Natural Environment Research Council

R.R.S. "Charles Darwin"

Cruise No. 44/89

November 24th to December 2nd 1989

Cruise Report

Anton Edwards

Dunstaffnage Marine Laboratory

P.O.Box 3,

Oban, Argyll, PA34 4AD

December 1989

Natural Environment Research Council

Dunstaffnage Marine Laboratory

P.O.Box 3 Oban

Argyll PA34 4AD

R.R.V. "Charles Darwin" Cruise 44/89

November 4th - December 2nd 1989

Cruise Report

Anton Edwards

Staff:

R. Bowers (DML)

A. Edwards (DML, Principal Scientist)

J. Graham (DML)

C. Griffiths (DML)

M. Harvey (DML)

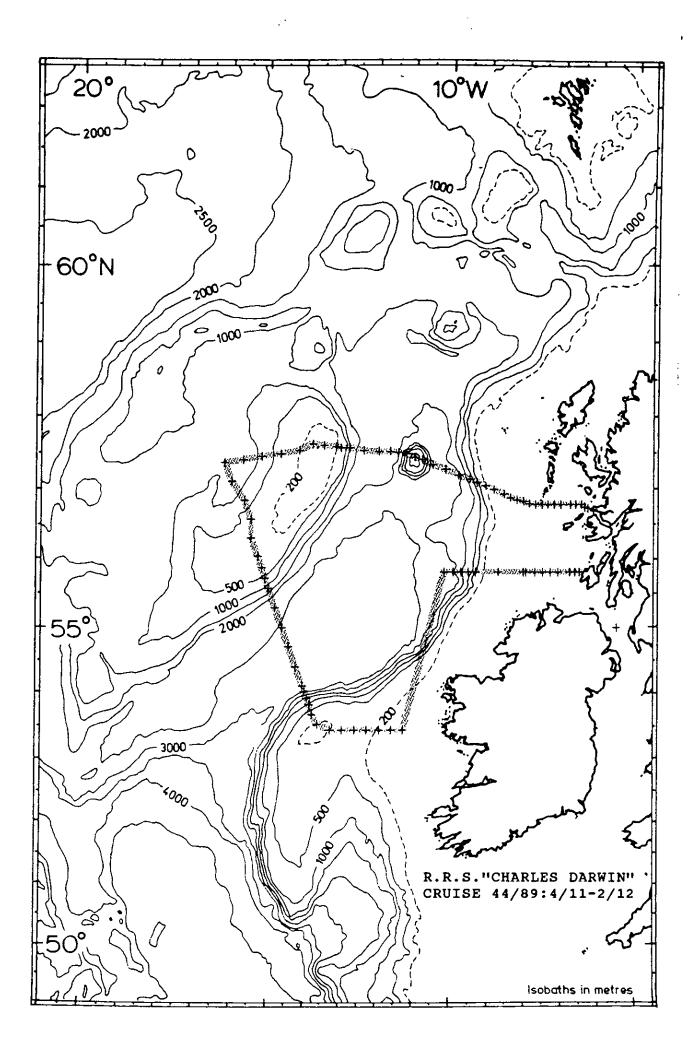
N. MacDougall (DML)

J. Strangway (RVS)

C. Rymer (RVS)

C. Day (RVS)

Aims:


- 1). To Collect large volume water samples and CTD profiles standard positions between the Sound of Mull and the shelf edge of the Hebrides.
- 2). To work the CTD stations of the Anton Dohrn Seamount section between the shelf edge and Rockall.
- 3). To work a CTD section West of Rockall to Porcupine Bank.
- To work CTD sections across the shelf edge west of Ireland as time and weather permit.

Duration:

24th November (Troon) until 2nd December 1989.

Location:

North-east Atlantic Ocean and Continental shelf west of UK.

Cruise Narrative:

"Charles Darwin" left Troon at 0915 on the 24th of November calm sea conditions and light breezes and headed for station LS in the North Channel. The weather remained calm during the passage and LS was reached at about 1400. Surface samples were gathered and the opportunity was taken to test the CTD system. The ship then left for station 1G at the western end of the Sound of Mull, arriving after 0200 on the 25th to start the line of CTD and water sampling stations to the shelf edge west of Barra Head. weather remained calm and in only light breezes the last Caesium sampling station 16G in the line was reached soon after midnight on the 26th. Cloudier weather came in the morning of the 26th but winds remained light throughout the day and the vessel made good progress in gentle swell towards Rockall Bank. 27th dawned calm, and the PES fish was deployed immediately Rockall was sighted around noon in clear after station C. conditions, the westward line of stations was completed around nightfall and the vessel then steamed south along the line of stations RP. The 28th started calm and overcast, with only a light swell from the South as the ship steamed South south east towards Porcupine Bank.

At station RP10 in a water depth of about 2300 metres, the CTD spooling deteriorated and about an hour was spent in adjusting it. The same problem occurred again from time to time in the deep stations approaching Porcupine Bank on the 29th.

Stations RS to Slyne Head were completed by about 1400 on the 30th and "Charles Darwin" then steamed north to start the line D of stations inwards over the continental shelf. This line was worked in clear and calm weather on the 1st December and completed by midnight. The vessel then docked in clear conditions at Campbeltown at 1030 on the morning of the 2nd December, the DML party disembarked with their equipment and the vessel continued to Barry.

Results:

- All scientific aims were achieved smoothly.
- 1). Large volume water samples and CTD profiles were successfully obtained at standard positions between the Sound of Mull and the shelf edge of the Hebrides.
- 2). All CTD stations of the Anton Dohrn Seamount section between the shelf edge and Rockall were successfully completed.
- 3). The CTD sections West of Rockall to Porcupine Bank and on to Slyne Head were successfully completed.
- 4). All planned CTD stations across the shelf edge west of Ireland were completed.

There were no equipment failures and all relevant ship's gear worked well, apart from a little trouble with CTD wire spooling.

Recommendations:

- 1). The spooling gear on the CTD winch gave some cause for concern and should be checked.
- 2). NERC has some responsibility for, and benefits by, the health of its ships' staff. The provision of exercise apparatus such as an exercise bicycle and a rowing machine, in suitable space, is long overdue on this ship, as on other NERC vessels.

Acknowledgements:

The careful attention of the master, Patrick McDermott, and all his personnel is gratefully acknowledged.

"Charles Darwin" Cruise 44/89 Station List:

Stat -ion	Disc /Dip	Date/ Time Z	Lat.	Long.	Dep- th,m	CTD	Cs Samples Sur Mid Bot
LS 1G/C1 2G/C2 " 3G 4G/C3 5G 6G/C4 7G/C5 8G 9G/C6 10G 11G/C7 12G 13G/C8 14G T 15G/C9 S	134/ 001 002 003 901 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018	24/1430 25/0240 25/1500 25/0519 25/0600 25/0646 25/0801 25/0910 25/1035 25/1155 25/1308 25/1442 25/1557 25/1713 25/1809 25/1922 25/2021 25/2021 25/2117 25/2305	54.57 56.40 56.41 56.42 56.44 56.44 56.44 56.44 56.44 56.44 56.44 56.45 56.45 56.45 56.45 56.45	5.30 6.08 6.17 8.22 6.27 6.36 6.45 7.00 7.10 7.20 7.30 7.40 7.50 8.00 8.10 8.20 8.30 8.47	147 150 37 " 78 130 75 32 143 184 160 225 62 61 124 130 133 126 126	140 144 30 - 71 125 65 25 135 180 155 215 55 120 125 125 120 115	501 501 251 251 251 251 251 251 251 251 251 25
16G/ C10/R Q P O	134/ 019 020 021 022 902	26/0016 26/0327 26/0538 26/0705	57.00 57.03 57.06 57.09	9.00 9.13 9.25 9.42	133 282 1395 1950	125 277 1390 1940	501 501 NBIS Cal.
N M	135/ 023 024	26/0830 26/1107	57.14 57.18	10.03	2090 2220	2060 2200	
L K J I	136/ 025 026 027 028	26/1359 26/1615 26/1747 26/1917	57.22 57.24 57.27 57.28	10.40 10.52 11.05 11.19	2100 800 592 750	2055 790 590 740	
Н G	137/ 029 030	26/2127 26/2330	57.29 57.29	11.32 11.51	2040 1800	2020 1760	
F E D C B	138/ 031 032 033 034 035	27/0228 27/0528 27/0723 27/0850 27/1020	57.30 57.32 57.32 57.33 57.34	12.15 12.38 12.52 13.00 13.20	1790 1610 1080 300 180	1770 1600 1070 275 165	
А	139/ 036	27/1143	57.35	13.38	105	95	

Stat -ion	Disc /Dip	Date/ Time Z	Lat.	Long.	Dep- th,m	CTD	
RW1 RW2 RW3 RW4 RP1 RP2	139/ 037 038 039 040 041 042	27/1331 27/1532 27/1736 27/1955 27/2252 28/0116	57.30 57.27 57.25 57.22 57.20 57.04	14.00 14.30 15.00 15.30 16.00 15.49	125 235 469 1035 1140 1040	100 225 462 1015 1120 1020	
RP3 RP4 RP5 RP6 RP7 RP8	140/ 043 044 045 046 047 048	28/0400 28/0622 28/0835 28/1044 28/1220 28/1401	56.48 56.32 56.16 56.00 55.50	15.28 15.18 15.18 15.07 15.00 14.55	628 373 225 273 448 1260	618 363 205 255 428 1230	
RP9 RP10	141/ 049 903 050	28/1613 1738 28/2038	55.32 55.15	14.50	2048 2367	2038	
RP11	142/ 051	29/0046	54.57	14.28	2701	2691	
RP12	143/ 052	29/0527	54.40	14.17	2747	2742	
RP13 RP14	144/ 053 054	29/1000 29/1501	54.22 54.05	14.06 13.55	2850 2365	2780 2345	
RP15 RP16 RP17 RP18 RP19 PS1	145/ 055 056 057 058 059 060	29/1738 29/2022 28/2155 29/2345 30/0144 30/0324	54.00 53.54 53.48 53.39 53.30 53.25	13.52 13.48 13.44 13.39 13.30 13.10	1680 1180 525 265 152 218	1655 1160 510 250 130 200	
PS2 PS3 PS4 PS5 PS6 PS7	146/ 061 062 063 064 065 066	30/0502 30/0640 30/0818 30/1000 30/1135 29/1312	53.25 53.25 53.25 53.25 53.25 53.25	12.50 12.30 12.10 11.50 11.30 11.10	282 321 310 220 155 125	273 314 290 205 140 102	
94D	147/ 067	30/0236	55.46	10.05	2251	2226	
95D	146/ 068	30/0523	55.46	9.50	1955	1948	

Stat -ion	Disc /Dip	Date/ Time Z	Lat.	Long.	Dep-	CTD	Cs Samples Sur Mid Bot
96D	147/ 069	30/0812	55.46	9.38	1365	1350	
97D 98D 99D 0D 1D	143/ 070 071 072 073 074	30/1020 30/1159 30/1423 30/1643 30/1756	55.46 55.46 55.46 55.46 55.46	9.27 9.16 8.40 8.00 7.41	777 132 97 97 75	767 118 82 89 69	
2D 3D	142/ 075 076	30/1902 30/1951	55.46 55.46	7.29 7.16	49 53	39 45	
4D 5D 6D 7D	143/ 077 078 079 080	30/2047 30/2133 30/2218 30/2308	55.46 55.46 55.46 55.46	7.04 7.55 6.46 6.37	42 38 35 50	30 30 30 40	
8 D	144/ 081	30/0002	55.46	6.30	20	15	