Indexed MRS. P EDWARDS PG I.O.S. RRS DISCOVERY CRUISE 160A 28 JULY - 9 AUGUST 1986 GEOCHEMICAL STUDIES IN THE ENGLISH CHANNEL CRUISE REPORT NO. 195 1987 MATURAL INSTITUTE OF OCEANOGRAPHIC SCIENCES DEACON LABORATORY 13NOO HOWASA # INSTITUTE OF OCEANOGRAPHIC SCIENCES DEACON LABORATORY Wormley, Godalming, Surrey, GU8 5UB, U.K. > Telephone: 0428 79 4141 Telex: 858833 OCEANS G Telefax: 0428 79 3066 Director: Dr. A.S. Laughton FRS # INSTITUTE OF OCEANOGRAPHIC SCIENCES DEACON LABORATORY CRUISE REPORT No.195 RRS DISCOVERY Cruise 160A 28 July - 9 August 1986 Geochemical studies in the English Channel Principal Scientist D.J. Hydes # DOCUMENT DATA SHEET | | DOC | UMENI DATA SHE | ŁΙ | | |---|---|--|--|---| | AUTHOR
หา | DES, D.J. et αl | | | PUBLICATION
DATE 1987 | | | | se 160A, 28 July - 9 August
es in the English Channel. | t 1986. | | | | stitute of Ocear
ruise Report, No. | nographic Sciences, Deacon L
195, 46pp. | _aboratory | /, | | ABSTRACT | | ···· | | | | in the 18 August shelf ed and alum system of metal sawere tall at the state of the crum this was both the potential on this | inglish Channel for 1986. Three of dge in water depth in its amples were for GO-FLO bottles ampling in the Change of the All the static ise are listed here concentrations are reasonally. Cruise. Nutrie | is carried out from RRS Discorrom 0°30'W to 5°30'W between deeper water stations were at the setween 4500m and 450m. Here taken from standard N.I. is suspended on a Kevlar line mannel. At the shelf edge mounted on a rosette. A Contine the short of the same of three cruises of biogeochemically active coastal waters and how contrypical summer conditions and levels were depleted and west of Lyme Bay. | en 28 July also occup Nutrier O. bottle was used all water CTD was us to determic ic data co aimed at metals who | y and pied at the nt, salinity es, a "clean" d for trace r samples sed to look ine sampling pollected during determining nich are countered | | ISSUING ORGA | Deacon L | of Oceanographic Sciences
aboratory
, Godalming | | TELEPHONE
0428 79 4141
TELEX | | | • | U8 5UB. UK. | l | 858833 OCEANS G | | | Director: | Dr A S Laughton FRS | | TELEFAX
0428 79 3066 | | KEYWORDS | | | | CONTRACT | | COASTA | AL OCEANOGRAPHY | TRACE METALS | } | DRO IFOT | | NUTRI:
SEASO | ENTS
IAL VARIATIONS | ENGLISH CHANNEL | ļ | PROJECT CO 71 | £11.00 PRICE DISCOVERY/RRS - CRUISE(1986)(160A) | CONTENTS | Page | |--|------| | | _ | | Ship's Personnel | 5 | | Scientific Personnel | 6 | | Acknowledgements | 6 | | Itinerary | 7 | | Objectives | 7 | | Narrative | 7 | | Reports of Projects | 9 | | Mooring deployment | 9 | | Hydrographic sampling | 10 | | Nutrient and aluminium analyses | 10 | | Trace metals | 11 | | Iodine | 12 | | CTD-rosette operation | 13 | | Winches and other mechanical scientific equipment | 14 | | Nickel speciation using cathodic stripping voltammetry | 14 | | Shipboard electrochemical measurements | 15 | | Brief description of hydrographic, nutrient and aluminium data | 15 | | Table 1: Station positions | 17 | | Table 2A: Stations 11345, 11346 and 11347 | 19 | | Table 2B: Hydrographic data from Channel grid | 22 | | Table 2C: Hydrographic data from Tamar tidal station | 42 | | Table 3: Averaged results for each station | 43 | | Table 4: Summary of results from the cruises in November 1985, | | | May 1986 and August 1986 | 46 | # SHIP'S PERSONNEL M. Harding Master E. Dowling Chief Officer P. Oldfield Second Officer S. Beal Third Officer I. Bennett Chief Officer I. Bennett Chief OfficerP. Jago First Engineer R. Perriam Second Engineer P. March Third Engineer P. March Third Engineer B. Smith Electrical Engineer F. Williams Chief Petty Officer # SCIENTIFIC PERSONNEL | D. | Hydes | IOS, Wormley | Principal | Sc | eientist | |----|-----------|-------------------------|-----------|----|----------| | R. | Dyer | IOS, Wormley | | | | | N. | Hooker | IOS, Wormley | | | | | G. | Lake | IOS, Wormley | | | | | Α. | Jones | IOS/UEA | | | | | T. | Jickels | East Anglia University | | | | | c. | Symon | Lancaster University | | | | | P. | Daly | Liverpool University | | | | | G. | Jacinto | Liverpool University | | | | | Μ. | Nimmo | Liverpool University | | | | | D. | Harper | MAFF, Burnham-on-Crouch | | | | | A. | Jones | RVS, Barry | | | | | s. | Heron | Southampton University | | | | | A. | Tappin | Southampton University | | | | | J. | Bunting | IOS, Wormley | Bu | оу | Mooring | | К. | Goy | IOS, Wormley | Bu | ОУ | Mooring | | G. | Griffiths | IOS, Wormley | Bu | оу | Mooring | | J. | Perrett | IOS, Wormley | Bu | ОУ | Mooring | # ACKNOWLEDGEMENTS The willing help, co-operation and advice of the Master, Officers and Crew of RRS <u>Discovery</u> are gratefully acknowledged, as is the help of A. Fisher and R. Clement in fitting out the ship for the cruise. Everyone played their part to make <u>Discovery</u> 160A a successful cruise. #### **ITINERARY** Depart Falmouth UK 28 July 1986 Work on shelf and shelf edge Drop off mooring party Falmouth Work in English Channel 1 August 1986 Arrive Falmouth, UK 8 August 1986 #### **OBJECTIVES** This was the last of a series of three cruises in the English Channel, aimed at determining both the concentrations of biogeochemically active metals, on the individual cruises, and how they vary with the annual cycle in biological production, by comparing results from the different cuises (November 1985, May 1986, August 1986). On each cruise, a grid of 48 stations was to be worked across the English Channel from 0°30' to 5°30'W (this proved possible only on the first and last cruises). In addition on this, the final cruise, it was possible to occupy three stations at the shelf edge. These stations enabled pristine ocean water to be collected by the same systems as used in the Channel and should, by comparison, provide valuable information on the accuracy and precision of our measurements. In addition, a current and wave-monitoring buoy was laid. #### NARRATIVE Scientific fitting-out of the laboratory and sampling equipment commenced on July 27th, RRS <u>Discovery</u> alongside in Falmouth. In the forward Hydro-lab. were mounted the NIO and GOFLO bottle racks. The GOFLO bottle filtering rack was mounted on the forward wall, and N_2 bottles supplying the pressure for filtering were lashed on the outside of the forward bulkhead. In the Bio-lab. were the clean bench for loading filters and the chlorophyll filtration system. In the Electronics area, the CTD receiving system was set up and the electronic preparations of the buoys were done. In the constant temperature computer room the Autolab salinometer was installed with a BBC microcomputer for data reduction. The continuous-flow analyser for the nutrients and the fluorimeter were in the Chemistry container. The MAFF electro-chemical analytical system was set up in the aft rough lab. During the afternnon of the 27th a fault was discovered with the CTD for which we had no spare parts. These were promptly delivered from Wormley by the afternoon of the 28th. Preparations for sailing continued through the 28th. Discovery sailed from Falmouth at 1600 on the 28th for the DB2 mooring site into a choppy sea and fresh winds - this slowed down work. The mooring site was reached at 1136 on 29th July. Conditions for mooring were ideal - calm and sunny. Between deployments of the individual buoys, a water bottling shakedown station was run; this went smoothly. the buoys was successfully completed at 1930 and we sailed for the first of the three shelf-edge stations. The salinometer pump could not be made to work satisfactorily and a telex was sent requesting a spare. At Station 11345, two casts of GOFLO bottles were successfully run. At Station 11346 a clear signal of the presence of Mediterranean water at around 1000 m depth was seen on the CTD record. Problems developed with the CTD and rosette sampler during the first lowering. Finding the fault delayed completion of the station until 0400 on July 31st. At this stage it was decided to drop the mooring party off in Falmouth before starting the Channel grid at Station A1. En route to Falmouth, Station 11347 was completed successfully, the MAFF overside pumping system was deployed for the first time, considerable difficulty was experienced trying to keep it away from the side of the ship. On August 1st the mooring party were dropped off to a boat off Falmouth at 0845 in bright calm weather. pump for the salinometer was received. The channel grid was started at Station A1 at 1115 in deteriorating weather. Stations A1 to A4 were completed successfully; on Station A5 it proved impossible to deploy safely the CTD from the midships winch platform. Scientific work was abandoned at 0100 on The weather improved rapidly and Station A5 was completed at 1039 on August 2nd. There were no further serious delays to the grid sampling programme and it was completed at 1230 on August 6th. At
Station D3 surface water samples were collected away from the ship using the "Zodiac". at 2005 on August 6th at 50°08'N, 2°23'W a line of ten stations at 20'W intervals was begun; this resulted in a reoccupation of Stations C3, B3 and A3 which were re-sampled in more detail than as part of the grid; at the other stations CTD information only was collected. From J10 Discovery proceeded to Plymouth Sound where the output from the River Tamar was sampled over a tidal cycle. Sampling was completed at 1515 on August 8th and a course was set for Falmouth. We were alongside at 1800 and disassembly of the scientific gear commenced. The scientific party left the ship at 1300 on August 9th. Although this was a summer cruise, the weather conditions we encountered were far from ideal. We were, however, fortunate, to be working from RRS <u>Discovery</u> and less than nine hours' working time were lost due to bad weather. If we had been working on a smaller ship we might easily have lost two or three days' working time. #### MOORING DEPLOYMENT Three moorings were deployed in a cluster about 0.8 nm north of ODAS 10 (DB2), a large 6 m environmental data buoy, in the South Western Approaches close to the shelf edge. Deployment was carried out from the after deck using the buoy-first technique. The first mooring consisted of a 1.6 m diameter discus buoy with an electromagnetic current sensor at 1.0 m below the surface, using the ARGOS system for data telemetry and location. Below the buoy at about 4 metres a VACM was attached, then a weighted line to a 34" buoyancy sphere moored to the sea bed. The second mooring had a similar buoy but it carried an experimental electromagnetic current sensor designed to measure shear in the uppermost 0.4 m. The third mooring consisted of a 30-foot spar buoy with three UAECM type current meters and an acoustic Doppler current profiler beneath it, together with an Aanderaa pressure/temperature logger. The spar was tethered to a 34" sub-surface buoyancy sphere by a surface line buoyed up by polo floats. The deployments were made without incident in almost ideal weather conditions. Although the spar is unwieldy, the use of four stray lines kept it well under control during the lifting operation. The skill and competence of the ship's officers and crew also contributed to the successful deployment. G. Griffiths, K. Goy J. Bunting, J. Perrett #### HYDROGRAPHIC SAMPLING At the deeper water stations, 11345-11347, all the water samples were collected using GOFLO bottles mounted on a rosette sampler above a CTD unit. Salinity, nutrient trace metal and aluminium samples were taken from the bottles. This was followed by a string of six NIO bottles deployed from the 4-mm steel hydrowire. Standard NIO bottles with thermometers, racks and reversing thermometers were hung alternately on the wire with "trace metal clean" NIO bottles from which the thermometer racks were removed. The bottles were subsampled for salinity (250 ml) nutrients (30 ml) and aluminium (300 ml). The filled salinity bottles were allowed to equilibriate with room temperature and were then measured on an Autosal salinometer. Corrosion, caused over a number of years by seawater getting into the vacuum pump on the salinometer, stopped it working at the beginning of the cruise but it proved possible to repair. Nutrient samples were stored in a refrigerator prior to analysis. R. Dyer, S. Heron, N. Hooper, G. JacintoT. Jickells, A. Jones, A. Jones, G. LakeM. Nimmo, C.Symon, A. Tappin #### NUTRIENT AND ALUMINIUM ANALYSES The nutrients were determined using a Chemlab continuous-flow automated analyser system coupled to a data reduction system based on a Commodore Pet microcomputer. Nitrate, phosphate and silicate were determined on each sample collected, using standard methods described in IOS Report No. 177. The system had been in use on the two preceding <u>Discovery</u> cruises 159 and 160 and continued to work well. A total of 472 samples was analysed. Subsamples for the determination of aluminium were taken from each of the NIO bottle samples taken, and a smaller number of samples was taken from GOFLO bottles at the deep stations and in the Channel for comparison with the NIO results. Two types of NIO bottles were used on this cruise: three standard bottles fitted with neoprene rubber end-caps and three bottles fitted with "trace metal clean" silicone rubber end-caps and titanium closing springs. No detectable differences in aluminium concentrations were observed between samples collected with the three different types of bottle. #### TRACE METALS This is the third of three planned cruises which have been designed to provide information on the biogeochemical cycling of a series of trace metals in a coastal zone of the British Isles. Measurements of dissolved trace metals by other participating groups (LUDO, SUC, MAFF; see below) will complement and extend the range of elements determined. The water column is expected to have undergone a degree of stratification due to radiant input over the summer months, resulting in a shallow upper mixed layer separated from a deeper lower mixed layer by a well-defined thermocline. It is intended that the sampling strategy will give data on the possible influences of this water column structure (and associated phytoplankton growth) on trace metal concentrations and distributions. Additionally, the sampling strategy will allow for any benthic inputs of dissolved trace metals to be recognised. At the three deep water stations a GOFLO water bottle rosette frame with a CTD instrument attached beneath was deployed on a 10-mm single core conducting table from the midships A-frame. Twelve 2.5 litre Teflon-lined GOFLO bottles were fixed to the rosette frame. Use of the CTD enabled the water column structure to be continuously monitored as the instrument descended, via a BBC Micro and monitor. Samples were taken at selected depths by sending an electrical signal to the rosette via the single core hydrowire. The GOFLO bottles were sub-sampled on board for nutrients (PO_4 , NO_3 , SiO_4) and chlorophyll. Trace metal samples were obtained using a 'clean' system. This consisted of 2.5 litre Teflon-coated GOFLO bottles deployed from a separate winch on the foredeck which had been wrapped with plastic sheeting and wound with 6 mm Kevlar line (polycarbonate core, Dacron sheath). The Kevlar line was led over the ship's side via an all-plastic sheave fitted to the foredeck A-frame, and was weighted with a polyester-coated lead hydroweight. The use of this system was considered necessary to prevent adventitious contamination of the seawater samples. Up to four GOFLO bottles were deployed per station, with no more than two bottles on the line at any one time. The GOFLO bottles were sub-sampled on board for nutrients (PO₄, NO₃, SiO₄) and chlorophyll. Samples of particulates for chlorophyll analysis were collected by vacuum filtration on Whatman GF/F filters and stored frozen until land-based laboratory fluorometric analysis. To obtain samples for dissolved trace metal analysis, each GOFLO was pressurised to 5 psi (using filtered nitrogen) and the seawater was filtered through an in-line acid-cleaned 0.4 μ m Nuclepore membrane into an acid-cleaned polyethene bottle. These samples were acidified (1 ml sub-boiling concentrated HNO_3 per litre of seawater) to a pH of approximately 2 and stored at room temperature. At all times during filtering and storage the polyethene bottles were kept in resealable polyethene bags. Membranes used for filtration were retained and stored frozen. All membrane handling and acidification were carried in a laminar-flow hood. At a single station, the ability of several NIO bottles (which had been modified by fitting silicone rubber end-caps and titanium springs) to sample for trace metals in a 'clean' manner were tested by comparison to GOFLO bottle samples taken at similar depths in a stable part of the water column, i.e. above and below the thermocline. Both bottle types were deployed on Kevlar line via the foredeck winch and A-frame. On shore, a series of trace metals (Cd, Mn, Co, Cu, Ni, Pb, Zn and possibly Fe) will be determined in the seawater samples using chelation followed by solvent extraction as a preconcentration and separation step prior to measurements of the metal concentrates by graphite furnace atomic absorption spectrophotometry. Correlations between metal concentrations and other parameters (salinity, nutrients, chlorphyll) will be identified in order to gain insights into the biogeochemical cycling of these metals in the coastal environment. Analysis of the particulates for trace metals using a sequential leaching technique will also be carried out, if time permits, in order to assist in the interpretation of metal cycling. S. Heron, G. Jacinto, T. Jickells M. Nimmo, C. Symon, A. Tappin #### IODINE The thermodynamically stable form of dissolved iodine in seawater is iodate, though iodide is also present in surface ocean and coastal waters. The iodide is believed to be formed by the reduction of iodate by biological processes with the subsequent oxidation of iodide being a slow process. Previous studies in oligotrophic central ocean gyres have demonstrated seasonal cycles in iodine speciation that are related to both biological and hydrographic factors. The aim of the sampling conducted during Discovery 160A was to allow the iodine speciation in the more productive waters of the English Channel to be compared to that in central ocean areas. Water samples were collected at 5 m depth from 26 stations during the cruise and filtered through Whatman GF/F filters. The filters were retained for chlorphyll analysis and the filtrate stored refrigerated in glass bottles. Samples were subsequently returned to the shore laboratory for analysis for iodate and total iodine. T.D. Jickells #### CTD-ROSETTE OPERATION On arriving at the ship, the CTD/Rosette combination was
found unoperational. On investigation the Rosette's pressure balance diaphragm was found to have leaked, letting in sea water. The diaphragm was repaired, the housing refilled with oil and the equipment re-assembled and tested. #### Shelf edge stations With the CTD/Rosette combination now operational, the first station was occupied at 0200 on 30 July. | Station | 11345 | 2000 | m | _ | fired | all | bottles | |---------|---------|------|---|---|--------|------|---------| | Station | 11345#1 | 1000 | m | _ | fired | all | bottles | | Station | 11346 | 4500 | m | _ | no bot | tles | s fired | The fault diagnosed was a continuity break in the sea cable end. This was repaired and the dip repeated successfully. | Station 11346#2 | 4500 m - | fired | all | bottles | |-----------------|----------|-------|-----|---------| | Station 11346#3 | 1250 m - | fired | all | bottles | | Station 11347 | 450 m - | fired | all | bottles | All first leg CTD data was recorded on digidata and water structure profiles stored on disc. #### Channel Grid The Rosette bottle sampler was not required on this leg and so it was detached from the CTD which was used on its own. During the second leg 58 stations were worked, the CTD being used to a maximum depth of 100 m to obtain a water structure profile at each station; all profiles were saved on disc. The set-up of equipment worked successfully throughout the cruise. N.J. Hooker, A. Jones # WINCHES AND OTHER MECHANICAL SCIENTIFIC EQUIPMENT Equipment, including the electric and midships winch in addition to the FWD hydraulic system, was used comprehensively during this course of this cruise. No major problems were incurred and the reconditioned FWD hydraulic pump-fitted previously in Tenerife worked well. G. Lake, R. Dyer # NICKEL SPECIATION USING CATHODIC STRIPPING VOLTAMMETRY The purpose of the cruise was to collect a series of filtered seawater samples (<u>ca</u> 100 ml). Modified 2.5 litre modified GOFLO bottles were used. Samples were taken from a deepwater station, 11345, and each of the Channel grid stations. The seawater was stored frozen and on return to Liverpool they will be analysed using cathodic stripping voltammetry for labile, organic and total nickel. From such information, levels and distribution of the various metal fractions will be obtained. This data, along with the available back-up data, should, we hope, identify the biogeochemical parameters controlling the marine chemistry of nickel. This data will be compared with previous nickel speciation data obtained from samples collected from the English Channel during cruises on the RRS Frederick Russell (12/85) and on the RV <u>G.A.</u> Reay (8/86). If time permits, other metal speciation analysis will be carried out on the samples. In addition to the 100 ml seawater samples, i.e. surface and 40 m, samples were collected at stations D3, E3 and F3. Complexing capacity titrations for Cu, Ni and Zn will be carried out on these samples yielding organic-metal complex stability constants and the seawater metal complexing capacities. Again, comparisons with data from Frederick Russell 12/85 and G.A. Reay 8/86 will be made. M. Nimmo #### SHIPBOARD ELECTROCHEMICAL MEASUREMENTS The main aim of the cruise was to collect water samples for trace metal analysis on a grid in the English Channel and a depth profile off the coastal shelf west of Ushant. Surface water samples were collected using the MAFF buoy sampler and as many samples as possible were analysed on board. Samples were collected at all the stations but there were some problems avoiding contamination as the buoy tended to drift into the side of the ship, a difficulty not previously encountered. This was occasionally reflected by the results obtained on board the ship where intermittent high values were recorded. Samples have been retained for analysis as soon as time should make itself available. Those cadmium results obtained show a spread of 9-40 ng Cd 1^{-1} with the lower values in the middle of the Channel and to the west. Lead data is far less well defined but the same pattern is discernable with values from 23-150 ng Pb 1^{-1} . Copper concentrations require confirmation after UV irradiation as they are well below expected levels at 14-180 ng Cu 1^{-1} . The results should be available by next summer. P. Daly, D. Harper, A. Jones #### BRIEF DESCRIPTION OF HYDROGRAPHIC, NUTRIENT AND ALUMINIUM DATA Table 1 lists the station positions, time of arrival at the station and the water depth. Results for salinity, temperature, silicon, phosphate, nitrate, aluminium, chlorophyll and phaeophyton are listed in Table 2. In Table 3, averaged results for each station are listed. Averaged results for the three cruises Frederick Russell 12/85, G.A. Reay 1/86 and Discovery 160A are listed in Table 4. In August 1986 a well developed thermocline existed in the Channel to the west of Lyme Bay. This thermocline was characterised by warm water overlying colder water of higher salinity. The strength of the thermocline increased from east to west. On Tracks D, E and F the water was well mixed, except at Station F7 where there was a salinity increase down the water column. This gradient probably results from influence of River Seine water. Nutrient levels were as expected for the line of year. Phosphate and nitrate levels were low in surface water in the stratified waters at the western end of the Channel and in the mixed waters. These elements are removed by primary productivity in these waters. Silicon concentrations showed a concentration gradient across the thermocline. This is considered to be a relict feature of the low silicon concentrations which resulted from removal of silicon from solution into shell material during the spring diatom bloom. Comparison of the average silicon concentrations (Table 4) shows that overall silicon concentrations were lower in May. Aluminium concentrations changes are similar to the nitrate and phosphate concentrations being lowest in August. The more detailed sampling at the J stations clearly resolves an aluminium gradient like that of the nutrients across the thermocline. This would be expected if the aluminium were being removed from solution by biological processes. An interesting point, for which there is no explanation at present, is that on the cross-Channel tracks the largest changes in aluminium across the thermocline were seen on the C rather than the A track. TABLE 1 - Station Positions | | STATION | POSI | TION | DATE | TIME | DEPTH | |---------|---|--|--|---|--|--| | | Number | Lat. N | Long. W | d/m | BST | m | | mooring | > 11344 | 48°451 | 08°56' | 29/7 | 1236 | | | | 11345 | 48°00† | 10°00' | 30/7 | 0220 | 3200? | | | 11346 | 47°30' | 11°00' | 30/7 | 1320 | 4540 | | | 11347 | 48°22' | 9°32' | 31/7 | 1240 | 530 | | | 11348 | | | | | | | } | Track A | | | | | | | | 1
2
3
4
5
6 | 50°02'
49°48'
49°35'
49°25'
49°11'
49°00' | 5°30'
5°29'
5°30'
5°31'
5°30' | 1/8
1/8
1/8
1/8
2/8
2/8 | 1140
1509
1910
2223
1001
1320 | 46
82
94
99
100 | | | Track B | | | | | | | | 1
2
3
4
5
6
7
8 | 50°11'
49°59'
49°47'
49°35'
49°25'
49°13'
49°01'
48°49' | 4°30'
4°31'
4°29'
4°31'
4°32'
4°30'
4°28'
4°30' | 3/8
3/8
3/8
3/8
3/8
2/8
2/8
2/8 | 1253
1048
0700
0420
0202
2300
2002
1750 | 60
71
78
86
92
90
93
94 | | | Track C | | | | | | | | 1
2
3
4
5
6
7
8
9 | 50°16'
50°06'
49°56'
49°50'
49°36'
49°27'
49°16'
49°05'
48°57' | 3°30' 3°31' 3°30' 3°29' 3°31' 3°30' 3°30' 3°30' | 3/8
3/8
4/8
4/8
4/8
4/8
4/8
4/8
4/8 | 2030
2230
0016
0214
0400
0600
0816
1012
1150 | 52
62
64
69
73
74
75
72
64 | TABLE 1 - Station Positions continued | STATION | POSI | TIONS | DATE | TIME | DEPTH | |---|--|---|---|--|--| | Number | Lat. N | Long. W | d/m | BST | m | | 11348 | | | | | | | Track D | | | | | | | 1
2
3
4
5
6
7
8
9 | 50°29'
50°18'
50°07'
49°58'
49°46'
49°36'
49°22'
49°13'
48°58' | 2°28' 2°30' 2°25' 2°23' 2°31' 2°28' 2°30' 2°31' 2°29' | 5/8
5/8
5/8
5/8
5/8
5/8
4/8
4/8
4/8 | 1223
1016
0745
0605
0253
0040
2204
2030
1800
1610 | 51
53
58
62
73
50
54
54
45
37 | | Track E | | | | | | | 1
2
3
4 | 50°34'
50°22'
50°12'
49°59' | 1°32'
1°33'
1°32'
1°29' | 5/8
5/8
5/8
5/8 | 1710
1900
2040
2230 | 30
37
67
74 | | Track F | | | | | | | 1
2
3
4
5
6
7 | 50°36' 50°24' 50°13' 50°02' 49°50' 49°40' 49°33' | 0°28'
0°29'
0°31'
0°30'
0°31'
0°30' | 6/8
6/8
6/8
6/8
6/8
6/8 | 1312
1136
0957
0815
0635
0445
0325 | 43
47
50
50
36
26
31 | | Track J | | | | | | | 1
2
3
4
5
6
7
8
9 | 50°08' 50°05' 50°01' 49°56' 49°53' 49°50' 49°47' 49°36' | 2°23' 2°49' 3°07' 3°31' 3°51' 4°09' 4°30' 4°50' 5°30' | 6/8
7/8
7/8
7/8
7/8
7/8
7/8
7/8
7/8 |
2118
0025
0240
0515
0908
1112
1220
1512
1620
1840 | 61
60
61
67
72
76
81
87 | | T1
T14 | 50°21'
50°21' | 4°09 '
4°09 ' | 8/9
8/8 | 0315
1515 | | TABLE 2A - Station 11345 | Sample
Depth
m
(wire out) | Salinity
PSU | Temp.
(CTD)
°C | Silicon
μM | Phosphate
μΜ | Nitrate
μM | Aluminium
nM | Chlorophyll
ug/l | Phaeophytin
ug/l | |------------------------------------|-----------------|----------------------|---------------|-----------------|---------------|-----------------|---------------------|---------------------| | 5 | 35.612 | 17.19 | 0.3 | 0.14 | 0.4 | 3.9 | 0.0 | 0.0 | | 20 | 35.601 | 17.18 | 0.8 | 0.20 | 2.0 | (55.7) | 0.1 | 0.1 | | 30 | 35.612 | 17.08 | 0.3 | 0.12 | 0.4 | 3.8 | 0.1 | 0.1 | | 50 | 35.566 | 14.23 | 0.4 | 0.22 | 1.7 | 3.7 | 0.2 | 0.2 | | 75 | 35.566 | 12.00 | 1.3 | 0.50 | 6.9 | 4.0 | 0.2 | 0.1 | | 100 | 35.563 | 11.59 | 1.2 | 0.49 | 7.0 | 5.9 | 0.2 | 0.2 | | 150 | 35.564 | 11.35 | 2.4 | 0.60 | 9.0 | 6.1 | 0.0 | 0.1 | | 200 | 35.564 | 11.22 | 2.9 | 0.62 | 9.5 | 9.5 | 0.0 | 0.1 | | 400 | 35.531 | 10.96 | 3.7 | 0.68 | 10.5 | 10.1 | 0.0 | 0.1 | | 600 | 35.531 | 10.67 | 3.8 | 0.68 | 10.6 | 9.5 | 0.0 | 0.0 | | 700 | 35.529 | 10.18 | 7.2 | 0.99 | 15.7 | 13.9 | | | | 800 | 35.607 | 10.10 | 8.2 | 1.12 | 16.8 | 18.2 | 0.0 | 0.0 | | 900 | 35.494 | 9.90 | 1.1 | 0.20 | 2.7 | off | | | | 1000 | 35.069 | 9.55 | 8.2 | 1.04 | 16.5 | 17.1 | 0.0 | 0.0 | | 1100 | 35.709 | 9.44 | 9.8 | 1.11 | 17.4 | 19.2 | | | | 1300 | 35.541 | 8.07 | 5.7 | 0.82 | 12.9 | 11.9 | | | | 1400 | 35.450 | _ | 11.6 | 1.17 | 18.2 | 17.4 | | | | 1500 | 35.356 | 6.72 | 11.9 | 1.18 | 18.1 | 15.9 | | | | 1600 | 35.147 | 5.34 | 12.2 | 1.19 | 18.3 | 16.2 | | | | 1700 | 35.088 | 4.83 | 13.0 | 1.23 | 18.4 | 15.0 | | | | 1800 | 35.086 | 4.55 | 13.0 | 1.20 | 18.2 | 14.5 | | | | 1900 | 35.045 | 4.29 | 16.0 | 1.27 | 18.3 | 14.4 | | | | 2000 | 35.040 | 3.89 | 16.0 | 1.22 | 18.3 | 16.1 | | | TABLE 2A - Station 11346 | Sample
Depth
m
(wire out) | Salinity
PSU | Temp.
(CTD)
°C | Silicon
µM | Phosphate
μΜ | Nitrate
μM | Aluminium
nM | Chlorophyll
ug/l | Phaeophytin
ug/l | |------------------------------------|-----------------|----------------------|---------------|-----------------|---------------|-----------------|---------------------|---------------------| | 5 | 35.593 | 16.86 | 0.3 | 0.13 | 0.3 | 19.2 | 0.2 | 0.1 | | 10 | 35.589 | 16.86 | 0.8 | 0.24 | 2.5 | 2.8 | | | | 20 | 35.584 | 16.87 | 0.3 | 0.20 | 0.4 | 6.0 | 0.4 | 0.1 | | 30 | 35.583 | 16.53 | 0.3 | 0.13 | 0.4 | 4.3 | 0.3 | 0.3 | | 100 | 35,586 | 11.66 | 0.3 | 0.17 | 1.2 | 5.3 | | | | 200 | 35.511 | 11.25 | 1.8 | 0.62 | 9.2 | 7.1 | 0.0 | 0.0 | | 500 | 35.490 | 10.48 | 4.3 | 0.80 | 12.1 | 11.5 | | | | 800 | 35.490 | 9.80 | 4.4 | 0.80 | 12.1 | 11.5 | 0.0 | 0.0 | | 1000 | 35.596 | 9.50 | - | _ | - | 15.5 | | | | 1000 | 35.698 | 9.47 | 9.1 | 1.13 | 17.2 | 21.6 | 0.0 | 0.0 | | 1100 | 35.611 | 8.46 | 10.3 | 1.16 | 17.5 | 20.7 | | | | 1250 | 35.616 | 6.91 | 10.3 | 1.16 | 17.7 | 21.7 | 0.0 | 0.0 | | 1523 | 35.562 | 4.70 | 1.3 | 0.26 | 3.0 | (52.6) | 0.1 | 0.2 | | 1723 | 35.015 | 4.00 | 10.7 | 1.22 | 17.9 | 12.9 | | | | 2073 | 34.956 | 3.68 | 10.7 | 1.22 | 17.7 | 10.6 | | | | 2423 | 34.970 | 3.27 | 13.5 | 1.23 | 17.9 | 12.5 | | | | 3123 | 34.998 | 2.73 | 27.0 | 1.38 | 19.3 | 18.8 | | | | 3473 | 34.985 | 2.60 | 29.6 | 1.40 | 19.6 | 19.6 | | | | 3823 | 34.985 | 2.52 | 36.1 | 1.50 | 20.8 | 21.7 | | | | 4173 | 34.919 | 2.49 | 39.4 | 1.53 | 21.0 | 24.0 | | | | 4550 | 34.904 | 2.49 | 41.4 | 1.57 | 21.6 | 24.8 | | | | 4603 | 34.900 | 2.50 | 41.4 | 1.56 | 21.4 | 26.3 | | | TABLE 2B - Hydrographic data from Channel grid | | Sample
Depth
m | Salinity
PSU | Temp.
°C | Silicon
µM | Phosphate
μΜ | Nitrate
μM | Aluminium
nM | Chlorophyll
ug/l | Phaeophytin
ug/l | |-----|----------------------|-----------------|---------------------------------------|---------------|-----------------|---------------|-----------------|---|---------------------| | A1N | 00 | 35.147 | · · · · · · · · · · · · · · · · · · · | 0.8 | 0.22 | 0.4 | 8.9 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | | | 05 | 35.151 | 15.30 | 0.8 | 0.08 | 0.2 | 14.1 | | | | | 10 | 35.147 | | 0.8 | 0.08 | 0.3 | 8.7 | | | | | 15 | 35.146 | 15.11 | 0.9 | 0.08 | 0.2 | 8.7 | | | | | 25 | 35.174 | | 2.4 | 0.08 | 0.2 | 12.0 | | | | | 40 | 35.208 | 11.33 | 2.5 | 0.15 | 0.3 | 10.9 | | | | A1G | 05 | | | 0.8 | 0.08 | 0.2 | 8.1 | 4.2 | 0.8 | | | 40 | | | 2.5 | 0.10 | 0.2 | 11.1 | 1.9 | 0.5 | | A2N | 00 | 35.174 | | 0.4 | 0.07 | 0.2 | 8.1 | | | | | 05 | 35.176 | 16.35 | 0.4 | 0.17 | 0.2 | 7.8 | | | | | 15 | 35.185 | | 0.7 | 0.08 | 0.2 | 9.3 | | | | | 20 | 35.238 | 11.78 | 2.3 | 0.10 | 0.2 | 10.5 | | | | | 40 | 35.265 | | 2.8 | 0.29 | 2.4 | 12.7 | | | | | 60 | 35.290 | 11.42 | 2.9 | 0.37 | 2.8 | 10.9 | | | | A2G | 05 | | | 0.4 | 0.07 | 0.2 | 9.3 | 1.1 | 0.4 | | | 40 | | | 2.8 | 0.33 | 2.2 | 10.0 | 0.1 | 0.1 | | A3N | 00 | 35.250 | | 0.5 | 0.08 | 0.4 | 6.7 | | | | | 10 | 35.253 | 15.71 | 0.5 | 0.02 | 0.4 | 19.6 | | | | | 15 | 35.254 | | 0.6 | 0.09 | 0.5 | 6.6 | | | | | 25 | 35.302 | 10.80 | 2.4 | 0.32 | 4.0 | 11.1 | | | | | 50 | 35.302 | | 2.5 | 0.35 | 4.0 | 12.3 | | | | | 80 | 35.301 | 10.80 | 2.5 | 0.31 | 4.1 | 13.3 | | | ا ا TABLE 2A - Station 11347 | Sample Depth m (wire out) | Salinity
PSU | Temp.
(CTD)
°C | Silicon
μM | Phosphate
µM | Nitrate
μM | Aluminium
nM | Chlorophyll
ug/l | Phaeophytin
ug/l | |---------------------------|-----------------|----------------------|---------------|-----------------|---------------|-----------------|---------------------|---------------------| | 5 | 35.545 | 15.65 | 0.7 | 0.28 | 3.2 | 15.5 | No data | No data | | 1 <u>0</u> | 35.540 | 15.63 | 0.3 | 0.21 | 1.7 | 3.4 | | | | 20 | 35.540 | 15.20 | 0.3 | 0.23 | 1.4 | 8.7 | | | | 50 | 35.536 | 13.36 | 1.0 | 0.44 | 5.3 | 9.1 | | | | 100 | 35.540 | 11.59 | 2.1 | 0.62 | 9.4 | 4.6 | | | | 100 | 35.547 | 11.59 | 2.7 | 0.68 | 9.7 | 7.0 | | | | 200 | 35.547 | 11.06 | 2.1 | 0.64 | 9.4 | 4.4 | | | | 300 | 35.537 | 10.84 | 3.1 | 0.69 | 10.4 | 6.4 | | | | 350 | 35.529 | 10.81 | 3.8 | 0.76 | 11.2 | 8.7 | | | | 400 | 35.529 | 10.80 | 3.8 | 0.75 | 11.2 | 10.8 | | | | 440 | 35.528 | 10.80 | 3.8 | 0.76 | 11.3 | 11.3 | | | | 450 | 35.532 | 10.80 | 3.9 | 0.77 | 11.3 | 10 .1 | | | TABLE 2B - continued (2) | | Sample
Depth
m | Salinity
PSU | Temp.
°C | Silicon
µM | Phosphate
µM | Nitrate
μM | Aluminium
nM | Chlorophyll
ug/l | Phaeophytin
ug/l | |-----|----------------------|-----------------|-------------|---------------|-----------------|---------------|-----------------|---------------------|---------------------| | A3G | 05 | | | 0.5 | 0.11 | 0.5 | 7.7 | 0.8 | 0.4 | | | 40 | | | 2.4 | 0.33 | 4.2 | 11.5 | 0.3 | 0.2 | | A4N | 00 | 35.223 | | 0.2 | 0.09 | 0.5 | 11.9 | | | | | 05 | 35.227 | 16.01 | 0.2 | 0.07 | 0.3 | 10.6 | | | | | 16 | 35.251 | | 0.5 | 0.16 | 0.7 | 9.0 | | | | | 25 | 35.382 | 11.64 | 1.6 | 0.28 | 2.9 | 10.3 | | | | | 40 | 35.375 | | 1.8 | 0.33 | 3.5 | 9.8 | | | | | 60 | 35.375 | 11.24 | 1.8 | 0.33 | 3.9 | 13.0 | | | | A4G | 05 | | | 0.3 | 0.18 | 0.7 | 18.1 | 0.7 | 0.3 | | | 40 | | | 0.6 | 0.29 | 1.2 | 14.4 | 0.5 | 0.2 | | A5N | 00 | 35.234 | | 0.2 | 0.06 | 0.3 | 9.6 | | | | | 05 | 35.234 | 15.88 | 0.2 | 0.08 | 0.2 | 14.7 | | | | | 24 | 35.392 | | 1.2 | 0.24 | 1.8 | 10.1 | | | | | 40 | 35.426 | 11.94 | 1.3 | 0.25 | 2.2 | 7.9 | | | | | 60 | 35.428 | | 1.3 | 0.29 | 3.4 | 8.6 | | | | | 80 | 35.418 | 11.57 | 1.8 | 0.29 | 3.3 | 13.9 | | | | A5G | 05 | | | 0.2 | 0.07 | 0.1 | 9.8 | 1.3 | 0.3 | | | 40 | | | 1.4 | 0.31 | 2.5 | 10.4 | 0.1 | 0.1 | Discovery Cruise 160A TABLE 2B - continued (3) | | Sample
Depth
m | Salinity
PSU | Temp.
°C | Silicon
µM | Phosphate
µM | Nitrate
μM | Aluminium
nM | Chlorophyll
ug/l | Phaeophytin
ug/l | |-----|----------------------|-----------------|-------------|---------------|-----------------|---------------|-----------------|---------------------|---------------------| | A6N | 00 | 35.318 | | 0.3 | 0.07 | 0.1 | 7.0 | | - | | | 10 | 35.321 | 15.78 | 0.3 | 0.08 | 0.1 | 8.5 | | | | | 20 | 35.396 | | 0.7 | 0.12 | 0.2 | 5.6 | | | | | 25 | 35.414 | 12.81 | 1.0 | 0.19 | 1.5 | 6.4 | | | | | 50 | 35.447 | | 1.5 | 0.33 | 3.8 | 8.0 | | | | | 70 | 35.443 | 11.50 | 1.8 | 0.30 | 4.1 | 10.3 | | | | A6G | 05 | | | 0.3 | 0.06 | 0.1 | 7.8 | 4.9 | 1.1 | | | 40 | | | 1.4 | 0.21 | 1.7 | 12.2 | 1.3 | 0.3 | | B1N | 00 | 35.029 | | 0.3 | 0.04 | 0.1 | 7.4 | | | | | 05 | 35.033 | 13.61 | 0.3 | 0.03 | 0.0 | 8.6 | | | | | 20 | 35.053 | | 1.0 | 0.06 | 0.1 | 6.2 | | | | | 24 | 35.056 | 12.42 | 1.1 | 0.03 | 0.0 | 6.9 | | | | | 40 | 35.120 | | 2.9 | 0.13 | 0.7 | 8.2 | | | | | 50 | 35.133 | 11.35 | 3.5 | 0.15 | 0.7 | 10.3 | | | | B1G | 05 | | | 0.5 | 0.02 | 0.0 | | 7.2 | 1.6 | | | 20 | | | 1.3 | 0.05 | 0.2 | | 3.6 | 0.6 | | | 40 | | | 3.1 | 0.15 | 0.8 | | 0.4 | 0.2 | | B2N | 00 | 35.089 | | 1.7 | 0.04 | 0.0 | 8.0 | | | | | 05 | 35.088 | 13.39 | 1.6 | 0.06 | 0.1 | 8.4 | | | | | 15 | 35.112 | | 1.8 | 0.12 | 0.0 | 7.3 | | | | | 20 | 35.162 | 11.92 | 2.0 | 0.08 | 0.0 | 8.0 | | | | | 40 | 35.218 | | 2.8 | 0.12 | 1.2 | 9.2 | | | | | 60 | 35.228 | 11.00 | 2.9 | 0.10 | 0.9 | 9.7 | | | TABLE 2B - continued (4) | | Sample
Depth
m | Salinity
PSU | Temp.
°C | Silicon
µM | Phosphate
μM | Nitrate
μM | Aluminium
nM | Chlorophyll
ug/l | Phaeophytin
ug/l | |-----|----------------------|-----------------|-------------|---------------|-----------------|---------------|-----------------|---------------------|---------------------| | B2G | 05 | | | 2.3 | 0.06 | 0.1 | _ | 4.7 | 0.7 | | | 20 | | | 2.3 | 0.11 | 0.1 | _ | 2.6 | 0.3 | | | 40 | | | 2.8 | 0.11 | 1.0 | _ | 0.1 | 0.1 | | | 60 | | | 2.1 | 0.05 | 0.1 | - | (7.3) | (1.0) | | B3N | 00 | 35.172 | | 1.6 | 0.04 | 0.0 | 8.4
| | | | | 05 | 35.172 | 13.37 | 1.6 | 0.02 | 0.0 | 10.8 | | | | | 15 | 35.184 | | 1.7 | 0.01 | 0.0 | 8.6 | | | | | 25 | 35.202 | 12.08 | 2.1 | 0.00 | 0.1 | 9.4 | | | | | 50 | 35.241 | | 2.6 | 0.19 | 1.8 | 9.6 | | | | | 70 | 35.234 | 11.22 | 2.7 | 0.18 | 1.6 | 9.6 | | | | B3G | 05 | | | 1.5 | 0.02 | 0.0 | | 15.2 | 2.1 | | | 20 | | | 2.0 | 0.00 | 0.0 | | 1.0 | 0.2 | | | 40 | | | 2.6 | 0.15 | 1.3 | | 0.1 | 0.1 | | | 70 | | | 2.6 | 0.16 | 1.4 | | 0.1 | 0.1 | | B4N | 00 | 35.171 | | 0.5 | 0.01 | 0.0 | 9.2 | | | | | 05 | 35.179 | 15.40 | 0.5 | 0.00 | 0.0 | 15.9 | | | | | 20 | 35.218 | | 1.2 | 0.07 | 0.4 | 7.3 | | | | | 40 | 35.277 | 11.81 | 2.1 | 0.18 | 1.5 | 7.5 | | | | | 60 | 35.268 | | 2.3 | 0.18 | 1.4 | 8.4 | | | | | 80 | 35.256 | 11.41 | 2.5 | 0.16 | 1.4 | 7.9 | | | | B4G | 05 | | | 0.5 | 0.01 | 0.0 | - | 3.6 | 1.0 | | | 20 | | | 1.4 | 0.13 | 0.7 | - | 0.1 | 0.1 | | | 40 | | | 2.0 | 0.18 | 1.6 | - | 0.3 | 0.3 | Discovery Cruise 160A TABLE 2B - continued (5) | | Sample
Depth
m | Salinity
PSU | Temp.
°C | Silicon
µM | Phosphate
µM | Nitrate
μM | Aluminium
nM | Chlorophyll
ug/l | Phaeophytin
ug/l | |-----|----------------------|-----------------|-------------|---------------|-----------------|---------------|-----------------|---------------------|---------------------| | DEN | 00 | 35.160 | · | 0.4 | 0.04 | 0.0 | 7.9 | | | | B5N | 15 | 35.155 | 15.80 | 0.4 | 0.01 | 0.1 | 10.9 | | | | | 20 | 35.154 | 13.00 | 0.5 | 0.00 | 0.0 | 8.1 | | | | | 25
25 | 35.268 | 13.38 | 0.9 | 0.10 | 0.6 | 9.3 | | | | | 40 | 35.312 | 13.30 | 1.6 | 0.20 | 1.6 | 6.8 | | | | | 80 | 35.293 | 12.01 | 2.1 | 0.20 | 1.7 | 8.4 | | | | DEG | 0.E | | | 0.4 | 0.00 | 0.1 | _ | 5.5 | 1.5 | | B5G | 05 | | | 0.6 | 0.12 | 0.1 | _ | 2.4 | 0.6 | | | 20
40 | | | 1.5 | 0.20 | 1.6 | - | 0.1 | 0.1 | | DCN | 00 | 35.213 | | 0.1 | 0.04 | 0.0 | 6.0 | | | | B6N | 00 | 35.213 | 16.01 | 0.1 | 0.04 | 0.0 | 8.5 | | • | | | 05
25 | 35.202 | 10.01 | 0.2 | 0.07 | 0.0 | 7.0 | | | | | | 35.303 | 13.00 | 0.8 | 0.16 | 1.3 | 6.5 | | | | | 29
40 | 35.280 | 13.00 | 1.3 | 0.21 | 1.8 | 7.7 | | | | | 80 | 35.290 | 12.51 | 1.4 | 0.20 | 1.8 | 8.3 | | | | D(0 | 0.5 | | | 0.1 | 0.04 | 0.0 | _ | 3.1 | 1.1 | | B6G | 05 | | | 0.8 | 0.17 | 1.4 | _ | 0.2 | 0.4 | | | 25 | | | 1.0 | 0.19 | 1.7 | _ | 0.2 | 0.2 | | | 40
85 | | | 1.4 | 0.21 | 1.6 | - | 0.2 | 0.1 | TABLE 2B - continued (6) | | Sample
Depth
m | Salinity
PSU | Temp.
°C | Silicon
µM | Phosphate
μM | Nitrate
μM | Aluminium
nM | Chlorophyll
ug/l | Phaeophytin
ug/l | |-----|----------------------|-----------------|-------------|---------------|-----------------|---------------|-----------------|---------------------|---------------------| | B7N | 00 | 35.288 | | 0.1 | 0.03 | 0.1 | 6.9 | | - | | | 05 | 35.291 | 15.30 | 0.1 | 0.08 | 0.1 | (20.2) | | | | | 25 | 35.302 | | 0.1 | 0.06 | 0.1 | 4.1 | | | | | 40 | 35.303 | 13.38 | 0.4 | 0.12 | 1.2 | 4.8 | | | | | 60 | 35.304 | | 0.8 | 0.18 | 1.6 | 6.2 | | | | | 85 | 35.304 | 12.99 | 1.1 | 0.19 | 1.8 | 7.2 | | | | B7G | 05 | - | | 0.1 | 0.04 | 0.0 | _ | 0.6 | 0.2 | | | 20 | _ | | 0.1 | 0.04 | 0.1 | _ | 1.1 | 0.3 | | | 40 | _ | | 0.5 | 0.12 | 0.1 | _ | 1.2 | 0.3 | | | 85 | - | | 1.1 | 0.19 | 1.8 | _ | - | - | | B8N | 00 | 35.266 | | 1.1 | 0.16 | 1.9 | 8.4 | | | | | 05 | 35.270 | 13.97 | 1.1 | 0.16 | 1.8 | 11.0 | | | | | 20 | 35.266 | | 1.2 | 0.15 | 1.8 | 9.9 | | | | | 40 | 35.282 | 13.64 | 1,2 | 0.16 | 1.8 | 9.7 | | | | | 60 | 35.290 | | 1.2 | 0.19 | 2.0 | 8.0 | | | | | 85 | 35.290 | 13.38 | 1.2 | 0.19 | 2.0 | 9.6 | | | | B8G | 05 | - | | 1.2 | 0.17 | 1.8 | _ | 0.4 | 0.3 | | | 20 | - | | 1.2 | 0.14 | 1.6 | - | 0.6 | 0.4 | | | 40 | _ | | 1.2 | 0.16 | 1.8 | - | 0.5 | 0.4 | | | Sample
Depth
m | Salinity
PSU | Temp.
°C | Silicon
μM | Phosphate
µM | Nitrate
μM | Aluminium
nM | Chlorophyll
ug/l | Phaeophytin
ug/l | |-----|----------------------|-----------------|---|---------------|-----------------|---------------|-----------------|---------------------|---------------------| | C1N | 00 | 35.042 | • | 0.3 | 0.06 | 0.2 | 6,3 | | | |) | 05 | 35.047 | 13.55 | 0.3 | 0.07 | 0.2 | (12.0) | | | | | 12 | 35.055 | .3.35 | 0.6 | 0.06 | 0.3 | 6.8 | | | | | 20 | 35.059 | 13.13 | 1.1 | 0.09 | 0.5 | 6.8 | | | | | 30 | 35.063 | 13.13 | 1.5 | 0.13 | 0.7 | 9.3 | | | | | 40 | 35.058 | 12.81 | 1.6 | 0.13 | 0.8 | 9.3 | | | | C1G | 05 | | | 0.05 | 0.30 | 0.1 | _ | 2.9 | 1.0 | | | 40 | | | 0.14 | 1.6 | 0.8 | - | 1.4 | 0.6 | | C2N | 00 | 34.996 | | 0.2 | 0.05 | 0.0 | 4.8 | | | | | 05 | 35.002 | 13.77 | 0.2 | 0.04 | 0.1 | (8.1) | | | | | 20 | 35.026 | | 0.4 | 0.07 | 0.2 | 5.8 | | | | | 25 | 35.034 | 12.90 | 1.1 | 0.09 | 0.9 | 6.1 | | | | | 40 | 35.049 | | 2.3 | 0.24 | 1.7 | 10.0 | | | | | 55 | 35.047 | 12.11 | 2.4 | 0.21 | 1.7 | 16.0 | | | | C2G | 05 | | | 0.1 | 0.03 | 0.1 | | 5.1 | 2.3 | | İ | 40 | | | 2.1 | 0.23 | 1.8 | | 0.8 | 0.4 | | C3N | 00 | 35.049 | | 0.5 | 0.06 | 0.0 | 5.8 | | | | 1 | 15 | 35.050 | 14.94 | 0.5 | 0.04 | 0.1 | (8.7) | | | | į | 25 | 35.064 | | 0.5 | 0.04 | 0.1 | 5.5 | | | | İ | 30 | 35.059 | 12.77 | 1.5 | 0.08 | 0.3 | 7.0 | | | | | 40 | 35.057 | | 2.1 | 0.12 | 1.9 | 9.8 | | | | | 55 | 35.062 | 11.93 | 2.1 | 0.14 | 1.8 | 12.4 | | | TABLE 2B - continued (8) | | Sample
Depth
m | Salinity
PSU | Temp.
°C | Silicon
µM | Phosphate
μΜ | Nitrate
μM | Aluminium
nM | Chlorophyll
ug/l | Phaeophytin
ug/l | |-----|----------------------|-----------------|-------------|---------------|-----------------|---------------|-----------------|---------------------|---------------------| | C3G | 05 | | | 0.6 | 0.04 | 0.0 | - | 14.9 | 2.2 | | | 40 | | | 2.3 | 0.23 | 1.8 | - | 0.5 | 0.4 | | C4N | 00 | 35.064 | | 0.2 | 0.05 | 0.1 | 6.3 | | | | | 10 | 35.063 | 15.68 | 0.2 | 0.05 | 0.0 | 7.3 | | | | | 20 | 35.071 | _ | 0.2 | 0.05 | 0.2 | 7.9 | | | | | 27 | 35.037 | 12.35 | 2.3 | 0.24 | 2.5 | 14.2 | | | | | 35 | 35.037 | | 2.3 | 0.24 | 2.5 | 14.0 | | | | | 60 | 35.049 | 12.23 | 2.2 | 0.24 | 2.5 | 13.8 | | | | C4G | 05 | | | 0.3 | 0.04 | 0.0 | _ | 3.1 | 0.7 | | | 40 | | | 2.3 | 0.25 | 2.6 | - | 0.4 | 0.3 | | C5N | 00 | 35.052 | | 0.1 | 0.04 | 0.0 | 5.1 | | | | | 05 | 35.051 | 15.95 | 0.2 | 0.07 | 0.0 | 5.5 | | | | | 15 | 35.052 | | 0.2 | 0.05 | 0.0 | 6.0 | | | | | 30 | 35.040 | 13.21 | 2.2 | 0.20 | 1.7 | 15.0 | | | | | 45 | 35.062 | | 2.3 | 0.21 | 2.1 | 15.0 | | | | | 65 | 35.064 | 12.68 | 2.3 | 0.22 | 2.1 | 15.2 | | | | C5G | 05 | | | 0.1 | 0.04 | 0.0 | - | 1.0 | 0.3 | | • | 40 | | | 2.3 | 0.20 | 1.8 | - | 0.3 | 0.2 | TABLE 2B - continued (9) | | Sample
Depth
m | Salinity
PSU | Temp.
°C | Silicon
µM | Phosphate
µM | Nitrate
μM | Aluminium
nM | Chlorophyll
ug/l | Phaeophytir
ug/l | |---------------|----------------------|-----------------|---------------------------------------|---------------|-----------------|---------------|-----------------|---------------------|---------------------| | C6N | 00 | 35.051 | · · · · · · · · · · · · · · · · · · · | 0.1 | 0.06 | 0.0 | 5.6 | | | | •••• | 05 | 35.054 | 15.36 | 0.1 | 0.08 | 0.0 | 6.4 | | | | | 20 | 35.072 | | 0.1 | 0.04 | 0.0 | 6.0 | | | | | 35 | 35.066 | 13.73 | 1.7 | 0.16 | 1.3 | 12.3 | | | | | 50 | 35.058 | | 2.6 | 0.22 | 2.1 | 17.0 | | | | | 65 | 35.054 | 13.17 | 2.7 | 0.23 | 2.1 | 17.2 | | | | C6G | 05 | | | 0.1 | 0.04 | 0.0 | - | 1.2 | 1.0 | | | 40 | | | 2.2 | 0.26 | 1.8 | - | 1.4 | 0.5 | | C7N | 00 | 34.854 | | 1.3 | 0.06 | 0.1 | 11.3 | | | | V •• | 05 | 34.926 | 15.24 | 1.3 | 0.06 | 0.1 | 13.1 | | | | | 20 | 35.024 | | 1.4 | 0.07 | 0.3 | 10.5 | | | | | 30 | 35.066 | 14.49 | 1.6 | 0.13 | 0.5 | 11.4 | | | | | 40 | 35.074 | | 2.3 | 0.19 | 1.5 | 14.6 | | | | | 65 | 35.069 | 14.04 | 2.4 | 0.19 | 1.4 | 14.9 | | | | C7G | 05 | | | 1.2 | 0.05 | 0.0 | _ | 1.9 | 0.5 | | -,- | 40 | | | 2.3 | 0.18 | 1.5 | - | 0.4 | 0.2 | | C8N | 00 | 34.945 | | 2.0 | 0.10 | 0.6 | 14.7 | | | | | 05 | 34.946 | 15.40 | 2.0 | 0.11 | 0.6 | (18.1) | | | | | 09 | 35.009 | - ' | 2.0 | 0.17 | 1.0 | 14.7 | | | | | 20 | 35.045 | 14.80 | 2.0 | 0.16 | 1.0 | 13.5 | | | | | 40 | 35.061 | | 2.0 | 0.16 | 1.0 | 15.2 | | | | | 65 | 35.065 | 14.58 | 2.0 | 0.17 | 1.0 | 14.1 | | | Discovery Cruise 160A TABLE 2B - continued (10) | | Sample
Depth
m | Salinity
PSU | Temp.
°C | Silicon
µM | Phosphate
μM | Nitrate
μM | Aluminium
nM | Chlorophyll
ug/l | Phaeophytin
ug/l | |-----|----------------------|-----------------|-------------|---------------|-----------------|---------------|-----------------|---------------------|---------------------| | C8G | 05 | | | 2.0 | 0.13 | 0.9 | - | 0.5 | 0.4 | | | 40 | | | 2.0 | 0.16 | 1.2 | - | 0.4 | 0.3 | | C9N | 00 | 35.054 | | 1.8 | 0.15 | 1.1 | 13.3 | | | | - | 05 | 35.058 | 15.04 | 1.8 | 0.15 | 1.0 | 14.1 | | | | | 20 | 35.078 | | 1.7 | 0.14 | 1.0 | 11.8 | | | | | 30 | 35.085 | 14.80 | 1.6 | 0.14 | 0.9 | 10.9 | | | | | 40 | 35.107 | | 1.4 | 0.13 | 0.9 | 11.0 | | | | | 55 | 35.118 | 14.54 | 1.3 | 0.14 | 0.9 | 10.2 | | | | C9G | 05 | | | 1.8 | 0.14 | 1.0 | - | 0.6 | 0.4 | | | 40 | | | 1.4 | 0.13 | 0.9 | - | 0.7 | 0.5 | | DN1 | 00 | 35.091 | | 1.9 | 0.06 | 0.1 | 15.2 | | | | | 05 | 35.092 | 15.22 | 1.9 | 0.06 | 0.1 | 15.4 | | | | | 15 | 35.089 | | 1.9 | 0.06 | 0.1 | 15.7 | | | | | 25 | 35.091 | 15.16 | 1.8 | 0.06 | 0.1 | 16.4 | | | | | 35 | 35.091 | | 1.5 | 0.06 | 0.1 | 15.7 | | | | | 45 | 35.087 | 15.12 | 1.5 | 0.06 | 0.1 | 17.2 | | | | DG1 | 05 | | | 1.9 | 0.07 | 0.1 | | _ | - | | | 20 | | | 1.9 | 0.07 | 0.1 | | _ | _ | Discovery Cruise 160A TABLE 2B - continued (11) | | Sample
Depth
m | Salinity
PSU | Temp.
°C | Silicon
µM | Phosphate
µM | Nitrate
μM | Aluminium
nM | Chlorophyll
ug/l | Phaeophytin
ug/l | |--------------|----------------------|-----------------|-------------|---------------|-----------------|---------------|-----------------|---------------------
---------------------| | DN2 | 00 | 35,228 | | 0.5 | 0.00 | 0.1 | 9.6 | | | | DIVE | 05 | 35.229 | 14.11 | 0.5 | 0.01 | 0.1 | (13.4) | | | | | 15 | 35.223 | | 0.5 | 0.00 | 0.1 | 9.7 | | | | | 25 | 35.226 | 14.10 | 0.5 | 0.04 | 0.1 | 9.0 | | | | | 35 | 35.224 | | 0.5 | 0.00 | 0.1 | 10.2 | | | | | 40 | 35.224 | 14.12 | 0.5 | 0.00 | 0.1 | 9.7 | | | | DG2 | 05 | | | 0.5 | 0.00 | 0.1 | - | 1.8 | 0.9 | | D G L | 40 | | | 0.5 | 0.00 | 0.1 | - | 2.1 | 0.9 | | DN3 | 00 | 35.139 | | 0.2 | 0.05 | 0.2 | 9.8 | | | | עווע | 05 | 35.147 | 14.18 | 0.2 | 0.06 | 0.1 | (12.4) | | | | | 10 | 35.143 | | 0.2 | 0.05 | 0.1 | 9.8 | | | | | 25 | 35.145 | 14.18 | 0.2 | 0.04 | 0.0 | 9.6 | | | | | 40 | 35.143 | | 0.2 | 0.05 | 0.0 | 9.0 | | | | | 50 | 35.143 | 14.18 | 0.2 | 0.08 | 0.0 | 9.8 | | | | DG3 | 05 | | | 0.2 | 0.05 | 0.0 | _ | | | | D G D | 40 | | | 0.2 | 0.04 | 0.0 | - | | | | DN4 | 00 | 34.974 | | 1.6 | 0.13 | 1.6 | 9.3 | | | | ~ II 1 | 05 | 34.980 | 14.04 | 1.6 | 0.12 | 1.5 | 10.1 | | | | | 15 | 34.973 | | 1.6 | 0.13 | 1.4 | 9.7 | | | | | 30 | 34.972 | 14.06 | 1.6 | 0.11 | 1.4 | 9.3 | | | | | 45 | 34.972 | | 1.6 | 0.11 | 1.4 | 9.0 | | | | | 55 | 34.974 | 14.08 | 1.6 | 0.11 | 1.4 | 9.8 | | | Discovery Cruise 160A TABLE 2B -continued (12) | | Sample
Depth
m | Salinity
PSU | Temp.
°C | Silicon
µM | Phosphate
µM | Nitrate
μΜ | Aluminium
nM | Chlorophyll
ug/l | Phaeophytin
ug/l | |-----|----------------------|-----------------|-------------|---------------|-----------------|---------------|-----------------|---------------------|---------------------| | DG4 | 05 | | | 1.6 | 0.12 | 1.4 | - | 2.9 | 1.2 | | | 40 | | | 1.6 | 0.11 | 1.4 | - | 2.8 | 0.7 | | DN4 | 00 | 34.915 | 14.28 | 0.8 | 0.07 | 0.7 | 8.3 | | | | | 05 | 34.915 | | 0.8 | 0.07 | 0.6 | 8.4 | | | | | 20 | 34.914 | 14.05 | , 1.0 | 0.08 | 0.9 | 9.8 | | | | | 35 | 34.914 | | 0.9 | 0.08 | 0.9 | 9.8 | | | | | 50 | 34.917 | 13.88 | 1.0 | 0.12 | 1.1 | 9.7 | | | | | 65 | 34.917 | | 1.0 | 0.08 | 1.1 | 10.3 | | | | DG5 | 05 | | | 0.7 | 0.06 | 0.7 | _ | 0.8 | 0.5 | | | 40 | | | 1.0 | 0.08 | 1.1 | | 0.8 | 0.5 | | D6N | 00 | 34.905 | | 1.7 | 0.11 | 0.9 | 13.8 | | | | | 05 | 34.909 | 14.79 | 1.7 | 0.11 | 0.9 | 13.3 | | | | | 15 | 34.917 | | 1.6 | 0.10 | 0.9 | 13.9 | | | | | 25 | 34.913 | 14.78 | 1.6 | 0.10 | 0.9 | 13.8 | | | | | 35 | 34.917 | | 1.5 | 0.10 | 0.9 | 14.8 | | | | | 45 | 34.917 | 14.77 | 1.5 | 0.10 | 0.9 | 13.6 | | | | D6G | 05 | | | 2.1 | 0.16 | 1.4 | - | 1.0 | 0.6 | | | 40 | | | 1.6 | 0.10 | 1.0 | _ | 1.2 | 0.8 | TABLE 2B - continued (13) | | Sample
Depth
m | Salinity
PSU | Temp.
°C | Silicon
µM | Phosphate
µM | Nitrate
μM | Aluminium
nM | Chlorophyll
ug/l | Phaeophytir
ug/l | |--------|----------------------|-----------------|---|---------------|-----------------|---------------|-----------------|---------------------|---------------------| | D7N | 00 | 34.921 | | 1.5 | 0.10 | 0.7 | 12.8 | | - | | D 14 | 05 | 34.932 | 14.60 | 1.5 | 0.10 | 0.8 | 14.2 | | | | | 20 | 34.927 | | 1.5 | 0.09 | 0.8 | 13.2 | | | | | 30 | 34.926 | 14.61 | 1.5 | 0.10 | 0.8 | 13.0 | | | | | 40 | 34.927 | | 1.5 | 0.10 | 0.8 | 13.3 | | | | | 50 | 34.927 | 14.62 | 1.5 | 0.10 | 0.9 | 13.1 | | | | D7G | 05 | | | 1.5 | 0.10 | 1.0 | _ | 1.0 | 0.6 | | DIG | 40 | | | 1.6 | 0.11 | 0.9 | - | 1.1 | 0.5 | | D8N | 00 | 34.846 | | 2.0 | 0.10 | 0.9 | 13.5 | | | | DON | 05 | 34.853 | 15.43 | 2.0 | 0.10 | 0.8 | (26.0) | | | | | 20 | 34.847 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 2.0 | 0.10 | 0.8 | 14.2 | | | | | 23 | 34.847 | 15.43 | 2.0 | 0.10 | 0.8 | 13.5 | | | | | 40 | - | ,,,,,, | 1.9 | 0.10 | 0.6 | 12.8 | | | | | 45 | 34.855 | 15.29 | 1.9 | 0.11 | 0.6 | 12.8 | | | | D8G | 05 | | | 2.3 | 0.10 | 0.8 | _ | 0.7 | 0.2 | | 200 | 40 | | | 1.9 | 0.10 | 0.8 | <u></u> | 1.0 | 0.4 | | D9N | 00 | 34.834 | | 2.4 | 0.10 | 0.5 | 13.1 | | | | אוכע | 05 | 34.841 | 15.72 | 2.4 | 0.13 | 0.6 | 13.1 | | | | | 10 | 34.833 | 17.12 | 2.4 | 0.10 | 0.5 | 14.3 | | | | | 20 | 34.836 | 15.73 | 2.4 | 0.11 | 0.5 | 13.3 | | | | | 30 | 34.836 | . , , , , | 2.4 | 0.11 | 0.4 | 13.6 | | | | | 40 | 34.837 | 15.74 | 2.4 | 0.10 | 0.4 | 13.4 | | | TABLE 2B - continued (14) | | Sample
Depth
m | Salinity
PSU | Temp.
°C | Silicon
µM | Phosphate
μM | Nitrate
μM | Aluminium
nM | Chlorophyll
ug/l | Phaeophytin
ug/l | |------|----------------------|-----------------|-------------|---------------|-----------------|---------------|-----------------|---------------------|---------------------| | D9G | 05 | ··· | | 2.4 | 0.10 | 0.5 | | 0.5 | 0.4 | | - | 20 | | | 2.4 | 0.10 | 0.5 | | 0.5 | 0.3 | | | 35 | | | 2.4 | 0.10 | 0.5 | | 0.4 | 0.3 | | D10N | 00 | 34.829 | | 2.6 | 0.12 | 0.9 | 15.4 | | | | | 05 | 34.832 | 15.85 | 2.6 | 0.14 | 0.9 | 16.1 | | | | | 10 | 34.828 | | 2.6 | 0.12 | 1.0 | 14.7 | | | | | 15 | 34.827 | 15.87 | 2.6 | 0.12 | 0.8 | 14.8 | | | | | 25 | 34.828 | | 2.6 | 0.12 | 0.8 | 15.0 | | | | | 32 | 34.831 | 15.85 | 2.6 | 0.19 | 0.8 | 15.1 | | | | D10G | 05 | | | 2.6 | 0.10 | 0.7 | _ | 0.4 | 0.4 | | | 20 | | | 2.6 | 0.11 | 0.9 | _ | 0.3 | 0.4 | | | 30 | | | 2.6 | 0.11 | 0.8 | - | 0.4 | 0.4 | | EIN | 00 | 34.634 | | 1.0 | 0.07 | 0.1 | 23.5 | | | | | 05 | 34.634 | 16.58 | 1.0 | 0.07 | 0.1 | 23.3 | | | | | 10 | 34.630 | | 1.0 | 0.05 | 0.1 | 23.6 | | | | | 15 | 34.638 | 16.51 | 1.0 | 0.08 | 0.1 | 23.5 | | | | | 20 | 34.645 | | 1.0 | 0.06 | 0.1 | 22.6 | | | | | 25 | 34.655 | 16.47 | 1.0 | 0.05 | 0.1 | 23.0 | | | | E1G | 05 | | | 1.0 | 0.08 | 0.1 | | 0.6 | 0.4 | Discovery Cruise 160A TABLE 2B - continued (15) | | Sample
Depth
m | Salinity
PSU | Temp.
°C | Silicon
µM | Phosphate
µM | Nitrate
μM | Aluminium
nM | Chlorophyll
ug/l | Phaeophytin
ug/l | |-----|----------------------|-----------------|-------------|---------------|-----------------|---------------|-----------------|---------------------|---------------------| | E2N | 00 | 34.939 | | 0.9 | 0.04 | 0.1 | 13.6 | | | | | 05 | 34.944 | 15.55 | 0.9 | 0.06 | 0.1 | 15.0 | | | | | 10 | 34.940 | | 0.9 | 0.04 | 0.1 | 13.8 | | | | | 15 | 34.940 | 15.56 | 0.9 | 0.04 | 0.1 | 14.1 | | | | | 20 | 34.940 | | 0.9 | 0.05 | 0.1 | 14.0 | | | | | 30 | 34.940 | - | 0.9 | 0.05 | 0.1 | 14.3 | | | | E2G | 05 | | | 0.9 | 0.04 | 0.1 | | 0.8 | 0.4 | | E3N | 00 | 35.042 | | 0.2 | 0.03 | 0.2 | 9.3 | | | | | 05 | 35.051 | 14.57 | 0.2 | 0.04 | 0.3 | 10.3 | | | | | 20 | _ | | 0.2 | 0.04 | 0.2 | 8.8 | | | | | 30 | 35.049 | 14.54 | 0.2 | 0.06 | 0.2 | 9.8 | | | | | 40 | 35.049 | | 0.2 | 0.05 | 0.2 | 9.6 | | | | | 60 | 35.048 | 14.56 | 0.2 | 0.04 | 0.2 | 9.4 | | | | E3G | 05 | | | 0.2 | 0.04 | 0.2 | | 3.0 | 0.8 | | E4N | 00 | 34.898 | | 2.2 | 0.13 | 2.0 | 13.2 | | | | | 05 | 34.897 | 14.52 | 2.2 | 0.14 | 2.1 | 19.6 | | | | | 20 | 34.890 | | 2.2 | 0.15 | 2.0 | 14.9 | | | | | 30 | 34.894 | 14.53 | 2.2 | 0.13 | 2.0 | 12.6 | | | | | 40 | 34.898 | | 2.2 | 0.14 | 2.0 | 13.2 | | | | | 65 | 34.895 | 14.53 | 2.2 | 0.13 | 1.9 | 13.1 | | | | E4G | 05 | | | 2.2 | 0.14 | 1.8 | | 0.6 | 0.4 | TABLE 2B - continued (16) | | Sample
Depth
m | Salinity
PSU | Temp.
°C | Silicon
μΜ | Phosphate
µM | Nitrate
μM | Aluminium
nM | Chlorophyll
ug/l | Phaeophytin
ug/l | |-----|----------------------|-----------------|-------------|---------------|-----------------|---------------|-----------------|---------------------|---------------------| | F1N | 00 | 34.944 | | 0.8 | 0.08 | 0.3 | 14.6 | | | | , | 05 | 34.950 | 15.63 | 0.8 | 0.09 | 0.2 | 15.8 | | | | | 15 | 34.954 | ,,,,,, | 0.8 | 0.08 | 0.2 | 15.8 | | | | | 20 | 34.956 | 15.51 | 0.8 | 0.08 | 0.2 | 17.0 | | | | | 25 | 34.956 | .5.5. | 0.8 | 0.08 | 0.3 | 14.6 | | | | | 35 | 34.958 | 15.50 | 0.7 | 0.08 | 0.2 | 16.3 | | | | F1G | | | | 0.9 | 0.08 | 0.3 | | 0.9 | 0.4 | | F2N | 00 | 34.997 | | 0.9 | 0.15 | 0.4 | 12.1 | | | | | 05 | 34.998 | 15.10 | 0.9 | 0.15 | 0.2 | 12.3 | | | | | 10 | 34.998 | | 0.9 | 0.15 | 0.2 | 12.2 | | | | | 20 | 34.998 | 15.09 | 0.9 | 0.15 | 0.2 | 11.7 | | | | | 30 | 34.998 | | 0.9 | 0.15 | 0.2 | 11.4 | | | | | 40 | 34.998 | 15.08 | 0.9 | 0.15 | 0.2 | 12.0 | | | | F2G | 05 | | | 0.9 | 0.07 | 0.4 | | | | | | 40 | | | 0.9 | 0.08 | 0.5 | | | | | F3N | 00 | 34.977 | | 2.7 | 0.09 | 1.1 | 13.6 | | | | | 05 | 34.978 | 14.68 | 2.7 | 0.08 | 1.1 | 16.4 | | | | | 10 | 34.976 | | 2.7 | 0.09 | 1.1 | 15.1 | | | | | 20 | 34.977 | 14.68 | 2.7 | 0.07 | 1.1 | 13.5 | | | | | 30 . | 34.976 | | 2.7 | 0.07 | 1.1 | 14.5 | | | | | 40 | 34.975 | 14.68 | 2.7 | 0.07 | 1.1 | 13.6 | | | | F3G | 05 | | | 2.6 | 0.08 | 1.0 | | 0.6 | 0.3 | | | 40 | | | 2.6 | 0.09 | 1.1 | | 0.6 | 0.3 | TABLE 2B - continued (17) | | Sample
Depth
m | Salinity
PSU | Temp.
°C | Silicon
µM | Phosphate
µM | Nitrate
µM | Aluminium
nM | Chlorophyll
ug/l | Phaeophytin
ug/l | |--------|----------------------|-----------------|-------------|---------------|-----------------|---------------|-----------------|---------------------|---------------------| | F4N | 00 | 34.814 | | 3.0 | 0.13 | 1.7 | 14.1 | | | | 1 414 | 05 | 34.814 | 14.90 | 3.0 | 0.14 | 1.8 | 17.3 | | | | | 10 | 34.815 | | 3.0 | 0.13 | 1.8 | 14.1 | | | | | 20 | 34.819 | 14.90 | 3.0 | 0.13 | 1.8 | 13.6 | | | | | 30 | 34.830 | | 3.0 | 0.13 | 1.8 | 16.0 | | | | | 40 | 34.843 | 14.85 | 3.0 | 0.13 | 1.8 | 14.2 | | | | F4G | 05 | | | 2.8 | 0.15 | 1.9 | | 0.8 | 0.3 | | 1 40 | 40 | | | 2.8 | 0.14 | 1.9 | | 0.7 | 0.3 | | 5N | 00 | 34.641 | | 2.6 | 0.18 | 1.2 | 12.7 | | | | , DIM | 05 | 34.641 | 15.40 | 2.6 | 0.17 | 1.3 | 14.2 | | | | | 10 | 34.641 | 13.40 | 2.6 | 0.17 | 1.2 | 13.2 | | | | | 15 | 34.641 | 15.38 | 2.6 | 0.17 | 1.2 | 13.8 | | | | | 20 | 34.647 | , , , , , | 2.6 | 0.16 | 1.2 | 12.9 | | | | | 30 | 34.642 | 15.39 | 2.6 | 0.16 | 1.2 | 13.7 | | | | F5G | 05 | | | 2.4 | 0.17 | 1.3 | | 1.5 | 0.4 | | טעי | 20 | | | 2.4 | 0.18 | 1.3 | | 1.3 | 0.4 | | F6N | 00 | 34.439 | | 2.2 | 0.25 | 0.4 | 12.6 | | | | I. OIA | 05 | 34.440 | 15.82 | 2.2 | 0.28 | 0.4 | 12.6 |
| | | | 10 | 34.438 | 1,7.00 | 2.1 | 0.26 | 0.4 | 12.3 | | | | | 15 | 34.443 | 15.82 | 2.1 | 0,25 | 0.4 | 12.3 | | | | | 20 | 34.601 | | 2.1 | 0.24 | 0.4 | 11.8 | | | | | 22 | 34.446 | 15.82 | 2.1 | 0.24 | 0.4 | 12.4 | | | Discovery Cruise 160A TABLE 2B - continued (18) | | Sample
Depth
m | Salinity
PSU | Temp.
°C | Silicon
µM | Phosphate
μΜ | Nitrate
μM | Aluminium
nM | Chlorophyll
ug/l | Phaeophytin
ug/l | |-----|----------------------|-----------------|-------------|---------------|-----------------|---------------|-----------------|---------------------|---------------------| | F6G | 05 | | | 2.1 | 0.26 | 0.4 | | 0.9 | 0.3 | | | 20 | | | 2.0 | 0.22 | 0.4 | | 1.5 | 0.4 | | F7N | 00 | 34.162 | | 2.9 | 0.42 | 0.6 | 13.2 | | | | | 05 | 34.211 | 16.24 | 3.1 | 0.41 | 0.8 | 14.6 | | | | | 10 | 34.230 | | 3.1 | 0.39 | 0.7 | 13.3 | | | | | 15 | 34.296 | 16.08 | 3.1 | 0.36 | 0.6 | 14.5 | | | | | 20 | 34.324 | | 3.2 | 0.35 | 0.6 | 14.7 | | | | | 25 | 34.365 | 15.97 | 3.2 | 0.32 | 0.7 | 15.7 | | | | F7G | 05 | | | 2.9 | 0.43 | 0.5 | | 0.7 | 0.4 | | | 20 | | | 3.2 | 0.34 | 0.9 | | 0.6 | 0.4 | | J4N | 00 | 35.034 | | 1.6 | 0.03 | 0.0 | 11.0 | | | | | 05 | 35.038 | 14.08 | 1.6 | 0.02 | 0.0 | 9.5 | 14.1 | 1.2 | | | 10 | 35.032 | | 1.6 | 0.01 | 0.0 | 8.3 | | | | | 15 | 35.025 | 14.08 | 1.6 | 0.01 | 0.0 | 8.2 | 15.1 | 1.8 | | | 20 | 35.023 | | 1.7 | 0.01 | 0.0 | 8.3 | | | | | 25 | 35.034 | 13.95 | 1.6 | 0.01 | 0.0 | 8.3 | 16.5 | 1.8 | | | 30 | 35.046 | | 2.1 | 0.09 | 1.1 | 9.4 | | | | | 35 | 35.046 | 12.62 | 2.6 | 0.16 | 1.8 | 11.5 | | | | | 40 | 35.042 | | 2.6 | 0.18 | 2.0 | 12.5 | | | | | 45 | 35.044 | 12.29 | 2.7 | 0.20 | 2.0 | 11.9 | | | | | 50 | 35.048 | | 2.7 | 0.17 | 1.9 | 11.9 | | | | | 55 | 35.047 | 12.28 | 2.7 | 0.16 | 2.0 | 13.4 | | | Discovery Cruise 160A TABLE 2B - continued (19) | | Sample
Depth
m | Salinity
PSU | Temp.
°C | Silicon
µM | Phosphate
µM | Nitrate
μM | Aluminium
nM | Chlorophyll
ug/l | Phaeophytin
ug/l | |-----|----------------------|-----------------|-------------|---------------|-----------------|---------------|-----------------|---------------------|---------------------| | J7N | 00 | 35.118 | | 2.2 | 0.00 | 0.0 | 7.8 | | | | OIM | 05 | 35.116 | 13.05 | 2.2 | 0.00 | 0.0 | 7.8 | | | | | 15 | 35.120 | 13103 | 2.2 | 0.00 | 0.0 | 7.7 | | | | | 20 | 35.152 | 12.42 | <-4 | 0.04 | 0.5 | 8.3 | | | | | 25 | 35.177 | | 2.6 | 0.03 | 0.2 | 8.6 | | | | | 30 | 35.216 | 11.29 | 2.9 | 0.10 | 1.3 | 9.6 | | | | | 45 | 35.219 | | 3.0 | 0.12 | 1.4 | 10.0 | | | | | 50 | 35.219 | 11.26 | 2.9 | 0.14 | 1.1 | 10.4 | | | | | 55 | 35.218 | | 3.0 | 0.12 | 1.2 | 9.9 | | | | | 60 | 35.218 | 11.28 | 3.0 | 0.12 | 1.2 | 9.7 | | | | | 70 | 35.219 | 11.28 | 3.0 | 0.12 | 1.2 | 9.9 | | | | J7G | 05 | | | 2.3 | 0.01 | 0.0 | | 3.4 | 0.5 | | 010 | 20 | 35.218 | | 3.0 | 0.11 | 1.3 | | 0.2 | 0.1 | | | 40 | 37.2.0 | | 3.0 | 0.12 | 1.4 | | 0.2 | 0.1 | | | 60 | | | 3.0 | 0.13 | 1.4 | | 0.2 | 0.1 | TABLE 2B - continued (20) | | Sample
Depth
m | Salinity
PSU | Temp.
°C | Silicon
µM | Phosphate
µM | Nitrate
μM | Aluminium
nM | Chlorophyll
ug/l | Phaeophytin
ug/l | |------|----------------------|-----------------|-------------|---------------|-----------------|---------------|-----------------|---------------------|---------------------| | J10N | 00 | 35.258 | | 1.1 | 0.01 | 0.0 | 6.5 | | · | | | 05 | 35.258 | 13.50 | 1.1 | 0.01 | 0.0 | 8.3 | | | | | 10 | 35.256 | | 1.1 | 0.00 | 0.0 | 6.5 | | | | | 15 | 35.260 | 13.45 | 1.1 | 0.01 | 0.0 | 6.5 | | | | | 20 | 35.264 | | 1.2 | 0.00 | 0.0 | 6.9 | | | | | 25 | 35.268 | 13.06 | 1.3 | 0.02 | 0.0 | 7.1 | | | | | 30 | 35.343 | | 2.1 | 0.18 | 3.4 | 9.9 | | | | | 40 | 35.367 | 10.70 | 2.4 | 0.29 | 4.8 | 11.6 | | | | | 50 | 35.368 | | 2.4 | 0.29 | 4.6 | 11.8 | | | | | 60 | 35.370 | 10.65 | 2.4 | 0.29 | 4.9 | 11.7 | | | | | 75 | 35.369 | | 2.4 | 0.29 | 5.0 | 11.4 | | | | | 90 | 35.365 | 10.69 | 2.4 | 0.28 | 5.1 | 11.9 | · | | | J10G | 05 | | | 1.1 | 0.01 | 0.0 | | 4.0 | 0.9 | | | 40 | | | 1.1 | 0.01 | 0.0 | | 4.4 | 1.1 | Discovery Cruise 160A TABLE 2C - Hydrographic data from Tamar tidal station | | Sample
Depth
m | Time
BST | Salinity
PSU | Silicon
µM | Phosphate
µM | Nitrate
μM | Chlorophyll
ug/l | Phaeophytin
ug/l | |-----|----------------------|-------------|-----------------|---------------|-----------------|---------------|---------------------|---------------------| | T1 | 7 | 0215 | 34.224 | 2.0 | 0.01 | 0.2 | 1.5 | 0.5 | | T2 | 7 | 0315 | 34.456 | 1.5 | 0.24 | 1.6 | 2.6 | 1.1 | | Т3 | 7 | 0415 | 34.690 | 1.6 | 0.16 | 1.1 | 2.2 | 0.9 | | Т4 | 7 | 0515 | 34.758 | 1.5 | 0.14 | 0.9 | 2.1 | 0.8 | | T5 | 7 | 0615 | 34.817 | 1.4 | 0.11 | 0.6 | 2.1 | 0.7 | | Т6 | 7 | 0715 | 34.783 | 1.6 | 0.14 | 0.8 | 1.7 | 0.6 | | Т7 | 7 | 0815 | 34.706 | 1.5 | 0.14 | 0.9 | 2.0 | 0.6 | | T8 | 7 | 0915 | 34.538 | 1.6 | 0.22 | 1.4 | 2.3 | 1.0 | | T9 | 7 | 1015 | 34.290 | 1.5 | 0.27 | 1.8 | 2.9 | 0.7 | | T10 | 7 | 1115 | 34.349 | 1.6 | 0.25 | 1.8 | 2.4 | 0.9 | | T11 | 7 | 1215 | 34.147 | 1.7 | 0.27 | 2.0 | 2.5 | 1.0 | | T12 | 7 | 1315 | 34.277 | 1.7 | 0.28 | 1.9 | 2.5 | 1.0 | | T13 | 7 | 1415 | 34.616 | 1.8 | 0.24 | 1.2 | 2.6 | 0.9 | | T14 | 7 | 1515 | 34.809 | 1.8 | 0.19 | 1.1 | 2.2 | 0.7 | TABLE 3 - Averaged Results for Each Station | STATION
Number | SALINITY | TEMPERATURE
°C | ALUMINIUM
nM | SILICON
µM | PHOSPHATE
µM | NITRATE
μΜ | |-------------------|-------------------------|----------------------|-----------------|-------------------|----------------------|-------------------| | Track A | | | | | | | | 1 | 35.15
35.21 | 15.2
11.3 | 9
11 | 0.8
2.5 | 0.08
0.15 | 0.3
0.3 | | 2 | 35.17
35.27 | 16.4
11.4 | 8
11 | 0.4
2.8 | 0.07
0.37 | 0.2
2.6 | | 3 | 35.25
35.30 | 15.7
10.8 | 7 | 0.5
2.5 | 0.08
0.32 | 0.4
4.0 | | 4 | 35.22
35.37 | 16.0
11.2 | 11
11 | 0.2
1.8
0.2 | 0.80
0.33
0.70 | 0.4
3.7
0.3 | | 5 | 35.23
35.43 | 15.9
11.6
15.8 | 10
14
7 | 1.5
0.3 | 0.70
0.29
0.80 | 3.4
0.1 | | 6 | 35.32
35.44 | 11.5 | 10 | 1.7 | 0.32 | 4.0 | | Track B | | | | | | | | 1 | 35.03
35.13 | 13.6
11.4 | 7
10 | 0.3
3.5 | 0.04
0.15 | 0.1
0.7 | | 2 | 35.09
35.23 | 13.4
11.0 | 8
9 | 1.7
2.9 | 0.05
0.11 | 0.0 | | 3 | 35.17
35.23 | 13.4
11.2 | 9
10 | 1.6
2.7 | 0.04
0.19 | 0.0
1.7 | | 4 | 35.17
35.26 | 15.4
11.4 | 8
8
8 | 0.5
2.4
0.4 | 0.01
0.18
0.01 | 0.0
1.4
0.0 | | 5
6 | 35.16
35.29
35.21 | 15.8
12.0
16.0 | 8
7 | 2.1
0.1 | 0.20 | 1.7 | | 7 | 35.29
35.29 | 12.5
15.3 | 8
6 | 1.4 | 0.21 | 1.8 | | 8 | 35.30
35.27 | 13.0 | 7
9 | 1.1 | 0.19
0.16 | 1.7 | | Ũ | 35.29 | 13.4 | 9 | 1.2 | 0.19 | 2.0 | TABLE 3 - Averaged results for each station - continued (2) | STATION
Number | SALINITY | TEMPERATURE
°C | ALUMINIUM
nM | SILICON
µM | PHOSPHATE
μΜ | NITRATE
μΜ | |-------------------|----------------|-------------------|-----------------|---------------|-----------------|---------------| | Track C | | | | | | | | 1 | 35.04
35.06 | 13.6
12.8 | 6
9 | 0.3
1.6 | 0.06
0.13 | 0.2
0.8 | | 2 | 35.00
35.05 | 13.8
12.1 | 5
13 | 0.2 | 0.50
0.23 | 0.1 | | 3 | 35.05
35.06 | 14.9
11.9 | 6
11 | 0.5
2.1 | 0.04
0.13 | 0.1
1.9 | | 4 | 35.06
35.04 | 15.7
12.2 | 7
14 | 0.2
2.3 | 0.05
0.24 | 0.1
2.5 | | 5 | 35.05
35.06 | 16.0
12.7 | 6
15 | 0.2
2.3 | 0.05
0.21 | 0.0
2.1 | | 6 | 35.05
35.06 | 15.4
13.2 | 6
17 | 0.1
2.7 | 0.06
0.23 | 0.0
2.1 | | 7 | 34.85
35.07 | 15.2
14.0 | 11
15 | 1.3
2.4 | 0.06
0.19 | 0.1
1.5 | | 8 | 34.95
35.06 | 15.4
14.6 | 15
15 | 2.0 | 0.10
0.16 | 0.6 | | 9 | 35.05
35.11 | 15.0
14.5 | 13
10 | 1.8
1.4 | 0.15
0.14 | 1.0
0.9 | | Track D | | | | | | | | 1 2 | 35.09
35.22 | 15.2
14.1 | 16
10 | 1.9
0.5 | 0.06
0.00 | 0.1
0.1 | | 2
3 | 35.14 | 14.2 | 10 | 0.2 | 0.05 | 0.1 | | 4 | 35.97 | 14.1 | 9 | 1.6 | 0.12 | 1.4 | | 5 | 34.91 | 14.3 | 8
10 | 0.8
1.0 | 0.07
0.10 | 0.7
1.1 | | 6 | 34.92
34.91 | 13.9
14.8 | 14 | 1.6 | 0.10 | 0.9 | | 7 | 34.93 | 14.6 | 13 | 1.5 | 0.10 | 0.8 | | 8 | 34.85 | 15.4 | 13 | 2.0 | 0.10 | 0.8 | | 9 | 34.83 | 15.7 | 13 | 2.4 | 0.11 | 0.5 | | 10 | 34.83 | 15.9 | 15 | 2.6 | 0.12 | 0.9 | | Track E | | | | | | | | 1 | 34.63 | 16.5 | 24 | 1.0 | 0.07 | 0.1 | | 2 | 34.94 | 15.6 | 14 | 0.9 | 0.05 | 0.1 | | 3 | 35.05 | 14.6 | 10 | 0.2 | 0.04 | 0.2 | | 4 | 34.90 | 14.5 | 13 | 2.2 | 0.14 | 2.0 | TABLE 3 - Averaged results for each station - continued (3) | STATION
Number | SALINITY | TEMPERATURE
°C | ALUMINIUM
nM | SILICON
µM | PHOSPHATE
µM | NITRATE
µM | |---------------------------------|--|--|--|---|--|--| | Track F | | | | | | | | 1
2
3
4
5
6
7 | 34.94
35.00
34.98
34.81
34.64
34.44
34.16
34.37 | 15.5
15.1
14.7
14.9
15.4
15.8
16.2
16.0 | 15
12
14
15
14
12
13
16 | 0.8
0.9
2.7
3.0
2.6
2.1
2.9 | 0.08
0.15
0.07
0.13
0.17
0.25
0.42
0.32 | 0.2
0.2
1.1
1.8
1.2
0.4
0.6
0.7 | | Track J | | | | | | | | 4 | 35.03
35.05 | 14.1
12.3 | 8
12 | 1.6
2.7 | 0.01
0.17 | 0.0
2.0 | | 7 | 34.12
35.22 | 13.1
11.3 | 8
10 | 2.2 | 0.00 | 0.0 | | 10 | 35.26
35.37 | 13.5
10.7 | 7
12 | 1.1 | 0.01
0.29 | 0.0
5.0 | TABLE 4 - Summary of results from the cruises in November 1985, May 1986 and August
1986. Ranges, averages and ratios to phosphate, standard deviation on average in brackets, S - surface, D - deep. | | Range | Av | erage | | | | | Ra | atio | /PC |) ₄ | | |------------------|----------------------------|----|-------------|------------------|---|------|--------|----|------------|-----|----------------|-----| | Salinity (psu) | | | | | | | | | | | | | | November | 34.53-35.36 | | | (0.17) | | | | | | | | | | May
August | 34.60-35.37
34.16-35.44 | | | (0.26)
(0.22) | | | | | | | | | | Temperature (°C) | | | | | | | | | | | | | | November | 9.6-13.4 | | 12.4 | | | | | | | | | | | May
August | 7.9-9.6
11.0-16.6 | | 8.7
15.1 | (0.5)
(0.8) | | | | | | • | | | | Silicon (µM) | | | | | | | | | | | | | | November | 2.1-5.6 | | | (0.8) | | | | | 8 | 5 | | | | May
August | 0.1-2.5
0.0-3.5 | s | 0.6
1.1 | (0.7)
(0.9) | Ε | 1.8 | (0.8) | s | | |) 1 | 1.3 | | Phosphate (µM) | | | | | | | | | | | | | | November | 0.26-0.78 | | | (0.09) | | | | | | | | | | May
August | 0.11-0.35
0.00-0.42 | s | | (0.07)
(0.06) | | 0.16 | (0.08) | | | | | | | Nitrate (µM) | | | | | | | | | | | | | | November | 2.9-9.2 | | - | (1.4) | | | | | 13 | | | | | May
August | < 0.5-5.1
0.0-4.1 | s | 2.2
0.5 | (1.8)
(0.5) | Γ | 1.3 | (1.1) | S | 11
6 | |) | 8.2 | | Aluminium (nM) | | | | | | | | | | | | | | November | 13-67 | | 28 | (10) | | | | | 72 | | | | | May
August | 13-29
5 - 23 | s | 20
10.5 | (5)
(4) | Ι | 12.5 | (3) | | 105
131 | , 7 | В | |