University of Exeter Cruise Report No. xx *RRS Discovery* Cruise DY153 30 July 2022 – 05 September 2022 Bottom Boundary Layer Turbulence and Abyssal Recipes (BLT)

Principal Scientific Officers

Marie-Jose Messias and Alberto Naveira Garabato

Editors Jack Hughes and Marie-Jose Messias

2023

College of Life and Environmental Science University of Exeter, Streatham Campus Hatherly Laboratories, Prince of Wales Road Exeter, EX4 4PS. UK Email: <u>m.messias@exeter.ac.uk</u>

DOCUMENT DATA SHEET

AUTHOR Marie-Jose Messias and the BLT3 group.

PUBLICATION DATE 2023

TITLE

Bottom Boundary Layer Turbulence and Abyssal Recipes (BLT- Recipes)

REFERENCE

National Oceanography Centre Cruise Report, No. xx

ABSTRACT

This cruise report details the scientific programme of the third and final cruise of the BLT Recipes project, namely BLT3 and DY153 completed between 30/07/2022 – 5/09/2022. For context, the project was initiated by the research expedition DY132 (or BLT1) in June/July 2021 and followed by the second expedition DY138 (or BLT2) between 25/09/22 -03/11/22. The BLT Recipes project addresses a long-standing problem in Physical Oceanography about the balance of the cold and dense sinking waters at high latitudes with deep-ocean upwelling across isopycnals at lower latitudes. The BLT Recipes project seeks to test an emergent new paradigm of ocean mixing, whereby deep-ocean upwelling is primarily driven by highly localised turbulence within the bottom boundary layer instead of by breaking internal waves in the ocean interior, the later having been shown as driving downwelling of abyssal waters. To enable such testing, the BLT project undertook a multiple approach including turbulence measurements using microstructure profiler deployments, turbulence-measuring instruments moored at the seafloor and tracer release experiments using the fluorescein dye and the long-lived chemical tracer SF₅CF₃ in a canyon situated on the eastern slope of the Rockall Trough. The Rockall Trough is taken as a representative ocean circulation microcosm with northern and southern deep-water sources, moderate tides and a comparatively weak mesoscale flow field. The tracer and dye are well suited to respectively assess the long-term (up to O (1 year)) and short-term (up to O (3 days)) circulation, dispersion and mixing of deep waters in and beyond the canyon. The turbulence measurements highlight the processes responsible for sustaining the circulation and mixing near and above the topographic boundary and were undertaken in two ways. First, through the deployment of three types of moorings (1 moored profiler (MP) mooring, 2 Modular Acoustic Velocity Sensor (MAVS) + fast thermistor moorings, 1 thermistor chain), which targeted the detailed observation of turbulent phenomena within a few hundreds of metres from the ocean floor, along the canyon's axis. And second, through the frequent deployment of multiple fine- and microstructure profilers (the untethered HRP and VMP-60000 and tethered FastCTD, EpsiFish and VMP-2000) along, across and around the rim of the canyon as well as the whole basin. The first expedition DY132 (or BLT1) undertook the mooring deployments, profilers turbulence measurements as well as the dye and tracer release experiments and their subsequent measurements in the canyons. During the second expedition DY138 (or BLT2) both MAVS moorings and the MP mooring were recovered, serviced and redeployed. Measurements of the long-lived tracer 2 months after the release in and outside the canyon were also undertaken. This cruise report is for DY153 (or BLT3) and was divided into 2 legs completed between 30/07/2022 - 05/09/2022. Leg 1-DY153

(30/07/2022 –15/08/2022) was dedicated to the microstructure measurements in the BLT canyon. Leg 2-DY153 (16/08/2022 – 5/09/2022) was dedicated to measurements of the long live tracer and measurements of turbulence at numerous sites throughout the basin. During leg1-DY153 the MAVS and MP moorings (deployed during BLT2) and TCHAIN mooring (deployed during BLT1) were successfully recovered. Two more moorings – a Sonardyne ADCP lander and G1 mooring – were deployed and recovered during the DY153 cruise. The BLT canyon was surveyed by the EpsiFish instrument, consisting of 6 timeseries lasting between 22 and 41 hours. Camera surveys and sediment cores were also conducted in the locations of the MAVS1 and MAVS2 mooring sites. During leg 2-DY153, measurements of the long-lived tracer were repeated at previous sampled stations and also undertaken throughout the wider Rockall Trough to define the vertical and horizontal tracer spread one year after the release. Alongside the tracer measurements, 22 HRP casts and 21 VMP-6000 casts were completed. Preliminary analyses of the data obtained in BLT1, BLT2 and BLT3 provides evidence of strong diapycnal upwelling and mixing within the canyon, suggesting broad support for the project's overarching hypothesis.

KEYWORDS

Ocean Mixing, turbulence, upwelling, meridional overturning circulation, bottom boundary layer, canyon.

ISSUING ORGANISATION

National Oceanography Centre

Empress Docks

European Way

Southampton, SO14 3ZH, UK

Copies of this report available from: **National Oceanographic Library, NOC** PRICE £43 Tel: +44(0)23 80596116 Fax: +44(0)23 80596115 Email: nol@noc.ac.uk

TABLE OF CONTENTS

Sc	ientifi	ic Personnel	6
Lis	st of F	Figures	8
Lis	st of I	Tables	8
Ab	stract	f	10
1	Intr	oduction	12
	1.1	Maps	12
	1.1	Event Logs	
		-	
2	Nar	rative	
	2.1	PSO diary – Leg 1 (30 th July to 15 th August) – Alberto Naveira Garabato	36
,	2.2	PSO Diary – Leg 2 (15th July to 5th September) – Marie-Jose Messias	38
3	Con	aductivity, Temperature and Depth (CTD) Operations	43
,	3.1	Stainless Steel CTD Operations (NMF)	43
	3.1.1		
	3.1.2	2 CTD Wires	43
	3.1.3	3 CTD sensor set-up	44
	3.1.4	Water Samplers	45
	3.1.5	5 SBE Data Processing	45
	3.1.6	5 LADCPS	45
	3.1.7	7 Autosal	46
	3.1.8		
	3.1.9	Appendix 2	47
í	3.2	Lowered Acoustic Doppler Current Profiler (LACDP)	61
	3.2.1		
	3.2.2	2 Data Processing	61
4	CTI	D Data Conversion, Calibration and Processing	63
4	4.1	Introduction	63
4	4.2	CTD Set-up and Configuration File	63
4	4.3	Data Conversion and Processing	70
	4.3.1	C	
	4.3.2	2 Bad Data Removal Using the CADHYAC/hydro_nett software	
	4.3.3	Regeneration of the .ros files	72
	4.3.4	4 Oxygen hysteresis correction in Volt	72
	4.3.5	5 Data correction for dynamical effects on sensors	72
	4.3.6	5 Creation of .blt files	72
4	4.4	Data calibration with CADHYAC/hydro_cal	72
	4.4.1		
	4.4.2	2 Conductivity	73
	4.4.3	3 Dissolved Oxygen	77

4	.5	Data reduction every 1 dbar – Creation of NetCDF result files	78
4	.6	Appendix	79
	4.6.1	Structure of NetCDF reduced files	79
	4.6.2	Structure of a Matlab file	85
5	Mic	rostructure	89
5	.1	Epsilometer	89
5	.2	High Resolution Profiler (HRP3) use in BLT3/DY153	95
	5.2.1	Sensor Subsystem Performance	
5	.3	Vertical Microstructure Profiler	
	5.3.1	VMP 6000 Operations	108
	5.3.2	Processing	109
6	Wat	er Sampling and Analyses	110
6	.1	Trifluoromethyl Sulfur Pentafluoride (CF3SF5) Measurements	110
	6.1.2	Tracer Survey	110
	6.1.3	Sample Collection	110
	6.1.4	Tracer Analysis Technique	111
	6.1.5	Calibration, Detection Limit and Precision Methodology	113
6	.2	Nutrient Measurements	
7	Мос	pring Operations	115
7	.1	Moored Profiler (MP3/G1) Moorings	
7	.2	Modular Acoustic Velocity Sensor (MAVS3/MAVS4) Moorings	
7	.3	Thermistor Chain (TCHAIN) Mooring	
7	.4	Sonardyne ADCP Lander Origin 65 Mooring	
8	Ship	Scientific Systems	118
8	.1	Cruise Overview	
8	.2	Scientific Computer Systems	
	8.2.1	Underway Data Acquisition	
	8.2.2	Internet Provision	
8	.3	Instrumentation	
	8.3.1	Coordinate Reference	
	8.3.2	Position, Altitude and Time	122
	8.3.3	Ocean and Atmosphere Monitoring Systems	
	8.3.4	Hydroacoustic Systems	
	8.3.5	Other Systems	131

SCIENTIFIC PERSONNEL: THE BLT3 GROUP

DY153 - Leg 1	DY153 - Leg 2
Alberto Naveira Garabato - UoS	Marie-Jose Messias - UoE
Alex Forryan - UoS	Herle Mercier - CNRS
Carl Spingys - UoS	Jack Hughes - UoE
Kate Oglethorpe - UoS	Hannah Green - UoE
Marie-Jose Messias - UoE	Jonathan Crocker - UoE
Jack Hughes - UoE	Kurt Polzin - WHOI
Jonathan Crocker - UoE	Brian Hogue - WHOI
Hannah Green - UoE	Alex Forryan - UoS
Herle Mercier - CNRS	Kate Oglethorpe - UoS
Kurt Polzin - WHOI	Andrea RM Freudmann - SIO
Brian Hogue - WHOI	Billy Platt - NMF
Matthew Alford - SIO	Paul Provost – NMF
Gunnar Voet - SIO	Paul Henderson - NMF
Nicole Couto - SIO	Jade Garner - NMF
Arnaud Le Boyer - SIO	Jeremy Evans – NMF
Sara Goheen - SIO	Simon Jones – NMF
Helen Dufel - SIO	Zoltan Nemeth - NMF
Bethan Wynne-Cattanach - SIO	
Andrea RM Freudmann - SIO	
Isabella Franco - SIO	
Charlotte Bellerjeau - SIO	
Billy Platt - NMF	
Paul Provost - NMF	
Paul Henderson - NMF	
Jeremy Evans - NMF	
Simon Jones - NMF	
Zoltan Nemeth - NMF	

UoS – University of Southampton: Hydrography, VMP, LADCP
UoE – University of Exeter: Tracer
CNRS – National Centre for Scientific Research: Tracer, Hydrography
WHOI – Woods Hole Oceanographic Institution: HRP, Moorings
SIO – Scripps Inst. of Oceanography: Fast CTD, Espifish, Moorings
NMF – National Marine Facilities: Ship instruments, CTD, LADCP
VMP, MisoCamera, Deep Core.

LIST OF FIGURES

FIGURE 1: CTD/LADCP STATIONS WITH TRANSECT LABELS	12
FIGURE 2: VMP/HRP STATIONS	13
FIGURE 3: EPSIFISH AND FASTCTD STATIONS	14
FIGURE 4: MOORING POSITIONS	15
FIGURE 5: MISOCAM AND MEGACORE STATIONS	16
FIGURE 6: NUTRIENT SAMPLING LOCATIONS	17
FIGURE 7: LOCATIONS OF HYDROGRAPHIC STATIONS OCCUPIED DURING BLT2	63
FIGURE 8: CTD SENSOR LOCATIONS	64
FIGURE 9: SALINITIES COMPARISON BY STATION BEFORE DATA CALIBRATION	75
FIGURE 10: SALINITIES COMPARISON BY STATION AFTER DATA CALIBRATION	75
FIGURE 11: CTD AND CHEMICAL SALINITIES COMPARISON VERSUS PRESSURE BEFORE DAY	TA
CALIBRATION	76
FIGURE 12: CTD AND CHEMICAL SALINITIES COMPARISON VERSUS PRESSURE AFTER DAT.	А
CALIBRATION	77
FIGURE 13: EPSILON AND CHI VERSUS PRESSURE AND HEIGHT ABOVE BOTTOM	92
FIGURE 14: EPSIFISH STATION MAP IN RELATION TO MOORING SITES	93
FIGURE 15: CROSS SECTION SHOWING TIME-MEAN EPSILON AT EACH EPSIFISH STATION	94
FIGURE 16: HRP SAMPLING DURING BLT-3	95
FIGURE 17: SEA WATER SAMPLING IN ACTION	110
FIGURE 18: CHROMATOGRAM OF A SEAWATER SAMPLES ANALYSED BY THE ANALYTICAI	L
SYSTEM. THE CHROMATOGRAMS GIVES A THE ECD SIGNAL (HZ) AS A FUNCTION OF T	
(MINUTES, X-AXIS). PEAKS AT 2.22, 2.43 AND 2.96 MINUTES ARE F-13 AND CF3SF5 AND (CFC-
12 RESPECTIVELY	112
FIGURE 19: DISTRIBUTION OF CHROMATOGRAPHIC PEAK AREAS OF ALL ANALYSED	
SEAWATER SAMPLES.	113
FIGURE 20: BLT MOORING LOCATIONS WITH LAT/LON	116
FIGURE 21: CONVENTIONS USED FOR POSITION AND ALTITUDE. ON THE DISCOVERY, THE	
DATUM IS TH CRP AT THE CG	122

LIST OF TABLES

18
61
71
72
90
97
97
101
104
107
107
107
108
114
119
120

TABLE 17: GPS AND ALTITUDE	122
TABLE 18: SURFMET	123
TABLE 19: WAMOS WAVE RADAR	125
TABLE 20: HYDROACOUSTIC SYSTEMS	125
TABLE 21: VSAT USAGE	131

ABSTRACT

This cruise report details the scientific programme of the third and final cruise of the BLT Recipes project, namely BLT3 and DY153. A long-standing problem in Physical Oceanography has been balancing the sinking of cold, dense waters at high latitudes with deepocean upwelling across isopycnals at lower latitudes. The BLT Recipes project - which the 40day DY132 (or BLT1) research expedition initiated in June/July 2021 - seeks to test an emergent new paradigm of ocean mixing, whereby deep-ocean upwelling is primarily driven by highly localised turbulence within the bottom boundary layer instead of by breaking internal waves in the ocean interior, the later having been shown as driving downwelling of abyssal waters. To enable such testing, the BLT project undertook a multiple approach including turbulence measurements using microstructure profiler deployments, turbulence-measuring instruments moored at the seafloor and tracer release experiments using the fluorescein dye and the long-lived chemical tracer SF5CF3 in a canyon situated on the eastern slope of the Rockall Trough. The Rockall Trough is taken as a representative ocean circulation microcosm with northern and southern deep-water sources, moderate tides and a comparatively weak mesoscale flow field. The tracer and dye are well suited to respectively assess the long-term (up to O (1 year)) and short-term (up to O (3 days)) circulation, dispersion and mixing of deep waters in and beyond the canyon. The turbulence measurements highlight the processes responsible for sustaining the circulation and mixing near and above the topographic boundary and were undertaken in two ways. First, through the deployment of three types of moorings (1 moored profiler (MP) mooring, 2 Modular Acoustic Velocity Sensor (MAVS) + fast thermistor moorings, 1 thermistor chain), which targeted the detailed observation of turbulent phenomena within a few hundreds of metres from the ocean floor, along the canyon's axis. And second, through the frequent deployment of multiple fine- and microstructure profilers (the untethered HRP and VMP-60000 and tethered FastCTD, EpsiFish and VMP-2000) along, across and around the rim of the canyon as well as the whole basin. DY132 (or BLT1) undertook the mooring deployments, profilers turbulence measurements as well as the dye and tracer release experiments and their subsequent measurements in the canyons. DY138 (or BLT2) was completed between 25/09/22 - 03/11/22 during which time subsequent measurements of the long-lived tracer were repeated 2 months after the release in and outside the canyon. Both MAVS moorings and the MP mooring were recovered, serviced and redeployed. This cruise report is for DY153 (or BLT3) and was divided into 2 legs completed between 30/07/2022 -05/09/2022. Leg 1-DY153 (30/07/2022 -15/08/2022) was dedicated to the microstructure

measurements in the BLT canyon. Leg 2-DY153 (16/08/2022 – 5/09/2022) was dedicated to measurements of the long live tracer and measurements of turbulence at numerous sites throughout the basin. During leg1-DY153 the MAVS and MP moorings (deployed BLT2) and TCHAIN mooring (deployed BLT1) were successfully recovered. Two more moorings – a Sonardyne ADCP lander and G1 mooring – were deployed and recovered during the cruise. The BLT canyon was surveyed by the EpsiFish instrument, consisting of 6 timeseries lasting between 22 and 41 hours, plus 1 fastCTD. Camera surveys and sediment cores were also conducted in the locations of the MAVS1 and MAVS2 mooring sites. During leg 2-DY153, measurements of the long-lived tracer were repeated and extended throughout the wider Rockall Trough to define how the tracer had spread 1 year after the release. Alongside the tracer measurements, 22 HRP casts and 21 VMP-6000 casts were completed. Preliminary analyses of the data obtained in BLT1, BLT2 and BLT3 provides evidence of strong diapycnal upwelling and mixing within the canyon, suggesting broad support for the project's overarching hypothesis.

1 INTRODUCTION

1.1 MAPS

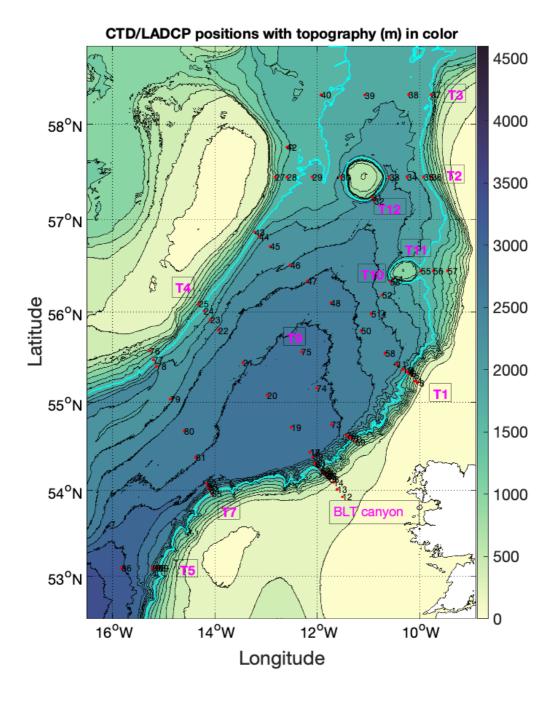


FIGURE 1: CTD/LADCP STATIONS WITH TRANSECT LABELS

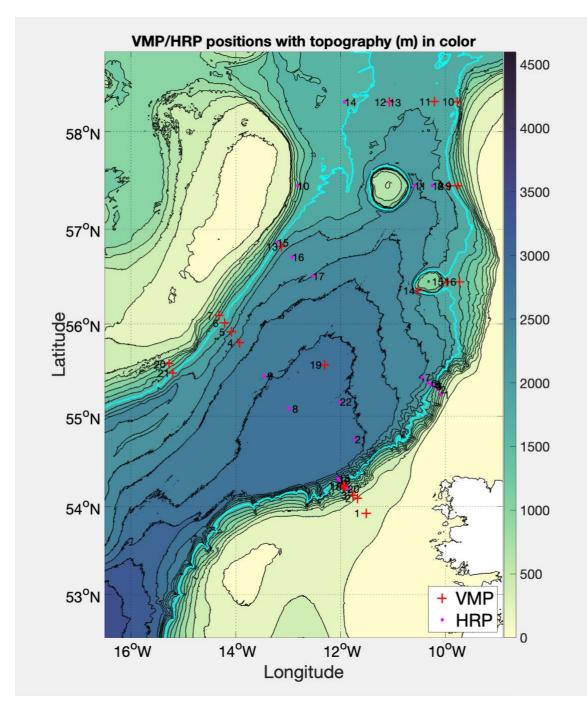
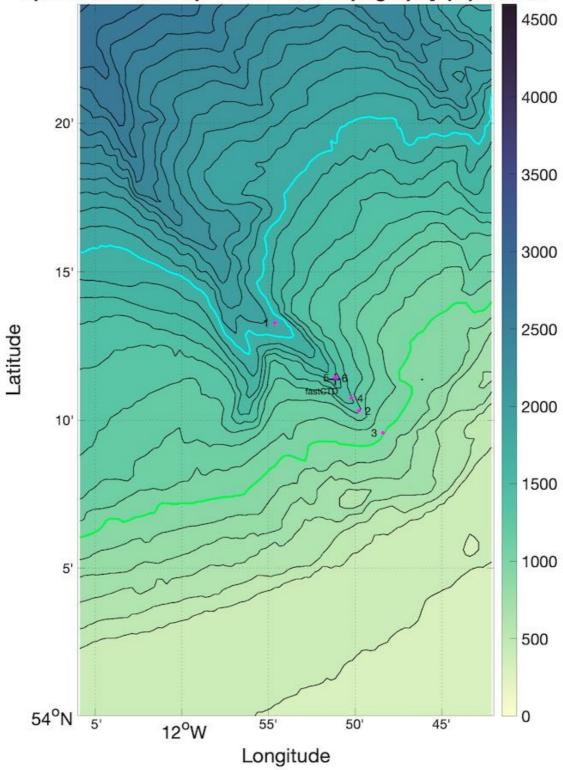



FIGURE 2: VMP/HRP STATIONS

Epsi and FastCTD positions with topography (m) in color

FIGURE 3: EPSIFISH AND FASTCTD STATIONS

In figure 3, the bathymetry contours are at 100 m interval with the cyan contour indicating 1800m and the green contour indicating 1000m. The Epsi cast positions are indicated by dots and numbers, the fast CTD position is indicated by a cross.

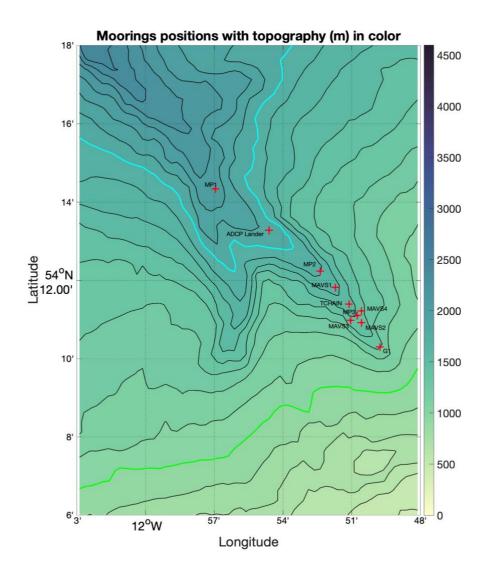


FIGURE 4: MOORING POSITIONS

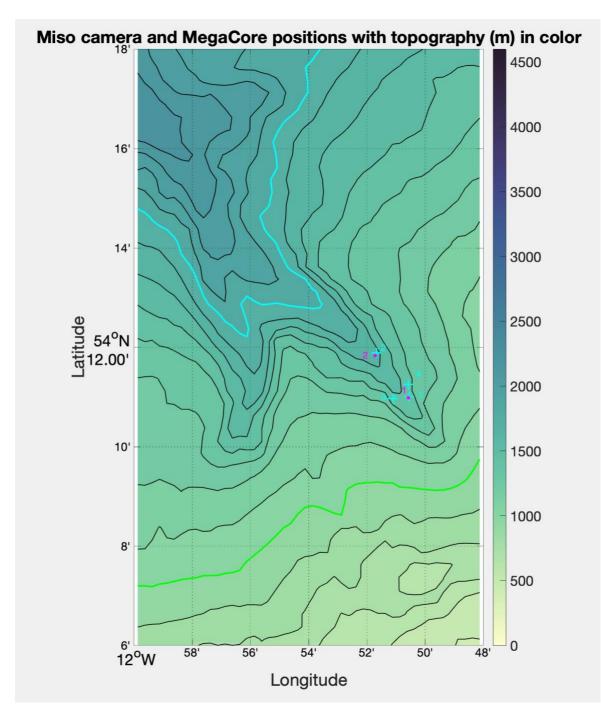


FIGURE 5: MISOCAM AND MEGACORE STATIONS

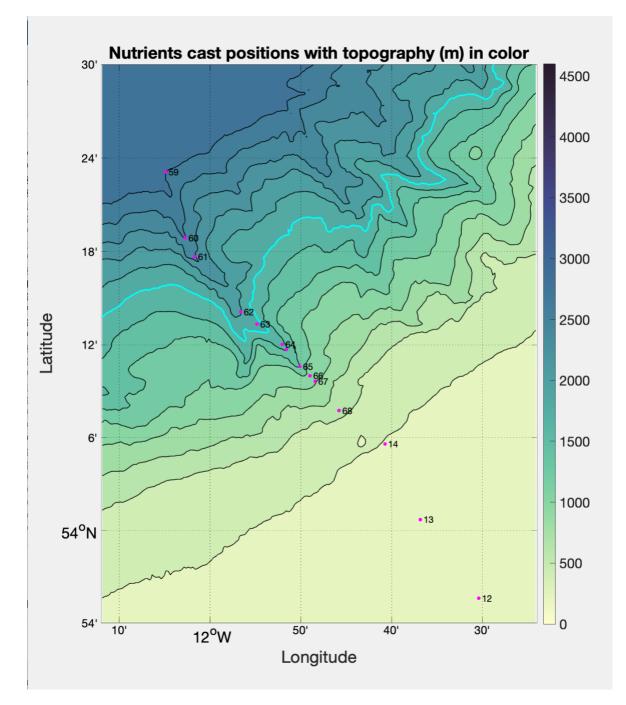


FIGURE 6: NUTRIENT SAMPLING LOCATIONS

In figure 6 the station numbers relate to the CTD cast the samples were taken on.

1.2 EVENT LOGS

TABLE 1: FULL CRUISE EVENT LOG

Bridge event	Date & Time	Latitude	Longitude	Instrument	Dive	CTD/LADCP	Multibeam	Description	Comments
						cast	Depth (m)		
10	02/08/2022	54.171987	-11.858952	MP3 mooring				MP3	
	07:10							recovery	
11	02/08/2022	54.221379	-11.910193	ADCP				ADCP	
	08:43			Lander				Lander deployment	
13	02/08/2022	54.221359	-11.91046	EpsiFish	1				22-hour
	10:29								timeseries
17	03/08/2022	54.225476	-11.906186	USBL	1			ADCP	Recovered
	09:45							triangulation	10:21
23	04/08/2022	54.196351	-11.915914	MAVS3				MAVS3	
	17:29			mooring				recovery	
26	04/08/2022	54.171595	-11.829514	G1 mooring				G1	
	18:25							deployment	
30	04/08/2022	54.171969	-11.829686	EpsiFish	2				35-hour
	21:06								timeseries

32	06/08/2022 09:34	54.183546	-11.842412	MisoCam	1			MAVS2 camera survey	Recovered 14:19
36	06/08/2022	54.183145	-11.84289	Mega Core	1			MAVS2 site core	Recovered 16:28
40	06/08/2022	54.19726	-11.861919	Mega Core	2			MAVS1 site core	Recovered 18:44
44	06/08/2022 19:14	54.198219	-11.861321	MisoCam	2			MAVS1 camera survey	Recovered 00:12 7th
48	07/08/2022 01:20	54.159504	-11.806601	EpsiFish	3				31-hour timeseries
71	08/08/2022 14:28	54.17084	-11.884147	MAVS4 mooring				MAVS4 recovery	
72	08/08/2022 15:19	54.19483	-11.859873	CTD/LADCP	1	CTD001	1560.73	AX2 in water	
75	08/08/2022 18:16	54.1943	-11.860022	CTD	2	CTD002	1532.86	AX2 in water	
78	08/08/2022	54.179084	-11.83695	EpsiFish	4				33-hour timeseries

	20:45						
90	10/08/2022	54.172874	-11.827435	G1 mooring		G1 recovery	
	09:01						
96	10/08/2022	54.217008	-11.914139	ADCP		ADCP	
	12:21			Lander		Lander recovery	
99	10/08/2022	54.181831	-11.860735	TCHAIN		TCHAIN	
	14:31			mooring		recovery	
100	10/08/2022	54.190706	-11.852469	EpsiFish	5		28-hour
	17:12						timeseries
113	12/08/2022	54.189665	-11.852725	FastCTD	1		Recovered
	08:21						10:32
117	12/08/2022	54.182785	-11.851647	MisoCam	3	MAVS3	Recovered
	11:54					camera survey	16:42
121	12/08/2022	54.190494	-11.85189	EpsiFish	6		41-hour
	17:18						timeseries
127	14/08/2022	54.187656	-11843038	MisoCam	4	MAVS4	Recovered
	11:32					camera survey	17:04

132	16/08/2022	55.217337	-10.050787	CTD	3	CTD003	490.95	T1-1 in water	
	05:09								
137	16/08/2022	55.238394	-10.090269	CTD	4	CTD004	785.44	T1-2 in water	
	07:23								
140	16/08/2022	55.238379	-10.090269	HRP	1		785		Recovered
	09:21								09:54
144	16/08/2022	55.295282	-10.149091	CTD	5	CTD005	1115.69	T1-3 in water	
	10:57								
146	16/08/2022	55.295297	-10.1491	HRP	2		1115		Recovered
	12:33								13:07
150	16/08/2022	55.319443	-10.205786	CTD	6	CTD006	1396.78	T1-4 in water	
	14:23								
154	16/08/2022	55.331811	-10.227513	CTD	7	CTD007	1616.80	T1-5 in water	
	17:53								
156	16/08/2022	55.3318	-10.227503	HRP	3		1616		Recovered
	19:03								20:06
160	16/08/2022	55.33827	-10.243394	CTD	8	CTD008	1778.48	T1-6 in water	
	21:48								

162	16/08/2022	55.338266	-10.243403	HRP	4		1778		Recovered
	22:52								00:26 17th
168	17/08/2022	55.351292	-10.267297	CTD	9	CTD009	1982.62	T1-7 in water	
	00:58								
170	17/08/2022	55.351285	-10.26732	HRP	5		1982		Recovered
	02:24								03:59
176	17/08/2022	55.366279	-10.331112	CTD	10	CTD010	2189.88	T1-8 in water	
	04:38								
178	17/08/2022	55.366266	-10.331112	HRP	6		2189		Recovered
	05:55								07:48
183	17/08/2022	55.425726	-10.443369	CTD	11	CTD011	2382.85	T1-9 in water	
	08:57								
185	17/08/2022	55.425731	-10.443366	HRP	7		2382		Recovered
	09:53								12:09
191	18/08/2022	53.926826	-11.506611	CTD	12	CTD012	293.98	T4-22 in	
	00:00							water	
194	18/08/2022	53.926844	-11.506604	VMP	1		299.0		Recovered
	01:23								01:41

200	18/08/2022 02:47	54.011756	-11.614042	CTD	13	CTD013	333.88	T4-21 water	in	
204	18/08/2022 04:42	54.093303	-11.678756	CTD	14	CTD014	376.40	T4-20 water	in	
207	18/08/2022 05:57	54.093294	-11.678763	VMP	2		383			Recovered 06:20
211	18/08/2022 07:21	54.126912	-11.760784	CTD	15	CTD015	666.94	T4-19 water (aborted)	in	Comms lost
214	18/08/2022 08:25	54.126931	-11.760774	VMP	3		673			Recovered 09:06
219	18/08/2022 10:37	54.127528	-11.760549	CTD	16	CTD016	679.75	T4-19 water (aborted)	in	Comms lost
235	19/08/2022 19:12	54.436205	-12.144476	CTD	17	CTD017	2944.10	T4-08 water	in	
238	19/08/2022 23:19	54.436267	-12.144498	CTD	18	CTD018	2943.88	T4-08 water	in	
242	20/08/2022	54.721017	-12.513302	CTD	19	CTD019	2886.47	T4-07 water	in	

	05:47									
247	20/08/2022 13:15	55.081694	-12.980538	CTD	20	CTD020	2888.79	T4-06 water	in	
249	20/08/2022 14:26	55.083003	-12.979207	HRP	8		2888			Recovered 17:13
254	20/08/2022 21:36	55.441929	-13.451535	CTD	21	CTD021	2771.54	T4-05 water	in	
255	20/08/2022 21:51	55.441865	-13451865	HRP	9		2771			Recovered 01:07 21st
261	21/08/2022 05:11	55.800937	-13.930507	CTD	22	CTD022	2431.67	T4-04 water	in	
262	21/08/2022 05:09	55.800936	-13.930505	VMP	4		2439			Recovered 08:02
268	21/08/2022 09:22	55.915411	-14.083777	CTD	23	CTD023	2196.11	T4-03 water	in	
269	21/08/2022 09:46	55.915323	-14.083736	VMP	5		2201			Recovered 12:07

276	21/08/2022 13:20	56.010734	-14.21028	CTD	24	CTD024	1847.96	T4-02 water	in	
278	21/08/2022	56.010722	-14.210288	VMP	6		1853			Recovered 16:00
282	14.12 21/08/2022 17:03	56.091274	-14.316111	CTD	25	CTD025	1506.92	T4-01 water	in	
283	21/08/2022	56.091274	-14.316125	VMP	7		1515			Recovered 19:25
288	22/08/2022 05:44	57.448775	-12.819007	CTD	26	CTD026	1192.30	T2-01 water (aborted)	in	
291	22/08/2022 07:51	57.448735	-12.819102	CTD	27	CTD027	1197.08	T2-01 water	in	
293	22/08/2022 08:42	57.448737	-12.8191	HRP	10		1197			Recovered 09:59
298	22/08/2022 11:09	57.445372	-12.594731	CTD	28	CTD028	1737.44	T2-02 water	in	

302	22/08/2022	57.448434	-12.094676	CTD	29	CTDO29	1838.85	T2-03 water	in	
- 20 6	15:22		11.5000.00	GED				T2 0.4		
306	22/08/2022 19:34	57.450041	-11.538962	CTD	30	CTD030	2015.35	T2-04 water	in	
310	23/08/2022 01:16	57.23512	-10.92593	CTD	31	CTD031	1789.25	T12-4 water	in	
315	23/08/2022 04:15	57.194779	-10.892989	CTD	32	CTD032	2314.76	T12-3 water	in	
322	23/08/2022 08:56	57.447343	-10.594576	CTD	33	CTD033	2221.01	T2-05 water	in	
324	23/08/2022 09:54	57.447347	-10.59456	HRP	11		2221			Recovered 11:55
329	23/08/2022 13:20	57.447852	-10.251371	CTD	34	CTD034	2086.94	T2-06 water	in	
330	23/08/2022 13:58	57.44788	-10.251386	HRP	12		2086			Recovered 14:34
335	23/08/2022 16:55	57.448532	-9.921024	CTD	35	CTD035	1846.75	T2-07 water	in	

336	23/08/2022	57.448536	-9.921031	VMP	8		1855			Recovered 19:16
340	23/08/2022	57.448536	-9.765561	CTD	36	CTD036	1496.36	T2-08 water	in	
241	20:14	57.448007	0765202	VMP	9		1504			Deserversed
341	23/08/2022 20:46	57.448997	-9765392	VMP	9		1504			Recovered 22:06
348	24/08/2022 03:54	58.300752	-9.772435	CTD	37	CTD037	1842.38	T3-04 water	in	
349	24/08/2022 03:52	58.30075	-9.77244	VMP	10		1849			Recovered 06:26
355	24/08/2022 08:25	58.302465	-10.213032	CTD	38	CTD038	1903.55	T3-03 water	in	
356	24/08/2022 09:07	58.302467	-10.213009	VMP	11		1908			Recovered 11:10
362	24/08/2022 15:06	58.298761	-11.06816	CTD	39	CTD039	1897.42	T3-02 water	in	
364	24/08/2022 15:49	58.298763	-11.068169	VMP	12		1903			Recovered 17:28

367	24/08/2022 17:37	58.294179	-11.071177	HRP	13		1903			Recovered 18:20
369	24/08/2022	58.299589	-11.923694	CTD	40	CTD040	1723.89	T3-01 water	in	
370	21:58	59.299588	-11.293711	HRP	14		1723			Recovered
570	22:05	39.299388	-11.293711	nkr	14		1725			23:38
376	25/08/2022 03:33	58.001526	-12.226226	CTD	41	CTD041	1686.85	T3-06 water (aborted)	in	
378	25/08/2022 08:17	57.761385	-12.588671	CTD	42	CTD042	1535.32	T3-07 water	in	
383	25/08/2022 16:20	56.860143	-13.214619	CTD	43	CTD043	1750.60	T1-16 water	in	
384	25/08/2022 16:24	56.860145	-13.214614	HRP	15		1750			Recovered 17:57
388	25/08/2022 18:42	56.818839	-13.133203	CTD	44	CTD044	2005.95	T1-15 water	in	
389	25/08/2022	56.818845	-13.133219	VMP	13		2001			Recovered 20:41

	18:52									
394	25/08/2022 22:04	56.709819	-12.921619	CTD	45	CTD045	2307.83	T1-14 water	in	
395	25/08/2022 22:10	56.709819	-12.921611	HRP	16		2307			Recovered 04:25 26th
401	26/08/2022 02:12	56.510027	-12.526759	CTD	46	CTD046	2394.68	S1-11 water	in	
402	26/08/2022 02:27	56.510032	-12.526778	HRP	17		2394			Recovered 17:17 (stuck in seabed)
415	26/08/2022 19:06	56.335505	-12.191166	CTD	47	CTD047	2596.55	T1-13 water	in	
418	26/08/2022 23:27	56.100539	-11.733419	CTD	48	CTD048	2695.16	T1-12 water	in	
421	27/08/2022 04:31	55.79365	-11.143263	CTD	49	CTD049	2553.44	T1-11 water (aborted)	in	
424	27/08/2022 05:46	55.793645	-11.143104	CTD	50	CTD050	2553.30	T1-11 water	in	

428	27/08/2022	55.979994	-10.948449	CTD	51	CTD051	2470.33	T10-1	in	
	09:11							water		
432	27/08/2022	56.184767	-10.73455	CTD	52	CTD052	2333.37	T10-2	in	
	12:41							water		
435	27/08/2022	56.332524	-10.5782	CTD	53	CTD053	2183.04	T10-3	in	
	15:38							water		
439	27/08/2022	56.356892	-10.520914	CTD	54	CTD054	1771.10	T10-4	in	
	18:18							water		
440	27/08/2022	56.356898	-10.520915	VMP	14		1778			Recovered
	18:29									20:01
445	27/08/2022	56.447826	-9.97314	CTD	55	CTD055	1716.48	T11-2	in	
	22:28							water		
446	27/08/2022	56.447822	-9.973121	VMP	15		1722			Recovered
	22:45									00:13 28th
453	28/08/2022	56.447955	-9.731159	CTD	56	CTD056	1586.04	T11-3	in	
	01:21							water		
454	28/08/2022	56.447948	-9.731161	VMP	16		1590			Recovered
	01:43									03:30

460	28/08/2022	56.447783	-9.456538	CTD	57	CTD057	1220.46	T11-4	in	
	04:47							water		
465	28/08/2022	55.548064	-10.675978	CTD	58	CTD058	2490.98	T1-10	in	
	13:36							water		
469	29/08/2022	54.385378	-12.081423	CTD	59	CTD059	2776.53	T4-09	in	
	00:16							water		
473	29/08/2022	54.314804	-12.045655	CTD	60	CTD060	2571.75	T4-10	in	
	02:46							water		
474	29/08/2022	54.314813	-12.045654	HRP	18		2571			Recovered
	03:16									05:36
480	29/08/2022	54.294596	-12.027878	CTD	61	CTD061	2410.87	T4-11	in	
	06:09							water		
481	29/08/2022	54.294576	-12.027882	HRP	19		2410			Recovered
	06:30									09:01
487	29/08/2022	54.254414	-11.969127	CTD	62	CTD062	2111.48	T4-12	in	
	09:51							water		
488	29/08/2022	54.235224	-11.9437	VMP	17		1997			Recovered
	10:07									11:49

495	29/08/2022 12:20	54.222257	-11.913834	CTD	63	CTD063	1855.50	T4-13 water	in	
496	29/08/2022 12:40	54.222261	-11.91382	VMP	18		1861			Recovered 14:22
501	29/08/2022 14:50	54.200474	-11.867445	CTD	64	CTD064	1617.94	T4-14 water	in	
502	29/08/2022 15:00	54.200478	-11.867444	HRP	20		1617			Recovered 16:23
508	29/08/2022 16:56	54.176721	-11.834996	CTD	65	CTD065	1397.83	T4-15 water	in	
512	29/08/2022 18:47	54.166717	-11.816529	CTD	66	CTD066	1097.20	T4-17 water	in	
516	29/08/2022 20:41	54.160686	-11.807013	CTD	67	CTD067	986.51	T4-18 water	in	
520	29/08/2022 22:37	54.129306	-11.763265	CTD	68	CTD068	702.44	T4-19 water	in	
524	30/08/2022 03:11	54.556147	-11.249799	CTD	69	CTD069	1172.87	T9-07 water	in	

528	30/08/2022	54.586507	-11.32095	CTD	70	CTD070	1729.21	T9-06	in	
	05:08							water		
532	30/08/2022	54.603449	-11.365467	CTD	71	CTD071	2174.41	T9-05	in	
	07:18							water		
536	30/08/2022	54.628275	-11.424947	CTD	72	CTD072	2511.18	T9-04	in	
	09:42							water		
539	30/08/2022	54.749955	-11.720936	CTD	73	CTD073	2830.73	T9-03	in	
	12:58							water		
541	30/08/2022	54.750012	-11721866	HRP	21		2830			Recovered
	13:08									15:34
547	30/08/2022	55.159907	-12.00951	HRP	22		2826			Recovered
	18:43									21:13
548	30/08/2022	55.159917	-12.009513	CTD	74	CTD074	2826.97	T9-02	in	
	18:50							water		
553	31/08/2022	55.561699	-12.303111	VMP	19		2867			Recovered
	00:51									03:17 (surfaced
										early)

554	31/08/2022 00:58	55.561708	-12.303102	CTD	75	CTD075	2860.93	T9-01 water	in	
560	31/08/2022 14:27	55.571912	-15.274049	CTD	76	CTD076	1200.32	T7-11 water	in	
561	31/08/2022 14:45	55.571911	-15.274051	VMP	20		1208			Recovered 15:49
567	31/08/2022 16:50	55.472749	-15.198558	CTD	77	CTD077	1751.79	T7-10 water	in	
568	31/08/2022 17:07	55.472412	-15.198151	VMP	21		1760			Recovered 18:42
573	31/08/2022 19:33	55.401259	-15.143562	CTD	78	CTD078	2195.20	T7-09 water	in	
577	31/08/2022 23:44	55.034851	-14.866575	CTD	79	CTD079	2371.55	T7-08 water	in	
581	01/09/2022 04:03	54.677851	-14.59785	CTD	80	CTD080	2734.30	T7-07 water	in	
585	01/09/2022 08:09	54.379862	-14.377105	CTD	81	CTD081	2736.43	T7-06 water	in	

01/09/2022	54.079157	-14.152627	CTD	82	CTD082	2980.18	T7-05	in	
12:43							water		
01/09/2022	54.041628	-14.128546	CTD	83	CTD083	2570.08	T7-04	in	
15:28							water		
01/09/2022	54.010086	-14.101126	CTD	84	CTD084	2173.67	T7-03	in	
17:59							water		
01/09/2022	53.963235	-14.065295	CTD	85	CTD085	1736.02	T7-02	in	
20:12							water		
02/09/2022	53.099877	-15.829259	CTD	86	CTD086	3214.22	T5-01	in	
06:23							water		
02/09/2022	53.102764	-15.230073	CTD	87	CTD087	2581.17	T5-02	in	
11:09							water		
02/09/2022	53.100179	-15.147494	CTD	88	CTD088	2169.72	T5-03	in	
13:29							water		
02/09/2022	53.100145	-15.093193	CTD	89	CTD089	1834.08	T5-04	in	
15:27							water		
	12:43 01/09/2022 15:28 01/09/2022 17:59 01/09/2022 20:12 02/09/2022 06:23 02/09/2022 11:09 02/09/2022 13:29 02/09/2022	12:43 01/09/2022 54.041628 15:28 15:28 01/09/2022 54.010086 17:59 101/09/2022 01/09/2022 53.963235 20:12 20:12 02/09/2022 53.099877 06:23 20:12 02/09/2022 53.102764 11:09 13:29 02/09/2022 53.100145	12:43 .12:43 01/09/2022 54.041628 .14.128546 15:28 .14.101126 01/09/2022 54.010086 .14.101126 17:59 .14.065295 20:12 .14.065295 02/09/2022 53.099877 .15.829259 06:23 .11:09 .11:09 02/09/2022 53.102764 .15.230073 11:09 .11:09 .15.147494 13:29 .13.100145 .15.093193	12:43 -14.128546 CTD 01/09/2022 54.041628 -14.128546 CTD 15:28 -14.101126 CTD 01/09/2022 54.010086 -14.101126 CTD 17:59 -14.065295 CTD 01/09/2022 53.963235 -14.065295 CTD 20:12 -15.829259 CTD 02/09/2022 53.099877 -15.829259 CTD 06:23 -14.005295 CTD 02/09/2022 53.102764 -15.230073 CTD 11:09 -15.147494 CTD 13:29 -15.100145 -15.093193 CTD	12:43 -14.128546 CTD 83 01/09/2022 54.041628 -14.128546 CTD 83 15:28 -14.101126 CTD 84 01/09/2022 54.010086 -14.101126 CTD 84 17:59 -14.065295 CTD 85 01/09/2022 53.963235 -14.065295 CTD 85 01/09/2022 53.099877 -15.829259 CTD 86 06:23 -11.02764 -15.230073 CTD 87 11:09 -15.147494 CTD 88 13:29 -15.100179 -15.147494 CTD 88 02/09/2022 53.100145 -15.093193 CTD 89	12:43 Image: standing standi standing standing standi standing standing standing	12:43 12:43 14.128546 CTD 83 CTD083 2570.08 15:28 15:28 14.128546 CTD 84 CTD084 2173.67 01/09/2022 54.010086 -14.101126 CTD 84 CTD084 2173.67 17:59 17:59 11 1	12:43 12:43 water 01/09/2022 54.041628 -14.128546 CTD 83 CTD083 2570.08 T7-04 15:28 01/09/2022 54.010086 -14.101126 CTD 84 CTD084 2173.67 T7-03 01/09/2022 53.010086 -14.101126 CTD 84 CTD084 2173.67 T7-02 01/09/2022 53.963235 -14.065295 CTD 85 CTD085 1736.02 T7-02 01/09/2022 53.999877 -15.829259 CTD 86 CTD086 3214.22 T5-01 02/09/2022 53.102764 -15.230073 CTD 87 CTD087 2581.17 T5-02 02/09/2022 53.100179 -15.147494 CTD 88 CTD088 2169.72 T5-03 13:29 02/09/2022 53.100145 -15.093193 CTD 89 CTD089 1834.08 T5-04	12:43 12:43 water water water 01/09/2022 54.041628 -14.128546 CTD 83 CTD083 2570.08 T7-04 in 15:28 01/09/2022 54.010086 -14.101126 CTD 84 CTD084 2173.67 T7-03 in 01/09/2022 54.010086 -14.01126 CTD 84 CTD084 2173.67 T7-03 in 01/09/2022 53.963235 -14.065295 CTD 85 CTD085 1736.02 T7-02 in 01/09/2022 53.099877 -15.829259 CTD 86 CTD086 3214.22 T5-01 in 02/09/2022 53.102764 -15.230073 CTD 87 CTD087 2581.17 T5-02 in 02/09/2022 53.100179 -15.147494 CTD 88 CTD088 2169.72 T5-03 in 02/09/2022 53.100145 -15.093193 CTD 89 CTD089 1834.08 T5-04 in

2 NARRATIVE

The DY153 cruise had two legs. Leg1 sailed from Southampton on the 30th of July 2023 and ended in Killybegs on the 15th of August 2023. Leg1 was dedicated to the moorings and the microstructure investigations of the BLT canyon. Leg2 sailed from Killybegs on the 15th of August and returned to Southampton on the 5th of September 2023. Leg2 was dedicated to microstructure and tracer was surveyed over the large scale of the full Rockall Trough.

2.1 PSO diary – Leg 1 (30th July to 15^{th} August) – Alberto Naveira Garabato

Saturday 30th July 2022 (Julian Day 211) We sailed from Southampton at around 7:30 am in a warm sunny morning. After performing a short safety drill in the Solent, we proceeded to steam along the English Channel. In the evening, we conducted a test of the two EpsiFish systems, and continued toward the Rockall Trough.

Sunday 31st July 2022 (Julian Day 212) Our transit toward the Trough continued in moderate seas, with the sole interruption of a further EpsiFish profiler test.

Monday 1st August 2022 (Julian Day 213) We continued steaming toward the region of the BLT canyon. In the morning, we finally received the diplomatic clearance to work in Irish waters, which we had nervously been awaiting since before leaving Southampton. Another EpsiFish profiler test was conducted in the afternoon, to address issues remaining with one of the systems.

Tuesday 2nd August 2022 (Julian Day 214) We arrived at the MP3 mooring site around 6:00 am, and proceeded to successfully recover the mooring. After a short transit to the location of the BLT1 dye injection, we deployed the Sonardyne ADCP mooring there. We then commenced a 2-day EpsiFish time series at the same location, but worsening conditions and strong surface currents meant that this had to be aborted shortly after starting. Upon consultation with the captain and ship personnel, we re-started the EpsiFish time series, which proceeded into the evening. The EpsiFish was then recovered to replace some probes. With roughening seas and intensifying winds, there were doubts as to whether the station could be continued. Ultimately, the time series was resumed before midnight.

Wednesday 3rd August 2022 (Julian Day 215) We continued the EpsiFish station through the night and the following day, with seas dying down from about 3 am.

Thursday 4th August 2022 (Julian Day 216) We continued the EpsiFish station until around 1 pm, and proceeded to triangulate and recover the MAVS3 mooring. After deploying and triangulating the new short-term ADCP mooring (G1), we commenced another EpsiFish time series near the steepest point in the slope at the head of the canyon.

Friday 5th August 2022 (Julian Day 217) We continued the EpsiFish station through the night and the following day, in calm seas.

Saturday 6th August 2022 (Julian Day 218) The EpsiFish station was concluded around 10 am, and was followed by the successful deployment of a sled-mounted camera at the MAVS2 site, still in fair seas. We then proceeded to obtain a core sample of the seabed at the same location. After coring at the MAVS1 site, we performed camera work at that position, and followed with an EpsiFish station at the far head of the canyon around midnight.

Sunday 7th August 2022 (Julian Day 219) We continued the EpsiFish station through the entire day, in calm seas.

Monday 8th August 2022 (Julian Day 220) We concluded the EpsiFish station at around 10:45 am and, after testing the second EpsiFish instrument, we proceeded to successfully recover the MAVS4 mooring. We then steamed to position AX2 on the canyon axis, and conducted two CTD stations (CTD001 and CTD002) there, as well as performed float and tethered tests for the two VMP-6000s. Our last activity of the day was the start of an EpsiFish time series (station ??) at site B1 near the steep head of the canyon, where we had measured some of the strongest turbulence during the BLT1 expedition.

Tuesday 9th August 2022 (Julian Day 221) We continued the EpsiFish station through the entire day, in calm seas.

Wednesday 10th August 2022 (Julian Day 222) We concluded the EpsiFish station around 9 am, and proceeded to recover the G1 mooring. After triangulating the position of the Sonardyne ADCP mooring, we successfully recovered it, followed by the T-Chain mooring. This concluded mooring operations in the BLT-3 expedition. We then performed a float test of the HRP, but our attempt to do a subsequent tethered dive was aborted following failure of the launch and recovery system (LARS). We concluded the day with the start of an EpsiFish time series at the site of the T-chain mooring.

Thursday 11th August 2022 (Julian Day 223) We continued the EpsiFish station through the entire day, in calm seas. The issue with the HRP's LARS was successfully resolved.

Friday 12th August 2022 (Julian Day 224) The EpsiFish station was interrupted at around 2 am by technical issues, which persisted into the morning. A successful tethered HRP test was performed while the EpsiFish technical issues were being investigated. As these issues persisted for several hours, we conducted a camera survey of the seabed at the MAVS3 site. Upon completion of the camera work, the EpsiFish station was resumed.

Saturday 13th August 2022 (Julian Day 225) The EpsiFish time series continued overnight, and uneventfully through the day, in favourable conditions.

Sunday 14th August 2022 (Julian Day 226) We continued the EpsiFish station until noon. Then, we steamed to the MAVS4 site, where we conducted the last camera survey. At around 6 pm, we commenced the steam to Killybegs.

Monday 15th August 2022 (Julian Day 227) We arrived in Killybegs at around 8 am. Most of the Scripps party and two of the Southampton party (including the PSO of the first leg) disembarked at this time.

2.2 PSO DIARY – Leg 2 (15th July to 5th September) – Marie-Jose Messias

Monday 15th August 2022 (Julian Day 227) We departed Killybegs (Ireland) at 5 pm heading back to the Rockall Trough for the 2nd leg dedicated to the largescale surveys of the tracer, CTD/LADCP and microstructure (VMP/HRP).

Tuesday 16th August 2022 (Julian Day 228) We arrived at the start of the first transect (T1) around 2 am south of the Hebridean Continental shelf at the north-east of the Rockhall Trough. We began science at 5 am undertaking the first CTD/LADCP/tracer sampling of the 2nd leg (CTD003, T1-1) at 55.217°N-10.05°W and 785 m depth on the shelf. We proceeded offshore westward undertaking CTD/LADCP/tracer sampling as well as HRP deployments (CTD004, T1-2; CTD005, T1-3; CTD006, T1-4; CTD007, T1-5; CTD008, T1-6).

Wednesday 17th August 2022 (Julian Day 229) We continued the CTD/LADCP/tracer sampling as well as HRP deployments (CTD009, T1-7; CTD010, T1-8; CTD011, T1-9) until science work had to stop ~noon at 55.42°N-0.44°W and 2383 m depth, because of bad weather

in the area. We therefore left the transect 1 (T1) and sailed southeast to the transect 4 (T4) that crosses the basin from the BLT canyon to the Rockall Bank.

Thursday 18th August 2022 (Julian Day 230) We arrived at the shallowest station of transect 4 (T4) at 00:00 am and proceeded eastward toward the head of the BLT canyon with CTD/LADCP/tracer and nutrients sampling as well as VMP deployments sampling 3 locations (CTD012, T4-22; CTD013, T4-21; CTD014, T4-20). The next CTD cast was interrupted (CTD0150 aborted) as the communication was lost, at 9 pm and 640 m depth following a fault of the CTD blowing the fuse of its deck unit. Paul Provost started the CTD fault investigation when CTD returned on deck. The VMP deployment continued. The CTD was put back in the water at 10:30 am after changing the swivel, but without success (CTD016 aborted). The second repair involved redoing the termination and load test, which took 8 hours. During this time, we headed for the mouth of the canyon (T4-08 equivalent to AX15 of BLT1) in the hope of resuming work there, but weather deteriorated and prevented the resumption of scientific work.

Friday 19th August 2022 (Julian Day 231) 8 am: Weather was still too rough to put the CTD in the water. The deep tow cable was prepared to be used instead of the CTD cable if needed. Weather improved at 11:00 am and we proceeded with CTD tests in the water changing and probing different parts of the CTD system (CTD units, winding and unwinding the wire in the winch room). At 7:30 pm, the CTD communication hold and we could finally proceed with the double CTD casts of position T4-08 (CTD017 and CTD018) needed to define the vertical spread of the tracer at the mouth of the canyon of 2940 m depth. Then, we transited slowly (5 knots) to position T4-07 because of the strong winds.

Saturday 20th August 2022 (Julian Day 232) We started CTD019 (T4-07) at 6 am and managed to fire 23 bottles before losing communication again. It was then decided to use the deep tow cable for the next CTD casts. The wire change was done during the 5 hours of transit to the next station. We arrived at position T4-06 at 13:00 where the deep tow cable was used successfully for CTD/LADCP/tracer and nutrients sampling (CTD020). The HRP deployment followed. We steamed for position T4-05 at 19:45 pm. CTD021 went well, however HRP had technical issues and the VMP successfully took the relay.

Sunday 21st August 2022 (Julian Day 233) We continued CTD/LADCP/tracer sampling with CTD022 (T4-04) at 5 am, smoothly followed by CTD23 to CTD25 and VMPs, and finished transect T4 (56.09°N -14.32°W) at 21:00 pm starting a 11 hours transit at good speed of 10

knots to the northern trans-basin transect T2 at the latitude of Anton Dohrn. ETA T2-01 was 05:30 am. During the transit the CTD wire was put back into the CTD system.

Monday 22nd August 2022 (Julian 234) CTD026 was deployed back with the CTD wire at 5:45 am but aborted as the communication was again lost at 400 m going down. The CTD was taken back on board and the CTD cable was replaced by the deep tow cable. CTD027 was deployed successfully with the deep tow wire, at the easternmost side of T2 (west of Anton Dohrn) at 57.45°N -12.82°W and 1197 m depth and followed by CTD028(T2-02), CTD029 (T2-03), CTD030(T2-04).

Tuesday 23rd August 2022 (Julian Day 235) On the early hours of the day, we deviated south to the transect 12 (T12) designed to sample the currents between the south of the Anton Dohrn seamount and Hebridean Continental shelf. Because of the time lost to the CTD technical issues and the bad weather, that transect was reduced to 2 stations only with CTD031 and CTD032 (positions T12-4 and T12-3, where steep slopes extend down the side of the seamount to a moat at around 2400 m deep). In the morning, we returned north to proceed with the T2 transect east of Anton Dohrn undertaking CTD033, CTD034, CTD035 and positioned along T2-05 to T2-08. Lovely sunny evening and sunset on this day. VMPs were deployed as HRP had technical issues. At 11 pm, we steamed northward to the transect T3, to sample the shallower region north of Anton Dohrn.

Wednesday 24th August 2022 (Julian Day 236) It was decided that to mitigate for time lost to the bad weather and CTD technical issues, from now on (CTD037), the CTD Niskin bottles would be fired on the fly when spacing between bottles is equal or greater than 40 m. When the spacing would be less than 40 m, the CTD would slow down at the firing depth or stop if salinity sample are taken. The oxygen sensors seemed to give more stable results. The SBR35 was removed. The response of the other sensors looked fine. We started the transect T3 at 3:50 am at the eastern part of the Trough and proceeded westward undertaking CTD/LADCP/tracer sampling and HRP/VMP at T3-04, T3-03, T3-02, T3-01 (CT037, CTD038, CTD039 and CTD040) up to 58.30°N -11.92°W. The northern transect was completed by 10:00pm and the vessel then headed southeast to do the two planned stations on route between the westernmost position of T3 and westernmost position of T1, linking the two transects.

Thursday 25th August 2022 (Julian Day 237) The next CTD/LADCP/tracer sampling was aborted at planned station T3-06 (CTD041) at 3:30 am because of crossed seas. The ship could

not hold position so the station was aborted and we moved further towards T1 relocating the station south where weather conditions were good for a CTD. We arrived at T3-07 at 8 am and successfully proceeded with CTD 42. We then continued southward and arrived at T1-16 (CTD43) at 16:00. We proceeded south-eastward along T1 undertaking CTD/LADCP/tracer sampling and HRP/VMP at T1-15, T1-14, S1- 01 (CT044, CTD045, CTD046).

Friday 26th August 2022 (Julian Day 238) The HRP got stuck in the bottom at CTD046 at 03:00 am. It was confirmed that the bottom was mud. We waited 4 hours to see if it would dislocate by itself and then decided to do one attempt to drag for it. The dragging system consisted of a cable of 1000 m long maintained near the sea bed by two 1ton weights that ship drag around the estimated location (56° 30.77718 N and 12° 32.435 W). The position of the cable was monitored by the USBL. The setting preparation lasted 3 hours after which the dragging started at 12:30 am at ship speed of 1 knot. The dragging attempt was successful and we had the HRP back on board at 18:15 pm. To make up for time lost, it was decided to remove several VMP/HRP and CTD stations from the initial plan. It was also decided that the ship would do good speed in between station of ~ 9 knots, sea state and weather permitting. The survey along T1 resumed at 19:00 at position T1-13 followed by T1-12 (CTD047 and CTD048).

Saturday 27th August 2022 (Julian Day 239) At position T1-11, CTD049 was aborted at 4:31 am due to a rupture in the hydraulics of the winch when the CTD was 80 m in water going down. After repair, T1-11 was successfully sampled (CTD050). Afterwards, the ship left temporally the T1 transect and headed northeast to performed the transect 10 (T10), a line linking T1 to the Hebridean seamount at the positions T10-1, T10-2, T1-3 and T10-4 (CTD051 to CTD054), and which was finished at 20:00 pm. The ship then headed eastward to perform the transect 11 (T11) to sample the waters between the seamount (position T11-2, CTD055 performed at 22:30 pm) and the eastern position Hebridean continental shelf at the depth of 1220 m (position T11-4).

Sunday 28th August 2022 (Julian Day 240) We continued the survey along T11 by sailing eastwards and taking samples at positions T11-3 and T11-4 (CTD056 and CTD057). We then returned south to complete transect T10 (T1-10, CTD058) before sailing further south back to the BLT canyon to complete its survey (the eastern extension of transect T4).

Monday 29th August 2022 (Julian Day 241) We arrived at the mouth of the BLT canyon at 01:00 am and then proceed up canyon from position T4-09 to T4-19 (CTD059 to CTD068).

Sea water samples were also taken for nutrients analysis for Prof McGillicuddy (WHOI) and Woodward (PML). HRP/VMP was done for the deep stations as the head of the canyon was sampled for microstructure at Leg1.

Tuesday 30th August 2022 (Julian Day 242) We sailed to the transect 9 (T9) situated roughly parallel between the eastern part of T4 and T1. We started transect T9 around 03:00 am and finished the slope survey (T9-07 to T9-04, CTD69-CTD72) at 10:00 am, and then processed along that transect in the abyssal plain (T9-03 to T9-02, CTD73-CTD74). Station T9-2: the HRP come back up head of time.

Wednesday 31th August (Julian Day 243) We completed the last station of T9 (T9-01, CTD75) in the early morning and then sailed west to begin the trans-basin transect of the Rockall Trough entrance (T7). We arrived at its most westerly point at 14:00 pm and proceed the survey southeast at position T7-11, T7-10, T7-09 and T7-08 (CTD076 to CTD079).

Thursday 1st September 2022 (Julian Day 244) We completed the sampling along T7, at positions T7-07 to T7-02 (CTD080 to CTD085), and then sailed to the last transect 5 (T5) to survey the eastern side of the RT at the cruise southernmost latitude of 53.1°N.

Friday 2^{nd} September 2022 (Julian Day 245) We arrived at the porcupine abyssal plain position of T5 (T5-01, CTD086) at 06:00 am and then proceed eastward sampling positions T5-02 to T5-04 (CTD087 to CTD089) towards the continental slope. The T5 was then abandoned anticipating with the deterioration of the weather, and we began transit to Southampton.

Sunday 4th September 2022 (Julian Day 247) Smooth transit at 10 knots. At 15:00, we enter a rail, crossing many ships along our route.

Monday 5th September (Julian Day 248) We passed the Needles at 10:00 am. The weather is good to enjoy the scenery. Another day of packing and backing up of computers.

Tuesday 6th September (Julian Day 249) Demobilisation from DY153 from 8:00 am to 15:00 pm.

3 CONDUCTIVITY, TEMPERATURE AND DEPTH (CTD) OPERATIONS

3.1 STAINLESS STEEL CTD OPERATIONS (NMF)

Billy Platt, Paul Henderson, Jeremy Evans, Jade Garner, Simon Jones, Paul Provost

3.1.1 CTD CAST SUMMARY

Total number of casts: 89

Deepest cast: 3218m

3.1.2 CTD WIRES 3.1.2.1 CTD Wire 2

CTD Wire 2 was used for cast 001–020 & 026. The mechanical and electrical termination was the same as used in DY150. Resistance and insulation of the cable were checked periodically. The torque setting on the fasteners of the mechanical termination was checked throughout and no slippage was noted. CTD cast 015 was aborted when the sea cable fuse was blown. The cause was eventually traced to the inside of the winch drum, where the cables between the slipring and the junction box were shorting on the inside of the winch drum. The cables were damaged due to chaffing against a chipped/sharp edge. A temporary fix was made by protecting the cables with electrical tape. A permanent fix was made later by inserting a plastic ring into the winch drum to stop the cables coming into contact with any sharp edges. The cables were further protected by shielding them in hose/conduit. See photos at end of cruise report.

CTD cast 019 was aborted due to water ingress at the electrical termination after which the wire was re-terminated. CTD cast 026 was also aborted due to water ingress at the electrical termination after which the wire was re-terminated. During re-terminations approximately 89m of wire was chopped off of CTD2.

CTD Wire 2 at beginning of cruise:

Resistance 76.2 Ohms Insulation >550 MOhms @500 VDC

CTD Wire 2 at end of cruise:

Resistance 72.9 Ohms Insulation >550 MOhms @500 VDC

3.1.2.2 Deep Tow

The Deep Tow was terminated as a back-up to CTD Wire 2 and was used on casts 020-025 and 027-089. There were two incidents where the Deep Tow winch rapidly hauled or veered when approaching an auto-stop when the active heave compensation (AHC) was activated. This is a problem known to Kongsberg which can happen in flat/calm seas when AHC is on. Further information can be found in Kongsberg service note Ref. SN BR098-2022. It is recommended the AHC is not used in flat/calm seas.

Deep Tow after termination:

Resistance 92 Ohms Insulation >550 MOhms @500 VDC

Deep Tow at end of cruise:

Resistance 92 Ohms Insulation >550 MOhms @500 VDC

3.1.2.3 CTD Wire 1

CTD Wire 1 was not available for use having not been streamed since the cable was replaced.

3.1.3 CTD SENSOR SET-UP

CTD frame was set-up for DY153 with primary conductivity and temperature sensors on the 9plus and secondary conductivity and temperature sensors on the vane. Analogue sensors on the 9plus were dissolved oxygen, altimeter, fluorometer, transmissometer, backscatter. Uplooking and down-looking 300kHz LADCP's were fitted for all casts. An SBE35 DOST temperature sensor was fitted as an additional check to the two SBE3P's. It was attached to a vertical stanchion on the CTD frame, the tip being 110cm higher and 120cm vertically away from the primary SBE 3P. It was set up to average 20 samples at each bottle firing for casts 001-041 and to average 1 sample casts 042-089. Full sensor information can be found on the Sensor Information Sheet – Appendix 1.

The 9plus was replaced between cast 016 and 017 when troubleshooting problems with the CTD. It was later determined that the problems were with CTD Wire 2, not the 9plus.

A new Valeport altimeter was trialled on the cruise and was found to be significantly better than the Benthos and Tritechs. The altimeter trace would reliably start at 99m meters above the seafloor on every cast.

3.1.4 WATER SAMPLERS

OTE 10L Water Samplers (Set B) were used on the frame and performed well throughout the cruise with only two bottles misfiring (bottle 18, cast 002 & bottle 21, cast 079). Two venting bungs and O-rings where replaced after cast 044. For casts 040-089 bottles were fired on the fly (i.e. without stopping) except for where salts samples were taken, or the distance between the bottle stops was <40m.

3.1.5 SBE DATA PROCESSING

Basic post-processing of the CTD cast data was carried out following guidelines established with BODC (ref. Moncoiffe 7th July 2010). Additionally, CTD2MET processing was carried out for each cast as well as processing to obtain sound velocity profiles for the acoustic systems.

The data was processed using SBE Data Processing, V7.26.7. The following modules were used to process the data:

- Data Conversion
- Bottle Summery
- Align CTD
- CellTM
- Derive
- Bin Average
- Strip

An instrument configuration report can be found in the Appendix of this section.

3.1.6 LADCPS

300kHz up-looking and down-looking Lowered Acoustic Doppler Current Profilers (LADCPs) were deployed on every CTD cast.

The master normally logs twice as many dives as the slave. On several occasions the recorded deployments on the master no longer equalled double that of the slave. Usually this happened after around 15-20 deployments. Using the command re ErAsE, the memory was wiped and normal logging of deployments would continue for several days until it happened again.

Also, the master occasionally downloaded all the files even after selecting just one. Initially this was thought to be just operator error but the third time this happened it had been doubled checked and only one file had been selected. This was with laptop 95YJPJ2 and instrument Sn24609. It is unknown why this happened but was approximately 3 out of 89 deployments.

Other than these small issues these instruments performed well with no other problems reported other than occasional time slipping on the master. A copy of the script/command files can be found in Appendix 3.

3.1.7 AUTOSAL

A Guildline Autosal 8400B salinometer, S/N: 71185, was used for salinity measurements. The salinometer was installed in the Salinometer lab. Bath temperature was set at 21°C, the ambient temperature being approximately 18.5-19.0°C. The salinometer was standardised before the first set of samples, and checked with an additional standard analysed prior to setting the RS. Once standardised the Autosal was not adjusted for the duration of sampling. A standard was analysed before and after each crate of samples to monitor & record drift. Standards were recorded in the spreadsheet as '0' or '9999' or K15 and had a standard salinity value of 34.994 from batch P164. Standard deviation was set to 0.0003. Salinometer S/N 68958 was set-up but not used during the cruise.

A program written in Labview called "Autosal" was used to record data for salinity values. Salinity samples were taken and analysed from most casts and the results tabulated in spreadsheet SALFORM_SS.xlsx.

3.1.8 APPENDIX 1

SENSOR INFORMATION SHEET

SHIP: RRS DISCOVERY

CRUISE: DY153

FORWARDING INSTRUCTIONS / ADDITIONAL INFORMATION:

Main Stainless Steel 24-way CTD frame on DY153 (BLT3)

Checked By	: PH, PP, BP	
------------	--------------	--

DATE: 04/09/2022

Instrument / Sensor	Manufacturer/ Model	Serial Number	Channel	Casts Used
Primary CTD deck unit	SBE 11plus	11P-24680-0588	N/A	All casts
CTD Underwater Unit	SBE 9plus	09P-24680-0637	N/A	Casts 001-016
CTD Underwater Unit	SBE 9plus	09P-77801-1182	N/A	Casts 017-089
Titanium EM CTD Swivel	Machinery Development Services/V2_2	1246-2	N/A	All casts
Stainless steel 24-way frame	NOCS	SBE CTD6	N/A	All casts
Primary Temperature Sensor	SBE 3P	03P-5835	FO	All casts
Primary Conductivity Sensor	SBE 4C	04C-4139	F1	All casts
Digiquartz Pressure sensor	Paroscientific	79501	F2	Casts 001-016
Digiquartz Pressure sensor	Paroscientific	129735	F2	Casts 017-089
Secondary Temperature Sensor	SBE 3P	03P-5785	F3	All casts
Secondary Conductivity Sensor	SBE 4C	04C-4140	F4	All casts
Primary Pump	SBE 5T	05T-3085	n/a	All casts
Secondary Pump	SBE 5T	05T-3607	n/a	All casts
24-way Carousel	SBE 32	32-60380-0805	n/a	All casts
Primary Dissolved Oxygen Sensor	SBE 43	43-0862	V0	All casts
Free			V1	
Fluorometer	CTG Aquatracka MKIII	088-244	V2	All casts
Altimeter	Valeport VA500	81629	V3	All casts
Free			V4	
Free			V5	
Transmissometer	WETLabs CStar	CST-1719TR	V6	All casts
Light Scattering Sensor	WETLabs BBRTD	BBRTD-758R	V7	All casts
10L Water Samplers	OTE	Set B	N/A	All casts
LADCP Battery Pack	NOCS	WH006T	N/A	All casts
LADCP WH 300kHz – Up Looking	TRDI	15288	N/A	All casts
LADCP WH 300kHz – Down Looking	TRDI	24609	N/A	All casts
DOST	SBE 35	35-66264-0070	N/A	All cast

3.1.9 APPENDIX 2

Instrument configuration file used casts 017-089

Date: 09/04/2022

 $Instrument \ configuration \ file: \ C:\Users\sndm\Documents\Cruises\DY153\Data\CTD \ Raw \ Data\DY153_CTD_069.xmlcon$

Configuration report for SBE 911plus/917plus CTD Frequency channels suppressed : 0 Voltage words suppressed :0 Computer interface : RS-232C Deck unit : SBE11plus Firmware Version ≥ 5.0 Scans to average :1 NMEA position data added : Yes NMEA depth data added : No NMEA time added : Yes NMEA device connected to : PC Surface PAR voltage added : No Scan time added : Yes 1) Frequency 0, Temperature Serial number : 03P-5835 Calibrated on : 02-Sep-21 : 4.37871437e-003 G Η : 6.73104457e-004 I : 2.75570914e-005 J : 2.11069534e-006 F0 : 1000.000 Slope : 1.00000000 Offset : 0.0000 2) Frequency 1, Conductivity Serial number : 04C-4139 Calibrated on : 25-Aug-21 G :-9.89092738e+000 Η : 1.45687093e+000 Ι : 4.45002601e-004 J : 5.58999576e-005 CTcor : 3.2500e-006 CPcor :-9.5700000e-008 Slope : 1.00000000

Offset : 0.00000 3) Frequency 2, Pressure, Digiquartz with TC Serial number : 129735 Calibrated on : 13-Nov-2020 C1 : -6.064446e+004 C2 : 6.966022e-002 C3 : 1.971200e-002 D1 : 2.882500e-002 D2 : 0.000000e+000T1 : 3.029594e+001 T2 : -6.713680e-005 T3 : 4.165390e-006 T4 : 0.000000e+000 T5 : 0.000000e+000Slope : 0.99986000 Offset : -3.33660 AD590M : 1.279180e-002 AD590B :-8.821250e+000 4) Frequency 3, Temperature, 2 Serial number : 03P-5785 Calibrated on : 02-Sep-2021 G : 4.33680024e-003 Η : 6.28125678e-004 Ι : 1.97135700e-005 J : 1.48598016e-006 F0 : 1000.000 Slope : 1.00000000 Offset : 0.0000 5) Frequency 4, Conductivity, 2 Serial number : 04C-4140 Calibrated on : 19-Aug-21 G :-9.83714820e+000 Η : 1.48391211e+000 Ι : -1.99680672e-003 J : 2.40272948e-004 CTcor : 3.2500e-006 CPcor :-9.5700000e-008 Slope : 1.00000000 Offset : 0.00000 6) A/D voltage 0, Oxygen, SBE 43 Serial number : 43-0862 Calibrated on : 06-Feb-2021

Equation : Sea-Bird Soc : 5.01000e-001 : -5.04100e-001 Offset А :-4.49660e-003 В : 1.51430e-004 С : -2.70690e-006 Ε : 3.60000e-002 Tau20 : 1.13000e+000 D1 : 1.92634e-004 D2 : -4.64803e-002 H1 :-3.30000e-002 : 5.00000e+003 H2 H3 : 1.45000e+003 7) A/D voltage 1, Free 8) A/D voltage 2, Fluorometer, Chelsea Aqua 3 Serial number : 088244 Calibrated on : 07 August 2020 VB : 0.176199 V1 : 2.032520 Vacetone : 0.245650 Scale factor : 1.000000 Slope : 1.000000 Offset : 0.000000 9) A/D voltage 3, Altimeter Serial number : Valeport VA500 81629 Calibrated on : Scale factor : 15.000 Offset : 0.000 10) A/D voltage 4, Free 11) A/D voltage 5, Free 12) A/D voltage 6, Transmissometer, WET Labs C-Star Serial number : CST-1719TR Calibrated on : 01-August-2022 Μ : 21.1975 В :-0.0784 Path length : 0.250 13) A/D voltage 7, OBS, WET Labs, ECO-BB Serial number: 758R Calibrated on : 30/8/2019

ScaleFactor : 0.004284 Dark output : 0.054400 : 45 Scan length _____ Pump Control This setting is only applicable to a custom build of the SBE 9plus. Enable pump on / pump off commands: NO _____ Data Acquisition: Archive data: YES Delay archiving: NO Data archive: C:\Users\sandm\Documents\Cruises\DY153\Data\CTD Raw Data\DY153_CTD_072.hex Timeout (seconds) at startup: 60 Timeout (seconds) between scans: 20 -----Instrument port configuration: = COM4 Port Baud rate = 19200Parity = NData bits = 8Stop bits = 1-----Water Sampler Data: Water Sampler Type: SBE Carousel Number of bottles: 36 Port: COM5 Enable remote firing: NO Firing sequence: User input Tone for bottle fire confirmation uses PC sound card. _____ Header information: Header Choice = Prompt for Header Information prompt 0 = Ship: RRS Discovery prompt 1 = Cruise: DY153 prompt 2 = Cast: prompt 3 = Station: prompt 4 = Julian Day: prompt 5 = Date:prompt 6 = Time (GMT): prompt 7 = Latitude: prompt 8 = Longitude: prompt 9 = Depth (uncorrected m): prompt 10 = Principal Scientist: A. Garrabato prompt 11 = Operator: -----TCP/IP - port numbers: Data acquisition: Data port: 49163

Status port:49165Command port:4916Remote bottle firing:Command port:Command port:4916Status port:49168Remote data publishing:Converted data port:Converted data port:49160	7
Miscellaneous data for calcula	tions
Depth, Average Sound Velo	
Latitude when NMEA is n	•
Longitude when NMEA is	
Average Sound Velocity	
-	20.000000
Minimum pressure [db]: Minimum salinity [psu]:	20.000000
Pressure window size [db]	
Time window size [s]:	60.000000
Descent and Acceleration	00.00000
Window size [s]:	2.000000
	2.000000
Plume Anomaly Theta-B:	0.000000
Salinity-B	0.000000
Theta-Z / Salinity-Z	0.000000
Reference pressure [db]	0.000000
Oxygen	0.000000
Window size [s]:	2.000000
Apply hysteresis correction	
Apply Tau correction:	1. U
Potential Temperature Anon	1
-).000000
).000000
A1 Multiplier:	Salinity
Serial Data Output:	
Output data to serial port: N	0
Mark Variables:	
No variables are selected.	
Shared File Output:	
Output data to shared file: N	0
TCP/IP Output:	
Raw data:	
Output raw data to socket:	NO
XML wrapper and settings	NO NO
Seconds between raw data	
Converted data:	•
Output converted data to s	ocket: NO
-	

XML format: NO -----SBE 11plus Deck Unit Alarms Enable minimum pressure alarm: NO Enable maximum pressure alarm: NO Enable altimeter alarm: NO _____ SBE 14 Remote Display Enable SBE 14 Remote Display: NO _____ PC Alarms Enable minimum pressure alarm: NO Enable maximum pressure alarm: NO Enable altimeter alarm: NO Enable bottom contact alarm: NO Alarm uses PC sound card. -----**Options:** Prompt to save program setup changes: YES Automatically save program setup changes on exit: NO Confirm instrument configuration change: YES Confirm display setup changes: YES Confirm output file overwrite: YES Check scan length: YES Compare serial numbers: YES Maximized plot may cover Seasave: NO

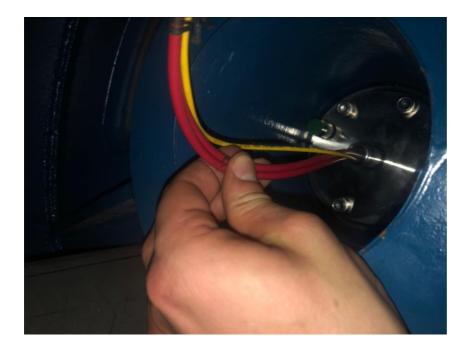
Appendix 3

LADCP Set-up Files

Master LADCP – Downlooking
\$P

\$P ************************************
*
; Send ADCP a BREAK
\$B
; Wait for command prompt > (sent after each command)
\$W62
;**Start**
; Display real time clock setting
TT?
\$W62
; Set to factory defaults
CR1
\$W62
; Print firmware etc. PS0
\$D1
; Set Water Mode 15 LADCP
WM15
\$W62
; Set minimum correlation magnitude and threshold for good bottom-track data. Default values
used here.
LZ030,220
; Set baud rate to 9600
CB411
\$W62
; Save settings as User defaults
СК
\$W62
; Set transducer depth to zero
ED0000
\$W62
; Set salinity to 35ppt
ES35
\$W62
; Set beam coordinates
EX00000 \$W62
; SET AS PRIMARY ADCP
SM1
\$W62

; TRANSMITS SYNCHRONIZING PULSE BEFORE EACH WATER PING SA001 \$W62 ; Disable hardware-break detection on Channel B SB0 \$W62 : SYNCHRONIZING PULSE SENT ON EVERY PING SI0 \$W62 :WAIT 7.5 MILLISECONDS **SW75** \$W62 ; Set one ensemble 1.00/sec TE00000100 \$W62 ; Set one second between pings TP000100 \$W62 ; Set LADCP to output Velocity, Correlations, Amplitude, and Percent Good WD111100000 \$W62 ; Set one ping per ensemble. Also sets LP command. WP1 \$W62 : Set to record 20 bins. Also sets LN command. WN020 \$W62 : Set bin size to 8 m. Also sets LS command. WS0800 \$W62 ; Set blank to 176 cm (default value for 300kHz ADCP). Also sets LF command. WF0176 \$W62 ; Set max radial (along the axis of the beam) water velocity to 275 cm/sec. ; Also sets LV command. Default value is 170 cm/s, adding 60 cm/s for vertical CTD package motion. WV275 \$W62 ; Set ADCP to narrow bandwidth and extend range by 10%. ;Also sets LW command. **WB1** \$W62 ; Set to use a fixed speed of the sound EZ0111111 \$W62 ; Set speed of sound value. 1500 m/sec is default. EC1500 \$W62 ; Heading alignment set to 0 degrees EA00000 \$W62 ; Heading bias set to 0 degrees


EB00000 \$W62 ; Record data internally CF11101 \$W62 ; Save set up CK CS \$P \$P Set deployment file name with RN and then start pinging with CS. \$P **Slave LADCP – Uplooking** \$P ****** \$P : Send ADCP a BREAK \$B ; Wait for command prompt > (sent after each command) \$W62 :**Start** ; Display real time clock setting TT? \$W62 ; Set to factory defaults CR1 \$W62 : Print firmware etc. PS0 **\$D1** ; Set Water Mode 15 LADCP WM15 \$W62 ; Set minimum correlation magnitude and threshold for good bottom-track data. Default values used here. LZ030.220 : Set baud rate to 9600 CB411 \$W62 ; Save settings as User defaults CK \$W62 ; Set transducer depth to zero ED0000

\$W62 ; Set salinity to 35ppt **ES35** \$W62 ; Set beam coordinates EX00000 \$W62 ; SET AS PRIMARY ADCP SM1 \$W62 : TRANSMITS SYNCHRONIZING PULSE BEFORE EACH WATER PING SA001 \$W62 ; Disable hardware-break detection on Channel B SB0 \$W62 : SYNCHRONIZING PULSE SENT ON EVERY PING SI0 \$W62 ;WAIT 7.5 MILLISECONDS **SW75** \$W62 ; Set one ensemble 1.00/sec TE00000100 \$W62 ; Set one second between pings TP000100 \$W62 ; Set LADCP to output Velocity, Correlations, Amplitude, and Percent Good WD111100000 \$W62 ; Set one ping per ensemble. Also sets LP command. WP1 \$W62 : Set to record 20 bins. Also sets LN command. WN020 \$W62 : Set bin size to 8 m. Also sets LS command. WS0800 \$W62 ; Set blank to 176 cm (default value for 300kHz ADCP). Also sets LF command. WF0176 \$W62 ; Set max radial (along the axis of the beam) water velocity to 275 cm/sec. ; Also sets LV command. Default value is 170 cm/s, adding 60 cm/s for vertical CTD package motion. WV275 \$W62 ; Set ADCP to narrow bandwidth and extend range by 10%. ;Also sets LW command. WB1 \$W62

; Set to use a fixed speed of the sound
EZ0111111
\$W62
; Set speed of sound value. 1500 m/sec is default.
EC1500
\$W62
; Heading alignment set to 0 degrees
EA00000
\$W62
; Heading bias set to 0 degrees
EB00000
\$W62
; Record data internally
CF11101
\$W62
; Save set up
CK
CS
\$P

\$P Set deployment file name with RN and then start pinging with CS.
\$P

Damage to Slip-ring wires and repairs

3.2 LOWERED ACOUSTIC DOPPLER CURRENT PROFILER (LACDP)

3.2.1 INSTRUMENT AND CONFIGURATION

For all CTD casts, two RDI 300kHz Workhorse LADCP units were fitted to the CTD frame one in a downward-looking orientation the other upward-looking. Each LADCP was configured to have 20 x 8 m bins, a 176 cm blank-to-surface, one ping per ensemble in narrowband mode. Data were collected in beam coordinates. See NMF technical report for details.

3.2.2 DATA PROCESSING

RDI format binary files, recorded by the instrument, were downloaded after each cast and stored with the corresponding pre-deployment test log files. All data were processed using the latest version of the Lamont-Doherty Earth Observatory (ldeoIX) software which calculates velocities using an inverse method. This package was also used to monitor the health of the beams on the instrument.

Navigation data, for use in the processing, were extracted for the ship's primary GPS positional system the POSMV GPS. Data from the ship mounted ADCP was averaged in into station mean profiles for all casts. CTD data was extracted from the raw SeaBird .hex files, corrected for cell thermal mass, filtered to remove noise, and averaged into one second bins.

Parameters changed from the ldeoIX default values were set in the *set_cast_params.m* script and are given below:

Parameter Setting	Description
<pre>p.edit_mask_dn_bins = [1]; p.edit_mask_up_bins = [1];</pre>	Disregard data from 1st bin
p.nav_error = 30	Allowable error in navigation (30 m)
p.navtime_av = 1/60/24	Average navigation data into 1 minute bins
ps.shear = 1	Calculate a shear solution
ps.std_weight = 1	Use super ensemble to weight

TABLE 2: LADCP PARAMETERS

	data
ps.sadcpfac = 0.5	weight for vmadcp profile
ps.shear_stdf = 2	Average shear over two standard deviations
ps.dz = 8	8 m vertical resolution for profiles
ps.outlier = 1	Remove 1% of outlier data after solution

4 CTD DATA CONVERSION, CALIBRATION AND PROCESSING

Catherine Kermabon, Herle Mercier and Marie-Jose Messias

4.1 INTRODUCTION

The BLT3 DY153 cruise took place on the British oceanographic vessel 'Royal Research Ship Discovery' from 25/07/2022 to 07/09/2022. During the cruise, 89 CTD stations were carried out (Figure 7). CTD data acquisition worked well, with the exception of stations 15, 16 and 26 there were aborted. The CTD pressure sensor was changed after station 15. This report presents the post-cruise CTD data processing and conductivity calibration. Stations 1 and 2 have not be calibrated (tests stations carried out during the first leg).

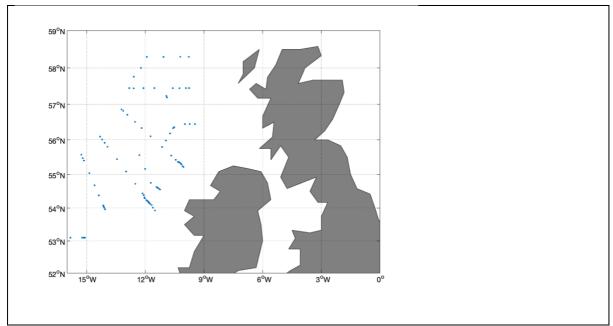


FIGURE 7: LOCATIONS OF HYDROGRAPHIC STATIONS OCCUPIED DURING BLT2

4.2 CTD Set-up and Configuration File

The SBE9+ CTD was equipped with the following sensors (Figure 8) :

- 1 pressure sensor, 1 oxygen sensor SBE43, 1 altimeter, 1 turbidity sensor
- 2 sets of temperature/conductivity sensors
 - 1 primary set (temp0/cond0)
 - 1 secondary set (temp1/cond1)


```
FIGURE 8: CTD SENSOR LOCATIONS
```

Below are the SBE9+ CTD configuration file used from stations 1 to 14 and 17 to 89. They inform on the calibration coefficients for the sensors mounted on the CTD.

Configuration report for SBE 911plus/917plus CTD : STATIONS 1 to 14 _____ Frequency channels suppressed : 0 Voltage words suppressed : 0 Computer interface : RS-232C Deck unit : SBE11plus Firmware Version >= 5.0 Scans to average : 1 NMEA position data added : Yes NMEA depth data added : No NMEA time added : Yes NMEA device connected to : PC Surface PAR voltage added : No

```
Scan time added
                 : Yes
1) Frequency 0, Temperature
  Serial number : 03P-5835
  Calibrated on : 02-Sep-21
  G
              : 4.37871437e-003
  Н
              : 6.73104457e-004
              : 2.75570914e-005
  Ι
              : 2.11069534e-006
  J
              : 1000.000
  FO
              : 1.00000000
  Slope
  Offset
              : 0.0000
2) Frequency 1, Conductivity
  Serial number : 04C-4139
  Calibrated on : 25-Aug-21
        : -9.89092738e+000
  G
              : 1.45687093e+000
  Н
  Ι
               : 4.45002601e-004
  J
              : 5.58999576e-005
  CTcor
              : 3.2500e-006
              : -9.57000000e-008
  CPcor
              : 1.00000000
  Slope
              : 0.00000
  Offset
3) Frequency 2, Pressure, Digiquartz with TC
  Serial number : 79501
  Calibrated on : 24-Jan-2020
  C1 : -6.052595e+004
              : -1.619787e+000
  C2
  C3
              : 1.743190e-002
              : 2.819600e-002
  D1
              : 0.000000e+000
  D2
              : 3.011561e+001
  т1
              : -5.788717e-004
  т2
              : 3.417040e-006
  т3
              : 4.126500e-009
  Т4
  т5
              : 0.000000e+000
              : 0.99977900
  Slope
  Offset
              : -1.24262
              : 1.293660e-002
  AD590M
  AD590B
              : -9.522570e+000
4) Frequency 3, Temperature, 2
  Serial number : 03P-5785
  Calibrated on : 02-Sep-2021
```

: 4.33680024e-003

G

```
: 6.28125678e-004
  Н
  Ι
               : 1.97135700e-005
  J
              : 1.48598016e-006
  FO
               : 1000.000
              : 1.00000000
  Slope
  Offset
              : 0.0000
5) Frequency 4, Conductivity, 2
  Serial number : 04C-4140
  Calibrated on : 19-Aug-21
              : -9.83714820e+000
  G
  Н
              : 1.48391211e+000
              : -1.99680672e-003
  Ι
  J
              : 2.40272948e-004
              : 3.2500e-006
  CTcor
              : -9.57000000e-008
  CPcor
              : 1.00000000
  Slope
              : 0.00000
  Offset
6) A/D voltage 0, Oxygen, SBE 43
  Serial number : 43-0862
  Calibrated on : 06-Feb-2021
  Equation : Sea-Bird
              : 5.01000e-001
  Soc
  Offset
              : -5.04100e-001
  А
               : -4.49660e-003
  В
              : 1.51430e-004
  С
              : -2.70690e-006
              : 3.60000e-002
  Е
              : 1.13000e+000
  Tau20
  D1
              : 1.92634e-004
  D2
              : -4.64803e-002
              : -3.30000e-002
  H1
  H2
              : 5.00000e+003
              : 1.45000e+003
  НЗ
7) A/D voltage 1, Free
8) A/D voltage 2, Fluorometer, Chelsea Aqua 3
  Serial number : 088244
  Calibrated on : 07 August 2020
  VB
        : 0.176199
              : 2.032520
  V1
              : 0.245650
  Vacetone
  Scale factor : 1.000000
  Slope : 1.000000
              : 0.000000
  Offset
```

```
9) A/D voltage 3, Altimeter
  Serial number : Valeport VA500 81629
  Calibrated on :
  Scale factor : 15.000
  Offset : 0.000
10) A/D voltage 4, Free
11) A/D voltage 5, Free
12) A/D voltage 6, Transmissometer, WET Labs C-Star
   Serial number : CST-1719TR
   Calibrated on : 01-August-2022
          : 21.1975
   М
   В
              : -0.0784
   Path length : 0.250
13) A/D voltage 7, OBS, WET Labs, ECO-BB
   Serial number : 758R
   Calibrated on : 30/8/2019
   ScaleFactor : 0.004284
   Dark output : 0.054400
                       : 45
Scan length
Configuration report for SBE 911plus/917plus CTD : Stations 17 to 89
_____
Frequency channels suppressed : 0
Voltage words suppressed : 0
Computer interface : RS-232C
Deck unit
                         : SBE11plus Firmware Version >= 5.0
Scans to average
                         : 1
NMEA position data added
                         : Yes
NMEA depth data added
                         : No
NMEA time added
                         : Yes
NMEA device connected to
                         : PC
Surface PAR voltage added
                         : No
Scan time added
                          : Yes
1) Frequency 0, Temperature
  Serial number : 03P-5835
  Calibrated on : 02-Sep-21
             : 4.37871437e-003
  G
  Н
              : 6.73104457e-004
              : 2.75570914e-005
  Т
```

```
J : 2.11069534e-006
F0 : 1000.000
Slope : 1.0000000
Offset : 0.0000
```

2) Frequency 1, Conductivity

Serial number	:	04C-4139
Calibrated on	:	25-Aug-21
G	:	-9.89092738e+000
Н	:	1.45687093e+000
I	:	4.45002601e-004
J	:	5.58999576e-005
CTcor	:	3.2500e-006
CPcor	:	-9.57000000e-008
Slope	:	1.0000000
Offset	:	0.00000

3) Frequency 2, Pressure, Digiquartz with TC

```
Serial number : 09p-77801-1182. (changed to 129735 for sts 24 to 89)
  Calibrated on : 13-Nov-2020
  C1
              : -6.064446e+004
  C2
              : 6.966022e-002
  C3
              : 1.971200e-002
  D1
               : 2.882500e-002
  D2
              : 0.000000e+000
  Т1
               : 3.029594e+001
              : -6.713680e-005
  т2
              : 4.165390e-006
  т3
  Т4
               : 0.000000e+000
              : 0.000000e+000
  Т5
              : 0.99986000
  Slope
  Offset
              : -3.33660
               : 1.279180e-002
  AD590M
               : -8.821250e+000
  AD590B
4) Frequency 3, Temperature, 2
  Serial number : 03P-5785
  Calibrated on : 02-Sep-2021
  G
              : 4.33680024e-003
              : 6.28125678e-004
  Н
  I
              : 1.97135700e-005
               : 1.48598016e-006
  J
```

F0 : 1000.000 Slope : 1.0000000

Offset

5) Frequency 4, Conductivity, 2

: 0.0000

```
Serial number : 04C-4140
Calibrated on : 19-Aug-21
G
           : -9.83714820e+000
Н
            : 1.48391211e+000
Т
            : -1.99680672e-003
            : 2.40272948e-004
ъ
CTcor
            : 3.2500e-006
CPcor
            : -9.57000000e-008
            : 1.00000000
Slope
Offset
           : 0.00000
```

6) A/D voltage 0, Oxygen, SBE 43

```
Serial number : 43-0862
Calibrated on : 06-Feb-2021
Equation : Sea-Bird
           : 5.01000e-001
Soc
Offset
           : -5.04100e-001
           : -4.49660e-003
A
В
           : 1.51430e-004
С
            : -2.70690e-006
Е
           : 3.60000e-002
Tau20
           : 1.13000e+000
D1
           : 1.92634e-004
           : -4.64803e-002
D2
H1
           : -3.30000e-002
           : 5.00000e+003
Н2
HЗ
            : 1.45000e+003
```

```
7) A/D voltage 1, Free
```

```
8) A/D voltage 2, Fluorometer, Chelsea Aqua 3
```

```
      Serial number : 088244

      Calibrated on : 07 August 2020

      VB : 0.176199

      V1 : 2.032520

      Vacetone : 0.245650

      Scale factor : 1.000000

      Slope : 1.000000

      Offset : 0.000000
```

```
9) A/D voltage 3, Altimeter
```

```
Serial number : Valeport VA500 81629
Calibrated on :
Scale factor : 15.000
Offset : 0.000
```

```
10) A/D voltage 4, Free
```

```
11) A/D voltage 5, Free
12) A/D voltage 6, Transmissometer, WET Labs C-Star
   Serial number : CST-1719TR
   Calibrated on : 01-August-2022
   М
                : 21.1975
                : -0.0784
   В
   Path length : 0.250
13) A/D voltage 7, OBS, WET Labs, ECO-BB
   Serial number : 758R
   Calibrated on : 30/8/2019
   ScaleFactor : 0.004284
   Dark output : 0.054400
Scan length
                            : 45
```

4.3 DATA CONVERSION AND PROCESSING

We describe in this section the conversion of the SeaBird Binary files to Ascii and the postprocessing of the SBE9+ raw data.

4.3.1 CONVERSION OF BINARY FILES INTO ASCII FILES

This was performed using SbeDataProcessing/DatCnv software that creates two files per station :

1. A .cnv file containing the 24 Hz raw data for the following variable names and parameters :

name 0 = prDM: Pressure, Digiquartz [db] # name 1 = t090C: Temperature [ITS-90, deg C] # name 2 = t190C: Temperature, 2 [ITS-90, deg C] # name 3 = c0mS/cm: Conductivity [mS/cm] # name 4 = c1 mS/cm: Conductivity, 2 [mS/cm] # name 5 = sbeox0V: Oxygen raw, SBE 43 [V] # name 6 = latitude: Latitude [deg] # name 7 = longitude: Longitude [deg] # name 8 = timeJ: Julian Days # name 9 = scan: Scan Count # name 10 = ptempC: Pressure Temperature [deg C] # name 11 = modError: Modulo Error Count # name 12 = CStarTr0: Beam Transmission, WET Labs C-Star [%] # name 13 = flC: Fluorescence, Chelsea Aqua 3 Chl Con [ug/l] # name 14 = timeQ: Time, NMEA [seconds] # name 15 = timeY: Time, System [seconds]

name 16 = altM: Altimeter [m]
name 17 = pumps: Pump Status
name 18 = turbWETbb0: Turbidity, WET Labs ECO BB [m^-1/sr]

 A .ros file containing the data of the above parameters when the bottles were closed. Scans taken into account are those 4 seconds before and 4 seconds after the bottles were closed. For each bottle, we therefore have 8 seconds of data, or 192 scans.

Only Pressure, Temperature, Conductivity, Salinity, Oxygen were further processed. The transmissometer and fluorometer data are thus only available from these 24 Hz raw data (.cnv) files.

4.3.2 BAD DATA REMOVAL USING THE CADHYAC/HYDRO_NETT SOFTWARE The software was developed at LOPS. Bad data for pressure (dbar), temperature (°C), conductivity (mS/cm) and oxygen (volt) are identified on threshold criteria and by applying iteratively a median deviation test:

	Minimum	Maximum	Width of	Number	Minimum	Maximum	number
	value	value	the	of	deviation	deviation	of
	(Vmin)	(Vmax)	window	standard	for the test	for the test	iterations
	(*11111)	(villax)	for the	deviation	of	of	of the test
			test of	for the	deviation	deviation	for
			deviation	test of	from the	from the	deviation
			from the	deviation	median	median	from the
			median	from the	(Emin)	(Emax)	median
			(TF)	median	(Linni)	(Lillax)	(niter)
			(11)	(NbStd)			
				(INDSIU)			
Pression dbar	0	7000	20	2.8	1.5	10	2
Temperature	-5	30	6	3	0.05	0.4	2
°C							
Conductivity	0	70	10	2.8	0.01	0.4	3
mS/cm							
Oxygen	0	5	10	2.8	0.01	0.4	3
Volt							

TABLE 3: IDENTIFICATION OF BAD DATA VIA A MEDIAN DEVIATION TEST

For each parameter, a value V was suppressed when

- V was smaller than Vmin or larger than Vmax (threshold criteria)

- abs(M-V) >= NbStd*Std, where M and Std are the median and the standard deviation of a packet of 2*TF values. In case Emin <= NbStd*Std (NbStd*Std <= Emax), NbStd*Std was replaced by Emin (Emax). This procedure was performed niter times.

4.3.3 Regeneration of the .ros files

This step is required in order not to take into account the data previously eliminated.

4.3.4 OXYGEN HYSTERESIS CORRECTION IN VOLT

This step uses CADHYAC/hydro_nett. The hysteresis correction was applied for all profiles deeper than 1000 m according to Seabird application note 64-3. The default settings are used, namely:

TABLE 4: OXYGEN HYSTERESIS CORRECTION

H1	H2	НЗ	Offset	
-0.033	5000	1450	-0.7075	

4.3.5 DATA CORRECTION FOR DYNAMICAL EFFECTS ON SENSORS

This step was done using Seabird's SbeDataprocessing software :

- Pressure low-pass filtering with time constant of 0.15 second
- Oxygen alignment in volt using a lag of 4 seconds
- Correction of the thermal mass effect on the conductivity cell for the primary and secondary sensors using a thermal anomaly amplitude of alpha = 0.03 and a time constant of tau = 7
- calculation and addition of oxygen in ml/l and primary and secondary salinities in the .cnv files. Note that these variables are uncalibrated data.
- Flagging data when the probe goes up (resp. down) during the down (resp. up) cast using LoopEdit.

4.3.6 CREATION OF .BLT FILES

These files includes all CTD data averaged over 8 seconds for each bottle based on the previously regenerated .ros files.

4.4 DATA CALIBRATION WITH CADHYAC/HYDRO_CAL

CADHYAC/hydro_cal software has been developed at LOPS. Independent adjustments are made for the 2 sets of sensors (primary and secondary).

4.4.1 PRESSURE AND TEMPERATURE

As we had no metrology data after the cruise for pressure and temperature, no correction is made on these data. We rely on the pre-cruise calibration.

4.4.2 CONDUCTIVITY

The calibration of the CTD conductivity data uses the salinity data from the seawater sample analyzed on an Autosalt. A total of 228 samples were analyzed. Chemical analyses on the Autosal were performed by groups of 24 bottles. The Autosal provides a double conductivity ratio (CR). The Autosal was standardized at the beginning of the cruise, which provided an offset that we applied to the Autosal CR data :

offset = -0.000029 to be applied from station 3 to station 89

The chemical salinity is calculated as follows :

with 21 being the bath temperature in °C of the Autosal.

The principle of the CTD conductivity calibration is as follows. First, chemical salinity data are converted to chemical conductivity. Then, the differences between the probe conductivities and the chemical conductivities are calculated : $\Delta C = C_{chemical} - C_{probe}$. Finally, the CTD conductivity data are calibrated by applying first order polynomial corrections that will minimize ΔC in a least-squares sense. Three different polynomials can be used. P1 will be used to minimize ΔC as a function of the station numbers (i.e. time); P2 is function of conductivity; P3 is function of pressure. The polynomials P1, P2 and P3 are estimated sequentially by minimizing ΔC in a least-squares sense. New ΔC deviations are calculated considering the conductivity data thus corrected. Deviations greater than 2.8 times the standard deviation of the deviations are discarded and P1, P2, P3 are recalculated using the remaining data. This process is iterative and ends when no more data are rejected.

We considered two groups of stations before and after the pressure sensor change (station 17). Thus, the sensor conductivity data are corrected :

From stations 3 to 14 as a function of time (P1), conductivity (P2) and pressure (P3)

Sensor 0

```
P1(1): 7.35587e-05 P1(0): -0.00596024
P2(1): -0.000563859 P2(0): 0.0201098
P3(1): -3.44674e-08 P3(0): 3.66224e-05
```

Sensor 1

P1(1):	-6.00187e-06	P1(0): 0.000656085
P2(1):	-0.000299443	P2(0): 0.0106793
P3(1):	-3.95979e-08	P3(0): 4.20736e-05

function of time (P1), conductivity (P2), and pressure (P3)
1.09363e-05 P1(0): -0.00544262
-0.000583701 P2(0): 0.00856049
-3.53009e-08 P3(0): 6.80787e-05
: 7.37369e-06 P1(0): 0.000591293
: -0.000256263 P2(0): 0.0106793 : 7.93332e-08 P3(0): 0.000152863

The probe salinity data are calculated from the calibrated conductivity data using the following formula :

sw salt(conductivity/sw c3515,temperature,pressure);

The following plots compare the probe salinity data with the chemical salinity data before and after data adjustment. From Figure 9 it can be seen that the data from the primary sensor (Sal0) are slightly further away from the chemical data than those from the primary sensor (Sal1). The difference between the CTD and the chemical data are in the range [0.002 0.007] for the primary sensor (Sal0) while they are in the range [-.003 0.004] for the secondary sensor (Sal1). Comparisons of Figure 9 with Figure 10 and comparison of Figure 11 with Figure 12 show that the bias, which depends on pressures and time, has been corrected during the calibration. After calibration, the mean and standard deviation of the differences are 0.000000 (resp. -0.000018) and 0.000810 (resp. 0.00074) for the primary (resp. secondary) sensor.

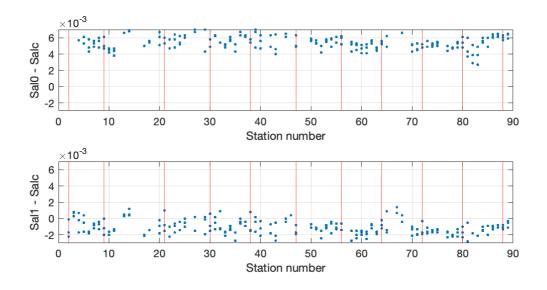


FIGURE 9: SALINITIES COMPARISON BY STATION BEFORE DATA CALIBRATION

For Figure 9 and Figure 10, the upper (resp. lower) panel compares the raw salinity data from the primary (resp. secondary) sensor with the chemical salinity data (Salc). In red are represented the stations corresponding to the first station of a new series of chemical analysis using the Autosal.

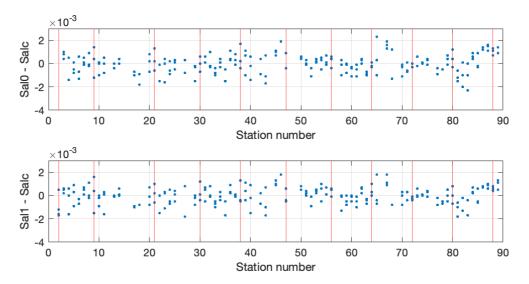


FIGURE 10: SALINITIES COMPARISON BY STATION AFTER DATA CALIBRATION

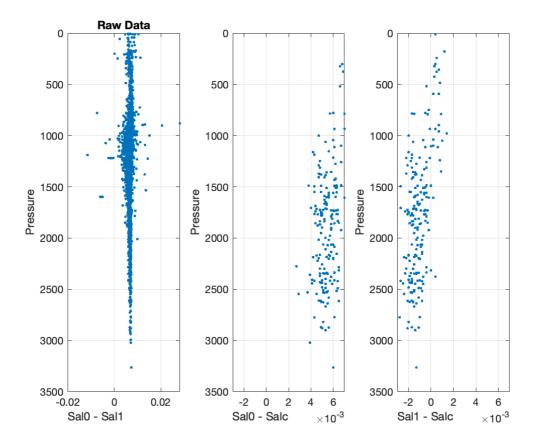


FIGURE 11: CTD AND CHEMICAL SALINITIES COMPARISON VERSUS PRESSURE BEFORE DATA CALIBRATION

In Figure 11, the left plot compares the uncalibrated salinity data from the primary sensor (Sal0) with those from the secondary sensor (Sal1). This is for all bottles that were closed during the cruise (only 10% of them have been measured for salinity). The larger differences observed above 2000 dbar are because the bottles were closed in the fly. The middle (resp. right) plot compares the uncalibrated salinity data from the primary (resp. secondary) sensor with the chemical (bottle) salinity data. The bottles analyzed for salinity were not closed in the fly.

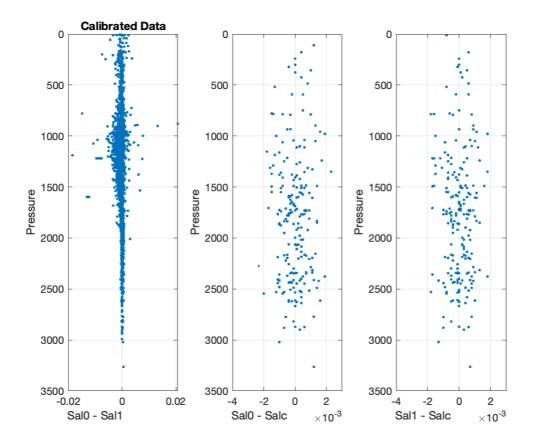


FIGURE 12: CTD AND CHEMICAL SALINITIES COMPARISON VERSUS PRESSURE AFTER DATA CALIBRATION

4.4.3 DISSOLVED OXYGEN

Since we do not have bottle data for oxygen, no calibration was done and the processing was limited to correcting for hysteresis and applying the 4 second lag on oxygen in volt as mentioned earlier. The oxygen in ml/l is then calculated from the oxygen in volt using the formula:

Oxygen (ml/L) = [Soc * (V + Voffset + tau(T,P) * dV/dt) } * Oxsol(T,S) * (1.0 + A*T + B*T + C*T) * $e^{(E*P/K)}$

Where V is Oxygen in Volt. tau(T,P) is a time constant dependent on temperature and pressure to be used in areas of strong oxygen gradients but that can amplify the noise in the signal. Therefore, it was not used (tau(T,P) = 0). dV/dT is a time derivative (volt/second), not used because tau(T,P) = 0. T is Temperature (°C), S is Salinity, P is Pressure (db) and K is Temperature (°K). Soc, Voffset, A, B, C, E are the parameters associated with the oxygen sensor. Oxsol(T,S) is oxygen saturation.

4.5 DATA REDUCTION EVERY 1 DBAR – CREATION OF NETCDF RESULT FILES

This step averages the adjusted sensor data at 24 Hz in bins of 1 dbar. Only one data per sensor is kept (pressure, temperature, salinity, oxygen in ml/l) by steps of 1 decibar.

The bin average is done in 2 steps :

• **step 1**: the pressure, temperature and conductivity data are bin averaged simultaneously. To do this, only the scans with increasing pressure when descending (resp. decreasing pressure when ascending) and have valid data for the 3 sensors are considered. If a scan has an invalid value for oxygen, this scan is nevertheless kept.

• **step 2** : the oxygen data are bin averaged. For this purpose, only scans with increasing pressure when descending (resp. decreasing pressure when ascending) and with valid data of pressure, temperature, conductivity and oxygen are considered.

Below, a brief presentation of the principle of bin averaging. A scan corresponds to a set of measurements (P, T, S, O2) acquired at a given time in the 24 Hz file.

• Reading of all scans at 24Hz

• Elimination of scans with an invalid sensor value (-9.990 e-29)

• Every scan is compared to the previous one. The process starts by creating a starting scan : average of the first 30 scans. A scan is valid if it does not differ from the previous scan by more than : 0.5 db for pressure; 1°C for temperature and conductivity for pressure in the range (en db) : [0 et 1500[; 0.2°C for temperature and 0.2 mS/cm for conductivity for pressure greater than or equal to 1500 db; 0.2 for oxygen (volt). If 24 scans are rejected consecutively, the 24th rejected scan becomes the reference and the next scan will be validated against it. From the surface to the bottom for the descending profile (from the bottom to the surface for the ascending profile), a value per sensor per db is calculated. For an integer pressure P, for each sensor, this is calculated by averaging all the validated values between (P-0.5) and (P+0.5) on the condition that there are at least 6 valid scans. If there are not enough scans to calculate the average, then no data is associated with the level P.

• Creation of a reduced NetCDF file for the descending profile and a reduced NetCDF file for the ascending profile for each station for each sensors sets (primary and secondary). If

bottles were closed during the ascending profile, the sensor data and the chemical data, if they exist, are integrated to each of the files.

- Manual invalidation of probe data to eliminate non-physical salinity peaks (setting of the flag 4 associated with these data (mainly conductivity and salinity))
- Creation of a matlab file for each station containing all the reduced data at 1 dbar (descending and ascending profile for the 2 sets of sensors).

The nomenclature of the file names is as follows : blt3dXXX_cli.nc for descending profile files, blt3aXXX_cli.nc for ascending profile files, XXX being the station number on 3 digits. The matlab files are named blt3_CTDXXX.mat and contains both up and down cast data. The contents of these files are presented in the appendix.

4.6 APPENDIX

```
4.6.1 STRUCTURE OF NETCDF REDUCED FILES
netcdf blt2d014 cli {
dimensions:
     STRING4 = 4;
     STRING20 = 20;
     STRING7 = 7 ;
     STRING28 = 28;
     N PROF = 1;
     N PARAM = 6;
     N LEVELS = 1882;
     N PARAM CHIM = 9;
     DATE TIME = 14;
     N BOTTLES = 24;
variables:
     double LATITUDE BEGIN(N PROF) ;
           LATITUDE BEGIN: long name = "Latitude begin of the station,
best estimates" ;
           LATITUDE BEGIN:units = "degree north" ;
           LATITUDE BEGIN: convention = "decimal degree" ;
           LATITUDE BEGIN: valid min = -90.;
           LATITUDE BEGIN: valid max = 90. ;
           LATITUDE BEGIN: FillValue = -9999. ;
     double LATITUDE END(N PROF) ;
           LATITUDE END: long name = "Latitude end of the station, best
estimates" ;
           LATITUDE END:units = "degree north" ;
           LATITUDE END: convention = "decimal degree" ;
           LATITUDE END: valid min = -90.;
           LATITUDE END: valid max = 90. ;
           LATITUDE END: FillValue = -9999. ;
     double LONGITUDE BEGIN (N PROF) ;
           LONGITUDE BEGIN:long name = "Longitude begin of the station,
best estimates" ;
```

```
LONGITUDE BEGIN:units = "degree_east" ;
           LONGITUDE BEGIN: convention = "decimal degree" ;
           LONGITUDE BEGIN: valid min = -180.;
           LONGITUDE BEGIN: valid max = 180. ;
           LONGITUDE BEGIN: FillValue = -9999. ;
     double LONGITUDE END(N PROF) ;
           LONGITUDE END: long name = "Longitude end of the station,
best estimates" ;
           LONGITUDE END:units = "degree east" ;
           LONGITUDE END: convention = "decimal degree" ;
           LONGITUDE END: valid min = -180.;
           LONGITUDE_END:valid_max = 180. ;
           LONGITUDE END: FillValue = -9999.;
     char STATION DATE BEGIN(N PROF, DATE TIME) ;
           STATION DATE BEGIN: long name = "Beginning Date Time of the
station" ;
           STATION DATE BEGIN: convention = "YYYYMMDDHH24MISS" ;
           STATION DATE BEGIN: FillValue = " ";
     char STATION DATE END(N PROF, DATE TIME) ;
           STATION DATE END:long_name = "End Date_Time of the station"
;
           STATION DATE END:convention = "YYYYMMDDHH24MISS" ;
           STATION DATE END: FillValue = " ";
     double JULD BEGIN(N PROF) ;
           JULD BEGIN: long name = "Julian day (UTC) of the beginning of
the station relative to REFERENCE DATE TIME" ;
           JULD BEGIN:units = "days since 1950-01-01 00:00:00 UTC" ;
           JULD BEGIN: convention = "Relative julian Days with decimal
part (as parts of day)";
           JULD BEGIN: FillValue = -9999. ;
     double JULD END(N PROF) ;
           JULD END: long name = "Julian day (UTC) of the end of the
station relative to REFERENCE DATE TIME" ;
           JULD_END:units = "days since 1950-01-01 00:00:00 UTC" ;
           JULD END: convention = "Relative julian Days with decimal
part (as parts of day)";
           JULD_END:_FillValue = -9999. ;
     float BATHYMETRY BEGIN(N PROF) ;
           BATHYMETRY BEGIN: long name = "Bathymetry at the beginning of
the station" ;
           BATHYMETRY BEGIN: units = "meter" ;
           BATHYMETRY BEGIN: FillValue = -9999.f;
      float BATHYMETRY END(N PROF) ;
           BATHYMETRY END: long name = "Bathymetry at the end of the
station" ;
           BATHYMETRY END:units = "meter" ;
           BATHYMETRY_END: FillValue = -9999.f ;
      char STATION PARAMETER (N PARAM, STRING4) ;
           STATION PARAMETER: long name = "Mesured parameter of the
station" ;
           STATION PARAMETER: FillValue = " ";
      float PRES(N PROF, N LEVELS) ;
           PRES:long name = "Sea Pressure" ;
           PRES:Sensor type = "Digiquartz[db]" ;
           PRES:Sensor_serial number = 76501 ;
           PRES:resp param = "MJ MESSIAS" ;
           PRES:Organism resp = "UNIVERSITY EXETER" ;
           PRES:units = "decibar" ;
```

```
PRES:valid min = 0. ;
     PRES:valid max = 15000. ;
     PRES:precision = -9999. ;
     PRES: FillValue = -9999.f ;
float PRES QC(N PROF, N LEVELS) ;
     PRES QC:long name = "Sea Pressure quality flag" ;
     PRES QC:convention = "1: good, 4: bad, 9: No data" ;
     PRES QC: FillValue = -9999.f;
float TEMP(N PROF, N_LEVELS) ;
     TEMP:long name = "In situ temperature ITS-90" ;
     TEMP:Sensor_number = 1. ;
     TEMP:Sensor_type = "SBE3" ;
     TEMP:Sensor_serial_number = 3 ;
     TEMP:resp param = "MJ MESSIAS" ;
     TEMP:Organism resp = "UNIVERSITY EXETER" ;
     TEMP:units = "degree celsius" ;
     TEMP: valid min = -2.;
     TEMP: valid max = 40. ;
     TEMP: precision = -9999.;
     TEMP: FillValue = -9999.f ;
float TEMP QC(N PROF, N LEVELS) ;
     TEMP QC:long name = "In situ temperature quality flag" ;
     TEMP QC:convention = "1: good, 4: bad, 9: No data" ;
     TEMP_QC:_FillValue = -9999.f ;
float COND(N PROF, N LEVELS) ;
     COND:long name = "Conductivity" ;
     COND:Sensor_number = 1. ;
     COND:Sensor_type = "SBE4"
     COND:Sensor serial number = 4 ;
     COND:resp_param = "MJ MESSIAS" ;
     COND:Organism resp = "UNIVERSITY EXETER" ;
     COND:units = "mS/cm";
     COND:valid min = 0. ;
     COND:valid_max = 60. ;
     COND: precision = -9999.;
     COND: FillValue = -9999.f ;
float COND_QC(N_PROF, N_LEVELS) ;
     COND QC:long name = "Conductivity quality flag" ;
     COND QC:convention = "1: good, 4: bad, 9: No data" ;
     COND QC: FillValue = -9999.f ;
float PSAL(N PROF, N LEVELS) ;
     PSAL:long name = "Practical Salinity PSS78" ;
     PSAL:Sensor number = 1. ;
     PSAL:Sensor_type = "SBE4" ;
     PSAL:Sensor serial number = 4 ;
     PSAL:resp_param = "MJ MESSIAS" ;
     PSAL:Organism_resp = "UNIVERSITY EXETER" ;
     PSAL:units = "psu" ;
     PSAL: valid min = 0. ;
     PSAL:valid max = 60. ;
     PSAL:precision = -9999. ;
     PSAL: FillValue = -9999.f;
float PSAL QC(N PROF, N LEVELS) ;
     PSAL QC:long name = "Practical Salinity quality flag" ;
     PSAL QC:convention = "1: good, 4: bad, 9: No data" ;
     PSAL QC: FillValue = -9999.f;
float OXYL(N PROF, N LEVELS) ;
     OXYL:long name = "Dissolved oxygen concentration" ;
```

```
OXYL:Sensor number = 1. ;
           OXYL:Sensor_type = "SBE43" ;
           OXYL:Sensor_serial_number = 43 ;
           OXYL:resp param = "MJ MESSIAS" ;
           OXYL:Organism resp = "UNIVERSITY EXETER" ;
           OXYL:units = "ml/l";
           OXYL:valid min = 0. ;
           OXYL:valid max = 40. ;
           OXYL:precision = -9999.;
           OXYL:_FillValue = -9999.f ;
     float OXYL QC(N PROF, N LEVELS) ;
           OXYL QC:long name = "Dissolved oxygen concentration quality
flag" ;
           OXYL QC:convention = "1: good, 4: bad, 9: No data";
           OXYL QC: FillValue = -9999.f;
     float OXYK(N_PROF, N_LEVELS) ;
           OXYK:long name = "Dissolved oxygen concentration" ;
           OXYK:sensor number = 1. ;
           OXYK:Sensor type = "SBE43" ;
           OXYK:Sensor serial number = 43 ;
           OXYK:resp_param = "MJ MESSIAS" ;
           OXYK:Organism resp = "UNIVERSITY EXETER" ;
           OXYK:units = "micromol/kg" ;
           OXYK:valid min = 0. ;
           OXYK:valid max = 600. ;
           OXYK:precision = -9999.;
           OXYK:_FillValue = -9999.f ;
     float OXYK QC(N PROF, N LEVELS) ;
           OXYK QC:long name = "Dissolved oxygen concentration quality
flag" ;
           OXYK QC:convention = "1: good, 4: bad, 9: No data";
           OXYK QC: FillValue = -9999.f;
     float BOTTLE NUMBER(N PROF, N BOTTLES) ;
           BOTTLE_NUMBER:long_name = "Bottle number" ;
           BOTTLE NUMBER: FillValue = -9999.f ;
     char STATION_PARAMETER_CHIM(N_PARAM_CHIM, STRING7) ;
           STATION_PARAMETER_CHIM: long name = "Mesured chemistry
parameter of the station" ;
           STATION PARAMETER CHIM: FillValue = " ";
     float CHPRESP(N PROF, N BOTTLES) ;
           CHPRESP:long_name = "Probe sea pressure" ;
           CHPRESP:resp_param = "NMF" ;
           CHPRESP:Organism_resp = "NMF" ;
           CHPRESP:units = "decibar" ;
           CHPRESP:valid min = 0. ;
           CHPRESP:valid max = 15000. ;
           CHPRESP: precision = -9999.;
           CHPRESP: FillValue = -9999.f ;
     float CHPRESP QC(N PROF, N BOTTLES) ;
           CHPRESP QC:long name = "Probe sea pressure quality flag" ;
           CHPRESP QC:convention = "1: good, 3: doubtful, 4: bad, 9: No
data" ;
           CHPRESP QC: FillValue = -9999.f ;
     float CHTEMPP(N PROF, N BOTTLES) ;
           CHTEMPP:long name = "Probe in situ temperature ITS-90" ;
           CHTEMPP:Sensor number = 1. ;
           CHTEMPP:Sensor type = "SBE3" ;
           CHTEMPP:resp_param = "NMF" ;
```

```
CHTEMPP:Organism resp = "NMF" ;
           CHTEMPP:units = "degree celsius" ;
           CHTEMPP:valid min = -2.;
           CHTEMPP:valid max = 40. ;
           CHTEMPP: precision = -9999.;
           CHTEMPP: FillValue = -9999.f;
     float CHTEMPP QC(N PROF, N BOTTLES) ;
           CHTEMPP QC:long name = "Probe in situ temperature ITS-90
quality flag" ;
           CHTEMPP QC:convention = "1: good, 3: doubtful, 4: bad, 9: No
data" ;
           CHTEMPP QC: FillValue = -9999.f ;
     float CHPSALB(N PROF, N BOTTLES) ;
           CHPSALB:long name = "Bottle Practical Salinity PSS78" ;
           CHPSALB:resp param = "NMF" ;
           CHPSALB:Organism resp = "NMF" ;
           CHPSALB:units = "psu" ;
           CHPSALB:valid min = 0. ;
           CHPSALB:valid max = 60. ;
           CHPSALB:precision = -9999.;
           CHPSALB: FillValue = -9999.f ;
     float CHPSALB QC(N PROF, N BOTTLES) ;
           CHPSALB QC:long name = "Bottle Practical Salinity PSS78
quality flag" ;
           CHPSALB QC:convention = "1: good, 3: doubtful, 4: bad, 9: No
data" ;
           CHPSALB QC: FillValue = -9999.f ;
     float CHPSALP(N PROF, N BOTTLES) ;
           CHPSALP:long name = "Probe Practical Salinity PSS78" ;
           CHPSALP:Sensor number = 1. ;
           CHPSALP:Sensor type = "SBE4" ;
           CHPSALP:resp_param = "MJ MESSIAS" ;
           CHPSALP:Organism_resp = "UNIVERSITY EXETER" ;
           CHPSALP:units = "psu" ;
           CHPSALP:valid min = 0. ;
           CHPSALP:valid max = 60. ;
           CHPSALP:precision = -9999.;
           CHPSALP: FillValue = -9999.f ;
     float CHPSALP QC(N PROF, N BOTTLES) ;
           CHPSALP QC:long name = "Probe Practical Salinity PSS78
quality flag" ;
           CHPSALP QC:convention = "1: good, 3: doubtful, 4: bad, 9: No
data" ;
           CHPSALP QC: FillValue = -9999.f ;
     float CHOXYLB(N PROF, N BOTTLES) ;
           CHOXYLB:long name = "Bottle dissolved oxygen concentration"
;
           CHOXYLB:resp param = "NMF" ;
           CHOXYLB:Organism resp = "NMF" ;
           CHOXYLB:units = "ml/l" ;
           CHOXYLB:valid min = 0. ;
           CHOXYLB:valid max = 40. ;
           CHOXYLB:precision = -9999.;
           CHOXYLB: FillValue = -9999.f ;
     float CHOXYLB QC(N PROF, N BOTTLES) ;
           CHOXYLB QC:long name = "Bottle dissolved oxygen
concentration quality flag" ;
```

```
CHOXYLB QC:convention = "1: good, 3: doubtful, 4: bad, 9: No
data" ;
           CHOXYLB QC: FillValue = -9999.f ;
     float CHOXYLP(N PROF, N BOTTLES) ;
           CHOXYLP:long name = "Probe dissolved oxygen concentration" ;
           CHOXYLP:Sensor number = 1. ;
           CHOXYLP:Sensor type = "SBE43" ;
           CHOXYLP:resp_param = "MJ MESSIAS" ;
           CHOXYLP:Organism_resp = "UNIVERSITY EXETER" ;
           CHOXYLP:units = "ml/l" ;
           CHOXYLP:valid min = 0. ;
           CHOXYLP:valid max = 40. ;
           CHOXYLP:precision = -9999.;
           CHOXYLP: FillValue = -9999.f ;
     float CHOXYLP QC(N PROF, N BOTTLES) ;
           CHOXYLP_QC:long_name = "Bottle dissolved oxygen
concentration quality flag";
           CHOXYLP QC:convention = "1: good, 3: doubtful, 4: bad, 9: No
data";
           CHOXYLP QC: FillValue = -9999.f ;
     float CHOXYKB(N PROF, N BOTTLES) ;
           CHOXYKB:long name = "Bottle dissolved oxygen concentration"
;
           CHOXYKB:resp param = "NMF" ;
           CHOXYKB:Organism resp = "NMF" ;
           CHOXYKB:units = "micromol/kg";
           CHOXYKB:valid min = 0. ;
           CHOXYKB:valid max = 600. ;
           CHOXYKB: precision = -9999.;
           CHOXYKB: FillValue = -9999.f;
     float CHOXYKB QC(N PROF, N BOTTLES) ;
           CHOXYKB QC:long name = "Bottle dissolved oxygen
concentration quality flag" ;
           CHOXYKB_QC:convention = "1: good, 3: doubtful, 4: bad, 9: No
data";
           CHOXYKB QC: FillValue = -9999.f ;
     float CHOXYKP(N PROF, N BOTTLES) ;
           CHOXYKP:long name = "Probe dissolved oxygen concentration" ;
           CHOXYKP:Sensor number = 1. ;
           CHOXYKP:Sensor type = "SBE43" ;
           CHOXYKP:resp_param = "MJ MESSIAS" ;
           CHOXYKP:Organism_resp = "UNIVERSITY EXETER" ;
           CHOXYKP:units = "micromol/kg";
           CHOXYKP:valid min = 0. ;
           CHOXYKP:valid max = 600. ;
           CHOXYKP:precision = -9999.;
           CHOXYKP: FillValue = -9999.f ;
     float CHOXYKP QC(N PROF, N BOTTLES) ;
           CHOXYKP QC:long name = "Probe dissolved oxygen concentration
quality flag" ;
           CHOXYKP_QC:convention = "1: good, 3: doubtful, 4: bad, 9: No
data" ;
           CHOXYKP QC: FillValue = -9999.f ;
     float CHTMPOB(N PROF, N BOTTLES) ;
           CHTMPOB:long_name = "Oxygen sample temperature ITS-90" ;
           CHTMPOB:resp param = "NMF" ;
           CHTMPOB:Organism resp = "NMF" ;
           CHTMPOB:units = "degree celsius" ;
```

```
CHTMPOB:valid min = -2.;
           CHTMPOB:valid max = 40. ;
           CHTMPOB: precision = -9999.;
           CHTMPOB: FillValue = -9999.f ;
     float CHTMPOB QC(N PROF, N BOTTLES) ;
           CHTMPOB QC:long name = "Oxygen sample temperature ITS-90
quality flag" ;
           CHTMPOB QC:convention = "1: good, 3: doubtful, 4: bad, 9: No
data" ;
           CHTMPOB QC: FillValue = -9999.f ;
// global attributes:
           :ORIGINAL CLI = "blt2d014 cli.nc" ;
           :SHIP NAME = "RRS DISCOVERY" ;
           :SHIP WMO ID = "";
           :PI NAME = "MJ MESSIAS" ;
           :PI ORGANISM = "EXETER UNIVERSITY" ;
           :CRUISE_NAME = "BLT2" ;
           :STATION NUMBER = 14. ;
           :LEG NUMBER = "1" ;
           :DIRECTION = "d" ;
           :DATA PROCESSING ORGANISM = "LPO/IFREMER" ;
           :PROBE TYPE = "SBE 911" ;
           :PROBE NUMBER = 76501 ;
           :REFERENCE DATE TIME = "19500101000000";
           :DATE CREATION = "20220201120644";
           :LAST_UPDATE = "20220201120644" ;
           :COORD SYSTEM = "GEOGRAPHICAL-WGS84" ;
           :BOTTLE VOL = "12L" ;
           :ROSETTE TYPE = "SEABIRD" ;
           :PINGER = "y" ;
           :SAMPLING MODE = "r";
           :DATA MODE = "calibrated" ;
           :SPUN_LINE = -9.;
           :DIST PROBE BOTTOM = 5. ;
           :PRESCRIBED_CTD_VELOCITY = "1 m/s";
           :SOFTWARE_VERSION = " CADHYAC 3.1";
           :COMMENTS = " " ;
```

}

4.6.2 STRUCTURE OF A MATLAB FILE

Each matlab file (1 per station) contains the following data :

Metadata structure :

```
STATION_NUMBER
LATITUDE_BEGIN
LATITUDE_END
LONGITUDE_END
STATION_DATE_BEGIN
```

STATION DATE END

SHIP

ΡI

PI_organism

cruise

probe

name :

{'pres0, pressure for primary sensors (db)'}

{'pres1, pressure for secondary sensors (db)'}

{'temp0, primary temperature ITS-90 (°C)'}

{'temp1, secondary temperature ITS-90 (°C)'}

{'cond0, primary conductivity (mS/cm)' }

{'cond1, secondary conductivity (mS/cm)'}

{'psal0, primary salinity PSS-78 (psu)'}

{'psal1, secondary salinity PSS-78 (psu)'}

{'oxyl0, dissolved oxygen calculated from primary sensors (ml/l)'}

{'oxyl1, dissolved oxygen calculated from secondary sensors (ml/l)'}

{'oxyk0, dissolved oxygen calculated from primary sensors
(micromol/kg)'}

{'oxyk1, dissolved oxygen calculated from secondary sensors
(micromol/kg)'}

{'chemical psal, chemical bottle salinity (psu)'}

{ 'chemical oxyl, chemical bottle dissolved oxygen (ml/l) '}

{ 'chemical oxyk, chemical bottle dissolved oxygen (micromol/kg)'}

{'chemical tempoxy, oxygen sample temperature (°C)'}

{'qc, quality flag, 1: good, 3: doubtful, 4: bad, 6 : uncalibrated, 9: No data'}

The data are in the following variables :

pres0 down

cond1_down

temp1_qc_down

pres1 qc down

temp1 down

pres1_down

oxyk0_qc_up

oxyk0_up

oxyl0_qc_up

psal0_qc_up oxyl0_up

psal0_up

cond0_qc_up

temp0_qc_up cond0_up

oxyk0_qc_down

pres0_qc_up

pres0_up

temp0_up

oxyk0_down

oxyl0_qc_down

oxyl0 down

psal0_qc_down

psal0_down

cond0_qc_down

cond0_down

temp0_qc_down

temp0_down

pres0_qc_down

87

psall_down

psall_qc_down

oxyl1_down

oxyl1_qc_down

oxyk1_down

oxyk1_qc_down

pres1_up

pres1_qc_up

temp1_up

temp1_qc_up

cond1_up

cond1_qc_up

psall_up

psall_qc_up

oxyl1_up

oxyl1_qc_up

oxyk1_up

oxyk1_qc_up

pres_bottle

pres_qc_bottle

temp0_bottle

temp0_qc_bottle

psal0_bottle

psal0_qc_bottle

oxyl0_bottle

oxyl0_qc_bottle

oxyk0_bottle

 $oxyk0_qc_bottle$

temp1_bottle

temp1_qc_bottle

psall_bottle

psall_qc_bottle

oxyl1 bottle

oxyl1_qc_bottle

oxyk1_bottle

oxyk1_qc_bottle

chemical_psal_bottle

chemical_psal_qc_bottle

chemical_oxyl_bottle

 ${\tt chemical_oxyl_qc_bottle}$

chemical_oxyk_bottle

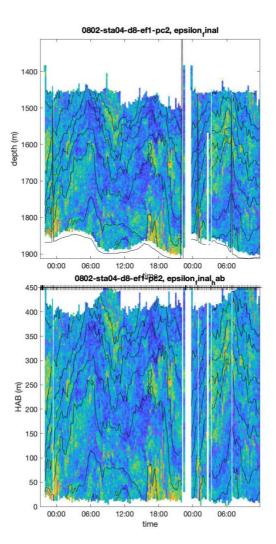
 ${\tt chemical_oxyk_qc_bottle}$

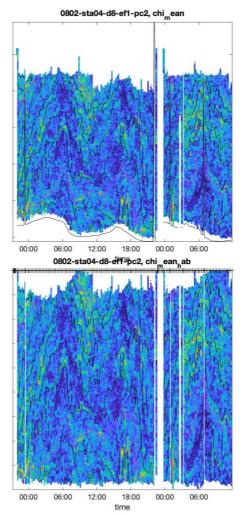
chemical_tempoxy_bottle

```
chemical_tempoxy_qc_bottle
```

5 MICROSTRUCTURE

5.1 Epsilometer


Matthew Alford, Nicole Couto, Sara Goheen, Arnaud Le Boyer, Helen Dufel, Bethan Wynne-Cattanach, Andrea Rodriquez-Marin freudmann, Isabella Franco, Charlotte Bellerjeau


The Epsilometer (or Epsi) is a microstructure profiler built by engineers in the Multiscale Ocean Dynamics group at Scripps Institution of Oceanography. It can be deployed as part of the "Epsifish" from the Fast CTD winch or as a standalone instrument attached to a mooring or other profiler. We deployed Epsilometers in profiling mode from the ship on this cruise. On each deployment, we sampled with two shear probes and two fast-response thermistors allowing us to use the shear and temperature gradient wavenumber spectra to compute the dissipation rate of turbulent kinetic energy (ε) and the dissipation rate of thermal variance (χ) using standard methods.

This year, in order to resolve the tidal phases, we aimed to complete timeseries of 36 hours. We were able to complete six timeseries between 22 hours and 41 hours in duration (Figure 3). During all of the Epsifish deployment, while the ship held position in DP, the fish itself moved up and down canyon with the tide. We profiled in the lower 400 m of the water column, using the altimeter to come within 10 m of the bottom. The motion of the fish is reflected in the lower depth limit of the epsilon data in Figures 13-15. As the tide flows up-canyon, the fish moves into shallower water, and as the tide flows down-canyon the fish moves into deeper water.

Date	Duration	Location
August 2	22 hours	54.22 N, 11.91 W, over ADCP lander location
August 4	35 hours	54.17 N, 11.83 W, over G1 mooring location
August 7	31 hours	54.16 N, 11.81 W, at camera/megacore location
August 8	33 hours	54.18 N, 11.84 W, over MAVS4 mooring location
August 10	28 hours	54.18 N, 11.85 W, 1200 m isobath, near MAVS4 mooring
August 12	41 hours	54.19 N, 11.85 W, 1200 m isobath, near MAVS4 mooring

 TABLE 5: EPSIFISH EVENT LOG

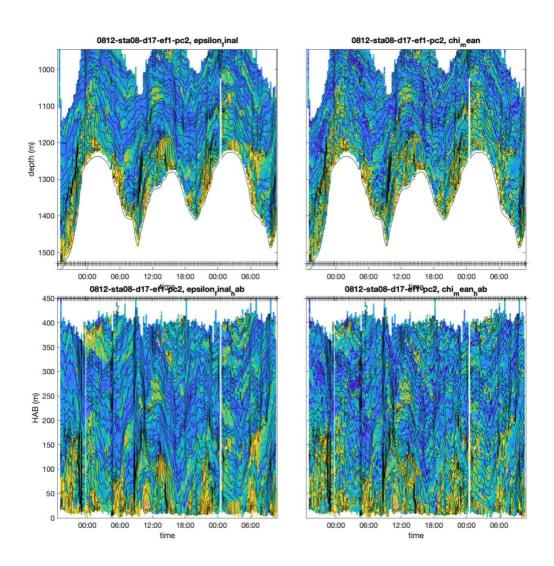


FIGURE 13: EPSILON AND CHI VERSUS PRESSURE AND HEIGHT ABOVE BOTTOM

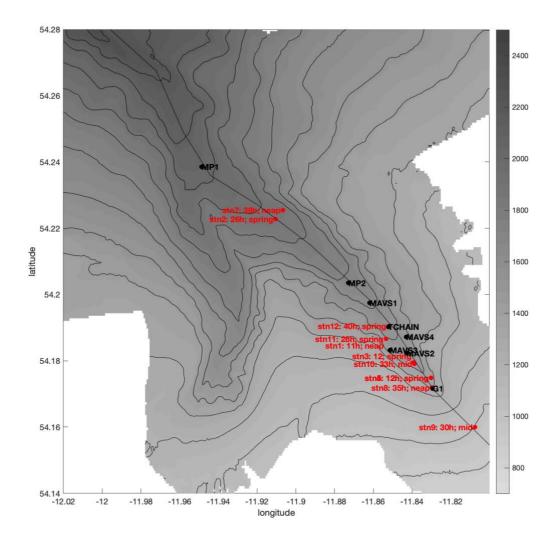


FIGURE 14: EPSIFISH STATION MAP IN RELATION TO MOORING SITES

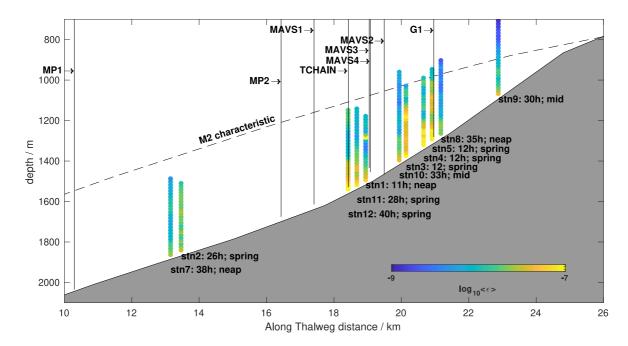


FIGURE 15: CROSS SECTION SHOWING TIME-MEAN EPSILON AT EACH EPSIFISH STATION

5.2 HIGH RESOLUTION PROFILER (HRP3) USE IN BLT3/DY153

Kurt Polzin, Brian Hogue, Alex Forryan, Andrea Rodriguez-Marin Freudmann, Kate Oglethorpe.

FIGURE 16: HRP SAMPLING DURING BLT-3

The High Resolution Profiler (HRP) is a free-fall vertical profiler designed to sample te entire vertical range of spatial variability in ocean velocity, temperature, salinity and density. The freefall configuration eliminates vibrations and extraneous tugging associated with a tether on the instrument (even a loose one). However, autonomy requires onboard decision making for dive termination by release of ballast weights. The task of estimating the entire vertical spectrum of variability is accomplished with two sensor suites: microstructure sensors resolve scales of 1 meter to several millimeters while finestructure sensors resolve vertical scales from around 1 meter to as large as the entire water column.

Microstructure quantities typically represent gradient variances averaged over slightly more than one second in time and are gridded at half-decibar intervals. Estimates of finestructure variables, ie, temperature, salinity and 3-D velocity, are averaged on this same grid. The instrument electronics are housed within two pressure cases, with altimeter card and 12 kHz transponders residing within an auxiliary pressure case that is optically isolated from the main pressure case. The two pressure cases are powered by separate battery packs.

The two data suites are provided by multiple instrument subsystems that are integrated by a Beaglebone UNIX controller. The instrument subsystems include a Rockland Scientific International micro-Rider providing microstructure and CTD data at 64 and 512 Hz sampling rates. The micro-Rider also provides a calibrated 1 Hz pressure signal that the UNIX controller uses for dive control operations. Finescale velocity is provided by a Modular Acoustic Velocity Sensor (MAVS) and complemented by Microstrain IMU. The electronics also include a Trident 200 kHz altimeter for estimating height of the instrument from the bottom

Historically, the major systemic performance issues concern intermittent aborts resulting from the micro-Rider improperly sending pressure data to the Beaglebone controller in a timely manner and communication failures with the altimeter. Efforts to improve communications between the altimeter and Beaglebone controller with new connectors and polypro cables proved successful as no altimeter aborts were encountered. Two instances of early terminations (Dives 4 and 5) were encountered in which the altimeter provided ambiguous data that eventually triggered the dive termination criteria. These are normal behaviour when the altimeter is turned when more than 150m from bottom and the release height is in excess of 50m height above bottom. Aborted profiles associated with the 1 Hz pressure channel (Dives 1, 2, 9, 12 and 22) continue to be problematic.

The 2022 Boundary Layer Turbulence – Recipes cruise (BLT3) represents the fifth deep-ocean use of the High-Resolution Profiler #3. The instrument is out of its development stage. In recognition of this, an effort was made to transition into a more operational status with high level engineers providing support from shore. Two electronics systems were created, referred to as HRP3a and HRP3b below, to provide and plug-and-play option in case repair was required. A total of 22 profiles were obtained, Figure 16. HRP efforts were backstopped by Vertical Microstructure Profie (VMP) capabilities provided by the National Marine Facilities (NMF) personnel. Work was conducted in support of tracer sampling and occurred in conjunction with deployment of a LADCP/CTD rosette system.

HRP	Depth	Pmax	Max(P)	Alt. on	Nominal	Range	Release	Comments
	(m)	[Dbars]	[Dbars]	[Dbars]	range [m]	[m]	code	
01	792	500	382.21	400	50.0	n/a	P abort 2	Out of bounds
02	1122	1050	797.74	975	50.0	n/a	P abort 2	Out of bounds
03	1612	1575	578.78	1475	50.0	n/a	W abort	Unit box hangs
04	1789	1750	1626.27	1625	50.0	44.6	А	Early
05	1984	1962	1838.98	1837	50.0	49.1	А	Early
06	2196	2360*	2145.70	2235	50.0	n/a	Т	
07	2388	2441	2401.70	2290	20.0	19.8	А	
08	2895	2940	2929.44	2800	10.0	9.9	А	
09	2780	2830	319.20	2700	10.0	n/a	P abort 1	No pressure
10	1199	1280	1198.75	1081	10.0	9.8	А	
11	2226	2313	2246.42	2113	10.0	9.9	А	
12	2103	2140	45.37	1975	5.0	n/a	P abort 2	Out of bounds
13	1906	500	500.26	475	10.0	n/a	Р	Switch to HRP3a
14	1728	1760	1735.77	1620	20.0	19.9	А	
15	1760	1790	1763.32	1650	10.0	9.9	А	
16	2313	2335	2335.01	2200	10.0	14.1	Р	Back to HRP3b
17	2400	2725	2441.70	2525	10.0	n/a	Т	Stuck in the mud
18	2577	2689	2610.64	2400	10.0	10.0	А	
19	2416	2476	2405.47	2276	10.0	10.0	А	
20	1635	1675	1624.78	1475	10.0	9.9	А	
21	2834	2900	2879.79	2700	10.0	9.9	А	
22	2836	2900	547.26	2725	10.0	n/a	P abort 2	Out of bounds

TABLE 6: HRP DIVE CONTROL PARTICULARS

TABLE 7: HRP DIVE LOG

Sta	Event	HRP	CTD	Deploy	Lat	Lon	Recover	Lat	Lon
T1-2	140/141	01	04	08-16 09:21:55	55.238379	- 10.090269	08-16 09:54:52	55.236192	- 10.086032
T1-3	146/148	02	05	08-16 12:33:56	55.295297	-10.1491	08-16 13:07:18	55.294651	- 10.147986
T1-5	156/158	03	07	08-16 19:03:03	55.3318	- 10.227503	08-16 20:06:54	55.339587	- 10.206154
T1-6	162/165	04	08	08-16 22:52:48	55.338266	- 10.243403	08-17 00:26:37	55.341729	- 10.231187
T1-7	170/173	05	09	08-17 00:26:37	55.351285	-10.26732	08-17 03:59:36	55.354099	- 10.262462
T1-8	178/181	06	10	08-17 05:55:15	55.366266	- 10.331112	08-17 07:48:43	55.373948	- 10.318558
T1-9	185/189	07	11	08-17 09:53:13	55.425731	- 10.443369	08-17 12:09:17	55.434504	- 10.434369

T4-6	249/251	08	20	08-20 14:26:45	55.083003	- 12.979207	08-20 17:13:10	55.088299	- 12.948567
T4-5	255/259	09	21	08-20 21:51:22	55.441865	- 13.451612	08-21 01:07:25	55.469004	- 13.444995
T2-1	293/296	10	26	08-22 08:42:49	57.448737	-12.8191	08-22 09:59:33	57.442694	- 12.818076
T2-5	324/327	11	33	08-23 09:54:26	57.447347	-10.59456	08-23 11:55:33	57.452212	- 10.596706
T2-6	330/332	12	34	08-23 13:58:21	57.44788	- 10.251386	08-23 14:34:07	57.44865	-10.25445
T3-2	367/368	13	39	08-24 17:37:34	58.294179	- 11.071177	08-24 18:20:31	58.2928.25	-11.0712
T3-1	370/374	14	40	08-24 22:05:26	58.299588	- 11.923711	08-24 23:38:43	58.304357	- 11.912688
T1- 16	384/386	15	43	08-25 16:24:23	56.860145	- 13.214614	08-25 17-57- 49	56.858386	- 13.224263
T1- 14	395/399	16	45	08-25 22:10:09	56.709819	- 12.921611	08-26 00:04:25	56.709819	- 12914367
SO-1	402/413	17	46	08-26 02:27:33	56.510032	- 12.526778	08-26 17:17:27	56.512499	- 12.504544
T4- 10	474/478	18	60	08-29 03:16:43	54.314813	- 12.045654	08-29 05:36:45	54.31662	- 12.036204
T4- 11	481/485	19	61	08-29 06:30:00	54.294576	- 12.027882	08-29 06:30:00	54.300463	- 12.026859
T4- 14	502/506	20	64	08-29 15:00:39	54.200478	- 11.867444	16:23:33	54.19784	- 11.869583
Т9-3	541/545	21	73	08-30 13:08:00	54.750012	- 11.721866	08-30 15:34:36	54.743659	- 11.745897
T9-2	547/551	22	74	08-30 18:43:07	55.159907	-12.00951	08-30 21:13:01	55.151329	- 12.002768

5.2.1 Sensor Subsystem Performance

5.2.1.1 Dive Control

Altimeter based bottom approaches of 2 metres are entirely possible. Prior experience was that early termination of profiles was associated with an absence of data coming into the Beaglebone controller. System performance improved during BLT-1 as connectors on the altimeter and auxiliary pressure cases were renewed and neoprene cables replaced with those having a polypro jacket. Only one altimeter-based abort was experienced when the altimeter failed to report data at start up. This trend continued during BLT-3 in which no altimeter aborts were experienced. Two instances of early terminations (dives 4 and 5) were encountered in which the altimeter provided ambiguous data that eventually triggered the dive termination criteria. These are normal behaviour when the altimeter is turned when more than 150m from bottom of the release height is in excess of 50m height above bottom.

Aborted profiles associated with the 1Hz pressure channel (dives 1, 2, 9, 12 and 22) continue to be problematic. Dive control logic on the Beaglebone aborts a dive if five failures in a row are encountered, in which a 'failure' is either no data transferred in a two second window (abort code 1) or the pressure data are out of bounds (abort code 2, either less than -5 Dbar or greater than 6000 Dbar). Abort code two signals an issue with the serial data transfer. Coincident with these dive aborts are 0-byte length .P data files in the micro-Rider. After the second pressure abort, the pressure case of HRP3b was opened and the clock battery (new as of January 2022) was replaced. It was noted that the mu-metal cover on the micro-Rider was missing all but one of its plastic retaining bolts, resulting in that cover 'flapping in the wind'. After the third abort, the compact flash card was erased. After the fourth, HRP3a was used. Electronic noise with HRP3a was problematic and operations resumed with HRP3b at dive 16. At this juncture it wasn't clear whether the zero byte length .P data files were a systemic issue of the micro-Rider's disk operating system having difficulty utilising the compact flash as a disk, or whether this was merely a symptom of a different problem. This a '-X' was appended to the micro-Rider's AUTOEXEC.BAT file to eliminate recording of .P files on the micro-Rider's compact flash. The hope here was that a corrupt serial data transfer of the 1Hz pressure could be eliminated by reducing the work load of the Micro-Rider's Persistor controller. After the fifth pressure abort the electronics were unshipped from the pressure case and full-scale diagnostic efforts ensued:

- The CF2 boards from HRP3a were placed into HRP3b, electronics rack placed into the pressure case. The unit had a very difficult time running 10-15 minute bench tests.
- The electronics rack was unshipped and 3x15 minute bench tests were completed with *both* the HRP3a and HRP3b end caps. The unit was placed back into the pressure case and failed to complete a bench test.

- The electronics rack was unshipped and it was noted that the blind mate screws on the HRP3b end cap were loose, possinly resulting in a warping of the electronic rack, leading to grounding of the rack with the pressure case. The screws were tightened and the unit placed back into the pressure case. It had a very difficult time completing 10-15 minute bench tests.
- The electronics rack was unshipped and 10x15 minute bench tests were successfully performed.
- The mu-metal covering the micro-Rider electronics was removed, the electronics rack replaced in the pressure case and 10x15 minute profiles were successfully performed. The mu-metal cover was then entirely covered with electrician's tape.
- The electronics rack was unshipped, the fully taped mu-metal cover mounted and 10x15 bench tests were successfully performed.

At the end of this diagnostic effort, electronic noise levels on the unit were consistent with Rockland's specifications. We are led to believe that the pressure aborts result from grounding of the electronics rack with the pressure case. There is some collective memory that this vintage of DOS operating system results in the loss of a data file if power is pulled, explaining 0 byte length .P data files. There was also a watchdog abort (dive 3) indicating that the UNIX controller hung.

5.2.1.2 Finestructure

The finestructure suite consists of a Conductivity-Pressure-Depth (pressure) instrument (CTD), an Acoustic Current Meter (ACM), and Inertial Measurement Unit (IMU: compass, accelerometers and rate gyros in 3-d and a Global Positioning System (GPS) module.

CTD performance

The HRP3 utilise a pumped SeaBird (SBE) 3-4 T/C sensor system and a Keller pressure transducer. The SBE sensor output is routed through the RSI mRider and combined with data from the pressure sensor. This configuration is the standard setup for the Rockland system. The response of the SBE T and C sensors is a function on the pump rate, the time constant of the thermometer, the physical distance between the T and C sensors, and the length and thermal inertia of the C sensor (Lueck and Picklo, 1990; Morrison et al, 1994; Johnson et al, 2007). The T and C sensors on HRP are mounted under the instrument cowling, further complicating the response.

Following Johnson et al. (2007), a time offset of 10 scans (0.156 seconds at 64Hz) for fluid parcels to travel from the temperature sensor to the conductivity sensor was deduced, and a thermal mass time constant for the conductivity cell was estimated. The temperature of the seawater in the conductivity cell may be predicted with the following (in Matlab):

[*b*, *a*] = *butter*(1, thermal mass time constant)

 $T_{\text{cell}} = filter(b, a, Tsbe)$

With a thermal mass time constant of 0.2 seconds. In words, the cell temperature is predicted from a recursive single pole Butterworth filter applied to the measured temperature. Salinity is then derived using the measured conductivity and the filtered temperature data.

A quadrating calibration for the raw pressure data with coefficients (scale factors, bias) was obtained from laboratory measurements at Woods Hole (Kurt Polzin and Jason Smith, operators, June 23, 2022):

$rawP_coefs = [-67.40170]$	0.4036580	-1.3412 <i>e</i> -07]	(HRP3a)
$rawP_coefs = [-118.1120]$	0.3935728	-1.2740 <i>e</i> -07]	(HRP3b)

The bias for both units was changed during the cruise to obtain on deck pressure readings near 0 dBars.

Sensor	Serial number	Calibration date
SBE 03F.320	03-5863	22-Apr-2022
SBE 04C.320	04-4507	13-Apr-2022
SBE 05T.22221	05-8682??	
Keller PA11/80059/600Bar	1053037 (HRP3a)	13.05.2022
Keller PA11/80059/600Bar	1053038 (HRP3b)	13.05.2022

TABLE 8: HRP SENSOR CALIBRATIONS

CTD performance was improved by addressing the exhaust ducting of the pump, which had previously been ported out the top end of the HRP. This is likely not a bad idea, but a practical issue developed in keeping the exhaust duct tubing from collapsing while making small radius turns at the profiler top. The exhaust duct was modified to be consistent with SeaBird specifications and ported out through the HRP nose, at a depth equivalent to the intake. Greatly reduced salinity spiking was noted in comparison to BLT-1 data.

Modular Acoustic Velocity Sensor (MAVS)

The MAVS provides an estimate of travel time difference between 4 pairs of transducers, which are then combined to provide estimates of three-dimensional relative flow field past the sensor. The arrangement of the acoustic paths between the transducer pairs is different from that of the standard MAVS current meter so consequently, a formula specific to HRP is used to derive the 3-D relative velocity from the 4 path speeds:

For each scan of observations, the 4 raw path velocity path estimates (*acmraw*) are corrected for laboratory-derived bias (*acmz*) and scaled to engineering units (m s⁻¹)

$$senvel = .003021 * (acmraw(:, 2:5) - ones(j, 1) * acmz);$$

The scaled and bias-corrected velocity path data (*senvel*) are subsequently passed through a matrix transformation to obtain Cartesian velocity estimates in HRP body coordinates (*hrpvel*):

C =	[3660	3660	.3660	.3660
	.3660	3660	3660	.3660
	.9659	.9659	.9659	.9659];

$$hrpvel = (C * (senvel)^1)^1;$$

The MAVS output represents an estimate of relative flow past the instrument. An estimate of the oceanic velocity is obtained by using the relative velocity estimate and a model of the instrument's response to this relative flow (Schmitt et al, 1988). The Instrument in nearly in equilibrium with the relative flow at long time scales, making the estimate of large vertical scales in the velocity field problematic: integrating small offsets(biases) in the sensor's estimate of velocity can represent large trends in the vertical: a good calibration is required to eliminate such biases.

Even with the laboratory calibration, there exists the likelihood that the biases, which are sensitive to the cross-sectional area of a very high capacitance wire, change with changes in pressure and temperature. Future analysis should start by examining the profiles in relation to trends with that of the shipboard ADCP, but there is no guarantee that the later effort will account for temperature/pressure dependent changes in the bias.

The so-called point mass model of Evans et al (1979) and Schmidt et al (1988) is used to relate measured relative horizontal velocity to estimates of the ocean's horizontal velocity. At large vertical scales (long time scales), the HRP moves with the ocean currents. (This is the assumption behind dropsonde instruments whose lateral displacements while falling are used to deduce the ocean current profile.) This tracking ability is the product of forces that arise on the HRP when there is differential relative flow. In the point mass model, these forces are represented by potential flow theory around the leading end of the instrument; in this theory the force is proportional to the product of the relative horizontal and relative vertical flow (that are both measured by the HRP). An estimate of the time-varying horizontal velocity of the centre of mass of the HRP is thus derived by time integrating Newton's first law: F = ma. (The time integral of accelerating is velocity.) Subsequently, the ocean velocity is obtained by summing the centre of mass velocity profile with the measured relative velocity. An unknown constant of integration results from the time integral. This is estimated by comparing HRP and shipboard ADCP data and/or by estimating the depth-average absolute velocity of the HRP from deployment and recovery positions.

While bias error in the ACM velocity measurements is a concern, its impact is greatly ameliorated by having the HRP spin as it falls. In situ bias errors in the two horizontal relative flow components (in body coordinates) are derived under the assumption that the time-averaged relative horizontal flow measured by the HRP is zero (said another way, there is no correlation between ocean currents and the compass orientation of the HRP during a profile). In practise, the time averaged horizontal currents are subtracted from the MAVS velocity estimates before rotating the data into geographic (east and north) coordinates and applying the point mass model. Any errors in these point mass estimates are manifest in the final data product as signals on the scale (and sense) of the spin rate of the HRP. Bias that varies in time through a dive may be addressed by removing a very-low-pass filtered velocity profile from the raw body-coordinate relative flow estimates prior to rotating to geographic coordinates. Ni similar process has been discovered for correcting the measured relative vertical velocity for sensor bias. Rather, under the assumption that the time-averaged ocean vertical velocity is very small, errors in vertical velocity may be assessed by comparing measured relative flow to the time rate of change in measured pressure. During the cruise, differences between these signals

were observed in the upper 1-200m of profiles. As of this writing it is not evident if the discrepancy is an error in the MAVS data or the measured pressure (or both).

Better agreement between MAVS w and dP/dt on this cruise than in either GOMIX1-3 or BLT-1. There are two possible reasons. The first is the repair of the transducers. The second is a change in the personnel doing the calibrations and a change in the volume of the container used for calibrations as FiXIT personnel used a different *larger*? tub (23" dia x 16" deep compared with 18"x18"x12" deep) with reduced potential for reflections.

MAVS ACM	HRP3 Casts	Zeros	Date	Comment
HRP3a	13-15	[1557.7 -1877.9 142.2 -1720.0]	June 27, 2022	Hogue/Davies
HRP3b	1-12&16-22	[710.6 -1688.6 -49.05 -928.8]	June 27, 2022	Hogue/Davies

TABLE 9: HRP CALIBRATIONS FOR THE MAVS ACOUSTIC CURRENT METER

- The HRP3a string is visually out of alignment.
- Connectors coming out of both stings need to be cleaned up.
- The ACM for HRP3a is currently wired backwards. This needs to be corrected for in post-processing of dives 13-15, a step which, as of writing, has not been taken.

<u>IMU</u>

The motion package in the HRP is a Microstrain, Inc. unit that includes a 3-axis fluxgate compass, 3-axis accelerometer system and a 3-axis rate gryo. Fata from the IMU are streamed to the BeagleBone controller, where they are time stamped and logged. From these observations, the orientation of the instrument relative to Earth's magnetic field and the tilts of the instrument from vertical may be estimated. A complication with the IMU observations was detected during the cruise associated with the (steel) ballast weights. Magnetic fields associated with the weights introduced offsets to the IMU fluxgate compass observations. These errors were addressed during data processing by applying a very low pass time varying adjustment to the x and y compass channels so that the data (x plotted versus y) describe a circle about the origin. BLT-1 featured a new implementation of this sensor, which occasionally does not send a complete data string. The sensor would then pause in the transmission of further data if it were not for the flushing of a buffer. This buffer flushing results in a message of "flush" being

sent to the BeagleBone screen during run time. It is entirely harmless and the dropping of 1 data scan of a sensor running at 25Hz once every 2-5 minutes is a little consequence.

<u>GPS</u>

As noted above, the point-mass model used to relate HRP measured relative flow to ocean velocity profiles includes a depth-independent constant of integration. Independent information is needed to estimate the ocean's absolute velocity. Once approach is to document the deployment and surfacing positions and times of the HRP. From the displacement, an estimate of the depth-average absolute ocean current may be obtained under the assumption that the HRP moves with the ocean flow. Deployment and recovery positions were logged by the bridge officers during the cruise, as were the times of surfacing. The ship's position on recovery of the HRP can differ significantly from HRPs surfacing position, instroducing error in the estimated depth-average ocean veloxity. The HRP carries its own GPS transceiver but this unit is intended primarily for location HRP after surfacing. The GPS unit samples and reports position fixes on rather long time intervals (again, instroducing error in the depth-average ocean velocity). Because the HRP dives were relatively shallow during this cruise, a significant fraction of profiles were within the range of the shipboard ADCP system.Thus depth-averaged ship ADCP data were used to reference the point-mass model HRP velocity profiles.

5.2.1.3 Microstructure

The HRP-3's Microstructure suite consists of two air foil shear probes (μ S), two FP07 fast response thermistors (μ T) and a dual needle conductivity (μ C) probe in the RSI μ Rider subsystem. Electronic noise was problematic for BLT-3, as it was on BLT-1. The noise levels of HRP3a were unacceptably high, resulting in HRP3b being used for the bulk of the cruise despite issues with the dive termination. The shear data are contaminated by noise of an electronic origin with one channel better than the other and shifting characteristics as attempts were made to address the issue. The micro-temperature data are less problematic than the shear. An exception is the appearance of a 27Hz noise spike in (μ T₁) that required a 'notch' filter in processing. The pre-emphasised microconductivity data of HRP3b suffered from high noise levels that were board related on BLT-1. Replacement of the board returned far better data in BLT-3.

The data were processed using the program micro diagnositcs v2.0 with extensive diagnostic tools. The data set was then processed twice. A first pass was used to document the basic

character of the noise, which then informed refinements to the algorithm concerning intergration limits and avoiding vibrational peaks in the shear data. Analytic representations of the noise spectra (P_n) are:

Shear probes: $P_n(f) = A \ 1 \ x \ 10^{-7} \ s^{-2}/cps$

Temperature:
$$P_n(f) = B \ 0.22 \ \text{x} \ 10^{-10} \ \text{x} \ (0.625 \ \text{sf}/FallRate)^{3.25} [sinc(f/512)]^4$$
 $C^2m^{-2} \ / \ \text{cps}$
Conductivity $P_n(f) = C \ 1.4 \ \text{x} \ 10^{-7} \ \text{x} \ f^{1.5} [sinc(f/512)]^4 \ \text{mmho}^{-2} \ / \ \text{cps}$

With *f* being frequency in cycles per second (cps), $sinc(x) = sin(\pi x)/\pi x$ and 512 Hz being the sampling frequency of the microstructure data. The constants [A B C] are likely slowly varying with fall rate and may also vary from dive to dive. Here constants of [A B C]=[1 1 1] were used. The rate of dissipation of turbulent kinetic energy *E* is estimated from formulas assuming isotropic relations between components of the rate of strain tensor a E = 15/2vS with molecular viscosity *v* and *S* representing the variance of the single component of the rate of strain tensor measured by the shear tensor *S*. Integrating over 10 cps, the quoted noise spectra $15/2 \times 1.5 \times 10^{-6}m^2s^{-1} Pn(f) \times 10$ cps translate into dissipation rates of 1.25×10^{-11} W/kg. These are not average electronic noise levels. The quoted noise levels represent those $\frac{1}{2}$ Dbar data segments having the lowest 5-10% of the sample data have contributions from both noise and oceanic signal. The shear noise estimates are very much lower bounds on the average noise. Also note that the quoted values represent what a 'healthy' instrument is capable of. In contrast, the curve fits for temperature and conductivity noise represent the average electronic noise spectra of the system.

After the second round of processing, a mask was developed to discard noisy data. For a normal data set, this mask consists of two steps: visually inspecting for isolated spikes that are more than an order of magnitude larger than their neighbours, then replacing those with a nominal bad data value, such as NaN, and estimating the gradient variance S from two redundant probes Sx and Sy as

 $\label{eq:starsest} \begin{array}{l} \mbox{if}(Sx < 3 \ Sy \ \& \ Sy < 3 \ Sx) \ the \ S=(Sx+Sy)/2; \\ \mbox{else} \\ \mbox{if}(Sx > 3 \ Sy) \ S=Sy; \\ \mbox{if}(Sy>3 \ Sx) \ S=Sx; \\ \mbox{end} \end{array}$

Currently this is accomplished using a program called micro_mask_plus.sta.m. The program provides an estimate of ε and two estimates of χ , one based upon a maximum signal-to-noise ratio algorithm and a second that estimates the measured temperature gradient variance at frequencies smaller than 15 Hz and then adds in the temperature gradient variance in the Kracihnan passive scalar spectrum for frequencies greater than 15 Hz.

Cast	Sx	Sy	T1	T2	C1	Comment
01-10	M1604	M1605	T2026	T2027	C238	Comment
11-13	M2200	M2203	T2026	T2027	C297	Comment
14	M2200	M2203	T1958	T2027	C297	Comment
15-22	M2200	M2203	T1958	T2027	C297	Comment

TABLE 10: HRP MICROSTRUCTURE PROBE USAGE AND ASSESSMENTS

One *in situ* calibration for the thermistor time constants was attempted in BLT-1. This was based upon HRP 14 in a region of high dissipation ($\varepsilon > 10^{-7}$ W/kg) and low salinity gradient. This is assumed to apply to all the probes used in this (BLT-3) experiment. This really need to be re-evaluated as there are significant questions about probe response that could be related to the nibs not projecting far enough from the sensor mount.

TABLE 11: HRP SHEAR PROBE SENSITIVITIES AND CALIBRATION DATES

M1604	0.0624	Feb. 22, 2019	Delaminated during BLT-1. RETIRE
M1605	0.0433	Feb. 25, 2019	Not loving this during BLT-1. RETIRE
M2200	0.0722	Jan. 20, 2020	
M2202	0.0617	Jan. 20, 2020	
M2203	0.0911	Jan. 21, 2020	Sceptical about this number. See scatter plots

TABLE 12: HRP THERMISTOR TIME CONTRAINTS

T1958	0.0089	nominal	
T2026	0.0089	nominal	
T2027	0.0089	nominal	

5.3 VERTICAL MICROSTRUCTURE PROFILER

Alex Forryan, Andrea Rodriguez-Marin Freudmann, Kate Oglethorpe

During DY153/BLT3 a series of microstructure observations were made using two untethered (VMP 6000s SN016 and SN107) freefall profilers manufactured by Rocklands Scientific International. These types of instruments measured profiles of temperature and velocity microstructure (i.e. on the length scales of dissipation of turbulent flows, typically a few millimetres to tens of centimetres), from which the rates of dissipation of turbulent kinetic energy and temperature variance are estimated using methodology based on Oakey (1982); and finescale temperature, salinity and pressure with a Seabird CTD mounted on each instrument. The aim of the BLT microstructure operations was to document the mixing occurring near the bottom boundary eastern slope of the Rockall Trough, primarily focussed on a canyon on the continental slope.

5.3.1 VMP 6000 OPERATIONS

On DY153 a total of 21 VMP 6000 profiles were collected.

CTD	Date	Time	Lat.(°N)	Lon.(°E)	Depth	Comments
		(GMT)			(m)	
12	18/8/22	00:00	53.926844	-11.506604	299	shear 2 to be swapped out
14	18/8/22	04:46	54.093294	-11.678763	383	
15	18/8/22	07:35	54.126931	-11.760774	673	
22 23	21/8/22	05:03	55.800936	-13.930505	2439	
23	21/8/22	11:01	55.915323	-14.083736	2201	
24	21/8/22	13:32	56.010722	-14.210288	1853	
	21/8/22	17:06	56.091274	-14.316125	1515	
	23/8/22	17:20	57.448536	-9.921031	1855	
	23/8/22	20:44	57.448997	-9.765392	1504	
37	24/8/22	03:45	58.30075	-9.77244	1849	shear 1 & 2 rotated to be same
						orientation
	24/8/22	08:26	58.302467	-10.213009	1908	power restarts - data files corrupt
	24/8/22	15:45	58.298763	-11.068169	1903	power restarts again.
	25/8/22	18:47	56.818845	-13.133219	2009	shear 1 noisy
	27/8/22	18:29	56.356898	-10.520915	1778	shear 1 to be swapped out
55	27/8/22	22:44	56.447822	-9.973121	1722	power restarts - data file corrupt
	28/8/22	01:20	56.447948	-9.731161	1590	shear 1 noisy
	29/8/22	09:50	54.235224	-11.9437	1997	
63	29/8/22	12:24	54.222261	-11.91382	1861	
75	30/8/22	12:30	55.561699	-12.303111	2867	shear2 broken
76	31/8/22	13:53	55.571911	-15.274051	1208	
77	31/8/22	16:40	55.472412	-15.198151	1760	

TABLE 13: VMP-6000 DEPLOYMENTS

5.3.2 PROCESSING

All processing scripts used on this cruise were adaptations of those used in previous VMP cruises by the University of Southampton group. A summary of the processing steps is given below:

VMP_firstlook4

Reads to .P file and converts the raw data into physical units. Produces a series of diagnostic plots for the raw un-calibrated VMP data (from XXX.P, produces XXX.mat) and calibrates data (XXX_cal.mat)

VMP_process_seabird4

Processes the VMP seabird data and applies various corrections (despike, filter, ...). Output is saved as a separate matlab file, XXX_dCTD.mat

VMP_process_micro6

Processes the VMP microstructure shear, temperature and conductivity are calibrated by regressing against the processed VMP seabird temperature and conductivity. Output saved as a separate matlab file, XXX_micro.mat

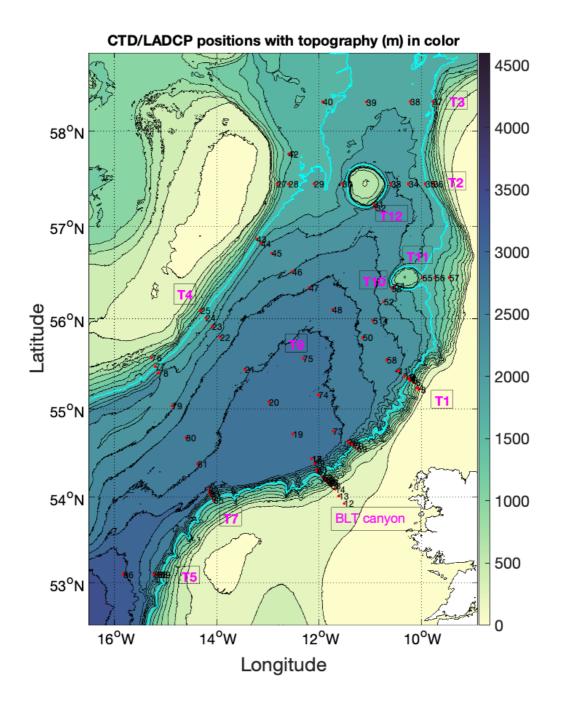
6 WATER SAMPLING AND ANALYSES

6.1 TRIFLUOROMETHYL SULFUR PENTAFLUORIDE (CF₃SF₅) MEASUREMENTS

*Marie-José Messias*¹, *Herlé Mercier*², *Jack Hughes*¹, *Jonathan Crocker and Hannah Green*, Both MAVS moorings and the MP mooring were recovered, serviced and redeployed ¹University of Exeter University, UK and ²CNRS Ifremer Plouzane, France

The University of Exeter objectives were to 1) document the horizontal and vertical spreading of the tracer in the Rockall Trough along CTD/LADCP measurements and 2) to recover the largest amount of tracer for an inventory by unbiased sampling. BLT3- Leg2 undertook the last survey of the long-lived tracer (CF₃SF₅) released in the BLT canyon at 54.22°N &-11.91°E on the 11th of July 2021. The released tracer (CF₃SF₅) dispersion is measured from discrete samples collected from the CTD-rosette. The analysis was performed on board in the Exeter laboratory container installed on the port side of the aft deck.

6.1.2 TRACER SURVEY


By the time of the BLT3-Leg2 study, 13 months after release, the tracer had spread throughout the Rockall Trough. The spread of the tracer was documented by transects running from one side of the basin to the other when possible. In total, 79 casts out of the 89 CTD (figure 17) sampled water for the tracer study along the transects, the numbering and order of which had to follow the vagaries of bad weather or technical problems at the CTD.

6.1.3 SAMPLE COLLECTION

Seawater samples were collected from the 24 niskin bottles (10 litre) mounted on the stainless steel CTD frame provided by NMF. Samples were transferred into 2 litre ground-glass stoppered reagent bottles (figure 17). The transfer was done by using sterile Tygon tubing in order to fill the bottles from the bottom to the top, overflowing 2 litres in order to remove any water that may have been exposed to the atmosphere. After sampling, all samples were immediately stored in the Controlled Temperature (CT) laboratory at a constant 4°C to prevent the sample from heating up and degassing before analysis could be completed.

FIGURE 17: TRACER SAMPLING: SEA WATER SAMPLING IN ACTION (ABOVE) AND LOCATIONS OF CTD AND TRANSECTS (BELOW) WITH BATHYMETRY IN COLOR.

6.1.4 TRACER ANALYSIS TECHNIQUE

Sample analysis was performed as soon as possible by a purge-and-trap gas chromatographic method. The carrier gas – oxygen-free Nitrogen (N_2) – was cleaned by a series of purifying

hydrocarbon, nitrogen and oxygen traps. The water sample was introduced into the system by applying N_2 pressure to the top of the sample bottle, forcing the water to flow through and fill a 1165 cm³ calibrated volume. The measured volume of seawater was then transferred to a purge-and-trap system, entering a sparge tower under vacuum. The water was sparged with an N_2 flow at 120ml/min for 4 minutes and trapped at -110°C in a Unibeads 3S trap (two inches of 1/8 inch diameter tubing) immersed in the headspace of liquid nitrogen.

The purge and trap system was interfaced to an Agilent 6890N gas chromatograph (GC) with an Electron Capture Detector (microECD). The GC was set up similarly to that described by [Smethie et al., 2000]. The traps were heated to 110°C and injected into the GC. The CF₃SF₅ separation was achieved using a 1m Porasil B packed pre-column and a 1.5m CarbographAC main column. A 6-inch molecular sieve post column was used to remove N₂O. The GC N2 carrier flow rate was 30ml/min and the MicroECD temperature was 310°C. The chromatograms shown in Figure 18 were obtained at the GC oven temperature of 110°C. The distribution of the chromatographic peak areas of all analysed samples shown in Figure 19 covers 2 orders of magnitudes.

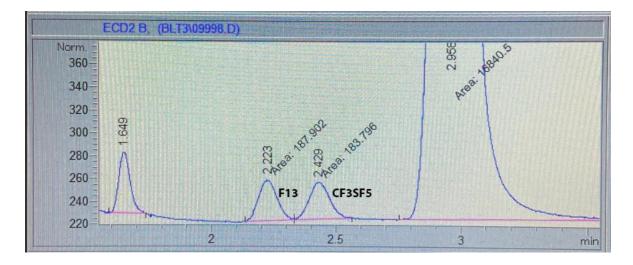


FIGURE 18: CHROMATOGRAM OF A SEAWATER SAMPLES ANALYSED BY THE ANALYTICAL SYSTEM. THE CHROMATOGRAMS GIVES A THE ECD SIGNAL (HZ) AS A FUNCTION OF TIME (MINUTES, X-AXIS). PEAKS AT 2.22, 2.43 AND 2.96 MINUTES ARE F-13 AND CF3SF5 AND CFC-12 RESPECTIVELY

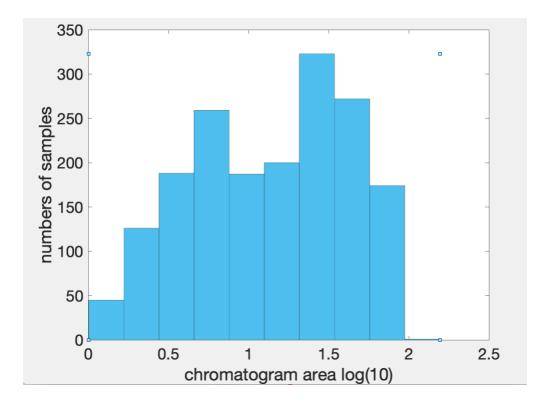


FIGURE 19: DISTRIBUTION OF CHROMATOGRAPHIC PEAK AREAS OF ALL ANALYSED SEAWATER SAMPLES.

6.1.5 CALIBRATION, DETECTION LIMIT AND PRECISION METHODOLOGY

The CF₃SF₅ concentrations in water are calibrated using external gaseous standards of various concentrations to cover the large range of tracer signals (Figure 19). We used working standards supplied by NOAA (Brad Hall, March 2017, CF₃SF₅ at 47.9ppt) and the University of East Anglia (UEA, Andrew Manning, August 2011, CF₃SF₅ at 12ppt, 215ppt and 4.6*10^6ppt) respectively. The NOAA standard is clean air enriched in CF₃SF₅ inside a 29L Aculife-treated aluminium cylinder. The UEA standard in Nitrogen enriched in CF₃SF₅ inside 20L steel cylinders. The CF₃SF₅ concentration of the UEA standard with our instrument. CF₃SF₅ concentrations in air and seawater samples are determined by fitting their chromatographic peak area to multipoint calibration curves, made by injecting known volumes of gas from the working standard to the analytical system. The calibration curves were made by injections of different volumes (0.1, 0.23, 0.3, 0.5, 1, 2, 3, 5, 8 ml) of the working standards.

The changes in the sensitivity of the system were tracked by injections of a fixed volume of standard gas in between stations and used to adjust the calibration curves respectively. The standard repeatability was 2% for the tracer CF₃SF₅. Blank or 'contamination' are estimated from the analysis of tracer free water obtained by sparging a water sample with Nitrogen and

subtracted from the measured concentrations. Sparging efficiency is determined by successive resparges of a single sample until no further compound could be detected. The blank for SF₃SF₅ was zero. The results of these protocols will be applied during the post-cruise data processing required to calculate concentrations accurately, assign uncertainties and perform the data quality control.

6.2 NUTRIENT SAMPLING

Marie-José Messias, Herlé Mercier, Jack Hughes, Jonathan Crocker and Hannah Green, University of Exeter University, UK.

Nutrient samples were taken at a number of stations on DY153 for Malcolm Woodward (Plymouth Marine Laboratory) and Dennis J. McGillicuddy (Woods Hole Oceanography Institute). Table 14: Nutrient sampling and locations describes where and when each sample was collected during the cruise.

Each bottle was labelled with CTD cast number and niskin number prior to sampling the CTD rosette. A bell filter was connected to acid rinsed tubing and connected to each niskin, with the filter being rinsed 3 times. Once the filter was rinsed, the sampling bottle and lid was rinsed 3 times using water directly from the filter. Once the sample had been taken, it was stored in a -80°C freezer for the duration of the cruise, and the filter was emptied and stored in a clean Ziploc bag until required again. It was noted that the water flow through the filter was very slow and that in the future a suitable pump should be used to increase the water flow to speed up the time taken to sample. Once the cruise was completed, the samples were transported in their frozen state to be analysed at Plymouth Marine Laboratory, UK.

Date & Time	Event #	Number of samples	Position	Latitude	Longitude
09/08/2022 15:17	CTD001	3	Leg-1	54.194817	-11.85985
18/08/2022 00:00	CTD012	11	T4-22	53.926826	-11.506611
18/08/2022 02:47	CTD013	11	T4-21	54.011756	-11.614042
18/08/2022 04:42	CTD014	12	T4-20	54.093303	-11.678756

 TABLE 14: NUTRIENT SAMPLING AND LOCATIONS

29/08/2022	CTD059	12	T4-09	54.385378	-12.081423
00:16					
29/08/2022	CTD060	23	T4-10	54.314804	-12.045655
02:46					
29/08/2022	CTD061	15	T4-11	54.294596	-12.027878
06:09					
29/08/2022	CTD062	12	T4-12	54.235219	-11.943698
09:51					
29/08/2022	CTD063	12	T4-13	54.222257	-11.913834
12:20					
29/08/2022	CTD064	12	T4-14	54.200474	-11.867445
14:50					
29/08/2022	CTD065	12	T4-15	54.176721	-11.834996
16:56					
29/08/2022	CTD066	17	T4-17	54.166717	-11.816529
18:47					
29/08/2022	CTD067	17	T4-18	54.160686	-11.807013
20:41					
29/08/2022	CTD068	17	T4-19	54.129306	-11.763265
22:37					

7 MOORING OPERATIONS

Gunnar Voet, Kurt Polzin, Arnaud Le Boyer, Brain Hogue, Hans van Haren (NIOZ), Helen Dufel

Our initial goal for the mooring operations was to recover all four moorings in the water since summer or fall 2021 and to deploy a short-term profiling mooring. In addition, we planned on deploying a Sonardyne prototype lander ADCP.

We switched up the deck operations slightly compared to the summer and fall cruises 2021. The stopper system we used then with just one hook running of a chain attached to an eye bolt on the center line had proved to be a bit worrisome for the synthetic mooring line as it was chafing over the deck during mooring recoveries. This time we brought two cleats, placed them left and right of the center line, and ran two stopper lines (one with a hook, the other one with a slip line) to be able to place connections on the deck edge and thereby protect the mooring line against chafing. This system, while slightly slower to work than just one hook on a chain, worked much better and we saw less damage on the mooring line and its jacket.

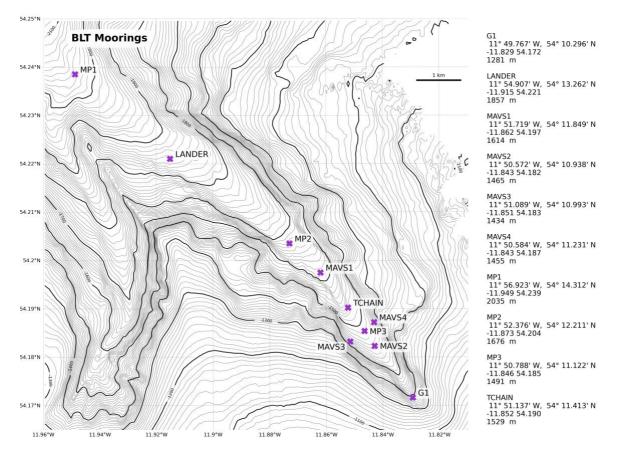


FIGURE 20: BLT MOORING LOCATIONS WITH LAT/LON

Generally, the data return was excellent with all Longranger ADCPs still pinging on recovery and almost all thermistors and all SBE37s functioning throughout the deployment. The only major issue was the moored profiler having motor issues, see next section.

7.1 MOORED PROFILER (MP3/G1) MOORINGS

The recovery of the moored profiler mooring was relatively uneventful and the mooring was safely brought back on board on Aug 2nd. Unfortunately, it turned out that the moored profiler on MP3 only profiled for about 200 profiles. Most likely the drive pin in the motor sheared off after that and the profiler did not crawl any further. We still need to investigate the issue further once the gear arrives back to La Jolla.

Independently of this failure mode and motivated by wanting the ability to run an EpsiFish time series on top of the mooring, we decided not to deploy the moored profiler again and turned the MP mooring into a short velocity mooring (G1) that consisted only of a syntactic foam float with an upward looking Longranger ADCP attached to the releases. We added weights (~65kg) at the bottom of the float to make it stand upright in the water on recovery

which proved to work quite well. G1 was deployed Aug 4th in one pick with a bit of excitement when one of the tag lines got tangled up on the releases. The issue could be resolved by poking the line with a long stick. Mooring G1 was recovered on Aug 10th.

7.2 MODULAR ACOUSTIC VELOCITY SENSOR (MAVS3/MAVS4) MOORINGS

The recovery of MAVS3 on Aug 4th was complicated by a bit of a wuzzle where part of the mooring was looped around itself. Weather conditions were not the easiest with the wind picking up right after release and it took a long time to grapple on the mooring. This may have led to the wuzzle, but it could also have happened on the way to the surface or right when arriving at the surface. Despite the wuzzle we did not see much instrument damage and only a couple thermistors slipped from their initial locations. Our newly designed thermistor clamps worked well.

The recovery of MAVS4 on Aug 8th went very well without any line tangling.

Thermistors on both MAVS moorings performed exceptionally well with only two thermistors terminating early.

For MAVS instrument performance see the dedicated report by Kurt Polzin, WHOI.

7.3 THERMISTOR CHAIN (TCHAIN) MOORING

The TCHAIN recovery on Aug 10th went smoothly. One thermistor slipped (we marked it with black tape). The clock synchronizer was dangling a bit but was still attached. We took it off (and unfortunately popped the pressure case open) on recovery. We took the bottom two thermistors off the release frame and marked their locations with tape on the instruments. The thermistor chain system was sent back to NIOZ for data readout after the ship returned back to Southampton.

7.4 SONARDYNE ADCP LANDER ORIGIN 65 MOORING

The Sonardyne ADCP was deployed on Aug 2nd. We added a 13" Nautilus float with about 15m line for easier recovery. The float was the only visible recovery help which proved to be enough to spot the instrument in the water but only barely so. Initial trilateration attempts of the mooring failed due to firmware issues with the acoustic deckset provided by Sonardyne. After some communication via email we were able to trilaterate prior to recovery. It turned out that the instrument had drifted with the relatively strong westward current at deployment time

(~0.6kts) about 380m to the west from the drop location. The ADCP was recovered on Aug 10th.

The instrument sampled all the way through and collected about 9GB of data. Sonardyne is currently investigating cross-transducer issues that led to noisy data in the bins covering the first few hundred meters away from the instrument.

8 Ship Scientific Systems

Zoltan Nemeth

8.1 CRUISE OVERVIEW

Cruise	Departure	Arrival	Technician(s)
DY153	30/07/2022		Z. Nemeth (zome@noc.ac.uk)
	NOCS UK		

Ship Scientific Systems (SSS) is responsible for operating and managing the Ship's scientific information technology infrastructure, data acquisition, compilation and delivery, and the suite of ship-fitted instruments and sensors in support of the Marine Facilities Programme (MFP).

All times in this report are in UTC.

8.2 SCIENTIFIC COMPUTER SYSTEMS

8.2.1 UNDERWAY DATA ACQUISITION

Data from the suite of ship-fitted scientific instrumentation was aggregated onto a network drive on the ship's file server. This was available throughout the voyage in read-only mode to permit scientists to work with the data as it was acquired. A Public network folder was also available for scientists to share files.

A copy of these two drives are written to end-of-cruise disks that are provided to the Principal Scientist/Data Centre as required.

The data acquisition systems used on this cruise are detailed in the table below. The data and data description documents are filed per system in the *Data* and *Documentation* directories respectively within Ship Systems folder on the cruise data disk.

Data acquisition	Usage	Data products	Directory system name
<i>system</i> Ifremer TechSAS	Continuous	NetCDF	/TechSAS/
		ASCII pseudo-NMEA	
NMF RVDAS	Continuous	ASCII Raw NMEA +	/RVDAS/RAM
		generated NetCDF	/RVDAS/NCC
Kongsberg EA640	Continuous	xyz, redirected to	/Acoustics/EA-640/
		Techsas/RVDAS	
		RAM,NCC	
Kongsberg EM122	Discrete	Kongsberg .all raw and	/Acoustics/EM122/
		RVDAS RAM,NCC	
Kongsberg SIS	Discrete	Kongsberg .all	/Acoustics/EM-710/
(EM710)			
Kongsberg SBP27	Discrete	Raw + SegY	/Acoustics/SBP27
Kongsberg EK80	Discrete	Raw + XYZ + NetCDF	/Acoustics/EK-80
UHDAS (ADCPs)	Continuous	ASCII raw, RBIN, GBIN,	/Acoustics/ADCP/
		CODAS files	
Env_Temp	Continuous	NetCDF + Ascii and	/Env_Temp
		RVDAS RAM	
Sonardyne Ranger2	Discrete	PSONALL to RVDAS	/Acoustics/USBL/
		RAM, NCC, redirected to	
		Techsas/RVDAS RAM	

TABLE 15: UNDERWAY DATA ACQUISITION SYSTEMS

Data desci	ription documents	s (PDF & .doc)	() for each system	s logged data is
located	in	the	below	directory:
/Ship_S n/	ystems/Docum	entation/	IechSAS/Data	_Descriptio
Data /Ship_S	<i>directo</i> ystems/Data/		per	system:

8.2.1.1 Significant Acquisition Events and Gaps

Primary TechSAS logger DY153 mission started on 2022-07-29

Secondary TechSAS logger DY153 mission started on 2022-07-29

RVDAS primary RAM Acquisition started on 2022-07-29

RVDAS secondary RAM Acquisition started on 2022-07-29

Level-C acquisition started on 2022-07-29

RVDAS - NCC: TRUEWIND calculation valid from 2022-07-29 07:15 to 2022-09-05 05:46

RVDAS RAM DY153 Acquisition terminated on 2022-09-05 05:54

TechSAS logger DY153 mission terminated on 2022-09-05

Data gaps:

Acoustic sensor routinely switched off/on during trilateration or mooring release or deployment tests, these events recorded with the eventlogger, data available in Documentation/Eventlogs folder.

Sensor	From:	То:	Length:	Issue:	Reason:
RVDAS	2022-08- 04 12:11:30	2022-08- 04 12:19:49	08min 18sec	Software crashed	
TECHSAS	2022-08- 05 00:31:53	2022-08- 05 16:31:31	16hrs 11min	DY_Ships- Gyro GAP	GAP only in TechSAS
POSMV GPS	2022-08- 08 18:05:27	2022-08- 08 18:09:17	3min 50sec	DY_POSMV*	GPS reset
WAMOS Waveradar	2022-08- 12 20:48:26	2022-08- 13 06:17:40	9hours 29min 14sec	Software crashed	Unknown yet.
WAMOS Waveradar	2022-08- 17 04:24:03	2022-08- 17 05:03:10	39min 7sec	Software crashed	Unknown yet.
WAMOS Waveradar	2022-08- 18 02:08:01	2022-08- 18 04:59:34	2hours 51min 33sec	Software crashed	Unknown yet.

 TABLE 16: UNDERWAY DATA ACQUISITION ISSUES

RVDAS	2022-08-	2022-08-	2min	Planned	Planned Restart
	27	27	4sec	Restart	
	15:57:48	15:58:40			

8.2.2 INTERNET PROVISION

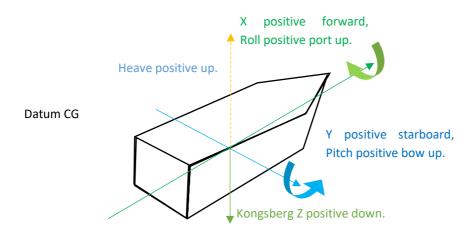
Satellite communications were provided with both the VSAT and Fleet Broadband systems occasionally topped up with 4G if we had a signal.

While underway, the ship operated with bandwidth controls to prioritise business use.

8.3 INSTRUMENTATION

8.3.1 COORDINATE REFERENCE

8.3.1.1 Origin (RRS Discovery)


All coordinates, unless otherwise specified, use the following convention: Central reference point (0,0,0) at Frame 44, centreline, main deck with sense (X+ fwd, Y+ stbd, Z+ down). This CRP is at (32.4m, 0m, -7.4m) with respect to the ship's absolute stern, centreline, baseline.

The ship's survey (Parker Maritime, 2013) defines two systems of reference point using two different central reference points (CRPs):

- 1. (0,0,0) at Frame 0 (aft-most frame, 6m forward from stern), centreline (centre of keel), baseline (ship's bottom-most longitudinal).
- (0,0,0) at ship's centre of gravity (CG), Frame 44 (26.4m forward from Frame 0 at 0.6m framespacing), centreline (centre of keel), main deck (7.4m up from baseline).

The survey coordinate sense is X is positive forward, Y positive starboard, and Z positive down. The coordinate order in the survey is (Y,X,Z), but unless otherwise noted, all coordinates are given elsewhere as (X,Y,Z).

For all scientific purposes, unless otherwise stated, the coordinate system is referenced using the second system, with the CRP at the CG.

FIGURE 21: CONVENTIONS USED FOR POSITION AND ALTITUDE. ON THE DISCOVERY, THE DATUM IS TH CRP AT THE CG

The Kongsberg axes reference conventions are (see Figure 21) as follows:

- 1. X positive forward,
- 2. Y positive starboard,
- 3. Z positive downward.

The rotational sense for the multibeam systems and Seapath is set to follow the convention of Applanix PosMV (the primary scientific position and attitude system), as per Figure 21.

8.3.1.3 Primary Scientific Position and Altitude System

The translations and rotations provided by this system (Applanix PosMV) have the following convention:

- 1. Roll positive port up,
- 2. Pitch positive bow up,
- 3. Heading true,
- 4. Heave positive up.

8.3.2 POSITION, ALTITUDE AND TIME TABLE 17: GPS AND ALTITUDE

System	Navigation (Position, attitude, time)
Statement of	/Ship_Systems/Documentation/GPS_and_Attitude
Capability	
Data product(s)	NetCDF: /Ship_Systems/Data/TechSAS/NetCDF/
	Pseudo-NMEA: /Ship_Systems/Data/TechSAS/NMEA/
	Raw NMEA: /Ship_Systems/Data/RVDAS/RAM/
	NCC: /Ship_Systems/Data/RVDAS/NCC

Data description	/Ship_Systems/Documentation/TechSAS /Ship_Systems/Documentation/RVDAS			
Other documentation	/Ship_Systems/Documentation/GPS_and_Attitude			
Component	Purpose	Outputs	Headline Specifications	
Applanix PosMV	Primary GPS and attitude.	Serial NMEA to acquisition systems and multibeam	Positional accuracy within 2 m. With L2 correction from CNAV3050 within 0.15 m.	
Kongsberg Seapath 330	Secondary GPS and attitude.	Serial and UDP NMEA to acquisition systems and multibeam	Positional accuracy within 1 m. With L2 correction from Fugro within 0.15m.	
Oceaneering CNav 3050	Correction service for primary and secondary GPS and dynamic positioning.	Correction to primary GPS	Positional accuracy within 0.15 m.	
Fugro Seastar / MarineStar	Correction service for primary and secondary GPS and dynamic positioning.	Correction to secondary GPS	Positional accuracy within 0.15 m.	
Meinberg NTP Clock	Provide network time	NTP protocol over the local network.	Time accuracy within microseconds	

8.3.3 OCEAN AND ATMOSPHERE MONITORING SYSTEMS

8.3.3.1 SURFMET

TABLE 18: SURFMET

System	SURFMET (Surface water and atmospheric monitoring)
Statement of	/Ship_Systems/Documentation/Surfmet
Capability	
Data product(s)	NetCDF: /Ship_Systems/Data/TechSAS/NetCDF/
	Pseudo-NMEA: /Ship_Systems/Data/TechSAS/NMEA/
	Raw NMEA: /Ship_Systems/Data/RVDAS/NMEA/
	NCC: /Ship_Systems/Data/RVDAS/NCC
Data description	/Ship_Systems/Documentation/TechSAS
	/Ship_Systems/Documentation/RVDAS
Underway events	/Ship_Systems/Documentation/Surfmet
and other	
documentation	

Calibration info	See Ship Fitted Sensor sheet for calibration info for each				
	sensor.				
Component	Purpose	Outputs			
Inlet temperature	Measure temperature of water at	Serial to Interface Box			
probe (SBE38)	hull inlet				
Drop keel temperature probe (SBE38)	Measure temperature of water in drop keel space	Analogue to NUDAM			
Thermosalinograph (SBE45)	Measure temperature, salinity, conductivity and sound velocity at sampling board	Serial to Interface Box			
Interface Box (SBE 90402)	Signals management	Serial to Moxa			
Debubbler	Reduces bubbles through instruments.	No recorded output			
Transmissometer (CST)	Measure of transmittance	Analogue to NUDAM			
Fluorometer (WS3S)	Meausure of fluorescence	Analogue to NUDAM			
Flowmeter (Litremeter)	Measure of flow	Analogue to NUDAM			
Air temperature and humidity probe (HMPxxx)	Temperature and humidity at met platform	Analogue to NUDAM			
Ambient light sensors (PAR, TIR)	Ambient light and energy at met platform	Analogue to NUDAM			
Barometer (PTB210)	Atmospheric pressure at met platform	Analogue to NUDAM			
Anemometer (Windsonic)	Wind speed and direction at met platform	Analogue to NUDAM			
NUDAM	A/D converter	Serial NMEA to Moxa			
Moxa	Serial to UDP converter	UDP NMEA to Surfmet VM			
Surfmet Virtual Machine	Data management	UDP NMEA to TechSAS, RVDAS			

The NMF Surfmet system was run throughout the cruise, excepting times for cleaning, entering and leaving port, and whilst alongside. Please see the separate information sheet for details of the sensors used and whether their recorded data have calibrations applied or not.

Surface Water Sampling Board Maintenance

All underway events are recorded in the undervay.pdf in:

/Ship_Systems/Documentation/Surfmet

The system was cleaned prior to the cruise on 2022-07-26.

TSG Data Acquisition valid from: 2022-08-01 10:25 (49° 44.78N, 006° 37.08W)

TSG Data Acquisition paused (Killybeg) 2022-08-14 19:25 (54° 12.70N, 011° 18.45W)

TSG Data Acquisition restarted 2022-08-16 08:45 (55° 14.30N, 010° 05.42W)

TSG Data Acquisition terminated: 2022-09-03 11:55 (51°00.22N, 011°10.61W)

72227 litre seawater pumped through the TSG!

8.3.3.2 Wave Radar

System	WAMOS Wave Radar				
Statement of	/Ship_Systems/Documentation/Wamos				
Capability					
Data product(s)	NetCDF: /Ship_Systems/Da	ta/TechSAS/NetCDF/			
	Raw NMEA: /Ship_Systems	s/Data/RVDAS/RAM/			
	NCC: /Ship_Systems/Data/I	RVDAS/NCC			
Data description	/Ship_Systems/Documentati	on/TechSAS			
	/Ship_Systems/Documentati	on/RVDAS			
Other	/Ship_Systems/Documentati	on/Wamos			
documentation					
Component	Purpose	Outputs	Headline		
			Specifications		
Rutter	Measure wave height,	Summary statistics			
OceanWaves	direction, period and	in NMEA to			
WAMOS	spectra.	TechSAS and			
		RVDAS.			
		Spectra files.			
RS Aqua REX	Non-contact wave height	Data to RVDAS			
Waveradar	measurement				
Furuno Radar	Measures radar reflection	Radar data to			
	on sea surface.	WAMOS.			

 TABLE 19: WAMOS WAVE RADAR

The wave radar magnetron requires annual replacement. Following replacement, WAMOS needs to collect wave data within 5 km of another wave height sensor over the full range of sea-states in order to derive wave height calibration coefficients for the new magnetron. This reference dataset can be derived by examining the ship's track for wave buoys and downloading their data. The sensor was out calibration during the cruise. Only collecting data in a short period for calibration and test purpose.

```
8.3.4 HYDROACOUSTIC SYSTEMS

TABLE 20: HYDROACOUSTIC SYSTEMS

System Acoustics
```

Statement of Capability	/Ship_Systems/Documentation/Acoustics					
Data product(s)	Raw: /Ship_Systems/Data/Acoustics NetCDF (EA640, EM122cb): /Ship_Systems/Data/TechSAS, /Ship_Systems/Data/RVDAS NMEA (EA640, EM122cb): /Ship_Systems/Data/RVDAS					
Data description	/Ship_Systems/Documentati	on/Acoustics				
Other	/Ship_Systems/Documentati	on/Acoustics				
documentation						
Component	Purpose	Outputs	Operation			
10/12 kHz Single beam (Kongsberg EA-640)	Primary depth sounder	NMEA over serial, raw files	Continuous Triggered by K-Sync			
Kongsberg EK-80 Fishradar	Split beam scientific echo sounder	Raw, XYZ, NetCDF	Discrete			
Kongsberg SIS (EM122)	Multibeam Deep Water sounder	Kongsberg .all	Discrete			
2.5–6.5 kHz Sub- bottom Profiler (Kongsberg SBP- 27)	Multi-frequency echogram to provide along-track sub- bottom imagery.	BMP, raw, SEGY files, optional water column data.	Discrete			
Drop keel sound velocity sensor	Provide sound velocity at transducer depth	Value over serial to Acoustics System.	Continuous			
Sound velocity profilers (Valeport Midas, Lockheed XBT)	Direct measurement of sound velocity in water column.	ASCII pressure vs sound velocity files. Manually loaded into Kongsberg SIS or Sonardyne Ranger2.	Discrete (See deployment event log, below)			
75 kHz ADCP (Teledyne OS75)	Along-track ocean current profiler	(via UHDAS)	Continuous Free running			
150 kHz ADCP (Teledyne OS150)	Along-track ocean current profiler	(via UHDAS)	Continuous Free running			

8.3.4.1 Equipment Specific Comments

ADCPs

Path	of	ADCP	data	on	the	cruise	datastore:
/Ship	_Syst	ems/Dat	a/Acous	stics/	ADCP		

Attribute	Value
Acquisition software	UHDAS
Frequencies used	75 kHz (3 beams), 150 kHz

Running mode	Free-running untriggered by K-Sync
Configuration details	os150: Narrow band 40 bins, length 8m, 4m blanking, os75: narrow band, 60 bins, length 16m, 8m blanking Bottom tracking with was run from leaving Southampon from 2022-07-30 07:15 to 2022-07-31 18:21 approaching Irish waters, then used Narrowband with water tracking mode from 2022-08-02 04:16:00 to 2022-08-14 17:50 steaming to Killybeg Ports of Call. 2022-08-14 17:52 switched to Bottom Tracking mode until 2022-08-15 06:37 to Killybegs. After Killybegs ports of call ADCP's are running with Bottom tracking from 2022-08-15 16:41 to 2022-08-16 20:06 then switched to Water Tracking mode 2022-08-16 20:07 to 2022-09-03 15:08 and after the system ran on Bottom Tracking Mode until end of recording: 2022- 09-04 15:36 Survey name: DY153.

EM-122 Configuration and Surveys

Path of Multibeam data on the cruise datastore: /Ship_Systems/Data/Acoustics/EM-122

Item	X(m, + Forward)	Y(m, + Starboard)	Z(m, +Down)
Tx transducer	39.910	0.885	7.426
Rx transducer	35.219	-0.005	7.438
Att 1 (Applanix)	0.00	0.00	0.00
Att 2 (Seapath)	0.00	0.00	0.00
Waterline (distance from Att 1 to Waterline)			1.64

Item	Roll (deg)	Pitch (deg)	Yaw (deg)
Tx transducer	0.07	0.15	0.05
Rx transducer	0.05	0.37	359.98
Att 1 (Applanix)	-0.10	0.00	-0.85
Att 2 (Seapath)	0.00	0.00	0.00

Survey information – note any particular transducer settings (e.g. beam spacing) in comments, Applanix PosMV used for providing position and attitude data.

Survey Site Name	SIS Survey Name	Datetime Start	Total time of Logging	Vessel survey speed (kts)	SVP(s) Used (Filename)	Comments
English Channel	em122- dy153- test	2022-07-29 13:56	35:50:26 hh:mm:ss	0-12	Default 20220419_0 72900_salini ty_03500.as vp	72 lines
North Atlantic	Em122- dy153a	2022-08-01 12:01:01	16:14:52 hh:mm:ss	0-12	Default 20220419_0 72900_salini ty_03500.as vp	34 lines
Rockall Trough	Em122- dy153b	2022-08-02 04:17:59	104:58:57 hhh:mm:ss	0-12	Default 20220419_0 72900_salini ty_03500.as vp after line 197 SVP from CTD001	236 lines
Rockall Trough	Em122- dy153c	2022-08-10 12:35:06	445:48:44 hhh:mm:ss	1-11	SVP from CTD001, CTD010, CTD032, CTD046, CTD048 CTD075 CTD086	992 lines
Rockall Trough to English Channel	Em122- dy153d	2022-09-02 17:05:28	hh:mm:ss	6-12	CTD086	Xx lines

Data processed daily with CARIS HIPS&SHIPS version 11 and with MB-System version 5.5.

Path of processed data on the cruise datastore

/Ship_Systems/Data/Acoustics/EM-122/Caris_processed

/Ship_Systems/Data/Acoustics/MB-System_processed_multibeam_data

EM-710 Configuration and Surveys

Path of Multibeam data on the cruise datastore: /Ship_Systems/Data/Acoustics/EM-710

Item	X(m, + Forward)	Y(m, + Starboard)	Z(m, +Down)
Tx transducer	37.570	-1.994	7.425
Rx transducer	36.819	-2.051	7.427
Att 1 (Applanix)	0.00	0.00	0.00
Att 2 (Seapath)	0.00	0.00	0.00
Waterline (distance from Att 1 to W/L)			1.63

Item	Roll (deg)	Pitch (deg)	Yaw (deg)
Tx transducer	-0.07	0.33	0.22
Rx transducer	0.01	0.12	359.7
Att 1 (Applanix)	-0.14	-0.40	-1.00
Att 2 (Seapath)	0.00	0.00	0.00

Survey information – note any particular transducer settings (e.g. beam spacing) in comments, Applanix PosMV used for providing position and attitude data.

Survey Site Name	SIS Survey Name	Datetime Start	Total time of Logging	Vessel survey speed (kts)	SVP(s) Used (Filename)	Comments
English Channel	dy153- test	2022-07-29 13:54:48	22:31:36 hh:mm:ss	0-12	Default 20220419_0 72900_salini ty_03500.as vp	45 lines

Data processed daily with CARIS HIPS&SHIPS version 11 and with MB-System version 5.5.

Path of processed data on the cruise datastore

/Ship_Systems/Data/Acoustics/EM-710/Caris_processed

USBL Configuration and Deployments

Path of USBL calibration information on the cruise datastore: /Ship_Systems/Data/Acoustics/USBL

Attribute		Value
Number	of	See the Eventlogger Acoustic Events section.
deployments		
Datetime of	last	2019-08-15 12:41:24
CASIUS		
Starboard	Head	See in the included Casius report
1DRMS		
Port Head 1DRM	ЛS	See in the included Casius report

SBP27 Configuration and Surveys

Path of SBP27 calibration information on the cruise datastore: /Ship_Systems/Data/Acoustics/SBP27

Item	X(m, + Forward)	Y(m, + Starboard)	Z(m, +Down)
Tx transducer	39.919	-1.014	7.425
Rxtransducer(EM122 RX)	35.219	-0.005	7.438
Att 1 (Applanix)	0.00	0.00	0.00
Att 2 (Seapath)	0.00	0.00	0.00
Waterline (distance from Att 1 to Waterline)			1.64

Item	Roll (deg)	Pitch (deg)	Yaw (deg) (heading)
Tx transducer	0.06	-0.11	0.04
Rx transducer	0.05	0.37	359.98
Att 1 (Applanix)	0.00	0.00	0.00
Att 2 (Seapath)	0.00	0.00	0.00

Data in RAW and SEGY format recorded mainly during the second part of the cruise for details please see the Acoustic Eventlog.

Path of processed data on the cruise datastore

/Ship Systems/Data/Acoustics/SBP27

8.3.5 OTHER SYSTEMS

8.3.5.1 Cable Logging and Monitoring

Winch activity is monitored and logged using the CLAM system.

8.3.5.2 VSAT and FBB Satellite Internet

TABLE 21: VSAT USAGE

DATE	Total	Total	Max	Max
	Inbound	Outbound	IN	OUT
	(MB)	(MB)		
2022-07-29	12021	3639	2.81	1.44
2022-07-30	13877	8320	3.43	1.89
2022-07-31	24038	11838	4.43	1.75
2022-08-01	26686	10328	4.62	2.05
2022-08-02	22277	8628	4.82	1.84
2022-08-03	29389	9805	5.10	1.78
2022-08-04	37081	11240	5.23	1.82
2022-08-05	45794	11204	6.22	1.87
2022-08-06	46547	13507	7.25	1.90
2022-08-07	32291	12329	6.41	1.92
2022-08-08	36498	12004	7.42	1.87
2022-08-09	31957	9973	7.00	1.82
2022-08-10	30477	9077	7.07	1.75
2022-08-11	30866	9210	6.48	1.87
2022-08-12	39799	10356	7.25	1.74
2022-08-13	35775	9460	6.83	1.64
2022-08-14	34747	9108	7.11	1.65
2022-08-15	21437	7064	6.91	1.57
2022-08-16	27933	7512	6.95	1.48
2022-08-17	30567	7488	7.51	1.70
2022-08-18	24664	7588	6.37	1.68
2022-08-19	21995	7095	6.87	1.70
2022-08-20	24284	7430	5.50	1.77
2022-08-21	23120	8786	6.27	1.83
2022-08-22	23026	8779	6.85	1.80
2022-08-23	23336	10089	6.06	1.74
2022-08-24	24249	9367	5.63	1.88

2022-08-25	28557	10424	6.15	1.75
2022-08-26	28529	8940	5.91	1.71
2022-08-27	25176	7319	6.68	1.61
2022-08-28	20392	7414	6.13	1.49
2022-08-29	17109	8869	2.84	1.54
2022-08-30	24276	8675	4.67	1.73
2022-08-31	25120	9529	5.63	1.74
2022-09-01	27075	10297	5.67	1.80
2022-09-02	26007	10635	6.10	1.81
2022-09-03	24394	9046	6.39	1.81
2022-09-04	26848	9325	6.37	1.77