CRUISE REPORT FOR THE HUDSON MISSION HUD 2008-037

Leg 1: Sept 23-Oct 1, Leg 2 : Oct 1-Oct 15

Scientific staff Susan Abbott, EC (Leg 2) Carol Anstey, ORMS, ERD (Leg 2) Jay Barthelotte, EOS, OSD (Leg 1) Rick Boyce, EOS, OSD (Leg 1) Lindsay Brager, Dal. Univ. (Leg 1) Kate Collins, OSD (Leg 1) Shaun Gelati, Dal. Univ. (Leg 2) Adam Hartling, EOS, OSD (Leg 1) Erica Head, ORMS, ERD (Legs 1, 2) Stephanie Howitt, Dal. Univ. (Leg 2) Randy King, EOS, OSD (Leg 1) Miguel Angel Morales Maqueda, Univ. Liverpool, UK (Leg 1) Tim Perry, ORMS, ERD (Legs 1, 2) Marc Ringuette, ORMS, ERD (Leg 2) Bob Ryan, EOS, OSD (Legs 1,2) Jeffrey Spry, ORMS, ERD (Leg 2) George States, OSD, BIO (Leg 2) Sarah Wong, Dal. Univ. (Leg 1)

Objectives

The main objectives of the mission were:

- to obtain synoptic fall observations of the hydrography and the distributions of nutrients, phytoplankton, zooplankton and bacteria along three sections on the Scotian Shelf and one in Cabot Strait, i.e. to carry out the fall Atlantic Zone Monitoring Programme (AZMP).
- to retrieve and deploy moorings along a portion of the Halifax Line in the slope waters of the central Scotian Shelf and to take hydrographic profiles and collect water samples at mooring stations. This part of the programme was in collaboration with members of the UK RAPID-WAVE (West Atlantic Variability Experiment) programme.

Additional objectives were:

- to carry out hydrographic, chemical and biological sampling at stations in the Gully and Roseway Basin, on the Halifax Line Extension (to HL14), and at stations along transects across the NE Channel and St Anns Bank
- to examine the vertical distribution of mesozooplankton at depths of up to 1000 m beyond the shelf-break
- to investigate the vertical distribution of macroplankton (e.g. krill) in NE Channel, the shelf basins, the Gully and Cabot Strait
- to record acoustic backscattering along the ship's track
- to deploy/recover moorings at inner shelf stations of the Halifax Section (OTN moorings)

- to identify and enumerate birds during transit between stations and lines
- to collect and preserve water samples for analysis of carbon dioxide concentration
- to retrieve a 'whale listening' mooring in the Gully and to deploy a new one
- to collect stage V *Calanus finmarchicus* at their overwintering depths at stations on the Western Scotian Shelf, for measurements of lipid content
- to investigate the effect of ship direction and speed on the vessel mounted ADCP and its estimation of current speed
- to compare the estimates of oxygen concentration from the CTD sensors with those made by Winkler titrations of water samples
- to test a newly constructed MVP package and its tow characteristics

Summary of mission accomplishments

All of the stations of the main AZMP lines were sampled, so that the first major objective, the core AZMP sampling, was successfully completed. All but one of the moorings on extended Halifax Section was recovered, and part of the one that did not release was recovered by dragging. The hydrographic and water sampling associated with the mooring programme were carried out, so that the second major objective was largely successfully completed. Additional stations were sampled as required by the additional objectives stated above and all objectives were achieved.

During the first leg of the cruise the mooring work in the slope waters of the Halifax Line was done in collaboration with the scientists from the UK "RAPID" programme. All but one of the moorings was recovered. The release on this latter mooring (RS6) did respond, and appeared to release the package, but nothing came to the surface. Dragging was attempted, which retrieved only the surface float, the top part of the wire and one of the scientific instruments. The remainder of the package remained unmoved, with the acoustic release still responding. It was decided that a longer dragging wire would be required to get back more of this mooring and the Chief Scientist agreed to undertake this second dragging effort on the second leg, after the dragging wire had been extended back at BIO on Oct. 1 (see Appendix A).

CTD profiles were collected and water sampling was also carried out along with some biological net sampling at all of the mooring site stations, and at the shelf stations of the Halifax Line. During the first leg there were also trials of a newly built MVP, including testing of the dive depths achieved at different vessel speeds and the ship's ADCP system was monitored to test its performance in measuring current speeds at different vessel speeds and in different vessel orientations (see Appendix B). Also during Leg 1 an extensive comparison was made of the performance of the oxygen sensors on the CTD probe versus the results of Winkler titrations made on water samples from discrete depths (see Appendix C) and salinity samples were also run (see Appendix D).

The first part of the second leg of the mission was to the western Scotian Shelf and Northeast Channel, with sampling along the Browns Bank and PS line. The PS (Peter Smith) Line was run in order to examine the fluxes of nutrients into and out of the Gulf of Maine via this route (no project report provided). A BIONESS tow was conducted in the channel to the north of Browns Bank to collect copepods (*C. finmarchicus*) for lipid analysis and Multi-net (vertically stratified) tows were done at stations beyond the shelf-break to examine the abundance and depth distribution of overwintering *C. finmarchicus*. There was sampling at one station beyond the shelf-break to the NE of the Browns Bank Line (RL6), but sampling at RL5 had to be abandoned, because of bad weather. Over the next 36 h, the ship transited to Cabot Strait, and jogged along a NW-SE course in the lee of the Cape Breton highlands, waiting for the storm to die down. There was then AZMP sampling along the Cabot Strait Line and at 5 stations along a section that crosses St Anns Bank in a region which has recently been designated an "Area Of Interest" (AOI) and which may in future become a Marine Protected Area. The section included stations from the Bank itself (~60 m depth) out to the Laurentian Channel (~350 m depth). Following this, there was AZMP sampling along the Coulsbourg Line, and similar sampling at three stations across the mouth of the Gully and at one in the Gully itself. An attempt was made in the Gully to recover a "whale-listening" mooring, but communication could not be established with its release. Another similar mooring was deployed, however (see Appendix E).

After the work had been completed in the Gully region, the ship moved back towards the RS6 site to drag for the mooring that had failed to release during the first leg. In fact, however, the vessel arrived in the area at night (when dragging could not be done), so a CTD/biological station was done at HL13. The next day the position of the RSB6 was checked, via communicating with its release, which was still responding and still indicating that it had released its package. Dragging operations were then commenced. The weather was good and the mooring was hooked by circling the dragging wire around it. All but the bottom ~100 m of the mooring wire was recovered, which included another 3 scientific instruments and two sets of floats. Unfortunately, however, several important instruments were on the remaining 100 m of wire; they are still there. The observations made at HL13 suggested that HL14 should be sampled, which was done, and the course was then set to RL5 to sample at the station which had previously been abandoned because of bad weather. En route, there was sampling at another station in the deep waters beyond the shelf-break. The sampling in the deep water will constitute a contribution to a new international programme (BASIN), which includes a investigation of connections among plankton populations throughout the N Atlantic.

Throughout the cruise, except in the Marine Protected Area of the Gully, acoustic backscatter signals were collected at two frequencies to determine the vertical distribution and abundance of macrozooplankton (see Appendix F) and when the ship was under way, during the daylight hours, surveys for pelagic birds was carried out from the bridge (see Appendix G (first leg) and Appendix H (second leg)). In addition to the AZMP sampling, samples were collected along main AMZP lines (the Halifax, Browns Bank, Cabot Strait and Louisbourg Lines), by post-graduate students from Dalhousie University to measure carbon dioxide concentrations (see Appendix I).

Summary bridge log for the Hudson mission 2011-043

Date	Event	Station_name	Lat	Long	Depth	Comments
23-Sep-11	1	OTN1	44.3474	-63.3066	127	RECOVER MOORING
23-Sep-11	2	OTN1	44.3475	-63.3057	127	REDEPLOY MOORING
23-Sep-11	3	OTN2	44.2496	-63.1667		RECOVER MOORING
23-Sep-11	4	OTN2	44.2493	-63.1668		REDEPLOY MOORING
23-Sep-11	5	OTN3	44.1344	-63.0334		RECOVER MOORING
23-Sep-11	6	OTN3	44.1341	-63.0315		REDEPLOY MOORING
23-Sep-11	7	HL2	44.2700	-63.3200	146	RING NET 1 -1
24-Sep-11	8	HL2	44.2694	-63.3198	146	RING NET 1 -2
24-Sep-11	9	HL2	44.2704	-63.3189	146	CTD 1
24-Sep-11	10	RS1	42.8553	-61.6321		RECOVER MOORING
24-Sep-11	11	RS2	42.7354	-61.5621		RECOVER MOORING
24-Sep-11	12	RS3	42.6537	-61.4559		RECOVER MOORING
24-Sep-11	13	RS4	42.5558	-61.3712		RECOVER MOORING
24-Sep-11	14	RS5	42.3904	-61.2697		RECOVER MOORING
24-Sep-11	15	HL8	42.3628	-61.3414	3411	CTD 2
25-Sep-11	16	HL8	42.3623	-61.3423	3411	MULTINET 1
25-Sep-11	17	HL9	42.2001	-61.1674	4000	CTD 3
25-Sep-11	18	HL9	42.1998	-61.1668	4000	MULTINET 2
25-Sep-11	19	HL10	42.0303	-61.0649	4145	CTD 4
26-Sep-11	20	HL10	42.0301	-61.0651	4145	MULTINET 3
26-Sep-11	21	HL10	42.0246	-61.0454	4145	MVP TEST 1
26-Sep-11	22	HL11	41.7801	-60.9074	4490	CTD 5
26-Sep-11	23	HL11	41.7787	-60.8930	4490	MULTINET 4
26-Sep-11	24	RS6	42.1927	-60.9753	3878	RECOVER MOORING (PARTIAL)
26-Sep-11	25	RS5	42.3933	-61.2949	3826	MOORING RELEASE TEST
26-Sep-11	26	RS5	42.3910	-61.2795	3826	REDEPLOY MOORING
26-Sep-11	27	RS4	42.3828	-61.2792		MOORING RELEASE TEST 2
26-Sep-11	28	RS4	42.5583	-61.3693		REDEPLOY MOORING
26-Sep-11	29	HL7	42.5333	-61.4325		RING NET 2 -1
26-Sep-11	30	HL7	42.5274	-61.4396		RING NET 2 -2
26-Sep-11	31	HL7	42.5310	-61.4330		CTD 6
27-Sep-11	32	HL7	42.5312	-61.4416		MULTINET 5
27-Sep-11	33	HL6.7	42.6180	-61.5166		CTD 7
27-Sep-11	34	HL6.7	42.6184	-61.5171		MULTINET 6
27-Sep-11	35	HL6.7	42.5615	-61.4584		MVP TEST 2
27-Sep-11	36	HL6.7	42.3763	-61.2894		END MVP 2
28-Sep-11	37	HL12	41.4129	-60.6802		CTD 8
28-Sep-11	38	HL12	41.4075	-60.6777		MULTINET 7
28-Sep-11	39	RS6	42.1770	-61.0098		MOORING RELEASE TEST
28-Sep-11	40	RS6	42.1822	-61.0032		REDEPLOY MOORING
28-Sep-11	41	RS6A	42.2052	-61.1523		DEPLOY MOORING
29-Sep-11	42	HL6.3	42.7334	-61.6165	1685	CTD 9

29-Sep-11	43	HL6.3	42.7323	-61.6152		MULTINET 8
29-Sep-11 29-Sep-11	44	HL6.3	42.7325	-61.6195		MVP TEST 3
29-Sep-11	45	HL6	42.8492	-61.7331	1033	RING NET 3 -1
29-Sep-11 29-Sep-11	46	HL6	42.8435	-61.7419	1055	RING NET 3 -2
29-Sep-11	47	HL6	42.8505	-61.7321	1033	CTD 10
29-Sep-11 29-Sep-11	48	HL6	42.8495	-61.7366	1033	MULTINET 9
29-Sep-11 29-Sep-11	49	RS1	42.8327	-61.6220	1000	MOORING RELEASE TEST
29-0ep-11	49	K31	42.0327	-01.0220		4
29-Sep-11	50	RS1	42.8524	-61.6333		REDEPLOY MOORING
29-Sep-11	51	RS2	42.7387	-61.5726		REDEPLOY MOORING
29-Sep-11	52	RS3	42.6433	-61.4590		MOORING RELEASE TEST
						5
29-Sep-11	53	RS3	42.6569	-61.4554		REDEPLOY MOORING
29-Sep-11	54	RS3	42.6568	-61.4715		ACOUSTIC SPHERE
29-Sep-11	55	HL5.5	42.9304	-61.8204		RING NET 4 -1
29-Sep-11	56	HL5.5	42.9315	-61.8265		CTD 11
29-Sep-11	57	HL5.5	42.9374	-61.8231	518	MVP TEST 4
30-Sep-11	58	HL5	43.1815	-62.0949		RING NET 5 -1
30-Sep-11	59	HL5	43.1819	-62.0939		RING NET 5 -2
30-Sep-11	60	HL5	43.1842	-62.0932	100	CTD 12
30-Sep-11	61	HL4	43.4777	-62.4519	83	RING NET 6 - 1
30-Sep-11	62	HL4	43.4776	-62.4539	86	RING NET 6 - 2
30-Sep-11	63	HL4	43.4766	-62.4554	86	CTD 13
30-Sep-11	64	HL3	43.8825	-62.8811	266	RING NET 7 - 1
30-Sep-11	65	HL3	43.8835	-62.8815	266	RING NET 7 - 2
30-Sep-11	66	HL3	43.8852	-62.8832	262	CTD 14
30-Sep-11	67	HL2	44.2687	-63.3222	169	RING NET 8 - 1
30-Sep-11	68	HL2	44.2702	-63.3249	169	RING NET 8 - 2
30-Sep-11	69	HL2	44.2745	-63.3278	169	CTD 15
01-Oct-11	70	HL1	44.3985	-63.4494	82	RING NET 9 - 1
01-Oct-11	71	HL1	44.3985	-63.4496	82	RING NET 9 - 2
01-Oct-11	72	HL1	44.3995	-63.4504	87	CTD 16
02-Oct-11	73	RL1	43.2517	-65.0501	165	RING NET 10 - 1
02-Oct-11	74	RL1	43.2521	-65.0502	165	CTD 17
02-Oct-11	75	RL1	43.2519	-65.0661	165	BIONESS TOW 1
02-Oct-11	76	BBL1	43.2494	-65.4812	65	RING NET 11 - 1
02-Oct-11	77	BBL1	43.2483	-65.4898	62	CTD 18
02-Oct-11	78	BBL2	43.0003	-65.4828	120	RING NET 12 - 1
02-Oct-11	79	BBL2	42.9999	-65.4841	122	CTD 19
02-Oct-11	80	BC-CJ	42.9082	-66.0331	156	BIONESS TOW 2
02-Oct-11	81	BC-CJ	42.9122	-66.0113	150	CTD 20
02-Oct-11	82	BC-CJ	42.9138	-66.0095	144	RING NET 13 - 1
02-Oct-11	83	BC-CJ	42.9125	-66.0121	154	RING NET 13 - 2
02-Oct-11	84	BBL3	42.7587	-65.4773	102	RING NET 13 - 3
02-Oct-11	85	BBL3	42.7569	-65.4763	101	CTD 21
03-Oct-11	86	PS1	42.4202	-65.7485	100	RING NET 14 - 1
03-Oct-11	87	PS1	42.4219	-65.7488	100	CTD 22
			40.0400	05 0444	004	
03-Oct-11	88	PS2	42.3408	-65.8114	201	CTD 23

03-Oct-11	90	PS4	42.2717	-65.8762	229	RING NET 15 - 1
03-Oct-11	90 91	PS4	42.2717	-65.8751	229	CTD 25
03-Oct-11	91	PS5	42.2702	-65.8987	238	CTD 25
03-Oct-11	92	PS6	42.2001	-65.9385	230	RING NET 16 - 1
03-Oct-11	93	PS6	42.2001	-65.9338	228	CTD 27
03-Oct-11	94 95	PS7	42.1594	-65.9697	225	CTD 28
03-Oct-11	95 96	PS8	42.1394	-66.0486	225	RING NET 17 - 1
03-Oct-11	90 97	PS8	42.1198	-66.0356	205	RING NET 17 - 2
03-Oct-11	97	PS8	42.1132	-66.0407	203	CTD 29
03-Oct-11	98	PS9	42.0602	-66.0812	96	CTD 29 CTD 30
03-Oct-11	100	PS10	41.9903	-66.1401	93	RING NET 18 - 1
03-Oct-11	100	PS10	41.9902	-66.1397	93	CTD 31
03-Oct-11	101	BBL4	42.4502	-65.4798	102	RING NET 19 - 1
03-Oct-11	102	BBL4 BBL4	42.4502	-65.4800	102	CTD 32
03-Oct-11 03-Oct-11	103	BBL4 BBL5	42.4500	-65.5006	203	RING NET 20 - 1
03-Oct-11 03-Oct-11	104		42.1298	-65.5008	203	CTD 33
		BBL5				
04-Oct-11	106 107	BBL6 BBL6	41.9997	-65.5096	1081 1083	RING NET 21 - 1 CTD 34
04-Oct-11			42.0008	-65.5156		
04-Oct-11	108	BBL6	41.9995	-65.5107	1085	MULTINET 10
04-Oct-11	109	BBL7	41.8677	-65.3495	2000	RING NET 22 - 1
04-Oct-11	110	BBL7	41.8680 41.8815	-65.3628 -65.3568	2000	RING NET 22 - 2
04-Oct-11	111	BBL7			2000	CTD 35
04-Oct-11	112	BBL7	41.8813	-65.3583	2000	CTD 36
04-Oct-11	113	BBL7	41.8620	-65.3833	2000	MULTINET 11
04-Oct-11	114	RL6	42.3197	-63.8707	1889	CTD 37
04-Oct-11	115 116	RL6	42.3202	-63.8696	1880 82	MULTINET 12 RING NET 23 - 1
07-Oct-11	117	CSL1	46.9565	-60.2202 -60.2182	83	CTD 38
07-Oct-11 07-Oct-11	117	CSL1	46.8533 47.0198		83 181	RING NET 24 - 1
07-Oct-11	118	CSL2		-60.1185		CTD 39
07-Oct-11 07-Oct-11	119	CSL2 CSL3	47.0128 47.1000	-60.1087	182 336	RING NET 25 - 1
07-Oct-11 07-Oct-11	120	CSL3 CSL3	47.1000	-59.9918 -59.9799	344	CTD 40
07-Oct-11	121	CSL3	47.0987	-59.9799	344	BIONESS 3
07-Oct-11	122	CSL3 CSL4	47.0000	-59.7637	470	BIONESS 4
07-Oct-11	123	CSL4 CSL4	47.2550	-59.7809	441	RING NET 26 - 1
07-Oct-11	124	CSL4	47.2701	-59.7765	441	CTD 41
07-Oct-11 08-Oct-11	125	CSL4 CSL5	47.4319	-59.5655	441	RING NET 27 - 1
08-Oct-11	120	CSL5 CSL5	47.4313	-59.6474	480	RING NET 27 - 2
08-Oct-11	127	CSL5	47.4333	-59.5658	480	CTD 42
08-Oct-11	120	CSL6	47.5804	-59.3413	265	RING NET 28 - 1
08-Oct-11	130	CSL6	47.5837	-59.3422	265	CTD 43
08-Oct-11	130	STAB5	46.4172	-58.8754	350	RING NET 29 - 1
08-Oct-11	131	STAB5	46.4172	-58.8705	376	CTD 44
08-Oct-11	132	STAB5	46.4103	-58.8558	370	BIONESS 5
08-Oct-11	133	STAB5	46.2966	-59.0708	155	RING NET 30 - 1
08-Oct-11	134	STAB4	46.2951	-59.0683	155	CTD 45
08-Oct-11	135	STAB4	46.2351	-59.2001	92	RING NET 31 - 1
08-Oct-11	130	STAB3	46.2166	-59.1985	92	CTD 46
08-Oct-11	137	STAB3	46.1076	-59.3611	67	RING NET 32 - 1
00-001-11	130	STADZ	40.1070	-09.0011	07	NING NET 32 - 1

08-Oct-11	139	STAB2	46.1077	-59.3625	66	CTD 47
08-Oct-11	140	STAB1	45.9991	-59.5289	60	RING NET 33 - 1
08-Oct-11	141	STAB1	45.9977	-59.5297	59	CTD 48
08-Oct-11	142	LL1	45.8307	9689.000	94	RING NET 34 - 1
				0		
08-Oct-11	143	LL1	45.8320	-59.8515	94	CTD 49
08-Oct-11	144	LL2	45.6595	-59.7012	140	RING NET 35 - 1
08-Oct-11	145	LL2	45.6592	-59.7038	138	CTD 50
09-Oct-11	146	LL3	45.4893	-59.5186	142	RING NET 36 - 1
09-Oct-11	147	LL3	45.4891	-59.5166	151	RING NET 36 - 2
09-Oct-11	148	LL3	45.4897	-59.5187	144	CTD 51
09-Oct-11	149	LL4	45.1611	-59.1777	105	RING NET 37 - 1
09-Oct-11	150	LL4	45.1555	-59.1763	107	CTD 52
09-Oct-11	151	LL5	44.8206	-59.8498	207	RING NET 38 - 1
09-Oct-11	152	LL5	44.8200	-58.8489	227	CTD 53
09-Oct-11	153	LL6	44.4811	-58.5092	69	RING NET 39 - 1
09-Oct-11	154	LL6	44.4813	-58.5081	70	CTD 54
09-Oct-11	155	LL7	44.1304	-58.1832	690	MULTINET 13
09-Oct-11	156	LL7	44.1286	-58.1774	764	RING NET 40 - 1
09-Oct-11	157	LL7	44.1260	-58.1798	791	RING NET 40 - 2
09-Oct-11	158	LL7	44.1254	-58.1797	776	CTD 55
09-Oct-11	159	LL8	43.7785	-57.8277	2800	RING NET 41 - 1
09-Oct-11	160	LL8	43.7791	-57.8298	2800	CTD 56
09-Oct-11	161	LL8	43.7796	-57.8317	2850	MULTINET 14
10-Oct-11	162	LL9	43.4692	-57.5285	3500	RING NET 42 - 1
10-Oct-11	163	LL9	43.4678	-57.5275	3500	CTD 57
10-Oct-11	164	LL9	43.4613	-57.5260	3600	MULTINET 15
10-Oct-11	165	H MOORE-ING	43.9322	-58.9214		DEPLOY MOORING
10-Oct-11	166	GULD3	44.0458	-59.0339	500+	BIONESS 6
10-Oct-11	167	GULD3	44.0251	-59.0366	448	RING NET 43 - 1
10-Oct-11	168	GULD3	44.0199	-59.0416	465	CTD 58
10-Oct-11	169	SG23	43.8692	-58.7433	1000	RING NET 44 - 1
10-Oct-11	170	SG23	43.8671	-58.7432	960	RING NET 44 - 2
10-Oct-11	171	SG23	43.8656	-58.7468	850	RING NET 44 - 3
11-Oct-11	172	SG23	43.8640	-58.7480	850	CTD 59
11-Oct-11	173	GULD4	43.8098	-58.9100	1800	RING NET 45 - 1
11-Oct-11	174	GULD4	43.8108	-58.9131	1800	CTD 60
11-Oct-11	175	GULD4	43.8057	-58.9103	1800	MULTINET 16
11-Oct-11	176	SG28	43.7105	-59.0099	1000	RING NET 46 - 1
11-Oct-11	177	SG28	43.7080	-59.0069	1000	CTD 61
11-Oct-11	178	HL13	41.0435	-60.4443	4924	CTD 62
12-Oct-11	179	HL13	41.0415	-60.4457	4900	MULTINET 17
12-Oct-11	180	RS6	42.2043	-61.1057	3500	RECOVER MOORING M1782
13-Oct-11	181	HL14	40.6748	-60.2147	5000	CTD 63
13-Oct-11	182	HL14	40.6826	-60.2470	5000	MULTINET 18
13-Oct-11	183	HL14RL5A	41.9091	-62.6487	3200	CTD 64
13-Oct-11	184	HL14RL5A	41.9091	-62.6558	3200	MULTINET 19
14-Oct-11	185	RL5	42.6198	-64.0800	933	CTD 65
	100	ILU I	72.0130	04.0000	555	

14-Oct-11	186	RL5	42.6155	-64.0853	950	MULTINET 20
14-Oct-11	187	HL3	43.8698	-62.8962	272	BIONESS 7
14-Oct-11	188	HL2	44.2695	-63.3203	158	RING NET 47 - 1, 47 - 2
14-Oct-11	189	HL2	44.2698	-63.3217	170	RING NET 47 - 3
14-Oct-11	190	HL2	44.2698	-63.3227	176	SECCHI DISC
14-Oct-11	191	HL2	44.2713	-63.3229	174	CTD 66

Summary of sampling at AZMP and other stations

1. <u>CTD profiles</u>: CTD profiles were collected at all stations. As well as recording temperature, depth and salinity, the CTD was also equipped with an *in situ* and an oxygen sensor, and with Niskin bottles. Water samples were collected at selected depths at all CTD stations. These were used to determine: dissolved oxygen, extracted chlorophyll, nutrients, bacterial abundance and phytoplankton composition. POC, PON and HPLC pigment samples and samples for determination of absorption spectra were also taken at the surface. Not all measurements were made on all water samples or on all profiles. (Total number of CTD profiles = 66)

2. <u>Vertical net tows</u>: At all AZMP stations, and some of the other stations, a 200 μ m mesh ring net was towed vertically to collect mesozooplankton. Vertical ring net tows using a 76 μ m mesh were taken at stations HL1 to HL7 of the Halifax Line. Tows were to the bottom, or 1000 m. (Total number of vertical net tow stations = 47)

3. <u>BIONESS tows</u>: 0.5 x 0.5 m model, fitted with 233 μ m mesh. 1 in the channel to the north of Browns Bank, 1 in Roseway Basin, 2 in Cabot Strait, 1 in the Laurentian Channel off St Anns Bank, 1 in the Gully, and 1 in Emerald Basin. (Total stations sampled =7, maximum of 5 depth ranges per station)

4. <u>MULTI-NET tows</u>: 0.5 x 0.5 m model, fitted with 202 μ m mesh. 4 off the western Scotian Shelf, 3 off the eastern Scotian Shelf, 1 in the Gully region, 11 on the extension of the Halifax Section (HL6-HL14) and one in transit between HL14 and the western Scotian Shelf. (Total stations sampled = 20, 5 depth ranges per station)

CTD	EVEN	STN	ID_TAG	DEPTH	CTD	EVENT	STN	ID_TAG	DEPTH
	I								
1	9	HL2	382251	146	32	103	BBL4	382660	98
1	9	HL2	382252	146	32	103	BBL4	382661	80
1	9	HL2	382253	104	32	103	BBL4	382662	60
1	9	HL2	382254	104	32	103	BBL4	382663	50
1	9	HL2	382255	80	32	103	BBL4	382664	40
1	9	HL2	382256	80	32	103	BBL4	382665	30
1	9	HL2	382257	60	32	103	BBL4	382666	21
1	9	HL2	382258	60	32	103	BBL4	382667	11
1	9	HL2	382259	50	32	103	BBL4	382668	2
1	9	HL2	382260	50	33	105	BBL5	382669	194

Water sampling depths and ID numbers for CTD profiles

1	9	HL2	382261	39	33	105	BBL5	382670	151
1	9	HL2	382262	39	33	105	BBL5	382671	99
1	9	HL2	382263	30	33	105	BBL5	382672	81
1	9	HL2	382264	30	33	105	BBL5	382673	60
1	9	HL2	382265	20	33	105	BBL5	382674	51
1	9	HL2	382266	20	33	105	BBL5	382675	41
1	9	HL2	382267	10	33	105	BBL5	382676	29
1	9	HL2	382268	10	33	105	BBL5 BBL5	382677	23
1	9	HL2	382269	3	33	105	BBL5 BBL5	382678	10
1	9	HL2	382209	3	33	105	BBL5 BBL5	382679	3
1	9	HL2	382270	3	33	103	BBL5 BBL6		1096
1	9	HL2	382272	3	34	107	BBL6	382680 382681	751
1	9	HL2		3	34	107	BBL6		499
1	9	HL2	382273	3	34	107		382682	249
	9 15		382274				BBL6	382683	
2		HL8	382275	3445	34	107	BBL6	382684	100
	15	HL8	382276	3000	34	107	BBL6	382685	80
2	15	HL8	382277	2499	34	107	BBL6	382686	61
2	15	HL8	382278	2000	34	107	BBL6	382687	50
2	15	HL8	382279	1499	34	107	BBL6	382688	40
2	15	HL8	382280	1000	34	107	BBL6	382689	30
2	15	HL8	382281	500	34	107	BBL6	382690	21
2	15	HL8	382282	250	34	107	BBL6	382691	9
2	15	HL8	382283	100	34	107	BBL6	382692	3.5
2	15	HL8	382284	80	35	111	BBL7	999999	NO BOTTLES
2	15	HL8	382285	60	36	112	BBL7	382693	1879
2	15	HL8	382286	50	36	112	BBL7	382694	1000
2	15	HL8	382287	40	36	112	BBL7	382695	751
2	15	HL8	382288	31	36	112	BBL7	382696	502
2	15	HL8	382289	21	36	112	BBL7	382697	250
2	15	HL8	382290	10	36	112	BBL7	382698	100
2	15	HL8	382291	2.5	36	112	BBL7	382699	80
3	17	HL9	382292	3947	36	112	BBL7	382700	60
3	17	HL9	382293	3500	36	112	BBL7	382701	50
3	17	HL9	382294	3000	36	112	BBL7	382702	40
3	17	HL9	382295	2500	36	112	BBL7	382703	30
3	17	HL9	382296	2001	36	112	BBL7	382704	20
3	17	HL9	382297	1501	36	112	BBL7	382705	10
3	17	HL9	382298	1000	36	112	BBL7	382706	4
3	17	HL9	382299	501	37	114	RL6	382707	1884
3	17	HL9	382300	250	37	114	RL6	382708	1499
3	17	HL9	382301	101	37	114	RL6	382709	1002
3	17	HL9	382302	81	37	114	RL6	382710	501
3	17	HL9	382303	61	37	114	RL6	382711	251
3	17	HL9	382304	54	37	114	RL6	382712	100
3	17	HL9	382305	40	37	114	RL6	382713	80
3	17	HL9	382306	30	37	114	RL6	382714	60
3	17	HL9	382307	20	37	114	RL6	382715	50
3	17	HL9	382308	11	37	114	RL6	382716	40
3	17	HL9	382309	2	37	114	RL6	382717	30

4	40	111.40	000040	44.45	07	444	D LA	000740	00
4	19	HL10	382310	4145	37	114	RL6	382718	20
4	19	HL10	382311	3500	37	114	RL6	382719	10
4	19	HL10	382312	3000	37	114	RL6	382720	3
4	19	HL10	382313	2500	38	117	CSL1	382721	75
4	19	HL10	382314	2001	38	117	CSL1	382722	60
4	19	HL10	382315	1499	38	117	CSL1	382723	50
4	19	HL10	382316	1001	38	117	CSL1	382724	40
4	19	HL10	382317	500	38	117	CSL1	382725	31
4	19	HL10	382318	250	38	117	CSL1	382726	21
4	19	HL10	382319	99	38	117	CSL1	382727	11
4	19	HL10	382320	80	38	117	CSL1	382728	2.6
4	19	HL10	382321	60	39	119	CSL2	382729	171
4	19	HL10	382322	51	39	119	CSL2	382730	150
4	19	HL10	382323	40	39	119	CSL2	382731	100
4	19	HL10	382324	31	39	119	CSL2	382732	80
4	19	HL10	382325	20	39	119	CSL2	382733	60
4	19	HL10	382326	11	39	119	CSL2	382734	49
4	19	HL10	382327	3	39	119	CSL2	382735	41
5	22	HL11	382328	4511	39	119	CSL2	382736	30
5	22	HL11	382329	4000	39	119	CSL2	382737	20
5	22	HL11	382330	3500	39	119	CSL2	382738	9
5	22	HL11	382331	3001	39	119	CSL2	382739	3
5	22	HL11	382332	2500	40	121	CSL3	382740	336
5	22	HL11	382333	2001	40	121	CSL3	382741	200
5	22	HL11	382334	1501	40	121	CSL3	382742	152
5	22	HL11	382335	1000	40	121	CSL3	382743	100
5	22	HL11	382336	500	40	121	CSL3	382744	80
5	22	HL11	382337	250	40	121	CSL3	382745	61
5	22	HL11	382338	101	40	121	CSL3	382746	50
5	22	HL11	382339	80	40	121	CSL3	382747	41
5	22	HL11	382340	61	40	121	CSL3	382748	31
5	22	HL11	382341	51	40	121	CSL3	382749	20
5	22	HL11	382342	40	40	121	CSL3	382750	10
5	22	HL11	382343	30	40	121	CSL3	382751	2.5
5	22	HL11	382344	20	41	125	CSL4	382752	455
5	22	HL11	382345	11	41	125	CSL4	382753	301
5	22	HL11	382346	2	41	125	CSL4	382754	199
6	31	HL7	382347	2731	41	125	CSL4	382755	150
6	31	HL7	382348	2700	41	125	CSL4	382756	101
6	31	HL7	382349	2500	41	125	CSL4	382757	81
6	31	HL7	382350	2400	41	125	CSL4	382758	61
6	31	HL7	382351	2250	41	125	CSL4	382759	51
6	31	HL7	382352	2000	41	125	CSL4	382760	40
6	31	HL7	382353	1850	41	125	CSL4	382761	30
6	31	HL7	382354	1651	41	125	CSL4	382762	20
6	31	HL7	382355	1500	41	125	CSL4 CSL4	382763	11
6	31	HL7	382355	1250	41	125	CSL4 CSL4	382763	2
6	31	HL7	382357	1000	42	123	CSL4 CSL5	382765	468
			002001	1000	<u>۲</u>	120	0010	002100	100

6	31	HL7	382359	500	42	128	CSL5	382767	200
6	31	HL7	382360	375	42	128	CSL5	382768	151
6	31	HL7	382361	250	42	128	CSL5	382769	101
6	31	HL7	382362	101	42	128	CSL5	382770	81
6	31	HL7	382363	80	42	120	CSL5	382770	61
6	31	HL7	382364	60	42	120	CSL5	382772	51
6	31	HL7	382365	51	42	120	CSL5	382772	41
6	31	HL7	382366	41	42	128	CSL5 CSL5	382774	31
6	31	HL7		31	42	128	CSL5 CSL5		20
-			382367					382775	
6	31	HL7	382368	20	42	128	CSL5	382776	10
6	31	HL7	382369	11	42	128	CSL5	382777	2
6	31	HL7	382370	3	43	130	CSL6	382778	247
7	33	HL6.7	382371	2319	43	130	CSL6	382779	200
7	33	HL6.7	382372	2000	43	130	CSL6	382780	150
7	33	HL6.7	382373	1501	43	130	CSL6	382781	99
7	33	HL6.7	382374	1001	43	130	CSL6	382782	81
7	33	HL6.7	382375	751	43	130	CSL6	382783	61
7	33	HL6.7	382376	501	43	130	CSL6	382784	51
7	33	HL6.7	382377	250	43	130	CSL6	382785	41
7	33	HL6.7	382378	100	43	130	CSL6	382786	30
7	33	HL6.7	382379	80	43	130	CSL6	382787	20
7	33	HL6.7	382380	61	43	130	CSL6	382788	10
7	33	HL6.7	382381	50	43	130	CSL6	382789	2.5
7	33	HL6.7	382382	41	44	132	STAB5	382790	364
7	33	HL6.7	382383	30	44	132	STAB5	382791	300
7	33	HL6.7	382384	20	44	132	STAB5	382792	200
7	33	HL6.7	382385	11	44	132	STAB5	382793	152
7	33	HL6.7	382386	1	44	132	STAB5	382794	101
8	37	HL12	382387	4721	44	132	STAB5	382795	80
8	37	HL12	382388	4501	44	132	STAB5	382796	60
8	37	HL12	382389	4000	44	132	STAB5	382797	50
8	37	HL12	382390	3850	44	132	STAB5	382798	40
8	37	HL12	382391	3501	44	132	STAB5	382799	30
8	37	HL12	382392	3000	44	132	STAB5	382800	20
8	37	HL12	382393	2800	44	132	STAB5	382801	11
8	37	HL12	382394	2501	44	132	STAB5	382802	2.3
8	37	HL12	382395	2001	45	135	STAB4	382803	146
8	37	HL12	382396	1500	45	135	STAB4	382804	125
8	37	HL12	382397	1299	45	135	STAB4	382805	100
8	37	HL12	382398	1001	45	135	STAB4	382806	80
8	37	HL12	382399	750	45	135	STAB4	382807	60
8	37	HL12	382400	502	45	135	STAB4	382808	50
8	37	HL12	382401	251	45	135	STAB4	382809	41
8	37	HL12	382402	101	45	135	STAB4	382810	30
8	37	HL12	382403	80	45	135	STAB4	382811	20
8	37	HL12	382404	60	45	135	STAB4	382812	10
8	37	HL12	382405	52	45	135	STAB4	382813	3
8	37	HL12	382406	41	46	137	STAB3	382814	87
8	37	HL12	382407	31	46	137	STAB3	382815	80

8	37	HL12	382408	21	46	137	STAB3	382816	60
8	37	HL12	382409	11	46	137	STAB3	382817	51
8	37	HL12	382410	2.5	46	137	STAB3	382818	40
9	42	HL6.3	382411	1686	46	137	STAB3	382819	30
9	42	HL6.3	382412	1500	46	137	STAB3	382820	20
9	42	HL6.3	382413	1000	40	137	STAB3	382821	10
9	42	HL6.3	382413	750	40	137	STAB3	382822	2
9	42	HL6.3	382414	500	40	137	STABS STAB2	382823	62
9	42	HL6.3	382415	250	47	139	STAB2		50
9								382824	
-	42	HL6.3	382417	100	47	139	STAB2	382825	40
9	42	HL6.3	382418	81	47	139	STAB2	382826	30
9	42	HL6.3	382419	60	47	139	STAB2	382827	21
9	42	HL6.3	382420	51	47	139	STAB2	382828	10
9	42	HL6.3	382421	41	47	139	STAB2	382829	2.2
9	42	HL6.3	382422	31	48	141	STAB1	382830	56
9	42	HL6.3	382423	22	48	141	STAB1	382831	51
9	42	HL6.3	382424	10	48	141	STAB1	382832	40
9	42	HL6.3	382425	3	48	141	STAB1	382833	30
10	47	HL6	382426	1025	48	141	STAB1	382834	20
10	47	HL6	382427	751	48	141	STAB1	382835	10
10	47	HL6	382428	500	48	141	STAB1	382836	2.4
10	47	HL6	382429	251	49	143	LL1	382837	86
10	47	HL6	382430	101	49	143	LL1	382838	80
10	47	HL6	382431	81	49	143	LL1	382839	60
10	47	HL6	382432	60	49	143	LL1	382840	51
10	47	HL6	382433	50	49	143	LL1	382841	41
10	47	HL6	382434	41	49	143	LL1	382842	31
10	47	HL6	382435	30	49	143	LL1	382843	20
10	47	HL6	382436	21	49	143	LL1	382844	10
10	47	HL6	382437	10	49	143	LL1	382845	2.6
10	47	HL6	382438	3	50	145	LL2	382846	130
11	56	HL5A	382439	512	50	145	LL2	382847	100
11	56	HL5A	382440	250	50	145	LL2	382848	81
11	56	HL5A	382441	100	50	145	LL2	382849	61
11	56	HL5A	382442	80	50	145	LL2	382850	50
11	56	HL5A	382443	61	50	145	LL2 LL2	382851	40
11	56	HL5A	382443	51	50	145	LL2 LL2	382852	31
11	56	HL5A HL5A	382445	41	50	145	LL2 LL2	382853	20
11	56	HL5A HL5A	382445	31	50	145	LL2 LL2	382854	11
11									
11	56	HL5A	382447	20 11	50	145	LL2	382855	2.3
	56	HL5A	382448		51	148	LL3	382856	136
11	56	HL5A	382449	2.5	51	148	LL3	382857	100
12	60	HL5	382450	93	51	148	LL3	382858	80
12	60	HL5	382451	80	51	148	LL3	382859	60
12	60	HL5	382452	60	51	148	LL3	382860	51
12	60	HL5	382453	50	51	148	LL3	382861	41
12	60	HL5	382454	40	51	148	LL3	382862	31
12	60	HL5	382455	30	51	148	LL3	382863	21
12	60	HL5	382456	20	51	148	LL3	382864	11

12	60	HL5	382457	10	51	148	LL3	382865	2.5
12	60	HL5	382458	2	52	150	LL4	382866	95
13	63	HL4	382459	76	52	150	LL4	382867	80
13	63	HL4	382460	60	52	150		382868	60
13	63	HL4	382461	51	52	150	LL4	382869	50
13	63	HL4	382462	41	52	150	LL4	382870	41
13	63	HL4	382463	31	52	150		382871	30
13	63	HL4	382464	21	52	150	LL4	382872	20
13	63	HL4	382465	11	52	150	LL4	382873	10
13	63	HL4	382465	3	52	150	LL4 LL4	382874	2
13	66	HL3		257	53	150	LL4 LL5		216
			382467					382875	
14	66	HL3	382468	200	53	152	LL5	382876	100
14	66	HL3	382469	100	53	152	LL5	382877	80
14	66	HL3	382470	79	53	152	LL5	382878	60
14	66	HL3	382471	60	53	152	LL5	382879	50
14	66	HL3	382472	50	53	152	LL5	382880	41
14	66	HL3	382473	40	53	152	LL5	382881	30
14	66	HL3	382474	30	53	152	LL5	382882	21
14	66	HL3	382475	20	53	152	LL5	382883	11
14	66	HL3	382476	10	53	152	LL5	382884	2.5
14	66	HL3	382477	3	54	154	LL6	382885	66
15	69	HL2	382478	165	54	154	LL6	382886	50
15	69	HL2	382479	100	54	154	LL6	382887	40
15	69	HL2	382480	78	54	154	LL6	382888	30
15	69	HL2	382481	60	54	154	LL6	382889	20
15	69	HL2	382482	51	54	154	LL6	382890	11
15	69	HL2	382483	40	54	154	LL6	382891	2
15	69	HL2	382484	30	55	158	LL7	382892	771
15	69	HL2	382485	20	55	158	LL7	382893	500
15	69	HL2	382486	11	55	158	LL7	382894	251
15	69	HL2	382487	4	55	158	LL7	382895	100
16	72	HL1	382488	79	55	158	LL7	382896	80
16	72	HL1	382489	60	55	158	LL7	382897	60
16	72	HL1	382490	51	55	158	LL7	382898	51
16	72	HL1	382491	41	55	158	LL7	382899	41
16	72	HL1	382492	30	55	158	LL7	382900	30
16	72	HL1	382493	20	55	158	LL7	382901	20
16	72	HL1	382494	10	55	158	LL7	382902	10
16	72	HL1	382495	2.5	55	158	LL7	382903	2.6
17	74	RL1	382496	158	56	160	LL8	382904	2885
17	74	RL1	382497	100	56	160	LL8	382905	2000
17	74	RL1	382498	81	56	160	LL8	382906	1500
17	74	RL1	382499	61	56	160	LL8	382907	1000
17	74	RL1	382500	49	56	160	LL8	382908	500
17	74	RL1	382501	40	56	160	LL8	382909	250
17	74	RL1	382502	28	56	160	LL8	382910	100
17	74	RL1	382503	20	56	160	LL8	382911	80
17	74	RL1	382504	9	56	160	LL8	382912	60
	• •								~~

18	77	BBL1	382506	50	56	160	LL8	382914	40
18	77	BBL1	382507	50	56	160	LL8	382915	30
18	77	BBL1	382508	40	56	160	LL8	382916	20
18	77	BBL1	382509	30	56	160	LL8 LL8	382917	10
18	77	BBL1 BBL1	382510	20	56	160	LL8 LL8	382918	2
18	77	BBL1	382510	10	57	163	LL8 LL9	382919	3785
18	77	BBL1 BBL1	382512	10	57	163		382920	2999
10	79			2 119	57	163	LL9		1999
		BBL2	382513				LL9	382921	
19	79	BBL2	382514	80	57	163	LL9	382922	1501
19	79	BBL2	382515	60	57	163	LL9	382923	1001
19	79	BBL2	382516	50	57	163	LL9	382924	501
19	79	BBL2	382517	41	57	163	LL9	382925	250
19	79	BBL2	382518	29	57	163	LL9	382926	101
19	79	BBL2	382519	20	57	163	LL9	382927	80
19	79	BBL2	382520	10	57	163	LL9	382928	61
19	79	BBL2	382521	2	57	163	LL9	382929	51
20	81	BC-CJ	382522	155	57	163	LL9	382930	41
20	81	BC-CJ	382523	101	57	163	LL9	382931	30
20	81	BC-CJ	382524	81	57	163	LL9	382932	20
20	81	BC-CJ	382525	60	57	163	LL9	382933	10
20	81	BC-CJ	382526	50	57	163	LL9	382934	2
20	81	BC-CJ	382527	40	58	168	GULD3	382935	483
20	81	BC-CJ	382528	29	58	168	GULD3	382936	251
20	81	BC-CJ	382529	20	58	168	GULD3	382937	101
20	81	BC-CJ	382530	10	58	168	GULD3	382938	80
20	81	BC-CJ	382531	2.3	58	168	GULD3	382939	60
21	85	BBL3	382532	NOT USED	58	168	GULD3	382940	50
21	85	BBL3	382533	90	58	168	GULD3	382941	40
21	85	BBL3	382534	80	58	168	GULD3	382942	30
21	85	BBL3	382535	60	58	168	GULD3	382943	20
21	85	BBL3	382536	50	58	168	GULD3	382944	10
21	85	BBL3	382537	40	58	168	GULD3	382945	2
21	85	BBL3	382538	30	59	172	SG23	382946	912
21	85	BBL3	382539	20	59	172	SG23	382947	751
21	85	BBL3	382540	10	59	172	SG23	382948	500
21	85	BBL3	382541	2	59	172	SG23	382949	251
22	87	PSL1	382542	92	59	172	SG23	382950	101
22	87	PSL1	382543	75	59	172	SG23	382951	81
22	87	PSL1	382544	61	59	172	SG23	382952	59
22	87	PSL1 PSL1		50	59 59	172	SG23		40
			382545					382953	
22	87	PSL1	382546	39	59 50	172	SG23	382954	40
22	87	PSL1	382547	30	59 50	172	SG23	382955	30
22	87	PSL1	382548	21	59	172	SG23	382956	20
22	87	PSL1	382549	11	59	172	SG23	382957	10
22	87	PSL1	382550	2	59	172	SG23	382958	2
23	88	PSL2	382551	196	60	174	GULD4	382959	2159
23	88	PSL2	382552	174	60	174	GULD4	382960	1502
23	88	PSL2	382553	151	60	174	GULD4	382961	749

23	88	PSL2	382554	127	60	174	GULD4	382962	500
23	88	PSL2	382555	102	60	174	GULD4	382963	250
23	88	PSL2	382556	81	60	174	GULD4	382964	100
23	88	PSL2	382557	61	60	174	GULD4	382965	81
23	88	PSL2	382558	51	60	174	GULD4	382966	60
23	88	PSL2	382559	40	60	174	GULD4	382967	51
23	88	PSL2	382560	31	60	174	GULD4	382968	40
23	88	PSL2	382561	21	60	174	GULD4	382969	31
23	88	PSL2	382562	10	60	174	GULD4 GULD4	382970	20
23	88	PSL2	382563	3	60	174	GULD4 GULD4	382970	10
23	89	PSL2	382564	206	60	174	GULD4 GULD4	382971	2
24	89 89	PSL3		175	61	174			896
24	89 89	PSL3	382565	175	61	177	SG28 SG28	382973	751
24	89 89	PSL3	382566	126	61	177	SG28	382974	500
			382567					382975	
24	89	PSL3	382568	101 82	61	177	SG28	382976	251
24	89	PSL3	382569		61	177	SG28	382977	100
24	89	PSL3	382570	61	61	177	SG28	382978	81
24	89	PSL3	382571	52	61	177	SG28	382979	60
24	89	PSL3	382572	41	61	177	SG28	382980	50
24	89	PSL3	382573	31	61	177	SG28	382981	40
24	89	PSL3	382574	21	61	177	SG28	382982	30
24	89	PSL3	382575	11	61	177	SG28	382983	20
24	89	PSL3	382576	2.3	61	177	SG28	382984	11
25	91	PSL4	382577	220	61	177	SG28	382985	2
25	91	PSL4	382578	177	62	178	HL13	382986	4924
25	91	PSL4	382579	150	62	178	HL13	382987	4503
25	91	PSL4	382580	127	62	178	HL13	382988	3997
25	91	PSL4	382581	101	62	178	HL13	382989	3499
25	91	PSL4	382582	81	62	178	HL13	382990	2998
25	91	PSL4	382583	61	62	178	HL13	382991	2500
25	91	PSL4	382584	50	62	178	HL13	382992	1999
25	91	PSL4	382585	40	62	178	HL13	382993	1500
25	91	PSL4	382586	31	62	178	HL13	382994	1000
25	91	PSL4	382587	22	62	178	HL13	382995	500
25	91	PSL4	382588	11	62	178	HL13	382996	251
25	91	PSL4	382589	2	62	178	HL13	382997	101
26	92	PSL5	382590	233	62	178	HL13	382998	80
26	92	PSL5	382591	176	62	178	HL13	382999	60
26	92	PSL5	382592	151	62	178	HL13	383000	49
26	92	PSL5	382593	127	62	178	HL13	383001	41
26	92	PSL5	382594	103	62	178	HL13	383002	32
26	92	PSL5	382595	80	62	178	HL13	383003	20
26	92	PSL5	382596	60	62	178	HL13	383004	10
26	92	PSL5	382597	51	62	178	HL13	383005	2
26	92	PSL5	382598	40	63	181	HL14	383006	5042
26	92	PSL5	382599	30	63	181	HL14	383007	4501
26	92	PSL5	382600	20	63	181	HL14	383008	3999
26	92	PSL5	382601	11	63	181	HL14	383009	2500
26	92	PSL5	382602	2	63	181	HL14	383010	3001

27	94	PSL6	382603	223	63	181	HL14	383011	2500
27	94	PSL6	382604	174	63	181	HL14	383012	2000
27	94	PSL6	382605	149	63	181	HL14	383013	1500
27	94	PSL6	382606	125	63	181	HL14	383014	1000
27	94	PSL6	382607	102	63	181	HL14	383015	500
27	94	PSL6	382608	81	63	181	HL14	383016	251
27	94	PSL6	382609	60	63	181	HL14	383017	101
27	94	PSL6	382610	51	63	181	HL14	383017	81
27	94	PSL6	382611	41	63	181	HL14	383018	60
27	94 94			30	63	181	HL14		51
		PSL6	382612					383020	
27	94	PSL6	382613	20	63	181	HL14	383021	40
27	94	PSL6	382614	11	63	181	HL14	383022	30
27	94	PSL6	382615	3	63	181	HL14	383023	20
28	95	PSL7	382616	221	63	181	HL14	383024	11
28	95	PSL7	382617	175	63	181	HL14	383025	2
28	95	PSL7	382618	150	64	181	HL14RL5A	383026	3220
28	95	PSL7	382619	125	64	181	HL14RL5A	383027	2500
28	95	PSL7	382620	101	64	181	HL14RL5A	383028	2000
28	95	PSL7	382621	80	64	181	HL14RL5A	383029	1500
28	95	PSL7	382622	60	64	181	HL14RL5A	383030	1001
28	95	PSL7	382623	51	64	181	HL14RL5A	383031	501
28	95	PSL7	382624	41	64	181	HL14RL5A	383032	250
28	95	PSL7	382625	31	64	181	HL14RL5A	383033	100
28	95	PSL7	382626	21	64	181	HL14RL5A	383034	80
28	95	PSL7	382627	9	64	181	HL14RL5A	383035	60
28	95	PSL7	382628	3	64	181	HL14RL5A	383036	50
29	98	PSL8	382629	200	64	181	HL14RL5A	383037	40
29	98	PSL8	382630	174	64	181	HL14RL5A	383038	30
29	98	PSL8	382631	150	64	181	HL14RL5A	383039	20
29	98	PSL8	382632	125	64	181	HL14RL5A	383040	10
29	98	PSL8	382633	101	64	181	HL14RL5A	383041	2
29	98	PSL8	382634	80	65	185	RL5	383042	932
29	98	PSL8	382635	61	65	185	RL5	383043	750
29	98	PSL8	382636	51	65	185	RL5	383044	499
29	98	PSL8	382637	41	65	185	RL5	383045	249
29	98	PSL8	382638	30	65	185	RL5	383046	101
29	98	PSL8	382639	20	65	185	RL5	383047	81
29	98	PSL8	382640	10	65	185	RL5	383048	60
29	98	PSL8	382641	3	65	185	RL5	383049	50
30	99	PSL9	382642	93	65	185	RL5	383050	40
30	99	PSL9	382643	81	65	185	RL5	383051	31
30	99	PSL9	382644	60	65	185	RL5	383052	20
30	99	PSL9	382645	51	65	185	RL5	383053	10
30	99	PSL9	382646	40	65	185	RL5	383054	2.6
30	99	PSL9	382647	29	66	191	HL2	383055	185
30	99	PSL9	382648	20	66	191	HL2	383056	100
30	99	PSL9	382649	10	66	191	HL2	383057	80
30	99	PSL9	382650	4	66	191	HL2	383058	60
31	101	PSL10	382651	89	66	191	HL2	383059	51

31	101	PSL10	382652	81	66	191	HL2	383060	40
31	101	PSL10	382653	60	66	191	HL2	383061	30
31	101	PSL10	382654	50	66	191	HL2	383062	20
31	101	PSL10	382655	40	66	191	HL2	383063	10
31	101	PSL10	382656	31	66	191	HL2	383064	2
31	101	PSL10	382657	20					
31	101	PSL10	382658	10					
31	101	PSL10	382659	2.5					

APPENDIX A

RAPID Moorings – Richard Boyce

In support of the RAPID Watch Program sponsored by the National Oceanographic Centre in the United Kingdom, a series of moorings were recovered and re-deployed. Also, three moorings were recovered and deployed in support of the Ocean Tracking Network as well as an attempted recovery and deployment of two moorings in the Gully on behalf of the Oceans and Coastal Management Division (see Appendix E).

Recovery RAPID Moorings:

Moorings 1777 (RS1) through 1781 (RS5) of the RAPID program were recovered completely with 1782 (RS6) being partially recovered. Sea conditions for the recovery of RS1 to RS5 were calm, but foggy. The Iridium beacon was required to find RS2 once on the surface. All Iridium beacons worked well. At 1782 (RS6), the acoustic release appeared to have worked and indicated that it released. However, continuous transponding to the release revealed that it had not moved away from the bottom. After many release commands were sent with no indication the mooring was surfacing, dragging operations were implemented. The first attempt at dragging managed to cut the mooring wire below the 1000 meter Microcat. The top syntactic float, Aanderaa RCM11 s/n 679 and Microcat s/n 8110 were eventually recovered. The drag gear had to be recovered before the released part of the mooring, and during this time, the surface float disappeared into the fog. The Iridium beacon worked, but there was some confusion in the positions being reported, due to a temporary satellite malfunction. This was sorted out, and the mooring was found and recovered the next day. Two more attempts at dragging were unsuccessful on this leg of the cruise. Before the second leg of the mission, an additional 2000 meters of drag wire was added to the Pengo wire in order to improve the chances of snagging the mooring. During the second leg of the mission a fourth attempt at dragging was performed. It was estimated that 8000 meters of wire was paid out and the mooring was circled twice. Microcats at 2200 meters s/n8111, 2700 meters s/n 6436 and 3300 meters s/n 6469 were recovered along with 5 sets of BUB packages; one set was destroyed. Microcats s/n 1785 1600 meters and s/n 6468 3800 meters along with WHADCP s/n 10942, BPR s/n 0051 and release s/n 809 along with 5 BUB packages were not recovered.

Deployment RAPID Moorings:

Moorings 1804 (RS1) to 1810 (RS6A) were deployed successfully without incident. It was previously decided to separate the BPR from the long mooring at RS6 and place it on a separate mooring in the same area, RS6A. Last year in was found to be very problematic to deploy the long mooring with the BPR. The replacement moorings at RS6 were placed approximately 3 kilometres on either side of the lost mooring.

(For more information see "Maqueda 2011 Report")

Recovery and deployment OTN Moorings:

Moorings 1783 - 1785 were recovered off the approaches to the Halifax in support of the Ocean Tracking Program. These were recovered without incident and replaced with moorings 1794 - 1796. While in this area, the Carioca mooring and its associated Spar buoy were checked and appeared to be in position.

APPENDIX B

HUD2011043 VADCP and MVP testing - Kate Collins and Randy King

a. VADCP (Vertical Acoustic Doppler Current Profiler)

On board the Hudson, as a member of the Data Services group, Kate Collins worked with Yuri Geshelin and Adam Hartling to getting the vessel mounted ADCP data (VADCP) to display on a computer in the GP Lab in real time. This would allow monitoring of the quality of data being collected by the instrument in real time and allow recognition of any factors that may contribute to poor data collection (wave height, wind speed, ship speed and direction, etc).

The real-time system was developed by modifying existing Matlab code to copy the data files from the computer connected to the VADCP to the lab PC over the ship's network on a continuous basis. The data were then processed using CODAS software and plotted in Matlab as velocity vectors on the ship track, on a map. Now that the real-time system is working, it can be hooked up on any future Hudson missions so that VADCP data quality can be monitored in real time.

To assist in the determination of how ship speed and direction affected measured water velocities, we conducted a short experiment where ship speed was varied on an eastward track, and then similarly varied on a northward track. This allowed us to distinguish between measured water velocity errors caused by transiting in the North/South direction vs in the East/West direction, and to note differences in data quality at different ship speeds.

b. MVP (Moving Vessel Profiler)

The MVP 200 was deployed on the first leg of the cruise. The objective was to test newly built instruments and the system in general. The MVP 200 system is being shipped to Antarctica for an international mission as part of a NSF project. It will be used on the

Nathaniel B Palmer doing survey lines in the Ross Sea. It was critical for the system to be brought out on the Hudson to be fully tested and to make sure that everything was working properly before we shipped the unit south. It also required testing close to home because we are using new instruments that were recently purchased to replace ones that were lost at sea.

Over the 8 days we were able to do 5 tows along the Halifax Line. These tows varied in the number of casts performed with the average number of casts per tow in the 15 range. During these tows we were able to fully test the systems operation along with the integration of the new CTD and Fluorometer. During the first couple of days we were able to find a connector that was faulty which we were able to repair and we also found a bad splice in the tow cable that we were able to repair as well. We were also able to use the system at different ship speeds which allowed us to see if the speed vs. depth ratio requested by the Antarctica expedition staff were attainable. After all testing and ground proofing was completed we were able to ensure that the system was working as it should be and we are able to provide the speed vs. depth ratio that has been requested. All in all a successful trip and the system can now be confidently shipped to Antarctica with confidence for its next mission.

APPENDIX C

Measuring Dissolved Oxygen Concentration and calibration of Sea-Bird oxygen sensors on the Hudson 2011-043 cruise - Yuri Geshelin

1. Introduction

In the fall of 2011, the CCGS Hudson carried out one field mission: cruise 2011-043 (23-30 Sep 2011), which included the fall occupation of the Halifax line (the fall AZMP survey and RAPID program). Samples and standard measurements of dissolved oxygen (DO) were taken at various depths as per cruise program with the use of titration methods and by means of Sea-Bird DO primary and secondary sensors. During the cruise, calibrations of both sensors were made taking into account the experience gained on previous cruises (2010-009, 2010-014, 2010-049 and 2011-009). Unlike some previous cruises, the inter-comparisons between two Winkler methods of titration (the Scripps system and colorimeter) were not done, because of the relatively short time frame. The Scripps system was set up only as a backup, and this report covers the measurements taken with the use of colorimeter and the BOB software developed at the Maurice Lamontagne Institute, Quebec.

This note describes the methods of collecting samples, data acquisition and processing, presents some preliminary results of the expedition in the form of quantitative estimates and compares those results with some previous cruises.

2. Procedures and methods

Oxygen sub-samples were drawn from 10-L bottles attached to a 24-bottle Rosette Sampler. To reduce air contamination of the samples to a possible minimum, the sampling was done immediately after the Rosette Sampler was drawn on board, prior to sampling any other property. This was possible because on this cruise chlorofluorocarbon samples were not taken¹. The choice of sampling depths was simple: at least one DO sample was taken from every closed bottle. On all oceanographic stations, replicate samples were collected at one or two depths. Unfortunately, about a third of these replicates were subsequently lost during the analysis stage due to the problem described in Section 3. Fortunately, these losses were not of paramount importance, as it had not been planned to carry out a detailed analysis of the differences between the titration values from the same depth². At the beginning of the cruise, the intention was to collect at least one duplicate from at least two levels at each station. In practice, this plan was not always followed due to operational constraints. In the end, the maximum number of samples taken and successfully analysed from a single level was two (i.e. no triplicates). The 14 stations, at which the duplicates were taken and successfully analysed, are listed with supplementary information in Table 1. The corresponding levels were at the bottom and in some cases in the surface layer.

Seq. #	Event #	HL Station #	Levels, m	Number of levels, at which one duplicate (2 samples in total) are taken and successfully analysed
1	9	HL2	145 (bottom) 3	2
2	17	HL9	3948 (bottom) 10	2
3	19	HL10	4145 (bottom) 10	2
4	22	HL11	4511 (bottom) 11	2
5	31	HL7	2731 (bottom)	1
6	33	HL6.7	2319 (bottom) 11	2
7	37	HL12	4721 (bottom) 11	2
8	42	HL6.3	1686 (bottom)	1
9	47	HL6	1025 (bottom) 10	2
10	56	HL5.5	511 (bottom) 11	2
11	60	HL5	93 (bottom)	1
12	63	HL4	76 (bottom)	1
13	66	HL3	257 (bottom) 10	1
14	69	HL2	164 (bottom)	1

¹ When the CFC samples are part of cruise program, they are taken prior to sampling any other property.

² Such analysis was carried out on the previous Hudson cruises, 2010-049 and 2011-009, and described in the respective cruise reports.

	TOTAL	22
--	-------	----

Table 1. The number of duplicate DO samples taken and successfully analysed per station.

The oxygen sampling bottles were 125 mL Iodine flasks with matched custom ground stoppers. The volumes of flasks with the corresponding stoppers were predetermined gravimetrically, and volume data were saved to titration programs prior to the cruise. The matched flasks and stoppers are etched with identification numbers.

Each oxygen sub-sample was drawn through a silicone tube attached to the spigot of the Rosette bottle. The flask and stopper were thoroughly rinsed. The flow was then allowed to continue until two to three flask volumes overflowed. The sampling tube was then rotated inside the flask and thus rubbed against the neck to prevent bubbles from forming on it. Next, the tube was slowly removed with continuous low flow to ensure that no air was trapped in the flask and the volume kept to the brim until the reagents were added and the stopper inserted.

Samples were immediately oxidized with the addition of 1.0 mL each Alkaline Iodide and Manganous Chloride. The tip of the spout was submerged under the surface of the sample during this procedure. The flask stopper was carefully inserted to avoid introducing air. The flask was then shaken and turned upside down several times.

The samples were stored immediately after collection for at least 1 hour in a dark place at room temperature.

3. Problems

The PC designated for running BOB software often froze. Most often, it happened after it was left idle for an hour or longer. In other words, it happened almost every time I started to titrate a batch of samples or in the beginning of running blanks and standards. Because I was unable to determine which device (or software) was malfunctioning, I rebooted the PC, colorimeter and Dosimat. This resulted in the loss of some samples. Fortunately, it was not a complete loss, because those samples were intended to be replicates. Instead, they served as a backup for the observation made at the bottom, which was titrated first. Consequently, the total number of analysed duplicates (22, see Table 1) was too small to compute a histogram of the differences between them. But a cursory evaluation of the analysed duplicates shows that the difference between them is mostly within 0.02 mL/L, which is consistent with the results obtained on the Hudson 2010-049 and 2011-009 cruises.

4. Sea-Bird – Winkler comparisons

The ultimate goal of the inter-comparisons between Sea-Bird and Winkler is to perform the calibration of the Sea-Bird sensors, because the chemical method should provide more accurate values. The comparisons were carried out for both primary and secondary sensors. The total of 236 data points are employed in the analysis³, and the results of comparisons are presented in the form of Sea-Bird vs Winkler DO scatter plots in Figure 1. The left panels present the scatter plot of the two concentrations. Plotted on the right panels is the relationship between pressure and the difference between the two concentrations. This was done to ensure that that difference is not dependent on pressure⁴.

Despite some obvious outliers, the correlation coefficients between Sea-Bird and Winkler values are 0.99 for both the primary and secondary sensors. This is an apparent improvement over the results obtained on the previous cruises (see Table 2 in Section 5). However, the correlation coefficients between Sea-Bird – Winkler differences and pressure are -0.28 and -0.63 for the primary and secondary sensors respectively. This suggests that the calibration process undesirably depends on pressure. The inspection of Figure 1a reveals that once the outliers are removed, the correlation will be even higher than the one inferred from the coefficient of -0.28. This situation is worse than on some of the previous cruises and must be addressed. Most likely, the pressure term in the Sea-Bird calibration needs to be changed.

³ This includes the 22 duplicates (see Table 1).

⁴ Such undesirable dependence took place on the previous Hudson cruises.

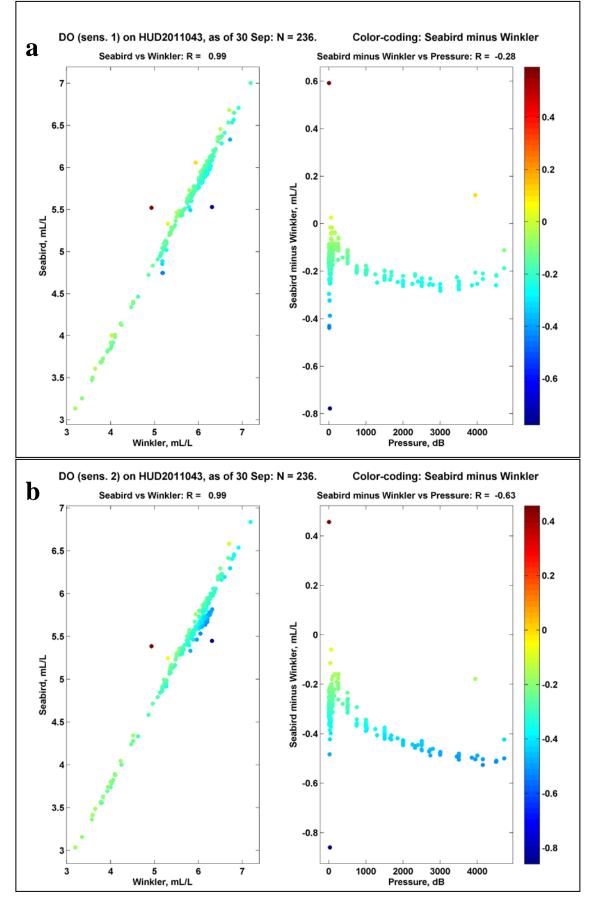


Figure 1. Scatter plot of Sea-Bird vs Winkler DO concentrations (left panels) and Sea-Bird – Winkler difference vs pressure (right panels). (a) – primary; (b) - secondary Sea-Bird sensor.

As of today, the DO data from 4 cruises have been collected and the scatter plots similar to those in left panels of Figure 1 were produced. It is therefore of interest to examine the combined plot, which presents the scatter plots from all cruises (see Figure 2).

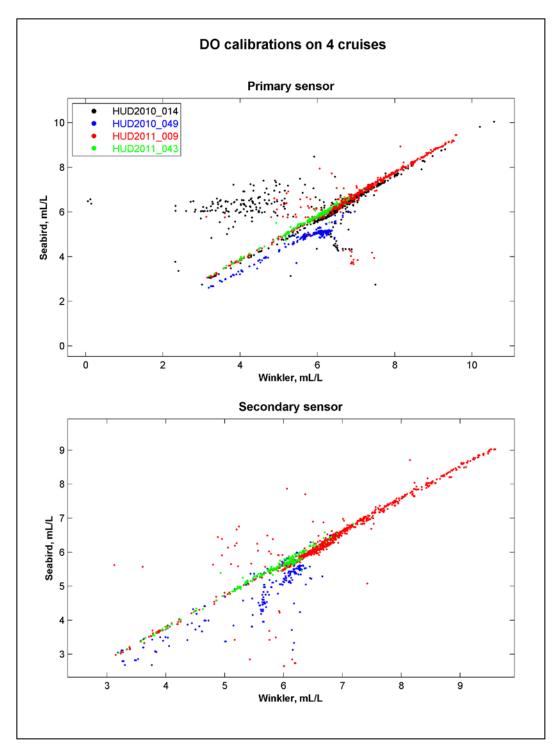


Figure 2. Scatter plot of Sea – Bird vs Winkler DO concentrations from four Hudson cruises.

Inspection of Figure 4 allows us to identify two cruises with apparent problems: 2010049 (the Sea-Bird values are offset by about 0.5) and 2010014 (the Sea-Bird values are offset by about 0.1 and a great number of outliers). See the corresponding cruise reports for details.

5. Conclusions

We have summarized the procedures for and results of sampling, measuring and calibrating the DO concentrations on the Hudson cruise in the fall of 2011. Table 2 summarizes the Sea-Bird - Winkler correlation coefficients derived on 4 cruises and suggests an apparent improvement in our sampling and titration techniques over the last year.

Cruise	Primary Sea-Bird sensor	Secondary Sea-Bird sensor
2010-014	0.46	N/A
2010-049	0.97	0.87
2011-009	0.93	0.94
2011-043	0.99	0.99

Table 2. Correlation coefficients between Winkler- and Sea-Bird-derived values of DO concentration.

On the other hand, it should be noted that we are still not successful in solving the problem of pressure-dependent Sea-Bird values (see the right panels in Figure 1). As mentioned, the Sea-Bird calibration equation needs to be corrected. The CTD data should then be re-processed, and the correlations re-computed.

APPENDIX D

Determinations of salinity with the Autosal Salinometer - Richard Boyce

a. Description of Equipment and Technique

For Leg 1, 97 salinity samples were analyzed using a Guildline Autosal 8400B salinometer, serial number 69780 on the first leg of the mission. Samples were drawn into 200 ml bottles. Once the sample bottle was rinsed three times and filled to the shoulder, the neck and threads of the bottle were dried using paper towel and a new dry cap was installed. Once the bottles reached room temperature, the caps were retightened. The drying of the neck of the bottle and installation of a dry cap has been a technique used since the HUD2000009 cruise and prevents salt crystals from forming under the cap if samples are left for a long period of time before analysis.

The samples were placed in a constant temperature water bath set to 23.5° C with the Autosal running at 24°C. The cell of the salinometer was filled and rinsed three times with sample water. A fourth sample was introduced into the cell and readings were averaged over a 10 to 15 second interval until the operator was satisfied that the correct value was attained. If there was any doubt in this value, subsequent refills were performed and readings averaged as above. Once satisfied, a sample ID number

and Conductivity Ratio was recorded onto the Salinity Log Sheet. Periodically, the room's temperature was recorded.

b. Laboratory and Sample Temperatures

Full cases of samples were taken from the Winch Room to the Drawing Office. Cases of 24 salinity bottles were placed into water baths set at 23.5° C and allowed to equilibrate before analyzing. During this particular Mission, the room temperature in this area ranged remained quite stable hovering near 24 °C. The Autosal bath temperature was set to 24°C for all samples.

c. Standards Used

The salinometer was standardized during the mission using IAPSO standard water, Batch P152 with a "use by" date of May 5/13 having a K15 value of 0.99981, salinity of 34.993. Typically, standardization checks were performed at the beginning and end of a run.

d. Performance of the Autosal salinometer

Overall, the Autosal salinometer worked well during the first leg of the mission. The introduction of water baths to bring the samples close to the temperature of the Autosal bath has made the analysis much better. The instrument spends very little time in bringing the sample to the temperature of the bath thus reducing bath fluctuations. The lab temperature was stable during all runs which is an important factor when trying to optimize the performance of the instrument. Historically the Autosal was setup in the General Purpose (GP) lab onboard Hudson. Air temperature was difficult to control in this area. For this mission the Autosal was installed in the Drawing Office where the operator could control the ambient air temperature much better than in the GP lab.

APPENDIX E

Acoustic monitoring of Scotian Shelf northern bottlenose whales (Hyperoodon ampullatus) and underwater noise within the Gully MPA – Hilary Moors

Purpose of Activity

To retrieve and deploy autonomous underwater acoustic recorders in the Gully MPA on behalf of the Oceans and Coastal Management Division to record northern bottlenose whale vocalizations, vocalizations of other whale species and ambient background noise for acoustic monitoring purposes throughout summer 2011-winter 2012.

Report on Activities

An Autonomous Multi-channel Acoustic Recorder (AMAR; developed by JASCO Applied Sciences) mooring was deployed in Zone 1 of the Gully MPA on May 27th 2011 at 43°52.162'N and 58°55.943'W, at a depth of approximately 1700 meters. To retrieve the system, an acoustic signal is sent to an acoustic release unit attached to a ballast weight that moors the system to the seafloor. This signal triggers the acoustic release to detach from the ballast weight, allowing all components of the mooring (minus the ballast weight) to float to the surface. Retrieval of this system was attempted on October 10th 2011. However, communication with the acoustic release unit could not be established despite numerous attempts over several hours, from different angles and positions around the coordinates where the system was dropped off in May. The release command was sent to the system

several times, but the system did not surface. The mooring system was therefore not retrieved and was left on the Gully floor. A second retrieval attempt has been scheduled for November 18th 2011.

A second AMAR system was successfully deployed on October 10th at 14:10 UTC in Zone 1 of Gully at a position approximately two kilometers south of the first system that could not be retrieved. The deployment coordinates of this second system were at 43°50.9445'N and 58°55.2843'W, at a depth of about 1725 meters. The second system will be retrieved during the spring AZMP cruise onboard CCGS Hudson in April 2012.

Potential Environmental Impacts

The AMAR deployment has the potential to disturb the benthic environment through contact with the ocean bottom. These systems generally sit on the ocean bottom for a period of about six months; however, the ballast weights attached to the systems are left on the ocean bottom permanently. The ballast weights are relatively small and probably each affect an area $< 1 \text{ m}^2$.

Should the first system not be retrieved even after a second retrieval attempt, then greater environmental impacts are expected. The entire mooring system, including 40 meters of cable extending up into the water column, could potentially remain on bottom permanently. If the second retrieval attempt fails, the position of the lost mooring should be considered in future mooring deployment proposals.

APPENDIX F

Multi-frequency Acoustics HUDSON 2011-043 – N. Cochrane

Objective - To opportunistically record 12 & 200 kHz acoustic backscatter on AZMP transects and sampling stations. The principal application of this data will be the delineation of macrozooplankton concentrations. The 200 kHz channel is reasonably well calibrated while the 12 kHz channel is used primarily in distinguishing backscattering layers or depth ranges dominated by larger zooplankton from those dominated by fish.

Equipment - Two DataSonics DFT-210 scientific echosounders are used, one operating at 200 kHz and coupled to a 200 kHz FURUNO 200-B transducer deployed in HUDSON's GP lab stand-pipe, the other operating at 12 kHz and coupled to a 12 kHz AIRMAR transducer mounted on HUDSON's main RAM. A custom 12 bit digitizer acquires demodulated signals from the two sounders and in turn feeds its digital output to a logging PC where the data stream is merged with navigation.

Procedure - The equipment operates continuously and virtually autonomously throughout the cruise, excepting short shut-downs to prevent the acoustics from interfering with other high priority acoustic operations. Acoustic data was sampled and logged at 5 kHz/channel over a 818 ms post-transmission interval (610 m water column penetration accounting for transducer draft) at a ping rate of 1/10s. Pulse lengths of 2 and 5 ms are used at 12 at 200 kHz respectively, the latter pulse being relatively long to maximize the signal-to-noise ratios from weakly scattering deep zooplankton layers. A sounder

receive-only noise level signal is recorded in-port alongside to assist the separation of true backscatter signals from internally generated equipment noise during subsequent data processing operations.

Results - Acquired data were of variable quality. Interference possibly from the shipboard ADCP was frequently experienced on the 200 kHz channel. A brief navigation dropout occurred in the middle of file # 16 however, this was the only navigation problem encountered - in contrast to the extensive navigation outages experience on the immediately preceding spring 2011 AZMP cruise. Part of File # 17, especially 12 kHz, was degraded by an apparent high sea state.

Data Disposition - Data in the acquisition format will be immediately archived to BIO's Mass Storage Machine (MSM) and later will be converted to standard HAC interchange format by way of a NADA initiative.

FILE #	TIME (ADT)	LOCATION
1	16:13 Sept. 22 – 16:18 Sept. 22	44 40.90 63 36.83
		Noise Sample acquired alongside at BIO
2	16:47 Sept. 22 – 14:42 Sept. 23	To: 44 20.89 N 63 18.46 W
		Alongside at BIO – Halifax Line 1 (HL1) then turn east
3	15:33 Sept. 23 – 15:41 Sept. 23	To: 44 18.92 N 63 15.64 W
		Just east of HL2
4	18:37 Sept. 23 – 07:08 Sept. 24	To: 42 51.08 N 61 39.02 W
		Just east of HL2A to HL2 then pass SW of HL3 to HL6 then just east
5	18:38 Sept. 24 – 08:49 Sept. 25	To: 42 09.80 N 61 04.54 W
		New Halifax Line 8 (nHL8) south to just beyond nHL9
6	18:56 Sept. 25 – 12:58 Sept. 26	To: 42 23.71 N 61 15.72 W
		Just east of nHL8 irregularly SSE near nHL10 to nHL11
7	19:28 Sept. 26 – 10:32 Sept. 27	To: 42 09.78 N 61 04.29 W
		HL7 to just NW of HL7 then SW near nHL8 to beyond nHL9
8	07:16 Sept. 28 – 07:16 Sept. 29	To: 42 51.04 N 61 40.60 W
		Between nHL11 and nHL12 – nHL8 – HL7 – HL6
9	07:16 Sept. 29 – 08:25 Sept. 29	To: 42 50.76 N 61 37.66 W
		Just east of HL6
10	15:50 Sept. 29 – 15:50 Sept. 30	To: 44 40.91 N 63 36.82 W
		SW of HL6, jog to east – HL5 then north on Halifax Line to BIO
11	15:50 Sept. 30 – 15:57 Sept. 30	44 40.91 N 63 36.82 W
		Alongside at BIO
12	15:58 Sept. 30 – 15:58 Oct. 01	44 40.88 N 63 36.85 W
		Alongside at BIO to departure from wharf
13	15:58 Oct. 01 – 15:58 Oct. 02	To: 42 54.82 N 66 00.58 W
		Bedford Basin – HL1 SW to RL1 – BBL1 – BBL2 then to WSW
14	15:58 Oct. 02 – 15:58 Oct. 03	To: 42 17.66 N 65 42.32 W
		WSW of BBL2 - Fundian Channel (PS1 – 10) then NE toward BBL4
15	15:58 Oct. 03 – 15:58 Oct. 04	To: 42 19.16 N 63 52.28 W
		SW of BBL4 – BBL4 then south to BBL7, then ENE to RL6
16	15:58 Oct. 04 – 15:58 Oct. 05	To: 45 03.86 N 61 00.61 W
		RL6 – RL5 then NE to just south of HL2 then east to off Cape Canso

Table. Data collected on HUDSON 2011-043.

17	15:58 Oct. 05 – 15:58 Oct. 06	To: 46 37.69 N 60 15.23 W
		South of Cape Canso – LL2 – to near end of Cabot Strait Line (CSL)
18	15:58 Oct. 06 – 15:58 Oct. 07	To: 47 06.66 N 59 57.99 W
		SSW of CSL irregularly to CSL1 – CSL3
19	15:58 Oct. 07 – 15:58 Oct. 08	To: 45 59.92 N 59 31.70 W
		CSL3 NE to CSL6 then SSE crossing Laurentian Ch, SW to NE of LL1
20	15:58 Oct. 08 – 15:58 Oct. 09	To: 43 47.41 N 57 50.21 W
		To Louisbourg Line 1 (LL1) then south along LL to LL8
21	15:58 Oct. 09 – 09:26 Oct. 10	To: 43 52.10 N 58 55.79 W
		LL8 – LL9 then NW to just north of GULD4
22	14:09 Oct. 10 – 14:09 Oct. 11	To: 42 12.10 N 59 49.73 W
		GULD3 SE then WSW to GULD4 – SG28 then SW to south of SIB8
23	14:09 Oct. 11 – 07:56 Oct. 12	To: 42 09.33 N 61 04.01 W
		South of SIB8 to nHL south of nHL12 then NNW to near nHL9
24	08:50 Oct. 14 – 16:15 Oct. 14	To: 44 40.90 N 63 36.83 W
		HL3 to BIO

Acquisition format file names: HA1143xx.dat Data format: Header + 2 ch x 4090 pts/ch @ 5 kHz/ch

APPENDIX G

Fall AZMP Cruise report: Leg 1, September 23, 2011 – September 30, 2011 Dartmouth, N.S. to Dartmouth, N.S. Observer: Sarah Wong snpwong@dal.ca

General overview

Seabird and marine mammal observations were made from the bridge of the CCGS Hudson during the first part of the fall AZMP cruise from September 23 to September 30, 2011 beginning and ending at the Bedford Institute of Oceanography in Dartmouth, N.S. Seabird surveys followed the standardized protocol for pelagic seabird surveys from moving platforms and stationary platforms for the Eastern Canada Seabirds at Sea program (ECSAS). The Hudson steamed southeast along the Halifax Line, off the Scotia Shelf. The primary purpose of the cruise was to retrieve and deploy moorings during the day and conduct oceanographic sampling (CTDs, net tows) at night. For the majority of the day, the ship was stopped at mooring stations with brief transits (less than 45 minutes) between stations. Fog for the first three days of the cruise reduced survey opportunity and resulted in some transects being conducted with strip widths less than 300m. A total of 239 five-minute transects were completed, resulting in nearly 20 hours of observations and a total of 386 km surveyed. An additional 11 stationary surveys were conducted when we spent most of the day at one mooring station. Two of these stationary surveys were opportunistic sightings of pilot whales (September 26 at 22:13 UTC and September 28 at 17:45 UTC). Another seabird observer (Sue Abbott, seee Appendix H) conducted surveys for the second part of the fall AZMP cruise.

Seabird sightings

From Dartmouth, N.S. to Dartmouth, N.S, along the "Halifax Line", 294 birds from 4 different families were counted in transect (this does not include birds outside of the 300m wide transect, birds following the ship or birds in flight that were not captured during the instantaneous snapshots)(Table 1). Northern fulmars, Cory's shearwaters and Greater shearwaters dominated the sightings. Sightings on the shelf consisted mainly of gulls, Greater shearwaters and northern fulmars. The number of seabird sightings increased near the shelf edge. Cory's shearwaters were sighted upon leaving the shelf edge and were sighted more often than Greater shearwaters in the deep water. Leach's storm-petrels and Cory's shearwaters dominated the deep water sightings. Phalaropes and jaegers were sighted in the deep water.

Marine mammal sightings

A total of 70 marine mammals (plus one dead and largely decomposed one) were sighted from Dartmouth, N.S. to Dartmouth, N.S. (Table 2). The sightings were dominated by Long-finned pilot whales that were mainly seen in the deep water or just off the shelf edge. Finback whales were sighted on the shelf.

Large fish sightings

Large predatory fish were also sighted during the cruise (Table 2). A basking shark was sighted September 24, 11:25 UTC just off the shelf edge (42.806 and -61.605). Tuna were also sighted twice in the deep water and included 2 individuals chasing small fish and one breaching individual.

Table 1: List of seabird species observed during the seabird survey from Dartmouth, N.S. to Dartmouth, N.S., September 23-30, 2011, as part of the fall AZMP cruise. Total numbers include only those birds considered "in" transect. They do not include birds following the ship, birds outside 300m and flying birds not captured during the "snapshot". Additional species sighted that were not considered "in transect" include: Northern gannets (*Morus bassanus*) and a Red-necked phalarope (*Phalaropus lobatus*).

Family	Species	Latin Name	Number Observed
	Wilson Storm-Petrel	Oceanites oceanicus	13
Hydrobatidae	Leach's Storm-Petrel	Oceanodroma leucorha	39
5	Unknown Storm-Petrel	Oceanodroma or Oceanites	16
	Herring Gull	Larus argentatus	12
	Great Black-backed Gull	Larus marinus	5
Laridae	Unknown gull	Larus spp.	3
Landae	Pomarine Jaeger	Stercorarius pomarinus	1
	Parasitic Jaeger	Stercorarius parasiticus	1
	South Polar Skua	Stercorarius maccormicki	1
	Northern Fulmar	Fulmarus glacialis	73
Procellariidae	Cory's Shearwater	Calonectris diomedea	63
	Greater Shearwater	Puffinus gravis	56
	Unknown shearwater	Puffinus or Calonectris	2
Scolopacidae	Red Phalarope	Phalaropus fulicaria	9

Species	Latin Name	Number observed
Long-fined Pilot whale	Globicephala melas	64
Finback whale	Balaenoptera physalus	2
Unknown dolphin		4
Unknown whale	Possibly Long-finned pilot whale	1
Tuna species		3
Basking shark	Cetorhinus maximus	1

Table 2: List of marine mammals and large fish recorded during surveys from Dartmouth, N.S. to Dartmouth, N.S. during part of the fall AZMP cruise, September 23-30, 2011.

APPENDIX H

Fall AZMP Cruise report: Leg 2, 1 October 2011 – 14 October 2011 Dartmouth, N.S. to Dartmouth, N.S. Observer: Sue Abbott abbott.sue@gmail.com

General overview

Seabird and marine mammal observations were made from the bridge of the CCGS Hudson during the second part of the fall AZMP cruise from 2 October to 14 October, 2011 beginning and ending at the Bedford Institute of Oceanography in Dartmouth, N.S. Seabird surveys followed the standardized protocol for pelagic seabird surveys from moving platforms and stationary platforms for the Eastern Canada Seabirds at Sea program (ECSAS). The primary purpose of the cruise was to conduct oceanographic sampling (CTDs, net tows). Weather conditions were favourable for surveys with the exception of 6 Oct and the morning of 7 Oct during a significant low pressure system. A total of 653 five-minute transects were completed, resulting in over 54 hours of observations. An additional 32 stationary surveys were conducted while the ship was conducting oceanographic sampling. Marine mammal sightings were collected during seabird surveys and also noted by CCGS Hudson crew. As part of DFO's effort to identify individual Bottlenose whales, photographs were taken, whenever possible, of Bottlenose whale dorsal fins using DFO's high-powered Nikon camera.

Seabird sightings

In total, 695 birds from 8 different families were counted in transect (this does not include birds outside of the 300m wide transect or birds in flight that were not captured during the instantaneous snapshots) (Table 1). Overall, Greater Shearwaters was the dominant species observed. Flocks of Greater and Cory's shearwaters were observed off the Western Scotian shelf between the Halifax and Roseway lines. In the Fundian Channel north of George's Bank, concentrations of Sargassum weed were abundant and several flocks of phalaropes were observed as well as storm-petrels and Greater Shearwater. Northern Gannets were frequently observed along the Eastern Shore, and were seen with Black-legged Kittiwakes in Cabot Strait. Jaegers were often associated with Greater Shearwaters and one failed kleptoparasitism attempt by a Parastic Jaeger on a shearwater was observed. Few alcids (and no Dovekies) were observed during surveys. Among the rarer sightings included seabirds usually associated with warmer waters: an albatross (unknown species) observed off southwestern NS, and two Audubon's Shearwaters observed in deep water off the shelf slope.

Landbird sightings

From Dartmouth, N.S. to Dartmouth, N.S, ten birds from six different families were counted in transect (this does not include birds outside of the 300m wide transect or birds in flight that were not captured during the instantaneous snapshots) (Table 1). The unusual sighting of two Dickcissel on 4 Oct coincided with a 'fallout' of landbirds on the NS mainland in advance of a large low pressure system, which produced high winds and seas during 5-7 Oct. A flock of five White-throated Sparrows landed on the ship on 11 Oct and remained until we arrived at BIO on 14 Oct.

Marine mammal sightings

A total of 106 marine mammals (including a dead bottlenose whale) were sighted from Dartmouth, N.S. to Dartmouth, N.S. (Table 2). The sightings were dominated by Long-finned pilot whales and Bottlenose whales. The dead Bottlenose whale was observed during a seabird survey north of The Gully on 9 Oct.

Large fish sightings

Large predatory fish were also sighted during the cruise (Table 2). One small shark was observed on 12 Oct while ship was on station. A group of tuna ten was observed on 8 Oct.

Table 1: List of seabird species observed during the seabird survey from Dartmouth, N.S. to Dartmouth, N.S., 2-14 October 2011, as part of the fall AZMP cruise. Total numbers include only those birds considered "in" transect. They do not include birds outside 300m and flying birds not captured during the "snapshot".

Family	Species	Latin Name	Number Observed
	Wilson Storm-Petrel	Oceanites oceanicus	2
Hydrobatidae	Leach's Storm-Petrel	Oceanodroma leucorha	64
Ilydrobullduo	Unknown Storm-Petrel	Oceanodroma or Oceanites sp.	3
	Herring Gull	Larus argentatus	24
	Great Black-backed Gull	Larus marinus	12
	Iceland Gull	Larus glaucoides	1
	Ring-billed Gull	Larus delawarensis	2
	Black-legged Kittiwake	Rissa tridactyla	43
Laridae	Long-tailed Jaeger	Stercorarius longicaudus	1
	Pomarine Jaeger	Stercorarius pomarinus	3
	Parasitic Jaeger	Stercorarius parasiticus	6
	Unknown jaeger	Stercorarius Jaegers	3
	Great Skua	Stercorarius skua	2
	South Polar Skua	Stercorarius maccormicki	4
Pelecanidae	Northern Gannet	Morus bassanus	51
	Northern Fulmar	Fulmarus glacialis	77
Descalleridos	Cory's Shearwater	Calonectris diomedea	68
Procellariidae	Greater Shearwater	Puffinus gravis	235
	Manx Shearwater	Puffinus puffinus	1

	Audubon's Shearwater	Puffinus lherminieri	2
Diomedeidae	Unknown albatross	Thalassarche sp.	1
Alcidae	Common Murre	Uria algae	2
Alciuae	Unknown alcid	Uria, Cepphus or Fratercula sp.	1
	Red Phalarope	Phalaropus fulicaria	3
Scolopacidae	Red-necked Phalarope	Phalaropus	7
	Unknown phalarope	Phalaropus sp.	75
Anatidaa	Black Scoter	Melanitta nigra	1
Anatidae	Surf Scoter	Melanita perspicillata	1
Falconidae	Peregrine Falcon	Falco peregrinus	1
Regulidae	Ruby-crowned Kinglet	Regulus calendula	1
Motacillidae	American Pipit	Anthus rubescens	1
	Magnolia Warbler	Dendroica magnolia	1
Parulidae	Ovenbird	Seiurus aurocapillus	1
	Mourning Warbler	Oporornis Philadelphia	1
Embonizidoo	White-throated Sparrow	Zonotrichia atricapilla	2
Emberizidae	Dark-eyed Junco	Junco hyemalis	1
Fringillidae	Pine Siskin	Carduelis pinus	1

Table 2: List of marine mammals and large fish recorded during surveys from Dartmouth, N.S. to Dartmouth, N.S. during the second part of the fall AZMP cruise, 2-14 October 2011.

Species	Latin Name	Number observed
Long-fined pilot whale	Globicephala melas	22
Bottlenose whale	Hyperoodon ampullatus	21 (including one dead)
Humpback whale	Megaptera novaeangliae	1
Common dolphin	Delphinus sp.	56
Unknown whale		5
Unknown seal		1
Unknown shark		1
Unknown tuna	Thunnus sp.	10

APPENDIX I

Collection of samples for determination of carbon dioxide concentration - Shaun Gelati

Outline

A total of 357 water samples were collected on the transects listed below. These samples will be used to measure CO_2 concentration by Helmuth Thomas's research group in the Department of Oceanography at Dalhousie University.

Halifax Line (121 samples) HL1: s, 10, 20, 30, 40, 50, 60, b HL2(1): s, 10, 20, 30, 40, 50, 60, 80, 100, b HL2(2): depths were not on CTD sheet, 10 samples were collected HL3: depths were not on CTD sheet, 11 samples were collected HL4: s, 10, 20, 30, 40, 50, 60, b HL5: s, 10, 20, 30, 40, 50, 60, 80, b HL6: s, 10, 20, 30, 40, 50, 60, 80, 100, 250, 500, 750, b HL6.3: s, b HL7: s, 10, 20, 30, 40, 50, 60, 80, 100, 250, 500, 1000, 1500, 2000, 2500, b HL8: s, 10, 20, 30, 40, 50, 60, 80, 100, 250, 500, 1000, 1500, 2000, 2500, b HL8: s, 10, 20, 30, 40, 50, 60, 80, 100, 250, 500, 1000, 1500, 2000, 2500, b HL9: s, 10, 20, 30, 40, 50, 60, 80, 100, 250, 500, 1000, 1500, 2000, 2500, b

Browns Bank Line (70 samples) BBL1: s, 10, 20, 30, 40, b BBL2: s, 10, 20, 30, 40, 50, 60, 80, b

BBL3: s, 10, 20, 30, 40, 50, 60, 80, b BBL4: s, 10, 20, 30, 40, 50, 60, 80, b BBL5: s, 10, 20, 30, 40, 50, 60, 80, 100, 150, b BBL6: 10, 20, 30, 40, 50, 60, 80, 100, 250, 500, 750, b BBL7: s, 10, 20, 30, 40, 50, 60, 80, 100, 250, 500, 750, 1000, b

Cabot Strait Line (69 samples) CSL1: s, 10, 20, 30, 40, 50, 60, b CLS2: s, 10, 20, 30, 40, 50, 60, 80, 100, 150, b CLS3: s, 10, 20, 30, 40, 50, 60, 80, 100, 150, 200, b CLS4: s, 10, 20, 30, 40, 50, 60, 80, 100, 150, 200, 300, b CLS5: s, 10, 20, 30, 40, 50, 60, 80, 100, 150, 200, 300, b CLS6: s, 10, 20, 30, 40, 50, 60, 80, 100, 150, 200, b

Louisbourg Line (97 samples) LL1: s, 10, 20, 30, 40, 50, 60, 80, b LL2: s, 10, 20, 30, 40, 50, 60, 80, 100, b LL3: s, 10, 20, 30, 40, 50, 60, 80, 100, b LL4: s, 10, 20, 30, 40, 50, 60, 80, b LL5: s, 10, 20, 30, 40, 50, 60, 80, 100, b LL6: s, 10, 20, 30, 40, 50, b LL7: s, 10, 20, 30, 40, 50, 60, 80, 100, 250, 500, b LL8: s, 10, 20, 30, 40, 50, 60, 80, 100, 250, 500, 1000, 1500, 2000, b LL9: s, 10, 20, 30, 40, 50, 60, 80, 100, 250, 500, 1000, 1500, 2000, b

N.B. All depths are nominal and in meters. Letters s and b stand for surface and bottom, respectively.

The author of report was a volunteer during the cruise and is a graduate student in the Department of Oceanography, Dalhousie University. Future enquiries should be addressed to helmuth.thomas@dal.ca.