, ammonium and phosfate across the sediment-water interface. Again, samples were collected for dissolved inorganic carbon to be analyzed at home.

5 Sediment trap sampling

Site selection was based on sampling of the bottom sediment by the Multicorer at 7 sites on the Mozambique margin, proceeding from the assumption that a "good" sedimentary record would be the best guarantee that a quality particle flux record would be recovered. As it appeared, site MC-3 at 2242 m bottom depth and situated directly underneath the path of the eddies, proved to be better or at least no worse than any of the other sites sampled (see above). Therefore it was decided to deploy the sediment trap mooring there, on November 22, 2003 at 07:42 UTC. The pre-programmed sampling intervals are kept the same at 21 days for every of the 24 collecting cups, starting on November 23, 2003 at 01:00 UTC, thus ending on April 10, 2005. The time-series sediment traps used are Technicap PPS-5/2 with a collecting area of 1.0 m² and provided with a 1.5 cm honeycomb baffle. Sample cups were filled with seawater collected at the deployment depth of each trap and from the actual deployment site, to which a biocide (HgCl₂; end-concentration 0.95 g l⁻¹) and a pH-buffer (Na₂B₄O₇·10H₂O; end concentration 1.9 g l⁻¹) were added supplemented by milliQ-water to a density slightly in excess of the ambient seawater. A blank sample was taken for later comparison with the actual collecting cups to determine chemical dissolution fluxes.

6 Organic contaminants sampling

Low-density polyethylene (LDPE) strips, silicone strips, and triolein-filled semipermeable membrane devices (SPMDs) are mounted in exposure cages that are clamped to the mooring line for moorings LMC5, LMC5A, LMC6, and the sediment trap mooring, at five water depths (one per mooring, except for LMC5A; see table below). The samplers absorb organic contaminants from the water phase. The uptake kinetics will be calibrated by measuring the dissipation of performance reference compounds (PRCs) that are spiked into the samplers prior to exposure. After exposure, the samplers will be extracted, and analysed for hexachlorocyclohexanes, hexachlorobenzene, polychlorinated biphenyls, polyaromatic hydrocarbons, and polybrominated biphenyl ethers.

Mooring	position on the cable	Depth	cage #
		below surface	
		(m)	
LMC4	not applicable		none
LMC5	- as high as practically achievable	600	13
LMC5	- as low as practically achievable	2000	14
Sediment trap mooring	just below the upper sediment trap	2150	15
LMC5A	 as high as practically achievable at approximately the same depth as cage 13 on LMC5 	150 600	16 17
LMC6	as low as practically achievable	2700	18
LMC7 LMC8 LMC9	not applicable		none

Acknowledgements

The research reported here was funded by the Netherlands Organisation for Scientific Research (NWO). I thank the ships crew and the personnel of the supporting technical departments of NERC-SOC for their professional support and active participation in the preparation and execution of the cruise reported here.

Appendix A

cruise summary (*.SUM file) of Pelagia cruise 64PE156

c	5
È	í
	5
ů	, 0
5	5
	ŝ
0	5
	0

		1	Inc act	linary				1000					
	Cas	st types	and Pa	Irameter	Cast types and Parameters may be added from the "codes" sheet	ded from	the "c	codes" s	sheet				
					Cast types:						Event codes		
					ROS	СТІ	CTD+Rosette	sette		_			
					MOR	2	Mooring	Ō			BE	begin	
					SUR	Surfa	ce sar	Surface sampling			во	bottom	
						Deployment APEX float	Ient Al	PEX floa	at		Ē	end	
						Multicore					DEP	deployment	
					WATER	Surface water sampling	water	samplir	Ð				
					UTC								
	_			MMM	MMM dd, yyyy hh:mm:ss	nm:ss						Dominante (
EXPOCOD Station Action Type	tion /	Action	Гуре	Event	Datum/ Tijd	_	atitude		Longitude	Ide	Depth	7	VAV Measurement Subjecname
					Date	Time	deg S	deg S min S	deg E	deg E min E			
64CD153B	-	-1	SUR	盟	12-Nov-03		4	50.18	53	53.58		P1	Chemistry surface
64CD153B 2	N	-	SUR	쁃	13-Nov-03	0:01	4	54.80	53	1.57		P2	Chemistry surface
64CD153B	ω	1	APEX	DEP	13-Nov-03	0:58	4	59.99	52	54.00	Ū	S/N 1001 0	GPS APEX/Argos float
64CD153B 4	4	1 /	APEX	DEP	13-Nov-03	5:40	ъ	33.99	52	28.60			APEX/Argos float
64CD153B	ы		SUR	DEP	13-Nov-03	6:00	σ	34.39	52	27.10	Ū	P3	Chemistry surface
64CD153B 6	o	1	APEX	DEP	13-Nov-03	11:00	ი	10.00	52	10.97		666 N/S	APEX/Argos float
	7	1	WATER	BE	13-Nov-03	11:15	6	12.00	52	7.00		intake of	from 2 meter through
				E	13-Nov-03	14:40	ი	40.00	5	37.00	•	1250 liter	PP-coated steel
64CD153B 8	00	-	SUR	BE	13-Nov-03	12:00	ი	19.05	5	54.80	Ū	P4	Chemistry surface
64CD153B 9	9	1 /	APEX	DEP	13-Nov-03	15:48	ი	47.01	5	30.99	Ū	866 N/S	APEX/Argos float
64CD153B 1	10	-	SUR	BE	13-Nov-03	18:00	7		5			P5	Chemistry surface
	Ξ	1	APEX	DEP	13-Nov-03	20:35	7	24.04	5	2.00		S/N 997	APEX/Argos float
	N	-	SUR	BE	14-Nov-03	0:01	7	50.32	50	41.27		P6	Chemistry surface
64CD153B 1	ω	1	APEX	DEP	14-Nov-03	1:16	œ	0.99	50	32.99	•	S/N 996	APEX/Argos float
	14	1	APEX	DEP	14-Nov-03	5:57	8	38.01	50	4.99		S/N 995	APEX/Argos float
	15	-	SIR	BR	14-Nov-03	6:00	20	38.58	50	4.54		P7	Chemistry surface

LOCO-MC	MO		ise Sur	nmary (Cruise Summary Charles Darwin cruise CD 153B	rin cruis	e CD	153B						
	Cas	t types	and Pa	arameter	Cast types and Parameters may be added from the "codes" sheet	led from	the "c	odes" sh	leet					
					Cast types:						Event codes			
					ROS	CTL	CTD+Rosette	ette						
		-			MOR	2	Mooring	9			BE	begin		
					SUR	Surfac	Surface sampling	npling			во	bottom		
						Deployment APEX float	ent AF	EX floa			EZ	end		
						Multicore					DEP	deployment		
					WATER	Surface water sampling	water	sampling	G					
					UTC									
				MMM	MMM dd, yyyy hh:mm:ss	nm:ss								
SHIP/CRS.											Uncorrected	Uncorrected Comments /	0	CTD directory
EXPOCOD Sta	Station Action Type	ction 7	Гуре	Event	Datum/ Tijd	_	atitude		Longitude		Depth	Opmerking NAV	Opmerking NAV Measurement Subjec name	lame
64CD153B 1	16	-1 F	ROS	BE	14-Nov-03	9:24	9	3.80	49	45.00		test CTD	till 1000 m n	n.a
			ROS	E	14-Nov-03	10:31	9	3.60	49	44.60			bottles at 500 m	
64CD153B	17		SUR	BE	14-Nov-03	12:00	6	14.77	49	36.27		P8	Chemistry surface	
64CD153B	18	1	APEX	DEP	14-Nov-03	12:06	9	15.04	49	36.08		S/N 994	APEX/Argos float	
64CD153B	19	1	APEX	DEP	14-Nov-03	16:52	9	51.01	49	7.50		S/N 993	APEX/Argos float	
64CD153B	20		SUR	踞	14-Nov-03	18:00	9	59.60	49	1.00		P9	Chemistry surface	
64CD153B	21	1	APEX	DEP	14-Nov-03	21:39	10	27.99	48	39.00		S/N 991	APEX/Argos float	
64CD153B	22		SUR	BE	15-Nov-03	0:00	10	45.67	48	24.46		P10	Chemistry surface	
64CD153B 2	23	1	APEX	DEP	15-Nov-03	1:50	10	59.99	48	12.00		066 N/S	APEX/Argos float	
64CD153B	24		SUR	BE	15-Nov-03	6:00	1	36.48	47	47.16		P11	Chemistry surface	
	25	-	SUR	毘	15-Nov-03	12:05	12	21.55	47	40.44		P12	Chemistry surface	
64CD153B	26	-	SUR	毘	15-Nov-03	18:00	3	0.69	46	28.38		P13	Chemistry surface	
	27	-	SUR	BE	16-Nov-03	0:01	13	51.55	45	37.31		P14	Chemistry surface	
-	28	-	SUR	毘	16-Nov-03	7:00	14	28.26	45	0.60		P15	Chemistry surface	
	29	-	SUR	BR	16-Nov-03	13:00	15	5.85	44	22.85		P16	Chemistry surface	
	30	-	SUR	BE	16-Nov-03	19:00	15	50.84	43	37.24		P17	Chemistry surface	
	3	-	SUR	BE	17-Nov-03	1:00	16	44.15	43	12.58		P18	Chemistry surface	

	M		uise Su	mmary (Cruise Summary Charles Darwin cruise CD 153B	vin cruise	e CD 1	153B						
	Ca	ist type	s and Pa	aramete	Cast types and Parameters may be added from the "codes" sheet	ded from	the "co	odes" sh	eet					
					Cast types:					-	Event codes:			
					ROS	CTD	CTD+Rosette	ette						
					MOR	M	Mooring				BE	begin		
					SUR	Surface sampling	e sam	Ipling			BO	bottom		
						Deployment APEX float	ent AP	EX float			EN	end		
					MC	Multicore					DEP	deployment		
					WATER	Surface water sampling	vater s	sampling	9					
					UTC									
				MMM	MMM dd, yyyy hh:mm:ss	nm:ss								
SHIP/CRS.										-	Jncorrected	Uncorrected Comments /		CTD directory
EXPOCOD St	Station	Action Type	Type	Event	Datum/ Tijd		_atitude		Longitude		Depth	Opmerking NAV	Opmerking NAV Measurement Subjec name	c name
64CD153B	32	-	ROS	BE	17-Nov-03	5:18	17	17.30	43	10.78	300	300 station 1	failure	CTD1
64CD153B			ROS	во	17-Nov-03								broken terminator	
64CD153B			ROS	EN	17-Nov-03	5:54	17	17.18	43	11.01				
64CD153B	ယ္သ	-	ROS	BE	17-Nov-03	7:02	17	15.94	43	5.58	1030 sta	station 2	failure	CTD2
64CD153B			ROS	во	17-Nov-03								broken terminator	
64CD153B			ROS	Ð	17-Nov-03	7:16	17	16.07	43	5.68				
64CD153B	34	-	SUR	BE	17-Nov-03	7:06	17	15.97	43	5.55		P19	Chemistry surface	
64CD153B	35	_	SUR	BE	17-Nov-03	13:00	17	6.07		28.60		P20	Chemistry surface	
64CD153B	36	-	MOR	DEP	17-Nov-03	16:07	17	6.19		28.80	2202	2202 LMC8	LOCO mooring	
64CD153B	37	-	SUR	BE	17-Nov-03	19:01	17	16.07	42	34.78		P21	Chemistry surface	
64CD153B	38	-	ROS	BE	17-Nov-03	18:20	17	15.99		34.70	2020 sta	station 4		CTD3
64CD153B			ROS	BO	17-Nov-03									
64CD153B			ROS	EZ	17-Nov-03	20:45	17	16.39		34.60				
	39	-	ROS	BE	17-Nov-03	22:39	17	15.80	42	50.20	1869 sta	station 3	failure	CTD4
64CD153B			ROS	BO	17-Nov-03								broken terminator	
64CD153B			ROS	EN	17-Nov-03	23:20	17	16.60	42	50.30				
64CD153B	40	-	SUR	BE	18-Nov-03	0:35	17	16.40	42	53.44		P22	Chemistry surface	

	M		se Sum	Imary C	Cruise Summary Charles Darwin cruise CD 153B	vin cruis	e CD 1	53B						
	Cas	st types :	and Pa	ameter	Cast types and Parameters may be added from the "codes" sheet	ded from	the "co	odes" sh	eet					
					Cast types:						Event codes:			
					ROS	CTE	CTD+Rosette	tte						
					MOR	2	Mooring				BE	begin		
					SUR	Surfac	Surface sampling	pling				bottom		
						Deployment APEX float	ent AP	EX float				end		
						Multicore					Ŭ	deployment		
					WATER	Surface water sampling	water s	ampling						
					UTC									
				MMM	MMM dd, yyyy hh:mm:ss	mm:ss)		
SHIP/CHS.												Comments /		
EXPOCOD St	Station /	Action Type	ype	Event	Datum/ Tijd	L	Latitude	5	Longitude		Depth	Opmerking NAV	Opmerking NAV Measurement Subject name	cname
64CD153B	41	1 S	SUR	BE	18-Nov-03	7:00	17	14.70	43	1.36		P23	Chemistry surface	
	42	1 M	MOR	DEP	18-Nov-03	7:11	17	14.90	43	2.10	1440	1440 LMC9	LOCO mooring	
	43	2 S	SUR	BE	18-Nov-03	13:00	17	0.57		6.63		P24	Chemistry surface	
64CD153B	44	1 M	MOR	DEP	18-Nov-03	15:20	16	58.6	41	56.30	1995	1995 LMC7	LOCO mooring	
	45	1 R	ROS	BE	18-Nov-03	17:41	17	1.00	42	4.20	2211	2211 station 6		CTD5
64CD153B		R	ROS	BO	18-Nov-03									
64CD153B		R	ROS	EN	18-Nov-03	20:20	17	1.70		4.50				
	46	1 S	UR	BE	18-Nov-03	19:00	17	1.43	42	4.20		P25	Chemistry surface	
	47	1 R	ROS	BE	18-Nov-03	22:03	17	4.60		19.30	2090	2090 station 5		CTD6
64CD153B		R	SOS	BO	18-Nov-03									
64CD153B		R	SOS	E	19-Nov-03	0:58	17	4.60	42	19.60				
	48	1 S	UR	BE	19-Nov-03	00:51	17	4.59	43	19.61		P26	Chemistry surface	
	49	1	MOR	DEP	19-Nov-03	09:14	16	52.22		28.72	2692	2692 LMC6	LOCO mooring	
	50	1 S	SUR	BE	19-Nov-03	07:00		49.28	41	28.70		P27	Chemistry surface	
	51	1 R	ROS	BE	19-Nov-03	11:47		57.34		48.78	2050	2050 station 7		CTD7
64CD153B		R	ROS	BO	19-Nov-03									
64CD153B		R	ROS	E	19-Nov-03	14:20	16	57.80	41	48.52				

LOCO-MC	MC	Cruis	se Sum	mary C	Cruise Summary Charles Darwin cruise CD 153B	/in cruise	e CD 1	53B						
	Cast	types a	and Par	ameter	Cast types and Parameters may be added from the "codes" sheet	led from	the "co	odes" sh	leet					
					Cast types:						Event codes:			
					ROS	CTD	CTD+Rosette	otte						
					MOR	N	Mooring				BE	begin		
	-				SUR	Surfac	Surface sampling	pling				bottom		
		_				Deployment APEX float	ent AP	EX float			Ð	end		411 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
						Multicore					DEP	deployment		
					WATER	Surface water sampling	water s	sampling						
					UTC									
				MMM	MMM dd, yyyy hh:mm:ss	nm:ss								
		-	-	1		-							Manager D. Ho	
EXPOCOD Station		Action Type		Event	Datum/ Tijd	C	atitude		Longitude		Depth	Opmerking NA	Opmerking NAV Measurement Subject name	name
64CD153B 52	2	1 SI	~	BE	19-Nov-03	14:18	16	57.81	41	48.51		P28	Chemistry surface	مسرا خرار لا مسالحا والمراجع الأسال مسالحه فالمستقدما الأرامين ومستقد والداري مسالحات الأرامات والاستعمار
64CD153B 53	ω	1 MC		BE	19-Nov-03	17:38	16	50.00	41	23.50		MC1	bottom fluxes and	
				BO	19-Nov-03	18:30	16	50.10	41	23.60			composition	
64CD153B				EN	19-Nov-03	19:30	16	50.22	41	23.90			too deep penetration	
64CD153B 54	4	1 SI		BE	19-Nov-03	18:26	16	50.19	41	23.56		P29	Chemistry surface	
64CD153B 55	U	1 R0	ROS	BE	19-Nov-03	21:01	16	53.73	41	33.40	2761	2761 station 8		CTD8
64CD153B		R	ROS	BO	19-Nov-03									
64CD153B		R		EN	20-Nov-03	0:16	16	54.10	41	32.40				
64CD153B 56	ດ	1 SI	SUR	BE	20-Nov-03	00:21	16	54.19	41	32.25		P30	Chemistry surface	
64CD153B 57	7	1 MC		BE	20-Nov-03	3:10	16	47.77	41	8.00	2489	2489 MC2	bottom fluxes and	
64CD153B				BO	20-Nov-03	3:59	16	47.77	41	8.01			composition	
64CD153B				E	20-Nov-03	4:46	16	47.78	41	7.99			too shallow penetration	on
64CD153B 58	8	1 SI	SUR	BE	20-Nov-03	06:00	16	45.28	41	3.25		P31	Chemistry surface	
	0	1 M		DEP	20-Nov-03	07:42		45.94	41	3.93	2400	2400 LMC5A	LOCO mooring	
	0	1 MC		BE	20-Nov-03	08:38	16	47.8	41	8.00		MC2	bottom fluxes and	
64CD153B				BO	20-Nov-03	09:21	16	47.6	41	7.90			composition	
64CD153B				EN	20-Nov-03	10:19	16	47.58	41	7.95				

LOCO-MC		Cruise Su	ummary	Cruise Summary Charles Darwin cruise CD 153B	vin cruis	e CD	153B						
	Cast ty	pes and F	Paramete	Cast types and Parameters may be added from the "codes" sheet	ded from	the "c	odes" sl	neet					
				Cast types:						Event codes:			
				ROS	CTL	CTD+Rosette	sette						
				MOR	Ν	Mooring	Ø			BE	begin		
				SUR	Surfa	Surface sampling	npling			во	bottom		
				APEX	Deployment APEX float	ient Af	PEX floa	4		ΠZ	end		
				MC	Multicore					DEP	deployment		
				WATER	Surface water sampling	water	samplin	ß					
			MMN	MMM dd, yyyy hh:mm:ss	mm:ss								
SHIP/CRS.										Uncorrected	Comments /		CTD directory
EXPOCOD Station		Action Type	Event	Datum/ Tijd		_atitude		Longitude	de	Depth	Opmerking NA	Opmerking NAV Measurement Subjec name	ic name
64CD153B 61		ROS	BE	20-Nov-03	12:11	16	51.18	41	23.47	2669	2669 station 9	and a second	CTD9
64CD153B		ROS	BO	20-Nov-03									
64CD153B		ROS	E	20-Nov-03	15:04	16	51.08	41	23.34				
64CD153B 62		SUR	BE	20-Nov-03	13:04	16	51.14	41	23.61		P32	Chemistry surface	
64CD153B 63		ROS	BE	20-Nov-03	16:47	16	48.69	41	13.11	2586	2586 station 10		CTD10
64CD153B		ROS	BO	20-Nov-03									
64CD153B		ROS	EN	20-Nov-03	19:42	16	48.54	41	13.18				
64CD153B 64		SUR	BE	20-Nov-03	19:03	16	48.61	41	13.20		P33	Chemistry surface	
64CD153B 65	-	ROS	BE	20-Nov-03	21:27	16	47.31	41	2.34	2382	2382 station 11		CTD11
64CD153B		ROS	во	20-Nov-03									
64CD153B		ROS	E	21-Nov-03	0:31	16	47.47	41	2.69				
	-	SUR	BE	21-Nov-03	01:35	16	44.45	40	54.17		P34	Chemistry surface	
64CD153B 67	-	MC	BE	21-Nov-03	02:17	16	43.44	40	50.95		MC3	bottom fluxes and	
			ВО	21-Nov-03	03:02	16	43.44	40	50.97			composition	
64CD153B			E	21-Nov-03	03:45	16	43.42	40	50.98				
64CD153B 68	-	SUR	BE	21-Nov-03	07:06	16	38.38	40	36.46		P35	Chemistry surface	
		MOR	DEP	21-Nov-03	07:49	16	38.74	40	36.71	1992	1992 LMC5	LOCO mooring	

LOCO-MC	INC		lise Sur	nmary (Cruise Summary Charles Darwin cruise CD 153B	vin cruise	CD 1	53B						
	Cas	st types	s and Pa	arametei	Cast types and Parameters may be added from the "codes" sheet	ded from th	ne "co	des" sh	eet					
				-	Cast types:					m	Event codes:			
					ROS	CTD+	CTD+Rosette	tte						
					MOR	Mo	Mooring				BE	begin		
					SUR	Surface sampling	e sam	pling			во	bottom		
					APEX	Deployment APEX float	nt API	EX float			EZ	end		
					MC	Multicore					DEP	deployment		
					WATER	Surface water sampling	ater s	ampling						
					UTC									
				MMM	MMM dd, yyyy hh:mm:ss	mm:ss				-	-			-
		•	-	1									W Moon some of the	
EXPOCOD Sta	Station F	Action Type	Type	Event	Datum/ I IJd	La	atitude	Lo	ongitude		Depth	Upmerking N/	pmerking NAV Measurement Subjectname	ic name
64CD153B 7	70	-	MC	BE	21-Nov-03	09:15	16	40.67	40	40.31	and a subsequence of the second s	MC4	bottom fluxes and	 as in the first second sec
64CD153B				BO	21-Nov-03	10:00	16	40.7	40	40.21			composition	
64CD153B				E	21-Nov-03	10:53	16	40.92	40	40.11				
64CD153B 7	71	-	ROS	BE	21-Nov-03	12:29	16	43.70	40	52.70	2273 s	station 12		CTD12
64CD153B			ROS	BO	21-Nov-03	13:28		43.65	40	52.60				
64CD153B			ROS	EZ	21-Nov-03	15:02	16	43.60	40	52.60				
64CD153B 7	72	-	ROS	BE	21-Nov-03	17:04	16	41.20	40	42.45	2113	station 13		CTD13
64CD153B			ROS	BO	21-Nov-03	18:00	16	41.31	40	42.40				
64CD153B			ROS	E	21-Nov-03	19:38	16	41.57	40	42.31				
64CD153B 7	73	-	ROS	BE	21-Nov-03	21:28	16	38.90	40	32.10	1912	1912 station 14		CTD14
64CD153B			ROS	BO	21-Nov-03									
64CD153B			ROS	EZ	21-Nov-03	23:48	16	40.30	40	31.40				
	74	-	SUR	BE	22-Nov-03	01:30	16	37.68	40	26.97		P36	Chemistry surface	
	75	-	MC	BE	22-Nov-03	02:16		37.29		27.16	1833	1833 MC5	bottom fluxes and	
64CD153B				BO	22-Nov-03	02:54	16	37.57	40	26.99			composition	
64CD153B				Ð	22-Nov-03	03:27	16	37.92	40	26.84				
64CD153B 7	76	-	MOR	DEP	22-Nov-03	07:42	16	42.82	40	51.13	2242	2242 LMC trap	trap mooring	

LOCO-MC	NO		ise Su	nmary (Cruise Summary Charles Darwin cruise CD 153B	in cruis	e CD	153B						
	Cas	st types	and Pa	arameter	Cast types and Parameters may be added from the "codes" sheet	led from	the "co	odes" sh	leet					
					Cast types:						Event codes:			
					ROS	CTD	CTD+Rosette	ette						
					MOR	N	Mooring				BE	begin		
					SUR	Surfac	Surface sampling	Ipling			во	bottom		
						Deployment APEX float	ent AF	EX floa			Ē	end		
						Multicore					DEP	deployment		
					WATER	Surface water sampling	water	samplin	G					
					UTC									
				MMM	MMM dd, yyyy hh:mm:ss	nm:ss								
SHIP/CRS.											Uncorrected	Comments /		CTD directory
EXPOCOD Sta	Station A	Action Type	Туре	Event	Datum/ Tijd	F	_atitude		Longitude		Depth	Opmerking NA	Opmerking NAV Measurement Subjec name	name
64CD153B 7	77		SUR	BE	22-Nov-03	14:01	16	31.45	40	1.73		P37	Chemistry surface	
	78	-	ROS	BE	22-Nov-03	13:26	16	31.40	40	1.70	945	station 17		CTD15
64CD153B			ROS	BO	22-Nov-03									
64CD153B			ROS	Ē	22-Nov-03	15:18	16	31.40	40	1.70				
	79	<u> </u>	ROS	BE	22-Nov-03	17:30	16	33.80	40	11.80	1450	1450 station 16		CTD16
64CD153B			ROS	BO	22-Nov-03									
64CD153B			ROS	E	22-Nov-03	19:10	16	34.60	40	11.99				
64CD153B 8	08		SUR	BE	22-Nov-03	19:07	16	34.58	40	11.97		P38	Chemistry surface	
64CD153B 8	81		ROS	BE	22-Nov-03	21:10	16	36.42	40	21.94	1719	station 15		CTD17
64CD153B			ROS	BO	22-Nov-03									
64CD153B			ROS	E	22-Nov-03	23:26	16	36.72	40	21.42				
64CD153B 8	82	-	MC	BE	23-Nov-03	00:34	16	34.02	40	13.11		MC6	bottom fluxes and	
64CD153B				BO	23-Nov-03								composition	
64CD153B				Ę	23-Nov-03	02:10	16	34.21	40	13.32				
	83		MC	BE	23-Nov-03	03:54	16	31.7	40	3.08		MC7	bottom fluxes and	
64CD153B				BO	23-Nov-03								composition	
64CD153B				Ð	23-Nov-03	04:52	16	31.7	40	3.01			wrong sample	

LOCO-MC	IC		se Sum	nmary (Cruise Summary Charles Darwin cruise CD 153B	vin cruise	e CD 1	53B						
	Cas	t types a	and Pa	rameter	Cast types and Parameters may be added from the "codes" sheet	ded from	the "cc	odes" sh	leet					
					Coot topoor									
					ROS	СТВ	CTD+Rosette	tte						
					MOR	N	Mooring				毘	begin		
					SUR	Surfac	Surface sampling	pling			во	bottom		
					APEX	Deployment APEX float	ent AP	EX float			EZ	end		
					MC	Multicore					DEP	deployment		
					WATER	Surface water sampling	water s	ampling						
					UTC									
				MMM	MMM dd, yyyy hh:mm:ss	nm:ss								
SHIP/CRS.										-	Uncorrected	Uncorrected Comments /		CTD directory
EXPOCOD Stat	ition A	Station Action Type	/pe	Event	Datum/ Tijd		_atitude	Lo	Longitude		Depth	Opmerking NA	Opmerking NAV Measurement Subjec name	name
64CD153B 84	34	1 MC	C	BE	23-Nov-03	05:30	16	31.69	40	3.00		MC7	bottom fluxes and	
64CD153B				BO	23-Nov-03								composition	
64CD153B				E	23-Nov-03	06:12	16	31.87	40	3.03			wrong sample	
64CD153B 85	ភ	1 M	MOR	DEP	23-Nov-03	07:40		32.78	40	8.98	1352	352 LMC4	LOCO mooring	
64CD153B 86	õ	1 SI	SUR	BE	23-Nov-03	13:00	16	35.58	40	-1.50		P39	Chemistry surface	
64CD153B 87	87	1 SI	SUR	BE	23-Nov-03	19:14	18	18.43	39	8.59		P40	Chemistry surface	
64CD153B 88	õ	1 SI	SUR	BE	24-Nov-03	02:19	19	18.76	38	34.69		P41	Chemistry surface	
64CD153B 89	õ	1 SI	SUR	BE	24-Nov-03	03:25	19	27.95	38	29.39		P42	Chemistry surface	
	õ	1 SI	SUR	BE	24-Nov-03	04:21	19	35.09	38	25.37		P43	Chemistry surface	
64CD153B 91	P L	1 SI	SUR	BE	24-Nov-03	05:18	19	42.96	38	21.03		P44	Chemistry surface	
64CD153B 92	32	1 S	SUR	BE	24-Nov-03	06:20	19	51.70	38	15.90		P45	Chemistry surface	
	3	1 SI	R	BE	24-Nov-03	07:18	19	57.04	38	12.77		P46	Chemistry surface	
	94	1 SI	SUR	BE	24-Nov-03	08:21	20	5.85	38	7.95		P47	Chemistry surface	
64CD153B 95	35	1 SI	SUR	BE	24-Nov-03	09:18	20	13.36	38	3.80		P48	Chemistry surface	
	8	1 SI	SUR	BE	24-Nov-03	10:18		21.60	37	59.15		P49	Chemistry surface	
64CD153B 97	97	1 SI	SUR	BE	24-Nov-03	11:18	20	30.07	37	54.42		P50	Chemistry surface	
	86	1 SI	SUR	BE	24-Nov-03	12:15	20	38.45	37	49.61		P51	Chemistry surface	

	Ş	not type	Dhan	oromotor	Cast types and Darameters may be added from the "codes" sheet	ed from t	he "rn	des" she	D					
	ç	Lot type			o may so and									
					Cast types:						Event codes:			
					ROS	CTD	CTD+Rosette	tte						
					MOR	M	Mooring				BE	begin		
					SUR	Surface sampling	e sam	pling			во	bottom		
						Deployment APEX float	ent AP	EX float			EZ	end		
						Multicore					DEP	deployment		
*					WATER	Surface water sampling	vater s	ampling						
					UTC									
				MMM	MMM dd, yyyy hh:mm:ss	nm:ss								
SHIP/CRS.											Uncorrected	Uncorrected Comments /		CTD directory
	Station Action Type	Action	Type	Event	Datum/ Tijd	L	_atitude	Lo	Longitude	le	Depth	Opmerking N.	Opmerking NAV Measurement Subjectname	ic name
64CD153B	99	_	SUR	BE	24-Nov-03	13:26	20	48.10	37	44.20		P52	Chemistry surface	
64CD153B	100	-	SUR	BE	24-Nov-03	14:18		55.53	37	40.22		P53	Chemistry surface	
64CD153B	101	-	SUR	BE	24-Nov-03	15:18	21	4.28		35.48		P54	Chemistry surface	
-00-000	102	-	SUR	BE	24-Nov-03	16:18	21	12.89	37	30.39		P55	Chemistry surface	
4CD153B	103	-	SUR	멾	24-Nov-03	17:18	21	21.75	37	25.04		P56	Chemistry surface	
64CD153B 64CD153B	104	-	SUR	BE	24-Nov-03	18:19	21	30.74	37	19.74		P57	Chemistry surface	
64CD153B 64CD153B 64CD153B	105		SUR	BE	24-Nov-03	19:18	21	39.38	37	14.81		P58	Chemistry surface	
ICD153B ICD153B ICD153B ICD153B	106		SUR	BE	25-Nov-03	02:04	22	34.36	36	42.69	U	P59	Chemistry surface	
ICD153B ICD153B ICD153B ICD153B ICD153B	107	-	SUR	BE	25-Nov-03	08:00	23	30.54	36	10.52		P60	Chemistry surface	
CD153B CD153B CD153B CD153B CD153B CD153B					22-NIV-U3	14:07	24	30.50	35	35.24		P61	Chemistry surface	
64CD153B 64CD153B 64CD153B 64CD153B 64CD153B 64CD153B 64CD153B 64CD153B	108		SUR	BE			2	1	ы	10 00			Chomietry enforce	

.

Appendix B

Mooring information file of Pelagia cruise 64PE156

2003
eployment in
Channel: deploymen
Mozambique
LOCO 1
data
Mooring

Location of deployment
Water measurement instrument below depth Type ID surface
1352 ADCP LR 1428 591
SBE-37-SM 2649
CTD SBE-37-SM 2650 1075
currentmeter RCM11 240
1992 ADCP LR 1431
CTD SBE-37-SM 2651
PASSAM 13
currentmeter RCM11 200
CTD SBE-37-SM 2652
currentmeter RCM11 201
CTD SBE-37-SM 2653
CTD SBE-37-SM 2654
PASSAM 14
ADCP LR 3596
2400 CTD SBE-37-SM 2655
PASSAM 16
CTD SBE-37-SM 2656
CTD SBE-37-SM 2657
currentmeter RCM11 202
PASSAM 17
currentmeter RCM11 203
currentmeter RCM11 204
CTD SBE-37-SM 2658
SBE-37-SM
SBE-37-SM
ADCP LR 3702

ID1770 3N1207 MDL3721													A REAL PROPERTY AND ADDRESS OF AD						
-		5	940							2201	15		PASSAM						-
	NIDE		949						300	2200	1626	SBE-37-SM	CTD						
	ID1770	2	Benthos	07:42	22-Nov-03					2011	51			2242	51.13	40	42.82	16	trap
		04D1	161		,	04:14	18-Nov	13745	900	1026	241	RCM11	currentmeter			1			Linco
CML 60673 23339		04CF	160	07:11	18-Nov-03	04:10	18-Nov	13746	900	628	242	RCM11	1440 currentmeter	1440	2.10	43	14.90	17	I MC9
						C	Check on DSU	0	?	2092	12052	RCM8	currentmeter						
	1					corder	Check on SBE recorder	Check	300	2075	2670	SBE-37-SM	CTD						
						C	Check on DSU	0	?	1493	12755	RCM8	currentmeter						
_						order	check on SBE recorder	check	300	1025	2669	SBE-37-SM	CTD						
						C	13742 heck on DSU	13742	900	994	238	RCM11	currentmeter						
		0400	8GL			order	check on SBE recorder	check	300	625	2668	SBE-37-SM	CTD						
2012	_		100	10:07	17-NOV-U3	corder	check on ADCP recorder	check c	1800	596	3440	ſŖ	ADCP	2202	42 28.80	42	6.19	17	LMC8
1673 3	CMI 60670 03001		100																
						11:45	18-Nov		300	1525	2667	SBE-37-SM	CTD						
						13:47	18-Nov	13741	900	1491	237	RCM11	currentmeter						
		0400	/01			13:38	18-Nov	13740	900	992	236	RCM11	currentmeter						
1011 2	CIVIL DUDY 1 20100	0408	100	15:20	18-Nov-03	13:25	18-Nov	13743	900	621	239	RCM11	1995 currentmeter	1995	56.30	4	58.6	16	LMC7
244		2				;00												-	
									1800	2689	3701	R	ADCP						
-							19-Nov			2676	18		PASSAM						
-						11:52	18-Nov		300	2675	2666	SBE-37-SM	СТР				-		
-						12:05	18-Nov		300	2375	2665	SBE-37-SM							
						12:10	18-Nov		300	1975	2664	SBE-37-SM				-	-		
-						04:16	19-Nov	13531	900	1491	206	RCM11	currentmeter						
						12:12	18-Nov		300	1025	2663	SBE-37-SM	CTD						
-						04:30	19-Nov	13530	900	991	205	RCM11	currentmeter						
		U4UA	CCI			12:15	19-Nov		300	625	2662	SBE-37-SM	CTD						
670 22621	CML 60670	04C9	154	09:14	19-Nov-03	06:10	19-Nov		1800	591	3641	₽	ADCP	2692	28.72	4	52.22	16	LMC6

Mooring data LOCO Mozambique Channel: deployment in 2003

Appendix C

Rotation schedule sediment traps

Mooring MOZ-1: deployed November 22, 2003 during LOCO/CD153B (EL LOCO)

Prospective recovery by April/May, 2005 by RRV Discovery

all dates and times in UTC

position:

16 deg 42.82S, 40 deg 51.13E

				collecting		
Position	date UTC	sampling	date UTC	interval	bottle	
Number	dd-m-yy hr:min	cups	dd-m-yy hr:min	(days)	number	remarks
1	23-11-2003 1:00	start sample #1	23-nov-03 01:00	21	MOZ-1-A/B-1	programmed as if 1975
2	14-12-2003 1:00	start sample #2	14-dec-03 01:00	21	MOZ-1-A/B-2	
3	4-1-2004 1:00	start sample #3	4-jan-04 01:00	21	MOZ-1-A/B-3	
4	25-1-2004 1:00	start sample #4	25-jan-04 01:00	21	MOZ-1-A/B-4	
5	15-2-2004 1:00	start sample #5	15-feb-04 01:00	21	MOZ-1-A/B-5	Feb. 29, 2004
6	7-3-2004 1:00	start sample #6	7-mrt-04 01:00	21	MOZ-1-A/B-6	Feb. 29, 2004
7	28-3-2004 1:00	start sample #7	28-mrt-04 01:00	21	MOZ-1-A/B-7	
8	18-4-2004 1:00	start sample #8	18-apr-04 01:00	21	MOZ-1-A/B-8	
9	9-5-2004 1:00	start sample #9	9-mei-04 01:00	21	MOZ-1-A/B-9	
10	30-5-2004 1:00	start sample #10	30-mei-04 01:00	21	MOZ-1-A/B-10	
11	20-6-2004 1:00	start sample #11	20-jun-04 01:00	21	MOZ-1-A/B-11	
12	11-7-2004 1:00	start sample #12	11-jul-04 01:00	21	MOZ-1-A/B-12	
13	1-8-2004 1:00	start sample #13	1-aug-04 01:00	21	MOZ-1-A/B-13	
14	22-8-2004 1:00	start sample #14	22-aug-04 01:00	21	MOZ-1-A/B-14	
15	12-9-2004 1:00	start sample #15	12-sep-04 01:00	21	MOZ-1-A/B-15	
16	3-10-2004 1:00	start sample #16	3-okt-04 01:00	21	MOZ-1-A/B-16	
17	24-10-2004 1:00	start sample #17	24-okt-04 01:00	21	MOZ-1-A/B-17	
18	14-11-2004 1:00	start sample #18	14-nov-04 01:00	21	MOZ-1-A/B-18	
19	5-12-2004 1:00	start sample #19	5-dec-04 01:00	21	MOZ-1-A/B-19	
20	26-12-2004 1:00	start sample #20	26-dec-04 01:00	21	MOZ-1-A/B-20	
21	16-1-2005 1:00	start sample #21	16-jan-05 01:00	21	MOZ-1-A/B-21	
22	6-2-2005 1:00	start sample #22	6-feb-05 01:00	21	MOZ-1-A/B-22	
23	27-2-2005 1:00	start sample #23	27-feb-05 01:00	21	MOZ-1-A/B-23	
24	20-3-2005 1:00	start sample #24	20-mrt-05 01:00	21	MOZ-1-A/B-24	
25	10-4-2005 1:00	end sample #24	10-apr-05 01:00			