RRS James Cook Cruise JC094, October 13 – November 30 2013

Tenerife - Trinidad

TROPICS

Tracing Oceanic Processes using Corals and Sediments

Reconstructing abrupt Changes in Chemistry and Circulation of the Equatorial Atlantic Ocean: Implications for global Climate and deep-water Habitats

Cruise Report

Laura F. Robinson (University of Bristol)

CONTENTS

1. Personnel on board

2. Rationale, Objectives and Sampling Strategy

3. Cruise Overview

- 3.1 Cruise timeline
- 3.2 Cruise narrative
- 3.3 NERC Cruise Assessment/ Debrief Agenda Form

4. Site Summaries and Maps

- 4.1 Overview Maps
- 4.2 Overview of sampling shown on vertical sections
- 4.3 Site Maps
- 4.4 Sample Summary plots
- 4.5 Station Tables

5. Operations (Technical)

- 5,1 Mapping
- 5.2 Coring operations
- 5.3 CTD operations
- 5.4 Dredging operations
- 5.5 ROV Isis operations
- 5.6 Underway

6. Water sampling

6.1 Summary of water sampling at each site

6.2 Parameter summaries

7. Sediment Sampling

- 7.1 Introduction
- 7.2 Sample summary tables
- 7.3 Shipboard Analyses
- 7.4 Foraminifer biostratigraphy
- 7.5 Subsampling
- 7.5 Pore Fluids

8. Coral Sampling

- 8.1 Live Corals
- 8.2 Fossil corals

9. Sponge sampling

10. Biological Sampling.

10.1 Summary of biological collections10.2 BIOLOGY SAMPLING PROTOCOLS10.3 Summary of biology seen on Isis ROV dives and collections made per seamount

11. Habitat mapping (Video and ROV mounted Multibeam)

11.1 Habitat mapping11.2 ROV mounted Reson Multibeam swath bathymetry

12. Anthropogenic samples

13. Outreach

14. APPENDICES

Appendix 1: Station logs Appendix 2: Event logs Appendix 3: Coral log Appendix 4: Water numbers Appendix 5: Underway samples Appendix 6: ROV dive plans Appendix 7: ROV dive maps Appendix 8: Sponge samples Appendix 9: Sediment samples Appendix 10: Isis logsheets Appendix 11: Isis Technical report

This cruise report was written by members of the JC094 Science Team and NERC NMF staff.

Chapter 1. Personnel on board

1	LEASK	JOHN ALAN	Master
2	NEWTON	PETER WILLIAM	C/O
3	MACLEOD	IAIN	2/0
4	NORRISH	NICHOLAS	3/0
5	HINDS	MATTHEW	C/E
6	KEMP	CHRISTOPHER MARTIN	2/E
7	DAVITT	FRANCIS ROBERT	3/E
8	SLATER	GARY	3/E 3/E
9	DAMERELL	PAUL Darren	ETO
0 10	BULLIMORE	GRAHAM	PCO
11	CRIMMIN	SAMANTHA JANE	Doctor
12	MacDONALD	JOHN EWAN	CPOS
13	MACLEAN	ANDREW	CPOD
14	DAY	STEPHEN PAUL	POD
14	SIMS	KENNETH NEIL	SG1A
16	OSBORNE	ADAM VICTOR MURRAY	SG1A
16	RENNIE	AARON LEE	SG1A SG1A
	PHILIPS	DAVID ALBERT	SG1A SG1A
18			
19	SMYTH	JOHN GERARD	ERPO
20	HAUGHTON		H/Chef
21	LINK	WALTER JOHN THOMAS	Chef
22	MINGAY	GRAHAM MALCOLM	Stwd
23	NOLAN	MELVIN PIUS	Stwd
24	BADGER	MARCUS PETER	Scientist
25	BATES	STEPHANIE LAUREN	Scientist
26	DOURAIN	MELANIE AMELIE LAETITIA	Scientist
27	FAIRBANK	VANESSA ELIZABETH	Scientist
28	HENDRY	KATHARINE ROSEMARY	Scientist
29	HOY	SHANNON KELSEY	Scientist
30	HUVENNE	VEERLE ANN IDA	Scientist
31	JACOBEL	ALLISON WOOD	Scientist
32	MARSH	LEIGH	Scientist
33	MOHAMED	KAIS JACOB	Scientist
34	MORRIS	PAUL JAMES	Scientist
35	NG	HONG CHIN	Scientist
36	ROBINSON	LAURA FRANCES	PI
37	SPOONER	PETER TIMOTHY	Scientist
38	STRUVE	TORBEN	Scientist
39	TAYLOR	MICHELLE LISA	Scientist
40	WILLIAMS	MARICEL CELILIA	Scientist
41	WOODHALL	LUCY CHERYL	Scientist
42	DER GRIENT	JESSE	Scientist
43	TURNER	DAVID RUSSELL	Technician
44	BRIDGER	MARTIN JOHN	SST
45	DAVIES	ALLAN	Technician
46	POOLE	BENJAMIN GEORGE	Technician
47	EDGE	DAVID	Technician
48	LOCKE	RUSSELL ANDREW	Technician
49	CHILDS	DAVID MATTHEW	Technician
50	MURDOCH	IAN CAMPBELL	Technician
51	COOPER	JAMES	Technician

Science Party

Principal Scientist: Dr Laura F Robinson University of Bristol

Shift 4am to 4pm

Watch Leader: Dr Veerle Huvenne National Oceanography Centre, Southampton

Dr Katharine Hendry University of Bristol Dr Michelle Taylor University of Oxford* Dr Marcus Badger University of Bristol Allison Jacobel Columbia University Torben Stuve Imperial College, London Dr Melanie Dourain Laboratoire de Planétologie et Géodynamique de Nantes Peter Spooner University of Bristol* Vanessa Fairbank University of Bristol

* Move to 8am-8pm to allow better overlap with ROV recovery

Shift 4am to 4pm

Watch Leader: Dr Paul Morris University of Bristol

Leigh Marsh National Oceanography Centre, Southampton Shannon Hoy University of Bristol Dr Kais Mohamed Falcon University of Vigo Dr Lucy Woodall Natural History Museum of London Maricel Williams University of Bristol Hong Chin Ng University of Bristol Stephanie Bates Cardiff University Jesse van der Grient University of Oxford

Chapter 2: Rationale, Objectives and Sampling Strategy

Ice-core records show that glacials had lower atmospheric pCO_2 and cooler temperatures than today. During the deglaciation there were a series of abrupt millennial scale changes to the global climate. Explaining the mechanism controlling these oscillations remains an outstanding puzzle. The ocean is a key player, and the Atlantic is particularly dynamic as it transports heat, carbon and nutrients across the equator. Despite decades of research there are distinct gaps in our knowledge of the history of the deep and intermediate ocean. Major hurdles include access to suitable archives, development of geochemical proxies and analyses that are sufficiently precise to test climate hypotheses. Through a combination of ship-board field work, modern calibrations and geochemical analyses this project will produce samples and data that address each of these gaps.

Cruise JC094 was the field work component of a focused study of present and past ocean chemistry in the Equatorial Atlantic including assessment the physical and chemical controls on deep-water coral ecosystems. A particular focus is on using the skeletons of deep-sea corals as climate archives.

The sampling objectives of the cruise can be grouped into a number of themes:

(a) Controls on coral habitats past and present

Studying what controls the distribution of corals today and in the past requires systematic mapping, imaging and collections from deep-water coral habitats. Shipboard swath bathymetry was used for an overview of each feature, and to select sampling sites. Systematic dives up the slopes of each feature allowed collection of video, stills, live and fossil corals and seawater. In addition microbathymetry of unusual habitats was to gin a wider overview. Coral associates were imaged and collected to add depth to our knowledge of the coral habitats.

(b) Development of geochemical proxies

Core top sediments, live calcified corals and sponges were collected across a range of depths with associated seawater with sampling focused on the greatest possible range of environmental parameters (e.g. temperature, nutrient status, water mass). These samples will be used to test geochemical proxies.

(c) Reconstruction of past climate

Sediment cores and fossil corals were collected across the basin and at a range of depth to allow a history of the Atlantic to be reconstructed.

(d) Ancillary Studies.

A number of other collections were also made including plastics (Lucy Woodall), rocks (Bramley Murton), sponges (Katharine Hendry) and genetics samples (Michelle Taylor).

Chapter 3: Cruise Overview

3.1 Cruise Timeline

Date		Location	Activity
October 1	3 TRANSIT		
October 14	1	Deep water	ROV wire stream, DP test
October 1	5 TRANSIT	-	CTD001 test
October 10	TRANSIT		
October 1	7 TRANSIT		
October 18	3 TRANSIT		
October 19	TRANSIT	CARTER	CTD002, survey, ROV221
October 20)	CARTER	ROV 222
October 2		CARTER	ROV223, MGA001, ROV224
October 22	2	CARTER	MGA002, PTN001
October 23	3	CARTER	MGA003, ROV225
October 24	1	CARTER	MGA004
October 2	5	CARTER	ROV226
October 20		CARTER	MGA226, ROV227
October 2		CARTER	
October 28			MGA006, PTN002,GVY001, MGA007
October 29			, , , , , , , , , , , , , , , , , , , ,
October 30		KNIPOVICH	CTD003, survey, ROV228
October 3		KNIPOVICH	ROV229
		KNIPOVICH	GVY002, GVY003, GVY004, ROV230
	2	KNIPOVICH	,,,,,,
	3 TRANSIT	KNIPOVICH	MGA008, PTN003
	TRANSIT		MGA009
	5 TRANSIT		GVY005, GVY006
	TRANSIT		
November			
November		VEMA	CTD004, ROV230
)	VEMA	MGA010, GVY007
November 10		VEMA	MGA011, CTD005, DRG01
November 1		VEMA	ROV232
November 12		VEMA	ROV233
November 13		VEMA	ROV234(MB)
November 14			
November 1			core on the way
November 10		VAYDA	survey, CTD006, ROV235
November 1		VAYDA	recover ROV and SBP survey
November 18		VAYDA	MGA013, GVY009, ROV236
November 19		VAYDA	rov stays in
November 20		VAYDA	recover ROV, MB survey, ROV237
November 2		VAYDA	recover ROV, MGA014
			GVY010+ 011, BOX001, GVY012,
November 22	2	VAYDA	ROV238
November 23	3 TRANSIT	VAYDA	recover ROV, transit
November 24		Gamberg	transit, SPB + MB survey, ROV239
November 2		Gamberg	recover ROV, GRY013, ROV 240
			recover ROV, GRY014, MGA015,
November 20	3	Gamberg	MGA016
November 2	7 TRANSIT		MGA017, Transit
November 28	3 TRANSIT		
November 29	TRANSIT		ARRIVE Port of Spain

3.2 Cruise Narrative

Friday 11 October 2013: Most of science party arrive in Santa Cruz de Tenerife. NOC staff call with news that Brazilian permissions not viable (permission to enter waters, but not to collect samples), so decision made to proceed with alternative cruise track.

Saturday 12 October 2013: Remainder of science party arrive in Santa Cruz.

Sunday 13 October 20131230 Safety briefing1400 Depart Santa Cruz de Tenerife to steam to deep water for ROV wire streaming

Monday 14 October 2013 **1615** Safety Drill

Tuesday 15 October

0030am ROV wire streaming test successful Problems with Dynamic Positions (DP), captain stays on station to look for repeat of problem and to coordinate with NOC and manufacturer of the system **STN001** Test CTD001 at 0900 to 100m depth Test ability to isolate engines when on DP 1011 depart for Carter Seamount

Wednesday 16th October: Reported problem with starboard propulsion Continued training and planning for scientific sites including ROV tours

Thursday 17th October: All clear in morning meeting with no reported propulsion issues.

Friday 18th October : Continue transit, training activities.

Saturday 19th October

STN 002 0446 CTD002 cast in 4522m seawater. All bottles fire and sampling continues throughout the day. Minicorer evident on the pinger trace making it hard to see approach of bottom, so decide to leave off minicorer for future deployments.

Continue towardst Carter Seamount and commence partial Multibeam swathe bathymetry survey of Carter Seamount (North edifice). Use map from Peyve et al 2009 as a guideline. Seamount rises up to 215m flat plateau with a series of plateaus separated y steep sections.

STN 003 1530 ROV221 at 914m water depth. Dive aborted at 523m due to USBL malfunction. Test USBL beacon on wire and decide to use 'old' beacon which was working on last ISIS cruise. (problem appears to be with connections on board having been changed during prior cruises?)

Sunday 20 October

STN 004 0216 ROV222 in 918m water. Deployment successful and excellent biological and geological collections. USBL a little jumpy – later discovered that we should have been using the starboard USBL not the port.

STN 005 2323 ROV Dive 233 in 645m water

Monday 21 October

1639 Recover ROV after successful traverse up to top of plateau.

STN 006 1745 MGA001 To allow time for ROV turn around deploy Megacorer on 650m plateau. Gantry would not extend, so difficult recovery. Corer bounced against side of boat several times. Came up virtually empty with a few fossil corals in two cores. Had penetrated as evidence of mud up sides of corer. Niskin firing worked and LW sampled for plastics **STN 007** 2055 ROV 224 Deployed at 1931m water depth. Successful fossil and bio collections. Evidence of some twisting in (brand new, already streamed) ROV wire, so decision to re-terminate the connection.

Move back out to deep water site for deep coring.

Tuesday 22 October

1540 recover ROV

STN 008 2118 MGA002 core in 4568m. Three cores 38-41cm long

Wednesday 23 October

STN 009 0448 Piston core PTN001 in 4567m. Recovered with 7.5m of sediment, dark grey with mottles in base section. Need to use MB depth as the echo sounder seems to be off. **STN 010** 1452 MGA003in 2755m a few forams but otherwise no sediment. Too sandy? **STN 011** 1858 ROV225 in 2749m water depth. Long sandy plains, sparse fossils of life until further up seamount. Dive traverses up to 2110m

Thursday 24 October

1835 Recover ROV

STN012 1929 MGA004 back on 650m plateau but closer to push core site. Recovered at 2030 with 7 damaged tubes, presumably we hit a rock.

ROV wire showing signs of torque, and the high tension wire very twisted

2139 Decision made to move to deep water and perform repeated streaming of the wire in 4600m of water to try and reduce any torque in the wire. Move to deep water site logging MB.

Friday 25 October

Continue wire streaming (three total) in 4300m of water.

NOC suggests using heavier weight. Switch to 1 ton weight and redeploy wire at 1649. Back on board at 2003 Steam back to ROV site.

STN013 2255 ROV 226 deployed in 540m water depth for swathe bathymetry. Problems with navigation during early parts of dive, but sorted out.

Saturday 26th October

1759 ROV 226 recovered.

STN014 1803 MGA005 deployed in 642m water depth. Came up with a few corals and forams but no real sediment.

STN015 2043 deploy ROV 227 dive from 1336m to 651m with extensive live and fossil coral collections. Lots of problems with slurp chambers with material stuck in the tubing and mixing of samples. Efforts made to unpick samples from video successful in many cases.

Sunday 27th October

1754 recover ROV then begin transit to Knipovich

Monday 28th October

SBP broken, making it hard to look for core sites. Seems that a board is faulty, and there are no spares on board. Sites chosen from prior core and from echo sounder which looked to have a sub surface layer. **STN016** 0329 MGA006 in 3400m water depth. Recovered at 0655. Three cores came up, but two emptied on recovery due to broken core catcher units (snapped – hit hard clay layer at depth?) leaving one full core to extrude.

STN017 0805 PTN002 Deploy 12m piston core. 6Ton pull out, mud on exterior but piston empty. Hard clay layer again?

1210 test coring wire which had been 'jumping'

Continue transit looking for core site in ~3500m basin

SBP fixed by switching boards around and subsurface layers become evident.

STN018 1613 GRY001 deploy 6m gravity core and recover 5.34cm of sediment (full core barrel) 2008 deploy Mega corer

STN019 2333 MGA007 recover megacores with 4 cores of 25-40cm long.

Tuesday 29th October

Steam to Knipovich with WP designed to go over some of Sierra Leone Rise Seamounts. Missed the top of Carter South as not accurate on the gravity data, but saw other seamounts on traverse.

Wednesday 30th October

Arrive deep water to NE of Knipovich **STN020** 0642 CTD003 in 4054m water depth, recover at 1011. **STN021** 1724 deploy ROV 228 in 1993m water depth. Traverse up to 1446m water depth collecting both fossil and live material

Thursday 31st October

1417 recover ROV

STN022 1927 deploy ROV229 at 1019m water depth with aim of sampling AAIW water masses. Pass fields of fossil corals but leave collections until shallower - although less samples found at top.

Friday 1st November

1459 recover ROV

STN023 1552 GVY002 Deploy gravity core on top of seamount at 552m in apparent sediment basin (>20m thick). Strange pull out and recovered empty – hit coral layer?

STN024 1723 GVY003 repeat gravity core, also empty.

STN025 1905 GVY004 move to another part of seamount top and try gravity core again – empty. **STN026** 2146 deploy ROV 230 for final Knipovich dive at 2758m water depth. Long stretches of sediment, then steep rocky faces with scarce corals. At about 1400 moved ROV off bottom and moved to shallower depth range (~1100m) to fill up nets with fossils.

Saturday 2nd November

2251 recover ROV and start transit towards Vema and deep coring site

Sunday 3rd November.

STN027 0203 MGA008 deployed in 4405m water depth, 0619 Recover core with 4 tubes full (22-41cm recovery)

STN028 0713 Piston core PTN003 deployed in same place with 12m barrel. Recovered at 1144. Small amount of mud in trigger, but otherwise empty. Evidence that the core penetrated up to above the bomb. Liner shattered – maybe a vacuum inside? Mega core contained glacial material, so decided to leave site.

Transit toward Vema via coring site

Monday 4th November

STN029 2216 MGA009 in 4055m water depth. We were looking for a shallower site, but the shallower depths were all ridges. 0222 recover megacorer with four cores of soft mud and sand

STN030 0245 gravity core GVY005 with 6m barrel, and recover full core with ?1m over penetration(later discovered to be 88cm from colour measurements). Re-core to make sure that we get the glacial period represented.

STN031 0828 gravity core GVY006 using 9m with slow release and recover good core with no overpenetration.

Carry out CTD wire streaming down to 200m to try and remove opening in wire.

Tuesday 5th November to Thursday 7th November Continue transit

Friday 8th November

Arrive at Vema ridge via short survey along 3000m depth (no apparent sediment) and head towards CTD site monitoring bottom using SBP.

STN032 0717 water depth 4949m CTD004 recovered at 1153. Bottle 16 pouring out water, bottles 2 and 4 not sealed (T and O2 evidence)

STN033 ROV231 deployed at 1453 in 1546m water depth with site chosen from MB grid sent by Debbie Smith. Long ascent with high currents in places.

Saturday 9th November

1528 Swell increasing and stronger winds so decide to bring up ROV and core while assessing weather. **STN034** 1734 deploy Megacore MGA010 at 4950m water depth south of ridge, 2 full cores out of four. **STN035** 2238 deploy Gravity core GVY007 at same place. Double spike in tension (?double core in top section). Winch problems for ~1 hour during recovery.

Sunday 10th November

Weather still too rough to deploy ROV so traverse to north side of ridge.

STN036 Deploy Megacore MGA011 in 5160m water depth. None of the triggers fired, although Niskin worked.

STN037 1709 redeploy Megacore, MGA012 but same result – sediment too soft?

STN038 2259 deploy gravity core GVY008 with 9m barrel and get 7m recovery. Top consist of wet mud

Monday 11th November

STN039 05:00 deploy CTD005 in 5161m water depth on north side of ridge. Bottles 2 and 4 not sealed again. Wire appears unraveled and video footage shows it being damaged as it moves, so decision to reterminate the wire during the transit.

Return to potential ROV site and check weather conditions, but still too rough to deploy.

STN040 1553 deploy rock dredge DRG001 with burlap lining at 873m water depth. Recover at 1753 with small collections of corals and small rocks in the dredge and in the bucket trailing behind. **STN041** 2031 Weather calmer so deploy ROV232 in 1155m water depth to traverse to shallowest part of the seamount. Spectacular cliff at start with large (>ROV size) branching scleractinian. Up onto flatter slope and top of Vema with sand and fine coral rubble. One laser on the Scorpio not working so no scaling on that camera.

Tuesday 12th November

1536 Recover ROV. Lasers tested but work on deck.

STN042 2055 Deploy ROV233 in 3000m water depth for a traverse up a ridge on the north side of Vema of moderate steeepness. Large tracts of rocks with sand pockets, spectacular sponge covered ridges. Laser still not working underwater.

Wednesday 13th November

2032 recover ROV.

STN043 deploy ROV234 with vertically mounted Reson Multibeam system to map and video the cliffs around the area of Dive 232. Before dive HD science camera dome discovered to have a crack so removed and swapped for a low resolution camera. Wiring issues meant that it could not be move independently of the pilot camera. Lasers swapped for green lasers, but still only one working. Without laser and independent camera unable to do video mosaic, but steady flying allowed for video transects to be performed.

Thursday 14th November

2030 recover ROV Transit to Researcher Seamounts continuing to collect MB bathymetry

Friday 15th November Transit to Researcher Seamounts.

Saturday 16th November

Arrive at first approach to Vayda Seamount at SE to start looking at SBP for future sediment sites. Some evidence of layering seen. Traverse across Vayda up ridge to the west of peak at 6knts and then acorss the flat plain to CTD site in 4000m (looking for sediment). WP over small ridge so continue north to site with sediment layers.

STN044 deploy CTD006. Bottles 2 and 4 moved position so as to not compromise the bottom water sampling. Problems with switching between winch 'bellybox' and the winch room control on descent. Bottles 2 and 4 did not close at the bottom. Need new bottles for next CTD. Apparently already evidence for wire unraveling even on first deployment.

Steam back towards Vayda continuing to look at SBP. Then slow to 6knts to continue bathymetric survey. Vayda reaches 400m water depth with a small flat top.

STN045 deploy ROV235 at 1400m water depth towards west of seamount. Landed on fossil corals field. Strong currents during dive, so had to pull up ~200m to traverse across certain areas.

Sunday 17th November

1948 recover ROV.

Survey area to the north east of Vayda to look for shallower coring site. No apparent sediment on SBP so return to site of prior CTD for coring, decision made to core just south of small ridge.

Monday 18th November

STN 046 MGA013 deployed at 4125m water depth north of Vayda. Recovery of some sediment, longest core 8cm. Extensive scrolling problems on the way up (5 hours twenty minutes). **STN047** GVY009 in 4109m water depth. Recovered empty, although mud on the outside. Extenseive scrolling problems on the way up (4 hours 40 minutes). Hours of rest issue for CPO so no more coring possible (although ROV planned)

STN048 ROV236 at 850m water depth below Vayda summit. Early part of dive includes sediments and some fossil corals, but then becomes smooth rock with brittle stars.

Tuesday 19th November

Strong winds pick up during morning, with shipboard GPS drop outs so ROV held stationary on seafloor at 1424. Resume dive at 1637, but unable to recover. At top of plateau move to deeper site in blue water to allow another upward transect. Sharks and fishing gear seen on seamount plateau.

Wednesday 20th November

Recover ROV at 1401.

MB survey the southern side of Vayda

STN049 ROV237 deployed at 2165m below dive 235. Start with a sediment plain, then move up rocky slope Limited recovery of samples, and again very strong currents which required pull up by ~100m to make headway.

Thursday 21st November

Recover ROV

STN050 MGA014 deployed south of Vayda in 3700m water depth. Fitted USBL to allow monitoring of the precise position of the core at depth. USBL beacon visible on sonardyne screen allowing match to waypoint, although 100m+ scatter at depth.

Friday 22nd November

Megacore recovered, but USBL and bracket missing on recovery, with damage to MegaCorer. Appears as though cable wrapped underneath USBL pulling it off. No sediment recovered, although indications of penetration into the sediment. Niskin bottle fired, and also recovered empty.

STN051 GVY010 9m barrel deployed in same location. Recovered empty although indications of sediment on outside.

STN052 GVY011 9m barrel deployed in same location with small drift, again no sediment in corer and a small amount of sediment on outside up to ~50cm. Travel to south east past small ridge to revisit a potential site, but SBP looks worse than prior site. Return to site of STN50, 51, 52.

STN053 BOX001 deployed in same location as prior coring. Gantry stuck on recovery. Eventually recovered (2 hours 20 minutes from bottom to top) with about 10cm of sediment. Hard well mixed

foram sand layer at base. Sub cores taken using megacoring tubing for extruding as well as small diameter cores for LW and piston core tubing for storage.

STN054 GVY012 6m barrel deployed on the seamount on a 400m wide sediment plain close to where we recovered full ROV push cores. Core recovered with a small amount of sediment, around 30cm, but slumped down in corer. It had been difficult to disconnect the core barrel with lots of hammering, wobbling and pulling of the barrel which probably did not help the consistency of the core. **STN055** ROV238 deployed with Reson swath MB system in down facing position. Location close to dive 236. Conditions excellent and so able to swath a small knoll as well as the main habitat target.

Saturday 23rd November

ROV recovered and transit to Gramberg Seamount commences.

Sunday 24th November

Arrive Gramberg Seamount via SBP survey coming in from the NE. MB survey of seamount. 1544 deploy ROV239 in ~ 1564m water depth. Land on fossil coral covered knoll. Continue up seamount towards top and end dive at 900m

Monday 25th November

Recover ROV.

1800 deploy GRY013 in 1643m water depth but no sediment recovered. 2110 ROV240 deployed in water depth 2155m on deeper knoll. Mainly rocks and sediment. At 5am traverse back to start of Dive 239 to fill up nets with fossil corals.

Tuesday 26th November

Recover ROV240 for last time with no problems

Move to sediment core site looking at SBP, although acoustics not good. Return to site picked out during inward survey.

1943 deploy GRY014 in 2714m water depth. Recover 3.88m of sediment.

2238 deploy MGA015 at same site. Came up with small amount of sediment in one tube, so redeploy.

Wednesday 27th November

0148 deploy mega core MGA016 at same site as above and recover four tubes of sediment Move to deep water sediment site.

0530 deploy MGA017 at 4128m water depth. Recover with 3 tubes partially full of muddy sediment 1000 core on deck, end of over the side operations, transit to Trinidad and Tobago commences.

Thursday 28th November

Transit 1328 Switch off MB and SBP as well as underway water sampling

Friday 29th November Transit until arrival in Port of Spain.

Saturday 30th November

Disembark at 1400 local time.

3.3 NERC Cruise Assessment/ Debrief Agenda Form

Ship :	R.R.S. James Cook	Cruise ID:	JC094	Dates:	13October-30November 2013
PS name:	LF Robinson	Institute & position:	University of Bristol	Email:	Laura.robinson@bristol.ac.uk
Work type:	ROV/CORE/MB/CTD		Area of operation:	Equatoria	I Atlantic
Master:	John Leask		Tech Liaison Officer:	Dan Comb	pen/Dave Turner

	Please ti	Please tick the appropriate box and add comments if required									
Supply Agreement Requirements	Exceeded	Met	Below	Greatly Below	Comments			Complaint filed (Y/N)	Internal Use Only: Logged		
Science Objectives Met		x	x		Brazilian waters, t visited two alterna objectives, but not Agreement includ						
<u>Downtime</u>					Downtime		Reason Overall there was limited downtime given the length of the cruise. Downtime documented below.	cruise			
		х			Ship5.8 hoursTesting DP and propulsion during passage. Fortunately issues resolved and no further problems during cruise.						

JC094 Cruise Report, Chapter 3, Page1

	Approx. 15 hours, hard to quantify since scrolling required repeated changes in pace etc.	 of unravelling even after one deployment after retermination. This issue did not affect our cruise since we only carried out minimal CTD operations, but should be looked at for future cruises. Coring issues: (A) Gantry had problems being brought in. Observed for the first time on 21st October at STN006 (Megacore). This issue arose several times during coring operations taking up to an hour, or even more in some cases on recovery of cores. Engineers worked towards fixing the gantry during the cruise, but spare parts were not available on board. (b) Scrolling of coring wire problematic from 9th November adding up to 2 hours additional time to coring operations. It is worth noting that for future cruises it would be beneficial to have additional personnel expert in monitoring scrolling on the wire to prevent build up of scrolling problems and allow continuous coring programs. (c) some issues arising during transition from winch room control to 'belly box' which took up to an hour to resolve in exceptional cases. 	
Equipment	15 hours 24 hours	USBL problems during Dive221 and Dives 239 and 240. The first ROV dive ROV221 was aborted due to inability to connect to USBL beacon. The issue would appear to relate to changes having been made and not communicated between different cruises. Software issues arose during the latter dives. Second attempt at streaming ROV wire	
	24 nours	Second attempt at streaming ROV wire after evidence of twisting. It would have been helpful to have streamed with a heavy weight during the first wire streaming (during first passage).	
Weather		In general conditions were very good, and we lost little time to weather during the	

JC094 Cruise Report, Chapter 3, Page2

					Other	24 hours.	cruise. We were unable to deploy the ROV during bad weather at Vema Fracture Zone, but carried out coring operations during that window. ROV dive had to be extended to >48 hours due to weather. Whilst we were able to look at other areas of the seamount after a blue water traverse, we were not able to visit the areas we had planned, losing a day.	
	Safety If Accidents or Near misses have been filed refer to these.	x			Accidents NONE Near Miss MAIB	None that I an	n aware of	
	Programming & SME		x		Overall programmin PI meeting cancelle			
	Pre-Cruise Planning / Supply agreement		х				It would be helpful to have a cruise manager who is a	
Pre-Cruise	Pre Cruise Planning & Communications			x	A late ROV personn another cruise). Thi hard to propose alte The change affected reduced to 12 hours efforts to avoid mea became so in our fin short turnaround tin ROV bottom time. - It was hard to m coring or surveys th - it placed addition a long cruise	s change was not con- ernative solutions. d our cruise in a num s, restricted further to altimes. Weather con- nal three sites. As a r nes. Mostly this was However it did have ake meaningful use of hus reducing the time al pressure on the rel	tember critical to launch and recovery was moved to mmunicated to me in a time efficient manner making it ber of ways. The launch and recovery window was daylight hours during marginal weather conditions and nditions were not problematic at our first two sites, but esult it became necessary to run long ROV dives with a workable solution and we were able to maximise useful several impacts: of the intervening ~ four hour turn around window for available for science evant ROV team and science team promoting tiredness on afloor as we could not collect samples until we were full	

JC094 Cruise Report, Chapter 3, Page3

Onboard Support	Mobilisation Support	but had to 'pace' sampling to allow for long dives. Overall this was only an issue in a couple of dives towards the end of the cruise. An area which would be of great benefit in planning would be to have a single, up to date pack of documentation required for embarkation. The dental forms are out of date and the information on medicals was initially incorrect. We were informed that a doctor's letter was sufficient for overseas colleagues and only at late notice realised that this was not the case. One Brazilian collaborator was unable to join the cruise as he could not complete the ENG1 and PST courses. It is challenging to invite colleagues from other countries to participate in UK cruises as a result of these regulations, a fact that can only reduce the effectiveness of UK science. Excellent Onboard generally good communications. Across the board the crew and technical staff were helpful, courteous and knowledgeable making the cruise easy to run. Overall excellent scientific facilities, well maintained and easy to use. A few issues below: Winch and gantries, see above. In addition failure of the main lab unit for running the winch and no spare parts meant that winching operations took place in the winch room does not have access to the information needed for deployments (e.g. MB depth) so that interested parties had to be separated. Winching either needs to be controlled from main lab, or winch room needs to be improved to contain better access to shipboard information. SBP120 essential to choosing coring sites had faulty boards and no spares. Systems technician worked towards a solution by switching boards, but unexpected failures at inopportune moments were problematic.	
	Domestic Facilities Hotel facilities Catering service Cleanliness of ship	Overall I was extremely impressed with the facilities. The galley staff did an outstanding job which was praised frequently by all science personnel. It would be of great benefit to have a midnight meal for 24 hour a day operations.	
	Demobilisation Support Please advise on any issues post completion	Demob has not yet happened. Agent not responsive to queries.	
	Any Other Business	Better internet access would improve ability to provide more insightful outreach material to the general public, as well as allow us to download scientific literature required during the course of the cruise.	

Chapter 4: Site summaries and maps

The following pages are full page maps and site summaries for the five main sites as well as overview maps.

4.1 Overview Maps

JC094 Multibeam Track (Page 2): This is the JC094 track of the hull-mounted EM-120 multibeam sonar data. Gaps in the data are where the sonar was not being logged while transiting through Economic Exclusive Zones. This map was created in a Mercator projection with a standard parallel of 10.0 degrees north. (EBA= Carter Seamount, EBB= Knipovich Seamount, VEM= Vema Fracture Zone, VAY= Vayda Seamount, and GRM= Gramberg Seamount).

JC094 Cruise Track (Page 3): This is the RRS James Cook navigation data at 1 minute intervals overlaying an ETOPO1 base map. The ETOPO seafloor is represented by depth with the dark blues representing deeper depths and the red being the shallowest. This map was created in a Mercator projection with a standard parallel of 10.0 degrees north. (*Amante, C. and B. W. Eakins. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA technical Memorandum NESDIS NGDC-24, 19 pp, March 2009.*)

JC094 Stations (Page 4): This figure is the JC094 Cruise Track map with the locations of each main site and transit stations. The five main sites (EBA= Carter Seamount, EBB= Knipovich Seamount, VEM= Vema Fracture Zone, VAY= Vayda Seamount, and GRM= Gramberg Seamount) are shown by coloured square outlines that correlate to zoomed imasp of each site with stations (see following pages). The transit stations are depicted by their number in either a red (successful) or green (failed).

4.2 Overview of Sampling shown on vertical sections

ROV DIVES (*Page 6*): ROV dive locations and depth ranges superimposed on Ocean Data view longitudinal sections. The top graph shows the temperature (degree Celsius) at depth (m) by location (Degree) for each ROV dive. The bottom graph represents the phosphate levels (µmol/l) at depth (m) by location (Degree) for each ROV dive.

WATER SAMPLES (Page 7): Water sample locations (grey dots are samples collected by ROV or by Mega core, coloured dots are CTD samples, as labelled) superimposed on Ocean Data view longitudinal sections. The top graph depicts the amount of oxygen (ml/l) at depth (m) by location (Degree) for each water sample taken. The bottom graph represents the phosphate levels (µmol/l) at depth (m) by location (Degree) for each water sample.

SEDIMENT CORES (Page 8): Sediment core locations for short (mega and box corers) and long (piston and gravity corers) cores superimposed on Ocean Data view longitudinal sections. The top graph depicts the temperature (degree Celsius) at depth (m) by location (Degree) for each sediment sample by attempted or successful core. The bottom graph represents the phosphate levels (µmol/l) at depth (m) by location (Degree) for attempted or successful core.

JC094 Cruise Report Chapter 4 Page6

JC094 Cruise Report Chapter 4 Page7

4.3 Site Maps

Carter Seamount (EBA) Stations (Page 10): This figure shows all of the stations by gear type that occurred on Carter Seamount. The base map is from EM-120 data collected and processed during JC094. This base map is a 50 m resolution grid overlaying a 100 m resolution grid in a UTM projection, Zone 27N. The contours are at 200 m intervals. Stations are represented by coloured circles, except for ROV dives which are represented by coloured navigation lines created from USBL data. Station 13 is shown as the high-resolution ROV multibeam data. The stations are shown in as red (failed) or green (successful).

Knipovich Seamount (EBB) Stations (Page 11): This figure shows all of the stations by gear type that occurred on Knipovich Seamount. The base map was produced by EM-120 data collected and processed during JC094. This base map is a 100 m resolution grid in a UTM projection, Zone 26N. The contours are created at 100 m intervals. Stations are represented by coloured circles, except for ROV dives which are represented by coloured navigation lines created from USBL data. The stations are shown in as red (failed) or green (successful).

Vema Fracture Zone (VEM) Stations (Page 12): This figure shows all of the stations by gear type that occurred on the Vema Fracture Zone. The base map was produced by EM-120 data collected and processed during JC094. This base map is a 100 m resolution grid in a UTM projection, Zone 23N. The contours are created at 200 m intervals. Stations are represented by coloured circles, except for ROV dives which are represented by coloured navigation lines created from USBL data. Station 14 is not represented by the ROV navigation line, but by the orange coloured circle because it was the vertical-high resolution mapping dive. The stations are shown in as red (failed) or green (successful).

Vayda Seamount (VAY) Stations (Page 13): This figure shows all of the stations by gear type that occurred on Vayda Seamount. The base map was produced by EM-120 data collected and processed during JC094. This base map is a 100 m resolution grid in a UTM projection, Zone 22N. The contours are created at 200 m intervals. Stations are represented by coloured circles, except for ROV dives which are represented by coloured navigation lines created from USBL data. Station 55 is not represented by the ROV navigation line, but by the high-resolution multibeam base map. The stations are shown in as red (failed) or green (successful).

Gramberg Seamount (GRM) Stations (Page 14): This figure shows all of the stations by gear type that occurred on Gramberg Seamount. The base map was produced by EM-120 data collected and processed during JC094. This base map is a 100 m resolution grid in a UTM projection, Zone 22N. The contours are created at 200 m intervals. Stations are represented by coloured circles, except for ROV dives which are represented by coloured navigation lines created from USBL data. The stations are shown in as red (failed) or green (successful).

JC094 Cruise Report Chapter 4 Page11

JC094 Cruise Report Chapter 4 Page14

4.4 Sample summary graphs

Vayda Summary (Page 16): These graphs give a general summary of sampling that occurred on the Vayda Seamount. **Graph A** represents the temperature (RED, degrees Celsius) and salinity (BLUE, PSU) by depth, collected during CTD006. **Panel B** displays the overall ROV dive time (hours) at depth (calculated by binning the ISIS Techsas data into 50m bins by depth), with individual dives distinguished by colour. **Graph C** represents at what depth water samples were collected by gear type. **Graph D** shows at what depth coral samples, distinguished by live or fossil, were collected. **Graph E** depicts at what depths sediment samples were taken from by gear type (PSH and SLP are during ROV dives).

Carter Sampling Summary (Page 17): These graphs give a general summary of sampling that occurred on Carter Seamount. **Graph A** represents the temperature (RED, degrees Celsius) and salinity (BLUE, PSU) by depth, collected during CTD002. **Graph B** displays the overall ROV dive time (hours) at depth (calculated by binning the ISIS Techsas data into 50m bins by depth), with individual dives distinguished by colour. **Graph C** represents at what depth water samples were collected by gear type. **Graph D** shows at what depth coral samples, distinguished by live or fossil, were collected. **Graph E** depicts at what depths sediment samples were taken from by gear type (PSH and SLP are during ROV dives).

Knipovich Summary (Page 18): These graphs give a general summary of sampling that occurred on Knipovich Seamount. **Graph A** represents the temperature (RED, degrees Celsius) and salinity (BLUE, PSU) by depth, collected during CTD003. **Graph B** displays the overall ROV dive time (hours) at depth (calculated by binning the ISIS Techsas data into 50m bins by depth), with individual dives distinguished by colour. **Graph C** represents at what depth water samples were collected by gear type. **Graph D** shows at what depth coral samples, distinguished by live or fossil, were collected. **Graph E** depicts at what depths sediment samples were taken from by gear type (PSH and SLP are during ROV dives).

Vema Summary (Page 19): These graphs give a general summary of sampling that occurred at the Vema Fracture Zone. **Graph A** represents the temperature (RED, degrees Celsius) and salinity (BLUE, PSU) by depth, collected during CTD004. **Graph B** displays the overall ROV dive time (hours) at depth (calculated by binning the ISIS Techsas data into 50m bins by depth), with individual dives distinguished by colour. **Graph C** represents at what depth water samples were collected by gear type. **Graph D** shows at what depth coral samples, distinguished by live or fossil, were collected. **Graph E** depicts at what depths sediment samples were taken from by gear type (PSH and SLP are during ROV dives).

Gramberg Summary (Page 20): These graphs give a general summary of sampling that occurred on the Gramberg Seamount. **Graph A** represents the temperature (RED, degrees Celsius) and salinity (BLUE, PSU) by depth, collected during CTD006. **Graph B** displays the overall ROV dive time (hours) at depth (calculated by binning the ISIS Techsas data into 50m bins by depth), with individual dives distinguished by colour. **Graph C** represents at what depth water samples were collected by gear type. **Graph D** shows at what depth coral samples, distinguished by live or fossil, were collected. **Graph E** depicts at what depths sediment samples were taken from by gear type (PSH and SLP are during ROV dives).

Carter Summary Figure

Depth

Knipovich Summary Figure

JC094 Cruise Report Chapter 4 Page17

Vema Summary Figure

Vayda Summary Figure

4.5 Station Tables

Transit Stations (Page 22): This table lists all of the stations that occurred between the 5 main sampling sites. The stations are coloured by gear type (GREEN= CTD, PINK= CORE, BLUE= DREDGE and ORANGE= ROV). Each station is described by attributes: **Transit** (which transit the station occurred during), **Gear #** (ID for gear type), **Date** (date of initial deployment, GMT), **Time** (time of initial deployment, GMT), **Latitude and Longitude** (taken from ship's GPS, Degree Decimal Minutes), **Depth** (from EM-120 multibeam, Meters), and **Comments.**

Carter Stations (Page 23): This table lists all of the stations at Carter Seamount (EBA). The stations are coloured by gear type (GREEN= CTD, PINK= CORE, BLUE= DREDGE and ORANGE= ROV). Each station is described by attributes: **Gear #** (ID for gear type), **Date** (date of initial deployment, GMT), **Time** (time of initial deployment, GMT), **Latitude and Longitude** (taken from ship's GPS, Degree Decimal Minutes), **Depth** (from EM-120 multibeam, Meters), and **Comments.**

Knipovich Stations (Page 24): This table lists all of the stations that occurred at Knipovich Seamount (EBB). The stations are coloured by gear type (GREEN= CTD, PINK= CORE, BLUE= DREDGE and ORANGE= ROV). Each station is described by attributes: **Gear #** (ID for gear type), **Date** (date of initial deployment, GMT), **Time** (time of initial deployment, GMT), **Latitude and Longitude** (taken from ship's GPS, Degree Decimal Minutes), **Depth** (from EM-120 multibeam, Meters), and **Comments.**

Vema Stations (Page 25): This table lists all of the stations that occurred at the Vema Fracture Zone (VEM). The stations are coloured by gear type (GREEN= CTD, PINK= CORE, BLUE= DREDGE and ORANGE= ROV). Each station is described by attributes: **Gear #** (ID for gear type), **Date** (date of initial deployment, GMT), **Time** (time of initial deployment, GMT), **Latitude and Longitude** (taken from ship's GPS, Degree Decimal Minutes), **Depth** (from EM-120 multibeam, Meters), and **Comments.**

Vayda Stations (Page 26): This table lists all of the stations that occurred at Vayda Seamount (VAY). The stations are coloured by gear type (GREEN= CTD, PINK= CORE, BLUE= DREDGE and ORANGE= ROV). Each station is described by attributes: **Gear #** (ID for gear type), **Date** (date of initial deployment, GMT), **Time** (time of initial deployment, GMT), **Latitude and Longitude** (taken from ship's GPS, Degree Decimal Minutes), **Depth** (from EM-120 multibeam, Meters), and **Comments.**

Gramberg Stations (Page 27): This table lists all of the stations that occurred at Gramberg Seamount (GRM). The stations are coloured by gear type (GREEN= CTD, PINK= CORE, BLUE= DREDGE and ORANGE= ROV). Each station is described by attributes: **Gear #** (ID for gear type), **Date** (date of initial deployment, GMT), **Time** (time of initial deployment, GMT), **Latitude and Longitude** (taken from ship's GPS, Degree Decimal Minutes), **Depth** (from EM-120 multibeam, Meters), and **Comments.**

Transit Stations

uo										
#	TRANSIT (Gear #	Date	Time I GMT	Lat ° N	Lat Min N	Long ° W I	Long Long ° W Min W	depth (m)	Comments
001 TRS_1		CTD001	15-0ct	09:02	25	5.02	21	24.84	4552	4552 practice CTD, profile taken, niskins
016 TRS_2		MGA006	28-0ct	03:29	7	48.00	21	24.00	3400	max tension= 3.60-3.71. 3 tubes came up full, but two emptied once out of the water. 2 trigger devices snapped. Core sampled 3400 without taking pore fluids
017 TRS_2		PTN002	28-Oct	08:05	7	48.02	21	24.01	3394	max tension= 5.95tons.looked to be a clean hit and pull out. Mud 3394 in core catcher but barrel empty and core catcher a little bent
018 TRS_2		GVY001	28-0ct	16:13	7	26.10	21	47.78	3426	max tension= 4.94 ton at pull out. Core succesful. Completely full 3426 up to the top valve in the barrel. 5.34m of sandy mud
019 TRS_2		MGA007	28-0ct	20:08	7	26.09	21	47.78	3419	4 sucesful megacores about 25cm - 40cm long composed of 3419 muddy sand and sandy mud
029 TRS_3		MGA009	04-Nov	22:16	9	48.71	32	54.73	4055	4055 4 successful mega cores
030 TRS_3		GVY005	05-Nov	02:45	9	48.73	32	54.76	4055	Completey full gravity core- mud coming out of the top. Max 4055 tension=5.6 tons
031 TRS_3		GVY006	05-Nov	08:28	9	48.71	32	54.73	4054	4054 Full gravity core. Max tension=5.37 tons

Extensive coral (live and solitary) collections at 1400m and 800m. Beautiful coral gardens saw fossil corals at landing. Large collection. Traversed up seamount collecting fossils and 662 Came back with 7 broken tubes, no sediment recovered. Niskin fired but no one sampled. some scattered corals. Around 2200 barnale shells. We were able to collect live solitary Deep part of dive sandy plain with scarce life. Moving up slope began to see rocks then CTD in and out of water (mini core attached at 04:10:00). 24 successful bottles. 1357 1300-1200m. Problems with slurp chambers- lots of material stuck in the tube. 672 Fossil collections at base. Barren patches on way up. Lots of live sampling 1090 Successful dive, 5 niskins, fossil coral, bio and rocks. Push cores failed 914 Recovered Isis Dive before it got to the bottom. Problems with USBI 4590 3 cores succeded. 3 did not fire. 2 were empty. Niskin success 640 no sediments recovered but two tubes had fossil corals. 642 No cores retrieved. Some coral and foram sand found 2755 All fired, but no sediment collected. Niskin fired-Lucy 2743 corals at several depths. 6 push cores recovered. 510 Reson multibeam survey of previous dive sites 4567 7.5m of mud recovered. Forams at base 2140 samples. Hard to collect push cores. 1354 END STATION 642 END STATION 214 END STATION 2075 END STATION 655 END STATION 523 END STATION Comments 4522 depth Ξ 18.95 18.83 17.05 18.9619.3637.93 18.99 18.89 38.27 18.8918.8918.6618.8917.90 38.27 16.2715.92 17.94Long Min W 16.0819.71 21 21 21 Long 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 M∘ 12.33 12.96 11.73 12.36 16.6810.1613.8817.07 12.60 13.37 13.4316.68 10.17 13.37 13.97 13.4213.41 14.82 11.4013.21 Min Lat z 9 9 Lat° 9 9 9 9 9 9 6 σ 6 6 6 6 6 6 6 6 6 6 Z 00:03 04:1615:30 19:1803:57 18:25 17:45 22:46 21:1804:4814:5219:29 23:23 18:03 22:09 16:1514:20 20:41 17:59 16:05Time CORE GMT 22-0ct 22-0ct 23-0ct 23-0ct 26-0ct 19-0ct 19-0ct 19-0ct 20-0ct 21-0ct 21-0ct 21-0ct 24-0ct 24-0ct 25-0ct 26-0ct 20-0ct 21-0ct 23-0ct <u>26-0ct</u> Date DRG 008 MGA002 012 MGA004 014 MGA005 015 R0V227 005 ROV223 007 R0V224 010 MGA003 011 R0V225 004 R0V222 007 R0V224 013 R0V226 **ROV226 CTD002** 005 R0V223 011 ROV225 003 ROV221 003 R0V221 004 R0V222 006 MGA001 009 PTN001 Gear # CTD 002 013 Station ROV

S
7
Ξ
\mathbf{O}
\triangleleft
F-i
ST
R
Ш
Ξ
5
щ
\triangleleft
Ú

trigger devices snapped. Core sampled without taking pore fluids max tension= 5.95tons.looked to be a clean hit and pull out. Mud in core catcher but barrel

3394 empty and core catcher a little bent

24.01

21

48.02

7

08:05

28-0ct

017 PTN002

max tension= 3.60-3.71. 3 tons came up full, but two emptied once out of the water. 2

675 END STATION

18.81

21

13.45

9

16:56

27-0ct

015 ROV227

3400

24.00

21

48.00

7

03:29

28-0ct

016 MGA006

S
$\overline{}$
Ų.
a1
ğ
<u>, </u>
_
Д
C
- <u>–</u> -
\geq
⁵
Ĕ
d
ř.

			.sed			er									in
	Comments	4054 successful ctd, 24 niskins, no mini corer, altimeter working	Found Caryophillia burried in sediment at deepest place. Slowly traversed 1993 up slope looking for fossil corals and biological samples	1487 END OF STATION	mix of sediments and rocks, much more sediment than Carter overall.	Several large purple solitary corals collected, as weel as tossils and other 1300 live collections	END OF STATION	Core came back empty. Limited pull out	552 Second try of GVY002. Core came back empty.	550 Change of location- empty	Flat sedimented plain with star fish and urchins. Later rocky outcrops, then very steep rocks. At about 2200m moved up to 1200m to colelct	2830 fossil corals	1004 END OF STATION	4 successful megacores, ranging from 22 to 41 cm long - sandy mud top 4405 over glacial mud.	12m barrel piston core. Max tension: 6.01T. Barrel and weight covered in 4405 mud, but liner empty and shattered. 50cm trigger core in barrel.
	depth (m)	4054	1993	1487		1300	569	552	552	550		2830	1004	4405	4405
	Long Min W	40.99	58.02	57.45		58.00	56.38	54.34	54.35	54.96		59.67	57.48	16.46	16.44
	Long ∘ W	26	26	26		26	26	26	26	26		26	26	27	27
	Lat Min N	47.50	36.04	36.67		37.47	37.63	37.69	37.71	38.97		35.36	37.25	42.35	42.36
	Lat° N	5	2	2		Ŋ	5	5	5	2		S	5	Q	5
CORE	Time GMT	06:42	19:00	12:38		20:40	14:18	15:52	17:23	19:05		23:55	21:53	02:03	07:13
DRG	Date	30-0ct	30-0ct	31-0ct		31-0ct	01-Nov	01-Nov	01-Nov	01-Nov		01-Nov	02-Nov	03-Nov	03-Nov
CTD	Gear #	CTD003	R0V228	R0V228		R0V229	R0V229	GVY002	024 GVY003	GVY004		026 R0V230	R0V230	MGA008	PTN003
ROV	Station #	020	021	021		022	022	023	024	025		026	026	027	028

JS
Д
\circ
<u> </u>
Ξ.
σ
÷
rin
_
σ
<u> </u>
Ĩ
Ξ
em
en
Ven
Vem

	depth (m) Comments	4949 successful ctd, 24 niskins, no mini corer, altimeter working	Long, slow climb up ridge. Degraded coral rubble. Steep rocky swept areas. Tow pieces of intense current where ROV could not overcome using thrusters. Areas of manganese 1497 nodules and solitary corals. Stop dive due to increasing weather conditions	1108 END OF STATION	4950 2 full cores and 2 empty. Max Tension= 4.75 tons	4956 9 m barrel, successful, total recovery ca.6m. Max Tension=6.75Tons	4 tubes, all empty, did not fire. Niskin successfully fired and sampled. Max Tension= 4.85t, 5160 5.06t, 5.12t	4 tubes, all empty, did not fire. Niskin successfully fired and sampled. Max Tension= 5162 5.07tons	5161 9 m barrel, successful, total recovery: 7.07m. Max Tension= 6.9Tons	5161 CTD successful. 24 bottles fired. No altimeter.	Few small corals: stylasterids and solitary, pebbles, brittle stars. Samples in net and in 873 bucket	Spectacular cliff at start with branching coral debris at base of rocks. Madrepora > ROV size.Up over steep terrain onto flatter slope up to the top of vema. Sand, fine coral rubble, and1326 squat lobsters.	567 END OF STATION	Deep start with bamboo corals and spectacular sponges on roccky outcrops. Rocky ridges with small pockets of sediment. Large distances with no life. One fossil solitary coral 2950 ~2600m, fossil coralium and enallopsammia at end of dive	1554 END OF STATION	map the steep topography around the 1300-1400m site where a large coral was found onDive232. Bathymetry- video data collected on 3 walls to be integrated for full 3D habitat1250 mapping.	1430 END of STATION
	Long Long ° W Min W	44 30.89	44 34.73	44 33.47	44 30.91	44 30.90	44 29.46	44 29.44	44 29.46	44 29.48	44 25.68	44 25.52	44 24.80	44 35.93	44 36.22	44 25.48	44 25.66
	Lat Min N	33.29	44.58	44.52	33.29	33.29	51.78	51.79	51.79	51.78	42.15	43.72	42.40	46.85	45.15	43.70	43.55
	Lat° N	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
CORE	Time GMT	07:17	16:06	14:25	17:34	22:38	11:35	17:08	22:59	05:00	15:53	21:45	14:44	22:47	18:42		18:20
DRG	Date	08-Nov	08-Nov	09-Nov	09-Nov	09-Nov	10-Nov	10-Nov	10-Nov	11-Nov	11-Nov	11-Nov	12-Nov	12-Nov	13-Nov	14-Nov	14-Nov
CTD	Gear #	CTD004	ROV231	R0V231	MGA010	GVY007	MGA011	MGA012	038 GVY008	039 CTD005	040 DRG001	ROV232	R0V232	ROV233	R0V233	ROV234	043 R0V234
ROV	Station #	032 (033 1	033 1	034 1	035 0	036	037	038	039 (040	041	041	042	042 1	043	043

ns
<u> </u>
Ö
\mathbf{U}
Ļ
itat
13
<u>+</u>
S
а
σ
5
b
>

ROV	CTD	DRG	CORE						
Station #	Gear #	Date	Time GMT	Lat° N	Lat Min N	Long ° W	Long Min W	depth (m)	Comments
044	CTD006	16-Nov	09:33	15	16.25	48	15.58	4171	CTD. 22 bottles were successful. Bottle 6 and 7 did not close. Sound velocity profiler did not work.
045	ROV235	16-Nov	21:22	14	51.73	48	14.53	1473	Landed several hundred meters before first WP and saw fields of fossil corals. Started to suck them up individually, but then scooped them up. Continued up slope collecting samples. High currents stopped ROV from making progress so we had to pull up to 200m above seafloor in order to move across towards east.
045	045 ROV235	17-Nov	18:46	14	52.08	48	12.57	1080	1080 END OF STATION
046	046 MGA013	18-Nov	04:29	15	10.44	48	15.01	4125	Mega core recovered with 4 samples, tow the water leaked out and only 1-2 inches of disturbed sediment. Two had 5-6 inches of mud with water overlaying. Extensive scrolling problems with winch.
047	GUY009	18-Nov	10:37	15	10.43	48	15.01	4128	Max Tension= 4.8T. Payout extra beyond core depth to try and resolve scrolling issues. Core up empty, although mud on outside, about 12 inches of barrel. Core catcher fingers clean? Fall over, or not enough soft sediment.
048	ROV236	18-Nov	19:12	14	53.48	48	9.00	867	Came up slope from 850m across sediments and fossil corals. Latter part of upward traverse smooth brown rock with brittle stars. Top of seamount the same. Wind picks up to >35kts so ship asks us to stop moving. After waiting to recover, continue to top of plateau. Move to deeper side of seamount and traverse towards top again.
048	R0V236	20-Nov	13:02	14	52.73	48	7.62	472	END OF STATION
049	ROV237	20-Nov	23:15	14	51.00	48	15.99	2181	Start sediment plain, then move up basalt steep slopes. Sponges and sediment in crevices. Few corals. Much the same up to the top. Strong current on top of ridge, so need to lift up and move east. Strong currents prevent sampling at top.
049	R0V237	21-Nov	18:29	14	51.72	48	14.51	1458	END OF STATION
020	050 MGA014	21-Nov	22:12	14	45.99	48	15.04	3733	Pull out at 3.7 tons. 4 tubes. 2 with holes. 2 without. Niskin Sampled. Failed. It had a USBL beacon that was lost during ascent, probably the wire went around it and pulled, breaking the frame.
051	GVY010	22-Nov	02:48	14	45.99	48	15.01	3722	Pull out at 4.8 tons. Failed: core catcher contained bad sediment on external surface. Clayey silt. Some Holocene forams could be seen on microscope. Core probably went in around 30-40cm, bounced, and fell on the side. Rate of penetration was ~ 15 m/min. We are trying again at a site 250m to the south and with a rate of penetration of 25m/min
052	GVY011	22-Nov	06:55	14	45.87	48	15.08	3722	
053	BOX001	22-Nov	13:39	14	45.99	48	15.05	3722	Pull-out: 3.92 tons. Approx 16cm of sediment. Subsampled with piston core liners for storage and with megacore tubes for sampling 1 cm slices (first 2 cores) and 2cm slices (last core). Two subcores for plastics study. Independent S-numbers for each tube and the whole box core. Bulk samples stored in bags.
054	GVY012	22-Nov	19:30	14	51.27	48	15.85	2235	Pull-out: 3.3 tons. About 31cm of sediment. Stratigraphic order possibly not preserved. Sediment was spread in the liner when laid horizontally and shaken during barrel extraction from bomb.
055	R0V238	22-Nov	00:29	14	53.43	48	9.07	835	835 ROV microbathymetry dive with Reson 7125 in normal downward-facing configuration
055	055 R0V238	23-Nov	15:14	14	52.84	48	9.33	632	632 END OF STATION

Gramberg Stations

	depth (m) Comments		1564 summit. USBL crash due to over heating. 900 END OF STATION	6m barrel. Max Tension- 2.64 then up to 3.0T. Core appeared to bounce on 1643 seafloor and came up empty	Deep parts were rocks/boulders and sediment. Lots of USBL issures, resolved by changing settings in software. At0800 GMT traverse to start of 2157 Dive 239 and scoop up nets of fossil corals.		2714 6m barrel. Max Tension- 4.2Tons. 3.88m of sediment	4 tubes set up. Only one tube with some sediment (~6-7cm). Partially leaking on one side and sediment being mixed. Rest of core seems intact, 2718 hut core ton will be mixed. Niskin not σood leaking	Four tubes with sediment between ~ 35 and ~ 15 cm. Short is for Lucy Woodall. Sampled as 1 cm slices, pore-fluids and 2 cm slices and 2 cm	down to 5 cm and then every 15 cm. All 3 tubes got a core top sample 2718 extracted.	Max Tension= 4.20 Tons. 3 tubes contained sediment and water about 4128 15cm in each. All cores sliced, no pore fluid analyses. One empty.
	Long Min W	C T	5.45 5.45	4.59	5.49	5.24	59.49	59.49		59.49	54.40
	Long ° W	Ľ	51 51	51	51	51	20	20		50	50
	Lat Min N		23.56	21.56	26.90	25.23	27.86	27.86		27.86	30.54
	Lat° N		15 15	15	15	15	15	ן ק		15	15
CORE	Time GMT		16:09	18:00	22:36	16:03	19:43	82.22		01:48	05:30
DRG	Date		25-Nov	25-Nov	25-Nov	26-Nov	26-Nov	26-Νov		27-Nov	27-Nov
CTD	Gear #		056 R0V239 056 R0V239	057 GVY013	058 ROV240	058 ROV240	GVY014	060 MGA015		061 MGA016	062 MGA017
ROV (Station #		056 1	057 0	058	058 1	020	090		061	062

Chapter 5: Operations (Technical)

5.1 Mapping

5.1.2 Multibeam Acquisition and Processing

Acquisition: Eleven areas were mapped during JC094, 5 areas of interest and 6 transits between sites (Table 5.1). A total area of 75,751 km² was mapped using the Kongsberg EM-120 ship's hull-mounted echosounder. The EM-120 is a full ocean-depth ranged sonar, with 191 beams and a 12 kHz operating frequency. Dependent on weather, the EM-120 can achieve a swath width of up to 5.5 times the water depth. During JC094, the swath width acquired was around 3.5-5 times the water depth and beam angles were kept around 60° - 70° port and starboard.

Figure 5.1: Overall multibeam track

Multibeam was acquired during the entire cruise (Figure 5.1), except for while in the Tenerife, Canary Island, Barbados and Trinidad and Tobago Economic Exclusive Zones (EEZs). Acquisition was performed using Kongsberg's Seafloor Information System (SIS) software. Line files were automatically broken every 30 minutes to avoid large file sizes. Occasionally, a line file would be manually increased at turn lines or at the start of a new survey. Parameters stayed consistent throughout the entirety of the cruise, with most settings being set to AUTO. At times, during rougher seas and faster vessel speeds, beam angles were brought in from the maximum of 70° port and starboard to 65° or 60° to achieve better data quality. Also, while surveying steeper slopes, beam steering was used to get better coverage up slope. Data quality was high at Carter and Knipovich Seamounts where calm seas prevailed, and reduced westward due to rougher seas. Rarely did the EM-120 lose the seafloor for more than a couple pings. Approximately three times the SIS computer was restarted due to freezing, or slower computer speed.

Site locations were surveyed at a vessel speed of 6 kts and transit lines were surveyed at maximum speed (approximately 10 kts). The 5 site locations were created by planning one 6 - 8 hour initial line that would yield enough information to get a sense of the bathymetry to perform an ROV *ISIS* dive.

Additional bathymetric surveys were carried out between over the side operations, and during poor weather. Bathymetric maps of five features were acquired: Carter Seamount, Knipovich Seamount, part of the Vema Fracture Zone, Vayda Seamount and Gramberg Seamount (Figure 5.2).

Sound velocity was acquired using a sound velocity probe during CTD deployments, typically at a 4000 m site prior to reaching each of the 5 locations. These profiles were immediately uploaded into SIS and applied to the multibeam data. The sound velocity profiler did not work at the CTD006 cast site on the Vayda seamount, so a sound velocity profile was inferred and created using the temperature, salinity and depth information. Also, during the first transit to Carter Seamount, a current sound velocity profile was not available for use; therefore there are significant refraction errors in the multibeam data.

Processing: Processing of EM-120 data was performed using CARIS HIPS AND SIPS 8.1° . EM-120 lines were automatically placed on the JC094 drive and then manually copied to the processing computer. All lines had a zerotide.tid file applied. Site location processing occurred immediately at a primary cleaning level to be used for ROV planning and navigation maps. A secondary clean was performed on the data during transits after sites. Transit lines were cleaned when time was available but the level of cleaning is poorer than the 5 targeted locations. Eleven field sheets were created in CARIS (specifications noted in Table 5.1). Basemaps were created (.csar files) at the best resolution to coverage ratio possible. In areas of shallower depths and slower vessel speeds, higher resolutions were obtained. The transit lines have a resolution of 100 meters and the site locations have basemaps created at both 100 m and 50 m. Basemaps were exported as ASCII files. The ASCII files were brought into Surfer 8^{\overmit{\overmittal}}} to create negative depth values, as CARIS records depths as positive. Grids (.grd files) were produced in Surfer to be put into ArcMap 10^{\overmit{\overmittal}}. The Surfer grids are interpolated at a coarser resolution to interpolate across small data gaps.

Location	UTM Zone	Start Lat(DD)	Start Long(DD)	End Lat(DD)	End Long(DD)	Total Area (km ²)	Depth Range(m)	EM120 Lines	Grids
TRS_1	27N	25.058N	21.409W	9.559N	21.635W	12961	3300 - 5300	0000- 0082	100m
EBA	27N	9.559N	21.635W	8.658N	21.243W	2324	210 - 4600	0082- 0139	50m 100m
TRS_2	26N	8.658N	21.243W	5.883N	26.403W	8741	1290 - 4500	0139- 0213	100m
EBB	26N	5.883N	26.403W	5.793N	27.635W	2288	540 - 4500	0213- 0250	25m 100m
TRS_3	25N- 23N	5.793N	27.635W	10.505N	43.905W	23995	1500 - 5500	0213- 0439	100m
VEM	23N	10.505N	43.905W	11.134N	44.799W	2815	525 - 5160	0439- 0511	50m 100m
TRS_4	23N	11.134N	44.799W	14.551N	48.042W	7595	2560 - 5285	0511- 0566	100m
VAY	22N	14.551N	48.042W	14.987N	48.838W	4300	400 - 4200	0566- 0654	50m 100m
TRS_5	22N	14.987N	48.838W	15.594N	50.636W	2685	1700 - 4800	0654- 0674	100m
GRM	22N	15.594N	50.636W	15.193N	51.878W	2237	775 - 5500	0674- 0708	50m 100m
TRS_6	21N	15.193N	51.878W	13.569N	55.867W	5810	4050 - 5585	0708- 0752	100m

Table 5.1: Parameters for the field sheets and resulting base surfaces of the bathymetric data.

5.1.2 Map Creation

Maps were used for planning and general navigation of the ROV ISIS. Maps for planning gear locations were created in an ArcMap 10.1 $^{\circ}$ project in a Mercator projection with a standard parallel of 10.0° North. These maps were compiled with up-to-date EM-120 bathymetric grids overlying Etopo1 altimetry data as well as prior core or coral sites.

For ISIS dives, specific maps were created to be used in the Ocean Floor Observation Protocol (OFOP) software as well as a background image for the Doppler DVL system. These maps were created in the WGS84 projection and exported as jpegs. The OFOP maps were georeferenced using the OFOP calibration tool and saved as a .map file. DVL maps were uploaded by imputing the X and Y locations of the Southwest and Northeast corners into the DVL software. These maps were useful for directing the ROV on a heading track to specific waypoints.

GROUP	FILE	TYPE	DESCRIPTION
Cruise	Stations_final	shapefile	Locations of stations
Locations			
	Events_final2	shapefile	Locations of events
Dive	Dive222_navline	shapefile	Navigation line of ISIS dive 222
Navigation			
	Dive223_navline	shapefile	Navigation line of ISIS dive 223
	Dive224_navline	shapefile	Navigation line of ISIS dive 224
	Dive225_navline	shapefile	Navigation line of ISIS dive 225
	Dive227_navline	shapefile	Navigation line of ISIS dive 227
	Dive228_navline	shapefile	Navigation line of ISIS dive 228
	Dive229_navline	shapefile	Navigation line of ISIS dive 229
	Dive230_navline	shapefile	Navigation line of ISIS dive 230
	Dive231_navline	shapefile	Navigation line of ISIS dive 231
	Dive232_navline	shapefile	Navigation line of ISIS dive 232
	Dive233_navline	shapefile	Navigation line of ISIS dive 233
	Dive235_navline	shapefile	Navigation line of ISIS dive 235
	Dive236_navline	shapefile	Navigation line of ISIS dive 236
	Dive237_navline	shapefile	Navigation line of ISIS dive 237
	Dive239_navline	shapefile	Navigation line of ISIS dive 239
	Dive240_navline	shapefile	Navigation line of ISIS dive 240
Navigation	Nav_XXX_sf	47	Ship navigation lines from Julian day 287 through
		shapefiles	333
Bathymetry	TRS_1_a_100m_sf	GRD file	100m grid of the first half of TRS_1
	TRS_1_b_100m_sf	GRD file	100m grid of the second half of TRS_1
	Carter_25m_final_sf	GRD file	25m grid of EM120 Carter survey
	Carter_100m_final_sf	GRD file	100m grid of EM120 Carter survey
	Dive226_L12345.img	RRD file	50cm grid of Reson7125 survey
	TRS_2_a_100m_sf	GRD file	100m grid of the first half of TRS_2
	TRS_2_b_100m_sf	GRD file	100m grid of the second half of TRS_2
	Knipovich_final_100m_sf	GRD file	100m grid of EM120 Knipovich survey
	Knipovich_final_50m_sf	GRD file	50m grid of EM120 Knipovich survey
	TRS_3_a_100m_sf	GRD file	100m grid of first part of TRS_3
	TRS_3_b_100m_sf	GRD file	100m grid of second part of TRS_3
	TRS_3C_100m_sf	GRD file	100m grid of third part of TRS_3
	TRS_3d_100m_sf	GRD file	100m grid of last part of TRS_3
	Vema_100m_final_sf	GRD file	100m grid of EM120 Vema survey
	Vema_317_50m	GRD file	50m grid of EM120 Vema survey
	TRS_4_100m_sf	GRD file	100m grid of TRS_4
	Vayda_50m_final_sf	GRD file	50m grid of EM120 Vayda survey
	Vayda_100m_final_sf	GRD file	100m grid of EM120 Vayda survey
	Dive238_40cm.img	RRD file	40cm grid of Reson7125 Vayda survey
	Dive238_40cm_b.img	RRD file	40cm grid of Reson7125 Vayda survey
	TRS_5_100m_sf	GRD file	100m grid of TRS_5
	Gramberg_final_50m_sf	GRD file	50m grid of EM120 Gramberg survey
	Gramberg_final_100m_sf2	GRD file	100m grid of EM120 Gramberg survey
Deserve	TRS_6_100m_sf	GRD file	100m grid of TRS_6
Basemap	Etopo_84	Raster	1 min Etopo altimetry data

Table 5.2 The final ArcMap project (JC094_cruisetrack.mxd). *Dive navigation lines are produced from smoothed USBL data (smoothed in ofop). Ship navigation lines are produced from GPS data at 3 min intervals

5.2 Coring Operations

The coring strategy was designed to obtain a representative sample located at the depth of each of the major water masses in a nearly zonal transit across the East and West Atlantic basins, as well as from the Mid-Atlantic Ridge. In addition, sampling was also aimed to obtain a depth distribution as even as possible within the constraints of bathymetric geomorphology.

5.2.1 Selection of sampling sites

Sub-bottom profiles acquisition (fig. 5.3) was performed on arrival to each study area or ad-hoc in potential coring sites with a Kongsberg SBP-120 emitting a linear chirp pulse (2.5-7 kHz) in single or burst-mode were appropriate considering bottom and sea conditions. Target areas for coring were selected based on clear identification of sedimentary deposits of sufficient thickness on SBP profiles.

Figure 5.3. Example of a Sub-Bottom Profile acquired in the Knipovich Seamount area.

Failure in some of the electronic boards of the SBP120 prevented normal operation in some stations for some hours. Rebooting the system remotely from the Main lab on board RRS James Cook solved some of these issues, but in other instances the technician on-board was needed to access the electronic boards and test them.

High-resolution bathymetric surveys with a Kongsberg EM120 Multibeam Echosounder were also processed on board and inspected to identify flat bed areas likely to be composed of sedimentary deposits suitable for coring.

5.2.2 Sample Collection

Sediment samples during JC094 cruise were collected using a suite of sampling tools specifically designed for different terrain conditions and sampling goals. The goal at each sampling site was to obtain a short mega-core or box-core with undisturbed core-top, and a long-core that will allow reconstructing the paleoceanographic history at each site. In addition, short push-cores and slurped surficial sediments were collected using the Remotely Operated Vehicle (ROV) Isis. Long-core sampling during JC094 was attempted using Piston and Gravity cores. Short undisturbed cores were sampled using a mega-corer or a box-corer. After recovery long-cores were extruded from the barrel, and cut into 1.5 m sections for easier manipulation and storage until further processing. Sediment samples from the core catcher and from each section cut were also obtained at this stage for preliminary foraminiferal assemblage analysis.

Figure 5.4. Core splitter employed during cruise JC094.

Core sections were split on board along the axis of the core with a core splitter borrowed from Veit Huhnebach at NOC, with training provided by Veerle Huvenne. The core splitter consisted of a router mounted on rails over a cradle where the core section being split was secured (fig. 5.4). The router height was adjusted so only the core liner thickness would be routed out, and the router was moved along the core so a straight cut was made along one side of the liner. Then the core section was rotated 180 degrees and a second straight cut was made on the opposite side of the liner. To finally split the core a nylon line was passed along the core through the cuts and two halves were obtained. One core half was labelled Archive half, and the other half was the Working half. Subsampling of the cores was performed on the working half.

Reusable mega-core tubes were sampled in situ at variable depth resolutions depending on the different types of analyses to be performed on them. Box-core samples were subsampled with mega-core tubes to be sampled in situ, and core liners for long-term storage. Bulk sediment from box-cores was also obtained and stored in bags. Sediment samples and core halves were stored in bags in the on-board refrigerated container at 4 °C. Core halves were wrapped in cling film to slow drying and inserted in D-tubes for core protection and easier manipulation and storage.

Sample naming followed the convention set-up for the JC094 cruise and explained in detail in this report. Short sediment sample names are composed of the cruise identification JC094 and the unique S number. An example of such unique sediment sample ID would be JC094-S9999. Both naming conventions are used in this chapter.

5.2.2i Piston corer (PTN) Collection of long-cores was attempted by using a NIOZ Piston Corer with barrels up to 12 m long. Piston coring allows recovery of long sections through the combined action of gravity and suction by a piston located inside the core liners. Due its complex operation compared to gravity coring, and the success in obtaining long gravity cores, piston coring was abandoned in favour of simpler gravity coring operations.

Piston corers were deployed from the starboard side of the ship (fig. 5.5) and lowered at 40 m/min. Approximately 50 m above the bottom they were stabilised and then lowered at 10-15 m/min. A trigger core hanging a few m below the piston core released the piston core for free-fall penetration a few metres above the sea floor.

5.2.2ii Gravity coring (GVY) Sediments were collected by lowering a long barrel with core liner (6 or 9 m length) to the seafloor and letting it sink by the action of an approximately 1-ton weight at the top of the barrel. Gravity corers were deployed from the starboard side of the ship (fig. 5.5) and lowered at 40 m/min. Approximately 50 m above the bottom they were stabilised and then lowered at 10-15 m/min for penetration into the sediment.

Figure 5.5. Piston corer being deployed at Carter Seamount. Gravity corer uses the same bomb and barrels, but no piston inside the liners nor trigger core.

5.2.2iii Mega-coring (MGA). A Mega-corer was used to obtain multiple short sediment cores with relatively undisturbed sediment-water interfaces. Coring operations took place from the starboard side of the ship, using the same winch as for piston and gravity coring (fig. 5.6). Two types of tubes were used during the TROPICS cruise. One set of tubes were standard mega-core tubes, which were labelled MCN (Mega-Core No holes). The other set of tubes had holes pre-drilled on them to allow extraction of

pore fluids. The holes were sealed with duct tape on the outside to prevent loss of sediment during recovery. These tubes were labelled MCH (Mega-Core Holes).

Initially eight tubes were simultaneously loaded in each mega-core cast. Once on deck, tubes were carefully removed from the mega-corer and placed on wooden stands ready for sampling. Water overlying the sediment was extracted using a peristaltic pump and sampled for trace metals and nutrients analyses in all tubes except those designated for microplastic analyses.

Figure 5.6. Mega-corer being recovered from the starboard side. Taped tubes are MCH tubes. Non-taped tubes were labelled MCN. The Niskin bottle attached to the Mega-corer can be seen on the right of the frame.

Figure 5. Mega-core drilled tube (MCH) sampled for pore-fluids with Rhizon filters.

An MCH tube was sampled for pore-fluids every 2 cm using Rhizon filter (fig. 5.7). Porefluid extraction was enhanced by creating a vacuum with syringes locked to the Rhizon filters and maintained in pulled positions with wooden sticks. Subsequently, to these operations sedimen sampling was performed by placing the mega-core tubes in a core extruder bench borrowed from Prof. David Hodell at U. of Cambridge. A core-top sample was obtained from all the tubes except the one designated for microplastic analyses. Then tubes were sampled down-core in 1 cm slices the first available tube, 2 cm slices the tube sampled for pore-fluids, 1 cm slices down to 5 cm depth, and 5 cm slices below that if more tubes were available. Samples were bagged and stored at 4° C. The top 5 cm of the core designated for microplastic was sampled for plastic microfibers analyses. After that, 5 cm slices were sampled down-core and stored in bags and kept refrigerated at 4°C.

In addition to sediments, the mega-corer was equipped with a 10 L Niskin bottle to collect bottom-water samples. The Niskin bottled was rigged to fire on impact with the sea floor. Analyses of seawater collected during Mega-coring are detailed in the seawater sampling section of this report

5.2.2 *iv Box-core* A box-core (fig. 5.8) was used where sediment was positively identified and megacores and gravity cores may have been unsuccessful. The box-core was deployed from the starboard side and lowered to the ocean floor at an approximate speed of 40 m/min. 50 m from the seafloor payout was stopped to stabilize the box-core. After stabilization the box-core was lowered at a rate of 10 m/min and let sink in the sediment.

Figure 5.8. Box-core employed during JC094 cruise.

Once on deck, sediment was subsampled (fig. 5.9) using short gravity core liners for storage at 4°C, and mega-core tubes that were immediately sampled at 1-2 cm resolution and stored in bags at 4°C. A core-top sample was obtained from each tube and from the box-core by carefully scraping the surface with a pallet knife. A bulk sample from the box-core was also obtained and stored in a bag at 4°C.

Figure 5.9. Subsampling of box-core during JC094 cruise.

5.2.2v ROV: Sediment sampling during TROPICS cruise was also performed using the Remotely Operated Vehicle ISIS. Two different types of sediment samples were obtained:

Push-cores (PSH): ISIS carried a set of 6 cylinders 30 cm long and 5.5 cm in diameter to retrieve small cores from the seabed. The port arm was used to pick each core using a handle inserted at the top of each cylinder and push it into the sediment (fig. 5.10). Three replicate cores were collected at each sampling site. These cores were then sampled for a core-top sample and then generally sliced in 1 cm slices down-core. If core recovery was good the longest core was sampled for a core-top sample and the capped and stored as an archive core. One core of each set of three was designated for microplastics analyses. All bagged samples and cores were stored at 4°C.

Figure 5.10. Push-core operation on board ROV ISIS.

Slurp-gun (SLP): If push-coring was not possible, surficial sediments were sampled using the Slurp-gun in ISIS. Sediment would get collected into a slurp chamber and then bagged after ISIS recovery. Samples were stored at 4°C.

5.3 CTD operations

Taken from the Sensors and Moorings Report, JC094, D Childs (November 2013)

The initial stainless sensor configuration was as follows:

- Sea-Bird 9plus underwater unit, s/n: 09P-54047-0943
- Frequency 0 Sea-Bird 3 Premium temperature sensor, s/n: 03P- 2919
- Frequency 1 Sea-Bird 4 conductivity sensor, s/n: 04C-2841
- Frequency 2 Digiquartz temperature compensated pressure sensor, s/n: 110557
- Frequency 3 Sea-Bird 3 Premium temperature sensor, s/n: 03P 4151
- Frequency 4 Sea-Bird 4 conductivity sensor, s/n: 04C-3698
- V0 Sea-Bird 43 dissolved oxygen sensor, s/n: 43-1882
- V1 Free
- V2 Free
- V3 Free
- V4 CTG transmissometer, s/n: 09-7107-001
- V5 CTG Aquatracka MKIII fluorimeter, s/n: 088195
- V6 WETLabs turbidity sensor, s/n: BBRTD-168
- V7 Benthos PSA-916T altimeter, s/n: 41302

Ancillary instruments & components:

- Sea-Bird 11plus deck unit, s/n: 11P-24680-0587
- Sea-Bird 24-position Carousel, s/n: 32-31240-0423
- 24 x Ocean Test Equipment 20L water samplers, s/n's: 1b through 24b
- TRDI WHM 300kHz LADCP, s/n: 15288
- TRDI WHM 300kHz LADCP, s/n: 12369
- NOCS LADCP battery pack, s/n: WH005

Generally, CTD operations consisted of one cast per main work site. For each cast, samples were taken by the scientific party on board, with different people sampling from different bottles as required. During this time, log sheets were completed, LADCP data was downloaded and backed up and the CTD data processed.

There were issues with the CTD wire whilst on board; after each cast the CTD wire was disconnected from the CTD and allowed to spin, removing some of the built up torque present in the wire. Part way through the cruise a partial stream of the wire took place, based on advice given by the CPOS, to a depth of approximately 200m. Throughout the cruise it was observed that the CTD wire was being 'opened-up' by the out haulers, video evidence of this occurring was captured by the CPOS and forwarded to Management back at NOC. I am unaware, at this time, as to any advice given by Management.

After Cast 5, it was decided that the CTD wire should be re-terminated both electronically and mechanically, and to remove approximately 200m of wire. After the new termination had been completed, a load test was carried out, as per the normal procedure.

A total of 6 CTD "casts" were completed on this cruise numbered sequentially.

For each cast the ship's crew deployed the CTD package once permission was granted from the officer on watch. Crew assisted in getting the CTD over the bulwark and into or out of the CTD annex. For every cast, the crew was ready in advance of the deployment time, helping to ensure casts were completed as efficiently as possible.

Figure 5.11: CTD recovery during JC094

Due to a failure in the lab fitted ODIM HMI unit and no spares being present on board, the crew had to drive the winch from the remote winch cab. This added a small delay to each cast as the crew switched from the belly box control to the winch cab control. Hand over from the belly box to the winch cab control took place at a wire out of 100m, the crew completed the handovers as safely and efficiently as possible. Credit should be given to both the Ships ETO, Paul and to the Computing Technician, Martin who tried their very best to repair the faulty HMI. It should be noted that if a spare had been present then these delays, however small, would not have occurred.

The carousel was fitted with a complete set of 24 10L water samplers, numbered 1 through to 24. Two bottles were fired at each depth allowing for any seal or misfire problems. Generally most bottles closed properly, most of the time. However two bottles didn't seal correctly on three casts, although

they had fired correctly, and showed no signs of leaking upon recovery, samples taken from them indicated that they contained a water sample different to what was expected and different to the second bottle fired at the same depth. Both bottles were checked for signs of damage, had their o-rings checked and replaced but unfortunately the fault was never found, if more CTD casts were to be completed, then the bottles would have been swapped out with spares.

The pressure sensor was located 30cm below the bottom and approximately 75cm below the centre of the 10L water sampling bottles.

Cast depths ranged from approximately 200 meters for the test dip, through to 4900 meters, aiming to get as close to the seabed as possible, making full use of the fitted altimeter.

All bottle firing depths were chosen by the scientific party who were present throughout each cast.

Sensor Failures

During all casts all of the CTD sensors worked as expected, and no replacements we used. A complete set of replacement sensors were on board should a failure have occurred.

LADCP

For this cruise two LADCP's were fitted in a master and slave configuration. The master LADCP was located on the bottom of the CTD frame looking down, whilst the slave LADCP was fitted to the outside of the CTD frame, looking up. Each cast the fitted LADCP's were set up to log data via the PC using the BBTalk software application and a pre configured script file.

Table 5.3 The following commands were used to set up the LADCP prior to each deployment:

Master: PS0	Slave: PS0
CR1	CR1
CF11101	CF11101
EA00000	EA00000
EB00000	EB00000
ED00000	ED00000
ES35	ES35
EX11111	EX11111
EZ0011111	EZ0011111
TE00:00:01.00	TE00:00:01.00
TP00:01.00	TP00:01.00
LD111100000	LD111100000
LF0500	LF0500
LN016	LN016
LP00001	LP00001
LS1000	LS1000
LV250	LV250
LJ1	LJ1
LW1	LW1
LZ30,220	LZ30,220
SM1	SM2
SA001	SA001
SW05000	ST0
СК	CK
CS	CS

Data Processing

CTD cast data was post-processed using SBE Data Processing (V7.20g) software. The raw data files were converted through the following steps as recommended by BODC basic on-board data processing guidelines for SBE-911 CTD (version 1.0, October 2010):

Data Conversion (DatCnv) Bottle file generation (BottleSum) Filter AlignCTD Cell Thermal Mass (CellTM) Loopedit Derive Bin Average to 1m intervals (BinAve) Strip

Copies of all raw data were saved on the local CTD computer in the following directory: C:\Program Files\Sea-Bird\SeasaveV7\JC094\Raw Data.

Copies of all processed data were saved in the following location: C:\Program Files\Sea-Bird\SeasaveV7\JC094\Processed Data.

Sound Velocity Profiles

For each CTD cast a Sound Velocity probe was attached to the CTD frame in order to obtain an accurate Sound Velocity profile for the current work site. In addition to the frame mounted SV probe, a SBE Data Processed profile was also produced. These were saved in the following location: C:\Program Files\Sea-Bird\SeasaveV7\JC094\Processed Data\CTD SV Profiles.

Data Backup

All data was routinely backed up to the following location on the Network: \\Cookfs.cook.local\ctd\JC094

From this location the scientific party was able to access all data, for their own particular requirements.

5.4 Dredging operations

Dredging was carried out using the NOC rock dredge when weather rendered us unable to deploy the ROV. The dredge consists of a metal frame with a chain bag lined with a coarse netting bag secured to the trawl wire via a 3T weaklink. A secondary weak link was attached to the bridle. A metal 'bucket' (dimensions) was attached to the trailing edge of the rock dredge via a chain. The dredge was lined with burlap sacking to minimize damage to samples collected (sewn with shipping twine and with brass eyelets at the top). It was attached with rope through eyelets to the upper part of dredge frame, and with cable ties to secure the base and prevent ballooning. The dredge was deployed from the aft A-frame.

Operations proceeded as follows:

- With ship stationary dredge deployed at 45m/min until it reached the seafloor (judged using tensiometer) and 10m more wire payed out.
- Ship moved forward at 0.2knots paying out wire at 25m/min* for 200m
- Ship stopped
- Wire pulled in at 10m/min until off seafloor
- Dredge recovered at 40m/min
- Samples recovered by lifting back of dredge using crane

^{*} The pay out was too fast and all 200m were payed out with the ship only 60m along trajectory. The tension during deployment was \sim 1.07T which dropped to about 0.7T on the seafloor. During pull in the tension bounced around 0.7-1.0T.

Figure 5.12: Dredging operations.

5.5 ROV operations

The remotely operated vehicle (ROV) ISIS was our main sampling platform. Depth rated to 6500 m, ISIS is tethered to the ship by a high voltage, optic fiber cable that allows high precision bespoke sampling of the seabed. With continuous power supplied to the vehicle and real-time high definition video feeds, diving can continue 24 hours a day and is only limited by sample capacity and vehicle maintenance requirements. Apart from the first dive that was aborted before reaching the seabed due to problems with detecting USBL beacon signal, the 19 dives ranged from 15-42 hours in duration, with over 372 hours on the bottom. See the ISIS team technical report (appendix) for further information on the vehicle's technical performance.

Figure 5.13 ISIS on its landing pad with the tool-tray and swing arm extended. The control van is accessed through the door in the background.

ISIS was controlled from a control van consisting of two 20 foot containers joined together side-byside. With two pilots and a lead scientist sitting front row directing and controlling the vehicle, a further 2-3 scientists sat at a rear console (back bench) logging all the operations and monitoring the banks of video recorders using pen and paper logs as well as the OFOP logging program. Once the ROV had landed on the seabed and the pilots were happy with the buoyancy and handling of the vehicle, direction of the dive was handed over to the scientific dive leader. Using a dive plan prepared before deployment (appendix), the dive leader controlled the HD Science camera to pick out sites of interest and directed the pilots towards samples they wished to collect. There was free-flowing information between the dive leader and the back bench to get specialist input where necessary and to communicate where samples should be stored on the vehicle.

Figure 5.14 Inside the control van

ISIS was equipped with several different sampling options that allowed the operators to select the best approach to each sampling event. When a suitable target was spotted using the HD Science camera, HD pilot camera, or occasionally one of the other cameras, the pilots would be made aware of the target, who would then stop the vehicle and set down in a suitable location near to the target. The ISIS pilots were also in regular contact with the bridge to direct the ship where to move next and stop.

Figure 5.15 **From left to right**: scoop, push core, net, slurp gun nozzle and hose. All items have a T-handle so they can be picked up with a manipulator arm.

5.5.1 Sampling seafloor samples

Two manipulator arms allowed the direct picking up of samples or the manipulation of sampling devices such as the suction sampler nozzle, nets, push cores, scoops, the opening and closing of bioboxes, and general movement and stowage of equipment and samples on the tool-tray. Each manipulator arm was controlled by a pilot using a bench-top replica arm in the control van. If necessary, both arms could be operated simultaneously, but this required both pilots.

Figure 5.16 Two manipulator arms sampling some anthropogenic material.

Suction sampler

The suction sampler, or "slurp gun", was a heavily used sampling tool. It is essentially a deep-sea vacuum cleaner with 5 inter-changeable rotating chambers for storing samples. It has a variable suction flow rate, and a perforated gate that could be slid across the nozzle, which allowed samples to be picked up by suction alone, or held up against the gate while the nozzle is positioned over a receptacle, and then deposited after the suction was switched off. The perforations in the gate were 10 mm in diameter, so occasionally small slender corals passed through the gate and into a slurp chamber. When using this mode of sampling, one chamber was assigned to catch all the sediment, mud and by catch so as to keep the other chambers clear for other samples. The slurp gun was used extensively during dives. When not in use, the nozzle was stowed in one of the forward rock boxes and secured with a bungee. Some

problems with blocking of the suction tube and rotation of the slurp chambers are discussed below in the sample storage section.

Figure 5.17 The slurp gun nozzle with the gate open (**left**) and closed (**middle**). When the gate is closed the hose is covered by a perforated gate with 10 mm holes. These holes can be seen on the left. The slurp gun preparing to collect a solitary coral (**right**).

Push cores

The tool-tray was equipped with a set of 6 push cores on every dive. Each push core barrel was 30 cm long by 5.5 cm internal diameter, and was stored in a tube terminated with a large rubber stopper onto which the core barrel could be push and sealed. A T-handle at the top was used to maneuver the push core with one of the manipulator arms. A rubber one-way valve gasket at the top of the tube allowed water to be expelled from the core barrel as it was inserted into the sediment, but sealed as the core was withdrawn. For further information and pictures see the coring section.

Scoop

A scoop was stowed in the forward bio-box and using the manipulator arm was used to scoop samples (coral rubble, rocks, biology) into a sample box. The tool-tray was equipped with the scoop on dives 221-235 and 240 but was used less and less so was removed from the tool-tray on dives 236-239 to free up space in the bio-box.

Figure 5.18 The scoop collecting fossil coral rubble.

Nets

Typically three nets were stored on the tool-tray. Nets had an aperture of 31x21cm and had green netting material sewn onto the frame. The base of the net was weighed down with a lead weight sewn

into the bottom. A manipulator arm used the net to scoop up coral rubble until it was full, at which point it was twisted closed and then stowed on the tool-tray.

Figure 5.19 Nets collecting fossil corals.

Sample storage

ISIS had multiple sample storage locations: the main tool-tray, two swing arm bio-boxes and five slurp chambers.

Tool-tray: The tool-tray is a platform at the front of the vehicle that could be extended forward to give access to a variety of sample storage options. When in flight, the tool-tray was stowed by retracting it to within the framework of the vehicle, and hence extended when sampling access was required. The tool-tray can be configured to the users' requirements and adapted between dives if needed. The initial configuration of the tool tray included a set of 6 push-cores, a grey plastic open-top box divided into 4 sections, an open-top wire/netting rock-box divided into 6 sections with one section used to stow the slurp gun, and a lidded bio-box split into two sections (forward & aft), in which the scoop was stored in the forward section when included on the tool-tray. During later dives the lid of the bio-box was removed as opening and closing the lid was time consuming and samples were usually rocks or coral fragments that remained adequately weighed down. The nets (3, occasionally 4) were also stored on the tool tray, zip tied with T-handle up so they could be easily picked up before sampling. When full, they were usually twisted shut and stowed behind the bio-box/grey box/push cores on an open piece of tray. Large or lengthy samples such as bamboo coral could simply be stored across the back of the tool-tray.

Figure 5.20 The tool-tray configuration for dives 221-227.

Alteration to the tool-tray sample containment occurred during turn around between dives 227-228 and 228-229. For dive 228, three lengths of yellow tubing were secured in front of the of the push cores. This increased the number of discrete sample storage locations on the tool-tray and allowed far more discrete samples to be taken from identifiable sampling locations. This approach proved very successful, so a further 13 tubes were added for dive 229. The usual approach for depositing a sample in one of the tubes involved using the slurp gun with the gate closed to pick up the sample and then releasing it into one of the tubes.

Figure 5.21 The tool-tray configuration for dives 229-240 with the yellow sample tubes. Dive 228 only had the 3 front tubes to trial their use before full adoption.

Swing arm bio-boxes

ISIS has two swing arm lidded bio-boxes, one on the port side and one on the starboard side. These were tucked into the sides of the vehicle when not in use, but could be swung out to the side of the tool-tray to provide additional sample storage.

Figure 5.22 The starboard swing arm bio-box in its stowed position prior to diving (**left**), and fully swung into position ready to accept a sample (**right**).

Slurp chambers

The slurp gun had 5 interchangeable sampling chambers that could be rotated into place for samples sucked up with the slurp gun with the gate open. The slurp chambers were good for storing large or light biological samples (i.e. holothurians, sponges, squat lobsters). However, when used to sample solitary corals and coral rubble, we encountered problems with blockage along the tube and near the opening to the storage chambers. Whereas large or light samples could be easily paired to a sampling event, trying to pair solitary corals to sampling events proved challenging to impossible. This problem was exacerbated by problems with unreliable rotation of the slurp chambers during early dives. This lack of reliable sample segregation prompted us to rethink how we stored solitary corals and lead us to the yellow sampling tube solution described in the tool-tray configuration above. After the slurp chamber rotation problem was investigated and fixed during the first few dives (see ISIS team technical report, section 4.5), and the yellow sampling tubes were installed we no longer encountered problems with the suction sampling system.

Figure 5.23 The slurp chamber carousel mounted on the aft starboard side of ISIS.

Niskin bottles

A small rosette of Niskin bottles was mounted on the aft port side of ISIS. The rosette had space for $6 \times 1.2 \text{ L}$ General Oceanics Niskin bottles, but routinely only 5 bottles were mounted to help prevent firing lanyards from tangling. The whole rosette could be slid out from the vehicle and taken to the wet lab for sampling after recover.

Figure 5.24 The Niskin rosette mounted on the aft port side of ISIS.

Camera	Model	Video	Stills Image	Format	Lasers
		Resolution	resolution	recorded	
HD Pilot	Insite Mini	1920 x 1080	-	Apple	-
(HDPT)	Zeus	HD		ProRes 422	
HD Science	Insite Mini	1920 x 1080	-	Apple	Yes
(HDSCI)	Zeus	HD		ProRes 422	
Super	Insite Super	1920 x 1080	12.3 Effective	Apple	Yes
Scorpio	Scorpio	HD	Megapixels (4672	ProRes 422	
(SCORPIO)			x 2628)16:9		
			Format		
Pilot (PAL)	Insite	720 x 576	-	Apple	-
composite	Pegasus	PAL 450		ProRes 422	
		horizontal			
		lines			

5.5.2 Imaging and lighting on the Isis ROV

Table 5.4 : Isis ROV camera systems

Imaging and lighting equipment (Table 5.4; Figure 5.25) carried by the Isis ROV during the JC094 dive campaign included three optically corrected High-Definition (HD) cameras mounted to the front of the vehicle.

HDPT (HD Pilot) was mounted on a pan-and-tilt module central to the vehicle and was used primarily for piloting and sampling procedures. HDSCI (HD Science) was also mounted on a pan-and-tilt module above the HDPT, central to the vehicle. Watch leaders and the scientific party have full control of the pan-and-tilt and zoom functions of this camera during dive operations. The HD video and stills camera (SCORPIO) was mounted on a fixed bracket on starboard of the centre line of the vehicle. Other cameras on the Isis ROV used for piloting (not recorded for science) include numerous composite video cameras and one low-light aft camera.

with Laser harness (0.1m

SCORPIO HD and Stills camera with Laser harness

Pegasus (composite) on

HDPT on Pan-tilt module

Figure 5.25 : Isis ROV camera configuraton

Four LED lamps provided illumination for the cameras on a fixed-mount lighting bar at the front of the vehicle (Figure 5.25). To provide a fixed scale in images, two lasers were mounted 0.1m apart parallel to the focal axis of the HDSCI and SCORPIO cameras.

Alterations to camera configuration during the cruise.

The ideal camera configuration is that discussed in above and set out in Figure 5.25. The following section outlines variations to the configuration during JC094:

- Dive 231, both lasers failed on HDSCI
- Dive 232, no lasers on HDSCI and one laser failed on SCORPIO
- Dive 234, long range lasers were trialled on the HDPT camera for the vertical swath dive. One laser failed. This revealed that there was a problem with the laser harness connection and not the laser module itself. In addition, it was discovered prior to deployment of this dive, the dome on the HDSCI camera had failed. Operationally, the ROV was reduced to one working HD camera and wone working set of lasers. Subsequently, the HDPT camera was moved into the position of the HDSCI camera (on a pan-and –tilt module) and the HDPT camera was replaced with a composite video camera (Pegasus Pilot; Table 5.4).
- Dive 235 onwards, operational cameras HDSCI, PAL (Pegasus Pilot) and SCORPIO. Parallel lasers on SCORPIO.
- Dive 237, ground fault on lasers
- Dive 240, ground fault on lasers.

Recording protocols during dive operations

All of the HD camera feeds correspond to an AQA dual KiPro recording deck in the *Isis* ROV control van. At the start of each dive the timecode was checked so that all videos are correctly time-stamped (GMT). Each KiPro deck and camera has three corresponding 300GB solid-state drives (SSD). At the start of the cruise, it was decided that all three HD cameras feeds would be recorded (Apple ProRes 422, 1920 x 1080).

Site	Dive	Bottom_time_video	Comments
Carter	222	14:37:43	
Carter	223	16:01:50	
Carter	224	16:48:36	
Carter	225	19:32:13	
Carter			Downward looking swath -
	226	00:00:00	no video
Carter	227	18:40:19	
Knipovich	228	17:44:50	
Knipovich	229	17:35:48	
Knipovich	230	19:32:03	
Vema	231	18:27:01	
Vema	232	17:03:02	
Vema	233	19:51:15	
Vema	234	15:00:44	Vertical swath-limited video
Vayda	235	21:21:28	
Vayda	236	38:16:34	
Vayda	237	19:12:26	
Vayda			Downward looking swath -
	238	00:00:00	no video
Granberg	239	23:01:38	
Granberg	240	17:38:35	
Total Hours recorded		330:26:05	

Table 5.5: Total hours of footage recorded from JC094

Recording would commence on deployment, and would continue to record on descent to the seabed. On the seabed, all three cameras were stopped simultaneously and the KiPro recording deck was changed to a second SSD. During operational dive hours, the video footage was recorded in 2-hour files of approximately 110GB.

On approaching the seabed, the HDSCI, HDPT and SCORPIO cameras were white balanced to provide the best representation of true colour at the depth of the imagery being recorded. The total number of hours of video recorded in shown in Table 5.5.

Site	Dive	Total_SCORPIO_i	Total_data(Start_file	End_file
		mages	GB)		
Carter	222	1719	8.31	DSC00001	DSC01718
Carter	223	1063	5.12	DSC01719	DSC02780
Carter	224	633	3.14	DSC02781	DSC3412
Carter	225	1274	6.45	DSC00001	DSC01272
Carter	226	-	-	-	-
Carter	227	945	5.21	DSC00001	DSC00943
Knipovich	228	834	4.04	DSC00001	DSC00833
Knipovich	229	1196	5.69	DSC00834	DSC02028
Knipovich	230	1369	5.8	DSC02029	DSC03396
Vema	231	910	5.4	DSC00001	DSC00908
Vema	232	1222	6.64	DSC00001	DSC01220
Vema	233	1471	7.52	DSC00001	DSC01469
Vema	234	-	-	-	-
Vayda	235	1136	6.18	DSC00001	DSC01135
Vayda	236	2259	11.1	DSC00001	DSC02258
Vayda	237	1157	5.98	DSC00001	DSC01155
Vayda	238	-	-	-	-
Granberg	239	871	4.58	DSC00001	DSC00870
Granberg	240	610	3.11	DSC00001	DSC00608
Total		18669	94.27		
number of					
images					

Table 5.6: Summary of SCORPIO images from JC094

Stills Imagery during dive operations

During operational dive hours the SCORPIO camera was set to take stills images (4672 x 2628; 16:9 Format) every 30 seconds, however, this function would be switched off during sampling events as to reduce the number of stills image captures. Total number of images captured is shown in Table 5.6.

Data storage

Every 2 hours the three KiPro SSD (HDPT, HDSCI and SCORPIO) were transferred to the *Isis* ROV Raid and a JC094 My Book Thunderbolt duo (Mac OS Extended) 6TB. The descent and ascent files for each dive were not transferred to external storage devices, however, a .txt file was created to account for missing .mov file numbers.

The *Isis* Raid will be kept at the National Oceanography Centre, Southampton for a limited time period. Please refer to the *Isis* ROV cruise report for further information.

Each JC094 My Book Thunderbolt duo (Mac OS Extended) 6TB has a mirror copy on WD My Book SMB (Windows; NTFS) 4TB. As a result of data storage limitations, it was decided that the HDPT camera would not be transferred as a full .mov file. Alternatively, an image sequence (.png) was exported from QuicktimePro (Ver.7.6.6) at 0.1 frames per second (equal to one image capture every 10-

seconds). Each HDPT_XXX.mov file has a corresponding folder represented on the Windows NTFS drive and an accompanying excel workbook providing a time-stamp for each 10-sec image capture.

After completion of the dive, SCORPIO stills images were downloaded and saved into the correct the Dive folder on both the Mac OS extended and NTFS drives.

Example folder structure for **Mac OS extended**:

Dive_xxx

- → HDPT (contains .mov files)
- → HDSCI (contains .mov files)
- ➔ SCORPIO (contains .mov files)
- ➔ SCORPIO_Stills (contains .jpeg files)

Example folder structure for Windows NTFS:

Dive_xxx

- → HDPT (contains one folder to represent each .mov file, with accompanying excel workbook)
- → HDSCI (contains .mov files)
- ➔ SCORPIO (contains .mov files)
- → SCORPIO_Stills (contains .jpeg files)

Note: after Dive 235, all HDPT files are replaced with PAL composite files from the Pegasus camera.

Site	ROV_Dives	Mac_Disk_ID	Total_used_space	Windows_ Disk_ID	Total_used_space
Carter	221	-	-		-
Carter	222	-	-		-
Carter	223	Isis_Disk_01	5.47	JC094_001	3.31
Carter	224	-	-		-
Carter	225	-	-		-
Carter	226 (Swath)	Isis_Disk_02	5.96	JC094_002	3.63
Carter	227	-	-		-
Knipovich	228	Isis_Disk_03	5.93	JC094_003	3.62
Knipovich	229	-	-		-
Knipovich	230	Isis_Disk_04	5.88	JC094_004	3.63
Vema	231	-	-		-
Vema	232 (1 of 2)	Isis_Disk_05	5.92	JC094_005	3.63
Vema	232 (2 of 2)	-	-		-
Vema	233	-	-		-
Vema	234 (Swath)	Isis_Disk_06	4.64	JC094_006	3.09
Vayda	235	-	-		-
Vayda	236 (1 of 2)	Isis_Disk_07	5.93	JC094_007	3.96
Vayda	236 (2 of 2)	-	-		-
Vayda	237 (1 of 2)	-	-	JC094_008	3.74
Vayda	237 (2 of 2)	-	-		-
Vayda	238 (Swath)	Isis_Disk_08	4.26		-
Granberg	239	-	-	JC094_009	3.70
Granberg	240	Isis_Disk_09	3.62	JC094_010	1.67
Total Data			47.61 TB		33.98 TB

Summary of data storage Please refer to Table 5.7.

Table 5.7

All HD media logs completed from the lab can be found as an .xls workbook, supplied with this report. All times completed are for the HDSCI camera. (HD Media Log JC094.xls)

Additional data storage

All the SCORPIO images, HDPT (and PAL) image sequences are also backed-up separately on 2TB Seagate drives (one Mac OS Extended and one Windows NTFS). In addition, the JC094 Highlights (extended) and Highlights (short) are included in HD (1920 x 1080) along with the original highlights clips selected from each dive.

5.5.3 ROV CTD Data Processing

Basic processing of the ROV on board SeaBird SBE 49 CTD was carried out to assist the scientific party. This involved using the SBE Data Processing (V7.20g) software to convert the logged raw data and then producing a 1m bin averaged data set.

Two processing steps were carried out: Datacnv, Bin Average.

Datacnv was used to convert the raw data into a .cnv file containing values for Temperature, Conductivity, Pressure, Salinity, Sound Velocity, Depth and Elapsed Time.

Bin Average was then used to produce a condensed, 1m bin averaged data set.

All raw ROV CTD data was saved in the following location: C:\Program Files\Sea-Bird\SeasaveV7\JC094\ROV CTD

With the processed data being saved in the following location: C:\Program Files\Sea-Bird\SeasaveV7\JC094\ROV CTD\Processed.

5.5.4 Multibeam

The rebuilt ISIS ROV has been equipped with a new multibeam echosounder (MBES): a RESON Seabat 7125 dual frequency (200 and 400 kHz) system with 512 beams. The set-up is a modular one, where the MBES can be slotted in the location of the mini-Niskins (port aft quarter of the ROV) when required for a swath dive. The vehicle offsets versus a common reference point are listed in Table 5.8 and 5.9.

Table 5.8 Offsets for the various sensors versus a common reference point on ISIS (front of vehicle) as entered in					
PDS2000 (X: positive starboard, Y: positive forward, Z: positive up, all in metres)					
	X	Y	Z		

	Х	Y	Z
Compatt (USBL)	-1.01	-0.36	1.46
Doppler	0.58	-2.91	-0.17
MBES	-0.47	-1.63	-0.82
Octans (attitude)	0.00	-0.86	-0.49
Parascientific (depth)	0.55	-1.48	0.00

Table 5.9 Relative positioning of MBES transducers on the RESON base plate, as entered in the 7k hardware configuration settings

	Х	Y	Ζ	Tilt (°)
200 kHz sensor	0.125	-0.218	0.050	0.00
400 kHz sensor	-0.125	-0.125	0.031	0.00

The sonar is operated and the settings are managed through the 7k software module, and the data is then forwarded to the PDS2000 software for real-time map visualisation and –more importantly- acquisition and storage. During JC094, the data were recorded in PDS2000, georeferenced with the USBL navigation. PDS2000 takes in Doppler information to steer its navigation Kalman filter, but does not

actually take it as alternative navigation stream. In many cases, however, the Doppler navigation is still smoother and less prone to noise than the USBL navigation, so it can be integrated with the bathymetry during processing (see below). To make this process easier, a Doppler reset was carried out at the start of every line. The TECHSAS line number was also increased at the start and end of every line.

Additional note: In the event of a power shut-down on the MBES (e.g. as the result of a vehicle blackout), the Reson system and 7k software may show errors upon restart. This can be repaired by running the small program 'Reset to factory defaults' which can be found on the desktop.

The multibeam data were recorded in the PDS2000 standard format (.pds), and in .xtf format for easy importation in both the Caris HIPS and SIPS and PRISM Backscatter processing software suites at a later stage. During the cruise, however, the data was processed in CARAIBES, the software package from IFREMER, because this gives some advantages in terms of data handling for ROV surveys (easy importation of attitude and depth information, adjustment of navigation etc.). To facilitate this, the data were exported from PDS2000 in .s7k format. The processing steps are summarised in the flowchart in Fig. 5.26. To summarise, they include data importation/conversion to CARAIBES formats, combination of the Doppler navigation and vehicle depth data with the bathymetry data (*Genexy* and *Coratt*), determination of potential pitch and roll offsets through calibration (*Calbat*), rectification of the Doppler navigation drift (*Regbat*) and gridding (*Mailla*). The resulting .flt and .hdr files can then be imported directly into the ArcGIS toolbox to be converted into an ESRI grid or .img file.

Fig. 5.26 Flowchart of the CARAIBES data processing. Input files from PDS2000 or TECHSAS for a standard processing flow are indicated in green, output files (.flt and .hdr) in yellow.

5.6 Underway Sampling

Underway seawater sampling was carried out directly from the unfiltered seawater supply taps.

- 1. Anthropogenics: samples filtered from tap in container.
- 2. Diatoms: water was filtered to harvest siliceous algae using 1-100um filters/mesh from tap # 177835 (chemistry lab). Filters and mesh were rinsed and frozen at -20 °C.
- 3. Carbonate chemistry: water sampled directly from tap #177809 (chemistry lab) and processed according to protocol (see section 12.2).

Chapter 6: Seawater sampling and analyses

Water profiling and sampling were conducted on the *RRS James Cook* in order to characterise the physical and chemical characteristics of the water masses in the Equatorial Atlantic. These data will 1) improve our understanding of the factors that influence the distribution of different benthic organisms, and 2) allow the calibration of geochemical proxies for paleoclimate applications. Water samples were collected by niskin bottles attached to the *RRS James Cook* CTD rosette, the ROV Isis, and the Megacorer. CTD profiles were obtained during each CTD deployment and throughout the ROV dives.

6. 1. Summary of water sampling at each site

6.1.1. Carter Seamount

Figure 6-1 depths of samples for Carter Seamount. Solid symbols show CTD niskin samples; hollow symbols show ROV and MGA niskin samples. Red symbols show misfired bottles.

CTD001, Station001

Lat: 25° 5.0165'N

Lon:21° 24.835'W

CTD001 was carried out as a test deployment and to train the science crew in sampling from a niskin bottle, sampling and measuring dissolved oxygen in seawater. All 24 bottles were fired, from three depths (100, 50 and 5m).

CTD002, Station002

Lat: 9° 17.062'N

Lon: 21° 37.9534'W

CTD002 was carried out in deep water near Carter Seamount on October 19th. The CTD was deployed at 04:46GMT and recovered at 08:06GMT All 24 bottles were fired; Bottle 4 apparently misfired, and gave an anomalously high temperature reading and low dissolved oxygen measurement. Bottle 22 was not sealed fully. Otherwise, all bottles fired successfully (see appendix 4) for depths and parameters sampled). An additional test sample was filtered from niskin bottle 2 (bottom depth) to test the onboard photospectrometer.

ROV222

Station004 Niskin bottles were fired during Event # 1 and 33 on October 20th.
Event#1: 9° 12.9617'N, 21° 18.9780'W (bottles 1,2 at 1080m) Event #33: 9° 13.2864'N, 21° 18.932'W (bottles, 3,4,5 at 745m)

ROV223, Station005

Niskin bottles were fired during Event #5,6, 19,20 and 47 on October 21st. Event #5: 9° 13.41'N, 21° 18.90'W (bottle 1 at 638m) Event #6: 9° 13.41'N, 21° 18.90'W (bottle 2 at 638m) Event #19: 9° 14.2058'N, 21° 19.3114'W (bottle 3 at 329m) Event #20: 9° 14.2058'N, 21° 19.3114'W (bottle 4 at 329m) Event #21: 9° 14.2058'N, 21° 19.3114'W (bottle 5 at 215m)

Niskin 5 did not fire correctly, so samples were not collected.

MGA001, Station006

Gantry failed, and no sediment collected. 10L niskin bottle filtered by LW for particulates.

ROV 224, Station007

Niskin bottles were fired during Event #6, 7, 46, 47, 56 on October 22nd. Event #6: 9° 11.76'N, 21° 17.04'W (bottle 1 at 2121m) Event #7: 9° 11.76'N, 21° 17.04'W (bottle 2 at 2121m) Event #46: 9° 12.3355'N, 21° 17.8636'W (bottle 3 at 1414m) Event #47: 9° 12.3355'N, 21° 17.8636'W (bottle 4 at 1414m) Event #56: 9° 12.3516'N, 21° 17.9030'W (bottle 5 at 1418m)

MGA002, Station008

Lat: 9° 16.682'N Lon: 21° 38.273'W Depth: 4590m Water from the sediment-water interface and porefluids (S0022) were collected and measured on board for nutrients (section 6; appendix 4), and filtered/acidified for transport to the UK. 10L niskin bottle filtered by LW for particulates.

MGA003, Station010

No sediment or water collected. 10L niskin bottle filtered by LW for particulates.

ROV225, Station0011

Niskin bottles were fired during Event #4, 5, 38, 39, 40 on October 22nd. Bottles 3 and 4 (events 38 and 39) failed to fire. Event #4: 9° 10.49'N, 21° 16.32'W (bottle 1 at 2712m) Event #5: 9° 10.49'N, 21° 16.32'W (bottle 2 at 2712m) Event #40: 9° 11.4247'N, 21° 16.7796'W (bottle 5 at 2300m)

MGA004, Station0012 No sediment or water collected.

MGA005, Station0014 No sediment or water collected.

ROV227, Station 015

Niskin bottles were fired during Event #24, 25, 26, 47, 67 on October 27th. Bottles 1-3 did not fire. Event #47: 9° 12.939'N, 21° 18.35'W (bottle 4 at 1193m) Event #67: 9° 13.44'N, 21° 18.85'W (bottle 5 at 642m)

6.1.2. Transit

MGA006, Station016 Lat: 7° 48.002'N Lon: 21° 24.00'W Depth: 3400m Water from the sediment-water interface was collected and measured on board for nutrients, and filtered/acidified for transport to the UK. A 10L niskin bottle was fired near the seafloor and sampled (appendix 4).

MGA007, Station019

Lat: 7° 26.09'N Lon: 21° 47.78'W Depth: 3428m Water from the sediment-water interface and porefluids (S0068, section 6) were collected and measured on board for nutrients, and filtered/acidified for transport to the UK. A 10L niskin bottle was fired near the seafloor and sampled (appendix 4).

6.1.3. Knipovich Seamount

Figure 6-2 depths of samples for Knipovich Seamount. Solid symbols show CTD niskin samples; hollow symbols show ROV and MGA niskin samples. Red symbols show misfired bottles.

CTD003, Station020

Lat: 5° 47.50'N

Lon: 26° 41.00'W

CTD003 was carried out in deep water near Knipovich Seamount on October 29th. The CTD was deployed at 6:42GMT and recovered at 10:08GMT. All 24 bottles were fired; Bottle 6 apparently misfired, and gave an anomalously high temperature reading and low dissolved oxygen measurement. Otherwise, all bottles fired successfully (see appendix 4 for depths and parameters sampled).

ROV228, Station021

Niskin bottles were fired during Event #1,2,46 on October 30th/31st. An oxygen measurement was attempted for bottle 4 (JC094_W0510), but there was insufficient water remaining to overflow sufficiently and so this value should be treated with caution. Event #1: 5 36.06'N, 26 58.06'W (bottle 1 at 1990m) Event #2: 5 36.06'N, 26 58.06'W (bottle 2 at 1990m) Event #46: 5 36.6654'N,26 57.4557'W (bottle 3,4,5 at 1483m) Water from above the push cores (S0071 and S0072) was sampled, filtered and acidified. A small subsample was taken prior to filtration for nutrient analysis.

ROV229, Station022

Niskin bottles were fired during Event #2,3, 74, 75, 76 on October 31st/November 1st. Event #2: 5° 37.49'N, 26° 57.98'W (bottle 1 at 1272m) Event #3: 5° 37.49'N, 26° 57.98'W (bottle 2 at 1272m) Event #74, 75, 76: 5° 37.6305'N, 26° 56.3908'W (bottle 3,4,5 at 563m)

ROV230, Station026

Niskin bottles were fired during Event #1,2,64,82 on November 1st/November 2nd. Bottle number 5 (event 82) failed to fire. Event #1/2: 5° 35.37'N, 26° 59.68'W (bottle 1/2 at 2823m) Event #64: 5° 35.9518'N, 26° 58.426'W (bottle 3/4 at 2218m)

6.1.4. Transit

MGA008, Station027

Lat: 5° 42.349'N Lon: 27° 16.457'W Depth: 4407m Water from the sediment-water interface and porefluids (S0084) were collected. A 5ml subsample of each depth porefluid was frozen for nutrient analysis in the UK. The remainder was stored under cold conditions. The sediment-water interface waters were filtered and acidified for transport back to the UK.

A 10L niskin bottle was fired near the seafloor and sampled (appendix 4).

MGA009, Station029

Lat: 6° 48.712'N Lon: 32° 54.712'W Depth: 4055m Water from the sediment-water interface and porefluids (S0097) were collected. A 5ml subsample of each depth porefluid was frozen for nutrient analysis in the UK. The remainder was stored under cold conditions. The sediment-water interface waters were filtered and acidified for transport back to the UK.

A 10L niskin bottle was fired near the seafloor and sampled (appendix 4).

6.1.5. Vema Fracture Zone

CTD004, Station032

Lat: 10° 33.287'N Lon: 44° 30.886'W

CTD004 was carried out in deep water near the Vema Fracture Zone on November 8th. The CTD was deployed at 7:17GMT and recovered at 11.53GMT. All 24 bottles were fired; Bottle 16 misfired and emptied before being recovered on deck. Bottles 2 and 4 apparently misfired, and gave an anomalously high temperature reading and low dissolved oxygen measurement. Otherwise, all bottles fired successfully (see appendix 4 for depths and parameters sampled).

ROV231, Station033

Niskin bottles were fired during Event #10,11,44,45,68 on November 9th/10th. Event #10/11: 10° 44.5716'N, 44° 34.6702'W (bottle 1/2 at 1479m) Event #44/45: 10° 44.51'N, 44° 34.28'W (bottle 3/4 at 1361m)

Figure 6-3 depths of samples for Vema Fracture Zone. Solid symbols show CTD niskin samples; hollow symbols show ROV and MGA niskin samples. Red symbols show misfired bottles.

MGA010, Station034 Lat: 10° 33.287'N Lon: 44° 30.913'W Depth: 4975m Water from the sediment-water interface and porefluids (S0103) were collected and measured on board for nutrients, and filtered/acidified for transport to the UK. A 10L niskin bottle was fired near the seafloor and sampled (appendix 4).

MGA011, Station036

Lat: 10° 51.78'N Lon: 44° 29.46'W Depth: 5161m No sediments were retrieved. A 10L niskin bottle was fired near the seafloor and sampled (appendix 4).

MGA012, Station037

Lat: 10° 51.789'N Lon: 44° 29.441'W Depth: 5161m No sediments were retrieved. A 10L niskin bottle was fired near the seafloor and sampled (appendix 4).

CTD005, Station039

Lat: 10° 51.778'N Lon: 44° 29.487'W

CTD005 was carried out in deep water near the Vema Fracture Zone on November 11th. The CTD was deployed at 05:00GMT and recovered at 09:02GMT. All 24 bottles were fired; Bottles 2 and 4 apparently misfired, and gave an anomalously high temperature reading and low dissolved oxygen measurement. Otherwise, all bottles fired successfully (see appendix 4 for depths and parameters sampled).

ROV232, Station041

Niskin bottles were fired during Event #40,69,70,71 on November 11th/12th.

Event #40: 10° 42.8966'N, 44° 25.2914'W (bottle 1/2 at 734m) Event #69/70/71: 10° 42.5137'N, 44° 25.0852'W (bottle 3-5 at 568m)

ROV233, Station042

Niskin bottles were fired during Event #13,14,80, 96 on November 12th/13th. Event #13/14: 10° 46.8311'N, 44° 35.9362'W (bottle 1/2 at 2932m) Event #80: 10° 45.5934'N, 44° 35.9910'W (bottle 3 at 1735m) Event #96: 10° 45.1027'N, 44° 36.1935'W (bottle 4/5 at 1578m)

ROV234, Station043

Niskin bottles were fired during Event #1-5 on November $13^{\text{th}}/14$ th. Event #1-5: 10° 43.729'N, 44° 25.479'W (bottle 1-5 at 1283m)

6.1.5. Vayda Seamount

CTD006, Station044

Lat: 15° 16.245'N

Lon: 48° 15.581'W

CTD006 was carried out in deep water near Vayda Seamount on November 16th. The CTD was deployed at 09:33GMT and recovered at 12:58GMT. All 24 bottles were fired; Bottles 6 and 7 did not fire. Bottle 2 apparently misfired, and gave an anomalously high temperature reading and low dissolved oxygen measurement. Otherwise, all bottles fired successfully (see appendix 4 for depths and parameters sampled).

ROV235, Station045

Niskin bottles were fired during Event #51,52,93,94 on November 16th/17th. Event #51/52: 14° 51.6480'N, 48° 14.1526'W (bottle 1,2 at 1420m) Event #93/94: 14° 52.0586'N, 48° 12.9877'W (bottle 3,4 at 1115m)

MGA013, Station046 Lat: 15° 10.443'N Lon: 48° 15.025'W Depth: 4126m Water from the sediment-water interface was collected and measured on board for nutrients, and filtered/acidified for transport to the UK. A 10L niskin bottle was fired near the seafloor and sampled (appendix 4).

ROV236, Station048 Niskin bottles were fired during Event #6,7,81,82 on November 19th/29th. Event #6/7: 14° 53.5142'N, 48° 08.9978'W (bottle 1,2 at 867m) Event #93/94: 14° 53.4914'N, 48° 07.3019'W (bottle 3,4 at 1152m)

ROV237, Station049 Niskin bottles were fired during Event #4,5,32,33 on November 20th/21st. Event #51/52: 14° 51.4673'N, 48° 14.1526'W (bottle 1,2 at 2166m) Event #93/94: 14° 51.0318'N, 48° 15.994'W (bottle 3,4 at 1835m)

MGA014, Station050 Lat: 14° 45.993'N Lon: 48° 15.040'W Depth: 3723m No sediments were retrieved. A 10L niskin bottle was fired near the seafloor and sampled (appendix 4).

6.1.6. Gramberg Seamount

Figure 6-5 depths of samples for Gramberg Seamount. Hollow symbols show ROV and MGA niskin samples. Note that there was no CTD cast at Gramberg Seamount.

Water sampling at Gramberg Seamount

ROV239, Station056

Niskin bottles were fired during Event #14,15,28,29 and 54 on November 24th/25th. Event #14/15: 15 25.2899°'N, 51° 05.2106'W (bottle 1,2 at 1480m) Event #93/94: 15° 25.1893'N, 51° 05.2714'W (bottle 3,4 at 1371m) Event #54 misfired.

ROV240, Station058

Niskin bottles were fired during Event #4,5,26,27 and 39 on November 24th/25th. Event #14/15: 15° 26.908'N, 51° 05.486'W (bottle 1,2 at 2187m) Event #93/94: 15° 26.5334'N, 51° 06.1369'W (bottle 3,4 at 1617m) Event #39: 15° 25.2655'N, 51° 05.2125'W (bottle 5 at 1454m) MGA015, Station 60 Lat: 15° 27.860'N Lon: 50° 59.488'W Depth: 2727m The niskin failed to fire, but waters were collected from the core sediment-water interface.

MGA016, Station 61

Lat: 15° 27.8605'N Lon: 50° 59.4884'W Depth: 2741m Waters were collected from the niskin bottle and from the core sediment-water interface.

MGA017, Station 62 Lat: 15° 30.335'N Lon: 50° 54.402'W Depth: 4128m Waters were collected from the niskin bottle and from the core sediment-water interface.

6.1.7 Underway water sampling

Underway seawater samples were collected and filtered by KH for diatoms and LW for plastics. Unfiltered samples were taken for carbonate chemistry analysis (see section 5.vi, appendix 5). See chapter 12 for details of anthropogenics sampling.

6.2. Summary of parameters

6.2.1. Analytical methods on board

Nutrients at sediment-water interface (and porefluids); High-level nutrients were analysed on board on the day of collection using standard chemical testing kits for nitrate, orthophosphate and silicic acid (Hach-Lange), measuring on a Hach-Lange DR3900 photospectrometer. See chapters 5 and 6 for more details on coring operations and porefluid sampling.

Salinity calibration: Water samples were sampled into glass bottles and sealed with a plastic stopper and metal cap for salinity measurement on board. The bottles, once at room temperature, were measured using a GuildLine Autosal salinometer (8400B serial number 60839) and Autosal software (2009). IAPSO standards were run for each CTD (batch P154, $K_{15} = 0.99990$; Practical salinity 34.996). K_d values were measured for each standard and sample three times, and repeats within acceptable bounds of the software were averaged and converted to practical salinity. These bottle salinity values were compared to the sensor salinity values (Sal1 and Sal2) from the CTD (Figure 6-6 and 6-7). Bottles that were known to have misfired gave anomalous salinity readings, and were excluded from the calibration. One other bottle (bottle 18, CTD06) also showed poor reproducibility and was also excluded from the calibration. Calibration statistics are given in table 6.1, excluding known misfired bottles.

	Sal1-Sal2	Sal1-Bottle	Sal2-Bottle
n	68	63	63
Mean	0.0015	0.0033	0.0020
Standard deviation	0.0028	0.0089	0.0085

Table 6.1: Salinity calibration statistics for JC094.

Figure 6-7: Bottle vs. mean sensor salinities (excluding misfired bottles and bottle 18, CTD6) for JC094

Dissolved Oxygen Dissolved oxygen (DO) in seawater was a core parameter measured on all Niskin bottles on every CTD station, one from each batch of Niskin bottles fired on ISIS dives, and the Niskin bottle attached to the mega-corer after successful mega-coring attempts. It is a wet chemistry analysis of whole-bottle seawater samples measured at sea using a Winkler titration (Carritt and Carpenter, 1966). With current techniques, the titration is now an automated process and comprises of a highly accurate and precise dosing burette coupled with a potentiometric electrode for determining the endpoint. This automation now removes a great deal inter-user variability from the titration step and gives rise to consistent and reproducible results. Apart from making discrete bottle measurements, these analyses can be used to ascertain the reliability of tripped Niskin bottles and the integrality of their seal. Furthermore, bottle measurements will be used to calibrate the dissolved oxygen sensor attached to the CTD electronics package so that complete, high resolution profiles of DO can be made. DO analysis of seawater has been described many times in the literature; here we use the WOCE guidelines from Dickson (1996) and Culberson (1991).

Sampling: Following conventional CTD sampling procedures of sampling gases first, DO was sampled first from Niskin bottles to minimize degassing of a cracked Niskin bottle. Silicone tubing was used to sample seawater directly into pre-calibrated (nominal vol. 125 ml) glass iodine determination bottles that have a flared neck to accommodate a water seal. Before the sample was drawn, bottles were rinsed and flushed with seawater for several seconds (about 3 times the volume of the bottle). Care was taken to avoid bubbles inside the sampling tube and bottle. The fixing reagents: 1 ml each of manganese chloride (MnCl₂) and sodium hydroxide/sodium iodide solutions (NaOH/NaI) were added using bottletop dispensing pipettes just after the temperature of the sample was recorded using a hand held type-T thermocouple thermometer. The temperature was recorded to 0.1 °C. Chemical reagents were previously prepared at NOCS prior to loading the ship. Following the addition of reagents, the samples were capped, checked for trapped bubbles and were thoroughly mixed to form a homogenous precipitate. After returning the bottles to the lab, they were thoroughly mixed a second time to maximize the efficiency of the reaction and sealed with a water seal of unfiltered surface seawater to prevent the sample evaporating and bubbles entering the bottle. Samples were stored at room temperature out of direct light and were typically analysed within about 12 hours of collection. Immediately before titrating, the precipitate was dissolved with 1 ml of H2SO4, a stirrer bar added, placed on a magnetic stirrer. The electrode and burette tip was lowered into the sample and then the Titrino was programmed with the sample ID and the titration initiated. The Titrino titrated the sample beyond the endpoint and then back calculated to arrive at the endpoint. The final titre volume was displayed on the Titrino display and then recorded by the operator. All titrations (curves, parameters, titers) were saved to a USB stick so is archived as a backup.

Standardisation and Reproducibility DO determinations were performed with a Winkler titration controlled using a Ω -Metrohm 848 Titrino plus unit with potentiometric end point detection. Thiosulphate calibrations were carried out about every 10-14 days using 10 ml of a 1.667 mM certified commercially bought OSIL iodate standard. Calibration values summarised in Table 1 and shown in Figure 1 suggest little variation of the standard volume and thiosulphate concentration over time. Calculation of oxygen concentrations were computed in an Excel spreadsheet using the titre volume recorded from the Titrino, the fixing temperature and bottle volume. Replicate measurements of randomly-selected Niskin bottles were also carried out in order to test for reproducibility. At least 1 Niskin bottle was always sampled in duplicate; in total 9 duplicates were taken off the 6 CTD casts. Duplicate titrations showed that the average difference between replicates was 0.23 μ mol O₂ L⁻¹ (range $0.03-0.67 \mu mol O_2 L^{-1}$) with one poor duplicate with a difference of 2.28 $\mu mol O_2 L^{-1}$, which was likely a flyer and hence excluded for the variability analysis. Using a sum of differences squared approach (Dickson et al., 2007) an overall standard deviation that includes sampling and analysis was 0.21 µmol O₂ L⁻¹ (mean RSD 0.14 %). The first CTD was a test cast that allowed for testing of the equipment and training of personnel. Eight Niskin bottles were tripped at three depths. DO was sampled from every Niskin bottle and each DO sample was collected and analysed by a different user. The RSD of eight replicates collected and analysed by eight users ranged from 0.11-0.29 % and is in keeping with the mean RSD calculated through duplicates. This result highlights the user-independent nature of this method and equipment.

 nesmpnanet			
Calibration run	Date	Standard titer (ml)	Thiosulphate molarity
1	16/10/2013	1.0171±0.0007 (n=3)	0.0983±0.0001 (n=3)
2	29/10/2013	1.0195±0.0015 (n=6)	0.0981±0.0001 (n=6)
3	16/11/2013	1.0198±0.0012 (n=6)	0.0981±0.0001 (n=6)
4	25/11/2013	1.0195±0.0017 (n=2)	0.0981±0.0002 (n=2)
5	25/11/2013	1.0208±0.0018 (n=6)	0.0980±0.0002 (n=6)
6	25/11/2013	1.0205±0.0018 (n=8)	0.0980±0.0002 (n=8)

Table 6.2. Thiosulphate standardizations using 10 ml 1.667 mM KIO3. Date, standard titer and calculated thiosulphate.

Figure 6.8 Volume of sodium thiosulphate added to titrate 10 ml of a 1.667 mM iodate standard (red/brown squares), and the resultant calculated thiosulphate molarity (blue diamonds). Error bars are one standard deviation from replicate standards.

Blanks

The titration blank was determined once during the cruise following the procedure of Dickson (1994). The titration blank quantifies the effect of redox species, excluding oxygen in the reagents, that behaves equivalently to oxygen in the analysis. It is typically very small and is thus a minor correction. The titration blank was estimated to be 0.0031 ± 0.0009 ml. A second blank correction to account for the amount of dissolved oxygen added with 1 ml of both MnCl₂ and NaOH/NaI was given the generally accepted standard value of 7.6×10^{-8} mol (Dickson 1994).

CTD Niskin Bottle Performance

DO measurements were made on every CTD Niskin bottle and thus could be used to quality control Niskin bottles that didn't fire at the intended depth. Table 2 below gives a summary of Niskin bottle failures. When a titration failed this is noted because the integritiy of the niskin bottle could not be tested using DO.

Preparation

- Prepare the dissolved oxygen log sheet.
- Empty all the bottles into the dissolved oxygen waste carboy.
- Take to the Wetlab: oxygen bottles, thermometer, log sheet, reagents.

• Pump 2-3 ml of reagents into the waste tube to get fresh reagents into the pipette tips.

CTD	Niskin	Comments
2	4	Anomalous DO2, likely Niskin miss-fire
2	15	Titration failed
2	17	Titration failed
2	18	Titration failed
2	22	Niskin miss-fire
3	6	Anomalous DO2, likely Niskin miss-fire
4	2	Anomalous DO2, likely Niskin miss-fire
4	4	Anomalous DO2, likely Niskin miss-fire
4	16	Niskin miss-fire, no DO2 sample taken
4	20	Titration failed
5	2	Anomalous DO2, likely Niskin miss-fire
5	4	Anomalous DO2, likely Niskin miss-fire
6	2	Anomalous DO2, likely Niskin miss-fire
6	6	Niskin miss-fire, no DO2 sample taken
6	7	Niskin miss-fire, no DO2 sample taken

Table 6.3. Summary of CTD Niskin bottle performance.

Sampling for Dissolved Oxygen

Sampling

- Select bottle and check the bottle and cap are a matching pair.
- Connect silicone tubing onto the spigot.
- Open spigot, no water should flow out the spigot. This means the Niskin bottle is sealed and gas tight. If water flows, make a note on the log sheet.
- Open the bleed screw at the top of the Niskin bottle, water should now flow.
- Rinse the oxygen bottle twice with a small amount of water, dumping out the waste on the deck.
- With water flowing make sure there are no bubbles in the tubing.
- Insert the tubing to the base of the bottle and overflow the bottle with about 3 bottle volumes of seawater. Overflowing water can be used to rinse the cap.
- Remove the tubing with water still flowing.
- Close the spigot.
- Record the temperature of the sample on the log sheet.
- Add 1 ml of manganese chloride and 1 ml of alkaline iodide by putting the pipette tip blow the neck of the bottle, this prevents bubble entrainment.
- Cap the bottle without trapping bubbles beneath the cap and shake vigorously until the sample is completely homogenous.
- One replicate sample will be taken with oxygen bottle 25, the Niskin designated on the log sheet.

Sample storage

- About 20 mins after sampling, the precipitate should have settled about half way down the bottle. Shake the bottle vigorously again to re-suspend and remix the precipitate.
- Return the bottles to the box and fill the flared neck with seawater from the squirt bottle. Store the bottles out of direct light under the corner counter.

Analysing Dissolved Oxygen

Start up

- Move burette tip to the electrode holder.
 - Flush the burette tip with fresh thiosulphate.
 - o Menu>OK>Manual control>OK>PREP>OK.
 - This flushes 10 ml through the burette, 2 cycles by the piston, good if not used recently.
 - DOS>OK>Start (hold down) to manually dispense desired amount.
 - Press Back to return to main menu.
 - Rinse excess thiosulphate from the burette tip with MQ.
- Select Dissolved O2 method.
 - o Method>OK>Dissolved O2>OK.
- Move electrode to electrode holder.
- Rinse the electrode with MQ, if a big drop of MQ is hanging off the electrode bulb remove it gently with a kim wipe.
- Dispense 1-2 ml of H_2SO_4 to get fresh acid in the pipette tip.

Running samples

- Select next sample.
- Remove water seal with pipette and completely dry around the stopper with a kim wipe.
- Remove stopper by twisting and gently pulling. Avoid "chinking" the stopper as this can chip the stopper and render the bottle calibration incorrect. If you cannot remove the stopper do not force it.
- Add 1 ml of H₂SO₄ to the sample with the pipette tip just below the sample surface. Gently tip the bottle and run the acid down the side of the bottle. This is to prevent the introduction of bubbles and to avoid disturbing the precipitate.
- Using the stirrer bar retriever, trace a small stirrer bar down the neck of the bottle and to the bottom of the bottle. This also is to prevent the introduction of bubbles and to avoid disturbing the precipitate.
- Place sample on stirrer plate.
- Lower the electrode and burette tip into the sample.
- On the Titrino.
 - Ensure the "Dissolved O2" method is selected. If not refer to the start up section.
 - o Press "Start"
 - Enter the short ID in ID1. ID1>OK>WXXXX>Accept>OK. The key pad can be used to enter numbers (Num Lock must be on) but not letters, and BS=backspace.
 - Enter the bottle number in ID2. ID2>OK>XX>Accept>OK.
 - o Ignore the unit line.
 - Press "Start" to begin the titration.
- The titration will take about 60 sec.
- Write down the titer volume on the Dissolved O2 log sheet.
- Raise the electrode and burette tip high enough so as not to catch the bottle on the electrode bulb.
- Remove the sample.
- Rinse the electrode and burette tip with MQ, if a big drop of MQ is hanging off the electrode bulb remove it gently with a kim wipe
- Retrieve the stirrer bar from the sample, dry the stirrer bar, cap the bottle, return to the box and select the next sample.

6.2.2. Analyses to be carried out on shore

Carbonate chemistry; Water samples for carbonate chemistry were taken following the procedure of Dickson, Sabine and Christian (2007). Briefly, samples were collected in 250 mL borosilicate glass bottles from the Niskin bottle using tygon tubing, first rinsing and then overfilling the bottle by at least 50%. A 1% headspace was removed from the bottle before the sample was poisoned with 50 μ L of saturated mercuric chloride solution (7 g/100 mL in DI water). The ground glass joint was made gastight by application of Apiezon L grease and the bottle held closedwith electrical tape. Samples were taken within 10 minutes of opening of the Niskin bottle to prevent re-equilibration with the atmosphere and stored in a cool dark place.

Samples will be analysed for Total Dissolved Inorganic Carbon and Total Alkalinity by the UK Ocean Acidification Research Program Carbonate Chemistry Facility at the National Oceanography Centre, Southampton. For TDIC carbonate species are converted to CO_2 by addition of phosphoric acid (10% in 0.7 M NaCl), this generated CO_2 is then carried into the measurement cell using N₂ and analysed by coulometric titration using a VINDTA 3C (Marianda, Germany) connected to a 5011 coulometer (UIC, USA). For TA samples are titrated with 0.1 M HCl (prepared in 0.7 M NaCl) in 150 µL increments until the carbonic acid equivalence point is reached. The titration is monitored with the VINDTA 3C in a closed cell titration (Dickson, Sabine and Chrsitian, 2007)

The temperature, salinity and nutrient concentrations of the samples at time of sampling are then combined with the TDIC and TA measurements to calculate CO₂ system parameters.

Dissolved Inorganic Radiocarbon Unfiltered seawater samples were collected cleanly in 250 mL acidcleaned and ashed glass bottles from the Niskin bottle using acid-cleaned silicone tubing, first rinsing and then overfilling the bottle by at least 50%. The sample, leaving head-space, was poisoned with 50 μ L of saturated mercuric chloride solution, as above. The bottle was sealed with a plastic screwcap lid and o-ring. All measures were taken to avoid contamination e.g. avoiding niskin bottles that had been in contact with tygon tubing; and laying new, clean plastic down before setting the sample bottle down. Dissolved Inorganic Radiocarbon will be analysed at the University of California, Irvine, according to Gao et al., accepted. Headspace-equilibrated gases with sample carbon dioxide will be transferred using a syringe and cryogenically purified on a vacuum line for graphitisation, followed by analysis by ¹⁴C-Accelerator Mass Spectrometry at the Keck Carbon Cycle AMS 31 facility (KCCAMS/UCI).

Nutrients: Unfiltered seawater samples were collected cleanly from the niskin into 60ml plastic bottles, rinsed three times with seawater, leaving head-space, and frozen at -20°C. The nutrients will be analysed back ashore by using a 5 channel segmented flow autoanalyser made by Bran and Luebbe, and with high resolution colorimeters, the nutrients analysed will be Nitrate+Nitrite, Nitrite, Silicate, Phosphate and Ammonium (Brewer & Riley,1965; Grasshoff, 1976; Mantoura & Woodward, 1983; Kirkwood, 1989; Zhang & Chi, 2002). Samples will be defrosted from frozen and the bottles washed and dried to ensure no contamination on opening the bottles from outside influences. Samples will be analysed along with a nutrient reference material (KANSO Technos, Japan) that will be sampled to ensure correct calibrations are made and to act as a cross reference.

Remaining porefluid samples will be analysed at Bristol University using standard chemical testing kits for nitrate, orthophosphate and silicic acid (Hach-Lange), measuring on a Hach-Lange DR3900 photospectrometer. See chapters 5 and 6 for more details on coring operations and porefluid sampling.

Oxygen isotopes: Unfiltered seawater samples were collected cleanly into 60ml glass bottles, sealed with a rubber plug and aluminium crimped cap, and stored at room temperature/transported in cool stow. Water oxygen isotopes (denoted by \square^{8} O) will be measured at the NERC Isotope Geosciences Laboratory, NIGL, using the VG SIRA (with isoprep 18) mass spectrometer system.

Silicon isotopes: Seawater samples were filtered cleanly through acropak (0.2 micron) filters into acidcleaned HDPE or LDPE containers. Seawater samples (and porefluids) will be analysed for silicon isotopes (denoted by 10%) at the University of Bristol and NIGL by Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS, Neptune Thermo). Brucite will be precipitated at pH>10 using sodium hydroxide. The precipitate will be redissolved using distilled nitric acid or hydrochloric acid, before chemical separation using cation exchange resin (e.g. Hendry et al., 2010; de Souza et al., 2012). High levels of sulphate in the samples are matrix matched by doping all standards and samples with sulphuric acid (Hughes et al., 2011).

Trace metals: Seawater samples were filtered cleanly through acropak (0.2 micron) filters into acidcleaned HDPE or LDPE containers, and acidified on the day of collection with 1%v/v ultrapure concentrated hydrochloric acid (Romil). Trace metals and their isotopes will be measured in the Bristol University Isotope Facilities.

Uranium series: Seawater samples were filtered cleanly through acropak (0.2 micron) filters into acidcleaned plastic jerry cans, and acidified on the day of collection with 1%v/v ultrapure concentrated hydrochloric acid (Romil). Uranium series isotopes will be analysed following Auro et al., 2012. Seawater samples will be spiked with 229Th and 233 Pa, before being precipitated with ammonium hydroxide (pH 7.5-8). The supernatent will be removed using a peristaltic pump, and the precipitate dissolved in concentrated hydrochloric acid using anion exhange resin. Uranium series isotopes (e.g. 232Th, 230Th and 231Pa) will be measured by MC-ICP-MS (Neptune Thermo) at the University of Bristol.

Nitrogen isotopes: Seawater samples were filtered cleanly through acropak (0.2 micron) filters into acid-cleaned plastic vials, leaving head-space, and frozen on day of collection at -20°C. Approximately 4 litres of seawater was filtered through 0.4 micron Milli-Q rinsed polycarbonate membranes. The volume of seawater filtered was recorded, and the filters were rinsed with Milli-Q, removed, folded, sealed in pre-cleaned centrifuge tubes, and frozen at at -20°C. Forceps were cleaned with ethanol prior to use.

Samples will be oxidized with persulfate to convert total nitrogen to nitrate, and then isotopic composition (denoted by \Box^5N) will be determined with "denitrifier" method (Sigman et al., 2001). In this method, nitrate is converted to N₂O by *Pseudomonas chloraphis*, denitrifying bacteria (natural mutant, which does not go all the way to N₂, but stops at N₂O) and is transferred in a helium flow into an Isotope Ratio Mass Spectrometer (Princeton). The amount of total N will be determined in the mass spectrometer by area calibration.

Particulate Organic Carbon: 2-4 litres of seawater was filtered through 25mm pre-combusted and Milli-Q rinsed GF/F filters. Forceps were cleaned with ethanol prior to use. The volume of seawater filtered was recorded, and the filters were rinsed with Milli-Q, removed and loosely wrapped in combusted foil and dried in an oven at 50°C overnight. The dried foil packets were sealed tightly and frozen at -20°C in a clean plastic bag. POC measurements will be made in the UK at the University of Bristol or via NERC analytical facilities.

References:

Auro, M.E., Robisnon, L.F., Burke, A., Bradtmiller, L.I., Fleischer, M.Q., and Anderson, R.F., 2012, Improvements to 232-thorium, 230-thorium, and 231- protactinium analysis in seawater arising from GEOTRACES intercalibration: Limn. & Ocean. Methods, v. 10, p. 464-474.

Brewer and Riley, 1965, The automatic determination of nitrate in sea water: Deep Sea Research, v. 12, p. 765 – 772.

Culberson, C., 1991, Dissolved Oxygen, WHP Operations and Methods, July 1991.

de Souza, G. F., Reynolds, B. C., Johnson, G. C., Bullister, J. L., and Bourdon, B., 2012, Silicon stable

isotope distribution traces Southern Ocean export of Si to the eastern South Pacific thermocline: Biogeosciences, v. 9, p. 4199-4213.

Dickinson, A.G., Sabine, C.L., and Christian, J.R., 2007, Guide to best practices for ocean CO2 measurements. PICES Special Publication 3, 191 pp.

Gao, P., Xu, X., Zhou, L., Griffin, S., Southon, J., and Liu, K., accepted, Rapid sample preparat ion of dissolved inorganic carbon in natural waters using a headspace-extraction approach for radiocarbon analysis by accelerator mass spectrometry: Limn. & Ocean. Methods.

Grasshoff, K., 1976, Methods of seawater analysis, Verlag chemie, Weiheim: pp. 317.

Hendry, K. R., Georg, R. B., Rickaby, R. E. M., Robinson, L. F., and Halliday, A. N., 2010, Deep ocean nutrients during the Last Glacial Maximum deduced from sponge silicon isotopic compositions: Earth and Planetary Science Letters, v. 292, p. 290-300.

Hughes, H.J., Delvigne, C., Korntheuer, M., de Jong, J., Andre, L., and Cardinal, D., 2011, Controlling the mass bias introduced by anionic and organic matrices in silicon isotope measurements by MC-ICP-MS: J. Anal. At. Spectrom., v. 26. p. 189.

Kirkwood, D.S., 1989, Simultaneous determination of selected nutrients in sea water.2. ICES CM 1989/ C: 29.

Mantoura, R.F.C, and Woodward, E.M.S., 1983, Optimization of the indophenol blue method for the automated determination of ammonia in estuarine waters: Estuarine, Coastal and Shelf Science, v. 17, p. 219-224.

Sigman, D. M., K. L. Casciotti, M. Andreani, C. Barford, M. Galanter, and J. K. Böhlke., 2001, A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater: Analytical Chemistry, v. 73 (17), p. 4145-4153.

Zhang, J. and Chi, J., 2002, Automated Analysis of Nanomolar Concentrations of Phosphate in Natural Waters with Liquid Waveguide: Environ. Sci. Technol., v. 36 (5), p. 1048–1053.

Chapter 7: SEDIMENT SAMPLING

7.1 Introduction

Marine sediment samples were collected during the JC094 TROPICS cruise to fulfil the following goals:

- Calibration of Paleoceanographic proxies. Marine sediments lying at the sediment-water interface (core-tops) provide a link between current water masses conditions and the sedimentary record. Calibration of proxies will be accomplished by paired measurements of physical and chemical water sample conditions and surficial (i.e. modern) sediment samples.

- Reconstruct the paleoclimatic and paleoceanographic history of the Equatorial Atlantic by analysing environmental proxies in continuous sedimentary sequences extending several glacial-interglacial cycles, with a focus on the last deglaciation.

The coring strategy was designed to obtain a representative sample located at the depth of each of the major water masses in a nearly zonal transit across the East and West Atlantic basins, as well as from the Mid-Atlantic Ridge. In addition, sampling was also aimed to obtain a depth distribution as even as possible within the constraints of bathymetric geomorphology. Each sampling cast attempted to recover a sample with a well-preserved core-top, as well as a long-core that would help unravel the paleoceanographic history of each site back to at least the last glacial cycle. Table 1 presents a summary of sampling at each site, and figure 1 shows the coring distribution with depth and type of sample for the complete cruise transect.

Figure 7.1. Sediment samples distribution with depth and sample type overlaid on the Phosphate concentration showing the major water masses in the Equatorial Atlantic.

Sample naming followed the convention set-up for the JC094 cruise and explained in detail in this report. Short sediment sample names are composed of the cruise identification JC094 and the unique S number. An example of such unique sediment sample ID would be JC094-S9999. Both naming conventions are used in this chapter. Detailed information about successful sampling events is presented

in summary tables for each site in the following tables. Basic information is full sample name according to JC094 sample codification, position as latitude and longitude in degrees and decimal minutes, water depth of sample and length where available. In some instances length of some of the mega-core tubes or push-cores was not recorded because they where probably mixed and stored in bags. Detailed information for cores designated for microplastic analyses should be found in the microplastics section in this report.

Sample Type BOX GVY MCH MCN PSH PTN SLP TRG Total **Study Area** Carter Seamount 32 (71) 1(1)5 (22) 3 (22) 19 (19) 1 (2) 3 (3) 0(2)**Knipovich Seamount** 0(3) 2(2) 2 (2) 13 (15) 0 (1) 0 (0) 1(1)18 (24)

2(2)

1 (6)

2(4)

3 (6)

2(2)

 $0(0) \quad 0(0) \quad 0(0)$

5 (6) 11 (12) 0 (0) 0 (0) 0 (0)

1 (6) 11 (11) 0 (0) 0 (0)

2 (4) 15 (15) 0 (0) 0 (0)

1 (1) 7 (14) 15 (42) 15 (42) 69 (72) 1 (3) 3 (3) 1 (3) 112 (180)

0(0)

0(0)

0(0)

6(6)

15 (25)

21 (28)

20 (26)

7.1. Sampling summary for each of the studied sites showing successful sampling attempts per gear type employed. Numbers in parenthesis indicate the total number of attempts at each site.

2(2)

2 (2)

1(1) 1(4)

0(0) 1(2)

7.2 Sample summary tables

Transit Knipovich-Vema

Vema Fracture Zone

Gramberg Seamount

Vavda Seamount

Total

Table 7. 2. Sample summary for Carter Seamount.

Core Name	Latitude N	Longitude W	Depth (m)	Length (cm)
JC094_004_EBA_ROV222_PSH036_S0001	9º 13.4050'	21º 18.8867'	642	Not recorded
JC094_004_EBA_ROV222_SLP009_S0002	9º 12.9930'	21º 18.9711'	1058	NA
JC094_004_EBA_ROV222_SLP014_S0003	9º 13.0706'	21º 18.9642'	994	NA
JC094_004_EBA_ROV222_SLPNot assigned_S0004	Unknown	Unknown	Unknown	NA
JC094_005_EBA_ROV223_PSH052_S0005	9º 14.800'	21º 19.681'	201	7
JC094_005_EBA_ROV223_PSH053_S0006	9º 14.800'	21º 19.681'	201	Not recorded
JC094_005_EBA_ROV223_PSH054_S0007	9º 14.800'	21º 19.681'	201	14
JC094_007_EBA_ROV224_PSH003_S0016	9º 11.75'	21º 17.03'	2131	1.5
JC094_007_EBA_ROV224_PSH014_S0016	9º 11.80'	21º 17.08'	2082	1.5
JC094_007_EBA_ROV224_PSH017_S0017	9º 11.83'	21º 17.16'	2045	Not recorded
JC094_008_EBA_MGA002_MCH001_S0018	9º 16.682'	21º 38.273'	4565	38
JC094_008_EBA_MGA002_MCN004_S0021	9º 16.682'	21º 38.273'	4565	41
JC094_008_EBA_MGA002_MCH005_S0022	9º 16.682'	21º 38.273'	4565	40
JC094_009_EBA_PTN001_PTN001_S0026	9º 16.6834'	21º 38.2726'	4565	713.5
JC094_011_EBA_ROV225_PSH001_S0036	9º 10.44'	21º 16.32'	2719	18
JC094_011_EBA_ROV225_PSH002_S0037	9º 10.43'	21º 16.33'	2719	9.5
JC094_011_EBA_ROV225_PSH003_S0038	9º 10.43'	21º 16.33'	2719	10
JC094_011_EBA_ROV225_PSH028_S0039	9º 10.9065'	21º 16.4818'	2278	18.5
JC094_011_EBA_ROV225_PSH029_S0040	9º 10.9068'	21º 16.4816'	2278	12
JC094_011_EBA_ROV225_PSH030_S0041	9º 10.9068'	21º 16.4813'	2278	16
JC094_015_EBA_ROV227_PSH021_S0053	9º 12.4127'	21º 17.9832'	1366	Very little sediment
JC094_015_EBA_ROV227_PSH022_S0054	9º 12.4127'	21º 17.9832'	1366	19
JC094_015_EBA_ROV227_PSH023_S0055	9º 12.4127'	21º 17.9832'	1366	19
JC094_015_EBA_ROV227_PSH051_S0056	9º 13.15'	21º 18.58'	1003	To Lucy Woodall
JC094_015_EBA_ROV227_PSH053_S0057	9º 13.1632'	21º 18.5887'	947	Not recorded
JC094 015 EBA ROV227 PSH068 S0058	9º 13.45'	21º 18.85'	684	8-9

Table 7.3. Sample summary for Knipovich Seamount.

Core Name	Latitude N	Longitude W	Depth (m)	Length (cm)
JC094_016_TRS2_MGA006_MCH001_S0059	7º 48.0019'	21º 24.0040'	3400	34
JC094_018_TRS2_GVY001_GVY001_S0065	7º 26.102'	21º 47.778'	3426	522
JC094_019_TRS2_MGA007_MCN001_S0066	7º 26.092'	21º 47.778'	3419	36
JC094_019_TRS2_MGA007_MCN002_S0067	7º 26.092'	21º 47.778'	3419	31.5
JC094_019_TRS2_MGA007_MCH003_S0068	7º 26.092'	21º 47.778'	3419	35
JC094_019_TRS2_MGA007_MCH004_S0069	7º 26.092'	21º 47.778'	3419	25

Table 7.4. Sample	summary for	Knipovich S	Seamount.
	summary for	Rinpovient	Jeannount.

Core Name	Latitude N	Longitude W	Depth (m)	Length (cm)
JC094_021_EBB_ROV228_PSH003_S0070	5º 36.06'	26º 58.06'	1990	10-14
JC094_021_EBB_ROV228_PSH004_S0071	5º 36.06'	26º 58.03'	1990	21
JC094_021_EBB_ROV228_PSH005_S0072	5º 36.06'	26º 58.03'	1990	Very little sediment
JC094_022_EBB_ROV229_PSH017_S0073	5º 37.5167'	26º 58.03'	989	19
JC094_022_EBB_ROV229_PSH018_S0074	5º 37.5160'	26º 57.6985'	990	16
JC094_022_EBB_ROV229_PSH072_S0076	5º 37.6288'	26º 56.4020'	565	8
JC094_022_EBB_ROV229_PSH073_S0077	5º 37.6288'	26º 56.4020'	565	Very little sediment
JC094_026_EBB_ROV230_PSH003_S0079	5º 35.37'	26º 59.67'	2820	10
JC094_026_EBB_ROV230_PSH004_S0080	5º 35.37'	26º 59.67'	2820	14-16
JC094_026_EBB_ROV230_PSH005_S0081	5º 35.37'	26º 59.67'	2820	16
JC094_026_EBB_ROV230_PSH063_S0082	5º 35.7488'	26º 58.4276'	2220	19
JC094_026_EBB_ROV230_PSH063_S0083	5º 35.7488'	26º 58.4276'	2220	7
JC094_026_EBB_ROV230_PSH063_S0084	5º 35.7488'	26º 58.4276'	2220	8
JC094_027_EBB_MGA008_MCN001_S0085	5º 42.339'	27º 16.429'	4405	41
JC094_027_EBB_MGA008_MCN002_S0086	5º 42.339'	27º 16.429'	4405	38
JC094_027_EBB_MGA008_MCH003_S0087	5º 42.339'	27º 16.429'	4405	37
JC094_027_EBB_MGA008_MCH004_S0088	5º 42.339'	27º 16.429'	4405	22
JC094_028_EBB_PTN003_TRG002_S0999	5º 42.359'	27º 16.443'	4408	46

Table 7.5. Sample summary for the transit Knipovich – Vema Fracture Zone.

Core Name	Latitude N	Longitude W	Depth (m)	Length (cm)
JC094_029_TRS3_MGA009_MCH001_S0094	6º 48.712'	32º 54.726'	4055	31
JC094_029_TRS3_MGA009_MCN002_S0095	6º 48.712'	32º 54.726'	4055	35
JC094_029_TRS3_MGA009_MCN003_S0096	6º 48.712'	32º 54.726'	4055	39.5-41
JC094_029_TRS3_MGA009_MCH004_S0097	6º 48.712'	32º 54.726'	4055	36
JC094_030_TRS3_GVY005_GVY001_S0099	6º 48.710'	32º 54.719'	4055	~510
JC094_031_TRS3_GVY006_GVY001_S0100	6º 48.71'	32º 54.72'	4065	637.5

Core Name	Latitude N	Longitude W	Depth (m)	Length (cm)
JC094_033_VEM_ROV231_PSH029_S0101	10º 44.592'	44º 34.529'	1402	Not measured
JC094_034_VEM_MGA010_MCN001_S0102	10º 33.288'	44º 30.887'	4948	33
JC094_034_VEM_MGA010_MCH002_S0103	10º 33.288'	44º 30.887'	4948	36
JC094_035_VEM_GVY007_GVY001_S0104	10º 33.289'	44º 30.894'	4959	539
JC094_038_VEM_GVY008_GVY001_S0113	10º 51.783'	44º 29.463'	5161	703
JC094_041_VEM_ROV232_PSH014_S0114	10º 43.542'	44º 25.421'	1094	7
JC094_041_VEM_ROV232_PSH015_S0115	10º 43.542'	44º 25.421'	1094	5
JC094_041_VEM_ROV232_PSH016_S0116	10º 43.542'	44º 25.421'	1094	17
JC094_041_VEM_ROV232_PSH067_S0118	10º 42.5174'	44º 25.0915'	570	1.5
JC094_041_VEM_ROV232_PSH068_S0119	10º 42.5181'	44º 25.0913'	570	13
JC094_042_VEM_ROV233_PSH010_S0120	10º 46.8334'	44º 35.9358'	2932	14
JC094_042_VEM_ROV233_PSH011_S0121	10º 46.8327'	44º 35.9399'	2932	11
JC094_042_VEM_ROV233_PSH012_S0122	10º 46.8309'	44º 35.9344'	2932	8
JC094_042_VEM_ROV233_PSH070_S0123	10º 45.9989'	44º 36.0410'	2128	22-23

Table 7.6. Sample summary for Vema Fracture Zone.

Table 7.7. Sample summary for Vayda Seamount.

Core Name	Latitude N	Longitude W	Depth (m)	Length (cm)
JC094_045_VAY_ROV235_PSH092_S0124	14º 52.0586'	48º 12.9877'	1115	24
JC094_045_VAY_ROV235_PSH091_S0125	14º 52.0586'	48º 12.9877'	1115	To Lucy Woodall
JC094_045_VAY_ROV235_PSH090_S0126	14º 52.0586'	48º 12.9877'	1115	11
JC094_045_VAY_ROV235_PSH111_S0127	14º 52.07'	48º 12.67'	1070	To Lucy Woodall
JC094_045_VAY_ROV235_PSH112_S0128	14º 52.07'	48º 12.67'	1070	16
JC094_045_VAY_ROV235_PSH113_S0129	14º 52.07'	48º 12.67'	1070	26
JC094_046_VAY_MGA013_MCH001_S0130	15º 10.430'	48º 15.009'	4126	7
JC094_046_VAY_MGA013_MCN002_S0131	15º 10.430'	48º 15.009'	4126	11
JC094_046_VAY_MGA013_MCH003_S0132	15º 10.430'	48º 15.009'	4126	4
JC094_046_VAY_MGA013_MCN004_S0133	15º 10.430'	48º 15.009'	4126	4
JC094_048_VAY_ROV236_PSH003_S0134	14º 53.5147'	48º 08.9966'	867	3
JC094_048_VAY_ROV236_PSH004_S0135	14º 53.5145'	48º 08.9960'	867	4
JC094_048_VAY_ROV236_PSH005_S0136	14º 53.5143'	48º 08.9965'	867	6
JC094_048_VAY_ROV236_PSH077_S0138	14º 53.4330'	48º 07.3905'	1055	19
JC094_048_VAY_ROV236_PSH078_S0139	14º 53.4332'	48º 07.3902'	1055	9
JC094_049_VAY_ROV237_PSH001_S0140	14º 51.0340'	48º 15.9990'	2166	22
JC094_049_VAY_ROV237_PSH002_S0141	14º 51.0340'	48º 15.9990'	2166	To Lucy Woodall
JC094_049_VAY_ROV237_PSH003_S0142	14º 51.0340'	48º 15.9990'	2166	22-23
JC094_053_VAY_BOX001_BOX008_S0155	14º 45.993'	48º 15.040'	3721	Not recorded
JC094_053_VAY_BOX001_BOX009_S0156	14º 45.993'	48º 15.040'	3721	Not recorded
JC094_054_VAY_GVY012_GVY001_S0158	14º 51.0745'	48º 15.8545'	2234	31

Core Name	Latitude N	Longitude W	Depth (m)	Length (cm)
JC094_056_GRM_ROV239_PSH025_S0159	15º 25.1918'	51º 05.2746'	1379	To Lucy Woodall
JC094_056_GRM_ROV239_PSH027_S0161	15º 25.1918'	51º 05.2746'	1379	19
JC094_056_GRM_ROV239_PSH053_S0162	15º 23.6555'	51º 05.5013'	1004	To Lucy Woodall
JC094_056_GRM_ROV239_PSH051_S0163	15º 23.6555'	51º 05.5013'	1004	14
JC094_058_GRM_ROV240_PSH002_S0167	15º 26.908'	51º 05.486'	2187	17
JC094_058_GRM_ROV240_PSH003_S0168	15º 26.908'	51º 05.486'	2187	To Lucy Woodall
JC094_058_GRM_ROV240_PSH021_S0169	15º 26.5839'	51º 06.0318'	1675	To Lucy Woodall
JC094_058_GRM_ROV240_PSH022_S0170	15º 26.5839'	51º 06.0318'	1675	11
JC094_059_GRM_GVY014_GVY001_S0172	15º 27.860'	50º 59.488'	2714	388
JC094_060_GRM_MGA015_MCN001_S0173	15º 27.860'	50º 59.488'	2714	8
JC094_061_GRM_MGA016_MCN001_S0177	15º 27.859'	50º 59.486'	2714	28 (plus a bag with mud in bun)
JC094_061_GRM_MGA016_MCH002_S0178	15º 27.859'	50º 59.486'	2714	36
JC094_061_GRM_MGA016_MCN003_S0179	15º 27.859'	50º 59.486'	2714	To Lucy Woodall
JC094_061_GRM_MGA016_MCH004_S0180	15º 27.859'	50º 59.486'	2714	35
JC094_062_GRM_MGA017_MCN001_S0181	15º 30.533'	50º 54.401'	4128	8
JC094_062_GRM_MGA017_MCH002_S0182	15º 30.533'	50º 54.401'	4128	To Lucy Woodall
JC094_062_GRM_MGA017_MCN003_S0183	15º 30.533'	50º 54.401'	4128	10

Table 7.8. Sample summary for Gramberg Seamount.

7.3 Shipboard Analyses

7.3.1 Core Description and Photography (Logs)

After recovery, cores were split on board and photographed immediately afterwards (Fig. 7.2). Cores were visually described and log-sheets created with notes and a sketch of each core section. Based on this information, digital copies of the sedimentary logs were created using SedLog 3.0 (Zervas et al., 2009). An example of such log for core JC094-S0065 is presented in figure 3.

Figure 7.2. Core JC094-S0065 photographed after splitting.

Figure 7.3. Example of a sedimentary log created with SedLog v.3.0 for core JC094-S0065.

7.3.2 Colour Scanning

Colour of the cores was measured in the archive half of split cores every 2 cm with a Konica Minolta CM-2600d spectrophotometer. Before measurements, the surface of the core was smoothed using a glass slide and covered in transparent cling film. Colour results were reported in L*a*b* colour-space and in Hue, Chroma and Value of the Munsell scale. Colours were determined with the Specular Component Included (SCI) and Excluded (SCE) methods. An example of a colour profile (Luminosity) in core JC094-S0026 is shown in figure 7.4.

Figure 7.4. Example of Luminosity (L^*) measurement every 2 cm using the hand-held spectrophotometer Konica-Minolta CM-2600d on piston core JC094-S0026.

Figure 7.5. Natural colour variability test along parallel tracks in core JC094-S0099. Top left: Luminosity; top right: a; Bottom: b*.*

Precision of the measurements was estimated by 10 replicate measurements at 102.5 cm and 122.5 cm of section 2/4 of core JC094_S0099. Maximum relative standard deviations were 0.89% for Luminosity (L), 1.26% for a*, and 2.26% for b*. Natural variability in colour measurements was estimated by measuring two parallel tracks from 84.5 to 112.5 on section 2/4 of core JC094_S0099. Figure 5 shows the results of the natural variability test for the three colour parameters of the L*a*b* colour-space.

Colour measurements proved useful for confirming the overpenetration of core JC094-S0099, where loss of a significant amount of top sediment was suspected. A duplicate core JC094-S0100 was obtained at the same site. Colour measurements were performed along the latter core and the top part of core JC094-S0099. Comparison of both records suggested that 88 cm of core JC094-S0099 were lost due to overpenetration (fig. 7.6)

Figure 7.6. Estimation of core-top loss due to overpenetration using the hand-held colour scanner Konica Minolta CM2600-d. Top: Parallel cores assuming top of core is at sediment/water interface. Bottom: Estimation of core-top loss in JC094-S0099 due to overpenetration by comparison of Luminosity records from both cores.

7.4 Foraminifer biostratigraphy

A goal of cruise JC094, cruise scientists was to capture marine sediment cores spanning the last deglacial termination (TI) and as much of the Last Glacial Maximum (LGM) as possible. To achieve this goal it was important to assess the time/depth penetration of each core as soon after retrieval as possible. While chronostratigraphy for marine sediment cores is typically done using benthic oxygen isotope stratigraphies or correlation of physical properties, these techniques were not possible given the constraints of the present cruise. The method chosen was planktonic foraminifera biostratigraphy and assemblage assessment. Previous studies in the equatorial Atlantic have revealed shifts in the distribution of foraminifera species throughout the Quaternary as a result of changes in climate (eg: Be et al., 2008; Ericson an Wollin, 1956, 1968) and thus previously identified trends in assemblage and abundance were applied to infer the approximate age of JC094 sediments. Specifically, studies have indicated that Globorotalia menardii is the Atlantic planktonic foraminifera species most sensitive to changes in climate during the Pleistocene, and fluctuations in its relative abundance downcore are thus most useful for biostratigraphic zonation. The presence or absence of G. menardii characterizes welldefined zones in the Pleistocene, which are widespread in the equatorial Atlantic and Caribbean. It is generally more abundant in warmer interglacial climates and absent or rare during glacials. In addition, the relative abundance of other warm and cold-water species was used to identify glacial-interglacial transitions.

Biostratigraphic techniques were applied on JC094 by sampling sediment from easily accessible depths within selected cores (often pre-split cores). On long-cores (gravity and piston) samples were taken from the core barrel, core catcher and from each section break (approx. every 1.5m). Mega-core samples were typically taken from the top and bottom of most sediments. Samples were wet sieved using either a >250um or >150um sieve depending upon an initial assessment of sediment characteristics including principle components and clay content. Once sediments were clear of the fine fraction, sieves were placed in an oven at 60C and were kept at constant temperature until dry. Due to space and sieve limitations, samples were often transferred into plastic petri dishes after washing.

After the samples were dry they were passed through a 250um sieve to guarantee a mature size fraction (immature foraminifera often have cryptic tests) for counting and examination. At least 200 individuals were counted per sample (in many cases more) and a tally was also kept of foraminifera shell fragments as this is often an indicator of sediment dissolution. All counts were entered into an excel spreadsheet to facilitate record keeping and visual depiction of results (fig 7.7).

Figure 7.7. Depth in gravity core GVY001_S0065 versus percentage abundance of the climate sensitive species G. menardii, the major cold water species (N. pachyderma + N. dutertrei), the major warm water species (G. ruber + G. trilobus) and the fragmentation index.

In keeping with the published literature we found that the abundance of G. menardii varied substantially downcore. In many cores G. menardii was the most variable foraminifera species and as expected, changes in its abundance can to a first order to be correlated with other glacial/interglacial indicators such as colour change and sediment composition (coarse/fine fraction ratio). The index of fragmentation did not turn out to be a particularly diagnostic tool for JC094 sediment cores, likely because different foraminifera species have different preservation potentials and assemblage changes overwhelm the dissolution signal due to lysocline changes in these cores. Early on in the cruise the utility of using the presence/absence of G. menardii and G. menardii flexuosa (present only from 70-400kya) in a whole sample was identified and thus detailed down core counts were only carried out for the first few long sediment cores. Because sediment samples could not be counted at a sufficient resolution (due to time and sampling constraints) to determine the exact depth of the "LGM" this approximation method allowed for a quick and easy determination of whether or not a given sediment core had captured the relevant time interval and was thus considered a 'success'. Higher resolution age/depth relationships required for paleoclimate work will be carried out using planktonic oxygen isotope stratigraphy at the Lamont-Doherty Earth Observatory.

7.5 Subsampling

Subsampling of marine sediments during JC094 cruise was done for mega-cores, push-cores and longcores as summarized in the Sediment Sampling Database. U-channels were extracted along the central axis of all the long-cores. Discrete samples subsampling of these cores (fig. 8) was generally done with the aim to obtain samples going back to the last glacial maximum (LGM). The position of the LGM was estimated based on average sedimentation rates and initial foraminifer assemblages observations. A summary of subsampling is shown in table 7.9.

		Subsample type	U-channel	Magnetic	Foram δ18O	Diatom	Past circulation proxy (Pa/Th, Δ14C, sortable silt)
		(Sampling resolution cm)	Continuous	1	3-4	3-4	3-12
Location Core Water depth (m)		Subsampled?		Cou	ints of subs	ample	
	MGA_002_S0021	4565	17 A-617	30	1 8 1		8
	PTN_001_S0026	4565	V	-	30	23	10
East of Eastern Basin	MGA_006_S0059	3400	-	34	-	-	•
	GVY_001_S0065	3426	V	-	38	38	13
	MGA_007_50066	3419	-	35	-	-	-
		Subtotal		99	68	61	23
1225	MGA_008_50085	4405	112-011	39	13	13	6
West of Eastern Basin	MGA_009_\$0096	4055	-	37	-	-	-
	GVY_006_S0100	4065	V	+	33	33	11
1		Subtotal	1.776.211	76	46	46	17
in the second second	MGA_010_S0102	4948	-	33			6
Vema	GVY_007_S0104	4959	V	÷	15	-	11
	GVY_008_S0113	5161	V	-	~	-	-
		Subtotal		33	15	0	11
East of Western Basin	GVY_014_S0172	2714	v	10.27		-	-
cast of western basin	MGA_016_S0177	2714	-	27	-	-	-
		Subtotal		27	0	0	0
		Total		235	129	107	51

Table 7.9. Summary of subsampling done in long- and mega-cores during cruise JC094.

Core-top samples were also obtained where well-preserved core-tops where obtained. A summary of the core-top samples obtained during JC094grouped by water depth range cruise is presented in the table 7.10.

Figure 7. 8. Example of subsampling of the top section of core JC094-S0026 1/6.

Table 7.10. Core-tops obtained during cruise JC094 grouped by sampling area and water depth.

		Counts of core top subsamples			Total core tops subsampled for		
Coring gear		ROV push core			Mega/Box core		each location
Water depth (m)		< 500	500 - 1500	1500 - 4000	1500 - 4000	> 4000	eachiocation
Location	East of Eastern Basin	1	2	3	1	1	8
	West of Eastern Basin	-	1	5	-	2	8
	Verna Fracture Zone	-	3	2	-	1	6
	East of Western Basin	-	6	4	3	3	16
			с	·		Grand total	38

7.6 Pore-fluids

Core top mega-cores waters were syphoned off using silicone tubing attached to a peristaltic pump at 300-1000L/min. Porefluids were extracted from Mega-core subcores at 2cm intervals using Rhizon filters (Rhizosphere Research Products, NL) into pre-cleaned syringes.

Short code	Туре	Nutrients measured?	Comments
JC094_S0022	Porefluids	Y	18 depths, no frozen subsamples
JC094_S0068	Porefluids	Y	20 depths, no frozen subsamples
JC094_S0084	Porefluids	N	17 depths, frozen subsamples
JC094_S0097	Porefluids	N	17 depths, frozen subsamples
JC094_S0103	Porefluids	Y	17 depths, no frozen subsamples

Table 7.11. Summary of porefluids analyses during cruise JC094.

Porefluid nutrients and core top waters were analysed on board on the day of collection using standard chemical testing kits for nitrate, orthophosphate and silicic acid (Hach-Lange), measured on a Hach-Lange DR3900 photospectrometer (NB: some nitrate measurements were below the calibration range of the Hach-Lange automated method; all phosphate and silicic acid measurements were within the calibration range). Reproducibility was assessed for silicic acid measurements: internal reproducibility was ~0.3%; external reproducibility based on replicate subsamples of bottom waters was ~2%. Note that duplicate samples from core top waters showed greater variability suggesting greater heterogeneity (mean offset between duplicate 13%, 4%, 7% for nitrate, phosphate and silicic acid respectively). For porefluid samples not analysed for nutrients on the day of collection, a 5ml subsample was frozen at -20°C for analysis in the UK. Remaining archived samples (~10-15ml) were stored in cool stow. Remaining core top waters were filtered through 0.4 mm polycarbonate membranes (Whatman) and preserved (See chapter 12 for full details of core top water samples). Table 7.11 presents a summary of

porefluid analyses during cruise JC094. Figures 7.9, 7.10 and 7.11 show the porefluid profiles for the cores analysed on board. Figure 12 presents the results of the core-top waters nutrients contents for the cores analysed during the JC094 cruise.

Figure 7.9. Porefluid profile for JC094-S0022 (MGA002)

Figure 7.10. Porefluid profile for JC094-S0068 (MGA007)

Figure 7.11. Porefluid profile for JC094-S0103 (MGA010)

Figure 7.12. Core-top nutrients (error bars based on duplicate analyses).

- Be, A.W.H., Damuth, J.E., Lott, L. & Free, R. (2008) Late Quaternary Climatic Record in Western Equatorial Atlantic Sediment. *GSA Memoir* 145 1–36 (2008).
- Ericson, D. B. & Wollin, G. Micropaleontological and isotopic determinations of Pleistocene climates. (1956). *Micropaleontology*, 257–270.
- Ericson, D. B. & Wollin, G. Pleistocene climates and chronology in deep-sea sediments. (1968). *Science* 162, 1227–1234.
- Zervas, D., Nichols, G.J., Hall, R., Smyth, H.R., Lüthje, C., Murtagh, F. (2009). SedLog: A shareware program for drawing graphic logs and log data manipulation. *Computers and Geosciences* 35, 2151-2159.

Chapter 8: Coral Sampling

This section describes the collection of corals (both live and fossil) and how they have been processed, catalogued and subsampled. Live and fossil corals were collected from five locations: Carter Seamount, Knipovich Seamount, the Vema Fracture Zone, Vayda Seamount and Gramberg Seamount. Samples were collected during a total of 16 ROV ISIS dives, 1 Dredge and 2 Mega Cores. Our overall yield was: 2043 fossil solitary Scleractinian corals, 143 g of fossil solitary Scleractinian fragments, 504 live solitary Scleractinian corals, 34 live colonial Scleractinian corals, 154 live octocorals, 67 live stylasterids, 85 kg of fossil colonial Scleractinian corals, 54 kg of fossil octocorals, 0.9 kg of fossil stylasterids and 100 kg of small pieces of mixed coral rubble or unidentified colonial corals.

8.1 Live Corals

Live corals were collected for a variety of purposes including palaeoclimate proxy calibration, genetics, reproduction studies and coral distribution studies. In order to fulfil these aims, corals were collected from as many depth intervals as possible at each sampling site, spanning 2990 m to 200 m water depth and 3.0°C to 12.1°C water temperature. Key features of the physical ocean sampled include the thermocline, Antarctic Intermediate Water (AAIW) and North Atlantic Deep Water (NADW). Scleractinian corals were identified to genus (and in some cases species) level on board where possible. Octocorals were identified to either family/genus level. Stylasterids were identified to family level. The colonial Scleractinia collected were identified as *Madrepora, Solensmilia, Dendrophyllia* and *Enallopsammia*. Solitary corals were identified as *Flabellum, Javania, Caryophyllia, Dasmosmilia, Polymyces* and *Stephanocyathus*. Octocorals collected include *Corallium, Acanthogorgia, Anthomastus, Iridogorgia, Candidella, Paragorgia* and bamboo corals of the Isididae. For a more complete discussion of the varieties of soft coral collected the reader is referred to Chapter 10.

The number of samples collected at each site is discussed in Section 8.1.1. All live coral samples are catalogued in the Biology database. Those samples taken for palaeoclimate studies are also included in the Fossil Corals database (Section 7.2.2). Figures in Section 7.1.1 show the numbers of hard corals collected according to depth at each site. These figures are based on the corals taken for palaeoclimate proxy calibration and include all hard colonial corals collected and the great majority of solitary Scleractinia. Solitary Scleractinia taken for biological analysis form a small subset of the corals collected and not all have yet been identified, so they are not included in the figures.

8.1.1 Sampling Locations

We plot the samples collected at every seamount with a background of ocean temperature and nutrient data (figs 8.1-8.4).

Figure 8.1: Live Scleractinian solitary corals collected at each sampling site, also showing a) dissolved phosphate and b) temperature.

Figure 8.2: Live Scleractinian colonial corals collected at each sampling site, also showing a) dissolved phosphate and b) temperature.

Figure 8.3: Live octocorals collected at each sampling site, also showing a) dissolved phosphate and b) temperature.

Figure 8.4: Live Stylasteridae collected at each sampling site, also showing a) dissolved phosphate and b) temperature.

a) Carter Seamount

Corals were collected during 5 dives of the ROV ISIS. The deepest collection was 2343 m and the shallowest was 201 m. The number of samples collected according to depth is shown in the figures below (figs 8.5 and 8.6).

Figure 8.5: Number of live solitary corals collected at Carter Seamount in 100 m depth bins. Also shown is the amount of time spent at each depth by the ROV ISIS over the course of 5 dives. 5 genera are represented by our sampling efforts here.

Figure 8.6: Number of live colonial corals collected at Carter Seamount in 100 m depth bins. Also shown is the amount of time spent at each depth by the ROV ISIS over the course of 5 dives. 2 genera of Scleractinia are represented by our sampling efforts here.

b) Knipovich Seamount

Corals were collected during 3 dives of the ROV ISIS. The deepest collection was 2548 m and the shallowest was 611 m. The number of samples collected according to depth is shown in the figures below (figs 8.7 and 8.8).

Figure 8.7: Number of live solitary corals collected at Knipovich Seamount in 100 m depth bins. Also shown is the amount of time spent at each depth by the ROV ISIS over the course of 3 dives. 3 genera are represented by our sampling efforts here.

Figure 8.8: Number of live colonial corals collected at Knipovich Seamount in 100 m depth bins. Also shown is the amount of time spent at each depth by the ROV ISIS over the course of 3 dives. 3 genera of Scleractinia are represented by our sampling efforts here.

c) Vema Fracture Zone

Corals were collected during 3 dives of the ROV ISIS. The deepest collection was 2875 m and the shallowest was 570 m. The number of samples collected according to depth is shown in the figures below (figs 8.9 and 8.10).

Figure 8.9: Number of live solitary corals collected at the Vema Fracture Zone in 100 m depth bins. Also shown is the amount of time spent at each depth by the ROV ISIS over the course of 3 dives. 4 genera are represented by our sampling efforts here.

Figure 8.10: Number of live colonial corals collected at the Vema Fracture Zone in 100 m depth bins. Also shown is the amount of time spent at each depth by the ROV ISIS over the course of 3 dives. 1 genera of Scleractinia is represented by our sampling efforts here.

d) Vayda Seamount

Corals were collected during 3 dives of the ROV ISIS. The deepest collection was 2012 m and the shallowest was 431 m. The numer of samples collected according to depth is shown in the figures below (figs 8.11 and 8.12).

Figure 8.11: Number of live solitary corals collected at Vayda Seamount in 100 m depth bins. Also shown is the amount of time spent at each depth by the ROV ISIS over the course of 3 dives. 4 genera are represented by our sampling efforts here.

Figure 8.12: Number of live colonial corals collected at Vayda Seamount in 100 m depth bins. Also shown is the amount of time spent at each depth by the ROV ISIS over the course of 3 dives. 4 genera of Scleractinia are represented by our sampling efforts here.

e) Gramberg Seamount

Corals were collected during 2 dives of the ROV ISIS. The deepest collection was 1992 m and the shallowest was 1096 m. The number of samples collected according to depth is shown in the figures below (figs 8.13 and 8.14).

Figure 8.13: Number of live solitary corals collected at Gramberg Seamount in 100 m depth bins. Also shown is the amount of time spent at each depth by the ROV ISIS over the course of 2 dives. 3 genera are represented by our sampling efforts here.

Figure 8.14: Number of live colonial corals collected at Gramberg Seamount in 100 m depth bins. Also shown is the amount of time spent at each depth by the ROV ISIS over the course of 2 dives. 1 genera of Scleractinia is represented by our sampling efforts here.
8.1.1 Live corals for palaeoclimate proxy calibration

In total, 251 live solitary scleractinian corals, 34 live colonial scleractinian corals, 30 live octocorals and 67 live stylasterids were collected for palaeoclimate proxy calibration work. These samples form the bulk of all live coral samples. All samples were soaked in 2.5% bleach overnight to remove organic tissue and then rinsed with fresh water. All solitary coral samples were photographed twice, once in side-view and once in calicular-view to assist with identification. Colonial scleractinia were also mostly photographed twice, once to view the whole specimen and once to get a close up of the coral polyps.

Solitary scleractinia of 6 genera from 2 families (Figure 8.15) and colonial scleractinia of 4 genera from 3 families (Figure 8.16) are represented in our samples. We also have examples from the families Isididae and Coralliidae of the subclass Octocorallia (Figure 8.17), and the family Stylasteridae belonging to the class Hydrozoa (Figure 8.18).

8.1.2. Live corals for biological analyses

Sampling protocols for hard corals for biological analyses are outlined in Section 10.

Figure 8.15: Examples of solitary scleractinia collected live. Scale bar in cm squares. a) *Javania*, b) *Stephanocyathus*, c) *Caryophyllia*, d) *Flabellum*, e) *Polymyces*, f) *Dasmosmillia*.

JC094 Cruise Report, Chapter 8, Page 9

Figure 8.16: Examples of colonial scleractinia collected live. Scale bar in cm squares. a) *Solenosmilia*, b) *Madrepora*, c) *Dendrophyllia*, d) *Enallopsammia*.

Figure 8.17: Examples of octocorals collected live. Scale bar in cm squares. a) Bamboo, b) Corallium.

Figure 8.18: Examples of Stylasterids collected live. Scale bar in cm squares. a) Stylasterid type 1, b) Stylasterid type 2.

8.2. Fossil Corals

Fossil corals were collected for palaeoclimate and coral population studies. In order to be able to study a variety of different ocean water masses, corals were collected from as many depth intervals as possible at each sampling site, spanning 2990m to 200m. Key features of the physical ocean sampled include the thermocline, Antarctic Intermediate Water (AAIW) and North Atlantic Deep Water (NADW). Scleractinian corals were identified to genus level on board where possible. At least 9 genera of solitary Scleractinia (Figure 8.20) and 4 genera of colonial Scleractinia are present in our samples (Figure 8.21). Two of these are very small and therefore of limited use in palaeoclimate studies and are not included in the following figures. Octocorals were identified to either family/genus level, and include Isididae (bamboo corals), *Corallium* and *Metallogorgia* (Figure 8.22). Stylasterids were identified to family level (Figure 8.23). The number of samples collected at each site is discussed in the sections below. All fossil coral samples are catalogued in the Fossil Corals database (see section 8.2.2) and tabulated in Appendix 3.

Figure 8.20: Examples of some of the solitary Scleractinia collected as fossils. Scale bar in cm squares. a) *Desmophyllum dianthus*, b) *Desmophyllum dianthus*, c) *Caryophyllia*, d) *Stephanocyathus*.

Figure 8.21: Examples of the colonial Scleractinia collected as fossils. Scale bar in cm squares. a) *Solenosmilia*, b) *Madrepora*, c) *Enallopsammia*, d) *Sympodangia*?.

Figure 8.22: Examples of the 2 major types of octocorals collected as fossils. Scale bar in cm squares. a) Bamboo coral, c) *Corallium*.

Figure 8.23: Example of the stylasterids collected as fossils. Scale bar in cm squares.

JC094 Cruise Report, Chapter 8, Page 12

8.2.1 Sampling Locations

Figure 8.24: Fossil Scleractinian solitary corals collected at each sampling site, also showing a) dissolved phosphate and b) temperature.

Figure 8.25: Fossil Scleractinian colonial corals collected at each sampling site, also showing a) dissolved phosphate and b) temperature.

Figure 8.26: Fossil Octocorallia collected at each sampling site, also showing a) dissolved phosphate and b) temperature.

Figure 8.27: Fossil Stylasteridae collected at each sampling site, also showing a) dissolved phosphate and b) temperature.

a) Carter Seamount

Corals were collected during 5 dives of the ROV ISIS. The deepest collection was 2559 m and the shallowest was 256 m. 662 solitary Scleractinia, 44 kg of colonial Scleractinia and 20 kg of octocorals were collected. The number of genera collected according to depth in 100 m bins is shown in the figures below (figs 28 and 29).

Figure 8.28: Numbers of fossil solitary corals collected at Carter Seamount in 100 m depth bins showing a) Total numbers of corals and b) Numbers of corals greater than 2 cm across. Also shown is the amount of time spent at each depth by the ROV ISIS over the course of 5 dives. 5 genera are represented by our sampling efforts here. Other (fragments) are unidentifiable small pieces of solitary coral.

JC094 Cruise Report, Chapter 8, Page 15

Figure 8.29: Masses of fossil colonial corals collected at Carter Seamount in 100 m depth bins showing a) Total mass of Scleractinian corals and b) Total mass of octocorals. Also shown is the amount of time spent at each depth by the ROV ISIS over the course of 5 dives.

a)

b) Knipovich Seamount

Corals were collected during 3 dives of the ROV ISIS. The deepest collection was 2824 m and the shallowest was 718 m. 513 solitary Scleractinia, 16 kg of colonial Scleractinia, 4 kg of octocorals and 180 g of stylasterids were collected. The number of genera collected according to depth in 100 m bins is shown in the figures below (figs 30 and 31).

Figure 8.30: Numbers of fossil solitary corals collected at Knipovich Seamount in 100 m depth bins showing a) Total numbers of corals and b) Numbers of corals greater than 2 cm across. Also shown is the amount of time spent at each depth by the ROV ISIS over the course of 3 dives. 3 genera are represented by our sampling efforts here.

Figure 8.31: Masses of fossil colonial corals collected at Knipovich Seamount in 100 m depth bins showing a) Total mass of Scleractinian corals and b) Total mass of octocorals. Also shown is the amount of time spent at each depth by the ROV ISIS over the course of 3 dives.

c) Vema Fracture Zone

Corals were collected during 3 dives of the ROV ISIS and one dredge. The deepest collection was 2894 m and the shallowest was 568 m. 279 solitary Scleractinia, 17 kg of colonial Scleractinia, 10 kg of octocorals and 690 g of stylasterids were collected. The number of genera collected according to depth in 100 m bins is shown in the figures below (figs 32 and 33).

Figure 8.32: Numbers of fossil solitary corals collected at the Vema Fracture Zone in 100 m depth bins showing a) Total numbers of corals and b) Numbers of corals greater than 2 cm across. Also shown is the amount of time spent at each depth by the ROV ISIS over the course of 3 dives. 4 genera are represented by our sampling efforts here.

Figure 8.33: Masses of fossil colonial corals collected at the Vema Fracture Zone in 100 m depth bins showing a) Total mass of Scleractinian corals and b) Total mass of octocorals. Also shown is the amount of time spent at each depth by the ROV ISIS over the course of 3 dives.

a)

d) Vayda Seamount

Corals were collected during 3 dives of the ROV ISIS. The deepest collection was 1971 m and the shallowest was 583 m. 228 solitary Scleractinia, 1 kg of colonial Scleractinia, 11 kg of octocorals and 10g of sylasterid were collected. The number of genera collected according to depth in 100 m bins is shown in the figures below (figs 34 and 35).

Figure 8.34: Numbers of fossil solitary corals collected at Vayda Seamount in 100 m depth bins showing a) Total numbers of corals and b) Numbers of corals greater than 2 cm across. Also shown is the amount of time spent at each depth by the ROV ISIS over the course of 3 dives. 7 genera are represented by our sampling efforts here.

Figure 8.35: Masses of fossil colonial corals collected at Vayda Seamount in 100 m depth bins showing a) Total mass of Scleractinian corals and b) Total mass of octocorals and stylasterids. Also shown is the amount of time spent at each depth by the ROV ISIS over the course of 3 dives.

e) Gramberg Seamount

Corals were collected during 2 dives of the ROV ISIS. The deepest collection was 2051 m and the shallowest was 981 m. 361 solitary Scleractinia, 7 kg of colonial Scleractinia, 5.5 kg of octocorals and 7 g of stylasterid were collected. The number of samples collected according to depth in 100 m bins is shown in the figures below (figs 8.36 and 8.37).

Figure 8.36: Numbers of fossil solitary corals collected at Gramberg Seamount in 100 m depth bins showing a) Total numbers of corals and b) Numbers of corals greater than 2 cm across. Also shown is the amount of time spent at each depth by the ROV ISIS over the course of 2 dives. 6 genera are represented by our sampling efforts here.

Figure 8.37: Masses of fossil colonial corals collected at Gramberg Seamount in 100 m depth bins showing a) Total mass of Scleractinian corals and b) Total mass of octocorals and stylasterids. Also shown is the amount of time spent at each depth by the ROV ISIS over the course of 2 dives.

8.2.2 The fossil coral database

All fossil coral specimens and all live coral specimens taken for palaeoclimate proxy work are included in the fossil coral database. As well as a spreadsheet including all sample information, the database also includes a labelling key, details of coral genera collected, summary sheets for each sampling location and an overall summary sheet outlining the number/weight of corals collected at each station. This latter sheet can be found in Appendix 3.

Each sample consists of a selection of corals from the same sampling event, being of the same family/genus and having similar states of preservation. If more than one sample is present with these same characteristics the samples are labelled sequentially from 001. Solitary corals all have individual labels. Pieces of colonial coral of the same type were separated into bags and weighed, with each bag being treated as an individual sample. We have also given each sample a label indicating the sizes of the corals it represents. Corals < 2 cm across are labelled small (s). Corals > 2 cm but < 10 cm across are labelled medium (m). Corals > 10 cm across are labelled large (l). Where corals were too corroded/small/fragmented to identify or too small to effectively sort they were given the label 'Other' and a description of the sample was included in the spreadsheet. Examples of the coral labelling nomenclature are included in Table 1. Other information in the database includes latitude, longitude and depth of sample collection, whether the sample was growing on another kind of coral or rock, and for the samples collected live, the water temperature and salinity in which they were growing. Temperature and salinity were measured by CTD instruments on the ROV.

Cruise	Station	Location	Gear	Gear	Event	Event	Sample	Sample	Coral	Pres.	Size	Sample
		ID	ID	#	ID	#	ID	#	type			#
JC094	045	VAY	ROV	235	SLP	001	F	0165	Jav	с	S	001
JC094	045	VAY	ROV	235	SLP	001	F	0165	Oth	с	S	001
JC094	045	VAY	ROV	235	SLP	001	F	0165	Oth	с	S	002

Table 8.1: Construction of coral labels. Each station (ROV dive) is made up of many individual sampling events. All fossil corals from one event have the same sample ID and #. The coral type is usually the first three letters of the coral genus, or 'Other' (Oth) for unidentified pieces. There are three possible preservation states (Pres.): 1) Corroded (c), 2) Normal (n), 3) Pristine (p). If there is more than one entry with the same Sample ID, #, Coral type and Preservation state, samples are labelled 001, 002 etc. The 'Size' category is included so that larger samples can be readily identified.

Chapter 9: Sponges (Porifera)

Silicon (Si) is an essential nutrient for photosynthetic diatoms, which play a key role in the cycling of carbon. In the modern surface ocean, biological formation of amorphous silica (biogenic opal) by diatoms is the dominant process that removes dissolved Si (silicic acid, or Si(OH)₄) from seawater. Diatom blooms rely on upwelling sources of Si(OH)₄ because efficient utilisation strips almost all of the Si from surface waters. Ocean circulation and variations in algal populations result in distinct Si(OH)₄ concentrations in different deep water masses. The intermediate waters that form in the Southern Ocean and spread throughout most of the ocean, for example, are characterized by low Si(OH)₄, relative to other nutrients. An understanding of past Si(OH)₄ is required to reconstruct the supply of nutrients from the Southern Ocean through time.

Calibration work, largely carried out on material from the Southern Ocean, has showed that Silicon isotopes (denoted by δ^{30} Si) in sponge spicules reflects the concentration of Si(OH)₄ in the waters in which the sponges grow as a result of Si-dependent growth rates (e.g. Hendry & Robinson, 2012). Hence, spicule δ^{30} Si can be used to investigate Si uptake processes in sponges, and can be used as a palaeoproxy for Si(OH)₄. Other opal isotope systems are under investigation for biochemical and palaeoceanographic applications (e.g. Hendry & Andersen, 2013).

A secondary aim for JC094 was to collect more sponge material from different oceanic settings in order to carry out further studies of sponge silicification processes and to fine-tune the palaeonutrient calibration.

Sponges (Phylum Porifera) were collected (either as large individual sponges or as by-catch on other organisms) during the ROV dives, photographed, and subsamples taken for drying and preservation in ethanol or freezing for transportation back to the UK (at both -20 and -80°C, the latter to enable molecular analysis). Basic classification of the larger specimens as Hexactinellids or Demosponges was carried out on board using both binocular and petrological microscopes, and smear slides of cleaned spicules. Some dead /fossil sponge material was also recovered as by-catch with fossil framework coral, dried and transported back to the UK. In total, at least 24 different morphotypes of Hexactinellids, and 14 different morphotypes of Demosponges, were recovered (with several small specimens remaining unidentified).

1) Carter Seamount

Only Hexactinellid sponges were identified from Carter Seamount, including large, vase-shaped glass sponges (e.g. Figure 9-1; Appendix 8).

2) Knipovich Seamount

Knipovich Seamount was notable for sponge abundance and diversity, including both Hexactinellids and Demosponges (e.g. Figure 9-2; Appendix 8).

3) Vema Fracture Zone

Vema was also notable for sponge abundance and diversity, with several morphospecies of both Hexactinellids and Demosponges (e.g. Figure 9-3; Appendix 8). A large hexactinellid was recovered from dive ROV 233 with >cm size basal spicules (Figure 9-3A,B).

4) Vayda and Gramberg Seamounts

Vayda and Gramberg both yielded a good diversity of sponges, with notable collections of Demosponges (e.g. Figure 9-4; Appendix 8). Similarly to that found at Vema, a large >cm sized spicule hexactinellid was recovered from dive ROV 237 (Figure 9-5A). A distinct morphospecies of white fan hexactinellid was also recovered during this dive (e.g. Figure 9-5B). At least three morphospecies of demosponges were found at Gramberg that were not recovered at the other locations (e.g. Figure 9-6). Figure 9-7 gives an overview of the sampling locations relative to major water masses.

Figure 9-1: Example photos of hexactinellids from Carter. A-B) Vase sponge B0194.

Figure 9-2: Example photos of demosponges from Knipovich A) B0078, B) B01140.

9-3: Example photos of hexactinellids from Vema. A)-B) B01607, C) B01674, D) microscope view of microspicules from B01674, x600).

Figure 9-4: Example photos of demosponges from Vayda. A) B01661, B) B01671, C) B1968, D) B01637.

Figure 9-5: Example photos of hexactinellids from Vayda. A) B1965, B) B1963.

Figure 9-6: Example photos of demosponges from Gramberg. A) B1954, B) B1958.

Figure 9-7: Sponge sampling locations during JC094, relative to seawater phosphate (top) and silicic acid (bottom) concentration. Images produced using Ocean Data View by A. Jacobel.

References:

- Hendry, K. R., and Robinson, L. F., 2012, The relationship between silicon isotope fractionation in sponges and silicic acid concentration: modern and core-top studies of biogenic opal: Geochimica et Cosmochimica Acta, v. 81, p. 1-12.
- Hendry, K.R. & Andersen, M.B., 2013, The zinc isotopic composition of siliceous marine sponges: investigating nature's sediment traps. Chemical Geology, v. 354, p. 33-41.

Chapter 10. BIOLOGY REPORT

Objectives of biological surveys and collections

- 1. To collect live Scleractinia, Corallium and stylasterids to support fossil coral dating work.
- 2. To collect Scleractinia (solitary and colonial) and stylasterids for genetic and reproduction studies.
- 3. To collect sponges for biogenic silica studies.
- 4. To collect 10 of any individual species to undertake cross-Atlantic population connectivity research.
- 5. To collect common benthic organisms to ensure habitat and seamount zones are accurately described.

10.1 Summary of biological collections

A total of 3389 individual biological specimens were collected on JC094. Table 1 and Figure 10.1 show that collection success generally varied across phyla and changed with each seamount visited. Sample collection depended on the communities of organisms seen, those targeted, collection techniques utilised and the time available for biological collections.

Table 10.1. Number of biological samples collected at each JC094 seamount

	Vema	Carter	Knipovich	Vayda	Gramberg
Annelida	88	302	80	575	34
Arthropoda	40	100	7	61	23
Porifera	34	23	47	31	16
Mollusca	7	12	0	22	0
Echinodermata	434	275	114	139	71
Cnidaria	72	247	200	272	59
Nemertea	0	2	0	0	0
Sipuncula	0	2	0	0	0

All phyla (apart from Sipuncula and Nemertea that were only collected at Carter seamount) were collected from a broad depth range at every seamount.

Figure 10.1. Phylum breakdown of biological specimens collected at each seamount.

Cnidaria – *Scleractinia:* As this expedition was focused on collecting Scleractinia this formed a major portion of live biological collections. The majority of Scleractinia collected were for proxy research and

as such have been explained in details in the 'Coral sampling' (Chapter 8) of this expedition report. The colonial Scleractinia collected were identified as *Madrepora*, *Solensmilia*, and *Enallopsammia*. Solitary corals were from the following genera: *Flabellum*, *Javania*, *Caryophyllia*, *Dasmosmilia*, *Polymyces*, and *Stephanocyathus*.

Cnidaria – Octocorallia At least two species of Paragorgiidae and at least 3 species of Acanthogorgiidae were collected. One species of *Anthomastus* was common across the Atlantic and 11 specimens were collected, 8 from Carter and 3 from Vayda. At least two species of *Corallium* were collected, potentially three, and at least two species of Isididae. A rare specimen of *Swiftia* was collected and *Scleracis* appeared common.

Within Primnoidae at least 5 species were collected, one which is potentially new.

Other major collections: Two other large collection were made: Ophiuroidea (brittlestars, within the Echinodermata phylum) and Polychaeta (within the Annelida phylum).

Brittlestars were common members of the deep-sea communities surveyed. They were found in the large sampling efforts made when nets full of fossil coral rubble were collected and they were frequently sampled on octocorals (*Paragorgia* sp., *Scleracis* sp.). Some species of brittlestars appeared common across depths and the sample locations and it is these species we shall focus on for future population genetics studies.

Figure 10.2. Brittlestar (Ophiuroidea) collections along the expedition path plotted against depth and phosphate concentration.

The polychaetes that were collected were also from different species but were sampled across all locations and a wide range of depths (see below). Commensal polychaetes dominated our collections and were frequently found on colonies of *Corallium*, Primnoidae, and inside some sponges.

Figure 10.3. Polychaeta collections along the expedition path plotted against depth and temperature.

10.2 BIOLOGY SAMPLING PROTOCOLS

Sample collection using *Isis*

Live solitary corals were originally collected with the slurp gun and deposited in rock boxes on the aft of *Isis*. A modified collection technique, involving tubes being inserted into the rock boxes, creating smaller, separate compartments into which corals could be placed, saw the efficiency and number of corals collected increase.

Figure 10.4. Front tray of Isis at the end of Dive 240. Front centre are the two large open bioboxes, collection tubes fill the rock boxes towards the back of the image, and three tubes are connected to the front of the push core area. The tool tray in the centre has green nets and a large fan, Paragorgia, in it.

Colonial corals were collected usually by arm or scoop and placed into open or closed rock boxes. Lighter and delicate organisms, such as sponges and octocorals, were placed into closed bioboxes. Urchins were slurped and placed into closed bioboxes. Holothurians, squat lobsters, and much mobile fauna were slurped directly into sealed chambers. Oversized bamboo corals and fan corals were placed on the tool tray which was shut for the ascent making the organisms secure. When on deck all biology and fossil samples were transferred into pre-chilled, pre-labelled buckets $(2^{\circ}C)$ (see figure below) before being taken into the constant temperature room (set to $2^{\circ}C$).

Sample processing in the constant temperature room on RRS James Cook

To maximise the usefulness and breadth of research possible with the samples collected there was a substantial number of subsamples and post-processing on board.

A photo of every individual organism, with a scale bar and label in shot, was taken to ensure "live" colour and state were recorded as best as possible. As all creatures collected exist in the marine environment an aquarium with glass plates to hold organisms upright, and side lights was set-up to aid accurate recording of fleshy features such as polyps, antenna, branching structure etc the structure of which is often lost in non-aquatic conditions.

No organism was preserved in formalin without a piece being taken for genetics (or, in the case of when taxonomy requires formalin and there were a sufficient number of individuals collected, one individual was saved for formalin preservation) unless the sole use for the specimen was reproductive studies (only solitary corals were just placed in formalin). A genetics sample requires at least three times the volume of 100% ethanol as the tissue volume to ensure long-term viability of the tissue.

The labelling protocol involved every location on *Isis* e.g. rock boxes, bioboxes etc being given a unique "parent code". Everything from that location was given a unique "sample ID code" and the parent code was noted in the database. Should organisms then be removed from an organism, e.g. polychaetes from a primnoid coral, the parent code of the polychaetes is the primnoid ID code, with the polychaets themselves being given a unique sample ID.

Figure 10.5. Colony of *Enallopsammia* being placed into bucket of chilled seawater (left). Buckets ready for processing in temperature controlled room (right).

10.2.1 CORALS

SCLERACTINIAN PROTOCOL

Solitary corals: If there were over 10 individuals of one species from a given dive / depth then 10 were placed whole in formalin (for 7-14 days before being transferred to 70% ethanol) for reproduction studies (to be undertaken by Dr Rhian Waller), and, depending on the size of the solitary coral, one was placed whole in flash freeze (for genomics studies to be undertaken by Dr Marcelo Kitahara) and another whole in 100% ethanol (for phylogenetic studies to be undertaken by Dr Rhian Waller) and put in the -80 freezer; if the solitary corallites were wider than 1.5 cm then two genetics sub-samples were taken from one individual, one to be preserved by flash freeze (liquid nitrogen) and one in 100% ethanol (both being placed in the -80 freezer) – the remainder of the individual was usually given to the fossil preservation team for proxy work or preserved in formalin for reproduction studies.

Figure 10.6. Caryophyllia sp. Photo by Sam Crimmin

Subsampling a solitary coral was done using forceps/scalpel or fine points to scrape around edge of mouth (this would break some of the septae); it is also possible to remove tissue using tweezers (that must be cleaned before being re-used). We were careful to not dig deep into the polyp as this is where the coral gametes are located, at the base of the polyp, and sometimes, if there were few solitary corals, the remainder of the coral was preserved in formalin for reproduction studies.

Colonial corals: There were fewer collections of colonial corals but each collection yielded a large number of polyps making the subsampling possible for every individual collected (with the exception of a few very small stylasterid corals that were too small to sub-sample).

After a photo record was taken, at least 5-10 polyps were removed and placed in 95-100% nondenatured ethanol (molecular grade) then into the -80 freezer for future genetics studies (to be undertaken by Dr Rhian Waller) and another 5-10 polyps into formalin (for 7-14 days before being transferred to 70% ethanol) for reproduction studies (to be undertaken by Dr Rhian Waller). Another 5 polyps were preserved by flash freeze (liquid nitrogen) for genomics studies to be undertaken by Dr Marcelo Kitahara. The remainder of the colony was given to the fossil preservation team for proxy work.

OCTOCORAL PROTOCOL

After a photo record was taken (which was often enhanced by the aquarium set-up), a few branchlets of polyps were removed and placed in 95-100% non-denatured ethanol (molecular grade) and placed into the -80 freezer for future genetics studies (to be undertaken by Dr Michelle Taylor). A second subsample of ~10-15 polyps (a branch or two) was place in buffered formalin for 24hrs before being transferred to 70% ethanol. *It is really important to change the sample into ethanol within 48hrs MAX*.

Figure 10.7. Colony of *Candidella* sp. with commensal polychaetes in tunnels. Photo by Sam Crimmin

The remaining colony was placed into a suitable-sized Nalgene container or oversized octocorals were be double-edged thermosealed, in double bags i.e. double thermoseal one side of the plastic tube to create a packet, place octocoral and label inside packet, place enough 70% ethanol in packet so that octocoral shall be completely covered in transit (at least 3 times the volume of the organism). Squeeze out air if possible and double thermoseal open end, place this sealed packet into a second doubly thermosealed packet. The bags were left for 24 hrs to check for leaks before being placed in a longer-term storage area.

STYLASTERID PROTOCOL: After a photo record is taken a sub-sample of a branch tip (1-2 cm) is placed into a cryovial / 50ml Falcon tube with 95-100% molecular ethanol for future genetic studies (to be undertaken by Dr Alberto Lindner). A second sub-sample of at least 20 polyps is placed in buffered formalin for 5-7 days, after which it is transferred to 70% ethanol. The remaining colony is stored in 70% ethanol (as above octocoral protocol) or, if the sample is over-sized, frozen at -20 in a thermosealed / whirlpack bag.

Figure 10. 8. Glass sponge. This sponge had a DNA sample taken, a section was dried and the remainder preserved in a thermosealed bag in the -20 °C freezer.

10.2.2 NON-CORAL BIOLOGY PROTOCOLS

PORIFERA – **SPONGES** As such a small genetics sub-sample (3cm by 3 cm) of each sponge (of a suitable size) was placed inside a sample bag (with a label) and kept in the -80 freezer. A fist-sized section was placed on a drying tray for future silicate analysis. The remainder of the sample was stored in Nalgenes / a bucket in 70% ethanol or, if too large, placed in the -20 freezer in a thermosealed bag.

HYDROIDS Dr Lea-Anne Henry, Heriot-Watt University, requested that any hydroids collected were preserved with their holdfasts in 70% ethanol.

POPULATION GENETICS: Dr Michelle Taylor is interested in deep-sea population connectivity and as such aimed to collect at least 10 individuals of the same species of any deep-sea creature from the east and again from the west Atlantic. Several target species were collected successfully. All samples were preserved whole / subsampled, in 100% ethanol which was placed in the -80 freezer.

After some collection it was apparent that the likely subjects (and their preservation techniques) were:

ALL INDIVIDUALLY in 95-100% ethanol: POLYCHAETES ACTINARIA (sea anemones) CRUSTACEANS (specifically squat lobsters – specimens were small and placed whole in 100% ethanol) OPHIUROIDEA (brittlestars) – mostly small and preserved whole in 100% ethanol.

SUBSAMPLE in 95-100% ethanol, remainder in 70% ethanol ECHINOIDEA (urchins) HOLOTHUROIDEA (sea cucumber)

10.3 Summary of biology seen on Isis ROV dives and collections made per seamount

10.3.1 Carter Seamount (EBA)

Figure 10.9. Chart showing percentage breakdown of biological specimens collected at Carter seamount by phylum.

Figure 10.10. Major biology phylum collected at different depths on Carter seamount.

Dive 222 – 1080 > 640 m depth

Habitat and associated corals

The dive covered a large number of steep inclines, many with flat rock walls. Early in the dive, deeper areas had many stalked crinoids attached to the walled areas, with frequent black corals (Antipatharia), fans of Scleractinia (*Enallopasmmia* sp.), bamboo (Isididae) fans and whips, and fly trap anemones clinging to the otherwise bare rock faces.

Figure 10.11. Large black coral (Antipatharia)

As is usual the corals were inhabited by a variety of epifauna. Black corals often had resident squat lobsters, octocoral fans were host to many crinoids and squat lobsters, and bamboo corals had a number of small ring anemones circling their branches. Stylasterids were a relatively infrequent member of the benthic fauna. Fourteen solitary live corals were collected. After initial identification as *Desmophyllum* some of these specimens were actually found to be *Javania* sp., with some *Polymyces* sp. and some examples of *Caryophyllia* species. The two live colonies of coral collected were both identified as *Enallopsmmia*. Towards the end of the dive the rock had more caves and a greater rugosity (as below).

Rattail fish (Chimaeridae) were common as were an as yet unidentified eel-like fish species. One unusual goosefish (Lophiidae) was also spotted.

Figure 10.12. Rock face with small caves.

Dive 223 - 670 > 200 m depth

Habitat and associated corals

Starting at the approximate depth that the first dive finished at the beginning of this dive was steep walled. Sections of flatter sediment saw a change in fauna to holothurian (sea cucumbers), and pencil urchins. Again *Enallopsammia* were common, as were some *Corallium* and yellow octocoral fans. At the top of seamount (208m) there was plentiful fish fauna. There was also a different species of holothurian across the summit compared to the flanks.

Dive 224 - 1931 > 1350 m depth

Habitat and associated corals

Steep, lightly sedimented slope with low-relief coral rubble framework cover was found at the start of the dive. Coral colonies were mostly dead, with some small live patches of *Solensmilia* and small octocorals (black coral, gorgonians) on boulders. The slope developed into a field of larger rocky outcrops where more substantial coral colonies and octocoral fans were found. Shallower areas had finer sediment interspersed with similar rocky outcrops. Sediment fauna included sea cucumbers (holothurians), decorator crabs (holding their preferred species of gorgonian or black coral), urchins of several different species, and some predatory ambush fish such as the one shown below.

Figure 10.13. Large predatory fish with damaged eye.

After a large steep rock face the fine sediment plains with frequent rocky outcrops became a field of mostly small rocks and boulders, still on a steep incline. Again urchins and sea cucumbers were the major megafauna. Other common taxa included the fly trap anemones and sea stars. After this zone a new area of sediment with rare small boulders was surveyed. Here we found a large patch of pencil sea urchins.

Figure 10.14. Large patch of pencil sea urchins. Red dot is one of the two lasers we use for scale on the science camera.

Towards the end of the dive there were more frequent rock faces and some large overhangs. This area had bedrock made of solidified fossil which was home to a many white sea urchins, thousands of brittlestars and many small, pink, armoured holothurians (sea cucumbers).

Figure 10.15. Large white sea urchins on fossil rock that was covered with brittlestars and armoured sea holothurians (sea cucumbers)

Areas of fine rippled sediment (with little megafauna) followed the above area; this was followed by a steep rock face with rare, but large, colonies of stylasterid and *Paragorgia* (bubblegum coral). Crevasses in the rock face had accumulations of coral framework rubble and shallower areas of slope allowed quantities of finer sediment to also accumulate. There were rare patches with octocoral fans and a few rat tail fish in this area (at around ~1200m) but it had less benthic fauna than deeper areas.

The last 50 m of dive (1300m upwards) were much more frequently covered in octocoral colonies and megafauna (see below).

Figure 10.16. Bamboo coral (bottom left), alongside unusually pink examples of the *Paragorgia*, which are usually brighter red.

In the last few metres of this dive we collected a 2 metre wide candelabra bamboo coral. Other unusual specimens from the dive include a rare example of a sponge that is host (commensal or symbiotic?) to many hundreds of zoanthid polyps.

Dive 225 - 510 > 665 m depth

Dive commenced in an area of coarse sediment. Here we saw an unusual red sea cucumber (holothurian), rat tail fish, and sea urchins. As the slope got steeper sand become more coarser and there were frequent sand-covered outcrops; other than a few sponges, rare stalked crinoids and the unusual red sea cucumber this area was void of megafauna.

For the second quarter of the dive there was a steep but rounded rock face that was dominated by dead sparsely bushy octocorals which were often host to several *Anthomastus* octocorals. Pink *Corallium* fan colonies were also common in this area.

Some deep crevasses in the flat, plateau area of the dive, were covered in a dense garden of mixed live and dead octocoral colonies.

A coarse sediment slope with frequent boulders and rocky patches followed. Many rocks were mini oases of coral life. The sediment portions were home to less fauna; a few pink holothurians, some urchins, and rat tail fish.

A zone of thick coarse sediment, the main constituent of which were dead barnacles shells, followed. And a tall candelabra bamboo coral was collected at the end of this dive.

Dive 227 - 1330 > 681 m depth

As this was our last dive at Carter seamount it is was undertaken with the intention of filling in gaps of animal and fossil collection at required depths to ensure complete data sets for a variety of projects (sponge, proxy work, genetics); as such this dive spanned a large depth range and many of the same habitat that were covered in the previous dives.

This dive covered a more eastern flank of the southern edge of Carter seamount and we located some of the most lush gardens of octocorals yet seen on JC094. *Corallium, Paragorgia, Scleracia, Enallopasmmia,* black corals and small stylasterids were the many community members in these areas.

Towards the middle areas of the dive there was more sedimented areas. These areas often had rocks and boulders covering them where corals would reside. Sea stars, urchins, *Enallopasmmia*, and sponges were found here.

Rubble made of degraded coral framework dominated the last area of this dive. Crabs, burrowing anemones, and urchins were living alongside small patches of *Enallopasmmia*, and some rare but large bamboo corals. Close-ups of the framework rubble revealed a range of macrofauna: hermit crabs, squat lobsters, brittlestars and sea stars.

10.3.2 Knipovich seamount (EBA)

Figure 10.17. Chart showing the breakdown of phyla collected at Knipovich seamount

Figure 10.18. Major biology phylum collected at different depths on Knipovich seamount. **Dive 228 > 1993 to 1446 m**

The slope here is mostly sediment with large boulders. Boulders dominated areas from 1600 to 1400 m. Black corals, hundreds of stalked crinoids, small yellow octocorals, and small *Ensallopsammia* scleractinian coral were found on said boulders.

In sedimented areas there were pink holothurians, urchins with poison sacks on their backs, and white sea urchins.

A ridge area saw the highest concentration of megafauna; a field of *Ensallopsammia*, large dead and partially overgrown Scleractinia, purple stoloniferous octocorals covered many dead bamboo bases and fans, a rare *Anthomastus* was seen and some large whip bamboo corals completed the community here.

Not many fish were noted; The few seen were large conger-like eels.

Dive 229 > 1019 to 571 m

The beginning of the dive covered an area with some rocky patches. Here many crinoids were collected and much coral framework. Much of the dive was shallow slope dominated by sediment. Megafauna was infrequent (but included large sea pens, 120 cm + tall) and concentrated on the small patches of

ancient fossilised reef that intermittently stuck through the sedimented sea floor (and potentially is found just under the layer of sediment up the entire slope – it was certainly there every time any sand excavation took place or a push core was atempted). There were sea urchins, rat tail fish, mounds of sand, presumably housing polychaetes within, and larger errant polychaetes scuttering across the sandy sea floor.

Figure 10.19. Unusual sightings include a dumbo octopus (left) and a long tubular floating 3ft long tunicate colony called a pryosome (see below).

Figure 10.20. Tubular pyrosome.

Dive 230 > 2758 to 1030 m

The deeper areas of this dive, up to 2500 m, were dominated by sediment plains and slopes. The usual sediment fauna of holothurians (sea cucumbers, of a shocking pink variety), sea urchins, starfish and brittlestars were seen. Occasionally burrows in the sediment were also seen. Upwards of 2500 m a system of ledges and rocky patches brought in more sedentary members of the deep community: sponges were frequent and varied (barrels, stalked, small and large), rare octocoral fans of Primnoidae, as well as gold corals of the genus *Metallogorgia*, and some whip-shaped bamboo corals.

At 2170 m depth, *Isis* left the bottom and flew mid-water to get to a shallower area where sampling was required. This part of the dive started at 1190 m. The following section of the dive was dominated by steep and craggy rock formations with many stalked crinoids, urchins, hydroids, black corals and *Paragorgia* fans.

A descent into a canyon at around 1480 m saw a wall of stalked sponges and some large bamboo fans. The dive finished with some gigantic octocorals: a bamboo coral that was larger than *Isis* and at least four 2 m plus wide *Paragorgia* fans (below) covered with snake sea stars and all manner of epifauna.

Figure 10.21. A massive and aged colony of *Paragorgia* laden with snake brittle stars.

10.3.3 Vema Fracture Zone (WBA)

Figure 10.22. Chart showing the breakdown of samples collected from the Vema Fracture zone

Figure 10.23. Major biology phylum collected at different depths at the Vema Fracture Zone.

Dive 231 > 1097 to 1495 m

Figure 10.24. Sediment covered rock with a field of crinoids

Crinoids were the dominant fauna seen on this dive. The slope of the dive started as almost flat rock. Large boulders did appear, especially when the slope became steeper. The rugosity of the rocky surface increased on the slopes. Fossil rubble was often present on the more flat rocky patches. Stalked crinoids tended to be more frequent when the rugosity was low. Different, unstalked, crinoids were numerous when rocks were present or rugosity was high. Again very tall sea pens were found in the sedimented areas. *Paragorgia*, long, whip-shaped bamboo corals and *Enallaposammia* fans were found on the frequent boulders outcrops. The number of *Enallaposammia* colonies was especially high close to plateaus, especially around 1350 m and 1405 m depths. Small encrusting sponges were frequently observed as were *Metallogorgia* and *Iridogorgia* and armoured holothurians.

Figure 10.25. View from science camera; in the foreground there are yellow *Enallopsammia* fan colonies, and some large crinoids.

Figure 10.26. A field of yellow (alive) and dead Enallopsammia corals.

Dive 232 > 568 to 1302

The dive alternated between relatively steep slopes and flat sediment plains. At the beginning of the dive, the slopes are dominated by live and fossil *Madrepora*, with an occasional live primnoid and large, whip-shaped bamboo corals. Squat lobsters were observed on the *Madrepora*. A red goosefish was spotted around 1270 m depth. Small primnoids were more dominant on rocks on the sedimented plains.

Around 1070 m depth, unattached solitary scleratinian corals, of the genus *Stephanocyathus*, were found on the sediment surface. Large crabs were observed on the sediment plain, and a few pink lobsters were spotted at around 940 m depth. A huge number of shrimp were present as well.

Figure 10.27. An unattached solitary coral, *Stephanocyathus*

A slope at around 630 m, had a few large crabs, many shrimps and squat lobsters are present. More fish, mainly rattails, were seen too. Another goosefish was spotted around 600 m depth (see below).

Figure 10.28. A colourful predatory goosefish

The nets here contained hundreds of brittle stars. Furthermore, an unusual sponge with zoanthids was sampled, with polychaetes living inside the sponge as well.

Figure 10.29. A colony of the unusual sponge/ zoanthid symbiosis (left); a close-up of the colony (right).

Figure 10.30. The nets here contained hundreds of brittle stars; above is a close-up of them prepreservation

Dive 233 - 2985 to 1578 m

The first part of the dive was up a steep slope with small patches of sediments. A few sponges were observed clinging to the walls. Around 2890 m depth, more corals (bamboo corals) and large sponges were found.

Figure 10.31. A variety of sponge fauna

Sediment cover increased around 2870 m depth. Stalked sponges and small bamboo corals dominated the sparse community. At around 2810 m depth, seafloor rugosity increased again and sediment became rare. At the top of this part of the ridge, many corals were present, bamboo corals (branching and whip-shaped), stylasterids, and stylasterids were regularly seen; something that has not occurred since Carter seamount. A goosefish was spotted at 2690 m depth. The slopes that followed had more sediment cover, and sponges dominated the community. On reaching the top of this ridge section, like before, many corals were present. Around 2600 m depth, there was a large sediment plain and a few large sea pens were seen here. A steep slope followed, covered with mainly sediment and large rocks. The rocks disappeared at 2500 m, leaving a sedimentary slope where pink spiky holothurians and a few sea pens were observed. In shallower areas organisms were sparse. Small encrusting sponges are observed, as well as one large *Corallium*. Around 1735 m depth, a few small colonies of *Enallopsommia*, black coral and yellow fan octocorals were found. Bamboo corals were observed more frequent again, as well as sponges.

Figure 10.32. A pinnacle covered with long thin bamboo whips and candelabra colonies, Chrysogorgid corals and some soft corals (octocorals).

10.3.4 Vayda seamount (WBA)

Figure 10.33. Chart showing breakdown of major Phyla collected at Vayda seamount

Figure 10.34. Major biology phylum collected at different depths on Vayda seamount.

Dive 235 > 1514 to 1070 m

After landing on the seafloor in a field of bamboo fossil branches, with sporadic, small fossil corals, we ascended to a harder basalt rock surface. Here *Metallogorgia*, rare *Ensallospammia* fans, yellow octocorals (Plexauridae) with their commensal brittlestar, and live, long, whip-shaped bamboo corals dominated the community. A huge portion of the community was dead; this included some massive *Corallium* fans, large *Ensallopsammia* colonies - larger specimens than any seen alive. Many of the dead coral fans have been taken over by sponges, creating some huge sponge fans. There was a wide variety of sponges, from small golf balls to large yellow encrusting mats and huge white barrel sponges. Armoured holothurians were regularly seen and collected. We transversed the first rocky mound and then flew in blue water across to the next mound. At the top of the second mound (1100 m) there were a wider variety of octocoral fans (purple Calcaxonia with pale purple brittle star commensals, *Iridogorgia*, and huge whip bamboo corals), alongside the *Ensallopsammia* and rare, usually partially dead, *Corallium* (white polyps). *Anthomastus* were common and for the first time we saw a number of basketstars, *Gorgonacephalus* sp. Again, other than rare rattails, not many fish species were noted.

Dive 236 > 864 to 408 m and 1366 m to 503 m

This was a relatively shallow dive compared to those previous with a relatively shallow slope with thicker sediment cover and many small rocks. Any larger boulders were covered in many sponges, stylasterids, primnoids, and yellow octocorals. A few rare *Swiftia* (bright red octocoral fan) were seen at the beginning of the dive. The remainder of the surveyed area, up to the flat top of the seamount, was ideal for sponges and we saw an array of shapes and sizes. Basketstars (*Gorgonacephalus*) were more apparent in the community, often resting on the top of lilac *Acanthogorgia* octocorals.

Figure 10.35. Large rock face covered in squat lobsters, small colonies of yellow octocorals and stylasterids

At around 750 m depth, a rocky, flat surface started. More corals were present here and less sponges, the sediment cover started to increase, and sponges were seen more frequently again. Squat lobsters were present in relatively high numbers from 740 m depth. A short, steep rocky slope started at 675 m depth, where many live and dead sponges were clinging to the rock wall; Some *Corallium* and primnoids were also observed, as were basketstars and squat lobsters. When the wall had a shallower slope, pencil urchins were occasionally seen. The seamount peak was relatively flat, hard rock face that was dominated by orange, and unusually, black hairy brittlestars. A few fish species were also seen.

Figure 10.36. A bed of brittlestars

We were unable to recover the ROV due to worsening weather conditions. A decision was made to make a transit to a deeper part of the seamount and continue the dive from this point. The ocean floor at the start point of the second part of the dive was a sediment layer on rocky subtrata. Again, many ophiuroids (brittlestars) and yellow crinoids were seen here. Sponges were not as common as in the shallower areas observed. There were also more fish present; Three large sharks floated through our

survey area. More anemones appear, especially in the cracks in the rocky surface where sediment is present. At around 1340 m depth, small, whip-shaped bamboo corals start appearing, as well as *Metallogorgia*, and a few small sea pens. Small sponges were again seen in relatively high numbers. At 1055 m depth, a large, flat sediment plain appeared. Only a few small sea pens were present here, as well as a few small fish. At the end of the dive, there were many large boulders with sponges clinging to them and an occasional squat lobster. From 500 m depth, yellow crinoids were the dominant community megafauna. Large *Corallium* fans were seen throughout the dive and infrequent patches of white *Enallopsammia*. And, one large, fossilized shark tooth was collected.

Figure 10.37. A large shark investigating our progress

Dive 237 > 2166 to 1457 m depth

Large, yellow sponges were observed at the beginning of the dive. This was followed by a sediment plain with scarce animal life; Only a handful of small barrel-shaped glass sponges and shrimps were observed. A slope, covered in sediment followed with again hardly any live fauna. The few animals observed included a sea pen, purple star fish, pink sea cucumbers, sponges and *Anthomastus* octocorals (red long polyps, see below).

Figure 10.38. Sponge colonies overgrowing dead Corallium colonies.

A goosefish was spotted at 2040 m depth. From this point to the shallower areas, more animals were seen; *Metallogorgia* were frequently seen and at around 1830 m depth, large, whip-shaped bamboo corals appear, as well as small yellow octocorals (Plexauridae), *Iridogorgia*, and some small fans of *Enallopsommia*. Sponges of all kinds of sizes and shapes were seen in large numbers. *Anthomastus* became common around 1660 m depth. Large sponges overgrowing dead *Corallium* and shocking purple encrusting octocorals, likely a Clavulariidae, were present too. Many crinoids, brittlestars and *Gorgonacephalus* were again present and frequent.

10.3.5 Gramberg seamount

These dives were very focused on fossil coral collection but we were able to collect a number of biological specimens in the last few minutes of the last dive. Most Cnidaria below are solitary corals. The majority of Annelida were polychaetes found within tunnels on Primnoidae specimens. Again most of the Echinodermata were brittlestars. And the Arthropoda were squat lobsters and a few hermit crabs.

Figure 10.39. Breakdown of biology samples collected from Gramberg seamount

Figure 10.40. Major biology phylum collected at different depths on Gramberg seamount.

Dive 239 – 1565 to 900 m

The dive was relatively bare in animal life until around 1400 m depth. From there on orange curly whip corals were common (Antipatharia), there were large pink bamboo fans and some very small bushes of Chrysogorgiidae. Purple crinoids perched on top of any topography; corals, rocks and sponges. Sponges were low and encrusting and of the tall, stalked variety. There were some very small sea pens in the sediment patches seen and infrequent colonies of *Metallogorgia* and *Iridogorgia*.

The end of the dive, towards the pinnacle of the seamount, was a smoother terrain, covered with crinoids.

Dive 240 - 2155 to 1565 m

Figure 10.41. A thin whip bamboo coral (Isididae) from the beginning of the dive

There was a fine sediment covering of rocky outcrops at the beginning of the dive with little mega fauna. One or two large pink holothurian, infrequent sponges (some large barrel-shaped examples), thin whip bamboo corals (Isididae), rare fan colonies of *Enallopsammia*, and *Metallogorgia*. In the patches of fine sediment a few pennatulacea (sea pens) were seen.

It was decided to finish this dive at the location of the start of Dive 239, where fossil coral fields were seen and sampled. We blue-water transited to this site and finished the dive with a large fossil coral collection followed by collection of a large *Paragorgia* fan, squat lobsters and Primnoidae colonies.

Figure 10.42. Sampling a colony of Enallopsammia

Chapter 11 Habitat mapping (Video and ROV mounted Multibeam)

11.1 Habitat mapping

Based on extensive worldwide evidence, seamounts are generally considered as hotspots for biodiversity. A combination of different seabed substrata, in addition to specific oceanographic phenomena and current patterns (e.g. Taylor columns) that promote increased surface production, often results in an increased beta-diversity (species turnover) in addition to higher than average faunal abundance. The seamounts visited during JC094 indeed revealed a wealth of seabed habitats, each with their associated fauna. Especially Carter and Knipovitch Seamounts demonstrated a rich benthic megafauna, at first sight driven by local substratum and slope patterns, although further quantitative study will have to clarify the potential additional role of water mass properties in the spatial distribution of the faunal communities.

The dive transects, ranging from 3000 m to the seamount tops, give a good overview of the different habitats at each of the study sites. An initial classification of some of the seabed video data from Carter Seamount according to substrate type (sediment, boulders, rock, or fields of fossil coral debris) and dominant fauna (representing the community) shows a clear zonation of assemblages, apparently related to depth, slope angle and substratum type (see Fig. 2 under the ROV multibeam section). A full quantification of the faunal assemblages at all sites will be carried out as part of the post-cruise scientific analysis.

To obtain a better insight in the relationships between the faunal assemblages and the local physical factors that create their habitat, high-resolution ROV-based swath surveys were carried out on Carter and Vayda Seamounts (Dives 226 and 238). Derived variables (e.g. rugosity, bathymetric position index, etc.) will be combined with the depth and slope information, and with water mass properties (e.g. ROV CTD data) to quantify the species-habitat relationships. A similar analysis will be carried out at the scale of the entire seamounts, bringing to light potential large-scale faunal patterns and their variation across the Equatorial Atlantic. From the first analysis, it appears that Carter Seamount may be the site with the highest diversity and strongest zonation, although this initial observation will have to be supported by the full quantitative analysis before actual conclusions can be drawn.

11. 2 ROV mounted Reson Multibeam swath bathymetry

Three ROV swath dives were completed during the cruise (D226, D234 and D238). Dive 234 was aimed at the mapping of a vertical wall, and required a specific set-up that will be discussed later. The settings for the traditional downward looking surveys (Dives 226 and 236) are summarised in Table 3. The maximum ping rate was kept at 10 Hz, as this is the frequency of data recording of the Octans attitude sensor. With a survey speed of 0.3kn (0.15 m/s) this gives more than sufficient data density along-track. The pressure reading from the Parascientific Digiquartz depth sensor is not correctly converted to depths within PDS2000, hence all data were recorded as relative depths below the vehicle. Actual vehicle depths were then applied during post-processing, using depth values recorded in TECHSAS.

Dive 226 - Carter Seamount

The aim of Dive 226 was to carry out a detailed bathymetry survey to support habitat mapping work on the flanks of Carter Seamount. Throughout Dives 222 and 223, the scientific party had observed a distinct zonation in faunal assemblages, partly related to the type of substratum (rock, boulders, sand). A survey plan, including a set of terraces and steep slopes, was prepared. Once the ROV was at the seabed, however, a number of issues prevented us to complete the entire survey plan, and only the shallower half was completed (depth range 350-700 m). The problems included software instabilities in PDS2000 (acceptance of the USBL incoming stream and calculation of the ROV position is dependent on the exact name of the USBL beacon, and may require switching off and on various parameters.

Similarly, the XYZ calculation of the multibeam data only came on after toggling between vessel and ROV). The second problem encountered during the survey consisted of a strong current, which pushed the ROV back onto its track each time the vertical thruster had to be engaged (and hence the horizontal thrusters received less power). In addition, one vertical thruster was out of use.

Altogether the survey covered 0.89km² of an area consisting of rocky terraces and ledges, which do correspond well to the habitats observed. A very preliminary example of the data is presented in Fig. 11.2.

	Dive 226 - Carter	Dive 238 - Vayda
MBES Frequency	400 kHz	400 kHz
Altitude	50 m	40 m
Line spacing	150 m	120 m
Beam angle	120-140°	140°
Power	217 - 210 dB	210 dB
Gain	39 -22 dB	15 dB
Pulse length	80 - 60 μsec	60 µsec
Absorption	0 - 85dB /km (not set for line1 -	85 dB/km
	adjusted early in line 2)	
Spreading	0 - 20dB/km (not set for line 1,	30 dB/km
	adjusted early in line 2)	
Duration (at seabed)	15 h 30 min	14 h 35 min
Survey speed	0.2-0.3 kn	0.3-0.5 kn
Area covered	893500 m ²	1160989 m ²
Pixel size	50 cm	40 cm

Table 11.1 RESON survey settings for Dive 226 and Dive 238

Dive 238 - Vayda Seamount

The second downward-looking swath dive comprised a study of a spur and associated set of subcones on Vayda Seamount, covering a depth range of 550-850m. The current conditions were very good, and a survey speed of up to 0.5 kn could be maintained during the second half of the survey. The area had been visited before, at the start of Dive 238, and contains a range of habitats, including sponge fields, mixed sponge and soft coral communities and more barren rocky landscapes. Also in terms of geology and geomorphology, a range of features was observed that could provide more information on the formation history of Vayda Seamount. They include rocky strata with different erosional properties, potential lava flows and small mass-wasting features (rock falls, slab slides). The total area covered exceeded 1 km²; Fig. 11.3 shows an example of the results.

Fig. 11.2 Zoom on part of the ROV multibeam survey results of Carter Seamount, including a preliminary classification of the faunal assemblages and seabed type along Dives 222 and 223.

Fig. 11.3 Extract of the Vayda microbathymetry data collected during Dive 238, including the track and sample locations of Dive 236.

Dive 234 - Vema Seamount forward mapping

The second ROV multibeam dive was carried out with an entirely different setup: the Reson system was mounted on the front of the ROV, in a forward-looking position, with the aim to map a set of three steep cliffs on Vema Seamount. This technique has been trialled on ISIS once before, with the previous Simrad SM2000 multibeam system (see Huvenne et al. (2011) for details and results). The offsets from the common reference point on ISIS are listed in Table 4 (measured in the standard reference frame - this will be rotated during the processing stage).

Table 11.4 Offsets for the various sensors versus a common reference point on ISIS (front of vehicle) as used for the forward mapping approach, within the conventional vehicle reference frame (X: positive starboard, Y: positive forward, Z: positive up, all in metres)

	X	Y	Ζ
Compatt (USBL)	-1.01	-0.36	1.46
Doppler	0.58	-2.91	-0.17
MBES	0.215	0.115	0.344
Octans (attitude)	0.00	-0.86	-0.49
Parascientific (depth)	0.55	-1.48	0.00

The vehicle was flown in a set of parallel passes, each pass being carried out at a constant depth and with a constant distance from the cliff face. Surveys were carried out at 50m, 20m and 8m distance, the latter one combining the acoustic mapping with visual surveying using the HD Pilot camera. Unfortunately, damage had been detected in the HD Science camera during the pre-dive checks, which meant this video stream was not available for Dive 234. Hence video recordings were also made with the Pilot PAL camera, which is installed on the same pan-and-tilt unit as the HD Pilot camera. The SCORPIO camera was taken off the vehicle to make space for the Reson system. A photograph of the setup is shown in Fig. 3, and the main multibeam settings are listed in Table 5.

Fig. 11.3 ISIS set-up for forward-looking swath surveys.

	Dive 234 -Vema
MBES Frequency	400 kHz
Distance from wall	50, 20, 8 m
Line spacing	90, 45 m
Beam angle	120-140°
Power	210 dB
Gain	20 dB
Pulse length	60 µ sec
Absorption	85dB /km (not set for line1 - adjusted
	early in line 2)
Spreading	30dB/km (not set for line 1, adjusted
	early in line 2)
Duration (at seabed)	15 h
Survey speed	0.3 kn

Initial data processing was undertaken at sea, to confirm the collection of a robust dataset. However, further work is necessary before a coherent overview map can be made. This will involve a double coordinate transformation on the raw data, and the smoothing of the USBL navigation. Due to the close distance to the rock, the USBL signal was fairly noisy. Unfortunately, the irregular terrain also caused problems for the Doppler signal, which therefore was not reliable.

Once fully processed, the vertical swath will be integrated with the horizontal ship-borne bathymetry data, and with the species assemblage information extracted from the video data.

Chapter 12 Anthropogenic litter and sampling of surface water and sediment for microplastics

Introduction: Plastic pollution has been evident in the seas over the last 50 years (Ryan & Moloney 1993; Gregory & Ryan 1996; Derraik 2002; Carpenter *et al.* 1972). In 2004 small, degraded plastic particles, termed microplastics were first discovered in surface water and inter-tidal sediment (Thompson *et al.* 2004). Plastic litter is known to be environmentally damaging to the environment. The main problem with large plastic litter is when it is retained in organisms' stomachs after ingestion, and filling them up, thus interfering with food digestion. In addition to the problems of mega debris, microplastics also convey persistent organic pollutants and heavy metals from surface waters into the depths. (Andrady 2011; Teuten *et al.* 2009). Recently microplastics were observed in deep-sea sediment for the first time (Woodall *et al.* in preparation). The research objectives for JC094 have been designed to examine specific hypotheses on the accumulation of microplastics and the toxicity of these pollutants.

Objectives

- Collect surface water samples at regular intervals along the transect from Tenerife to Trinidad.
- Collect sediment cores whenever possible.
- Collect surface water samples at every sediment core site and along the Atlantic transect.
- Collect seabed litter, ideally plastics, on an opportunistic basis.

The objectives of the cruise were implemented to ensure that microplastics were sampled from both surface water and sediment, from the East and West basins of the Atlantic. In addition, seabed litter was also targeted in-order to fully describe what was present at depth and also to sample biofilms present on anthropogenic litter items. The litter and microplastics recovered from the sea water and sediment will be assessed for biofilm communities at a later date using pyrosequencing, and meiofaunal communities will be documented.

Photo 12.11.1: Clean for plastics environment laboratory.

Methods

Sediment: The mega coring and ROV push coring protocols are described in other sections of this report (ROV ISIS and Coring). Once on deck sediment cores were removed to a clean environment container, which was cleaned for plastic debris (Photo 12.11.1). Once samplers donned protective gear (boiler suit, lab coat and head scarf), standard core slicing procedures were followed. Clean protocols were adhered to, ensuring control filter paper was exposed to the laboratory environment during the core slicing process. In brief: the cores were extruded and sampled for 0-2cm and 2-5cm horizons. The top water was also retained whenever possible. All mega core sections were subsampled with ROV core size tube (57mm diameter), after sections were sliced. All sediments were then preserved in at least two layers sterile aluminium foil, separated by paper towel, then placed into a cardboard box and removed to a -80°C freezer.

Water: Surface water samples were obtained through the standard 'non-toxic' salt water supply to the laboratories using regular ship pipework. The tap was flushed for at least five minutes, then water flow rate measured. If the sampling was on station, depth of equipment was checked to ensure it was greater than 150m. A clean sieve was then placed under the tap for sampling. At the end of the sampling duration (either 12h or when the equipment was to rise above 150m below the surface), the sieve was removed and water flow rate measured again.

Sieves were then rinsed into cleaned and new glass vials, sealed and placed in -80°C.

Litter

Sampled: Litter items were sampled with ROV Isis during scheduled dives. Once on deck, the litter samples were removed using sterile forceps, placed in a metal container taken to the 'clean environment container laboratory' for further processing. Litter that could be cut was divided by sterile scissors into at least five pieces of approx. 1cm² material, with the remaining material retained for reference. Objects that could not be divided in this way were preserved whole. All items were preserved as described above for the sediment samples, in layers of sterile aluminium foil, then stored at -80°C.

Observations: ROV ISIS HD video recordings from 'SCORPIO' camera were analysed for litter items. During the dive litter items were recorded by dive observers on OFOP. At completion of the dive the litter records were scrutinised, then accepted or rejected based on video recorded. All video was screened for anthropogenic litter, running footage at four times normal speed, using VARS (EMBARI). Any additional litter items seen were added to those recorded in OFOP. In this way the most conservative estimates of litter items were documented.

Samples: In total 102 samples were collected. Most were surface water samples collected at science stations.

Location	Surface water UW	Surface water at station	Sediment	Litter
TRANSECT	20	0	3	0
CARTER	0	12	7	3
KNIPOVICH	0	4	5	2
VEMA	0	6	3	2
VAYDA	0	5	8	6
GRAMBERG	0	5	6	0

 Table 12.11.1: Summary of samples taken for anthropogenic study.

Sediment cores: Sample details are recorded in 'Sediment' Chapter 7. Below is a summary of locations and depth of samples collected (Graph 12.11.1).

Graph 12.11.1: Depths from which sediment samples were successfully collected.

Water: Sample details are recorded in 'Underway sampling' Chapter 6. Below is a summary map of where surface waters were collected.

Litter: Litter was seen at all sample locations, however the nature of the litter varied between sites and those items that could be directly attributed to the fishing industry were only found at three sites (Carter, Vayda and Gramberg),(Photo 12.11.2). A summary of the litter seen during the ROV Isis dives (Table 12.11.2) and samples collected are given below. Ghost fishing gear (probably from long-line fishery) became entangled on ISIS at Vayda (Dive 236). Further analysis of the video is required to determine at which location the gear first became snared.

Photo 12.11.2: Dive 227- Carter Seamount, ghost fishing gear.

Location	Glass	Plastic	Metal	Rubber	Other
CARTER	6	8	4	2	1
KNIPOVICH	2	0	2	0	0
VEMA	3	0	1	1	2
VAYDA	0	6	1	0	0
GRAMBERG	0	1	0	0	1

Table 12.11.2: Litter seen from ROV ISIS video footage.

Graph 12.11.2: Depths from which litter items were successfully collected.

Glass bottles were the most numerous items of litter seen (Photo 12.11.3), and were seen at all sites. In addition rubber objects were also common (Photo 12.11.4). The only confirmed plastic litter was found at Vayda, this included a large red box (Photo 12.11.5). All the litter seen could easily have come from passing shipping, although this route of entry into the environment can't be confirmed (Photo 12.11.6). However more unusual items were also seen (Photo 12.11.7).

Photo 12.11.3: Glass bottle.

Photo 12.11.4: Insulation rubber.

Photo 12.11.5: Red plastic box.

Photo 12.11.6: Urn.

The nature and the main objectives of the scheduled ROV ISIS dives (fossil and live coral collection) meant that specific depth ranges were targeted, thus an unbiased assessment of litter at the sampling sites was not possible. In future analysis the number of litter pieces per m of transected seabed could be determined. In addition the depth bias and distance from seamount summit could also be worked out.

Summary: Water, sediment and litter samples were successfully collected at all stations. In addition surface water was sampled during the entire transect of the Atlantic Ocean from East to West. Future analyses of these samples are required to provide details on abundance and variety of microplastic fibres and meiofauna, as well as the composition of biofilm communities.

Chapter 13: Outreach report

13.1. Social media

Kate Hendry

A cruise blog was maintained (http://tropics.blogs.ilrt.org), with a total of 25 blog posts, daily photos, and background information on the cruise, deep-sea corals, personnel, laboratory work, relevant publications, and links to the cruise Twitter, Flickr (72 photos) and Facebook accounts. In addition, 4 podcasts were made throughout the cruise, and posted on the cruise YouTube channel. More podcasts will be produced about the cruise in 2014 and a highlights video will be made available to the public in the Bristol Aquarium in 2014.

13.2. Press releases

Kate Hendry

Press releases were given by the European Research Council; news articles appeared in the Southern Daily Echo (UK), Servico de Information y Noticas Científicas (SINC, ES, <u>www.ageniciasinc.es</u>) and will be reported in The Trinidad Guardian and via the Royal Society, UK.

13.3. Nature Live, Natural History Museum (NHM), London, 20th November 2013 Lucy Woodall

A Nature Live event is run daily by the public engagement team (PEG) at NHM. At these events scientists who work at NHM talk to a general public audience who are visiting the museum. The Nature Live is advertised across NHM and takes place in a specially designated lecture theatre/studio room in the new part of NHM (The Darwin Centre). The room is called the Attenbourgh Studio as it was named by Sir David Attenbourgh and holds about 100 people when at capacity.

Preparation prior to 15th November

- 1. Met with PEG team to discuss how to run the event and put in place a contingence in case communication from the ship was not possible.
- 2. Once aboard James Cook good quality images of cruise were sent to NHM
 - o ship life (e.g. The mess)
 - sampling equipment (e.g. Megacorer)
 - sample processing (e.g. coral drying and sorting in deck lab)
 - o underwater images from ROV
 - movie of the ship's track, made by Leigh Marsh
- 3. Test phone calls made from the NHM facilitator to James Cook on 15th and 18th November. All these were successful and the line was clear.

The Event

- 1. Initially NHM could not reach the ship by telephone, but eventually they got through, twice.
- 2. In both calls the satellite reception from the ship was not good enough for the Attenbourgh Studio to hear me and for me to stay connected on the telephone line.
- 3. The backup plan was employed. A colleague from NHM was in the studio, she has previously been to sea and talked through some of the images I sent and some photo that she had from past research cruises.

Outcome

- 1. The studio was at capacity for the event.
- 2. The event was recorded and will be available as a podcast from NHM.
- 3. I have been asked to do a follow-up event in January for the Nature Live.

Appendices for JC094

Appendix 1: Station logs

- Appendix 2: Event logs
- Appendix 3: Coral log
- Appendix 4: Water numbers
- Appendix 5: Underway samples
- Appendix 6: ROV dive plans
- Appendix 7: ROV dive maps
- Appendix 8: Sponge samples
- Appendix 9: Sediment samples
- Appendix 10: Isis logsheets
- Appendix 11: Isis Technical report

JC094 STATION LOG

Math Math<	NSK= Niskin SLI	P= Slurp SCP= Scoop MGA=	Mega Core KTN= Kaste	n BOX- BoxCore GVY- Gravit					rm	DIVE START/STOP = 0	N /OFF hottom	l.	ALL OTHERS START (ST	IOR - IN JOUT of water							
N N		proc concress of	om orop	IDay	Start Time Star	rt Start Lat	Start	Start Long	Start Lat		art denth		End Time Er	ad Lat * End Lat		End Long	End Lat	End Long	End		
N N	Cruise S	tation # Location	Gear Gear#	(Start) Start Date	GMT Lat	Min N	Long ° W	Min W	(DD)	(DD)	(m) JDay	End Date		N Min N	Long ° N	Min N	(DD)	(DD)	depth (m)	Comments	success?
N N	10094			288 15/10/201							4552 288	15/10/2013	09:25:00	25 5.0130	21	24.8370		-21.4140	4543	practice CTD, profile taken, niskins	success
N N	IC094 IC094	003 EBA	ROV ROV221	292 19/10/201	3 15:30:00	9 13 21 00	21	18,9900	9.2202	-21.3165	914 292	19/10/2013	19:18:00	9 12.6000		18.6600	9.2100	-21.3110	523	Recovered Isis Dive before it got to the bottom. Problems with USBL	failed
N N	IC094 IC094	004 EBA 005 EBA	ROV ROV222 ROV ROV223	293 20/10/201 294 21/10/201	3 03:57:00 3 00:03:00	9 12.9600 9 13.3707	21	18.9500 18.8346	9.2160 9.2228	-21.3158	1090 293 672 294	20/10/2013	18:25:00	9 13.4100 9 14.8239	21	18.8900 19.7070	9.2235	-21.3148 -21.3285	642 214	Successful dive, 5 niskins, fossil oral, bio and rocks. Push corres failed Successful dive, 5 niskins, fossil and rocks. Push corres failed Successful dive, and the successful dive and the successfu	success success
B B		006 EBA	MGA MGA001	294 21/10/201	3 17:45:00	9 13.4250	21	18.8930	9.2238												
1 1	JC094	007 EBA	ROV ROV224	294 21/10/201	3 22:46:00	9 11.7300	21	17.0500	9.1955	-21.2842	2140 295	22/10/2013			21		9.2060	-21.2983	1354	saw fossil corals at landing. Large collection. Traversed up seamount collecting fossils and samples. Hard to collect push cores.	success
1 1	IC094 IC094	008 EBA 009 EBA	MGA MGA002 PTN PTN001	295 22/10/201 296 23/10/201	3 21:18:00 3 04:48:00	9 16.6830 9 16.6833	21	38.2730 38.2726	9.2781 9.2781	-21.6379	4590 295 4567 296	22/10/2013	23:49:00 10:04:00	9 16.6830 9 16.7045	21	38.2720 38.7911	9.2781 9.2784	-21.6379 -21.6465	4590 4568	3 cores succeded. 3 did not fire. 2 were empty. Niskin success 7.5m of mult orewored. Formas at base	success
	IC094	010 EBA	MGA MGA003	296 23/10/201	3 14:52:00	9 10.1611	21	16.2655	9.1694	-21.2711	2755 296	23/10/2013			21		9.1691	-21.2707	2748	All fired, but no sediment collected. Niskin fired-Lucy	failed
B B	1C094	011 EBA 012 EBA		296 23/10/201 297 24/10/201	3 19:29:00	9 13.3701	21			-21.2654					21			-21.2680	2075	Deep part of dive sandy plain with scarce life. Moving up slope began to see rocks then some scattered corals. Around 2200 barnale shells. We were able to collect live solitary corals at several depths. 6 push cores recovered. Came back with 7 broken tubes, on sediment recovered. Nisk in fired but no one sampled.	success failed
No. No. No. No. No.	10094	013 EBA	ROV ROV226	298 25/10/201	3 23:23:00	9 13.9720	21	18.9630	9.2329	-21.3161	510 299	26/10/2013			21		9.2313	-21.3227	655	Reson multibeam survey of previous dive sites	success
10 10 10 10 10	10094						21								21						succase
No No No No No <td>10094</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>21</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>21</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>success</td>	10094						21								21						success
							21								21						failed
M M	IC094	018 TRS_2	GVY GVY001	301 28/10/201	3 16:13:00	7 26.1020	21	47.7780	7.4350	-21.7963	3426 301	28/10/2013	19:19:00	7 26.0914	21	47.7800	7.4349	-21.7963	3425	max tension= 4.94 ton at pull out. Core succesful. Completely full up to the top valve in the barrel. 5.34m of sandy mud	success
9 9 1	IC094 IC094	019 TRS_2 020 EBB	MGA MGA007 CTD CTD003	301 28/10/201 303 30/10/201	3 20:08:00 3 06:42:00	7 26.0920 5 47.5000	21	47.7780 40.9900	7.4349	-21.7963	3419 301 4054 303	30/10/2013	23:33:00 10:11:00	7 26.0920 5 47.5000	21	47.7780	7.4349	-21.7963 -26.6832	3423 4055	4 sucessful megacores about 25cm - 40cm long composed of muddy sand and sandy mud successful cm 24 raiksins to minit orer. altimeter working	success success
III III III III III III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	10004													5 26 6692	26						
No. No. No. No. No.	10074						20								40						Julless
M M	IC094 IC094	022 EBB 023 EBB	KOV ROV229 GVY GVY002	304 31/10/201 305 01/11/201	3 20:40:00 3 15:52:00	5 37.4700 5 37.6900	26		5.6245 5.6282	-26.9667 -26.9057	1300 305 552 305	01/11/2013	14:18:00 16:32:00	5 37 6900	26 26				569 555	mix of sediments and rocks, much more sediment than Carter overall. Several large purple solitary corals collected, as week as fossils and other live collections Core came back empty. Limited out out	success failed
	10094	024 EBB	GVY GVY003	305 01/11/201	3 17:23:00	5 37.7050	26	54.3540	5.6284	-26.9059	552 305	01/11/2013	18:15:00	5 37.6840	26	54.3270	5.6281	-26.9055	555	Second try of GPV002. Core came back empty.	
Image Image <th< td=""><td>10094</td><td></td><td></td><td></td><td></td><td></td><td>26</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>26</td><td></td><td></td><td></td><td></td><td></td><td>railed</td></th<>	10094						26								26						railed
No. No. <td>10094</td> <td></td> <td>ROV ROV230 MGA MGA008</td> <td>305 01/11/201 307 03/11/201</td> <td>3 23:55:00</td> <td>5 35.3600 5 42 3490</td> <td>26</td> <td></td> <td>5.5893 5.7058</td> <td></td> <td>2830 306 4405 305</td> <td>02/11/2013</td> <td>21:53:00</td> <td>5 37.2456 5 42 3380</td> <td>26 27</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>success success</td>	10094		ROV ROV230 MGA MGA008	305 01/11/201 307 03/11/201	3 23:55:00	5 35.3600 5 42 3490	26		5.5893 5.7058		2830 306 4405 305	02/11/2013	21:53:00	5 37.2456 5 42 3380	26 27						success success
10.1 10.1 10.1 10.1 10									0												6.0.4
No. No. No. No. No.	IC094 IC094	029 TRS 3	MGA MGA009	308 04/11/201	3 22:16:00	6 48,7120	27	54,7250			4055 309	05/11/2013		6 48.7120	27 32			-32.9121	4052	4 successful meas cores	failed success
Mo Mo Mo Mo Mo <td>10094</td> <td>030 TRS_3</td> <td>GVY GVY005</td> <td>309 05/11/201</td> <td>3 02:45:00</td> <td>6 48.7260</td> <td>32</td> <td>54.7630</td> <td>6.8121</td> <td>-32.9127</td> <td>4055 309</td> <td>05/11/2013</td> <td>06:27:00</td> <td></td> <td></td> <td>54.7570</td> <td>6.8120</td> <td>-32.9126</td> <td>4054</td> <td>Completey full gravity core- mud coming out of the top. Max tension=5.6 tons</td> <td>success</td>	10094	030 TRS_3	GVY GVY005	309 05/11/201	3 02:45:00	6 48.7260	32	54.7630	6.8121	-32.9127	4055 309	05/11/2013	06:27:00			54.7570	6.8120	-32.9126	4054	Completey full gravity core- mud coming out of the top. Max tension=5.6 tons	success
N N	10094	032 VEM	CTD CTD004	312 08/11/201	3 07:17:00 1	10 33.2870	44														success
N N																				Long, slow climb up ridge. Degraded coral rubble. Steep rocky swept areas. Tow pieces of intense current where ROV could not overcome using thrusters. Areas of manganese nodules and solitary corals. Stop dive due to increasing	
M M	10094	033 VEM	ROV ROV231	312 08/11/201	3 16:06:00 1	10 44.5805	44				1497 313	09/11/2013			44						success
M M	1C094	034 VEM 035 VEM	GVY GVY007	313 09/11/201 313 09/11/201	3 22:38:00 1	10 33.2870 10 33.2850	44	30.8960	10.5548	-44.5149	4956 314	10/11/2013	03:37:00	10 33.2880	44	30.9110	10.5548	-44.5152	4953	9 m barrel, successful, total recovery ca.6m. Max Tension=6.75Tons	success
0 0	10094	036 VEM	MGA MGA011	314 10/11/201	3 11:35:00 1	10 51.7800	44	29.4600	10.8630	-44.4910	5160 314	10/11/2013	16:43:00		44	29.4400	10.8632	-44.4907	5162	4 tubes, all empty, did not fire. Niskin successfully fired and sampled. Max Tension=4.855, 5.064, 5.12t A bubes, all empty, did not fire. Niskin successfully fired and sampled. Max Tension=5.07tone=	failed
N N	IC094	038 VEM	GVY GVY008	314 10/11/201	3 22:59:00 1	10 517850	44	29.4550	10.8631	-44.4909	5161 315	11/11/2013	03:52:00	10 51.7800	44	29,4760	10.8630	-44.4913	5161	9 m barrel, successful, total recovery: 7.07m. Max Tension= 6.9Tons	success
N N	1C094 1C094	039 VEM 040 VEM	CTD CTD005 DRG DRG001	315 11/11/201 315 11/11/201	3 05:00:00 1 3 15:53:00 1	10 51.7780 10 42.1540	44	29.4760 25.6800	10.8630	-44.4913 -44.4280	5161 315 873 315	11/11/2013 11/11/2013	09:02:00	10 51.7790 10 42.2300	44	29.4860 25.6020	10.8630	-44.4914 -44.4267	5161 809	CTD successful. 24 bottles fired. No altimeter. Few small corals: stydaterids and solitary, pebbles, brittle stars. Samples in net and in bucket	success success
M M	JC094	041 VEM	ROV ROV232	315 11/11/201	3 21:45:00	10 43.7230	44	25.5200	10.7287	-44.4253	1326 316	12/11/2013	14:44:00	10 42.4039	44	24.7959	10.7067	-44.4133	567	Spectacular cliff at start with branching coral debris at base of rocks. Madrepora > ROV size. Up over steep terrain onto flatter slope up to the top of vema. Sand, fine coral rubble, and squat lobsters.	success
No. No. No. No. No.																				Deep start with bamboo corals and spectacular sponges on roccky outcrops. Rocky ridges with small pockets of sediment. Large distances with no life. One fossil solitary coral - 2600m, fossil coralium and enallopsammia at end of	
000 010 100 010 010	JC094	042 VEM	ROV ROV233	316 12/11/201	3 22:47:00 1	10 46.8500	44	35.9300	10.7808	-44.5988	2950 317	13/11/2013	18:42:00	10 45.1500	44	36.2200	10.7525	-44.6037	1554		success
000 010 100 010 010																					
Option Option<	1C094	043 VEM	ROV ROV234	318 14/11/201	3 01:20:00	10 43.6980	44	25.4830	10.7283	-44.4247	1250 317	14/11/2013	18:20:00	10 43.5520	44	25.6630	10.7259	-44.4277	1430	ROV microbathymetry dive with reson 7125 faced in a forward-looking configuartion to map the steep topography around the 1300-1400m site where a large coral was found on Dive232. Bathymetry-video data collected on 3 walls to be integrated for full 3D habitati manoing.	success
Quad Quad Quad Quad Qu	JC094	044 VAY		320 16/11/201	3 09:33:00 1		48	15.5810		-48.2597					48	15.5800	15.2708	-48.2597	4168	CTD. 22 bottles were successful. Bottle 6 and 7 did not close. Sound velocity profiler did not work.	success
Quad Quad Quad Quad Qu																					
	10094	045 VAY	ROV ROV235	320 16/11/201	3 21-22-00 1	14 51 7280	48	14 5280	14 8621	-48 2421	1473 321	17/11/2013	18:46:00	14 52.0819	48	12 5680	14 8680	-48 2095	1080		success
	10071	015 111	NOT NOTESS	520 10/11/201	5 21.22.00	11 31.7200	10	11.5200	11.0021	10.2121	11/5 52		10.10.00	11 52.0017	10	12.3000	11.0000	10.2073	1000		Juccess
	JC094	046 VAY	MGA MGA013	322 18/11/201	3 04:29:00	15 10.4430	48	15.0080	15.1741	-48.2501	4125 322	18/11/2013	09:50:00	15 10.4300	48	15.0100	15.1738	-48.2502	4109	Mega core recovered with 4 samples, tow the water leaked out and only 1-2 inches of disturbed sediment. Two had 5-6 inches of mud with water overlaying, Extensive scrolling problems with winch.	success
Open Open <th< td=""><td>JC094</td><td>047 VAY</td><td>GVY GVY009</td><td>322 18/11/201</td><td>3 10:37:00 1</td><td>15 10.4334</td><td>48</td><td>15.0113</td><td>15.1739</td><td>-48.2502</td><td>4128 322</td><td>18/11/2013</td><td>15:23:00</td><td>15 10.4520</td><td>48</td><td>15.0180</td><td>15.1742</td><td>-48.2503</td><td>4128</td><td>Max Tension= 4.8T. Payout extra beyond core depth to try and resolve scrolling issues. Core up empty, although mud on outside, about 12 inches of barrel. Core catcher fingers clean? Fall over, or not enough soft sediment.</td><td>failed</td></th<>	JC094	047 VAY	GVY GVY009	322 18/11/201	3 10:37:00 1	15 10.4334	48	15.0113	15.1739	-48.2502	4128 322	18/11/2013	15:23:00	15 10.4520	48	15.0180	15.1742	-48.2503	4128	Max Tension= 4.8T. Payout extra beyond core depth to try and resolve scrolling issues. Core up empty, although mud on outside, about 12 inches of barrel. Core catcher fingers clean? Fall over, or not enough soft sediment.	failed
Open Open <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																					
N N	10004	0.40	nou nouraac	222 10/11/201	101200		10	0.0017	140013	40.1500	0.7 22	20 (11 (2012	12.02.00	53 7300	40	7 (240	14.0700	40.1271	172		
Opp Vir Vir Vir Vir Vir	10094	046 VAT	RUV RUV236				40							14 52.7280	40	7.0240				Start sediment plain, then move up basalt steep slopes. Sponges and sediment in crevices. Few corals. Much the same up to the top. Strong current on top of ridge, so need to lift up and move east. Strong currents prevent sampling at	success
	IC094	049 VAY					48								48						success
Oppose Oppose Vivi Vivi< Vivi< Vivi Vivi Vivii Vivi Vivii Viviii Viviii Viviii	IC094	050 VAY	MGA MGA014	325 21/11/201	3 22:12:00 1	14 45.9930	48	15.0400	14.7666	-48.2507	3733 326	22/11/2013	02:15:00	14 45.9940	48	15.0380	14.7666	-48.2506			failed
App App <td>10094</td> <td>051 1/47</td> <td>CVV C1/V010</td> <td>326 22/11/201</td> <td>3 02.40.00</td> <td>14 45 0050</td> <td>40</td> <td>15 0120</td> <td>14 744</td> <td>-48 2502</td> <td>3777</td> <td>22/11/2012</td> <td>06-11-00</td> <td>14 46.0020</td> <td>40</td> <td>15.0700</td> <td>14.7667</td> <td>48 2512</td> <td>2714</td> <td>Pall out at 4.8 toos. Failed: core catcher contained bad sediment on external surface. Clayey silt, Some Holocene forans could be seen on microscope. Core probably went in around 30-40 cm, bounced, and fell on the side. Rate of paneterizion user as 1 stron from the neutron and with a prior for another strong to an of the control of the strong of the control of the strong of the control of the strong of the strong of the control of the control of the strong of the control of the contro</td> <td>failed</td>	10094	051 1/47	CVV C1/V010	326 22/11/201	3 02.40.00	14 45 0050	40	15 0120	14 744	-48 2502	3777	22/11/2012	06-11-00	14 46.0020	40	15.0700	14.7667	48 2512	2714	Pall out at 4.8 toos. Failed: core catcher contained bad sediment on external surface. Clayey silt, Some Holocene forans could be seen on microscope. Core probably went in around 30-40 cm, bounced, and fell on the side. Rate of paneterizion user as 1 stron from the neutron and with a prior for another strong to an of the control of the strong of the control of the strong of the control of the strong of the strong of the control of the control of the strong of the control of the contro	failed
App App <td>IC094</td> <td>051 VAY</td> <td>GVY GVY010</td> <td>326 22/11/201</td> <td></td> <td></td> <td>48</td> <td></td> <td></td> <td></td> <td>3722 326</td> <td>22/11/2013</td> <td></td> <td></td> <td>48</td> <td></td> <td></td> <td></td> <td>3714</td> <td>Age in the second states. A second state is a second state of a second state was a first of the second states and second</td> <td>failed</td>	IC094	051 VAY	GVY GVY010	326 22/11/201			48				3722 326	22/11/2013			48				3714	Age in the second states. A second state is a second state of a second state was a first of the second states and second	failed
C004 051 VAV 800 80001 226 22/1/201 3.3900 14 55.500 722 226 22/1/201 3.2700 14 55.970 15.9700 14.5557 15.9700 14 55.970 15.9700 14.5557 15.9700 14 55.970 14.5555 15.9700 14 55.970 14.970																					
Ave: Ave	10004	053 1444	nov novers	226 22 42 22	12 20 00			15 0515		10.3505		22 (11 (2012	17.54.00			15 0355	11700	10 350-		Pull-out: 392 tons. Approv 16cm of sediment. Subsampled with piston core liners for storage and with megacore tubes for sampling 1 cm slices (first 2 cores) and 2cm slices (last core). Two subcores for plastics study. Independent 5-	
COPU OPS V/V ROV ROV <td>JC094</td> <td>053 VAY</td> <td>BOX BOX001</td> <td>326 22/11/201</td> <td>3 13:39:00 1</td> <td>14 45.9850</td> <td>48</td> <td>15.0510</td> <td>14.7664</td> <td>-48.2509</td> <td>3722 326</td> <td>22/11/2013</td> <td>17:54:00</td> <td>14 45.9920</td> <td>48</td> <td>15.0390</td> <td>14.7665</td> <td>-48.2507</td> <td>3713</td> <td>numbers for each tube and the whole box core. Bulk samples stored in bags.</td> <td>success</td>	JC094	053 VAY	BOX BOX001	326 22/11/201	3 13:39:00 1	14 45.9850	48	15.0510	14.7664	-48.2509	3722 326	22/11/2013	17:54:00	14 45.9920	48	15.0390	14.7665	-48.2507	3713	numbers for each tube and the whole box core. Bulk samples stored in bags.	success
COPU OPS V/V ROV ROV <td>10094</td> <td>054 VAY</td> <td>GVV GVV012</td> <td>326 22/11/201</td> <td>3 19-30-00</td> <td>14 51 2740</td> <td>10</td> <td>15.8545</td> <td>14.8574</td> <td>.48 264 2</td> <td>2235 224</td> <td>22/11/2012</td> <td>21-44-00</td> <td>14 51 0750</td> <td>49</td> <td>15 8540</td> <td>14.8513</td> <td>48 264 2</td> <td>22/1</td> <td>Pull-nut-3 tions About 31rm of sediment Stratigraphic order possibly not preserved. Sediment was spread in the liner when laid horizontally and shaken during harrel extraction from bomb</td> <td>success</td>	10094	054 VAY	GVV GVV012	326 22/11/201	3 19-30-00	14 51 2740	10	15.8545	14.8574	.48 264 2	2235 224	22/11/2012	21-44-00	14 51 0750	49	15 8540	14.8513	48 264 2	22/1	Pull-nut-3 tions About 31rm of sediment Stratigraphic order possibly not preserved. Sediment was spread in the liner when laid horizontally and shaken during harrel extraction from bomb	success
Optic Optic ROV	10094	055 VAY	ROV ROV238				48								48				632	RUV microbathymetry dive with Reson 7125 in normal downward facing configuration	success
Optic Optic ROV																				Started out on small knoll North of seamount. Extensive fields of fossil corals. Carried on up ridge, but fossils less abundant with increasing height. Towards top smooth rock with crinoids. Did not outer each summit. USBL crash due	
Apple Apple <th< td=""><td>10094</td><td>056 GRM</td><td></td><td></td><td></td><td></td><td>51</td><td></td><td></td><td>-51.0864</td><td>1564 329</td><td></td><td></td><td></td><td>51</td><td></td><td>15.3927</td><td>-51.0908</td><td>900</td><td>to over heating. Testing 744 then us to 207. Care summand to however an earflow and own on empty.</td><td>success</td></th<>	10094	056 GRM					51			-51.0864	1564 329				51		15.3927	-51.0908	900	to over heating. Testing 744 then us to 207. Care summand to however an earflow and own on empty.	success
050 054 <td>10034</td> <td>057 GKM</td> <td>GVYU13</td> <td>329 25/11/201</td> <td>3 10:00:00 1</td> <td>1.3 21.5649</td> <td>51</td> <td>4.5930</td> <td>10.3594</td> <td>-51.0766</td> <td>1043 329</td> <td>25/11/2013</td> <td>19:34:00</td> <td>15 21.5630</td> <td>51</td> <td>4.5930</td> <td>15.3594</td> <td>-51.0766</td> <td>1043</td> <td>Um Dai rec. max renson's ort unei up @ 3.01. Lore appearen to bounce on seation rane up empty</td> <td>aneo</td>	10034	057 GKM	GVYU13	329 25/11/201	3 10:00:00 1	1.3 21.5649	51	4.5930	10.3594	-51.0766	1043 329	25/11/2013	19:34:00	15 21.5630	51	4.5930	15.3594	-51.0766	1043	Um Dai rec. max renson's ort unei up @ 3.01. Lore appearen to bounce on seation rane up empty	aneo
050 054 <td>1C094</td> <td>058 GRM</td> <td>ROV ROV240</td> <td>329 25/11/201</td> <td>3 22:36:00</td> <td>15 26.8960</td> <td>51</td> <td>5,4890</td> <td>15.4483</td> <td>-51.0915</td> <td>2157 330</td> <td>26/11/2013</td> <td>16:03:00</td> <td>15 25.2269</td> <td>51</td> <td>5.2352</td> <td>15.4204</td> <td>-51.0873</td> <td>1430</td> <td>Deep parts were rocks/boulders and sediment. Lots of USBL issures, resolved by changing settings in software. At0800 GMT traverse to start of Dive 239 and scoop up nets of freed overals</td> <td>success</td>	1C094	058 GRM	ROV ROV240	329 25/11/201	3 22:36:00	15 26.8960	51	5,4890	15.4483	-51.0915	2157 330	26/11/2013	16:03:00	15 25.2269	51	5.2352	15.4204	-51.0873	1430	Deep parts were rocks/boulders and sediment. Lots of USBL issures, resolved by changing settings in software. At0800 GMT traverse to start of Dive 239 and scoop up nets of freed overals	success
CODE GRA NGA NGA <td>10094</td> <td>059 GRM</td> <td></td> <td></td> <td>3 19:43:00 1</td> <td></td> <td>50</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>15 27.8590</td> <td>50</td> <td></td> <td>15.4643</td> <td>-50.9915</td> <td>2714</td> <td>6m barrel. Max Tension- 4.27 ons. 3.88m of sediment</td> <td>success</td>	10094	059 GRM			3 19:43:00 1		50							15 27.8590	50		15.4643	-50.9915	2714	6m barrel. Max Tension- 4.27 ons. 3.88m of sediment	success
CODE GRA NGA NGA <td></td>																					
	10094	060 GRM	MGA MGA015	330 26/11/201	3 22:38:00 1	15 27.8600	50	59.4880	15.4643	-50.9915	2718 331	27/11/2013	01:22:00	15 27.8600	50	59.4870	15.4643	-50.9915	2714	4 tubes set up. Only one tube with some sediment (ca.6-7cm). Partially leaking on one side and sediment being mixed. Rest of core seems intact, but core top will be mixed. Niskin not good leaking.	success
0094 062 GRM MGA MGA017 331 27/11/2013 05:30:00 15 30:5550 50 54:4018 15:5089 -50:9067 4128 331 27/11/2013 09:46:90 15 30:5550 50 54:4010 15 30:5550 50 54:4010 15 30:5550 50 54:4010 15:5009 -50:9067 4128 Max Tension=4.20 Tons. 3 tubes contained sediment and water about 15:om in each. All orores sliced, no pore fluid analyses. One empty:	10094	U61 GRM	MGA MGA016	331 27/11/201	o 01:48:00 1	13 27.8605	50	59.4884	15.4643	-50.9915	2/18 331	2//11/2013	04:36:00	15 27.8590	50	59.4860	15.4643	-50.9914			success
	IC094	062 GRM	MGA MGA017	331 27/11/201	3 05:30:00 1	15 30.5350	50	54.4018	15.5089	-50.9067	4128 331	27/11/2013	09:46:00	15 30.5350	50	54.4010	15.5089	-50.9067	4128	Max Tension= 4.20 Tons. 3 tubes contained sediment and water about 15cm in each. All cores sliced, no pore fluid analyses. One empty.	success

			ered as the			yellow en	ntries tha	at have been co	orrected and her	nce differ from the Sau	nple Logs		green entries=	= lat/longs no	t accurate due to	USBL drop ou		
ruise	Station #	Location	Gear	Gear #	Event Code	Event #	Jday	Date	Time GMT	Lat° N Lat Min N	Long ° W	Long Min W	Lat (DD)	Long (DD)	Water depth (m)	Wire Out (Cores)	Comments	Recipient
4 4	001 0		CTD	CTD001 CTD001	NSK NSK	001	. 28			25 5.0160 25 5.0160		1 24.83500 1 24.83500	25.08360 25.08360	-21.4139			100m 100m	water water
	001 0		CTD	CTD001 CTD001	NSK	002				25 5.0160		1 24.83500	25.08360	-21.4139			100m	water
	001 0	CAN	CTD	CTD001	NSK	004				25 5.0160			25.08360				100m	water
ł	001 0		CTD	CTD001	NSK	005				25 5.0160			25.08360				100m	water
4	001 0		CTD CTD	CTD001 CTD001	NSK NSK	006				25 5.0160 25 5.0160	2		25.08360 25.08360	-21.4139			100m 100m	water
94 94	001 0		CTD	CTD001 CTD001	NSK	007	28			25 5.0160 25 5.0160			25.08360				100m	water water
94	001 0		CTD	CTD001	NSK	009				25 5.0160	2		25.08360	-21.4139		-	Avom 40m	water
94	001 0		CTD	CTD001	NSK	010				25 5.0160			25.08360	-21.4139			40m	water
94	001 0		CTD	CTD001	NSK	011				25 5.0160			25.08360	-21.4139			40m	water
94 94	001 0		CTD	CTD001 CTD001	NSK	012				25 5.0160			25.08360	-21.4139			40m 40m	water
94	001 0	CAN	CTD	CTD001	NSK	013				25 5.0160 25 5.0160			25.08360	-21.4139			40m	water
94	001 0		CTD	CTD001	NSK	015			013 09:02:57	25 5.0160				-21.4139			40m	water
94	001 0		CTD	CTD001	NSK	016	28			25 5.0160			25.08360	-21.4139			40m	water
94 94	001 0		CTD	CTD001 CTD001	NSK NSK	017				25 5.0160 25 5.0160	2		25.08360 25.08360	-21.4139			0m 0m	water water
94	001 0		CTD	CTD001 CTD001		018				25 5.0160		1 24.83500					0m 0m	water
94	001 0	CAN	CTD	CTD001	NSK	020	28	38 15/10/20		25 5.0160) 2		25.08360	-21.4139	2 455	2	0m	water
4	001 0	CAN	CTD	CTD001	NSK	021	. 28	38 15/10/20	013 09:02:57	25 5.0160) 2	1 24.83500	25.08360	-21.4139	2 455		Om	water
4	001 0		CTD	CTD001	NSK	022				25 5.0160 25 5.0160		1 24.83500 1 24.83500	25.08360 25.08360	-21.4139			0m 0m	water
94 94	001 0	CAN	CTD CTD	CTD001 CTD001	NSK NSK	023	28			25 5.0160 25 5.0160			25.08360	-21.4139			0m 0m	water water
94	001 0		CTD	CTD001 CTD001	CTDprofile	e 024				25 5.0160		21.00000	25.08360	-21.4139			practiceCTD	water
94	002 H	EBA	CTD	CTD002	NSK	001	. 29	92 19/10/20	013 06:23:00	9 17.0690) 2	37.95400	9.28448	-21.6325	7 452	6	4512m	water
94	002 H	EBA	CTD	CTD002	NSK	002				9 17.0690		1 37.95400	9.28448	-21.6325			4512m	water
94	002 H		CTD	CTD002	NSK	003	-			9 17.0690		37.95400	9.28448				4297m	water
94 94	002 H 002 H		CTD	CTD002 CTD002	NSK NSK	004	29			9 17.0690 9 17.0690		1 37.95400 1 37.95400	9.28448 9.28448				4297m 3598m	water water
94	002 1		CTD	CTD002	NSK	005	29			9 17.0690) 2		9.28448	-21.6325			3550m 3598m	water
94	002 H	EBA	CTD	CTD002	NSK	007				9 17.0680) 2	1 37.95300	9.28447	-21.6325			2800m	water
94	002 I		CTD	CTD002	NSK	008	29			9 17.0680			9.28447	-21.6325			2800m	water
94 94	002 H 002 H		CTD CTD	CTD002 CTD002	NSK NSK	009				9 17.0680 9 17.0680			9.28447 9.28447				2002m 2002m	water
94 94	002 1		CTD	CTD002 CTD002	NSK	010				9 17.0680	2		9.28447	-21.6325			1503m	water water
94	002 1	EBA	CTD	CTD002	NSK	012				9 17.0670		0	9.28445	-21.6326			1503m 1503m	water
94	002 H		CTD	CTD002	NSK	013				9 17.0680		0	9.28447				1004m	water
94	002 H		CTD	CTD002		014				9 17.0680			9.28447				1004m	water
94 94	002 H 002 H		CTD CTD	CTD002 CTD002	NSK NSK	015				9 17.0670 9 17.0670	2		9.28445 9.28445	-21.6325			705m 705m	water water
94	002 I		CTD	CTD002	NSK	010				9 17.0680			9.28447				405m	water
94	002 H	EBA	CTD	CTD002	NSK	018	29	92 19/10/20		9 17.0680) 2	1 37.95300	9.28447	-21.6325	5 452	6	405m	water
94	002 H		CTD	CTD002	NSK	019				9 17.0690			9.28448	-21.6325			55m	water
94 94	002 1		CTD	CTD002 CTD002	NSK NSK	020				9 17.0690 9 17.0680	2		9.28448 9.28447	-21.6325			55m 36m	water water
94	002 H 002 H	EBA	CTD	CTD002 CTD002	NSK	021				9 17.0680			9.28447	-21.6325			Som Som	water
94	002 H		CTD	CTD002	NSK	023				9 17.0680) 2		9.28447				10.8m	water
94	002 H	EBA	CTD	CTD002	NSK	024	-			9 17.0680	-		9.28447	-21.6325			10.8m	water
94	002 I		CTD	CTD002	CTDprofil	e 025				9 17.0680			9.28447	-21.6325				water
94 94	004 H 004 H		ROV	ROV222 ROV222	NSK NSK	000				9 12.9600 9 12.9600			9.21600 9.21600	-21.3159			First Niskin on ROV Second Niskin	water water
94 94	004 I 004 I		ROV	ROV222 ROV222	SLP	001	29			9 12.9718			9.21600	-21.3139			Seapen, solitary coral, fossil framework, slurped - Aft BIOBOX	bio/fossil
94	004 I	EBA	ROV	ROV222	SCP	002	29	3 20/10/20	013 05:24:52	9 12.9702) 2	1 18.96380	9.21617	-21.3160	6 108	0	fossil framework, Scooped, AFT BIOBOX	fossil
94	004 I	EBA	ROV	ROV222	SCP	002	29	93 20/10/20	013 06:14:58	9 12.9768) 2		9.21628	-21.3162	7 1079		Desmo on fossil coral framework - AFT BIOBOX	bio/fossil
94	004 H		ROV	ROV222	SCP SCP	002	29			9 12.9768	2	1 18.97600 1 18.96700	9.21628	-21.3162			Sponge, stalked crinoid - Aft BIOBOX	bio
94 94	004 H 004 H		ROV ROV	ROV222 ROV222	SCP SCP	002	· …	03 20/10/20 03 20/10/20		9 12.9670 9 12.9733			9.21612 9.21622	-21.3161			Large scoop of assorted coal debris - Aft BIOBOX Sponge attached to coral debris - scoop - AFT BIOBOX	bio/fossil bio/fossil
4	004 I 004 I		ROV	ROV222 ROV222		003		03 20/10/20		9 12.9733			9.21622	-21.3162			Net Trawl - ROCK BOX3	fossil
94	004 I	EBA	ROV	ROV222	NET	004	29	03 20/10/20	013 07:19:00	9 12.9699) 2	1 18.98340	9.21617	-21.3163	9 107	8	Net Trawl - ROCK BOX3	fossil
94	004 I		ROV	ROV222		004		93 20/10/20		9 12.9699							Net Trawl - ROCK BOX3	fossil
4	004 H 004 H		ROV	ROV222 ROV222	NET SLP	004	29	03 20/10/20 03 20/10/20		9 12.9732 9 12.9725	2		9.21622 9.21621	-21.3163			Net Trawl - ROCK BOX3 Large Desmophyllum - Slurped - AFT BIOBOX	fossil
4	004 I 004 I		ROV	ROV222 ROV222	SCP	005				9 12.9760			9.21621 9.21627	-21.3162			Coral Framework - AFT BIOBOX	fossil
4	004 I	EBA	ROV	ROV222		006	29	93 20/10/20	013 08:11:34	9 12.9760) 2	1 18.98070	9.21627	-21.3163	5 107	6	Coral Framework - AFT BIOBOX	fossil
4	004 H	EBA	ROV	ROV222	SCP	006	29			9 12.9760) 2		9.21627	-21.3163			Coral fragments - AFT BIOBOX	fossil
4	004 H		ROV	ROV222		006		20/10/20		9 12.9760			9.21627				Coral fragments - AFT BIOBOX	fossil
4	004 H 004 H		ROV	ROV222 ROV222	SCP SCP	006	29			9 12.9760 9 12.9760	2		9.21627 9.21627	-21.3163			Coral fragments and crinoid - AFT BIOBOX Desmophyllum - AFT BIOBOX	bio/fossil fossil
4	004 I 004 I		ROV	ROV222 ROV222	PSH	008				9 12.9838			9.21627 9.21640	-21.3163			two attempts at pushcoring failed	105511
94	004 I		ROV		SLP	009				9 12.9930			9.21655				2 live Desmophyllum, crinoid - YELLOW CHAMBER	bio
4	004 I			ROV222		011		93 20/10/20	013 10:17:00	9 13.0070) 2	1 18.97670	9.21678	-21.3162			basalt rock with lots, desmophyllum, caryophylla, crinoid-YELLOW CHAMBER	bio/fossil
94	004 H		ROV	ROV222	SCP	012				9 13.0020			9.21670	-21.3162			coral (fan-like, live), worms? - AFT BIOBOX	bio
94	004 I	DA	ROV	ROV222	SCP	013	29	20/10/20	013 10:44:13	9 13.0060) 2	1 18.97040	9.21677	-21.3161	7 104	0	to WP7	
94	004 I	RA	ROV	ROV222	SLP	014	29	20/10/20	013 11:17:50	9 13.0706	, ,	1 18.96420	9.21784	-21.3160	7 99	4	desmophyllum live (x2), fossil solitary coral, maybe fossil dianthus (solitary for sure), crinoid, all into red chamber	bio/fossil
4	004 1		ROV	ROV222 ROV222	ARM	014				9 13.0706			9.21784	-21.3160			live solitary coral and dead coral (FAILED), starboard biobox	010/10551
4	004 1	EBA	ROV	R0V222		016		03 20/10/20		9 13.0650			9.21775	-21.3160			two desmophilum and branching coral into rock box 4	bio

	Core and CTD Events are er	intereu as ti	ie on bo	,.		entries t				of USBL and Depth from ce differ from the Sam			green entries:	= lat/longs not a	occurate due to	JSBL dron ou		
Cruise	Station # Location	Gear	Gear	# Event Code				Date	Time GMT	Lat° N Lat Min N	Long° W	Long Min W	Lat (DD)	Long (DD)	Water depth (m)	Wire Out (Cores)	Comments	Recipient
094	004 EBA	ROV	ROV22		01			20/10/2013		9 13.07590	21		9.21793	-21.31598	993		brown flwdle? W three large sponges and brittlestars, rock box 1	bio/fossil
)94)94	004 EBA	ROV	ROV22 ROV22		01			20/10/2013	13:10:30 13:27:32	9 13.07700 9 13.07040	21	18.95850 18.95310	9.21795 9.21784	-21.31598 -21.31589	991.8 990		bamboo coral and stylasterid in rock box 1	bio bio/fossil
194 194	004 EBA 004 EBA	ROV	ROV22 ROV22		02			20/10/2013 20/10/2013	13:34:24	9 13.07040	21	18.96000	9.21783	-21.31589	990		solitary live coral and fragments of fossil, rock box 3 live solitarys and fossil fragments two crinoids on framework in rock box 3	bio/fossil
)94	004 EBA	ROV	ROV22		02			20/10/2013	13:48:51	9 13.07470	21	18.96050	9.21791	-21.31601	989.8		scoop failed picked up with arm crinoid and octocorals all in aft bio	bio
094	004 EBA	ROV	ROV22	2 SCP	02	25	293 20	20/10/2013	14:59:00	9 13.23250	21	18.94630	9.22054	-21.31577	835		attempt to grab bamboo, live colonial and 1 anenome all in bio box 6 with partial deposition in 4 (colonial coral mostly in 4, bio in 6)	bio/fossil
094	004 EBA	ROV	ROV22		02			20/10/2013	15:18:59	9 13.26860	21	18.94400	9.22114	-21.31573	779.5		fossil coral rubble (mostly failed) into biobox 5 and incidentals into BB3	fossil
094 094	004 EBA 004 EBA	ROV	ROV22 ROV22		02			20/10/2013 20/10/2013	15:39:59 15:43:09	9 13.28060 9 13.27920	21	18.90080 18.96040	9.22134 9.22132	-21.31501 -21.31601	779.8		seastar with coral framework into grey box 1 fossil coral into green chamber	bio/fossil fossil
094	004 EBA	ROV	ROV22 ROV22		02			20/10/2013	15:46:10	9 13.27920	21	18.96440	9.22132	-21.31601	780		fossil coral into green chamber	fossil
094	004 EBA	ROV	ROV22	2 SLP	03	31 3	293 20	20/10/2013	15:48:46	9 13.28230	21	18.96320	9.22137	-21.31605	780		fossil coral into green chamber	fossil
094	004 EBA	ROV	ROV22		03			20/10/2013	16:06:10	9 13.27940	21	18.96220	9.22132	-21.31604	779		rock hoto rock box 5	?
094 094	004 EBA 004 EBA	ROV	ROV22 ROV22	2 NSK 2 SCP	03			20/10/2013 20/10/2013	16:13:07 16:26:29	9 13.28640 9 13.28470	21	18.95200 18.95420	9.22144 9.22141	-21.31587 -21.31590	766		niskin bottle 3, 4, 5 fossil coral desmo? Into grey box 3 and some into grey box 4	fossil
094	004 EBA	ROV	ROV22 ROV22		03			20/10/2013	17:13:20	9 13.28470	21	18.95420	9.22141 9.22342	-21.31390	641.7		black 2 push core first attempt failed several attempts failed but managed to get some sediments from several attempts	sediment
094	004 EBA	ROV	ROV22		03			20/10/2013	17:13:30	9 13.45200	21	18.88690	9.22420	-21.31478	647.8		2 pencil urchins	bio
094	004 EBA	ROV	ROV22		02			20/10/2013		9 13.07370	21	18.96010	9.21790	-21.31600	990			
094	005 EBA	ROV	ROV22		00			21/10/2013	00:40:00	9 13.37100	21		9.22285	-21.31390	671		scoop of fossil corals, aft bio	fossil
094 094	005 EBA 005 EBA	ROV	ROV22 ROV22		00			21/10/2013 21/10/2013	01:54:00	9 13.41000 9 13.41000	21	20170000	9.22350	-21.31500	639		slurp of living solitary caryophilia, yellow chamber sponges on rocks next to corals from event 2. vellow chamber	bio
094 094	005 EBA 005 EBA	ROV	ROV22 ROV22		00			21/10/2013 21/10/2013	01:57:00 02:10:00	9 13.41000 9 13.41000	21		9.22350	-21.31500	639		sponges on rocks next to corais from event 2, yellow chamber potential desmophyllum fossil, yellow chamber	fossil
094	005 EBA	ROV	ROV22		00			21/10/2013	02:17:00	9 13.41000	21		9.22350	-21.31500	638		niskin1	water
094	005 EBA	ROV	ROV22	3 NSK	00)6	294 2	21/10/2013	02:17:00	9 13.41000	21		9.22350		638		niskin 2	water
094	005 EBA	ROV	ROV22		00			21/10/2013	03:21:00	9 13.63000	21	19.00000	9.22717	-21.31667	621		caryophilia (live), red chamber	bio
094	005 EBA	ROV	ROV22	3 SLP	00	08	294 2	21/10/2013	03:27:00	9 13.63000	21	19.00000	9.22717	-21.31667	621		pencil urchins 2, grey box 3	bio
		n.c	n										a					
094 094	005 EBA 005 EBA	ROV	ROV22 ROV22		00			21/10/2013 21/10/2013	03:49:00	9 13.63000	21	19.00000	9.22717	-21.31667 -21.31989	621 420		dead coralx3 and live coral x1, white chamber, 1x dead coral could be in red chamber due to problem sampling pencil urchins -grey box 4	bio/fossil bio
094	005 EBA	ROV	ROV22 ROV22		01			21/10/2013	06:37:00	9 14.05211	21	19.19343	9.23423	-21.31989	420		sampling belefit dreinis-grey box 4	bio
094	005 EBA	ROV	ROV22		01			21/10/2013	07:39:00	9 14.19190	21		9.23653	-21.32184	338.7		sampling stylasterid, grey box 2	bio/fossil
)94	005 EBA	ROV	ROV22		01			21/10/2013	07:43:54	9 14.18920	21		9.23649	-21.32203	338.5		three squat lobsters, sediment and coral debris all into green chamber	bio/fossil
)94	005 EBA	ROV	ROV22		01			21/10/2013	07:55:22	9 14.18920	21	19.32180	9.23649	-21.32203	338.5		fossil and live debris into grey box 2 with some into 4	bio/fossil
094	005 EBA	ROV	ROV22		01			21/10/2013	08:22:50	9 14.20530	21	19.31160 19.31160	9.23676	-21.32186	334		bottle 3 fired bottle 4 fired (note of 4/5 switch)	water
094 094	005 EBA	ROV	ROV22 ROV22		02			21/10/2013	08:24:12	9 14.20530 9 14.20530	21		9.23676	-21.32186	334		holothurian sediment and two? Squat lobsters (1 for sure) into black canister	water
2094	005 EBA	ROV	ROV22 ROV22		02			21/10/2013	08:57:00	9 14.21110	21		9.23685		333.5		rock with 'things on it' grey box 3	bio
094	005 EBA	ROV	ROV22		02			21/10/2013	09:21:00	9 14.22350	21	19.32120	9.23706	-21.32202	328.8		solitary coral into black slurp	bio
094	005 EBA	ROV	ROV22		02			21/10/2013	09:40:00	9 14.25590	21		9.23760	-21.32204	320.8		purple desmophyllum, grey box 3	bio
2094	005 EBA	ROV	ROV22		02			21/10/2013	10:02:44	9 14.28420	21		9.23807	-21.32204	314.8		2 solitary polyps live joined together, desmophyllum one polyp broken grouping may have broken apart all into grey box 3	bio/fossil
2094 2094	005 EBA 005 EBA	ROV ROV	ROV22 ROV22		02			21/10/2013 21/10/2013	10:05:27 10:07:46	9 14.28440 9 14.28550	21	19.33340	9.23807 9.23809	-21.32222 -21.32217	314.8 314.8		desmophyllum live purple into grey box 4 live desmophyllum pole? Skeleton into black slurp	bio
094	005 EBA	ROV	ROV22 ROV22		03			21/10/2013	10:28:00	9 14.31820	21	19.34380	9.23864	-21.32240	297.9		sponge x2 white into rock box 6	bio
094	005 EBA	ROV	ROV22		03			21/10/2013	10:35:57	9 14.38120	21	19.34380	9.23969	-21.32240	298		stylasterids, round sponge 1 squat lobster into black slurp	bio
094	005 EBA	ROV	ROV22	3 SLP	03			21/10/2013	12:00:45	9 14.55560	21		9.24259	-21.32430	264		3x holothurians	bio
094	005 EBA	ROV	ROV22		03			21/10/2013	12:12:14	9 14.55600	21	19.46100	9.24260	-21.32435	264		solitary coral	bio
094	005 EBA	ROV	ROV22		03			21/10/2013	12:15:52	9 14.55600	21		9.24260	-21.32428	262		2x holothurians	bio famil and b
2094	005 EBA 005 EBA	ROV	ROV22 ROV22		03			21/10/2013 21/10/2013	12:38:00 12:49:00	9 14.58570 9 14.58570	21	19.47500 19.47500	9.24310 9.24310	-21.32458 -21.32458	265 265		fossil and live coral into port bio box (sed too) fossil and live coral ended in red sluro chamber	fossil and b fossil and b
094	005 EBA	ROV	ROV22		03			21/10/2013	12:58:00	9 14.58520	21		9.24310	-21.32454	265		anenome (cerianth) x11 into red slurp	bio
094	005 EBA	ROV	ROV22		04			21/10/2013	13:06:00	9 14.58800	21		9.24313	-21.32453	264		fossil coral and live coral into red slurp	fossil
2094	005 EBA	ROV	ROV22		04			21/10/2013	13:49:00	9 14.68990	21	19.55980	9.24483	-21.32600	265.7		collecting anthopos encc stufi (illegible) grey box 1	
094	005 EBA	ROV	ROV22		04			21/10/2013	14:23:00	9 14.74140	21	19.61450	9.24569	-21.32691	229.4		stylasterid, brittle stars x 10, 1 holothurian, yellow slurp but maybe not entering chamber maybe on carousel? (illegible)	
094 094	005 EBA 005 EBA	ROV	ROV22		04			21/10/2013	14:50:00 14:51:00	9 14.77110 9 14.77050	21	19.63490 19.63560	9.24619 9.24618	-21.32725 -21.32726	209.7 209.5		nks 5 solitary corals into rock box 4	water
094	005 EBA	ROV	ROV22 ROV22		04			21/10/2013 21/10/2013	14:51:00	9 14.77650	21		9.24618	-21.32720	209.3		solitary corals and brittle stars into rock box 1	fossil
094	005 EBA	ROV	ROV22		05			21/10/2013	15:21:00	9 14.77650	21	19.63780	9.24628	-21.32730	209		live solitary coral into rock box 1	bio
094	005 EBA	ROV	ROV22		05			21/10/2013	15:39:00	9 14.80000	21	19.68100	9.24667	-21.32802	212		push core red 3	sediment
094	005 EBA	ROV	ROV22	3 PSH	05			21/10/2013	15:40:00	9 14.80000	21		9.24667	-21.32802	212		push core red 2	sediment
094	005 EBA	ROV	ROV22		05			21/10/2013	15:42:00	9 14.80000	21		9.24667	-21.32802	212		push core red 1	sediment
094	005 EBA	ROV	ROV22 ROV22		05			21/10/2013	15:44:00	9 14.80000 9 14.82130	21	19.68100 19.70250	9.24667 9.24702	-21.32802	212		plastic bag? Into grey box 3 solitary coral into forward biobox	plastics
094	005 EBA 006 EBA	MGA	MGA00		05			21/10/2013 21/10/2013	15:59:00	9 13.42400	21	19.70250	9.24/02 9.22373	-21.32838	640	650	core failed	010
094	006 EBA	MGA	MGA00		00			21/10/2013	18:12:00	9 13.42400	21	18.89400	9.22373	-21.31490	640	650	core failed	
094	006 EBA	MGA	MGA00		00	05 3	294 23	21/10/2013	18:12:00	9 13.42400	21	18.89400	9.22373	-21.31490	640	650	core failed	
94	006 EBA	MGA	MGA00		00			21/10/2013	18:12:00	9 13.42400	21		9.22373	-21.31490	640	650	core failed	
094 094	006 EBA 006 EBA	MGA MGA	MGA00 MGA00		00			21/10/2013 21/10/2013	18:12:00 18:12:00	9 13.42400 9 13.42400	21	18.89400 18.89400	9.22373 9.22373	-21.31490 -21.31490	640	650	core failed core failed	
)94)94	006 EBA	MGA	MGA00		00			21/10/2013	18:12:00	9 13.42400	21	18.89400	9.22373	-21.31490	640		sampled by lucy depth unknown	
094	006 EBA	MGA	MGA00		00			21/10/2013	18:12:00	9 13.42400	21	18.89400	9.22373	-21.31490	640		core failed	
094	006 EBA	MGA	MGA00	1 MCH	00	02 3	294 2:	21/10/2013	18:12:00	9 13.42400	21	18.89400	9.22373	-21.31490	640	650	core failed	
094	007 EBA	ROV	ROV22		00			21/10/2013	23:09:00	9 11.73000	21		9.19550	-21.28367	2135		Fossil coral rubble, sea urchin, behind biobox	bio/fossil
094	007 EBA	ROV	ROV22		00			21/10/2013	23:49:00	9 11.75000	21	17.04000	9.19583	-21.28400	2134		Primnoid (but failed)	
094	007 EBA 007 EBA	ROV	ROV22 ROV22		00			21/10/2013 22/10/2013	23:56:00 00:08:00	9 11.75000 9 11.75000	21	17.03000	9.19583	-21.28383 -21.28400	2131 2125		triple yellow (but failed) pink soft coral, stick like - Grey box 4	bio
.094 :094	007 EBA	ROV	ROV22 ROV22		00			22/10/2013	00:08:00	9 11.75000	21	17.04000	9.19583	-21.28400	2123 2121		Niskin 1	water
094	007 EBA	ROV	ROV22		00			22/10/2013	00:25:00	9 11.76000	21		9.19600	-21.28400	2121		Niskin 2	water
094	007 EBA	ROV	ROV22	4 SCP	00			22/10/2013	00:29:00	9 11.76000	21	17.04000	9.19600	-21.28400	2121		Desmophyllum (living)	bio

	Core and CTD Events are e						tries that			of USBL and Depth fr nce differ from the Sar			green entries=	at/longs not a		SBL drop out	
ruise	Station # Location	n Gea	ır G	ear #	Event Code	Event #	Jday	Date	Time GM1	Lat° N Lat Min N	Long ° W	Long Min W	Lat (DD)	Long (DD)	Water depth (m)	Wire Out (Cores) Comments R	Recipient
14	007 EBA	ROV			RM	012	295					17.07000	9.19633	-21.28450	2091		bio/rock
ł	007 EBA 007 EBA	ROV		224 P	SH	014	295				21	17.08000	9.19667 9.19717	-21.28467 -21.28500	2082 2073		sediment
- -	007 EBA	ROV		224 A		016	295				21	17.10000	9.19717	-21.28500	2073	sponge-large/white b doule red stripe. Very sandy s	bio sediment
4	007 EBA	ROV			IET	018	295	5 22/10/20			21	17.33220	9.19885	-21.28887	1829		fossil
94	007 EBA	ROV		224 S		019	295	22/10/20	13 04:04:00	9 11.96570	21	17.34830	9.19943	-21.28914	1783	scoop of fossil corals fr	fossil
194	007 EBA	ROV		224 A		020	295				21	17.34790	9.19942	-21.28913	1783		fossil
94	007 EBA	ROV		224 A		022	295				21	17.37040	9.19986	-21.28951	1787		bio
94 94	007 EBA 007 EBA	ROV	ROV	224 S	CP	023	295				21	17.56880	9.20264	-21.29281 -21.29300	1544 1544	they have decided to change tool (nothing collected) sponge b	hio
94	007 EBA	ROV		224 S		024	295			9 12.16560	21	17.57030	9.20276	-21.29284	1545	shore8-	fossil
94	007 EBA	ROV		224 A		027	295				21		9.20349	-21.29409	1568		bio
94	007 EBA	ROV			LP	029	295			9 12.26050	21	17.73590	9.20434	-21.29560	1541		fossil
94	007 EBA	ROV	ROV	224 S	LP	031	295				21		9.20461	-21.29599	1529		bio
94	007 EBA	ROV		224 S		033	295	1 . 1 .			21	17.77760	9.20453 9.20469	-21.29629 -21.29646	1524		fossil fossil
94 94	007 EBA 007 EBA	ROV		224 A	RM	034	295			9 12.28120	21	17.78740	9.20469	-21.29646	1521 1521		fossil
94	007 EBA	ROV		224 S		037	295				21		9.20405	-21.29671	1510		bio
94	007 EBA	ROV		224 S	СР	039	295			9 12.28820	21	17.80300	9.20480	-21.29672	1506	live and dead stylasterids (live one broken, dead colonial) b	bio/fossil
94	007 EBA	ROV			RM	040	295	22/10/20	13 10:19:00		21	17.80300	9.20480	-21.29672	1506	live stylasterid(new) attached to fossil framework b	bio
94	007 EBA 007 EBA	ROV			CP	042					21	17.83110	9.20549	-21.29719 -21.29744	1442		bio
194 194	007 EBA 007 EBA	ROV		224 S		044 046	295				21	21101010	9.20559 9.20559	-21.29744 -21.29776	1431 1413		fossil water
194	007 EBA	ROV		224 N		040	295				21	17.86360	9.20573	-21.29773	1413		water
94	007 EBA	ROV			LP	048	295	22/10/20		9 12.34280	21	17.86580	9.20571	-21.29776	1413		fossil
94	007 EBA	ROV			СР	049	295		13 12:27:00	9 12.35260	21	17.86840	9.20588	-21.29781	1413	one live octocoral and fossil coral fragments. 2x solitary coral b	bio/fossil
94	007 EBA	ROV			RM	051	295			9 12.33980	21	17.86880	9.20566	-21.29781	1409		bio
194 194	007 EBA 007 EBA	ROV			IET CP	053	295	22/10/20		9 12.36260 9 12.34830	21	17.89010 17.88910	9.20604 9.20581	-21.29817	1380 1380		fossil fossil
194 194	007 EBA	ROV			ISK	054	295				2	17.88910	9.20581	-21.29815 -21.29838	1380		Water
94	008 EBA	MGA		1002 N		001	296				21	38.27300	9.27803	-21.63788	4564		Lucy
94	008 EBA	MGA	MGA	A002 N	ICH	003	296				21	38.27300	9.27803	-21.63788	4564	4619 C: did not fire	
94	008 EBA	MGA			1CH	005	296				21	38.27300	9.27803	-21.63788	4564		sediment
94	008 EBA	MGA			1CH	007	296				21	38.27300	9.27803	-21.63788	4564	4619 Grempty Grempty	
)94)94	008 EBA 008 EBA	MGA			ICN ICN	002	296	5 22/10/20 5 22/10/20		9 16.68200 9 16.68200	21	38.27300 38.27300	9.27803 9.27803	-21.63788 -21.63788	4564 4564	4619 B: did not fire 4619 D: length 41cm s	sediment
)94)94	008 EBA	MGA			ICN	004	296				21	38.27300	9.27803	-21.63788	4564	4619 D: rengti 4 zim 5	seument
)94	008 EBA	MGA		A002 N		008	296	5 22/10/20		9 16.68200	21	38.27300	9.27803	-21.63788	4564	4619 H: did not fire	
)94	008 EBA	MGA			ISK	009	296				21	38.27300	9.27803	-21.63788	4564		Lucy
)94	009 EBA	PTN			TN	001	296				21	38.27256	9.27806	-21.63788	4580		sediment
)94)94	009 EBA 010 EBA	PTN MGA			GR ICH	001	296 296			9 16.6833 9 10.14086	21	38.27256	9.27806 9.16901	-21.63788 -21.27075	4580 2755	4583 trigger core emptys 2755 Failed	sediment
94	010 EBA	MGA			ICH	001	296			9 10.14080	21	16.24500	9.16901	-21.27075	2755	2733 Failed 7735 Failed 7735	
)94	010 EBA	MGA	MG	A003 N	ICH	005	296				21	16.24500	9.16901	-21.27075	2755	2755 Failed	
)94	010 EBA	MGA			ICH	007	296				21	16.24500	9.16901	-21.27075	2755	2755 Failed	
94	010 EBA	MGA			ICN ICN	002	296			9 10.14086	21	16.24500	9.16901	-21.27075	2755 2755	2755 Faled	
194 194	010 EBA 010 EBA	MGA MGA			ICN ICN	004	296 296			9 10.14086 9 10.14086	21	16.24500	9.16901 9.16901	-21.27075 -21.27075	2755	2755 Failed 2755 Failed	
94	010 EBA	MGA			ICN	008	296	5 23/10/20		9 10.14086	21	16.24500	9.16901	-21.27075	2755	2755 Failed	
94	010 EBA	MGA			ISK	009	296	5 23/10/20	13 16:12:00		21	16.24500	9.16901	-21.27075	2755	2755 Fired, Lucy sampled L	Lucy
)94	011 EBA	ROV		225 P		001	296			9 10.44000	21		9.17400	-21.27200	2719		sediment
94	011 EBA	ROV			SH	002	296			9 10.43000	21	16.33000	9.17383 9.17383	-21.27217	2719		sediment
94 94	011 EBA 011 EBA	ROV		225 P	ISK	003	296 296			, , , , , , , , , , , , , , , , , , , ,	21	16.33000	9.17383 9.17483	-21.27217	2719 2712		sediment Water
94 94	011 EBA 011 EBA	ROV		225 N		004	296				21	16.32000	9.17483	-21.27200 -21.27200	2712		Water
94	011 EBA	ROV	ROV	225 A	RM	006	297	24/10/20			21	16.42000	9.17783	-21.27367	2559		fossil
94	011 EBA	ROV	ROV	225 A	RM	007	297				21	16.45900	9.17829	-21.27432	2526		fossil
94 94	011 EBA	ROV		225 A		008	297				21	16.46970	9.17846	-21.27450	2514		fossil
94 94	011 EBA 011 EBA	ROV			LP .RM	009	297			9 10.70810 9 10.86270	21	16.46900 16.48490	9.17847 9.18105	-21.27448 -21.27475	2515 2343		fossil bio/fossil
94	011 EBA	ROV		225 S		010	297				21	16.48490	9.18105	-21.27475	2343	Some sediments and rubble (in attempt to get live desmophyllum) USA	
94	011 EBA	ROV	ROV	225 S	CP	012	297	24/10/20	13 04:06:00	9 10.86900	21	16.48100	9.18115	-21.27468	2338	nothing	
94	011 EBA	ROV	ROV	225 S	СР	014	297	24/10/20	13 04:52:00	9 10.86830	21	16.48210	9.18114	-21.27470	2299.4	stylasterid white on bamboo coral. Crinoid b	bio
94 94	011 EBA	ROV	ROV	225 A	IRM	015	297				21	16.48100	9.18118	-21.27468	2301		fossil
4 4	011 EBA 011 EBA	ROV		225 N	SH	017	297 297	7 24/10/20 7 24/10/20		9 10.90640 9 10.90650	21	16.48250 16.48180	9.18177 9.18178	-21.27471 -21.27470	2278 2277		fossil sed
94	011 EBA	ROV			SH	028	297	24/10/20		9 10.90680	21	16.48160	9.18178	-21.27469	2277		sed
94	011 EBA	ROV		225 P		030	297				21	16.48130	9.18178	-21.27469	2278		sed
94	011 EBA	ROV	ROV	225 S	СР	033	297	24/10/20	13 09:20:00	9 11.41070	21	16.77830	9.19018	-21.27964	2318	live solitary coral-failed	
94	011 EBA	ROV			LP	034	297	24/10/20		9 11.41770	21	16.77912	9.19030	-21.27965	2318.3		bio
94	011 EBA	ROV		225 A		035	297				21	16.78430	9.19022	-21.27974	2317	piece of sponge bittom corel	hio
94 94	011 EBA 011 EBA	ROV		225 S	LP (ARM) ISK	037	297	7 24/10/20 7 24/10/20		9 11.41450 9 11.42470	21	16.78130 16.78610	9.19024 9.19041	-21.27969 -21.27977	2302 2299		bio Water
94 94	011 EBA	ROV			ISK	039	297				21	16.78610	9.19041	-21.27977	2299		water
94	011 EBA	ROV	ROV		ISK	040	297			9 11.42470	21	16.77960	9.19041	-21.27966	2299		water
94	011 EBA	ROV	ROV	225 S	LP	041	297	24/10/20	13 10:12:00	9 11.46200	21	16.80400	9.19103	-21.28007	2278	live desmophyllum knocked off rock b	bio
94	011 EBA 011 EBA	ROV	ROV		LP	042	297	24/10/20		9 11.53620	21	16.83980	9.19227 9.19260	-21.28066	2272 2267		bio fossil

					M time/lat/			have been corn	re LAT/LONG ected and hen					green entries:	= lat/longs not a	accurate due to USBL o	lrop out		
Cruise	Station #	Location	Gear	Gear #	Event Code	Event #	Jday	Date	Time GMT	Lat [®]	Lat Min N	Long° W	Long Min W	Lat (DD)		Water depth (m) Win	re Out ores)	Comments	Recipient
094	011	EBA	ROV	ROV225	SLP	044	297	24/10/2013	3 11:07:00	9	11.55950	21	16.86010	9.19266	-21.28100	2260		dead desmo	fossil
94	011	EBA	ROV	ROV225	ARM	045	297	24/10/2013	3 12:04:00	9	11.61330	21	16.97000	9.19356	-21.28283	2216		trying to grab a rock but was too hard	
194 194	011 011	EBA	ROV ROV		SLP NET	047		24/10/2013 24/10/2013	3 12:43:00 3 13:09:00	9	11.67201 11.73730	21	16.99080 17.05110	9.19453 9.19562		2164 2142		mabe solitary coral rubble	bio fossil
194 194	011		ROV		SLP	048				9	11.75650	21		9.19562		2142 2141		Tubbe live desmo and another live desmo	bio
94	011	EBA	ROV	ROV225	SLP	051		24/10/2013		9	11.77220	21		9.19620		2133		desmo live the biggest of all those collected	bio
094	011		ROV		ARM	053		= 1/ 20/ 2020			11.77700	21	2.101000	9.19628		2122		live bamboo coral only the top as the rest broke off	bio
094 094	011	EBA	ROV		SLP	054	297 297	24/10/2013 24/10/2013			11.77000	21		9.19617 9.19710		2124 2100		fossil desmo collected from side of rock sponge slurped	fossil bio
094	011	EBA	ROV		NET	056	297	24/10/2013			11.82600	21		9.19710		2100		storig starbed	fossil
094	012		MGA	MGA004		001				9	13.37010	21		9.22284		662		failed- hit rock	
094 094		EBA EBA	MGA MGA		MCH MCH	002				9	13.37010 13.37010	21		9.22284 9.22284		662 662		failed- hit rock failed- hit rock	
094	012	EBA	MGA	MGA004		004				9	13.37010	21		9.22284		662	677	Anied hi rock	
094		EBA	MGA		MCN	005		24/10/2013			13.37010	21		9.22284		662		failed- hit rock	
)94)94	012	EBA	MGA		MCN MCN	006	297	24/10/2013		9	13.37010 13.37010	21	18.88800	9.22284		662		failed- hit rock failed- hit rock	
)94)94	012		MGA	MGA004 MGA004		007		24/10/2013 24/10/2013			13.37010	21	20100000	9.22284 9.22284		662		failed- nit rock failed-not broken	
094	012	EBA	MGA	MGA004	NSK	009	297	24/10/2013	3 20:00:00	9	13.37010	21	18.88800	9.22284	-21.31480	662		nisken taken- not sampled	
094	013	EBA	ROV		MBS	001					13.94700	21		9.23245		510		Begin Multibeam Survey	Shannon
)94)94		EBA EBA	ROV		MBE MCH	002				9	13.89800	21		9.23163		655 641		End multibeam Survey empty	Shannon
094		EBA	MGA		MCH	001			3 18:31:00 3 18:31:00	9	13.42000	21		9.22367		641	645	empty but for a few fossil corals	Fossil
094	014	EBA	MGA	MGA005	MCN	002	299	26/10/2013	18:31:00		13.42000	21	18.89000	9.22367	-21.31483	641	645	empty	
094	014		MGA		MCN	004		26/10/2013		9	13.42000	21		9.22367		641	645	empty	_
094 094	014	EBA	MGA ROV	MGA005 ROV227	NSK SLP	005			3 18:31:00 3 22:44:00	9	13.42000 12.32000	21		9.22367 9.20533		641 1354	645	fired, but not sampled sponge, stalked unknown, debris (fossil debris)	bio/fossil
094		EBA	ROV		SLP	001					12.32000	21		9.20533		1354		stone, stated unknown, depits hosh depits	bio/fossil
094	015	EBA	ROV	ROV227	SLP	003	299	26/10/2013	3 23:09:00		12.32000	21	17.93000	9.20533	-21.29883	1347		fossil debris, possible fossil soitary coral x3	fossil
)94	015	EBA	ROV		SLP	004		26/10/2013	3 23:30:00	9	12.33000	21		9.20550	-21.29883	1345		debris, fossil solitary (brown	fossil
)94)94		EBA EBA	ROV ROV		ARM SLP	005		26/10/2013 26/10/2013			12.33000 12.33000	21	17.93000 17.93000	9.20550 9.20550		1345 1345		fossil solitary coral x2 attached to fossil colonial corals debris (fossil coral)	fossil
)94		EBA	ROV	ROV227	SLP	000		26/10/2013		9	12.33000	21		9.20330		1345		deuis (tossi corat) fossi corat) fossi corat)	fossil
094	015	EBA	ROV	ROV227	SCP	008	299	26/10/2013	3 23:54:00		12.33000	21	17.93000	9.20550	-21.29883	1345		white branched corals, possibly stylasterids, fossil debris and possible crinoid	fossil/bio
094	015		ROV		SLP	009		1 1 1 1		9	12.34000	21		9.20567		1334		live solitary coral	bio
.094 .094	015	EBA	ROV ROV	ROV227 ROV227	SLP	010	300 300	27/10/2013 27/10/2013	8 01:22:00 8 01:24:00	9	12.35610 12.35610	21		9.20594 9.20594		1326 1326		Fossil large solitary coral (desmo) attached to fossil colonial coral live red solitary coarl (desmo). Fossil solitary coral (desmo)	fossil fossil/bio
094		EBA	ROV		ARM, SLP	011					12.35780	21		9.20596		1326		Inverteu sontary coart (uesmo): rossi sontary corar (uesmo) fossil solitary coart (desmo?)	fossil
094	015	EBA	ROV	ROV227	SLP	013	300	27/10/2013	01:37:00	9	12.35780	21		9.20596	-21.29901	1326		live sponge ith male and felame shrimps inside	bio
094	015	EBA	ROV	R0V227	ARM, SLP	014	300	27/10/2013	8 01:47:00	9	12.35670	21	17.94050	9.20595	-21.29901	1326		fossil solitary coral	fossil
094	015	EBA	ROV	ROV227	SLP	015	300	27/10/2013	01:48:00	9	12.35920	21	17.94250	9.20599	-21.29904	1325		fossil solitary coral (1 medium, 1 small), fossil solitary coral (corroded with few colonial brances x2, one is caryophylia, yellow-brown solitary coral	l fossil
094		EBA	ROV	ROV227	SLP	016	300	27/10/2013		9	12.36160	21		9.20603		1320		live solitary coral (redwhite, small) x2, fossil solitary coral, med/large pinkish solitary coral	fossil/bio
094	015		ROV		SLP	017	300				12.37520	21		9.20625		1320		live, solitary coral x3 and live shrimp, live white - pinkish solitary coral	fossil/bio
094 094	015		ROV	ROV227 ROV227	SLP PSH	019			3 03:16:00 3 03:37:00	9	12.37470 12.41270	21		9.20625		1322 1366		attempt to get a small live solitary coral but unsuccesful about 1/3 full	sediment
094	015	EBA	ROV	ROV227	PSH	021				9	12.41270	21		9.20688		1366		about 2/3 full	sediment
094	015	EBA	ROV	ROV227	PSH	023					12.41270	21		9.20688		1366		about 3/4 full	sediment
094		EBA	ROV	ROV227	NSK	024	300			9	12.42090	21		9.20702		1366		niskin 1: some issue when firing, may not seal properly	water
)94)94		EBA EBA	ROV	ROV227 ROV227	NSK NSK	025	300 300	27/10/2013 27/10/2013		9	12.40900 12.42090	21	17.99900	9.20682 9.20702		1366 1366		niskin 2 niskin 3	water water
094	015		ROV		NET	020		27/10/2013		9	12.42090	21	17.99580	9.20702		1366		fossil coral rubble	bio/fossil
094	015	EBA	ROV	ROV227	ARM	029	300	27/10/2013	3 04:44:00	9	12.42440	21	17.99980	9.20707	-21.30000	1346		acanthogorgian corallum live, gps not updating, most likely wrong latlong	bio
094	015	EBA	ROV		SLP	031					12.45800	21		9.20763		1364		slp and spt into aft biobox. 2 caryophyllia and 1 large fossil coral	bio/fossil
)94)94		EBA EBA	ROV		NET ARM	032		=: / =0 / =0 =0			12.45800 12.47000	21		9.20763		1365 1368		fossil coral, rubble and live stylasterid? live stylasterid	bio/fossil bio
)94)94		EBA	ROV	ROV227 ROV227	SLP	034	300	27/10/2013		9	12.50140	21		9.20783		1300		solitary coral in pieces, and another in one piece	fossil
94	015	EBA	ROV	ROV227	ARM	038	300	27/10/2013	08:01:00		12.53000	21	18.04690	9.20883	-21.30078	1391		vello scleractinian	
094		EBA	ROV	ROV227	SLP	040		27/10/2013	8 08:27:00		12.55120	21		9.20919		1395		live solitary coral x2. one dead. Plus one squat lobster	bio/fossil
)94)94	015	EBA EBA	ROV	ROV227 ROV227	SLP	042		27/10/2013 27/10/2013	8 09:17:00 8 09:35:00		12.69000 12.76000	21		9.21150 9.21267		1351 1319		live solitary coral fossil coral on top of fossil coral	bio fossil
194 194	015		ROV		SLP	044				9	12.92000	21		9.21267		1204		21 solitary corals. 1 dead	bio/fossil
94	015	EBA	ROV	ROV227	NSK	047	300	27/10/2013	3 11:00:00	9	12.93000	21	18.32700	9.21550	-21.30545	1193.5		bottle 4	water
94	015	EBA	ROV		ARM	049			3 11:09:00		12.95000	21		9.21583		1175		black piece of plastic	Lucy
94 94		EBA EBA	ROV		PSH PSH	051				-	13.15000	21		9.21917 9.21939		1002.9 997.4		about 1/4 full push core on rippled sand about 1/4 full	sediment
94 94	015	EBA	ROV	ROV227	NET	055	300	27/10/2013		9	13.18510	21	18.61270	9.21975	-21.31021	972.8		coral rubble	fossil
94	015	EBA	ROV	ROV227	NET	057		27/10/2013	3 13:48:00		13.30750	21	18.73200	9.22179	-21.31220	800		coral rubble	fossil
94		EBA	ROV		SCP	058		27/10/2013			13.30950	21		9.22183		798		coral rubble	fossil
194 194	015	EBA EBA	ROV	ROV227 ROV227	SLP	059	300 300		3 14:52:00 3 15:13:00		13.31630 13.33300	21		9.22194 9.22222		780 760		live solitary coral x2, sponges, fossil coral, fossil solitary live bamboo coral, pale pink	bio/fossil bio
94	015		ROV		SLP	061	500	27/10/2010		9	13.33360	21		9.22222		760		live colonial coral, stylasterid	bio
94	015	EBA	ROV	ROV227	SLP	065	300	27/10/2013	15:35:00	9	13.34820	21	18.75610	9.22247	-21.31260	746		pencil urchin and fossil coral bits	bio/fossil
)94	015	EBA	ROV	ROV227	SCP	066		27/10/2013	3 15:47:00	9	13.34820	21	18.75610	9.22247	-21.31260	746		fossil solitary and colonial live solitary	bio/fossil
094 094		EBA EBA	ROV ROV	ROV227 ROV227	NSK PSH	067		=: / =0 / =0 =0	3 16:39:00 3 16:45:00	9	13.44000 13.45000	21	20100000	9.22400 9.22417		642 642		niskin 5 1/3 full	water sediment
094 094		TRS_2	MGA	MGA006	MCH	068	300	28/10/2013	3 16:45:00 3 05:10:00	7	48.00000	21	24.00000	9.22417 7.80000		3430		1/3 full sediment - sampled without taking pore fluid	sediment
094		TRS_2	MGA		MCH	002				7	48.00000	21		7.80000		3430	3359		

	in SLP= Slurp SCP= Scoop M Core and CTD Events are enter					ityCore		 PistonCore ROV Events are 					ARM= Arm MBS	= Multibeam s	tart MBE= mul	tibeam end			
	core and CTD Events are end	incu as ti	ie on borr	om unic/lat		entries		ave been corre						green entries:	= lat/longs not a	ccurate due to USBL o			1
Cruise	Station # Location	Gear	Gear #	Event Code	Event #	# Jda	ay	Date	Time GMT	Lat° N L	at Min N	Long ° W	Long Min W	Lat (DD)	Long (DD)	depth (m) Win (Co	nments		Recipient
JC094	016 TRS_2	MGA	MGA006	MCN	00)4	301	28/10/2013	05:10:00	7	48.00000	21	24.00000	7.80000	-21.40000	3430	d		
JC094	016 TRS_2	MGA	MGA006	NSK	00			28/10/2013	05:10:00		48.00000	21		7.80000		3430	tin fired- Kate sampled		Kate
IC094 IC094	017 TRS_2 017 TRS_2	PTN PTN	PTN002 PTN002	PTN TGR	00			28/10/2013 28/10/2013	09:42:00 09:42:00		48.00010 48.00010	21		7.80000		3400 3400	tension= 5.95 tons. Looked to e clean hit and pull out but no core. Mud in empty	core catcher	
JC094	018 TRS_2	GVY	GVY001	GVY	00	~~		28/10/2013			26.09178	21	20.77710	7.43486	-21.79631	3428	ton at pull out. Core succesful. Completely full up to the top value in the b	arrel. 5.34m of sandy mud	
JC094	019 TRS_2	MGA	MGA007		00			28/10/2013			26.09200	21		7.43487		3428	pled for porewaters at 2 cm resolution. Also sampled sediments at 2 cm r	solution afterwards	sediment/water
JC094 IC094	019 TRS_2 019 TRS_2	MGA MGA	MGA007 MGA007	MCH MCN	00			28/10/2013	21:52:00 21:52:00		26.09200 26.09200	21		7.43487	-21.79630 -21.79630	3428 3428	pled at 1 cm resolution down to 5 cm resolution pled at 1 cm resolution		sediment
IC094 IC094	019 TRS_2	MGA	MGA007 MGA007		00		301	28/10/2013 28/10/2013	21:52:00		26.09200	21		7.43487		3428	it to lucy woodall		sediment
JC094	019 TRS_2	MGA	MGA007	NSK	00	05	301	28/10/2013	21:52:00		26.09200	21	47.77800	7.43487	-21.79630	3428	1		
JC094	020 EBB	CTD	CTD003	NSK	00	01	303	30/10/2013	08:16:00	5	47.50000	26	5 40.99000	5.79167	-26.68317	4055	:le 1: 4046m		water
JC094	020 EBB	CTD	CTD003	NSK	00)2	303	30/10/2013	08:16:00		47.50000	26		5.79167		4055	:le 2: 4046m		water
JC094	020 EBB	CTD	CTD003	NSK	00			30/10/2013	08:16:00		47.50000	26		5.79167		4055	ile 3: 3796m		water
JC094 IC094	020 EBB 020 EBB	CTD CTD	CTD003 CTD003	NSK NSK	00			30/10/2013 30/10/2013	08:16:00 08:16:00		47.50000	26	5 40.99000 5 40.99000	5.79167 5.79167	-26.68317 -26.68317	4055	:le 4: 3796m :le 5: 2799m		water water
JC094	020 EBB	CTD	CTD003	NSK	00			30/10/2013			47.50000	26		5.79167		4055	:le 6: 2799m		water
JC094	020 EBB	CTD	CTD003		00)7	303	30/10/2013	08:16:00	5	47.50000	26	40.99000	5.79167	-26.68317	4055	:le 7: 2000m		water
JC094 IC094	020 EBB 020 EBB	CTD CTD	CTD003 CTD003	NSK NSK	00			30/10/2013 30/10/2013			47.50000	26		5.79167 5.79167	-26.68317 -26.68317	4055	tle 8: 2000m tle 9: 1500m		water water
JC094 JC094	020 EBB	CTD	CTD003	NSK	00			30/10/2013			47.50000	26		5.79167		4055	ile 9: 1500m		water
JC094	020 EBB	CTD	CTD003	NSK	01	1	303	30/10/2013	08:16:00	5	47.50000	26		5.79167	-26.68317	4055	:le 11: 1002m		water
JC094	020 EBB	CTD	CTD003	NSK	01			30/10/2013	08:16:00		47.50000			5.79167	-26.68317	4055	de 12: 1002m		water
JC094 IC094	020 EBB 020 EBB	CTD CTD	CTD003 CTD003	NSK	01			30/10/2013 30/10/2013	08:16:00		47.50000	26		5.79167	-26.68317	4055	tle 13: 803m tle 14: 803m		water water
JC094	020 EBB	CTD	CTD003	NSK	01	15	303	30/10/2013	08:16:00		47.50000	26		5.79167	-26.68317	4055	:le 15: 404m		water
JC094	020 EBB	CTD	CTD003	NSK	01	16	303	30/10/2013	08:16:00		47.50000	26		5.79167		4055	:le 16: 404m		water
IC094 IC094	020 EBB 020 EBB	CTD CTD	CTD003 CTD003	NSK NSK	01			30/10/2013 30/10/2013	08:16:00		47.50000	26		5.79167 5.79167	-26.68317 -26.68317	4055	:le 17: 254m :le 18: 254m		water water
JC094 JC094	020 EBB	CTD	CTD003	NSK	01			30/10/2013			47.50000	26		5.79167		4055	tle 16: 254m		water
JC094	020 EBB	CTD	CTD003		02			30/10/2013			47.50000	26		5.79167		4055	:le 20: 55m		water
JC094	020 EBB	CTD	CTD003		02			30/10/2013			47.50000	26	5 40.99000	5.79167	-26.68317	4055	de 21: 20m		water
JC094 IC094	020 EBB 020 EBB	CTD CTD	CTD003 CTD003	NSK	02			30/10/2013 30/10/2013			47.50000	26		5.79167 5.79167	-26.68317	4055	tle 22: 20m		water water
JC094	020 EBB	CTD	CTD003	NSK	02			30/10/2013	08:16:00		47.50000	26		5.79167		4055	:le 24: 5m		water
JC094	020 EBB	CTD	CTD003	NSK	02			30/10/2013	08:16:00		47.50000	26	5 40.99000	5.79167	-26.68317	4055	profile uploaded into SIS		MBES
JC094 IC094	021 EBB 021 EBB	ROV ROV	ROV228 ROV228		00			30/10/2013 30/10/2013	19:14:00 19:14:00		36.06000	26		5.60100 5.60100		1990 1990	cin 1		water water
IC094	021 EBB	ROV	R0V228		00			30/10/2013			36.06000	26		5.60100		1990	hite stripes, 1/4 full		sediment
JC094	021 EBB	ROV	ROV228	PSH	00			30/10/2013	19:28:00	5	36.06000	26		5.60100	-26.96717	1990	hite stripes, 1/3 full		sediment
JC094	021 EBB	ROV	ROV228	PSH	00		303	30/10/2013	19:33:00		36.06000			5.60100		1990	hite stripe, 1/3 full		sediment
JC094 IC094	021 EBB 021 EBB	ROV ROV	ROV228 ROV228	SLP	00			30/10/2013 30/10/2013	19:40:00 20:03:00		36.06000	26		5.60100 5.60150	-26.96733 -26.96650	1989 1985	e glass barrel sponge il solitary corals with random rubble, plus live large dasmos		bio/fossil
JC094	021 EBB	ROV	R0V228	ARM	00			30/10/2013		5	36.09000	26		5.60150	-26.96650	1985	bamboo coral broken into 3 pieces		bio
JC094		ROV	R0V228	ARM	01	10	303	30/10/2013	21:37:00		36.09000	26		5.60150		1984	nge- possible acanthogorgia, with ophuroids		bio
JC094 IC094	021 EBB	ROV	ROV228 ROV228	SLP	01			30/10/2013 30/10/2013			36.12040	26		5.60201 5.60212	-26.96567 -26.96567	1968	solitary, smallest so far il solitary?plus debris and fragments		bio fossil
JC094 JC094	021 EBB 021 EBB	ROV	ROV228 ROV228	SLP	01			30/10/2013			36.12700	26		5.60212	-26.96587	1966	d solitary whitish, small, also fossil fragments		fossil
JC094		ROV	R0V228		01	15		30/10/2013	23:11:00	5	36.16130	26	5 57.90900	5.60269		1958	te calcareous thing		105511
JC094	021 EBB	ROV	ROV228	-	01			30/10/2013	23:22:00		36.17150	26		5.60286	-26.96498	1952	nall dead solitary		fossil
JC094 IC094	021 EBB 021 EBB	ROV ROV	ROV228 ROV228	SLP	01			30/10/2013	23:28:00 23:41:00		36.17270 36.17550	26	5 57.89720 5 57.89640	5.60288 5.60293	-26.96495 -26.96494	1952 1950	e solitary, white, probably went through mesh, purple coral		bio
JC094 IC094		ROV	ROV228 ROV228	-	01			30/10/2013 30/10/2013			36.17550	26		5.60293	-26.96494	1950	solitary, white, small solitary		bio
JC094	021 EBB	ROV	R0V228	SLP	01	18		30/10/2013	23:57:00	5	36.17300	26	5 57.90900	5.60288	-26.96515	1945	solitary in rock		bio
JC094	021 EBB	ROV	ROV228		01			31/10/2013			36.19110	26		5.60319	-26.96476	1926	solitary coral x2		bio
JC094 IC094	021 EBB 021 EBB	ROV ROV	ROV228 ROV228	SLP	01			31/10/2013 31/10/2013	00:56:00	5	36.27000 36.27000	26	5 57.83000 5 57.83000	5.60450		1854	il solitary, white Il piece of fossil frame work		fossil
JC094 JC094	021 EBB	ROV	ROV228 ROV228		02			31/10/2013		5	36.30000	26		5.60500		1850	solitary		bio
JC094	021 EBB	ROV	ROV228	SLP	02			31/10/2013	01:03:00		36.30000	26	5 57.82000	5.60500	-26.96367	1853	solitary		bio
JC094	021 EBB 021 EBB	ROV	ROV228	SLP SLP	02			31/10/2013	01:03:00		36.30000	26		5.60500 5.60517	-26.96367 -26.96350	1853 1853	solitary		bio
JC094 JC094	021 EBB 021 EBB	ROV	ROV228 ROV228	SLP	02			31/10/2013 31/10/2013	02100100		36.31000 36.32000	26		5.60517	-26.96350 -26.96350	1853	il fragment of dasmo, broke when sampling il fragment of desmo		fossil fossil
JC094 JC094	021 EBB	ROV	ROV228 ROV228		02			31/10/2013			36.33000	26		5.60555	-26.96333	1796	ll white solitary, poss. Dead		fossil
JC094	021 EBB	ROV	ROV228	SLP	02		304	31/10/2013	02:11:00		36.33000	26	5 57.80000	5.60550	-26.96333	1791	sible solitary or anemone on white coral piece		bio
JC094	021 EBB	ROV	ROV228	SLP	02	20	304	31/10/2013	02:19:00		36.36000	26		5.60600		1773	nall white solitary		bio
JC094 IC094	021 EBB 021 EBB	ROV ROV	ROV228 ROV228	SLP SLP	02			31/10/2013 31/10/2013	02:24:00 02:39:00		36.36000	26		5.60600	-26.96317 -26.96317	1773	of very small fragments tish fossil coral		fossil
JC094 JC094	021 EBB	ROV	R0V228	SLP	02			31/10/2013		5	36.36000	26	5 57.79000	5.60600	-26.96317	1758	solitary coral		bio
JC094	021 EBB	ROV	ROV228		02		304	31/10/2013	03:04:00		36.40000	26	5 57.78000	5.60667		1719	solitary coral, white		bio
JC094 IC094	021 EBB 021 EBB	ROV	ROV228 ROV228		02			31/10/2013			36.42000	26		5.60700	-26.96267	1683	II, dead white solitary		fossil bio/fossil
JC094 JC094	021 EBB	ROV	ROV228 ROV228	SLP	02			31/10/2013 31/10/2013	00.22.00		36.42000	26		5.60700	-26.96267	1681	ll possibly live, white solitary-broken into fragments ll possibly dead white solitary, v-shaped		fossil
JC094 JC094	021 EBB	ROV	ROV228		02			31/10/2013		5	36.44000	26		5.60733	-26.96267	1675	Il live solitary coral-white		bio
JC094	021 EBB	ROV	ROV228	SLP	02	21	304	31/10/2013	03:45:00	5	36.45000	26		5.60750		1666	ll dead white solitary-broken		fossil
JC094 JC094	021 EBB	ROV ROV	ROV228 ROV228	SLP	02			31/10/2013 31/10/2013	03:52:00		36.45000 36.46000	26		5.60750 5.60767	-26.96233 -26.96217	1652 1647	ll live white solitary Il live white solitary		bio
IC094 IC094	021 EBB 021 EBB	ROV	ROV228 ROV228	SLP	02			31/10/2013 31/10/2013			36.46000	26		5.60767	-26.96217	1647	mile white solitary		bio
		ROV	R0V228		02			31/10/2013			36.47000			5.60783		1616	ll poss. Live/dead white solitary		bio/fossil

	Core and CTD Events are en			,		tries tha			G of USBL and Depth fr nce differ from the Sar			green entries=	= lat/longs not a		USBL drop ou	at	
ruise	Station # Location	Gear	Gear #	Event Code	Event #	Jday	Date	Time GM	Lat° N Lat Min N	Long ° W	Long Min W	Lat (DD)	Long (DD)	Water depth (m)	Wire Out (Cores)	Comments	Recipient
4	021 EBB	ROV	ROV228	SLP	022	30							-26.96150	1593		white, dead eroded solitary coral	fossil
ł	021 EBB	ROV	ROV228	SLP	022	30					57.05000	5.60783	-26.96150	1574		fragments of coral framework/dead fossil	fossil
	021 EBB	ROV	ROV228		023	30					6 57.68000		-26.96133	1574		fossil framework with fossil solitary/solitaries	fossil
	021 EBB	ROV	ROV228 ROV228		024	30				-		5.60794 5.60804	-26.96140 -26.96116	1577		vase-shaped sponge, fragments collected live solitary coral (broken into pieces)	bio
ŀ	021 EBB 021 EBB	ROV	R0V228 R0V228	SLP	022	30) 2			-26.96116	1542		glass vase sponge with shrimp	bio
4	021 EBB	ROV	R0V228		025	30					0 07.02110	5.60821	-26.96027	1503		primoid? Branched	bio
94	021 EBB	ROV	R0V228		027									1503		solitary coral? Dead, solitary coral, live	bio/fossil
94	021 EBB	ROV	ROV228	SLP	028	30			5 36.5119) 2		5.60853	-26.95953	1498		2 solitary corals on yellow, plus one solitar coral at 7:36 am	?
94	021 EBB	ROV	ROV228		029	30							-26.95954	1496		1 solitary coral (live,), plus 1 solitary live coral at 7:40	bio
94	021 EBB	ROV	ROV228		030	30					6 57.56790	5.60856	-26.95947	1493		coral fragments (dead), 3 solitary corals, 1 live solitary coral, 1 dead solitary, 1 broken live	bio/fossil
94	021 EBB	ROV	ROV228		031					-		5.60857	-26.95935	1489		stylasterids and purple octoooral	bio
94 94	021 EBB	ROV	ROV228 ROV228		030	30							-26.95923 -26.95923	1487 1488		solitary coral (recently dead) black coral (live)	fossil
94 94	021 EBB 021 EBB	ROV	R0V228 R0V228		032	30							-26.95923	1482		yellow stylasterid, enallopsammia on rock, plus crinoid	bio
94	021 EBB	ROV	R0V228		034									1462		y chow stylasteria, chanopsamma on role, plus chindu	bio
94	021 EBB	ROV	R0V228	SLP	035	30	1 01/10/1		5 50.5210		07.00100	5.60871	-26.95845	1407		fossil regenets from sediment	fossil
94	021 EBB	ROV	R0V228		036								-26.95831	1444		1 orange tentacle, live solitary	bio
4	021 EBB	ROV	ROV228		037	30		013 10:04:0) 2		5.60873	-26.95831	1444		1 orange tentacle, live solitary	bio
94	021 EBB	ROV	ROV228	ARM	038	30	4 31/10/2	013 10:07:0		-		5.60873	-26.95831	1444		red busy octocoral, rarely branched	bio
94	021 EBB	ROV	ROV228	SCP	039	30) 2		5.60873	-26.95828	1445		white fan, stylasterid?	bio
94	021 EBB	ROV	ROV228		040							5.60873	-26.95828	1445		dead gnallop. Skeleton	fossil
94	021 EBB	ROV	ROV228	-	041								-26.95950	1445		1 fossil, 1 recently dead coral, 1 live	bio/fossil
94 94	021 EBB	ROV	ROV228 ROV228	ARM	042					2		5.60896 E.61010	-26.95956 -26.95772	1450		fragment of blobby white sponge	bio
94 94	021 EBB 021 EBB	ROV	ROV228 ROV228	ARM	043							5.61010 5.61108	-26.95772	1432	1	bamboo coral, long, wavy, pink solitary coral, 2 live, 1 dead, 1 tiny	bio bio/fossil
94 94	021 EBB	ROV	R0V228	ARM	044	30				2		5.61108	-26.95763	1484		big white sponge	bio/iossii
94	021 EBB	ROV	R0V228	NSK	045	30				-		5.61100	-26.95760	1483		3 niskins fred	water
94	022 EBB	ROV	ROV229	SLP	001	30			5 37.4900) 2	6 57.98000	5.62483	-26.96633	1278		3x large fossil desmo, fossil coral rubble, 2x live solitary, 2x small live solitary	bio/fossil
94	022 EBB	ROV	R0V229	NSK	002	30					6 57.98000		-26.96633	1272		Niskin1	water
94	022 EBB	ROV	ROV229		003	30							-26.96633	1272		Niskin2	water
94	022 EBB	ROV	ROV229		004	30					0	5.62483	-26.96633	1271		small fossil debris, piece of framework, live solitary x1	bio/fossil
94	022 EBB	ROV	ROV229		005	30				2		5.62483	-26.96633	1271		1x live solitary and some fossil solitary rubble. 1x live solitary/sediment and fossil fragments. Large amout of framework.	bio/fossil
)94)94	022 EBB	ROV	ROV229 ROV229	ARM	007	30				2		5.62483 5.62483	-26.96617 -26.96617	1267		Yellow Enallapsamia (branching) with base live solitaries	bio
)94)94	022 EBB 022 EBB	ROV	R0V229 R0V229		009								-26.96617	1264		fossil coral rubble, fossil white bits and lots of crinoids	bio/fossil
)94)94	022 EBB	ROV	R0V229		010	30							-26.96344	1209		large glass sponge, possibly with ghost shrimp. White	bio/iossi
94	022 EBB	ROV	R0V229		012	30							-26.96277	1033		Sea Pen. Large pink. Probably over 1m long	bio
194	022 EBB	ROV	R0V229	SLP	015	30	5 01/11/2		5 37.5159) 2	6 57.71850	5.62527	-26.96198	997		large fossil solitary, corroded	fossil
94	022 EBB	ROV	ROV229		017		0 02/22/				51.07050	0.02020	-26.96164	989		3/4 push core full	sediment
94	022 EBB	ROV	ROV229		018	30) 2		5.62527	-26.96164	990		Full push core. Top may be difficult to identify	sediment
194 194	022 EBB	ROV	ROV229	PSH SLP	019	30				1 2	6 57.69990		-26.96167 -26.96114	989		Apparently full push core. Some turbulence seen in tube. May be mixed	sediment
194 194	022 EBB 022 EBB	ROV	ROV229 ROV229		020	30		013 02:05:0 013 02:10:0				5.62495 5.62524	-26.96114	987		Live orange solitary coral Possibly live small solitary corals slurped from rock.	bio
)94	022 EBB	ROV	R0V229		021	30) 2		5.62523	-26.96114	987		Large grayish, possibly dead solitary, desmo-like	bio/fossil
94	022 EBB	ROV	ROV229	SLP	024	30	0 02/22/			-	6 57.58390	5.62537	-26.95973	978		Solitary, possibly live coral	bio
94	022 EBB	ROV	ROV229	SLP	025	30						5.62542	-26.95943	977		solitary live coral on sand patch near rock	bio
94	022 EBB	ROV	ROV229		026	30) 2	6 57.55880	5.62541	-26.95931	977		Purple live solitary coral	bio
94	022 EBB	ROV	R0V229	SLP	027	30				2	6 57.50980	5.62534	-26.95850	972		Live solitary coral on sand, pale brown color	bio
94	022 EBB	ROV	ROV229		028	30							-26.96318	970		live solitary purple coral	bio
94	022 EBB	ROV	ROV229		029	30					0	5.62524	-26.95799	970		live solitary purple coral	bio
94 94	022 EBB	ROV	ROV229 ROV229	SLP ARM	030	30			0 5 37.5038 0 5 37.5200	2		5.62506	-26.95797 -26.95733	971		live solitary purple coral 2 fearments Live stylestarid (nessible?), white rigid and breakable	bio bio
94 94	022 EBB 022 EBB	ROV	ROV229 ROV229		032							5.62533 5.62550	-26.95733	960	1	2 fragments. Live stylasterid (possible?), white, rigid and breakable Large glass sponge	bio
94 94	022 EBB 022 EBB	ROV	R0V229 R0V229		034	30							-26.95717	959		Yellow sponge	bio
94	022 EBB	ROV	R0V229	SLP	038	30					6 57.29000	5.62567	-26.95483	915		Live solitary coral	bio
94	022 EBB	ROV	ROV229	SLP	040	30					6 57.24670	5.62575	-26.95411	915		large live solitary-purple	bio
94	022 EBB	ROV	ROV229	SLP	041	30	5 01/11/2	013 05:18:0		2		5.62575	-26.95411	915		small white dead solitary corals x4	fossil
94	022 EBB	ROV	ROV229		043	30				0 2	6 57.04590	5.62616	-26.95077	863		Giant fossil desmo?	fossil
94	022 EBB	ROV	R0V229		045	30							-26.95007	845		at least 1 live solitary. Fossil rubble, large colonial fossils	fossil
94 94	022 EBB 022 EBB	ROV	ROV229 ROV229		047	30	0 02/22/				6 56.88450 6 56.88450		-26.94808 -26.94808	773		Large solitary fossil coral very small white live solitary corals	fossil bio
94 94	022 EBB	ROV	R0V229 R0V229	SLP	048	30				2		5.62663	-26.94808	766		hexactionalid-glass sponge	bio
94	022 EBB	ROV	R0V229		050	30				2			-26.94805	771		large fossil desmo	fossil
94	022 EBB	ROV	ROV229		052	30						5.62657	-26.94777	761		sediment, fossil colonial coral	fossil
94	022 EBB	ROV	ROV229		054	30	5 01/11/2	013 09:24:0	5 37.5967) 2	6 56.80520	5.62661	-26.94675	749		live solitaries and fossil coral framework. Small white solitaries	bio/fossil
4	022 EBB	ROV	ROV229		056	30			5 37.5993				-26.94537	718		small live solitaries (at least 10), and fossil solitary?	bio/fossil
94	022 EBB	ROV	ROV229	ARM	057	30					6 56.72270	5.62668	-26.94538	719.5		pink bamboo coral (quite curly branches)	bio
94	022 EBB	ROV	ROV229		059	30				2		5.62673	-26.94480	701		live large solitary coral with pink fan interior	bio
14 14	022 EBB	ROV	ROV229	SLP/SCP SLP	060	30			0 5 37.6029 0 5 37.6020	2		5.62672 5.62670	-26.94479 -26.94480	701		live colonial corals with styll on it	bio
94 94	022 EBB 022 EBB	ROV	ROV229 ROV229		061						0 000000000		-26.94480	684		sponge live solitary coral	bio bio
4	022 EBB 022 EBB	ROV	R0V229 R0V229		062	30) 2	6 56.60780	5.62682	-26.94437	635	-	2 tins	7
94	022 EBB	ROV	ROV229		064) 2		5.62699	-26.94288	628		sponge, tubular-glass	bio
94	022 EBB	ROV	R0V229	SLP	065	30				2	6 56.57200	5.62698	-26.94287	628		solitary coral live (desmo?)	bio
		ROV	ROV229	ARM	066	30			5 37,6186) 2		5.62698	-26.94286	628		vellow-octocoral-fan	bio
4	022 EBB	ROV	RUV229	ARPI	068			015 12.25.0	5 57.0100	2							010

			tered as tl			w entri	ies that h	ave been cor	rected and her	nce differ l	from the San	nple Logs		green entries:	= lat/longs not a	accurate due to USBL d	rop out		
Cruise	Station #	Location	Gear	Gear	# Ever Code	nt#	Jday	Date	Time GMT	Lat° N	Lat Min N	Long ° W	Long Min W	Lat (DD)	Long (DD)		e Out res)	Comments	Recipient
)94	022	EBB	ROV	ROV22	PSH	071	305	01/11/201	3 13:58:00	5	37.62880	26	5 56.40200	5.62715	-26.94003	565		fail-some already in there	Recipient
94	022		ROV	ROV22		072	305	01/11/201	.3 13:58:00	5	37.62880	26		5.62715	-26.94003	565		pushcore 1/3 full	sediment
94	022		ROV	ROV22		073	305	01/11/201		5	37.62880	26		5.62715		565		1 inch of sediment?	sediment
194 194	022		ROV ROV	ROV22 ROV22	NSK	074 075	305	01/11/201		5	37.63050	26		5.62718 5.62718		564 564		Niskin 3 Niskin 4	water water
94	022		ROV	ROV22		076	305	01/11/201		5	37.63050	20		5.62718		565		iiskin 5	water
94	023		GVY	GVY002		001		01/11/201	.3 16:09:00	5	37.69000	26		5.62817		555		Core Failed.	
94 94	024 025		GVY	GVY003 GVY004		001	305 305	01/11/201		5	37.68400	26		5.62807		555 550		Core Failed. Pull out approximately 0.4 tons Core Failed	
94	025		ROV	ROV23		001	305	02/11/201		5	35.37000	20		5.58950		2819		Niskin 1	water
94	026	EBB	ROV	ROV23	NSK	002		02/11/201		5	35.37000	26	5 59.68000	5.58950	-26.99467	2819		Niskin 2	water
94	026		ROV	ROV23		 003		02/11/201		5	35.37000	20	57.07000	5.58950		2820		1/3 full	sediment
94 94	026		ROV	ROV23 ROV23		004	306	02/11/201		5	35.37000	20 20		5.58950		2816		1/2 full 1/2 full	sediment
94	026		ROV	ROV23		 007		02/11/201		5	35.36000	20		5.58933		2818		Jass barrel sponge	bio
94	026	EBB	ROV	ROV23		800	306	02/11/201		5	35.36000	26		5.58933		2820		tiny white branched fan corals, living colonial	bio
94	026		ROV	ROV23		 009		02/11/201		5	35.36000	20		5.58933 5.58935		2824		fossil coral debris Derekse versikersken officieren han Bestern stalland held officieren.	fossil
94 94	026		ROV	ROV23 ROV23		010		02/11/201		5	35.36100	20 20		5.58935		2821 2820		Bamboo coral broken off above base. Bottom stalk and hold of bamboo Stalked glass sponge, went in slurp tube but did not appear to arrive in chamber	bio bio
94	026	EBB	ROV	ROV23	SLP	012	306	02/11/201	.3 01:33:00	5	35.36100	26	5 59.64000	5.58935	-26.99400	2818		small pieces of fossil framework coral. Yellow in color	fossil
94	026		ROV	ROV23		013	306	02/11/201	3 01:40:00	5	35.36300	26	5 59.64300	5.58938	-26.99405	2819		pieces of fossil framework	fossil
94	026		ROV	ROV23		015		02/11/201		5	35.35500	26		5.58925		2820		3x fine spine pencil urchins. 1x fine spine pencil urchin. 1x fine spine pencil urchin + 1 ophuriod	bio
94 94	026		ROV	ROV23 ROV23		017	306 306	02/11/201		5	35.36200 35.37300	26		5.58937		2814 2800		1x large fossil coral, orange color (solitary) 1x fossil solitary more eroded than previous	fossil fossil
94	026		ROV	ROV23		 019		02/11/201		5	35.37640	20	5 59.60400	5.58961	-26.99340	2802		1x fossil solitary noise eroteet than previous 1x fossil solitary coral on sand (possibly sponge?)	fossil
94	026	EBB	ROV	ROV23		021	306	02/11/201	.3 03:19:00	5	35.45300	26	5 59.56800	5.59088	-26.99280	2735		Hermit crab with 2x live solitary corals on it! (maybe anemones)	bio
94	026		ROV	ROV23		022	306	02/11/201	3 03:22:00	5	35.45300	26	5 59.56800	5.59088		2735		1x sea urchin fine spine	bio
94 94	026		ROV ROV	ROV23 ROV23		 024 026		02/11/201		5	35.48800 35.49970	26	5 59.52760 5 59.23130	5.59147 5.59166		2713 2600		Hermit crab with 2x live solitaries. Small rock, roundish/dark brown/red Fossil coral	bio fossil
94	026		ROV	ROV23		028	306	02/11/201		5	35.51200	20		5.59187		2599		rusar torat bamboo fossils	fossil
94	026		ROV	ROV23	SLP	029		02/11/201		5	35.51890	26		5.59198	-26.98695	2599		solitary fossil coral	fossil
94	026		ROV	ROV23		 031		02/11/201		5	35.54940	26		5.59249		2618		white stalked sponge, white globular sponge, dead?bushy sponge	bio
94 94	026		ROV ROV	ROV23 ROV23	0.00	 033	306 306	02/11/201		5	35.56380	26	01120010	5.59273		2629 2548		holothuriods (pink/purple) x10 Fossil calcxonia skeleton-bamboo? White	bio fossil
94 94	026		ROV	ROV23		033		02/11/201	3 08:54:00	5	35.74900	20		5.59582		2494		solitary-live. White, orange tentacles	bio
94	026		ROV	ROV23		039		02/11/201		5	35.73660	26		5.59561		2474		Solitary live coral. White tentacles	bio
94	026		ROV	ROV23		041	306	02/11/201		5	35.73710	26		5.59562		2475		stylasterid fan and sponge	BIO
)94)94	026		ROV ROV	ROV23 ROV23		 042 044		02/11/201		5	35.73710 35.71150	26	00110010	5.59562 5.59519	20.70202	2475		primnoid fan, light pink Bamboo? Skeleton-holdfast. Fossil	bio fossil
)94)94	026	EBB	ROV	ROV23		044		02/11/201		5	35.7130	20		5.59522		2403		Dambor sketeon-montast, rossin Ix white solitary? Ix brown solitary	fossil
)94	026	EBB	ROV	ROV23		047	306	02/11/201	.3 10:19:00	5	35.70200	26		5.59503		2447		1x white solitary. Live coral. Plus 2 live solitary corals and coral rubble	bio/fossil
94	026		ROV	ROV23		049		02/11/201		5	35.67910	26		5.59465		2390		yellow thing on dead bamboo	bio/fossil
)94)94	026		ROV	ROV23 ROV23		050	306 306	02/11/201		5	35.67140	20		5.59452 5.59447		2391 2391		live solitary coral dead solitary coral	bio fossil
)94	026		ROV	ROV23		 053		02/11/201		5	35.65100	20		5.59418		2355		dead bamboo coral with ball-shaped yellowish sponge	bio/fossil
94	026	EBB	ROV	ROV23	ARM	055		02/11/201		5	35.65100	26	5 58.59640	5.59418		2317		picking up a wine bottle	lucy
94	026	EBB	ROV	ROV23		057	306	02/11/201		5	35.66650	26		5.59444		2307		large vellow sponge. Other vellow sponge	bio
)94)94	026		ROV ROV	ROV23 ROV23		059		02/11/201		5	35.67810	26		5.59464 5.59525		2309 2257		live solitary coral- orange live solitary coral on framework coral (+ophuroid +sponge) +large purple live	bio
94	026		ROV	ROV23		 062		02/11/201		5	35.71470	20		5.59525		2257		Large aggregate of sponge, live coral, crysogrogid and rock	bio
94	026		ROV	ROV23		063	306	02/11/201		5	35.74880	26	5 58.42760	5.59581	-26.97379	2220		psh cores. 15 inches (maybe?)	sediment
94	026		ROV	ROV23		064		0=/==/=0		5	35.75180	26		5.59586		2218		Niskin 3 and 4	water
94 94	026		ROV	ROV23 ROV23		066		02/11/201		5	35.83890 35.84100	20		5.59732		2170		fossil solitary x2 fossil solitary	fossil
94 94	026		ROV	ROV23		070	306	02/11/201	3 18:41:00	5	37.17590	20		5.61960		1164		fossil solitary (corroded) x4. coral rubble	fossil
94	026		ROV	ROV23		071	306	02/11/201	3 19:06:00	5	37.17450	20	5 57.53000	5.61958		1164		fossil coral rubble	fossil
94	026		ROV	ROV23		073	306	02/11/201		5	37.18000	20		5.61967		1162		Large fossil solitary x3 and other fossil rubble	fossil
94 94	026		ROV	ROV23 ROV23		074 075	306	02/11/201		5	37.18000	26		5.61967		1162 1162		fossil coral rubble fossil solitary	fossil
94 94	026		ROV	ROV23		075		02/11/201		5	37.18000	20	0.100000	5.61983		1102		Fossil Solitary- Failed	105511
94	026	EBB	ROV	ROV23	NET	079	306	02/11/201	.3 21:14:00	5	37.24000	26	5 57.45000	5.62067	-26.95750	1035		fossil coral rubble	fossil
94	026		ROV	ROV23	ARM	081				5	37.25640	26		5.62094		1034		Red octocoral	bio
14 14	026		ROV MGA	ROV23 MGA00		082	306 307	02/11/201		5	37.25570	26	5 57.47500 7 16.42900	5.62093 5.70565	-26.95792 -27.27382	1033		Niskin fired. Only one bottle ~37cm recovery. Pore water extraction at 2cm intervals, then sliced at 2cm resolution	water sediment,
4	027		MGA	MGA00		003	307	03/11/201		5	42.33900	21	7 16.42900	5.70565		4420		~22cm recovery. Top 5 cm to Lucy Woodall, lower part sliced at 5cm intervals	sediment
4	027	EBB	MGA	MGA00	3 MCN	001		03/11/201	.3 04:12:00	5	42.33900	27	7 16.42900	5.70565	-27.27382	4420	4455	~41cm recovery. Sliced at 1cm resolution	sediment
4	027		MGA	MGA00		002		03/11/201		5	42.33900	27	16.42900	5.70565		4420		~38cm recovery. Sliced at 1cm resolution down to 5cm, then 5cm resolution	sediment
4	027		MGA PTN	MGA00 PTN00		005	307	03/11/201		5	42.33900	22		5.70565 5.70598		4420 4420	4455	fired 12m barrel piston core. Max tension: 6.01T. Barrel and weight covered in mud, but liner empty and shattered.	sediment
4	028		PTN	PTN00		 001		03/11/201		5	42.35900	21		5.70598		4420		small amount of sediment, bagged up. S0090. In addition there is a 53cm core S0999.	sediment
94	029	TRS_3	MGA	MGA00	MCH	001	309	05/11/201	.3 00:18:00	6	48.71200	32	2 54.72600	6.81187	-32.91210	4065	4090	Top 5cm sampled, remaining sampled at 5 cm resolutin. 5 samples in total-lucy. S094	sediment
94		TRS_3	MGA	MGA00	MCH	004	309	05/11/201		6	48.71200	32		6.81187		4065	4090	1 core top. Pore waters at 2 cm intervals. Remaining core sampled at 2 cm intervals. 18 samples in total. \$0097	sediment
94 94		TRS_3 TRS_3	MGA MGA	MGA00 MGA00		002		05/11/201		6	48.71200	32	0.0000	6.81187 6.81187		4065		One core top samlpe. 1-4 cm sampled at 1 cm intervals. Remaining core at 5 cm interval. Total 12 samples. S0095 1 core top. Remaining sampled at 1 cm intervals. 39 samples in total. S0096	sediment
94 94		TRS_3 TRS_3	MGA	MGA00		005	309	05/11/201		6	48.71200	32	2 54.72600	6.81187		4065	4090	fred and sampled	water
94	030	TRS_3	GVY	GVY00	GVY	001	309	05/11/201	3 04:19:00	6	48.71000	32	2 54.71900	6.81183	-32.91198	4065	4095	6m of core barrel. Over penetration of core right into sediment. Estimate about 1 m	sediment
94	031	TRS_3	GVY	GVY00	GVY	001	309	05/11/201	.3 10:19:00	6	48.71000	32		6.81183		4066		Repeat core using 9m barrel and slow rate of penetration. Recovered about 6.5m core is good condition with no over penetration	sediment
94 94	032	VEM	CTD	CTD00-		001	312	08/11/201		10	33.28700 33.28700) 44) 44		10.55478		4949 4949		Bottle 1: 4923m Bottle 2: 4923m	water

VSK= Niski	in SLP= Slurp SCP= Scoop M	GA= Meg	a Core KTN=	Kasten G	YY= Gravity	yCore 1	PTN= Pist	onCore PS	SH= PushCo	ore BOX=	BoxCore M	NET= Net	ARM= Arm MBS	= Multibeam s	tart MBE= mul	tibeam end			
	Core and CTD Events are ent	ered as th	e ON BOTTO!	/l time/lat/		tries th					ind Depth fr from the Sar			green entries:	= lat/longs not a	accurate due to USBL o	lrop out		
Cruise	Station # Location	Gear	Gear #	Event Code	Event #	Jday			Fime GMT	Lat° N	Lat Min N	Long° W	Long Min W	Lat (DD)	Long (DD)	Water depth (m) Win	e Out ores)	Comments	Recipient
C094	032 VEM	CTD	CTD004	NSK	003	3	312 08/1	1/2013	09:35:00	10	33.28700) 44		10.55478	-44.51477	4949		Bottle 3: 4702m	water
C094	032 VEM	CTD	CTD004	NSK	004		312 08/1		09:35:00	10) 44		10.55478	-44.51477	4949		Bottle 4: 4702m	water
C094 C094	032 VEM 032 VEM	CTD CTD	CTD004 CTD004	NSK NSK	005		312 08/1 312 08/1		09:35:00	10	33.28700) 44		10.55478	-44.51477 -44.51477	4949 4949		Bottle 5: 3802m Bottle 6: 3802m	water water
C094	032 VEM	CTD		NSK	007		312 08/1		09:35:00		33.28700			10.55478		4949	-	Bottle 7: 2805m	water
C094	032 VEM	CTD	CTD004	NSK	008		312 08/1		09:35:00	10) 44		10.55478	-44.51477	4949		Bottle 8: 2805m	water
C094 C094	032 VEM 032 VEM	CTD CTD		NSK NSK	009		312 08/1 312 08/1		09:35:00 09:35:00	10	33.28700 33.28700) 44		10.55478	-44.51477 -44.51477	4949 4949		Bottle 9: 2005m Bottle 10: 2005m	water
C094	032 VEM	CTD	CTD004	NSK	010		312 08/1		09:35:00	10) 44		10.55478	-44.51477	4949		Bottle 11: 1506m	water
C094	032 VEM	CTD	CTD004	NSK	012	3	312 08/1	1/2013	09:35:00	10) 44		10.55478	-44.51477	4949		Bottle 12: 1506m	water
C094 C094	032 VEM 032 VEM	CTD CTD		NSK NSK	013	3	312 08/1 312 08/1	1/2013	09:35:00 09:35:00	10	33.28700 33.28700			10.55478		4949		Bottle 13: 1009m Bottle 14: 1009m	water
C094	032 VEM	CTD	CTD004	NSK	014		312 08/1		09:35:00	10) 44		10.55478		4949		Bottle 15: 810m	water
C094	032 VEM	CTD	CTD004	NSK	016	3	312 08/1	1/2013	09:35:00	10	33.28700) 44	30.88600	10.55478	-44.51477	4949		Bottle 16: 810m	water
C094 C094	032 VEM	CTD CTD	CTD004 CTD004	NSK	017		312 08/1		09:35:00 09:35:00		33.2870	0 44		10.55478	-44.51477 -44.51477	4949		Bottle 17: 609m Bottle 18: 609m	water
C094 C094	032 VEM 032 VEM	CTD		NSK	018	3	312 08/1 312 08/1		09:35:00	10 10	33.28700) 44		10.55478		4949		Bottle 18: 609in Bottle 19: 460m	water
C094	032 VEM	CTD	CTD004	NSK	020	3	312 08/1	1/2013	09:35:00	10	33.28700) 44	30.88600	10.55478	-44.51477	4949	E	Bottle 20: 460m	water
C094	032 VEM	CTD		NSK	021		312 08/1		09:35:00		33.28700			10.55478		4949		Bottle 21: 85m	water
C094 C094	032 VEM 032 VEM	CTD CTD	CTD004 CTD004	NSK	022	3	312 08/1 312 08/1	1/2013	09:35:00 09:35:00	10 10	33.28700 33.28700) 44		10.55478	-44.51477 -44.51477	4949 4949		Bottle 22: 85m Bottle 23: 16m	water water
C094	032 VEM	CTD		NSK	023	3	312 08/1	1/2013	09:35:00		33.28700			10.55478		4949		Bottle 24: 16m	water
C094	032 VEM	CTD	CTD004	CTDprofile	025		312 08/1		09:35:00	10	33.28700			10.55478	-44.51477	4949	(CTD profile uploaded into SIS	MBES
C094	033 VEM	ROV	ROV231	SLP	003	3	312 08/1	1/2013	16:46:00	10	44.59320) 44	4 34.71740	10.74322	-44.57862	1494	1	I dead solitary (orange, quarter sized) and fossil debris one recently dead solitary with white crest and orange base, 1 dead solitary (white)(silver Jollar sized). I dead solitary (spotted on outside), pieces of bamboo coral all into 2x balck tube with some spill into 2x white tube	fossil
C094	033 VEM	ROV		ARM	008		312 08/1		18:08:00	10) 44	4 34.67110	10.74285	-44.57785	1480		live colonial coral, corallium? Pink all over 30 cm across, brittle snake living on it, quite bendy into stbd bio	Bio
C094 C094	033 VEM 033 VEM	ROV	ROV231 ROV231	SLP NSK	009	3	312 08/1 312 08/1	1/2013	18:17:00	10) 44		10.74285	-44.57785 -44.57784	1479	1	ive colonial coral, yellow 5 cm across broken into pieces, scleractinian, probably enallopsammia all into 2x black rock tube in rock box 1	bio
C094	033 VEM	ROV		NSK	010		312 08/1		18:19:00	10				10.74286	-44.57784	1479			
C094	033 VEM	ROV	R0V231	ARM	014	3	312 08/1	1/2013	18:32:00	10	44.57000) 44	4 34.66510	10.74283	-44.57775	1474		v. long bamoo coral (curly, live) stored in tool tray	Bio/Fossil
C094	033 VEM	ROV		SLP SLP	017		312 08/1		18:47:00	10				10.74277	-44.57768	1468		live solitary coral with ornage tentacles x 2, one is very small, dead? Solitary coral -all white all into 2x black in rock box 1	Bio/Fossil
C094 C094	033 VEM 033 VEM	ROV		ARM	020		312 08/1 312 08/1		19:04:00 19:10:00	10 10) 44) 44		10.74274	-44.57648	1464 1467		1x dead white solitary coral into 2x white rock box 1 1x enallopsommia, yellow fan, scleractinia live into stbio	Fossil Bio/Fossil
C094	033 VEM	ROV	R0V231	SLP	022		312 08/1		19:28:00	10) 44		10.74267	-44.57816	1467		1x live solitary coral , orange tentacles, 2x white rock box 1	Bio/Fossil
																		mall live solitary coral, pale yellow and fossil debris, mixed fossil coral deris with live ophiroid, more fossil coral deris, more fossil coral debris all into	
C094 C094	033 VEM 033 VEM	ROV ROV	ROV231 ROV231	SLP SLP	025	3	312 08/1 312 08/1	1/2013	20:53:00 21:27:00	10	44.55700) 44	4 34.57600 4 34.56100	10.74262	-44.57627 -44.57602	1420 1407		2x red tube dead?/recently-dead? Solitary, white, ophiroid wrapped around it, plus another white solitary that fragmented into bits, all into 2x blue tube	Bio/Fossil Bio/Fossil
C094	033 VEM	ROV		NET	020		312 08/1		21:54:00		44.58700			10.74312	-44.57560	1403		cost local tubble and sediment into orange net stored on tool tray	fossil
C094	033 VEM	ROV	ROV231	ARM	028	3	312 08/1	1/2013	22:18:00	10	44.59200) 44	4 34.52300	10.74320	-44.57538	1402	ł	base of corallium/paragorgia pink fand and whole fan coral into aft bio	Bio/Fossil
C094	033 VEM	ROV	ROV231	PSH	029	5			22:29:00	10	44.59200		01.02900	10.74320	-44.57548	1402		Ix green push core-too unconsolidated for core, so scraped some of coret-top using push core instead and tipped into hole	Sediment
C094 C094	033 VEM 033 VEM	ROV	ROV231 ROV231	SLP SLP	030		312 08/1 312 08/1		22:46:00 23:00:00	10 10				10.74332	-44.57522 -44.57510	1387 1382		small yelow/pale solitary coral live into white/red tube armored holothurian and small piece of fossil coral/rock into black slurp chamber	bio Bio/Fossil
C094	033 VEM	ROV		ARM	032	3	312 08/1	1/2013	23:03:00	10	44.58300) 44	4 34.58000	10.74305	-44.57633	1382		rock with blue encrusting sponge into aft bio	bio
C094	033 VEM	ROV		SLP	033		312 08/1		23:26:00	10) 44		10.74328		1371		fossil coral solitary -didn't actually observe it going into red white stribed tube, labelled as ?33 on sheet	Fossil
C094 C094	033 VEM 033 VEM	ROV	ROV231 ROV231	SLP SLP	036		312 08/1 313 09/1		23:46:00 00:58:00	10 10) 44) 44		10.74330	-44.57465 -44.57152	1355 1361		sponge, white-on stick encrusting into red/white tube fossil coral solitary orange x 5 most on rods into black/blue tube	B Fossil
C094	033 VEM	ROV		ARM	040	3	313 09/1	1/2013	01:38:00	10	44.52330) 44	4 34.29120	10.74200		1361		Us fossil coral on a larger rocks on the fab block of the table	Bio/Fossil
C094 C094	033 VEM 033 VEM	ROV	ROV231 ROV231	ARM/SLP	041	3	313 09/1	1/2013	01:43:00	10	44.52330		4 34.29120 4 34.29030	10.74206	-44.57152 -44.57151	1361	f 2	lossil solitary coral maybe alive plus 4 more fossil solitary corals (3 orange 1 brown) all into black/blue tube 27 fossil solitary corals, 16 live solitary corals, fossil rubble, 1 colonial coral, at least two rocks, urchin, crinoid, 2 brittle stars all into black/blue tape tube, 1 fossil may have fallen between red/blue tube and black/blue tube	Fossil bio/fossil
C094	033 VEM	ROV	R0V231		042		313 09/1		02:03:00		44.51000			10.74204		1361		nsk 3	water
C094	033 VEM	ROV		NSK	045		313 09/1		04:41:00		44.51000			10.74183	-44.57133	1361		nsk 4	water
C094	033 VEM	ROV	ROV231	SLP	047	3	313 09/1	1/2013	05:19:00	10	44.48600) 44	4 34.11300	10.74143	-44.56855	1327		13 live solitary corals, 4-5 dead solitary corals, 2 recently dead solitaries, ophiroid, brittle star, fossil rubble all into redblue tube. Possible live solitary nto blk slurp chamber, yellow solitary coral in rock box 4	fossil/bio
C094	033 VEM	ROV	R0V231	NET	050	3	313 09/1	1/2013	07:04:00	10	44.48400) 44	34.00660	10.74140	-44.56678	1296	f	fossil coral rubble with possible live solitaries into dobule green tube and tool tray	Fossil
C094	033 VEM	ROV	ROV231	SLP	053		313 09/1		07:20:00	10) 44	4 34.00400	10.74122	-44.56673	1293	f	fossil solitary small dropped on tray? And medium size fossil solitary (2cm) both into white x 1 tube	bio/fossil
C094 C094	033 VEM 033 VEM	ROV		SLP SLP	055	3	313 09/1 313 09/1	1/2013	07:39:00 07:57:00	10 10) 44		10.74121	-44.56623 -44.56544	1277 1236		2 fossil solitary medium size fossil solitary. Live solitary	fossil bio/fossil
C094	033 VEM	ROV	R0V231 R0V231	SLP	057		313 09/1 313 09/1		07:37:00	10	44.45790) 44		10.74100	-44.56517	1225		5 live solitary coral	bio
C094	033 VEM	ROV	R0V231	SLP	058	3	313 09/1	1/2013	09:23:00	10	44.42070) 44	33.81900	10.74035	-44.56365	1165	s	squat lobsters 12 and crinoid	bio
C094 C094	033 VEM 033 VEM	ROV ROV	ROV231 ROV231	ARM	059		313 09/1 313 09/1		10:09:00 10:23:00	10	44.40600			10.74010	-44.56266 -44.56267	1139 1132		sponge fossil coral rubble	bio fossil
C094 C094	033 VEM	ROV	R0V231 R0V231	SLP	060		313 09/1 313 09/1		10:23:00	10	44.39500) 44	33.72000	10.74000	-44.56200	1132		15 live solitaries 1 fossil	bio/fossil
C094	033 VEM	ROV	ROV231	SLP	062	3	313 09/1	1/2013	11:16:00	10) 44	33.70000	10.73983	-44.56167	1122		zold coral?	bio
C094	033 VEM	ROV	ROV231		063		313 09/1		11:42:00	10	44.39440) 44		10.73991	-44.56108	1123		black cable, broken in half during sampling	plastics
C094 C094	033 VEM 033 VEM	ROV	ROV231 ROV231	SCP SLP	064 067		313 09/1 313 09/1		11:49:00 12:34:00	10 10) 44) 44	4 33.66570 4 33.64270	10.73993 10.74038	-44.56110 -44.56071	1123 1120		ive solitary coral, larger than everything else 5 live solitary coral, Carophyllia, orange polyp	Bio/Fossil bio
C094	033 VEM	ROV	ROV231	NSK	068		313 09/1	1/2013	12:56:00	10	44.42820) 44	33.64470	10.74047	-44.56075	11120		Viskin	water
C094	033 VEM	ROV	ROV231	ARM	071	3	313 09/1	1/2013	13:10:00	10				10.74068		1118		white live primnoa. 10 cm across. Fan	bio
C094 C094	033 VEM 034 VEM	ROV MGA	ROV231 MGA010	NET MCH	076		313 09/1 313 09/1		14:05:00 19:58:00	10 10	44.50500			10.74175 10.55482	-44.55774 -44.51475	1097 4949	4975 f	fossil coral rubble + crinoid	bio/fossil
C094 C094	034 VEM	MGA		MCN	001	3	313 09/1 313 09/1	1/2013	19:58:00	10) 44		10.55482	-44.51475	4949		amed sampled for top water, core top, and 1cm slices	sediment
C094	034 VEM	MGA	MGA010	MCN	003	3	313 09/1	1/2013	19:58:00	10) 44		10.55482	-44.51475	4949	4975 f	failed	
C094	034 VEM	MGA		MCH	004		313 09/1		19:58:00	10	33.28900	0 44		10.55482	-44.51475	4949		sampled for top water, pore water and plastics - rest sliced at 2cm intervals	sediment/plastics
C094	034 VEM	MGA	MGA010	NSK	005	3	313 09/1	1/2013	19:58:00	10	33.28900) 44	30.88500	10.55482	-44.51475	4949	4975 s	samples	water

	n SLP= Slurp SO Core and CTD Ev						yCore P	TN= PistonCore ROV Events ar					ARM= Arm MB	S= Multibeam st	tart MBE= mult	tibeam end		
					Event	yellow en	ntries tha	at have been corre	ected and hen	ice differ i Lat °	from the San			green entries=	lat/longs not a	Water	ISBL drop out Wire Out	
Cruise	Station #	Location	Gear	Gear #	Code	Event #	Jday	Date	Time GMT	N N	Lat Min N	Long ° W	Long Min W	Lat (DD)	Long (DD)	depth (m)	(Cores) Comments	Recipient
C094 C094	035 V 036 V		GVY MGA		GVY MCH	001		14 10/11/2013 14 10/11/2013			33.28900 51.79100			10.55482 10.86318	-44.51490 -44.49067	4959 5161	4972 6.3 m 5210 failed	
2094	036 V	VEM	MGA	MGA011	MCN	002	31	10/11/2013	14:13:00	10	51.79100) 44	29.44000	10.86318	-44.49067	5161	5210 failed	
2094 2094	036 V		MGA		MCN MCH	003		14 10/11/2013			51.79100			10.86318	-44.49067 -44.49067	5161	5210 failed	
2094	036 V 036 V	VEM	MGA		NSK	004		14 10/11/2013 14 10/11/2013		10 10) 44) 44		10.86318 10.86318	-44.49067	5161 5161	5210 failed 5210 sampled	
2094	037 V	VEM	MGA	MGA012		001	. 31	14 10/11/2013	19:32:00	10	51.79200			10.86320	-44.49067	5161	5200 failed	water
2094	037 V 037 V		MGA	MGA012 MGA012	MCN MCN	002		14 10/11/2013 14 10/11/2013		10	51.79200 51.79200) 44) 44		10.86320 10.86320	-44.49067 -44.49067	5161 5161	5200 failed 5200 failed	
2094	037 V	VEM	MGA	MGA012 MGA012		003		14 10/11/2013			51.79200			10.86320	-44.49067	5161	5200 failed	
2094	037 V		MGA	MGA012		005		14 10/11/2013			51.79200			10.86320	-44.49067	5161	5200 sampled	water
2094 2094	038 V 039 V	VEM	GVY CTD		GVY NSK	001		15 11/11/2013 15 11/11/2013	01:02:00	10 10				10.86305 10.86298	-44.49105 -44.49143	5161 5161	5195 7.07m recovery Bottle 1: 5142m	sediment water
2094	039 V	VEM	CTD	CTD005	NSK	002	31	11/11/2013	06:46:00	10	51.77900) 44	29.48600	10.86298	-44.49143	5161	Bottle 2: 5142m NOT SEALED	water
2094 2094	039 V 039 V		CTD CTD	CTD005 CTD005	NSK NSK	003		15 11/11/2013 15 11/11/2013		10 10	51.77900 51.77900			10.86298 10.86298	-44.49143 -44.49143	5161 5161	Bottle 3: 4799m Bottle 4: 4799m NOT SEALED	water
2094	039 V		CTD		NSK	004		15 11/11/2013		10	51.77900) 44		10.86298	-44.49143	5161	Bottle 5: 3799m	water
2094	039 V		CTD	CTD005		006	31	15 11/11/2013	06:46:00		51.77900			10.86298	-44.49143	5161	Bottle 6: 3799m	water
2094	039 V 039 V	VEM VEM	CTD CTD		NSK	007		15 11/11/2013 15 11/11/2013		10	51.77900 51.77900			10.86298 10.86298	-44.49143 -44.49143	5161 5161	Bottle 7: 2801m Bottle 8: 2801m	water
2094	039 V	VEM	CTD	CTD005	NSK	009	31	15 11/11/2013	06:46:00	10	51.77900) 44	29.48600	10.86298	-44.49143	5161	Bottle 9: 2002m	water
2094	039 V	/EM	CTD		NSK	010	31	11/11/2013	06:46:00		51.77900			10.86298	-44.49143	5161	Bottle 10: 2002m	water
2094 2094	039 V 039 V		CTD CTD		NSK	011		15 11/11/2013 15 11/11/2013		10	51.77900 51.77900			10.86298 10.86298	-44.49143 -44.49143	5161 5161	Bottle 11: 1503m Bottle 12: 1503m	water water
2094	039 V	VEM	CTD	CTD005	NSK	013	31	15 11/11/2013	06:46:00		51.77900) 44	29.48600	10.86298	-44.49143	5161	Bottle 13: 1204m	water
2094	039 V	/EM	CTD		NSK	014		15 11/11/2013		10				10.86298	-44.49143	5161	Bottle 14: 1204m	water
2094 2094	039 V 039 V	VEM	CTD	CTD005 CTD005	NSK	015		15 11/11/2013 15 11/11/2013	06:46:00	10	51.77900 51.77900			10.86298 10.86298	-44.49143 -44.49143	5161 5161	Bottle 15: 804m Bottle 16: 804m	water
2094	039 V	VEM	CTD	CTD005	NSK	017	31	15 11/11/2013	06:46:00	10	51.77900) 44	29.48600	10.86298	-44.49143	5161	Bottle 17: 605m	water
2094 2094	039 V 039 V		CTD		NSK	018				10	51.77900 51.77900) 44) 44	29.48600	10.86298 10.86298	-44.49143 -44.49143	5161 5161	Bottle 18: 605m Bottle 19: 406m	water
2094	039 V 039 V		CTD	CTD005 CTD005		019		15 11/11/2013 15 11/11/2013			51.77900			10.86298	-44.49143	5161	Bottle 19: 406m	water
2094	039 V	VEM	CTD		NSK	021	. 31	11/11/2013	06:46:00	10				10.86298	-44.49143	5161	Bottle 21: 76m	water
2094 2094	039 V 039 V		CTD CTD		NSK NSK	022		15 11/11/2013 15 11/11/2013			51.77900 51.77900			10.86298 10.86298	-44.49143 -44.49143	5161 5161	Bottle 22: 76m Bottle 23: 5m	water
2094	039 V		CTD		NSK	023		15 11/11/2013		10				10.86298	-44.49143	5161	Bottle 24: 5m	water
2094	039 V	VEM	CTD		CTDprofile	e 025	31	15 11/11/2013	06:46:00	10	51.77900) 44	29.48600	10.86298	-44.49143	5161	CTD profile uploaded into SIS	Survey
2094 2094	040 V 041 V		DRG ROV		DRG ARM	001		15 11/11/2013 15 11/11/2013			42.15400 43.71000			10.70257 10.72850	-44.42800 -44.42513	880	From 880-809: small corals:stylasterids, pebbles, brittle star large, dead, coral	bio/fossil fossil
2094	041 V	VEM	ROV	ROV232	ARM	004	31	15 11/11/2013	22:36:00	10	43.71300) 44	25.50800	10.72855	-44.42513	1302	sponge with zooanthids	bio
2094	041 V 041 V		ROV		ARM SLP	005	31	15 11/11/2013 15 11/11/2013	22:40:00	10	43.71100) 44) 44	20.00000	10.72852 10.72752	-44.42513 -44.42450	1300	primnoid glass sponge-tubular	bio bio
2094	041 V 041 V		ROV		SLP	008		15 11/11/2013		10) 44		10.72752	-44.42450	11/5	white stylasterid fan	bio
2094	041 V	VEM	ROV		SLP	012		16 12/11/2013		10) 44		10.72715	-44.42425	1146	mixed fossil corals- fossil solitary coral	fossil
2094 2094	041 V 041 V				SLP PSH	013		16 12/11/2013		10	43.62900) 44) 44		10.72715 10.72570	-44.42415 -44.42368	1140	Live Solitary Coral x2, mixed fossil coral and small white live stylasteterid	bio/fossil sediment
2094	041 V 041 V		ROV		PSH	014		16 12/11/2013 16 12/11/2013		10) 44		10.72570	-44.42368	1094	approx 1/3 full approx 1/3 full	sediment
2094	041 V	VEM	ROV		PSH	016	31	16 12/11/2013	01:38:00				25.42100	10.72570	-44.42368	1094	approx 1/3 full	sediment
2094	041 V 041 V		ROV		SLP	017		16 12/11/2013 16 12/11/2013		10 10) 44) 44	20110120	10.72446	-44.42345 -44.42307	1076	Live solitary x5 large live solitary, like event 17	bio
2094	041 V	VEM	ROV	ROV232	ARM	021	31	16 12/11/2013	02:44:00	10	43.36900) 44	25.37940	10.72282	-44.42299	1014	glass tubular sponge attached to coral rubble	Bio/Fossil
2094	041 V		ROV		SLP	022		16 12/11/2013		10				10.72254	-44.42292	993	Live solitary coral on fossil coral branch	Bio/Fossil
2094 2094	041 V 041 V	VEM VEM	ROV ROV		SLP SLP	023		16 12/11/2013 16 12/11/2013		10	43.32480			10.72208 10.72185	-44.42287 -44.42283	976	flat sponge plastic? Shell?	bio
2094	041 V	VEM	ROV	ROV232	SLP	025	31	16 12/11/2013	03:41:00	10	43.30820) 44	25.37040	10.72180	-44.42284	964	fossil solitary	fossil
2094 2094	041 V 041 V		ROV		SLP	026	31	16 12/11/2013	03:49:00	10	43.30180) 44) 44		10.72170	-44.42280 -44.42280	961	live solitary small stylasterid	bio
.094 2094	041 V 041 V	VEM	ROV		SLP	027		16 12/11/2013 16 12/11/2013	03:53:00	10				10.72100	-44.42253	935	1 live solitary	bio
2094	041 V	VEM	ROV	ROV232		029	31	16 12/11/2013	04:40:00		43.15160		25.33400	10.71919	-44.42223	906	Live solitary- flat and larger than previous	bio
2094 2094	041 V 041 V		ROV		SLP NET	030		16 12/11/2013 16 12/11/2013		10	43.03650			10.71728 10.71605	-44.42205 -44.42184	858	sponge, yellow desmo? fossil framework coral rubble with fossil stylasterids	bio fossil
2094	041 V	VEM	ROV	ROV232	SLP	033	31	16 12/11/2013		10				10.71568	-44.42179	790	live? Small solitary coral x3 or 4	bio
2094	041 V	/EM	ROV	ROV232		035	31	16 12/11/2013	07:01:00		42.94290			10.71572	-44.42178	790	live white stylasterid	bio
2094 2094	041 V 041 V	VEM VEM	ROV ROV		SLP SLP	036		16 12/11/2013 16 12/11/2013	07:02:00	10) 44) 44		10.71572 10.71502	-44.42178 -44.42155	790	sponge- live (white globular) live small stylasterid x15	bio bio
2094	041 V	VEM	ROV	ROV232	SLP	038	31	16 12/11/2013	07:41:00	10	42.89840) 44	25.29330	10.71497	-44.42156	738	fossil stylasterid	fossil
2094 2094	041 V	VEM	ROV ROV		SLP NSK	039		16 12/11/2013		10 10) 44) 44		10.71497 10.71494	-44.42156 -44.42152	737	coral rubble (tiny!)	fossil
2094	041 V 041 V			ROV232 ROV232		040		16 12/11/2013 16 12/11/2013			42.89660			10.71494 10.71416	-44.42152	734	2 niskins (1 and 2) coral rubble. Live stylasterids	bio/fossil
2094	041 V	VEM	ROV	ROV232	SLP	044	31	16 12/11/2013	08:27:00	10	42.82860) 44	25.27430	10.71381	-44.42124	676	Coral rubble (maybe a fossil solitary)	fossil
2094	041 V	VEM	ROV		SLP SLP	048		16 12/11/2013	09:32:00	10) 44) 44		10.71263	-44.42088	628	7 squat live lobsters	bio
2094 2094	041 V 041 V		ROV ROV		SLP	051		16 12/11/2013 16 12/11/2013			42.71890 42.71890			10.71198 10.71198	-44.42055 -44.42055	606	styalasterid rubble live white stylasterid fan	fossil bio/fossil
2094	041 V	VEM	ROV	ROV232	SLP	055	31	16 12/11/2013	10:25:00	10	42.71670) 44	25.23390	10.71195	-44.42057	605	Ensallapsommia- from 3 different colonies	bio/fossil
2094 2094	041 V 041 V		ROV		SLP NET	056		16 12/11/2013 16 12/11/2013		10	42.71670	44		10.71195	-44.42057 -44.42037	605 599	fossil rubble Styalasterid and ensallopsommia rubble	fossil
.094 2094	041 V 041 V			ROV232 ROV232	SLP	059		16 12/11/2013			42.69310			10.71171	-44.42037	595	squat lobster x3	bio
2094	041 V	VEM	ROV	ROV232	ARM	063	31	16 12/11/2013	11:30:00	10	42.68640) 44	25.21930	10.71144	-44.42032	593	Purple soft coral	bio
2094	041 V	VEM	ROV	ROV232	PSH	066	31	16 12/11/2013	12:41:00	10	42.51740	44	25.09150	10.70862	-44.41819	570	Push Core 1/2 to 1/3 full	sediment

	Core and CTD I					:/long		R	OV Events an	e LAT/LONG	of USBL a	ind Depth fro	n DVL	ARM= Arm MB	S= Multibeam st				
				1		yellow e	ntries t	that hav	ve been corre	ected and hen	ce differ f	from the Sam	ole Logs		green entries=	lat/longs not a	ccurate due to U Water	3L drop out	
Cruise	Station #	Location	Gear	Gear #	Event Code	Event #	Jda	ay	Date	Time GMT	Lat° N	Lat Min N	Long ° W	Long Min W	Lat (DD)	Long (DD)	depth (m)	Vire Out (Cores)	Recipient
094	041	VEM	ROV	ROV232	PSH	063	7	316	12/11/2013	12:44:00	10	42.51740	44	25.09150	10.70862	-44.41819	570	Push core about 1/4 full	sediment
)94	041		ROV	ROV232	PSH	068			12/11/2013	12:46:00	10	42.51810	44	25.09130	10.70864	-44.41819	570	Push core about 1/3 full	sediment
)94)94	041 041	VEM	ROV	ROV232 ROV232	NSK	069			12/11/2013	12:50:00 12:50:00	10 10	42.51370 42.51370	44 44	25.08320 25.08320	10.70856	-44.41805 -44.41805	568 568	Niskin 3 Niskin 4	water
194 194	041 041		ROV	R0V232 R0V232		07			12/11/2013	12:50:00	10	42.51370	44		10.70856	-44.41805	568	Niskin 4 Niskin 5	water
94	041		ROV	ROV232	SLP	073	2	316	12/11/2013	12:53:00	10	42.51350	44	25.08310	10.70856	-44.41805	570	small white stylasterids, live	bio
094	041		ROV	ROV232		075	5	316	12/11/2013	13:14:00	10	42.57620	44	25.05700	10.70960	-44.41762	569	green sponge about 10 cm size attached to hard substrate	bio
)94)94	041		ROV	ROV232 ROV232	SLP NET	078			12/11/2013 12/11/2013	14:18:00 14:22:00	10	42.40620	44 44	24.82950 24.82950	10.70677	-44.41383 -44.41383	568 568	failed rubble net	fossil
)94	042		ROV	R0V233		00			12/11/2013	23:01:00	10	46.85000	44	35.93000		-44.59883	2949	glass bottle, anthropogenic into tool tray	Anthro
94	042		ROV	ROV233	ARM	003			12/11/2013	23:04:00	10	46.85	44		10.78083	-44.59883	2950	live bamboo coral-long-whit with pink polyps into tool tray	bio
)94)94	042	VEM	ROV	ROV233 ROV233	ARM	003			12/11/2013 12/11/2013	23:08:00 23:24:00	10	46.85	44 44	35.93000	10.78083	-44.59883 -44.59850	2950 2985	small piece of white fossil coral-failed large glass sponge into white slurp chamber	bio
094	042	VEM	ROV	R0V233	SLP	00			12/11/2013	23:24:00	10	46.842	44		10.78070	-44.59843	2983	stalked sponge-might be caught in tubing, white slurp chamber	bio
)94	042	VEM	ROV	ROV233	PSH/SCP		0	317	13/11/2013	00:00:00	10	46.8334	44	35.93580		-44.59893	2932	push core used as schoop-about .5 full red x1	sediment
94	042		ROV	ROV233	PSH/SCP	01			13/11/2013	00:04:00	10	46.8327	44	35.93990	10.78055	-44.59900	2932	push core used as scoop.5 full red x2	sediment
)94)94	042		ROV	ROV233 ROV233	PSH/SCP NSK	013			13/11/2013	00:07:00	10 10	46.8309 46.8311	44 44	35.93440	10.78052	-44.59891 -44.59894	2932 2932	push core used as scoop about 8 cm red x3 fired niskin 1	sediment water
)94)94	042		ROV	R0V233	NSK	014			13/11/2013	00:10:00	10	46.8311	44	35.93620	10.78052	-44.59894	2932	fired niskin 2	water
094	042	VEM	ROV	ROV233	SLP	013	7	317	13/11/2013	00:29:00	10	46.833	44	35.95420	10.78055	-44.59924	2898	fossil colonial coral rubble and sediment, into black x2 tube and white slurp chamber and red slurp chamber	fossil
)94	042		ROV	ROV233	ARM	020			13/11/2013	00:57:00	10	46.8204	44			-44.59934	2887	very large ellow sponge-ear shaped into starboard bio box ferail enderid which lagres are tables of	bio
)94)94	042		ROV	ROV233 ROV233	ARM	02			13/11/2013	01:03:00 01:24:00	10	46.8272 46.8247	44 44	35.95760	10.78045 10.78041	-44.59929 -44.59955	2888 2875	fossil colonial rubble into rock box 5 thick fossil base with thin live bamboo coral on it-rock box 5	fossil bio/fossil
)94)94	042		ROV	R0V233 R0V233	SLP	02			13/11/2013	01:24:00	10	46.8258	44	35.97280	10.78041	-44.59959	2875	Lines to say a set with this ive cannot control in the basis	bio
)94	042	VEM	ROV	ROV233	ARM	028	B	317	13/11/2013	02:02:00	10	46.7813	44	36.01440	10.77969	-44.60024	2818	large, thick fossil branches x 3 and colonial rubble into white x1 forward tube	fossil
094	042		ROV	ROV233	ARM	03			13/11/2013	02:27:00	10	46.784	44	36.02800	10.77973	-44.60047	2809	large stylasterid fan-broken into pieces, in fwd bio box	bio/fossil
194 194	042	VEM	ROV	ROV233 ROV233	ARM	03	4	317	13/11/2013 13/11/2013	03:43:00	10	46.6703 46.6686	44 44	36.03970 36.03770	10.77784	-44.60066 -44.60063	2688 2688	large piece of fossil coral-possibily bamboo, free-like branch into to pieces and piece on net, stored int ool tray pieces of fossil colonial coral-broken branch bits, into 1x blue tube	fossil
194	042		ROV	R0V233 R0V233		03	B S	317	13/11/2013	03:32:00	10	46.614	44	36.02390	10.77690	-44.60063	2666	solitary fossil coral-5cm large into 1x blue tube	fossil
194	042		ROV	R0V233	SLP	04:			13/11/2013	06:06:00	10	46.3916	44	36.03010	10.77319	-44.60050	2433	fossil bamboo coral, large pieces into 1x red forward tube	fossil
94	042		ROV	ROV233	SLP	042			13/11/2013	06:09:00	10	46.3912	44	36.03080	10.77319	-44.60051	2433	sponge, white, globular quite small into 1xred forward tube	bio
194	042		ROV	ROV233	SLP	04			13/11/2013	07:46:00	10	46.178	44	36.02300	10.76963	-44.60038 -44.60045	2235	live? solitary coral x2 into 2x red	bio
)94	042	VEM	RUV	ROV233	SLP	048	8.	317	13/11/2013	08:09:00	10	46.132	44	36.02700	10.76887	-44.60045	2230	stalked sponge and fan shaped sponge into port biobox small white elongaated dead? Solitary coral and ellowing fossil coral. One may be the same or on anenome? And another dead one all int 2x blue	bio
094	042	VEM	ROV	ROV233	SLP	05	1	317	13/11/2013	08:51:00	10	46.099	44	36.03300	10.76832	-44.60055	2202	vellow tube	fossil
094	042	VEM	ROV	ROV233	SLP	054		317	13/11/2013	09:23:00	10	46.091	44	36.04100	10.76818	-44.60068	2191	another small (larger than 51 though) dead? solitary coral- into white/red tube of rock box 3	fossil
094		VEM	ROV	ROV233	SLP	053			13/11/2013	09:50:00	10	46.0769	44	36.03580	10.76795	-44.60060	2192	small solitar coral x 2 (trumpet shaped, deal) short piece of bamboo coral into white/red tube-rock box 3	fossil
094 094	042		ROV	ROV233 ROV233	0	058			13/11/2013	09:58:00	10 10	46.0769	44 44		10.76795	-44.60060	2192 2193	fossil sponge, pieces of dead/fossil octocoral- into white/red tube-rock box 3 rock	fossil rock
094	042		ROV	R0V233	SLP	06			13/11/2013	10:10:00	10	46.0769	44	36.03780	10.76795	-44.60063	2190	solitary coral dead into white/red tube of rock box	fossill
094	042	VEM	ROV	ROV233		06	1	317	13/11/2013	10:20:00	10	46.0769	44	36.03780	10.76795	-44.60063	2190	corallium, fan, pink, live, dead base of corallium covered with hydroids into forward bio box	bio
094 094	042		ROV	ROV233	SLP	06			13/11/2013	10:29:00	10	46.0769	44	36.03780	10.76795	-44.60063 -44.60057	2190	dead double solitary coral into white/red tube of rock box 3	fossil
094 094	042	VEM	ROV	ROV233 ROV233	SLP	06			13/11/2013	10:40:00 10:52:00	10	46.0586	44	36.03390	10.76764	-44.60057	2183 2161	small dead solitary coral into red chamber small live solitary coral into blackblue tube of rock box 3	fossil bio
094	042		ROV	R0V233	SLP	06			13/11/2013	11:11:00	10	46.0001	44		10.76667	-44.60065	2129	small live solitary coral x 2 into 2x whit tube in rock box 1	bio/fossil
094	042		ROV	ROV233		070			13/11/2013	11:14:00	10	45.9989	44	36.04100	10.76665	-44.60068	2128	green one strip 3/4 collected by scooping action (core top)	sediment
094 094	042		ROV	ROV233	SLP	073			13/11/2013	12:25:00	10	45.8725	44 44	36.03730	10.76454	-44.60062	2001	dead flared solitary coral into red chamber	fossil
094 094	042 042		ROV	ROV233 ROV233	ARM/SLF ARM	079			13/11/2013 13/11/2013	14:19:00 14:35:00	10	45.5912 45.5912	44	35.98870 35.98870	10.75985 10.75985	-44.59981 -44.59981	1735 1735	yellow live enalopsamia (small piece) an some enalopsamia white/dead? Into 2x white tube yellow live enaloopsamia (larger piece of above coral) into port bio box	bio bio
094	042		ROV	R0V233	NSK	080			13/11/2013	14:39:00	10	45.5943	44	35.99100	10.75991	-44.59985	1735	niskin 3 fired	water
)94	042	VEM	ROV	ROV233	ARM	083	-		13/11/2013	15:35:00	10	45.382	44	36.11860	10.75637	-44.60198	1694	madrepora dead (probably) into fwd bio box	fossil
094	042		ROV	ROV233	ARM	084			13/11/2013	15:51:00	10	45.3452	44	36.14410	10.75575	-44.60240	1678	coral rubble of reasonable size into white/black tube	fossil
)94)94	042		ROV	ROV233 ROV233	ARM	08			13/11/2013 13/11/2013	16:00:00 16:03:00	10 10	45.3453 45.346	44 44	36.14500 36.14580	10.75576	-44.60242 -44.60243	1678 1678	coral branch (dead) into white/black tube coral branches of reasonable size into white/black tube some rubble went into white/blue tube	fossil fossil
094 094	042		ROV	ROV233 ROV233		080		317	13/11/2013	16:03:00	10	45.346	44	36.14580 36.14900		-44.60243	1678	coral branches of reasonable size into white/black tube some rubble went into white/blue tube mostly large pieces of fossil colonial coral into orange strip net	fossil
094	042	VEM	ROV	R0V233	SLP	093	2	317	13/11/2013	17:26:00	10	45.2647	44	36.15260	10.75441	-44.60254	1648	modul ange precessor colour colour and o uninge strip net medium sized vase sponge with brown bits into yellow slurp chamber	bio
)94	042	VEM	ROV	ROV233	SLP	093			13/11/2013	17:28:00	10	45.2664	44	36.15320	10.75444	-44.60255	1648	fossil colonial coral pieces into rock box 4 2ith some falling into red/blue tube	fossil
)94)94	042		ROV	ROV233 ROV233		093			13/11/2013 13/11/2013	18:05:00	10	45.104 45.1027	44 44	36.15430 36.15350	10.75173	-44.60257 -44.60256	1578	fossil framework, too bio for bio box, small piece in forward aft, large in tool tray fired 2 niskin bottles 4 and 5	fossil water
)94)94	042		ROV	ROV233 ROV233	NET	090			13/11/2013	18:05:00	10	45.1027 45.1434	44	36.15350	10.75171	-44.60256	1578	nred 2 niskin bottles 4 and 5 large pieces of fossil framework and smaller rubble in blue net and aft bio box	fossil
194	043	VEM	ROV	ROV234		00	1	318	14/11/2013	02:35:00	10	43.729	44	25.47900	10.72882	-44.42465	1283	Bottle 1	water
94	043		ROV	ROV234	NSK	003			14/11/2013	02:35:00	10	43.729	44	25.47900	10.72882	-44.42465	1283	Bottle 2	water
94 94	043		ROV ROV	ROV234 ROV234	NSK	003			14/11/2013	02:35:00	10	43.729 43.729	44 44	25.47900 25.47900	10.72882	-44.42465 -44.42465	1283	Bottle 3 Bottle 4	water
94 94	043		ROV	ROV234 ROV234		004			14/11/2013	02:35:00	10	43.729	44	25.47900	10.72882	-44.42465	1283	Bottle 4 Bottle 5	water water
94	044	VAY	CTD	CTD006	NSK	00:			16/11/2013	11:10:00	15	16.246	48	15.58100	15.27077	-48.25968	4171	Bottle 1: 4168m	water
94	044	VAY	CTD	CTD006	NSK	003	2	320	16/11/2013	11:10:00	15	16.246	48	15.58100	15.27077	-48.25968	4171	Bottle 2: 4168m	water
94 94	044		CTD	CTD006 CTD006	NSK	003			16/11/2013	11:10:00 11:10:00	15	16.246 16.246	48 48	15.58100 15.58100	15.27077	-48.25968 -48.25968	4171 4171	Bottle 3: 3798m Bottle 4: 3798m	water
94 94	044 044		CTD	CTD006 CTD006	NSK	004	-		16/11/2013 16/11/2013	11:10:00	15	16.246	48 48	15.58100	15.27077	-48.25968 -48.25968	4171 4171	Bottle 4: 3798m Bottle 5: 2800m	water
)94	044		CTD	CTD006	NSK	00	6	320	16/11/2013	11:10:00	15	16.246	48	15.58100	15.27077	-48.25968	4171	Bottle 6: 2800m DID NOT CLOSE	water
194	044	VAY	CTD	CTD006	NSK	003		320	16/11/2013	11:10:00	15	16.246	48	15.58100	15.27077	-48.25968	4171	Bottle 7: 2001m DID NOT CLOSE	water
094	044		CTD	CTD006	NSK	008			16/11/2013	11:10:00	15	16.246	48	15.58100	15.27077	-48.25968	4171	Bottle 8:2001m	water
094 094	044		CTD	CTD006 CTD006	NSK	009			16/11/2013 16/11/2013	11:10:00 11:10:00	15	16.246 16.246	48 48	15.58100 15.58100	15.27077	-48.25968 -48.25968	4171 4171	Bottle 9: 1503m Bottle 10: 1503m	water water
0.74		VAY VAY	CTD	CTD006 CTD006	NSK	010	1	320	16/11/2013	11:10:00	15	16.246	48	15.58100	15.27077	-48.25968	41/1 4171	Bottle 10: 1503m Bottle 11: 1200m	water
094											-0								
	044 044 044	VAY	CTD CTD	CTD006 CTD006	NSK NSK	012			16/11/2013 16/11/2013	11:10:00 11:10:00	15	16.246	48 48	15.58100 15.58100	15.27077	-48.25968 -48.25968	4171 4171	Bottle 12: 1200m Bottle 13: 1004m	water water

NSK= Nisk	cin SLP= Slurp SCP= Scoop M Core and CTD Events are ent				it/long		1	ROV Events an	e LAT/LONG o	of USBL and	Depth from E	OVL	ARM= Arm MBS				
Cruise	Station # Location	Gear	Gear #	Event Code	Even		Jday	nave been corre Date	time GMT	Lat [®]	t Min N	Logs .ong° W	Long Min W	Lat (DD)	Long (DD)	accurate due to USBL drop Water depth (m) Wire C (Core	ut
C094	044 VAY	CTD	CTD006	NSK	1	015	320	16/11/2013	11:10:00	15	16.246	48	15.58100	15.27077	-48.25968	4171	Bottle 15: 805m water
C094	044 VAY	CTD	CTD006	NSK		016	320	16/11/2013	11:10:00	15	16.246	48		15.27077	-48.25968	4171	Bottle 16: 805m water water
C094 C094	044 VAY 044 VAY	CTD CTD	CTD006 CTD006	NSK		017 018		16/11/2013 16/11/2013	11:10:00 11:10:00	15	16.246 16.246	48 48		15.27077	-48.25968 -48.25968	4171 4171	Bottle 17: 505m water Bottle 18: 505m water
C094	044 VAY	CTD	CTD006	NSK		019		16/11/2013		15	16.246	48		15.27077		4171	Bottle 19: 205m water
C094	044 VAY	CTD	CTD006	NSK		020	320	16/11/2013	11:10:00	15	16.246	48		15.27077	-48.25968	4171	Bottle 20: 205m water
C094 C094	044 VAY 044 VAY	CTD	CTD006 CTD006	NSK NSK		021		16/11/2013		15 15	16.246 16.246	48 48		15.27077	-48.25968 -48.25968	4171 4171	Bottle 21: 96m water Bottle 22: 96m water
C094	044 VAY	CTD	CTD006	NSK		023		16/11/2013	11:10:00	15	16.246	48		15.27077	-48.25968	4171	Botte 22. John Water
C094	044 VAY	CTD	CTD006	NSK		024		16/11/2013		15	16.246	48		15.27077		4171	Botle 24: 10m water
C094 C094	044 VAY 045 VAY	CTD ROV	CTD006 ROV235	CTD prof		025		16/11/2013 16/11/2013		15	16.246	48 48		15.27077		4171 1514	sound velocity profiler did not work. Profile infered from temperature and depth survey Fossil coral fragments fossil
C094	045 VAY	ROV	R0V235	SLP		002		16/11/2013		14	51.8193	40		14.86366	-48.24193	1514	rossi totari raginetits fossi 1x brown fossi solitary coral fossi
C094	045 VAY	ROV	ROV235	SLP		003	320	16/11/2013	22:36:00	14	51.8184	48		14.86364		1513	fossil coral fragments + 1x brown fossil solitary fossil
C094	045 VAY	ROV	ROV235	NET ARM		004		16/11/2013		14	51.821	48		14.86368		1513	fossil coral debris-full net! fossil
C094 C094	045 VAY 045 VAY	ROV	ROV235 ROV235			010		16/11/2013 17/11/2013		14	51.788 51.763	48 48		14.86313	-48.24152 -48.24110	1483 1455	1x golf ball demosponge. Large piece dead coral framework with large encrusting demosponge bio/fossil Uber long bamboo whip coral (curly) bio
C094	045 VAY	ROV	ROV235	SLP	(013		17/11/2013		14	51.713	48	14.45000	14.86188	-48.24083	1425	pink armoured holothurian bio
C094	045 VAY	ROV	ROV235	SLP		014		17/11/2013	00:34:00	14	51.713	48		14.86188	-48.24083	1425	white golf ball sponge bio
C094 C094	045 VAY 045 VAY	ROV	ROV235 ROV235			015	321	17/11/2013 17/11/2013	00:36:00 00:45:00	14	51.71 51.69	48 48		14.86183 14.86150	-48.24083 -48.24050	1425 1416	pink armoured holothurian bio white live stylasterid coral framework bio
C094	045 VAY	ROV	ROV235	SLP		021		17/11/2013		14	51.66	48	14.36000	14.86100		1394	when we system to a it is intervolk to be provided in the system of the
C094	045 VAY	ROV	ROV235	SLP		024	321	17/11/2013	01:53:00	14	51.66	48		14.86100	-48.23750	1416	pink armoured holothurian x2 (possibly 3) tiny sponge bio
C094	045 VAY	ROV	ROV235 ROV235			027		17/11/2013		14 14	51.65 51.65	48 48		14.86083 14.86083	-48.23717 -48.23717	1412	pink armoured holothurian bio fossil coral rubble. Small fossil solitary x8. Ophuriod and sponge. Event ended at 02:51 bio/fossil
C094 C094	045 VAY 045 VAY	ROV	ROV235 ROV235	SLP		030		17/11/2013 17/11/2013		14	51.65	48		14.86083	-48.23717	1412 1412	fossil coral rubble. Small fossil solitary x8. Ophuriod and sponge. Event ended at 02:51 bio/fossil armoured holothorian bio
C094	045 VAY	ROV	ROV235	SLP		032	321	17/11/2013	02:30:00	14	51.65	48	14.22000	14.86083	-48.23700	1411	2 pink armoured holothurian bio
C094	045 VAY	ROV	ROV235			033		17/11/2013		14	51.6469	48		14.86078		1411	live solitary coral (white top/ black-brown stem) bio
C094 C094	045 VAY 045 VAY	ROV ROV	ROV235 ROV235	SLP SLP		036		17/11/2013 17/11/2013		14 14	51.6408 51.6411	48 48		14.86068 14.86069	-48.23671 -48.23651	1407 1406	Live, big, white, round, sponge with lumps on surface bio 1 live pink armoured holothurian bio
C094	045 VAY	ROV	R0V235			040		17/11/2013		14	51.6411	48	14.19050	14.86069	-48.23651	1406	1 small white live solitary coral bio
C094	045 VAY	ROV	ROV235			043	321	17/11/2013	04:33:00		51.6459	48		14.86077	-48.23595	1420	4 live solitary coral. Rock with 3 brittle stars bio
C094	045 VAY	ROV	ROV235	SLP		044	321	17/11/2013	04:43:00	14	51.6459 51.6459	48		14.86077 14.86077	-48.23595 -48.23595	1420	1 dead small solitary coral fossi 3 live pink armoured holburais plus a live prittle star bio
C094 C094	045 VAY 045 VAY	ROV ROV	ROV235 ROV235			045		17/11/2013 17/11/2013		14	51.6459	48	11.15070	14.86081	-48.23595	1420 1421	3 live Pink armoured holthurains plus a live brittle star bio 1 live yellow large soft coral + 1 snakestar bio
C094	045 VAY	ROV	ROV235	SLP		049		17/11/2013	05:08:00	14	51.6487	48	14.15260	14.86081	-48.23588	1421	1 live pink armoured holothurian bio
C094	045 VAY	ROV	ROV235	SLP		050		17/11/2013	05:10:00	14	51.6487	48		14.86081	-48.24210	1421	2 small live solitary coral. 3 medium live solitary coral. bio
C094 C094	045 VAY 045 VAY	ROV	ROV235 ROV235			051 052		17/11/2013 17/11/2013		14	51.648 51.648	48 48		14.86080 14.86080		1420 1420	Niskin 1 water Niskin 2 water
C094	045 VAY	ROV	ROV235	SLP		055				14	51.6507	48		14.86085	-48.23567	1420	7 small live solitary coral. Fossil coral fragments bio/fossil
C094	045 VAY	ROV	ROV235			056		17/11/2013		14	51.6507	48		14.86085	-48.23567	1420	1 fossil solitary coral fossil
C094 C094	045 VAY 045 VAY	ROV	ROV235 ROV235	SLP SLP		059 062		17/11/2013 17/11/2013		14 14	51.6566 51.6708	48 48		14.86094 14.86118	-48.23535 -48.23472	1416 1390	2 small live solitary coral. 1 white small live solitary coral. bio 2 live solitaries. Possibly 2 more live small solitaries. bio
C094	045 VAY	ROV	R0V235			065	321	17/11/2013	06:28:00		51.6759	48		14.86127	-48.23448	1377	3 small solitary corals (live). 1 medium live solitary coral bio
C094	045 VAY	ROV	ROV235			070		17/11/2013		14	51.7102	48		14.86184		1259	Yellow fan coral with brittle stars (Ena? Corallium?) bio
C094	045 VAY	ROV	ROV235	SLP SLP		071		17/11/2013			51.7107	48 48		14.86185	-48.23247	1259	Live solitary. Yellow fan coral fragments bio
C094 C094	045 VAY 045 VAY	ROV ROV	ROV235 ROV235	SLP		072		17/11/2013 17/11/2013		14	51.7097 51.711	40		14.86183 14.86185	-48.23247 -48.23247	1259 1258	Fossil coral pieces (colonial framework) fossil live solitaries (medium size) x3 bio
C094	045 VAY	ROV	ROV235	NET		074	321	17/11/2013		14	51.7109	48		14.86185		1258	fossil framework and colonial fragments fossil
C094	045 VAY	ROV	ROV235	SLP		081		17/11/2013	11:50:00	14	51.82	48		14.86367	-48.22256	1303	fossil solitaries-small x4 + some other debris fossil
C094 C094	045 VAY 045 VAY	ROV ROV	ROV235 ROV235	ARM		084		17/11/2013 17/11/2013	12:42:00 13:38:00	14	51.9618 52.0586	48 48		14.86603 14.86764	-48.22028 -48.21646	1150 1115	Rounded mottled brown sponge fan on fossil branch base bio/fossil Push core about 2/3 full sediment
C094	045 VAY	ROV	ROV235			091		17/11/2013		14	52.0586	48	12.98770	14.86764	-48.21646	1115	Push core about 1/2 full Sediment
C094	045 VAY	ROV	ROV235	PSH		092	321	17/11/2013	13:41:00	14	52.0586	48		14.86764	-48.21646	1115	Push core about 3/4 full sediment
C094 C094	045 VAY 045 VAY	ROV ROV	ROV235 ROV235			093 094		17/11/2013 17/11/2013		14 14	52.0586 52.0586	48 48		14.86764 14.86764		1115 1115	Niskin 3 fired water Niskin 4 fired water
C094 C094	045 VAY	ROV	ROV235 ROV235	SLP		094		17/11/2013		14	52.0586	48		14.86780	-48.21646	1094	Niskin 4 inten water Relatively small live white solitarx x7 Bio
C094	045 VAY	ROV	ROV235	SLP	(096	321	17/11/2013	14:20:00	14	52.0671	48	12.93480	14.86779	-48.21558	1094	whip primnoid- long Bio
C094 C094	045 VAY	ROV	ROV235	-		101 102		17/11/2013	14:45:00 14:53:00	14	52.0669 52.0669	48 48		14.86778 14.86778	-48.21491	1106 1106	Solitaries: 3 small dead. 1 small live bio/fossil proveroficiational dead aslitariae : fossil galantil bueatch bio/fossil
C094 C094	045 VAY 045 VAY	ROV	ROV235 ROV235	SLP SLP		102		17/11/2013 17/11/2013	14:53:00 16:02:00	14 14	52.0669	48		14.86778	-48.21491 -48.21255	106	sponge(tentacled). 3 dead solitaries + fossil colonail bycatch bio/fossil 3x fossil solitary coral. 3 x live purple solitary. Small white live stylasterid bio/fossil
C094	045 VAY	ROV	ROV235	ARM		107	321	17/11/2013	16:49:00	14	52.07	48	12.71000	14.86783	-48.21183	1035	Large piece of corallium and madrepora bio
C094	045 VAY	ROV	ROV235			109		17/11/2013		14	52.07	48		14.86783	-48.21100	1070	fossil coral rubble fossil
C094 C094	045 VAY 045 VAY	ROV	ROV235 ROV235	SLP PSH		110 111		17/11/2013 17/11/2013		14	52.07 52.07	48 48		14.86783 14.86783	-48.21100	1070	solitry coral bio/fossil Push core about 1/2 full sediment
C094	045 VAY	ROV	ROV235			112		17/11/2013		14	52.07	48		14.86783	-48.21117	1070	Push core about 1/2 full Sediment
C094	045 VAY	ROV	ROV235	PSH		113	321	17/11/2013	18:17:00	14	52.07	48	12.67000	14.86783	-48.21117	1070	Push core about 3/4 full sediment
C094 C094	045 VAY 046 VAY	ROV	ROV235 MGA013	ARM MCH		116 001	321	17/11/2013 18/11/2013	18:43:00 06:38:00	14	52.05 10.43	48 48		14.86750 15.17383	-48.20900 -48.25013	1076 4124 4	live branching sponge bio 154 S0130- to Lucy sediment
C094 C094	046 VAY 046 VAY	MGA	MGA013 MGA013			001		18/11/2013 18/11/2013		15	10.43	48	20.0000	15.17383	-48.25013		154 S0130- to Lucy sediment 154 S0131- 8cm sediment sediment
C094	046 VAY	MGA	MGA013	MCH		003	322	18/11/2013	06:38:00	15	10.43	48	15.00800	15.17383	-48.25013	4124 4	154 Johan Sediment Sediment
C094	046 VAY	MGA	MGA013	MCN		004		18/11/2013		15	10.43	48		15.17383	-48.25013	4124 4	154 S0133-4cm (bagged) sediment
C094 C094	046 VAY 047 VAY	MGA GVY	MGA013 GVY009			005		18/11/2013 18/11/2013		15 15	10.43 10.431	48 48		15.17383	-48.25013 -48.25015		154 Niskin sampled water 147 Payout all the way to 4178m to try to fix wire. Core came up emty
C094	047 VA1 048 VAY	ROV	ROV236			001		18/11/2013		15	53.5147	40		15.17365	-48.14994	867	147 / Fayout all the way to 4176m to try to its wire. Core came up entry 33 yellow, about 1 inch of sediment, potentially mixed sediment
C094	048 VAY	ROV	R0V236	PSH		005	322	18/11/2013	20:02:00	14	53.5143	48	8.99650	14.89191	-48.14994	867	1x yellow, about a quarter full sediment
C094	048 VAY	ROV	ROV236	PSH		004		18/11/2013		14	53.5147	48		14.89191	-48.14993	867	Zx yellow, about 3 inches of sediment, mixed sediment Nizipier output
C094	048 VAY 048 VAY	ROV	ROV236 ROV236	NSK		006		18/11/2013	20:06:00 20:06:00	14 14	53.5142 53.5142	48 48		14.89190 14.89190	-48.14996 -48.14996	867 867	Niskin 1 water Niskin 2 water

	Core and CTD	intents are en					trios that		are LAT/LONG of USE prected and hence diff				moon ontrios-	lat/longs not a	courate due te	UCPI drop our	4	
Cruise	Station #	Location	Gear	Gear #	Event Code	Event #	Jday	Date	Time GMT	• Lat Min N	Long° W	Long Min W	Lat (DD)	Long (DD)	Water depth (m)	Wire Out (Cores)	Comments	Recipient
094		VAY	ROV	ROV236	SLP	010	322			14 53.5095	48		14.89183	-49.15003	865		white thin tubular sponge, green slurp chamber	bio
)94	048		ROV		SLP	011				14 53.5083	48		14.89181	-48.15014	862		live stylasterid on live colonial coral, 2x black tube	bio
194 194	048		ROV		ARM	012				14 53.4704 14 53.4705	48	9.06040 9.06130	14.89117	-48.15101 -48.15102	848		live scleractinian colonial coral on rock, aft biobox	bio bio
194 194	048	VAY	ROV ROV	ROV236 ROV236	SLP	013				14 53.4705 14 53.4557	48		14.89118 14.89093	-48.15102	840		live purple thin solitary, 2x black tube medium black fossil solitaries, 15 alltogether for this event, 2x white tube	fossil
094	048		ROV	ROV236	SLP	015		18/11/2	013 22:43:00	14 53.436	48		14.89060	-48.15182	823		2 live white solitary, 2x white tube	bio
)94		VAY	ROV	ROV236	SLP	016		2 18/11/2		14 53.431	48	2.11200	14.89052	-48.15188	820		fossil coral rubble and 4 fossil solitaries, 2x red tube, maybe one more fossil	fossil
094	048		ROV		SLP	017				14 53.423 14 53.4248	48		14.89038	-48.15197	824		small live white solitary, 2x red tube	bio
)94)94		VAY VAY	ROV	ROV236 ROV236		018		3 19/11/20 3 19/11/20		14 53.4248 14 53.4233	48		14.89041 14.89039	-48.15198 -48.15199	824 824		large white barrel sponge, glass, black chamber white hard fan coral, enallopsammia, live?, 2x red	bio bio
094	048		ROV		ARM	020	323			14 53.389	48		14.88982	-48.15293	800		sponge with zooanthids and basket start (grogonocephalus), stb biobox	bio
)94	048		ROV	R0V236		021		19/11/2		14 53.382	48		14.88970	-48.15320	799		dead colonial framework, 2 pieces, aft biobox	fossil
094		VAY	ROV	ROV236	-	022		8 19/11/2		14 53.381	48		14.88968	-48.15340	795		1 fossil solitary, brown, 2x blue tube	fossil
)94)94	048	VAY VAY	ROV ROV		SLP	023				14 53.381 14 53.38	48		14.88968 14.88967	-48.15340 -48.15340	79		yellow glass sponge, green chamber 1 live solitary coral long thin, 2x blue	bio bio/fossil
)94		VAY	ROV		SLP	025		3 19/11/20		14 53.379	48		14.88965		794		I live solitary coral long thin, 2x blue	bio/fossil
194		VAY	ROV	ROV236	SLP	026	323			14 53.367	48		14.88945	-48.15373	788		fossil rubble. Possible fossil solitary	fossil
)94)94	048		ROV		SLP SLP	027	323			14 53.367 14 53.364	48		14.88945 14.88940	-48.15375 -48.15390	78		fossil rubble. Possile 2 fossil solitaries +1 more	fossil
194 194		VAY VAY	ROV	ROV236 ROV236		028		3 19/11/20 3 19/11/20		14 53.364 14 53.354	48		14.88940 14.88923		780		1 x fossil solitary 1x live solitary coral long and thin and enallapsamia fragments	fossil bio
194	048		ROV	ROV236	SLP	030	323			14 53.36	48	9.23900	14.88933	-48.15398	784	Ļ	3 x possible fossil solitaries	fossil
194	048	VAY	ROV	R0V236		031	323	19/11/2	013 03:40:00	14 53.349	48	9.25400	14.88915	-48.15423	780		2 x fossil solitary	fossil
)94)94		VAY	ROV	ROV236	ARM	032		8 19/11/2		14 53.346	48		14.88910	-48.15428	780		Enallopsamia	bio
)94)94		VAY VAY	ROV	ROV236 ROV236	SLP	033	323 323			14 53.346 14 53.346	48	9.25600 9.25840	14.88910 14.88910	-48.15427 -48.15431	780		1 x recently dead white solitary. 1 x dead solitary (brown	bio/fossil bio/fossil
)94	048		ROV	ROV236		035		3 19/11/2		14 53.333	48		14.88888	-48.15452	770		1 A five solitary to 2 firsts solitary	bio/fossil
)94		VAY	ROV	ROV236	SLP	036		19/11/20		14 53.333	48		14.88888	-48.15452	770	i i	Live stylasterid	bio
094	048		ROV		SLP	037	323	8 19/11/2		14 53.331	48		14.88885	-48.15465	775		sponge	bio
)94)94		VAY VAY	ROV	ROV236 ROV236	ARM	038	323	8 19/11/20 8 19/11/20		14 53.324 14 53.3142	48 48		14.88873 14.88857	-48.15497 -48.15534	772		large piece of live, white stylasterid (5+ pieces) + 1 squat lobster 1 x live solitary. 2x fossil solitary. 1 fossil solitary on rock	bio/fossil
94	048		ROV		ARM	039				14 53.3142	48		14.88857	-48.15534	762		1 X IVe softary _ ZX ISSII softary. 1 ISSII softary Of Tock	bio
94	048		ROV	ROV236		041	323	19/11/2		14 53.315	48	9.32220	14.88858		76	2	Basket star, 2 sponges, live solitary	bio
94	048		ROV		SLP	042		19/11/2		14 53.2994	48		14.88832	-48.15565	754		3 x thin live solitary coral	bio
194 194	048	VAY VAY	ROV ROV	ROV236 ROV236	SLP	043				14 53.278 14 53.2729	48		14.88797 14.88788	-48.15637 -48.15657	743		8 x fossil solitary rock with fossil solitary	fossil
194		VAY	ROV		SLP	044		3 19/11/2		14 53.2729	48		14.88788		743		sponge and fossil solitary. Live solitary (purple) x2	bio/fossil
)94	048		ROV		SLP	046	323	19/11/20		14 53.2714	48	9.39360	14.88786	-48.15656	740		2 x fossil solitary	fossil
094	048		ROV		SLP	047				14 53.2697	48		14.88783	-48.15663	740		2 x fossil solitary. 3 x live solitary (2 purple, 1 yellow)	bio/fossil
)94	048	VAY	ROV	ROV236	SLP	048	323	19/11/2	013 07:53:00	14 53.2545	48	9.40110	14.88758	-48.15669	743	5	6 x fossil solitary. 3 x live solitary	bio/fossil
094	048	VAY	ROV	ROV236	ARM/SLP	049	323	19/11/2	013 08:37:00	14 53.1748	48	9.39040	14.88625	-48.15651	710)	corallium? White fan coral with polyps seemingly only on 1 side fragments of fan. Bits of ennallapsammia also collected squat lobster and sponge	bio
094	048	VAY		R0V236	SLP	050		19/11/2	013 09:15:00	14 53.1645	48	9.38460	14.88608	-48.15641	705		quite chunky fossil solitary and accidental sponge	bio/fossil
094 094		VAY	ROV	ROV236	SLP	051				14 53.1618	48		14.88603 14.88572	-48.15636 -48.15627	703		Live solitary coral, purple, reddish, medium	bio
194 194	048		ROV	ROV236 ROV236	SLP	052	323			14 53.143 14 53.139	48		14.885/2	-48.15627	68		2 x fossil solitary corals chunky fossil solitary coral	fossil
094	048		ROV		SLP	054				14 53.1255	48	9.36900	14.88543	-48.15615	675		recently dead solitary coral	bio
094	048		ROV		SLP	056	323			14 52.9896	48		14.88316	-48.15582	630		live solitary	bio
094 094	048		ROV ROV	ROV236 ROV236	SLP	055	323	8 19/11/20 8 19/11/20		14 53.0077 14 52.9707	48		14.88346 14.88285	-48.15583 -48.15567	638		live white scleractinian fan bits	bio fossil
194 194		VAY VAY	ROV		SLP	057	323			14 52.9707 14 52.987	48		14.88285	-48.15567	63		fossil solitary live (large) solitary, with rock and pedicle attached	tossii
)94	048		ROV		SLP	059	323			14 52.9136	48		14.88189	-48.15377	623		small fragers ontary, with fock and period actantic	bio
)94		VAY	ROV	ROV236	SLP	060	323	19/11/2	013 12:17:00	14 52.8543	48		14.88091	-48.15217	570)	10 x urchins	bio
94	048		ROV	ROV236		061				14 52.6479	48		14.87747	-48.15334	629		piece of ferromang crust and brittle star	bio/rock
194 194	048	VAY VAY	ROV	ROV236 ROV236	ARM SLP	062				14 52.641 14 52.6398	48		14.87735 14.87733	-48.15239 -48.15343	601 583		piece of live primnoid (lite pink) Shark's tooth (BIG)	fossil
94 94	048		ROV		SLP	064				14 52.645	48		14.87742	-48.14942	478		squat lobster plus small white live corals- stylasterid?	bio
94	048	VAY	ROV	R0V236	ARM	065	323	19/11/2	013 17:48:00	14 52.6493	48	8.95790	14.87749	-48.14930	47:	L	octocoral/sty/scl? White fan coral. Live	bio
94	048		ROV		SLP	066				14 52.646	48		14.87743	-48.14860	460		yellow white fan corals small enough to get into yellow tube. Live	bio
194 194	048	VAY VAY	ROV	ROV236 ROV236		067		8 19/11/20 8 19/11/20		14 52.638 14 52.625	48		14.87730 14.87708	-48.14685 -48.14577	442		small white (live?) fan coral. No obv. Polyps plastic?	plastic
94 94	048		ROV	ROV236	SLP	069	323			14 52.623	48		14.87705	-48.14577	43		small white stylasterids in pieces	bio
94	048	VAY	ROV	R0V236	ARM/SLP	070	323	19/11/2	013 21:45:00	14 52.768	48	8.38800	14.87947	-48.13980	408	3	green string	plastic
94		VAY	ROV	ROV236		071		3 19/11/2		14 52.805	48		14.88008	-48.13930	409		plastic tube piece, ridges on it	plastic
94 94	048		ROV	ROV236 ROV236	SLP	072		20/11/2		14 53.7909 14 53.7914	48		14.89652 14.89652	-48.11907 -48.11861	1360		28 x fossil solitary. Plus fossil coral fragments 12 x live solitary	fossil bio
94	048		ROV		ARM	073	001	20/11/20		14 53.7914	48	7.11010	14.89662	-48.11860	133		Los Anvestinary	bio
94	048	VAY	ROV		SLP	075		20/11/20		14 53.744	48		14.89573	-48.11953	1289		live pink solitary- large cup shaped	bio
94	048		ROV		PSH PSH	076	324			14 53.6334 14 53.633	48 48		14.89389	-48.12316	1055		about 3/4 full	sediment
94 94		VAY VAY	ROV		PSH	077		20/11/20		14 53.633 14 53.6332	48		14.89388 14.89389	-48.12318 -48.12317	1055		about 3/4 full about 1/3 full (10cm)	sediment
94 94	048		ROV	ROV236 ROV236	SLP	078	324			14 53.6332 14 53.4899	48		14.89389	-48.12317	105		8 x live solitary coral. 3 x fossil solitary coral	bio/fossil
94	048	VAY	ROV	ROV236	SLP	080	324	20/11/20	013 07:50:00	14 53.4934	48	7.30110	14.89156	-48.12169	1153	3	white sponge yellow globular sponge	bio
94	048		ROV	ROV236		081	324	20/11/2	013 07:52:00	14 53.4914	48		14.89152	-48.12170	1152		Niskin 3	water
94	048		ROV	ROV236	NSK	082	324			14 53.4914 14 53.4563	48	7.30190	14.89152 14.89094	-48.12170	1152		Niskin 4 Mustery black item (probably face) action) y 2	water
94 94	048	VAY	ROV	101200	SLP SLP	083		20/11/20		14 53.4563 14 53.4398	48	7.20270	14.89094 14.89066	-48.12105 -48.12091	1164		Mystery black item (probably fossil solitary) x 2 7 x live solitary corals. 5 x fossil solitary corals	tossil bio/fossil
94 94	048		ROV		SLP	085	324	20/11/2		14 53.4396	48		14.89046	-48.12091	110.		fossil solitary	fossil
94	048	VAY	ROV	ROV236 ROV236	SLP	086		20/11/2	013 08:47:00	14 53.4116 14 53.404	48 48		14.89019 14.89007	-48.12056 -48.12050	1149		small black fossil solitary (too small to be caught by gate)	fossil

	n SLP= Slurp Sore and CTD							N= PistonCore ROV Events a					ARM= Arm MBS=	= Multibeam s	tart MBE= mul	tibeam end		
	core and orb	srents are en		on borrow	r unic/ iuc/			have been corr					5	green entries=	= lat/longs not a	accurate due to USBL drop ou Water		
Cruise	Station #	Location	Gear	Gear #	Event Code	Event #	Jday	Date	Time GMT	Lat° N	Lat Min N	Long ° W	Long Min W	Lat (DD)	Long (DD)	depth (m) Wire Out (Cores)	Comments	Recipient
C094	048		ROV		SLP	088	324			14	53.3915	41		14.88986		1135	Live solitary and fossil solitary (dead scrapped from rock)	bio/fossil
C094 C094	048		ROV		SLP SLP	089	011			14 14	53.3743 53.33743	41		14.88957 14.88896		1121 1120	4 x fossil solitary Piece of fossil (bamboo) coral, with live soft coral on it, brittle stars on soft coral	fossil bio/fossil
C094	048		ROV		SLP SLP	090				14	53.3743	4		14.88965		1120	18 x fossil solitary. 9 x live solitary	bio/fossil
C094	048		ROV	ROV236	SLP	092	324			14	53.2921	44	3 7.29410	14.88820		1066	clump of fossil colonial coral	fossil
C094	048	VAY	ROV		SLP SLP	093				14 14	53.043	41		14.88405		868	white, vase sponge	bio
C094 C094	048		ROV		ARM	094		20/11/2013	3 11:20:00 3 12:48:00	14	53.03 52.7313	44		14.88383 14.87886		853 503	fossil solitary piece of rock- carbonate platform x 2	fossil rock
C094	049	VAY	ROV	ROV237	PSH	001	. 324	20/11/2013	3 23:34:00	14	51.03400	41	3 15.99900	14.85057	-48.26665	2166	about 1/2 full	sediment
C094	049		ROV		PSH	002	324	20/11/2013		14	51.03400	41	8 15.99900	14.85057		2166	about 1/2 full	sediment
C094 C094	049		ROV ROV		PSH NSK	003		20/11/2013		14 14	51.03400 51.03180	41		14.85057 14.85053		2166 2166	about 2/3 full Niskin 1	sediment water
C094	049	VAY	ROV	ROV237	NSK	005				14	51.03180	4		14.85053		2166	Niskin 2	water
C094	049		ROV		ARM	006		20/11/2013	3 00:01:00	14	51.04800	41	10.00100	14.85080		2181	Huge yellowish white sponge (size of STBBIO) with crinoid on top	bio
C094	049		ROV		SLP ARM	007				14	51.28600 51.28600	41		14.85477		2041 2040	white primnoid rock	bio
C094 C094	049	VAY	ROV		ARM SLP	008		21/11/2013	3 02:07:00	14	51.28600	4		14.85477 14.85475	-48.26163	2040	rock small live solitary, white	hin
C094	049	VAY	ROV	ROV237	ARM	010	325	21/11/2013	3 02:20:00	14	51.302	41	8 15.69300	14.85503	-48.26155	2012	2-branched bamboo coral, pink bits (amenomes?) at end of 1 branch	bio
C094	049		ROV	101201	SLP	011				14	51.301	41		14.85502		2012	small live solitary x3 + fragments of small white octocoral	bio
C094	049		ROV		SLP SLP	012		21/11/2013		14	51.306 51.341	41		14.85510	-48.26153 -48.26130	2008	glass barrel sponge fossil coral debris + 1 fossil solitary	bio fossil
C094 C094	049		ROV		SLP SLP	013	010	==,==,===		14	51.341	41		14.85568		1971	Tossil coral debris + 1 Tossil solitary 3xfossil solitary, possibly fragmented	fossil
C094	049	VAY	ROV		SLP	015	325	21/11/2013		14	51.36	48	3 15.66800	14.85600	-48.26113	1966	live solitary coral	bio
C094	049		ROV		NET	016		21/11/2013	3 03:45:00	14	51.361	41		14.85602	-48.26117	1966	fossil coral debris	fossil
C094	049				SLP	017				14	51.3768	41		14.85628		1965	Fossil solitary (small) x 3	fossil
C094 C094	049		ROV ROV		SLP SLP	018		21/11/2013		14	51.376 51.392	41		14.85627 14.85653		1965 1959	Accidental slurp of white solitary poss. Dead x 3 2x small live solitary white	bio/fossil
C094	049		ROV		SLP	019				14	51.392	4		14.85653		1959	1 x glass sponge (broken into pieces)	bio
C094	049		ROV		SLP	021		21/11/2013		14	51.401	48	3 15.65700	14.85668		1956	1 x small live solitary white/pink	bio
C094	049		ROV		SLP	022		21/11/2013	3 05:28:00	14	51.401	41		14.85668		1956	fossil coral stalk with ophuroid	bio/fossil
C094 C094	049		ROV		SLP SLP	023		21/11/2013	3 05:41:00 3 05:47:00	14	51.401 51.401	41		14.85668		1954 1954	fossil solitary + rubble 1 x live solitary, white base and red top. 1 x white live	fossil bio
C094	049		ROV		SLP	024		==,==,===		14	51.401	4		14.85668		1953	1 x white live solitary	bio
C094	049	VAY	ROV	ROV237	SLP	026		21/11/2013		14	51.423	41		14.85705	-48.26022	1949	1 x white large solitary live	bio
C094	049				SLP	027	010	==,==,===		14	51.439	41	10.00700	14.85732		1938	2x white solitaries	bio
C094 C094	049	VAY	ROV ROV		SLP SLP	028		21/11/2013		14 14	51.4625 51.4627	41		14.85771 14.85771		1864 1854	fossil solitary x 2 fossil solitary, sponge?, live solitary	fossil bio/fossil
C094	049		ROV		SLP	029		21/11/2013		14	51.466	44		14.85777		1838	live solitary coral	bio
C094	049		ROV		SLP	031				14	51.4661	41		14.85777	-48.25785	1836	stylasterid plus hydroid	bio/fossil
C094	049	VAY	ROV		NSK	032		21/11/2013		14	51.4673	41		14.85779		1835	Niskin 3	water
C094 C094	049		ROV		NSK SLP	033		21/11/2013		14	51.4673 51.4951	41		14.85779 14.85825		1835 1827	Niskin 4 Fossil solitary	fossil
C094	049		ROV		SLP	035	010	==,==,===	0 0.101100	14	51.5805	41	20101110	14.85968		1774	Small white fan shaped coral (live). Crinoid attached? Brittle Star?	bio
C094	049	VAY	ROV	ROV237	SLP	036	325	21/11/2013	3 09:22:00	14	51.659	41		14.86098		1701	Live stylasterid (possibly)	bio
C094	049		ROV		SLP	037				14	51.749	41		14.86248		1756	bycatch to green slurp, rubble mostly bamboo , fossil coral rubble wih 3 potential solitaries	fossil
C094 C094	049		ROV		SLP ARM	038				14 14	51.8013 51.8006	41		14.86336 14.86334		1706	fossil colonial coral fragments large white fan sponge	fossil bio
C094	049	VAY	ROV		ARM	040		21/11/2013		14	51.8942	41		14.86490		1622	Corallium, with orange hairy brittlestars x2 along discal edge	bio
C094	049	VAY	ROV	ROV237	ARM	041	325	21/11/2013		14	51.8942	41	3 15.34880	14.86490	-48.25581	1622	Large dead corallium branch with base	fossil
C094	049		ROV	101201	ARM	042				14	51.9043	41		14.86507		1612	Seleractinian fan, yellow (Enallapsommia or Bathelia) with spong and stylasterid	bio
C094 C094	049		ROV	ROV237 ROV237	ARM/SLP SLP	043		21/11/2013		14	51.9064 51.9084	41		14.86511 14.86514		1612 1612	Sm. Pieces of fossil brown enallops. Enallapsammia + anthomastus fossil	fossil bio/fossil
C094	049		ROV		ARM	044				14	51.9088	4		14.86515		1563	yellow enallopsammia Live, about 20cm across	bio
C094	049	VAY	ROV	ROV237	NET	046	325	21/11/2013	3 16:08:00	14	51.9021	41	3 14.80320	14.86504	-48.24672	1569	Orange net with fossil debris	fossil
C094	049	VAY	ROV		ARM	047				14	51.8516	41		14.86419		1539	Bamboo coral with/anemones	bio
C094 C094	049		ROV	ROV237 ROV237	SLP ARM	048	010	==,==,===		14 14	51.722 51.7203	41	21100070	14.86203 14.86201	-48.24182 -48.24181	1457	Yellow fan with brittle stars on it Corallium (dead) with biology on it	bio bio/fossil
C094	049		MGA		MCH	001		22/11/2013		14	45.994	44		14.76657		3723 375		Di0/10ssii
C094	050	VAY	MGA	MGA014	мсн	002	326		3 00:04:00	14	45.994	41	3 15.03800	14.76657	-48.25063	3723 375	Failed- S0144	
IC094	050	VAY		MGA014		003				14	45.994	41		14.76657			Failed-S0145	
C094 C094	050 050		MGA MGA		MCN NSK	004				14 14	45.994	41		14.76657 14.76657			Failed- S0146	Water
C094 IC094	050		GVY		GVY	005				14	45.994	41		14.76653			Fired and sampled by hong chin Failed. Core catcher had sediment on external surface. Clayey Silt.	Water sediment
C094	052	VAY	GVY	GVY0011	GVY	001	326	22/11/2013		14	45.867	41	3 15.08300	14.76445	-48.25138	3725 374	Failed. Core empty.	
IC094	053	VAY	BOX		BOX	001		22/11/2013		14	45.993	41		14.76655		3722 374	Succesful. Approx 16 cm sediment.	sediment
C094	054		GVY		GVY	001				14	51.074	41		14.85123			I Succesful. Approx 31 cm of sediment. Stratigraphic order possibly not preserved.	sediment
IC094 IC094	055 055		ROV		MBS MBE	001		23/11/2013		14 14	53.432 52.836	41		14.89053 14.88060		835 626	Beging Multibeam Survey End Multibeam Survey	Survey Survey
C094	056	GRM	ROV		SLP	002				15	25.3121	5		15.42187		1520	Fossil solitary x2. Fossil Sponge, Fossil colonial coral (enallapsammia?), Fossil colonial coral (madrepora?)	fossil
C094		GRM	ROV	ROV239	SLP	002		24/11/2013	3 17:49:00	15	25.3138	5		15.42190	-51.08647	1519	Coral rubble	fossil
C094	056	GRM	ROV		NET	003		24/11/2013		15	25.31220	5		15.42187		1519	Coral rubble	fossil
C094 C094		GRM	ROV		SLP SLP	004		24/11/2013		15 15	25.30900 25.29860	5		15.42182		1512 1504	Fossil solitary coral x2. plus fossil coral rubble Fossil solitary x7. plus fossil coral rubble	fossil
C094	056		ROV		SLP	005					25.29860	5		15.42164		1492	Attached fossil solitary x2. unattached fossil solitary x1. pluss rubble. Fossil colonial w/ophuroid	bio/fossil
C094	056	GRM	ROV	ROV239	ARM	007	328	24/11/2013	3 20:28:00	15	25.29050	5	1 5.20180	15.42151	-51.08670	1492	Fossil enallapsammia	fossil
C094		GRM	ROV		ARM	008	020			15	25.29050	5	1 5.20180	15.42151		1490	Fossil misc, colonial	fossil
C094 C094		GRM GRM	ROV		SLP SLP	009				15 15	25.29050 25.29050	5	1 5.20180 1 5.20180	15.42151	-51.08670	1490 1484	Fossil solitaries x 9 + fossil rubble Yellow, recently dead colonial scleractinian (2 pieces)	fossil bio
	0.00	GRM			SLP	010				15	25.29030	3.	1 5.20180	15.42151	-51.08670	1484	White, round, sponges (2)	bio
JC094 EVENT LOG

	Core and CTD Events are en	tereu as tir	. ON DOTTO	m ume/lat/		tries that			of USBL and Depth fro the differ from the Sam		5	green entries:	= lat/longs no	t accurate due to l	JSBL drop out		
Cruise	Station # Location	Gear	Gear #	Event Code	Event #	Jday	Date	Time GMT	Lat° N Lat Min N	Long° W	Long Min W	Lat (DD)	Long (DD)	Water depth (m)	Wire Out (Cores)	Comments	Recipient
94	056 GRM	ROV	ROV239	SLP	012	328				51	5.21060	15.42150	-51.0868			Fossil Solitary	fossil
4	056 GRM	ROV	ROV239	SLP NSK	013		3 24/11/2013			51	5.20880	15.42152	-51.0868	1 1483		Squat lobster, sponge bits, branches of colonial rubble, ophuroids Niskin 1	bio
94 94	056 GRM 056 GRM	ROV	ROV239 ROV239	NSK NSK	014		3 24/11/2013 3 24/11/2013			51	5.21060 5.21060	15.42150	-51.0868			Niskin 1 Niskin 2	water
94	056 GRM	ROV	R0V239	SLP	015	328				51	5.21000	15.42150	-51.0868			Live solitary coral	hio
94	056 GRM	ROV	ROV239	SLP	017		3 24/11/2013			51	5.21360	15.42154	-51.0868			Live solitary (?), fossil sponge branches, many ophuroids, fossil solitary x9, rock, fossil rubble	bio/fossil
94	056 GRM	ROV	ROV239	SLP	018		3 24/11/2013	3 23:14:00	15 25.29150	51	5.21500	15.42153	-51.0869			Live solitary x2, fossil coral fragments	bio/fossil
94	056 GRM	ROV	ROV239	SLP	019		25/11/2013		15 25.29020	51	5.17400	15.42150	-51.0862	5 11.5		Live solitary x2 + lossil coral rubble	bio/fossil
194 194	056 GRM 056 GRM	ROV	ROV239 ROV239	SLP SLP	020	329	25/11/2013 25/11/2013		15 25.29020 15 25.28330	51 51	5.17400 5.22490	15.42150	-51.0862			fossil solitary x3 plus fossil coral rubble fossil solitary x 8. Fossil rubble.	fossil
)94	056 GRM	ROV	R0V239	SLP	021		25/11/2013		15 25.28360	51	5.22560	15.42139	-51.0870			spherical, yellow-brown sponge, attached to colonial coral	bio
94	056 GRM	ROV	ROV239	SLP	023		25/11/2013		15 25.27030	51	5.23650	15.42117	-51.0872	8 1439		fossil solitary x 7, piece of fossil enallapsammia, fossil colonial misc.	fossil
94	056 GRM	ROV	ROV239	ARM	024	329			15 25.21440	51	5.27340	15.42024	-51.0878			colonial fossil coral pieces (2)	fossil
94 94	056 GRM	ROV	ROV239	PSH	025		25/11/2013		15 25.19180	51	5.27460	15.41986	-51.0879	1 1379		successful-about 1/3 full	sediment
94 94	056 GRM 056 GRM	ROV	ROV239 ROV239	PSH	026		9 25/11/2013 9 25/11/2013		15 25.19180 15 25.19220	51	5.27460 5.27220	15.41986	-51.0879			successful- about 3/4 full successful- about 2/3 full	sediment
94 94	056 GRM	ROV	ROV239	NSK	027	323			15 25.18930	51	5.27220	15.41982	-51.0878			Niskin 3	water
94	056 GRM	ROV	ROV239	NSK	029	329	25/11/2013	3 05:40:00	15 25.19080	51	5.27130	15.41985	-51.0878	6 1371		Niskin 4	water
94	056 GRM	ROV	ROV239	NET	030		25/11/2013		15 25.18910	51	5.27370	15.41982	-51.0879			orange net- fossil corals	fossil
94	056 GRM	ROV	ROV239	ARM	031	329			15 25.16660	51	5.27920	15.41944	-51.0879			small white pieces taken of sponge	bio
94 94	056 GRM 056 GRM	ROV	ROV239 ROV239	ARM	032	329	9 25/11/2013 9 25/11/2013		15 25.11980 15 25.09140	51	5.37390 5.34000	15.41866 15.41819	-51.0895			Pale pink primnoid with red/orange brittle stars attached Live solitary- medium sized. Quite flat, brown outside with white/pink top. Fossil solitary on colonial framewrok	bio bio/fossil
94 94	056 GRM		ROV239 ROV239	SLP	033		25/11/2013			51	5.34000	15.41819				2x dead solitary	fossil
94	056 GRM	ROV	ROV239	SLP	035	329			15 24.95400	51	5.31560	15.41590	-51.0885			fossil solitary x 2	fossil
94	056 GRM	ROV	ROV239	SLP	036	329	25/11/2013	3 09:04:00	15 24.81470	51	5.33610	15.41358	-51.0889			fossil solitary	fossil
94	056 GRM	ROV	ROV239	SLP	037		25/11/2013			51	5.34290	15.41337	-51.0890			solitary fossil	fossil
94	056 GRM	ROV	ROV239	SLP	038		25/11/2013		15 24.80160	51	5.34000	15.41336	-51.0890			live solitary- caryophyllia or desmo	bio
94 94	056 GRM 056 GRM	ROV	ROV239 ROV239	SLP	039	329	25/11/2013 25/11/2013		15 24.80020 15 24.79900	51	5.34120 5.34300	15.41334	-51.0890			fossil solitary- really large slender fossil solitary- brown	fossil
94	056 GRM	ROV	ROV239	SLP	040		25/11/2013			51	5.25100	15.40692	-51.0875			live solitary	hio
94	056 GRM	ROV	ROV239	SLP	042		25/11/2013			51	5.45900	15.40033	-51.0909			live solitary. Fossil solitary x2	bio/fossil
94	056 GRM	ROV	ROV239	SLP	043	329	25/11/2013	3 12:43:00	15 24.00000	51	5.46800	15.40000	-51.0911	3 1090		1 x fossil solitary	fossil
94	056 GRM	ROV	ROV239	SLP	044	329	25/11/2013	3 12:48:00	15 24.00000	51	5.46800	15.40000	-51.0911			1 round white sponge	bio
94 94	056 GRM 056 GRM	ROV	ROV239 ROV239	SLP PSH	045	329	25/11/2013 25/11/2013	3 13:31:00 3 13:43:00	15 23.87100 15 23.85400	51 51	5.56800 5.57800	15.39785	-51.0928			yellow sponge failed	bio
94 94	056 GRM	ROV	ROV239	SLP	040		25/11/2013		15 23.84100	51	5.58700	15.39735	-51.0925			fossil slitary *dark brown, black)	fossil
94	056 GRM	ROV	ROV239	SLP	048		25/11/2013		15 23.84100	51	5.58700	15.39735	-51.0931			2 x live solitary (desmo?) and one small one.	bio
194	056 GRM	ROV	ROV239	PSH	049		25/11/2013		15 23.76730	51	5.56660	15.39612	-51.0927			1/4 full	sediment
94	056 GRM	ROV	ROV239	NET	050	329			15 23.69900 15 23.65550	51	5.52460	15.39498	-51.0920			V. fine frubble fossil coral framework	fossil
194 194	056 GRM 056 GRM	ROV ROV	ROV239 ROV239	PSH	051		25/11/2013 25/11/2013			51 51	5.50130 5.50130	15.39426 15.39426	-51.0916			push core about 3/4 full push core more than 3/4 full	sediment
94	056 GRM	ROV	ROV239	PSH	052	329		3 15:37:00	15 23.65550	51	5.50130	15.39426	-51.0916			push core about 3/4 full	sediment
)94	056 GRM	ROV	ROV239	NSK	054		25/11/2013	3 15:38:00	15 23.65550	51	5.50130	15.39426	-51.0916	9 1004		NSK 5	water
94	056 GRM	ROV	ROV239	ARM	055		25/11/2013		15 23.63490	51	5.48640	15.39392	-51.0914			2x rock	rock
94	057 GRM	GVY	GVY013	GVY PSH	001		25/11/2013		15 21.56500 15 26.90800	51	4.59300	15.35942	-51.0765		1647	Failed. Core appeared to bounce on seafloor and came back empty	
94 94	058 GRM 058 GRM	ROV	ROV240 ROV240	PSH	001	329				51	5.48600 5.48600	15.44847	-51.0914	3 2187 3 2187		Push core about 1/2 full Push core about 1/2 full	sediment
94	058 GRM	ROV	R0V240	PSH	002		25/11/2013		15 26.90800	51	5.48600	15.44847	-51.0914			Push core about 1/3 full	sediment
94	058 GRM	ROV	ROV240	NSK	004	329			15 26.90800	51	5.48600	15.44847	-51.0914			Niskin 1	water
94	058 GRM	ROV	ROV240	NSK	005		25/11/2013		15 26.90800	51	5.48600	15.44847	-51.0914			Niskin 2	water
94 94	058 GRM 058 GRM		ROV240 ROV240	ARM	006		26/11/2013 26/11/2013		15 26.79290 15 26.79800	51	5.51160 5.52600	15.44655	-51.0918			Solitary coral, live, long, extreme location	bio
94 94	058 GRM 058 GRM	ROV ROV	ROV240 ROV240	SLP ARM	007		26/11/2013 26/11/2013			51	5.52600	15.44663	-51.0921			Glass sponge in 2 pieces. Rock	bio rock
94 94	058 GRM	ROV	ROV240	SLP	009	330	26/11/2013	3 03:01:00	15 26.72300	51	5.73100	15.44538	-51.0955			Live solitary, long and white x5. Event ends at 03:48	bio
94	058 GRM	ROV	ROV240	SLP	010	330	26/11/2013	3 03:22:00	15 26.71920	51	5.75540	15.44532	-51.0959	2 1868		Possible soft coral/ sponge zooanthids. Live brown/yellow	bio
94	058 GRM	ROV	ROV240	SLP	011		26/11/2013		15 26.72070	51	5.75550	15.44535	-51.0959			White live primnoid fragmented	bio
94 94	058 GRM	ROV	ROV240 ROV240	ARM	012		26/11/2013 26/11/2013		15 26.71900 15 26.71810	51 51	5.75580 5.76360	15.44532	-51.0959			White live sponge living on top of dead corallium?	bio/fossil
94 94	058 GRM 058 GRM	ROV	ROV240 ROV240	SLP	013	330			15 26.71810	51	5.76360	15.44530	-51.0960			White live golfball sponge (large) Live solitary x10	hio
94	058 GRM	ROV	ROV240 ROV240	ARM	015		26/11/2013		15 26.68860	51	5.81160	15.44481	-51.0968			Possible dead enallapsammia: yellow/red/brown	bio/fossil
94	058 GRM	ROV	ROV240	ARM	016	330	26/11/2013	3 05:04:00	15 26.68520	51	5.82310	15.44475	-51.0970	5 1816		Yellow branched enallapsammia attached to rock	bio
94	058 GRM	ROV	ROV240	SLP	017		26/11/2013		15 26.66370	51	5.84620	15.44440	-51.0974			White live solitary x2	bio
14 14	058 GRM 058 GRM	ROV	ROV240	SLP ARM	018	330				51	5.84650 5.87530	15.44439	-51.0974			Fossil solitary x2 Dead branched coral, brown (enallap?), branched white coral (enallap?), think brown branched colonial coral	fossil
14 14	058 GRM 058 GRM	ROV	ROV240 ROV240	ARM SLP	019		26/11/2013 26/11/2013		15 26.65020 15 26.64510	51	5.87530	15.44417 15.44409	-51.0979	2.00		Dead branched coral, brown (enallap?), branched white coral (enallap?), think brown branched colonial coral Possibly live solitary	IOSSIL
4	058 GRM	ROV	ROV240	PSH	020	330			15 26.58390	51	6.03180	15.44409	-51.1005			Push core. Empty - 1/4 full	sediment
4	058 GRM	ROV	ROV240	PSH	022	330	26/11/2013	3 07:19:00	15 26.58390	51	6.03180	15.44307	-51.1005	3 1675		Push core. About 1/3 full	sediment
14	058 GRM	ROV	ROV240	PSH	023	330	26/11/2013	3 07:21:00	15 26.58390	51	6.03180	15.44307	-51.1005			Push core about 1/3 full	sediment
94	058 GRM	ROV	ROV240	SLP	024		26/11/2013		15 26.57480	51	6.04940	15.44291	-51.1008			large white live solitary, maybe recently dead	bio bio
94 94	058 GRM 058 GRM	ROV	ROV240 ROV240	SLP NSK	025	330	26/11/2013 26/11/2013		15 26.53760 15 26.53340	51	6.12200 6.13690	15.44229	-51.1020	3 1622 8 1617		large live solitary, purple tentacles, fossil madrepora pieces? Primnoid sm, white Niskin 3	bio/fossil Water
94 94	058 GRM	ROV	R0V240 R0V240	NSK	028		26/11/2013		15 26.53340	51	6.13690	15.44222	-51.1022			Niskin 3 Niskin 4	Water
94	058 GRM	ROV	R0V240	SLP	028	330	26/11/2013	3 11:44:00	15 25.45700	51	4.95610	15.42428	-51.0826			White globular barrel sponge	bio
94	058 GRM	ROV	ROV240	SLP	029		26/11/2013		15 25.36420	51	5.10650	15.42274	-51.0851	1 1610		2 (possible) fossil solitaries	fossil
94 94	058 GRM 058 GRM	ROV	ROV240 ROV240	SLP	030		26/11/2013		15 25.34920	51	5.13160	15.42249	-51.0855	3 1588		Large fossil solitary	fossil
				NET	031	330	26/11/2013	3 12:47:00	15 25.33050	51	5.16350	15.42218	-51.0860	6 1553		fine coral rubble	fossil

JC094 EVENT LOG

NSK= Nisl	kin SLP=Slurp S	CP= Scoop M	IGA= Meg	a Core KTN	= Kasten G	VY= Gravity	VCore P1	FN= PistonCore	PSH= PushCore I	BOX=	BoxCore NET:	= Net A	RM= Arm MBS	= Multibeam s	tart MBE= mul	tibeam end			
	Core and CTD I	ents are ent	ered as th	ne ON BOTTO	OM time/lat,	/long		ROV Events ar	re LAT/LONG of U	SBL ar	nd Depth from I	DVL							
						yellow en	tries that	t have been corr	ected and hence d	liffer fr	om the Sample	e Logs		green entries=	lat/longs not a	accurate due to US	BL drop ou	t de la constante d	
Cruise	Station #	Location	Gear	Gear #	Event Code	Event #	Jday	Date	Time GMT	at° N	Lat Min N	long° W	Long Min W	Lat (DD)	Long (DD)	Water depth (m)	Wire Out (Cores)	Comments	Desiniant
					-														Recipient
JC094	058		ROV	R0V240	NET	034		0 20/11/2013		15	25.31020	51	5.18790	15.42184		1517		Larger coral rubble	fossil
JC094	058		ROV	ROV240	ARM	035		0 26/11/2013		15	25.31020	51	5.18790	15.42184	-51.08647	1513		Fossil enalapsammia	fossil
JC094	058		ROV	R0V240	SLP	036		0 26/11/2013		15	25.28610	51	5.20430	15.42144		1486		large fossil solitary and small browner fossil solitar	fossil
IC094	058		ROV	ROV240	NET	037		0 26/11/2013		15	25.28670	51	5.20510	15.42145		1486		fossil coral rubble	fossil
JC094	058		ROV	R0V240	ARM	038	33	0 20/11/2013		15	25.27150	51	5.20450	15.42119		1480		Pink Paragorgia with snake brittle stars	bio
JC094	058		ROV	ROV240	NSK	039	33	0 26/11/2013	8 15:49:00	15	25.26550	51	5.21250	15.42109		1454		Niskin 5	Water
JC094	058		ROV	ROV240	SLP	040		0 26/11/2013		15	25.23230	51	5.24140	15.42054	-51.08736	1345		Squat lobster x5 + shrimp and coral	bio
JC094	059	GRM	GVY	GVY014	GVY	001	33	0 26/11/2013	3 20:47:00	15	27.86000	50	59.48800	15.46433	-50.99147	2714	2731	pull-out: 4.20tons. 6m barrel. 3.88m of sediment	sediment
																		pull-out: 3tons (but no clear pull-out). 6-7cm of sediment. Partially leaking on one side and sediment being remobilised. Rest of core seems intact, but	
JC094	060		MGA	MGA015		001	33	1 27/11/2013		15	27.86000	50	59.48700	15.46433	-50.99145	2714		core top may be mixed. Sampled for overlying water and core top, rest sliced in 1cm slices. S0173	sediment
JC094	060	GRM	MGA	MGA015	MCH	002	33	1 27/11/2013	3 00:00:00	15	27.86000	50	59.48700	15.46433	-50.99145	2714		Failed - S0174	sediment
JC094	060	GRM	MGA	MGA015	MCN	003	33	1 27/11/2013	8 00:00:00	15	27.86000	50	59.48700	15.46433	-50.99145	2714	2733	Failed - S0175	sediment
JC094	060	GRM	MGA	MGA015	MCH	004	33	1 27/11/2013	8 00:00:00	15	27.86000	50	59.48700	15.46433	-50.99145	2714	2733	Failed - S0176	sediment
JC094	060	GRM	MGA	MGA015	NSK	005	33	1 27/11/2013	8 00:00:00	15	27.86000	50	59.48700	15.46433	-50.99145	2714	2733	Niskin not good, it was leaking	water
JC094	061	GRM	MGA	MGA016	MCN	001	33	1 27/11/2013	3 03:13:00	15	27.85900	50	59.48600	15.46432	-50.99143	2713	2733	3.1 tons pull-out. S0177. Ca. 35 cm recovery. Sampled for core top and 1cm slices.	sediment
IC094	061	GRM	MGA	MGA016	MCH	002	33	1 27/11/2013	3 03:13:00	15	27.85900	50	59.48600	15.46432	-50.99143	2713	2733	S0178. Sampled for core top, 1cm slices down to 5cm, 5cm slices below that	sediment
IC094	061	GRM	MGA	MGA016	MCN	003	33	1 27/11/2013	3 03:13:00	15	27.85900	50	59.48600	15.46432	-50.99143	2713	2733	S0179. ca. 15cm recovery. Core for plastics study (Lucy Woodall)	plastic
IC094	061	GRM	MGA	MGA016	MCH	004	33	1 27/11/2013	3 03:13:00	15	27.85900	50	59.48600	15.46432	-50.99143	2713	2733	S0180. ca. 33cm recovery. Sampled for pore fluids, core top and 2cm slices.	water/sediment
IC094	061	GRM	MGA	MGA016	NSK	005	33	1 27/11/2013	3 03:13:00	15	27.85900	50	59.48600	15.46432	-50.99143	2713	2733		water
IC094	062	GRM	MGA	MGA017	MCN	001	33	1 27/11/2013	3 07:28:00	15	30.53900	50	54.40100	15.50898	-50.90668	4128	4178	4.20 tons pull-out. May be disturbed due to bubbles coming up through the core during recovery. S0181. Ca. 10 cm recovery. Sampled for core top and 1 cm slices	sediment
IC094	062	GRM	MGA	MGA017	мсн	002	33	1 27/11/2013	3 07:28:00	15	30.53900	50	54.40100	15,50898	-50.90668	4128	4178	S0182. Ca. 8cm recovery. May be disturbed due to bubbles coming up through the core during recovery. Core for plastics study (Lucy Woodall)	sediment
IC094	062		MGA	MGA017	MCN	003	33	1 27/11/2013		15	30.53900	50	54.40100	15.50898	-50.90668	4128		Solias Ca. 9cm recovery. May be disturbed due to bubbles coming up through the core during recovery. Sampled for core top and 1 cm slices	sediment
IC094	062		MGA	MGA017 MGA017	MCH	003		1 27/11/2013		15	30.53900	50	54.40100	15.50898	-50.90668	4128		Soltak, Failed.	sediment
JC094	062		MGA	MGA017 MGA017	NSK	005	33	1 27/11/2013		15	30.53900	50	54.40100	15.50898		4128		sampled	water

Appendix 3.

The numbers of whole (w) and fragments (f) of fossil solitary Scleractinia collected for each event at every station, and the weights of fossil colonial corals (Scleractinia, octocorals and stylasterids) collected in grams (g). Totals for each station, each sampling location and for the whole cruise are included at the end of the table.

Station#	Event	Depth	Desmophyllum (w)	Desmophyllum (f)	Dasmosmillia (w)	Dasmosmillia (f)	Caryophyllia (w)	Caryophyllia (f)	Polymyces(w)	Polymyces (f)	Javania (w)	Javania (f)	Flabellum(w)	Flabellum(f)	Stephanocyathus(w)	Stephanocyathus (f)	Trochocyathus (w)	I rochocyathus (J)	Fungiacyathus (w)	Madrepora (g)	Enallopsammia (g)	Solenosmillia (g)	Sympodangia (g)	Dendrophyllia (g)	Bamboo coral (g)	Corallium (g)	Stylasterid (g)	Other (g)	Other (f)	Total Solitary (w)	Total weight (g)
4	2	1080	5	1	0	0	20 4	0	0	0	7	0	0	0	0	0	0	0	0	460	0	1745	0	0	458	0	0	9368	0	216	12031
4	9	1057	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	2	0	0	2	0	0	0	0	1	4
4	14	994	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	11	0	1	12
4	16	994	1	0	0	0	13	0	0	0	0	0	0	0	0	0	0	0	0	8	0	676	0	0	206	0	0	158	0	14	1050
4	21	990	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	2	0	740	0	0	41	0	0	1	0	4	784
4	28	780	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	21	0	38	0	0	1	0	0	2	0	1	62
4	29	780	0	0	0	0	2	0	0	0	1	0	0	0	0	0	0	0	0	5	0	242	0	0	2	0	0	2	0	3	251
4	34	766	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	7	0	10	0	0	0	0	0	117	0	2	134
5	1	671	0	9	0	0	34	0	0	0	0	0	0	0	0	0	0	0	0	420	0	4380	65	0	17	0	0	4182	0	34	9064.1
5	2	639	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	10	0	15	0	0	0	0	0	0	0	1	25
5	13	420	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
5	38	265	0	0	5	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0
5	39	265	0	0	8	22	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	0
6	1	650	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	5	0	0	10
7	1	2135	0	1	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	4	2	0	97	0	0	106
7	18	1829	0	4	0	0	26	12	0	0	0	0	0	0	0	0	0	0	0	0	225	45	0	0	1683	350	0	2231	0	26	4535
7	19	1783	0	2	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	210	0	0	0	4060	450	0	170	0	3	4890
7	25	1545	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	43	29	2422	0	0	1844	85	0	680	0	1	5104
7	33	1524	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	21	35	104	0	0	50	15	0	250	0	3	476
7	35	1521	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	2	170	0	100	0	0	277
7	39	1506	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	55	225	0	0	0	3	0	0	0	2	283

7	44	1431	1	3	0	0	18	0	0	0	0	0	0	0	0	0	0	0	0	52	220	2500	0	0	900	590	0	565	0	19	4827
7	49	1413	0	0	0	0	6	1	0	0	1	0	0	0	0	0	0	0	0	5	351	2320	0	0	153	50	0	0	0	7	2881
7	53	1380	0	4	0	0	18	0	0	0	3	2	0	0	0	0	0	0	0	24	132	4168	0	0	317	304	0	400	0	21	5349
7	54	1380	0	3	0	0	3	0	0	0	0	0	0		0	0	0	0	0	0	19	495	0	0	426	28	0	0	0	3	969
11	6	2559	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	370	0	0	0	0	0	370
11	7	2526	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20	0	0	0	0	0	20
11	8	2514	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	0	0	0	0	0	50
11	10	2343	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	537	0	0	0	0	0	537
11	15	2301	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	330	0	0	0	0	0	331
11	17	2278	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	50	0	0	0	0	1030	0	0	200	0	0	1280
11	48	2160	0	6	0	0	3	1	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	5	20	0	52	0	3	80
11	56	2100	0	3	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	11	0	0	0	7	6	0	67	0	2	91
14	1	645	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20	0	0	20
15	1	1354	0	0	0	0	7	2	0	0	3	0	0	0	0	0	0	0	0	5	12	0	0	0	55	18	0	150	0	10	244
15	5	1345	1	0	0	0	19	0	0	0	3	3	0	0	0	0	0	0	0	3	38	1660	0	0	871	950	0	2210	0	23	5745
15	11	1326	0	0	0	0	6	21	0	0	3	1	0	0	0	0	0	0	0	0	0	19	0	0	30	3	0	40	0	9	92
15	27	1366	1	0	0	0	38	8	0	0	0	3	0	0	0	0	0	0	0	125	62	1600	0	0	1540	220	0	6200	0	39	9747
15	32	1365	0	0	0	0	9	17	0	0	0	0	0	0	0	0	0	0	0	0	25	160	0	0	750	75	0	975	0	9	1985
15	36	1375. 1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	429	0	0	0	350	0	0	0	1	779
15	38	1391	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	200	0	0	200
15	55	972.8	0	0	0	0	45	0	0	0	0	0	0	0	0	0	0	0	0	214	0	5150	0	0	130	0	0	0	0	45	5494
15	57	800	0	0	0	0	71	3	0	0	1	0	0	0	0	0	0	0	0	0	0	5285	0	0	0	0	0	276	0	72	5561
15	58	798	1	0	0	0	64	21	0	0	0	0	0	0	0	0	0	0	0	260	0	5625	0	0	55	65	0	16	0	65	6021
15	66	746	0	0	0	0	7	2	0	0	0	0	0	0	0	0	0	0	0	55	0	500	0	0	2	1	0	751	0	7	1309
21	8	1985	0	0	0	0	73	63	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0	0	110	0	73	210
21	13	1966	0	0	0	0	54	0	0	0	1	0	0	0	0	0	0	0	0	0	5	0	0	0	40	5	0	75	0	55	125
21	20	1853	0	0	0	0	2	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2	2
21	23	1574	1	0	0	0	11	9	0	0	0	0	0	0	0	0	0	0	1	50	650	5500	0	0	750	550	0	1904	0	13	9414
21	30	1493	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	5	10	0	0	0	40	0	0	15	0	0	80
21	40	1445	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	120	0	0	0	0	0	0	5	0	0	125
21	41	1445	0	0	0	0	2	1	0	0	0	0	0	0	0	0	0	0	0	0	20	0	0	0	10	10	10	40	0	2	90
21	44	1484	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	0	30	0	60	0	0	120
22	1	1278	4	0	0	0	36	16	0	0	0	0	0	0	0	0	0	0	0	2	1	0	0	0	30	0	0	115	0	40	148

22	9	1264	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	24	0	0	26
22	10	1264	0	0	0	0	28	0	0	0	0	0	0		0	0	0	0	0	15	0	170	0	0	220	30	0	2596	0	28	3035
22	15	997	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	2	4
22	41	915	0	0	0	0	6	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	25	0	7	25
22	45	845	1	0	0	0	26	9	0	0	0	0	0	0	0	0	0	0	0	2280	0	980	0	0	50	75	0	3201	0	27	6588
22	47	773	0	0	0	0	2	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0
22	52	761	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	65	0	130	0	0	2	0	0	12	0	0	209
22	54	749	0	0	0	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	8	4
22	56	718	0	0	0	0	4	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0
26	9	2824	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	5	0	0	0	0	0	7
26	12	2818	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	0	0	0	0	0	50
26	17	2814	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
26	28	2599	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	183	0	170	2	0	0	355
26	29	2599	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	40	0	0	1	0	2	41
26	41	2475	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	1	3
26	44	2463	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	470	1	0	0	0	1	475
26	51	2391	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
26	53	2355	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	0	1	1	0	0	12
26	57	2307	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	540	0	0	540
26	59	2309	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
26	66	2170	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	3	4
26	70	1164	4	7	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	35	0	0	2	1	0	44	0	5	84
26	71	1164	6	3	0	0	75	0	0	0	1	0	0	0	0	0	0	0	0	50	12	1300	0	0	800	10	0	3105	0	82	5279
26	73	1162	5	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0
26	74	1162	0	0	0	0	97	0	0	0	0	0	0	0	0	0	0	0	0	100	0	500	0	0	160	38	0	2342	13	97	3160
26	79	1035	0	0	0	0	43	0	0	0	2	0	0	0	0	0	0	0	0	5	0	4200	0	0	50	120	0	606	0	45	4982
33	3	1494	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	7	20	0	0	5	10	0	83	0	1	125
33	20	1464	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
33	25	1420	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	135	125	0	0	32	14	0	222	0	0	536
33	26	1407	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
33	27	1403	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	179	0	0	0	960	227	0	6240	0	1	7607
33	33	1371	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	3	1.5	0	12	0	1	17.5
33	39	1361	0	0	0	0	43	3	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	80	34	0	209	0	43	330

33	47	1327	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	0	0	30	0	5	36
33	50	1296	0	0	0	0	15	0	0	0	0	0	0	0	0		-	0	0	0	0	100	0	0	150	30	0	5530	0	15	5810
33	53	1293	0	0	0	0	3	0	0		0	0	0	0	0			0	0	0	0	29	0	0	0	0	0	0	0	3	29
33	55	1277	0	0	0	0	1	0	0		0	0	0	0	0				0	0	0	0	0	0	0	0	0	0	0	1	0
33	56	1236	0	0	0	0	2	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	2	0
33	57	1225	0	0	0	0	4	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	40	0	4	42
33	58	1165	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	18	0	0	2	0	0	6	0	0	26
33	59	1139	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20
33	60	1132	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	525	0	0	368	0	0	479	0	1	1372
33	61	1128	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	1	3
33	67	1120	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11	0	0	14	0	0	225	0	0	250
33	76	1097	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	50	0	2020	0	0	195	0	10	1470	0	3	3745
40	1	845	0	0	0	0	33	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	45	722	0	33	767
41	3	000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 12	200	10	90	0	0	2	0	0	17	0	0	1320
41	12	1146	3	0	0	0	0	2	0	0	3	0	0	0	0	0	0	0	0	2	3	551	0	0	120	0	5	0	0	6	712
41	13	1140	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	118	0	0	6	0	2	22	0	0	152
	20/ 21/																														
41	25	000	0	0	0	0	1	0	0		0	0	0	0					0	0	0	0	0	0	2	0	0	0	0	1	2
41	28	935	0	0	0	0	2	0	0		0	0	0	0	0			0	0	10	2	0	0	0	2	0	6	58	0	2	98
41	30	858	0	0	0	0	0	0	0		0	0	0	0	0		-		0	0	0	0	0	0	0	0	0	10	0	0	10
41	33	808	0	0	0	0	93	26	0		0	0	0	0	0					590	0	2550	0	0	40	10	150	4100	0	93	7442
41	37	739	0	0	0	0	1	3	0		0	0	0	0	0				0	0	0	0	0	0	0	0	165	95	0	1	260
41	38	738	0	0	0	0	4	0	0		0	0	0	0	0			-	0	1	0	0	0	0	0	0	15	88	0	4	104
41	41	727	0	0	0	0	14	2	0	0	0	0	0	0	0				0	0	0	0	0	0	0	0	45	750	0	14	795
41	48	628	0	0	0	0	0	0	0		0	0	0	0	0			-	0	3	1	0	0	0	1	0	10	143	0	0	158
41	51	606	0	0	0	0	4	0	0		0		0		0					45	20	180	0	0	0	0	60	645	0	4	950
41	59 72	599 570	0	0	0	0	30	0	0	0	0	0	0	0	0			0	0 2	294 5	0	750	0	0	15	6	60 3	6096	0	30	7221
41	72 79	570 568	0	0	0	0	1	0	0	0	0	0	0	0	0				-	555	0	2 2120	0	0	0	0		20 1183	0	1	31 3920
41	17	2894	0	0	0	0	0	0		0		0		0					0 5	0	0	0	0	0	378	0	45	0	0	0	424
42	21	2888	0	0	0	0	0	0		0		0		0					0	0	0	0	0	0	40	0	43	0	0	0	180
42		2818	0	0	0	0	0	0	0			0	0					-	0	0	10	0	0	0	10	3	0	0	0	0	83
42	31	2809	0	0	0	0	0	0				0	0						0	0	0	0	0	0	30	0	0	0	0	0	30
42		2688	0	0	0	0	0	0	0		0	0	0	0				0	0	0	0	0	0	0	440	0	0	0	0	0	440
72		2000						0	U	0	U	0	U	0	0	v	~		•	0	U	0	0	0	440	U	U	v	0	U	0770

JC094 Cruise Report, Appendix 3

42	35	2688	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	10	0	2	0	0	1	13
42	41	2433	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	93	2	0	1	0	0	99
42	51	2202	0	0	0	0	1	0	0	0	0	0	0	0	0			0	0	0	2	0	0	0	0	0	0	0	0	1	2
42	54	2191	0	0	0	0	1	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	3	8	0	0	0	1	16
42	65	2183	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
42	68	2129	0	0	0	0	1	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	1	2
42	73	2001	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
42	82	1694	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	485	0	0	0	0	0	0	0	0	0	485
42	84	1678	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	40	0	0	0	40	0	0	15	0	0	95
42	89	1657	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1430	270	0	0	450	540	0	250	0	0	2942
42	93	1648	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	145	0	0	0	6	0	0	6	0	0	158
42	97	000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	32	20	0	0	75	3810	4	0	0	0	3942
42	98	1578	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1900	60	0	0	1780	0	0	1300	0	0	5044
45	1	1514	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	2.5	2	0	0	2	19	0	76.25	0	1	101.75
45	4	1513	1	0	0	0	4	0	0	0	7	0	0	0	1	0	0	0	0	0	100	0	0	0	1777	989	0	5705	0	13	8572
45	7	1483	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	68	0	0	0	0	68
45	13	1425	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	8	0	0	3	0	0	16
45	30	1412	0	0	0	0	3	2	1	0	0	0	0	0	0	0	0	0	0	0	10	0	0	0	50	5	0	21	0	4	87
45	40	1406	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	5	0.5	0	0	2	1	0	3.75	1	1	12.25
45	43	1420	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.5	1	0	0	50	0	0	176.5	2	0	230
45	70	1259	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	230	0	0	0	0	0	230
45	72	1259	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	5	8	4	0	0	390	2	0	151	0	0	561
45	74	1258	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	55	32	10	0	0	2343	20	0	2804	0	1	5266.5
45	81	1303	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	1.3	0	0	0	1	0	0	0.5	0	4	2.8
45	84	1150	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	47
45	96	1094	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3.5	0	0	4.5	0	0	10.5
45	10 1	1106	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	7	3.5
45	10 5	1054	0	2	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	1	1	2	0	0	1	1	0	3	0	3	11
45		1070	0	0	0	0	1	0	0	0	11	0	0	0	0	0	0	0	0	20	42	75	0	0	38	18	0	354.5	11	12	652.5
45	11 0	1070	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.5	0	0	0	1	0	0	2	0	0	4.5
48	14	840	0	0	0	0	8	0	0		0	0		0				0	0	0	0	0	0	18	0	1	0	96	0	8	116
48	16	826	0	0	0	0	5	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	29	0	6	30
48	21	799	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	240	0	0	0	0	0	0	4	0	1	244

JC094 Cruise Report, Appendix 3

48	22	795	0	3	0	0	12	1	0	0	2	0	1	0	0	0	0	0	0	1	1	31	0	0	4	3	1	138	0	15	180
48	35	776	0	0	0	0	2	0	0	0	5	0	1	0	0	0	0	0	0	4	0	5	0	0	0	3	2	31	0	8	49
48	39	762	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	162	0	1	168
48	43	747	0	0	0	0	4	0	0	0	1	0	2	0	0	0	0	0	0	0	2	0	0	0	0	2	0	8	1	7	22
48	44	747	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
48	46	746	0	0	0	0	1	0	0	0	5	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	1
48	48	743	0	0	0	0	2	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	0
48	50	705	0	0	0	0	0	0	0	0	1	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	1	4	5
48	57	632	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0
48	63	583	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
48	72	1366	0	0	0	0	5	0	0	0	16	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	3.5	3	23	15.5
48	79	1153	0	0	0	0	1	0	0	0	22	0	1	1	0	0	0	0	0	0	0	0	0	0	3	0	1	7	0	24	15
48	86	1149	0	0	0	0	3	0	0	0	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	4	5	15
48	90	1120	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	0	0	33
49	13	1971	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	7	5	1	10	0	3	24
49	14	1966	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0
49	16	1966	0	0	0	0	36	16	0	0	0	0	0	0	0	0	2	0	0	0	32	0	0	0	1403	135	4	6301	0	38	7876
49	22	1956	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	4
49	34	1827	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	2	0	2	0	0	6
49	37	1756	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	5	5	0	80	0	0	91
49	38	1706	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	5	32	0	1	0	0	42
49	41	1622	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1600	0	0	0	0	1600
49	43	1612	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
49	44	1612	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	100
49	46	1569	0	0	0	0	17	0	0	0	0	0	0	0	1	0	0	0	0	0	360	0	0	0	177	420	1	4093	0	18	5052
49	49	1457	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1400	0	0	0	0	1400
56	1	1520	2	0	0	0	1	0	6	0	3	0	0	0	0	0	0	0	0	0	80	0	0	0	105	0	0	18	0	12	203
56	3	1519	1	0	0	0	7	0	9	0	0	0	0	0	0	0	0	0	0	590	510	0	0	0	354	10	0	3127	0	17	4636
56	6	1492	2	0	0	0	2	0	3	1	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13	0
56	7	1492	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	98	0	0	0	12	0	0	0	0	0	120
56	11	1484	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	45	0	0	0	0	0	0	0	0	0	45
56	17	1478	0	0	0	0	1	0	9	0	0	0	2	0	0	0	0	0	0	0	10	5	0	0	10	0	0	14	0	12	59
56	20	1473	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	75	15	0	0	0	5	0	0	38	0	0	134

56	21	1461	0	0	0	0	1	0	4	0	2	0	0	0	0	0	0 0	0	73	19	0	0	0	0	0	0	22	0	7	118
56	23	1439	0	0	0	0	0	0	6	0	0	0	0	0	0	0	1 0	0	2	71	0	0	0	35	2	0	32	0	7	143
56	24	1375	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	48	0	0	0	4	0	0	0	0	0	54
56	30	1380	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	4200	0	0	330	1	0	4530
56	33	1428	1	0	0	0	4	0	1	0	1	0	0	0	0	0	0 0	0	11	57	0	0	0	2.5	2	0	3	0	7	77.5
56	36	1446	0	0	0	0	3	0	0	0	3	0	0	0	0	0	0 0	0	0	0	0	0	0	0	2	0	0	3	6	2
56	41	1253	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	1	0
56	42	1096	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	2	0
56	50	1027	0	0	0	0	22 9	35	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	229	0
56	55	981	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
58	6	2051	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	1	0
58	15	1820	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	165	0	0	0	0	0	0	0	0	0	165
58	18	1791	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	1	0
58	19	1768	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	415	0	0	0	0	0	0	3	0	0	418
58	24	1662	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0 0	0	0	125	0	0	0	3	0	7	0	0	1	135
58	29	1610	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
58	31	1553	2	0	0	0	6	0	1	0	0	0	0	0	0	0	0 0	0	80	100	0	0	0	34	2	0	2951	2	9	3169
58	32	1544	0	0	0	0	6	0	3	0	1	0	0	0	0	0	0 0	0	12	150	0	0	0	0	15	0	109	9	10	289
58	33	1534	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	3	0	1	3
58	34	1517	0	0	0	0	2	0	3	0	1	1	0	0	0	0	0 0	0	233	640	0	0	0	705	0	0	3652	2	6	5270
58	35	1513	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	61	0	0	0	0	0	0	0	0	0	61
58	36	1486	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0 0	0	3	2	0	0	0	3	0	0	0	0	2	8
58	37	1486	1	1	0	0	8	0	8	6	0	0	0	0	0	0	0 0	0	2270	1199	15	0	0	0	11	0	720	5	17	4216
Sta	tion	Totals	5																											
4																														
			7	1	0	0	226	0	0	0	0	0	0	0	0	0			502	0	2452	0	0	71.1	0	0	0050	0	242	14220
5			/	1	0	0	226	0	0	0	9	0	0	0	0	0	0 0	0	503	0	3453	0	0	711	0	0	9659	0	242	14328
_			0	10	13	52	37	0	0	0	0	0	0	0	0	0	0 0	0	430	0	4395	65	0	17	1	0	4182.1	0	50	9090.1
6																														
			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	5	0	0	0	0	0	0	0	5	0	0	10
7			1	18	0	0	80	19	0	0	4	2	0	0			0 0		145	1284	12279	0	0	9439	2047	0	4493	0	85	29697
L			-	-	-	-			-				-		-								-			-		-		

11																												
15	0	9	0	0	5	4	0	0	0	0	0	0	0	0 () ()	0	50	13	0	0	0	2349	26	0	319	0	5	2759
15																												
	3	0	0	0	267	74	0	0	10	7	0	0	0	0 0	0	0	662	137	20428	0	0	3433	1682	0	10818	0	280	37177
21																												
22	1	0	0	0	142	74	0	0	1	2	0	0	0	0 () ()	1	55	835	5500	0	0	940	595	10	2211	0	145	10166
22																												
	6	0	0	0	110	29	0	0	4	0	0	0	0	0 0	0	0	2364	1	1280	0	0	302	105	0	5981	0	120	10039
26																												
33	15	10	0	0	228	0	0	0	5	0	0	0	0	0 () ()	0	156	14	6035	0	0	1774	170	174	6641	13	248	14992
55																												
	0	1	0	0	81	5	0	0	2	0	0	0	0	0 0	0	0	50	322	2858	0	0	1817	316.5	10	14546	0	83	19948.5
40																												
44	0	0	0	0	33	5	0	0	0	0	0	0	0	0 () 0	0	0	0	0	0	0	0	0	45	722	0	33	767
41																												
	3	0	0	0	151	33	0	0	3	0	0	0	0	0 0	0 0	0	2708	36	6361	0	0	190	16	581	13227	0	157	23175
42	5	0	0		101			Ū		Ū	0	Ū	Ū			-	2700	50	0001	Ū	0	150		501	10227	0	107	20170
	0	0	0	0	4	1	0	0	1	0	0	0	1	0 () 0	0	0	4045	350	0	0	3355	4363	51	1574	0	6	13955
45																												
	1	2	0	0	8	2	1	0	35	1	0	0	1	0 0	0 0	0	81	210.8	94.5	0	0	4896.5	1123	0	9304.5	14	46	15876.3
48		2	v	v		-			55		v	5	-	- · ·			01	210.0	54.5	Ŭ	Ŭ	.050.5	1125	Ŭ	5504.5			1007010
	0	3	0	0	48	2	0	0	59	2	10	2	0	0 :	0	0	5	249	36	0	18	7	9	4	502.5	9	118	893.5
49																												
	0	0	0	0	61	22	0	0	0	0	0	0	1	0 2	2 0	0	0	499	0	0	0	1599	3599	6	10488	0	64	16195
56	U	U	U	U	01		0	0	U	0	U	U	-		. 0	0	0	433	0	U	U	1399	3399	0	10400	U	04	10193
	6	0	0	0	248	35	38	1	18	0	2	0	0	0 :	0	0	761	953	5	0	0	4727.5	16	0	3584	4	313	10121.5

58	4	1	0	0	24	0	16	6	4	1	0	0	0	0	0	0	0	2598	2857	15	0	0	745	28	7	7438	18	48	13734
Sampling Loc	atio	n Tot	als																										
Carter	11	38	13	52	615	97	0	0	23	9	0	0	0	0	0	0	0	1795	1434	40555	65	0	15949	3756	0	29476	0	662	93061.1
Knipovich																								870					
Vema	22	10	0	0	480	103	0	0	10	2	0	0						2575	850	12815	0	0	3016		184	14833	13	513	35197
Vayda	3	1	0	0	269	44	0	0	6 94	0	0	0					0	2758 86	4403	9569	0	0	5362 6502.5	4695.5	687	30069	0	279	57845.5
Gramberg	10	5	0	0	272	26 35	54	7	22	3	10							3359	958.8 3810	20	0	0	5472.5	4731	10	20295	23	228	32964.8 23855.5
Cruise Totals	47	55	13 0	52	1753	302	22	7	155	15					† C			10573	11456	06089	65	18 0	36302	14097	888	105695	28	2043	242923.9

Niskin #	Depth (m)	Diss O2	d18O
1	4512	0001	0025
2	4512	0002	
3	4297	0003	
4	4297	0004	
5	3598	0005	
6	3598	0006	
7	2800	0007	
8	2800	0008	
9	2002	0009	
10	2002	0010	
11	1503	0011	
12	1503	0012	
13	1004	0013	
14	1004	0014	
15	705	0015	
16	705	0016	
17	405	0017	
18	405	0018	
19	55	0019	
20	55	0020	
21	36	0021	
22	36	0022	
23	10.8	0023	
24	10.8	0024	

W numbers for CTD001 (JC094_001_EBA_CTD001_NSK#_W####)

W numbers for CTD002 (JC094_002_EBA_CTD002_NSK#_W####)

Extra sample from bottle 21 W0209

					r					1			
Niskin #	Depth (m)	Diss O2	CO3	14C	Nuts	d18O	d30Si	Metals	d15N	U series	Salinity	PON	POC
1	4512	0026	0051		0076/7	0100	0108	0116	0128	0140	0152		
2	4512	0027		0064		0199					0153	0176	0188
3	4297	0028	0052		0078/9	0101	0109	0117	0129	0141	0154	0177	
4	4297	0029		0065		0200					0155		
5	3598	0030	0053		0080/1	0102	0110	0118	0130	0142	0156		
6	3598	0031		0066		0201					0157	0178	0190
7	2800	0032	0054		0082/3	0103	0111	0119	0131	0143	0158		
8	2800	0033		0067		0202					0159	0179	0191
9	2002	0034	0055		0084/5	0104	0112	0120	0132	0144	0160		
10	2002	0035		0068		0203					0161	0180	0192
11	1503	0036	0056		0086/7	0105	0113	0121	0133	0145	0162		
12	1503	0037		0069		0204					0163	0181	0193
13	1004	0038	0057		0088/9	0106	0114	0122	0134	0146	0164		
14	1004	0039		0070		0205					0165	0182	0194
15	705	0040	0058		0090/1			0123	0135	0147	0166		
16	705	0041/42	0059	0071							0167	0183	0195
17	405	0043	0060		0092/3			0124	0136	0148	0168		
18	405	0044		0072							0169	0184	0196
19	55	0045	0061		0094/5			0125	0137	0149	0170		
20	55	0046		0073							0171	0185	0197
21	36	0047	0062		0096/7	0107	0115	0126	0138	0150	0172	0186	
22	36	0048		0074		0206					0173		0198
23	10.8	0049	0063		0098/9	0207		0127	0139	0151	0174		
24	10.8	0050		0075		0208					0175	0187	

Niskin #	EVENT	Dissolved O2	CO3	14C	Nuts	Metals	d30Si
1	NSK1	0210	0211	0212	0213/0214		
2	NSK1					0215	0216
3	NSK33	0217	0218	0219			
4	NSK33					0222	0223
5	NSK33				0220/0221	0224	

W numbers for ROV222 (JC094_004_EBA_ROV222_NSK#_W####)

W numbers for ROV223 (JC094_005_EBA_ROV223_NSK#_W####)

Niskin #	EVENT	Dissolved O2	CO3	14C	Nuts	Metals	d30Si
1	NSK5	0225	0226				
2	NSK6				0227/0228	0229	0230
3	NSK19	0231	0232	0233			
4	NSK20				0234/0235	0236	0237

W numbers for ROV224 (JC094_007_EBA_ROV224_NSK#_W####)

Niskin #	EVENT	Dissolved O2	CO3	14C	Nuts	Metals	d30Si
1	NSK6	0238	0239		0241		
2	NSK7			0240		0243	0244
3	NSK46	0245	0246				
4	NSK47				0248/0249	0250	0251
5	NSK56	0252	0253			0254	

W numbers for MGA002 (JC094_008_EBA_MGA002_MCX#_W####)

EVENT	Nuts	Metals	U series
MCN1			
MCN2	0255/0256	0257	0259
MCN3			
MCN4			
MCH1			
MCH2			
MCH3		0258	0260

W numbers for ROV225 (JC094_011_EBA_ROV225_NSK#_W####)

Niksin #	EVENT	Dissolved O2	CO3	14C	Nuts	Metals	d30Si
1	NSK4	0261	0262		0263/0264		
2	NSK5					0265	0266
5	NSK40	0267	0268			0269	

W numbers for ROV227 (JC094_015_EBA_ROV227_NSK#_W####)

Niskin #	EVENT	Dissolved O2	CO3	14C	Nuts	Metals
2	NSK25	0270	0271			
3	NSK26			0272	0273/0274	0275
4	NSK47	0276	0277			
5	NSK67	0278				0279

W numbers for MGA006 (JC094_016_TRS1_MGA006_XXX#_W####)

Niskin #	Dissolved O2	CO3	14C	Nuts	d18O	d30Si	Metals	U series
1	0280	0281	0282	0283/0284	0285/0286	0287	0288	0289

EVENT	Nuts	d30Si	Metals
MCN1	0290/0291	0293	0292

W numbers for MGA007 (JC094_019_TRS2_MGA007_XXX#_W####)

Niskin #	Dissolved O2	CO3	14C	Nuts	d18O	d30Si	Metals	U series
1	0294	0295	0296	0297/0298	0299/0300	0301	0302	0303

Spare filtered and acidified water W0306

EVENT	Nuts	d30Si	Metals
MCN1	0304/0305	030	0308

Niskin #	Depth (m)	Diss O2	CO3	14C	Nuts	d18O	d30Si	Metals	d15N	U series	Salinity	PON	POC
1	4046	0313	0339		0364/5	0388/9	0404	0412	0424	0436	0448		
2	4046	0314		0352							0449	0472	0484
3	3796	0315	0340		0366/7	0390/1	0405	0413	0425	0437	0450		
4	3796	0316		0353							0451	0473	0485
5	2799	0317	0341		0368/9	0392/3	0406	0414	0426	0438	0452		
6	2799	0318		0354							0453	0474	0486
7	2000	0319/0320	0342		0370/1	0394/5	0407	0415	0427	0439	0454		
8	2000	0321		0355							0455	0475	0487
9	1500	0322	0343		0372/3	0396/7	0408	0416	0428	0440	0456		
10	1500	0323		0356							0457	0476	0488
11	1002	0324	0344		0374/5	0398/9	0409	0417	0429	0441	0458		
12	1002	0325		0357							0459	0477	0489
13	803	0326	0345		0376/7	0400/1	0410	0418	0430	0442	0460		
14	803	0327		0358							0461	0478	0490
15	404	0328	0346		0378/9			0419	0431	0443	0462		
16	404	0329/0330	0347	0359							0463	0479	0491
17	254	0331	0348		0380/1			0420	0432	0444	0464		
18	254	0332		0360							0465	0480	0492
19	55	0333	0349		0382/3			0421	0433	0445	0466		
20	55	0334		0361							0467	0481	0493
21	20	0335	0350		0384/5	0402/3	0411	0422	0434	0446	0468		
22	20	0336		0362							0469	0482	0494
23	5	0337	0351		0386/7			0423	0435	0447	0470		
24	5	0338		0363							0471	0483	0495

W numbers for CTD003 (JC094_020_EBB_CTD003_NSK#_W####)

W numbers for ROV228 (JC094_021_EBB_ROV228_NSK#_W####)

Niskin #	EVENT	Dissolved O2	CO3	14C	Nuts	Metals	d30Si
1	NSK1	0496	0497				
2	NSK2			0499	0500/0501	0502	0513
3	NSK46	0503	0504				
4	NSK46			0505	0506/0507	0508	
5	NSK46	0510					0509

W numbers for ROV229 (JC094_022_EBB_ROV229_NSK#_W####)

Niskin #	EVENT	Dissolved O2	CO3	14C	Nuts	Metals	d30Si
1	NSK2	0517		0518			
2	NSK3				0519/0520	0521	0522
3	NSK74	0523	0524				
4	NSK75			0525	0526/0527		
5	NSK76	0530				0528	0529

W numbers for ROV230 (JC094_026_EBB_ROV230_NSK#_W####)

Niskin #	EVENT	Dissolved O2	CO3	14C	Nuts	Metals	d30Si
1	NSK1	0531	0532				
2	NSK2			0533	0534/0535	0536	0537
3	NSK64	0538	0539				
4	NSK64			0540	0541/0542	0543	

W numbers for MGA008 (JC094_027_TRS3_MGA008_XXX#_W####)

Niskin #	Dissolved O2	CO3	14C	Nuts	d18O	d30Si	Metals	U series
1	0546	0547	0548	0549/0550	0551/0552	0553	0554	0555

EVENT	Nuts	d30Si		Metals
MCN1				0558
MCN2			0561	0559/0560
MCH1	0556/0557		0564	0562/0563

W numbers for MGA009 (JC094_029_TRS3_MGA009_XXX#_W####)

Niskin #	Dissolved O2	CO3	14C	Nuts	d18O	d30Si	Metals	U series
1	0565	0566	0567	0568/0569	0570/0571	0572	0573	0574

EVENT	Nuts	d30Si		Metals
MCN2			0578	0577
MCN3	0575/0576			0579
MCH4	0556/0557		0580	0581

Niskin #	Depth (m)	Diss O2	CO3	14C	Nuts	d18O	d30Si	Metals	d15N	U series	Salinity	PON	POC
1	4923	0582	0608		0633/4	0657/8	0681	0691	0703	0715	0727		
2	4923	0583		0621							0728	0751	0763
3	4702	0584	0609		0635/6	0659/60	0682	0692	0704	0716	0729		
4	4702	0585		0622							0730	0752	0764
5	3802	0586	0610		0637/8	0661/2		0693	0705	0717	0731		
6	3802	0587		0623							0732	0753	0765
7	2805	0588	0611		0639/40	0663/4	0683	0694	0706	0718	0733		
8	2805	0589		0624							0734	0754	0766
9	2002	0590	0612		0641/2	0665/6		0695	0707	0719	0735		
10	2002	0591		0625							0736	0755	0767
11	1506	0592	0613		0643/4	0667/8	0684	0696	0708	0720	0737		
12	1506	0593		0626							0738	0756	0768
13	1009	0594	0614		0645/6	0669/70	0685	0697	0709	0721	0739		
14	1009	0595		0627							0740	0757	0769
15	810	0596	0615	0628	0647/8	0671/2	0686	0698	0710	0722	0741		
16	810												
17	609	0598	0616		0649/50	0673/4	0687	0699	0711	0723	0743		
18	609	0599		0629							0744	0759	0771
19	460	0600/0601	0617		0651/2	0675/6	0688	0700	0712	0724	0745		
20	460	0602		0630							0746	0760	0772
21	85	0603	0618		0653/4	0677/8	0689	0701	0713	0725	0747		
22	85	0604		0631							0748	0761	0773
23	16	0605	0619/0620		0655/6	0679/80	0690	0702	0714	0726	0749		
24	16	0606/607		0632							0750	0762	0774

W numbers for CTD004 (JC094_032_VEM_CTD004_NSK#_W####)

Note bottle 16 misfired

W numbers for ROV231 (JC094_033_VEM_ROV231_NSK#_W####)

Niskin #	EVENT	Dissolved O2	CO3	14C	Nuts	Metals	d30Si
1	NSK10	0775	0776				
2	NSK11			0777	0778/0779	0780	
3	NSK44	0781	0782				
4	NSK45			0783	0784/0785	0786	
5	NSK68	0787	0788				0789

W numbers for MGA010 (JC094_034_VEM_MGA010_XXX#_W####)

Niskin #	Dissolved O2	CO3	14C	Nuts	d18O	d30Si	Metals	U series
1	0790	0791	0792	0793/4	0795/6	0797	0798	0799

EVENT	Nuts	d30Si	Metals
MCN1	0800/0801		0802
MCH2			0803

W numbers for MGA011 (JC094_036_VEM_MGA011_XXX#_W####)

Niskin #	Dissolved O2	CO3	14C	Nuts	d18O	d30Si	Metals	U series
1	0804	0805	0806	0807/8	0809/10	0811	0812	0813

W numbers for MGA012 (JC094_037_VEM_MGA012_XXX#_W####)

Niskin #	Dissolved O2	PON	POC
1	0814	0815	0816

Niskin #	Depth (m)	Diss O2	CO3	14C	Nuts	d18O	d30Si	Metals	d15N	U series	Salinity	PON	POC
1	5142	0817	0843		0866/7	0890/1		0923	0935	0947	0959		
2	5142	0818		0856							0960	0983	0995
3	4799	0819	0844		0868/9	0892/3	0914	0924	0936	0948	0961		
4	4799	0820		0857							0962	0984	0996
5	3799	0821	0845		0870/1	0894/5		0925	0937	0949	0963		
6	3799	0822		0858							0964	0985	0997
7	2801	0823	0846		0872/3	0896/7	0915	0926	0938	0950	0965		
8	2801	0824									0966	0986	0998
9	2002	0825	0847		0874/5	0898/9		0927	0939	0951	0967		
10	2002	0826/0841		0859							0968	0987	0999
11	1503	0827	0848/0855		0876/7	0900/1	0916	0928	0940	0952	0969		
12	1503	0828									0970	0988	1000
13	1204	0829	0849		0878/9	0902/3	0917	0929	0941	0953	0971		
14	1204	0830		0860							0972	0989	1001
15	804	0831/0842	0850		0880/1	0904/5	0918	0930	0942	0954	0973		
16	804	0832		0861							0974	0990	1002
17	605	0833	0851		0882/3	0906/7		0931	0943	0955	0975		
18	605	0834		0862							0976	0991	1003
19	406	0835	0852		0884/5	0908/9	0920	0932	0944	0956	0977		
20	406	0836		0863							0978	0992	1004
21	76	0837	0853		0886/7	0910/11		0933	0945	0957	0979		
22	76	0838		0864							0980	0993	1005
23	5	0839	0854		0888/9	0912/3	0922	0934	0946	0958	0981		
24	5	0840		0865							0982	0994	1006

W numbers for CTD005 (JC094_039_VEM_CTD005_NSK#_W####)

W numbers for ROV232 (JC094_041_VEM_ROV232_NSK#_W####)

Niskin #	EVENT	Dissolved O2	CO3	14C	Nuts	d18O	Metals	d30Si
1	NSK40	1007	1008					
2	NSK40			1009	1010/11	1012/13		1014
3	NSK69	1015	1016					
4	NSK70			1017	0784/0785	1020/21		
5	NSK71		0788				1022	1023

W numbers for ROV233 (JC094_042_VEM_ROV233_NSK#_W####)

Niskin #	EVENT	Dissolved O2	CO3	14C	Nuts	Metals
1	NSK13	1024	1025			
2	NSK14			1026	1027/28	1029
3	NSK80	1030	1031			
4	NSK96	1032	1033			
5	NSK96			1034	1035/6	1037

W numbers for ROV234 (JC094_043_VEM_ROV234_NSK#_W####)

Niskin #	EVENT	Dissolved O2	CO3	14C	Nuts	d18O	Metals	d30Si
1	NSK1	1038	1043					
2	NSK2	1039		1044				
3	NSK3	1040			1045/6	1047/8		
4	NSK4	1041					1049	
5	NSK5	1042						1050

W numbers for CTD006 (JC094_044_VAY_CTD006_NSK#_W####)

Extra sample from bottle 22 W1246

Niskin #	Depth (m)	Diss O2	CO3	14C	Nuts	d18O	d30Si	Metals	d15N	U series	Salinity	PON	POC
1	4168	1051	1077		1102/3	1126/27	1150	1162	1174	1186	1198		
2	4168	1052		1090							1199	1222	1234
3	3798	1053	1078		1104/5	1128/29	1151	1163	1175	1187	1200		
4	3798	1054		1091							1201	1223	1235
5	2800	1055	1079	1092	1106/7	1130/31	1152	1164	1176	1188	1202		
6	2800												
7	2001												
8	2001	1058	1080	1093	1108/9	1132/33	1153	1165	1177	1189	1205		
9	1503	1059	1081		1110/11	1134/35	1154	1166	1178	1190	1206		
10	1503	1060		1094							1207	1226	1238
11	1200	1061	1082		1112/13	1136/37	1155	1167	1179	1191	1208		
12	1200	1062/1075		1095							1209	1227	1239
13	1004	1063	1083		1114/5	1138/39	1156	1168	1180	1192	1210		
14	1004	1064		1096							1211	1228	1240
15	805	1065	1084		1116/7	1140/41	1157	1169	1181	1193	1212		
16	805	1066		1097							1213	1229	1241
17	505	1067	1085		1118/9	1142/43	1158	1170	1182	1194	1214		
18	505	1068/1076		1098							1215	1230	1242
19	205	1069	1086		1120/21	1144/45	1159	1171	1183	1195	1216		
20	205	1070		1099							1217	1231	1243
21	96	1071	1087		1122/23	1146/47	1160	1172	1184	1196	1218		
22	96	1072		1100							1219	1232	1244
23	10	1073	1088/89		1124/25	1148/49	1161	1173	1185	1197	1220		
24	10	1074		1101							1221	1233	1245

Bottles 6 and 7 didn't fire; Bottle 2 misfired

W numbers for ROV235 (JC094_045_VAY_ROV235_NSK#_W####)

Niskin #	EVENT	Dissolved O2	CO3	14C	Nuts	d18O	Metals
1	NSK51	1247	1248				
2	NSK52			1249	1250/51	1262/63	1252
3	NSK93	1253	1254				
4	NSK94			1255	1256/57	1264/65	1259

W numbers for MGA013 (JC094_046_VAY_MGA013_XXX#_W####)

Nis	skin #	Dissolved O2	14C	POC	PON
	1	1268	1269	1270	1271

EVENT	Nuts	d30Si	Metals
MCH1	1272/73	127	6 1274/75/80
MCN2		127	9 1277/78/81

W numbers for ROV236 (JC094_048_VAY_ROV236_NSK#_W####)

Niskin #	EVENT	Dissolved O2	CO3	14C	Nuts	d18O	Metals	d30Si
1	NSK6	1282	1283					
2	NSK7			1284	1285/86	1287/88	1289	
3	NSK81	1290	1291					
4	NSK82			1292	1293/94	1295/96	1298	1297

W numbers for ROV237 (JC094_049_VAY_ROV237_NSK#_W####)

Niskin #	EVENT	Dissolved O2	CO3	14C	Nuts	d18O	Metals	d30Si
1	NSK6	1299	1300					
2	NSK7			1301	1302/03	1304/05	1306	1307
3	NSK81	1326	1308					
4	NSK82			1309	1310/11	1312/13	1314	1315

W numbers for MGA014 (JC094_050_VAY_MGA014_XXX#_W####)

Niskin #	Dissolved O2	CO3	14C	Nuts	d18O	d30Si	Metals	U series
1	1316	1317	1318	1319/20	1321/22	1323	1324	1325

W numbers for ROV239 (JC094_056_GRM_ROV239_NSK#_W####)

Niskin #	EVENT	Dissolved O2	CO3	14C	Nuts	d18O	Metals	d30Si
1	NSK6	1327	1328					
2	NSK7			1329	1330/31	1332/33	1334	1335
3	NSK81	1336	1337					
4	NSK82			1338	1339/40	1340/41	1344	

W numbers for ROV240 (JC094_058_GRM_ROV240_NSK#_W####)

Niskin #	EVENT	Dissolved O2	CO3	14C	Nuts	d18O	Metals	d30Si
1	NSK4	1345	1346					
2	NSK5			1347	1348/49	1350/51	1352	1353
3	NSK26	1354	1355					
4	NSK27			1356	1357/58	1359/60	1361	
5	NSK39	1362	1363					

W numbers for MGA015 (JC094_060_GRM_MGA015_XXX#_W####)

EVENT	Nuts	d30Si	Metals
MCN1	1364/65	1366	1367

W numbers for MGA016 (JC094_061_GRM_MGA016_XXX#_W####)

Niskin #	Dissolved O2	CO3	14C	Nuts	d18O	d30Si	Metals	U series
1	1368	1369	1370	1371/72	1373/74	1375	1376	1377

EVENT	Nuts	d30Si		Metals
MCN1	1378/79		1380	1381
MCH1				1382
MCH3				1383

W numbers for MGA017 (JC094_062_GRM_MGA017_XXX#_W####)

Niskin #	Dissolved O2	CO3	14C	Nuts	d18O	d30Si	Metals	U series
1	1384	1385	1386	1387/88	1389/90	1391	1392	1393

EVENT	Metals
MCN1	1394
MCN2	1395

Appendix 5: Table of underway water samples taken during JC094 (Anth = anthropogenics; Diatom = algal assemblage counts; Carbonate = carbonate chemistry)

			Julian					Depth	
CODE	LOCATION	GEAR #	day	Date	Time	Lat	Lon	(m)	Purpose
UW001	TRS_1	uwTAP001	288	15-Oct-13	0:47	25.08353	-21.4081		Anth
UW003	TRS_1	uwTAP002	288	15-Oct-13	14:27	24.33833	-21.4247	4470	Anth
UW004	TRS_1	uwTAP003	288	15-Oct-13	20:31	23.30983	-21.4385	4518	Anth
UW006	EBA	uwTAP004	291	18-Oct-13	19:25	10.87583	-21.6138	5090	Anth
UW008	EBA	uwTAP005	292	19-Oct-13	16:12	9.213148	-21.3127	1083	Anth
UW009	EBA	uwTAP006	293	20-Oct-13	2:34	9.21605	-21.316		Anth
UW010	EBA	uwTAP007	293	20-Oct-13	6:06	9.216003	-21.3154		Diatom
UW011	EBA	uwTAP008	293	20-Oct-13	6:50	9.216033	-21.3159		Diatom
UW012	EBA	uwTAP009	293	20-Oct-03	16:12	9.221557	-21.3154		Diatom
UW013	EBA	uwTAP010	293	20-Oct-13	23:39	9.222828	-21.3057	648	Anth
UW015	EBA	uwTAP011	294	21-Oct-13	17:56	9.223755	-21.3149	642	Anth
UW016	EBA	uwTAP012	294	21-Oct-13	21:14	9.195789	-21.2846	1981	Anth
UW018	EBA	uwTAP13	295	22-Oct-13	21:30	9.278066	-21.6379	4565	Anth
UW020	EBA	uwTAP14	296	23-Oct-13	15:02	9.169011	-21.2708	2755	Anth
UW021	EBA	uwTAP15	296	23-Oct-13	19:04	9.172344	-21.2764	2700	Anth
UW022	EBA	uwTAP16	297	24-Oct-13	19:46	9.222851	-21.3148	645	Anth
UW024	EBA	uwTAP17	299	26-Oct-13	18:21	9.22376	-21.3149	642	Anth
UW025	EBA	uwTAP18	299	26-Oct-13	21:07	9.205471	-21.299	1336	Anth
UW027	TRS_2	uwTAP19	301	28-Oct-13	3:39	7.8	-21.4	3440	Anth
UW028	TRS_2	uwTAP20	301	28-Oct-13	7:38	7.800333	-21.4002		Carbonate
UW030	TRS_2	uwTAP21	301	28-Oct-13	20:18	7.434858	-21.7963	3428	Anth
UW031	TRS_2	uwTAP22	301	28-Oct-13	21:41	7.434833	-21.7963		Carbonate
UW033	EBB	uwTAP23	302	29-Oct-13	16:52	6.363236	-24.4322	4380	Anth
UW035	EBB	uwTAP24	303	30-Oct-13	17:38	5.615691	-26.9667	1987	Anth
UW036	EBB	uwTAP25	304	31-Oct-13	10:05	5.608686	-26.9584		Diatom
UW037	EBB	uwTAP26	304	31-Oct-13	10:15	5.608699	-26.9584		Diatom

					r -				
UW039	EBA	uwTAP27	304	31-Oct-13	19:41	5.624628	-26.9667		Carbonate
UW040	EBA	uwTAP28	306	2-Nov-13	22:04	5.91187	-26.9968	2804	Anth
UW042	TRS_3	uwTAP29	307	3-Nov-13	2:45	5.705765	-27.2741	4374	Anth
UW043	TRS_3	uwTAP30	307	3-Nov-13	6:33	5.705817	-27.2743		Carbonate
UW043	TRS_3	uwTAP31	307	3-Nov-13	16:20	5.871648	-27.8836	4027	Anth
UW044	TRS_3	uwTAP32	308	4-Nov-13	2:58	6.288833	-29.6843	3677	Anth
UW045	TRS_3	uwTAP33	308	4-Nov-13	17:36	6.750615	-32.2104	3870	Anth
UW047	TRS_3	uwTAP34	308	4-Nov-13	22:31	6.811884	-32.9121	4055	Anth
UW048	TRS_3	uwTAP35	309	5-Nov-13	7:20	6.81185	-32.912		Carbonate
UW049	TRS_3	uwTAP36	309	5-Nov-13	22:20	7.343083	-34.5619	4052	Anth
UW050	TRS_3	uwTAP37	310	6-Nov-13	17:47	8.443707	-37.9775	3766	Anth
UW051	TRS_3	uwTAP38	311	7-Nov-13	4:42	9.128628	-39.9119	2989	Anth
UW053	TRS_3	uwTAP39	311	7-Nov-13	16:44	9.901337	-42.0768	3453	Anth
UW055	VEM	uwTAP40	312	8-Nov-13	13:33	10.74303	-44.5789	1413	Anth
UW056	VEM	MGA010	313	9-Nov-13	17:47	10.55482	-44.5149	4921	Anth
UW058	VEM	MGA011	314	10-Nov-13	13:38	10.8631	-44.4907	5127	Anth
UW059	VEM	MGA012	314	10-Nov-13	17:47	10.86315	-44.4907	5127	Anth
UW061	VEM	uwTAP44	315	11-Nov-13	20:46	10.72823	-44.4252	1158	Anth
UW063	VEM	uwTAP45	316	12-Nov-13	21:10	10.78105	-44.5989	2709	Anth
UW067	TRS_4	uwTAP46	318	14-Nov-13	21:35	10.82	-44.5175	3000	Anth
UW068	TRS_4	uwTAP47	319	15-Nov-13	6:27	11.955	-45.5893	3000	Anth
UW069	TRS_4	uwTAP48	319	15-Nov-13	19:44	13.61249	-47.1555	3594	Anth
UW070	VAY	uwTAP49	320	16-Nov-13	20:28	14.8616	-48.2413	1410	Anth
UW073	VAY	uwTAP50	322	18-Nov-13	4:57	15.17384	-48.0115	4110	Anth

RRS James Cook JC094: ISIS Dive 222 Plan

Ship: RRS James Cook

JC94 station no: 004

Isis Dive: 222	Date: 19 October 2013	Site: EBA Carter North
Location (start poin	t): 9 13.215 N 21 18.988W	Launch Time (GMT):
Start Dive Depth:	900m	Bottom in sight (GMT):
	12h a.u.a	

Approximate duration: 12hours **Dive lead scientist:** LFR

Dive Description

Start close to base of steep slope, to west of ridge axis. Traverse up and to the east towards top of flat plateau . Look at plateau If no samples found go across plateau to next upslope

Dive aims:

1 Fossil corals from full depth range (fill baskets, only one site per basket(

2 Live corals

solitary > 10,

framework 20+ polyps,

tree like/fanlike entire fan where appropriate

3 Push cores 2 sets of 3 taken close to beginning and end of dive

4 Niskins near to sediment and live corals, 1*2 near start and 1*3 near end

5. Up to ten (total in basin) of same species of small sized organisms. Photograph, store

where convenient

6. Pick up easily collected plastics

Two fist sized rocks

Basket configuration: Standard agreed with 3 coral nets	
Location (end point):	Time off bottom (GMT):
End Dive Depth:	Time on surface (GMT):
Total number of: ISIStoolMAP; Dive Sample Sheets	_; Dive Video Sheets

RRS James Cook JC094: ISIS Dive 223 Plan

Ship: RRS James Cook

JC94 station no: 005

Isis Dive: 223	Date:	19 October 2013	Site: EBA Carter No	rth
Location (start point	: 9 13.9	36 N 21 18.834W	Launch Time	e (GMT):
Start Dive Depth: <i>Approximate</i> duration Dive lead scientist: P Dive Description		ours	Bottom in si	ght (GMT):
Collect a full bio box , Lift up from bottom a Start to ascend	/ net ful and trave	l at 650m erse rapidly across	e abundant fossil corals. the flat plateau towards nd lip of next terrace)	
Collect live corals etc Dive aims: 1 Fossil corals from fu				
2 Live corals				
solitary > 10,				
framework 2	0+ polyp	DS,		
tree like/fanli	ke entire	e fan where approp	oriate	
3 Push cores 2 sets of	f 3 taker	ာ close to beginninန	g and end of dive	
4 Niskins near to sedi	ment ar	nd live corals, 1*2 r	ear start and 1*3 near e	end
5. Up to ten (total in	basin) o	f same species of s	mall sized organisms. Ph	otograph, store
where convenient				
6. Pick up easily colle	cted pla	stics		
7. Two fist sized rock	s near ei	nd of dive		
Basket configuration Location (end point): End Dive Depth: Total number of: ISIS		-	oral nets Time off bot Time on surf Sheets; Dive Video	ace (GMT):

RRS James Cook JC094: ISIS Dive 223 Plan

Ship: RRS James Cook

JC94 station no: 005

Isis Dive: 223	Date:	20 October 2013	Site: EBA Carter North

Location (start point): 9 13.37 N 21 18.834W

Bottom in sight (GMT):

Launch Time (GMT):

Start Dive Depth: 650m Approximate duration: 12hours Dive lead scientist: PJM Dive Description

Start just below break in slope where there were abundant fossil corals.
Collect a full bio box / net full at 650m
Lift up from bottom and traverse rapidly across the flat plateau towards next waypoint, scanning quickly but not full video transect as we have done part already.
Start to ascend. Try to collect a bio box full at about 500m (around lip of next terrace)
Collect live corals etc on the transits. Continue until out of time. **Dive aims:**1 Fossil corals from full range (fill baskets, only one site per basket)
2 Live corals

solitary > 10,

framework 20+ polyps,

tree like/fanlike entire fan where appropriate

3 Push cores 2 sets of 3 taken close to beginning and end of dive

4 Niskins near to sediment and live corals, 1*2 near start and 1*3 near end

5. Up to ten (total in basin) of same species of small sized organisms. Photograph, store

where convenient

6. Pick up easily collected plastics

7. Two fist sized rocks near end of dive

Basket configuration: Standard agreed with 3 coral nets	
Location (end point):	Time off bottom (GMT):
End Dive Depth:	Time on surface (GMT):
Total number of: ISIStoolMAP; Dive Sample Sheets	_; Dive Video Sheets

RRS James Cook JC094: ISIS Dive 224 Plan

s Cook

JC94 station no: 007

Isis Dive: 224 Date: 21 October 2013 Site: EBA Carter North

Location (start point): 9 11.7873 N 21 17.108 W

Launch Time (GMT):

Start Dive Depth: 2090m
Approximate duration: 12hours
Dive lead scientist: PJM/LFR/VH
Dive Description
Start at WP15 below base of small knoll
Move towards knoll
Collect samples as per last dives.
Dive aims:
1 Fossil corals from full range (fill baskets full)

Bottom in sight (GMT):

2 Live corals

solitary > 10,

framework 20+ polyps,

tree like/fanlike entire fan where appropriate

- 3 Push cores 2 sets of 3 taken close to beginning and end of dive
- 4 Niskins near to sediment and live corals, 1*2 near start and 1*3 near end
- 5. Try to make bio samples up to ten go for easy to collect things.
- 6. Pick up easily collected plastics
- 7. Two fist sized rocks near end of dive

Basket configuration: Standard agreed with 3 coral nets

Location (end point):Time off bottom (GMT):End Dive Depth:Time on surface (GMT):Total number of: ISIStoolMAP___; Dive Sample Sheets___; Dive Video Sheets___.

RRS James Cook JC094: ISIS Dive 225 Plan

s Cook

JC94 station no: 010

Isis Dive: 225 Date: 23 October 2013 Site: EBA Carter North

Location (start point): 9 10.141 N 21 16.247 W

Launch Time (GMT):

Start Dive Depth:2700mBottomApproximate duration:12hoursDive lead scientist:PJM/LFR/VHDive DescriptionStart at WP27 below base of small knoll. Move towards knoll

Bottom in sight (GMT):

Dive aims:

Priority

1 Fossil corals from full range

Focus on solitary corals

Try to fill nets and bioboxes to maximise chance of finding range of ages

- 2 Push cores 2 sets of 3 taken close to beginning and end of dive
- 3 Niskins near to sediment and live corals, 1*2 near start and 1*3 near end
- 4 Live solitary and calcified corals at bottom to get coldest temperature water

Secondary

- 1. Two fist sized rocks near end of dive try to get rocks with sponges on them!
- 2. Try to make bio samples up to ten only go for easy to collect items.
- 3. Pick up easily collected plastics

 Basket configuration: Standard agreed with 3 coral nets

 Location (end point):
 Time off bottom (GMT):

 End Dive Depth:
 Time on surface (GMT):

 Total number of: ISIStoolMAP___; Dive Sample Sheets___; Dive Video Sheets___.

RRS James Cook JC094: ISIS Dive 228 Plan

s Cook

JC94 station no: 021

Isis Dive: 228 Date: 30 Octo	ber 2013 Site: EBA Carter North
------------------------------	---------------------------------

Location (start point): 5° 58.025N 26°58.025W

Launch Time (GMT):

Start Dive Depth: 2000m Approximate duration: 18hours Dive lead scientist: LFR Dive Description Bottom in sight (GMT):

This dive will consist of a depth transect up Knipovich seamount starting at about 2000m below a small knoll and traversing up to about 1500m

Dive aims:

1 Collect large nets of fossil solitary corals where possible.

- 2. Collect live solitary corals (>15 at one spot if possible) and colonial scleractinian corals
- 3. 1* large bamboo and 1* large corallium
- 4. Collect sponges –especially the vase shaped and yellow ones
- 5 Push cores 2 sets of 3 taken at roughly start and end
- 6 2* Niskins near to sediment and live corals
- 7. Biology: if abundant collect 5 squat lobsters, 5 * holothurians (see picture) and 2*

primnoids

- 8. Pick up easily collected plastics
- 9. Two small rocks near end of dive try to get rocks with sponges on them.

 Basket configuration: 4* nets, 7 times yellow tubes, no lid on bio box.

 Location (end point):
 Time off bottom (GMT):

 End Dive Depth:
 Time on surface (GMT):

 Total number of: ISIStoolMAP___; Dive Sample Sheets___; Dive Video Sheets___.

RRS James Cook JC094: ISIS Dive 229 Plan

s Cook

JC94 station no: 022

Isis Dive: 229 Date: 31 October 2013 Site: EBB Knipovich

Location (start point): 5°37.479N 26°58.006

Start Dive Depth:1300mApproximate duration:18hoursDive lead scientist:LFR

Bottom in sight (GMT):

Launch Time (GMT):

Dive Description This dive will consist of a depth transect up Knipovich seamount starting close to end of last dive and reaching top. The Dive is focused on collecting samples from AAIW (900m to the top) so we should aim to spend more time towards the upper parts of the dive.

Dive aims:

1 Collect large nets / amounts of fossil solitary corals where possible.

2. Live collections across temperature range of the dive (e.g. at each degree shift)

Solitary scler. (~2 per temp)	Colonial scler (small ok)	Stylasterid (small ok)
-------------------------------	---------------------------	------------------------

3. Large live samples in core of AAIW (try for within 800-600m)

colonial scleractinian	stylasterid	Bamboo	Corallium]
------------------------	-------------	--------	-----------	---

4. Live solitary corals for reproduction - >10 at one spot, but one time only ok

5. Collect sponges –especially the vase shaped and yellow ones

5 Push cores 2 sets of 3 taken at roughly start and end

- 6 2* Niskins near to sediment and live corals
- 7. Biology: if abundant collect 5 squat lobsters, 5 * holothurians (see picture) and 1*

primnoids or other organism where it is easy to collect 10.

- 8. Pick up easily collected plastics
- 9. Two small rocks near end of dive try to get rocks with sponges on them.

Basket configuration: 4* nets, 17 times yellow tubes, no lid on bio box. Total number of: ISIStoolMAP___; Dive Sample Sheets___; Dive Video Sheets___.

RRS James Cook JC094: ISIS Dive 229 Plan

s Cook

JC94 station no: 022

Isis Dive: 229 Date: 31 October 2013 Site: EBB Knipovich

Location (start point): 5°37.479N 26°58.006

Start Dive Depth:1300mApproximate duration:18hoursDive lead scientist:LFR

Bottom in sight (GMT):

Launch Time (GMT):

Dive Description This dive will consist of a depth transect up Knipovich seamount starting close to end of last dive and reaching top. The Dive is focused on collecting samples from AAIW (900m to the top) so we should aim to spend more time towards the upper parts of the dive.

Dive aims:

1 Collect large nets / amounts of fossil solitary corals where possible.

2. Live collections across temperature range of the dive (e.g. at each degree shift)

Solitary scler. (~2 per temp)	Colonial scler (small ok)	Stylasterid (small ok)
-------------------------------	---------------------------	------------------------

3. Large live samples in core of AAIW (try for within 800-600m)

colonial scleractinian	stylasterid	Bamboo	Corallium
------------------------	-------------	--------	-----------

4. Live solitary corals for reproduction - >10 at one spot, but one time only ok

5. Collect sponges –especially the vase shaped and yellow ones

5 Push cores 2 sets of 3 taken at roughly start and end

- 6 2* Niskins near to sediment and live corals
- 7. Biology: if abundant collect 5 squat lobsters, 5 * holothurians (see picture) and 1*

primnoids or other organism where it is easy to collect 10.

- 8. Pick up easily collected plastics
- 9. Two small rocks near end of dive try to get rocks with sponges on them.

Basket configuration: 3* nets, 17 times yellow tubes, no lid on bio box. Total number of: ISIStoolMAP___; Dive Sample Sheets___; Dive Video Sheets___.

RRS James Cook JC094: ISIS Dive 230 Plan

s Cook

JC94 station no:

Launch Time (GMT):

Isis Dive: 230 Date: 01 November 2013 Site: EBB Knipovich

Location (start point): 5° 35.724 26°59.7420

Start Dive Depth:2700mApproximate duration:18hoursDive lead scientist:LFR

Bottom in sight (GMT):

Dive lead scientist: LFR **Dive Description** This dive will consist of a depth transect up Knipovich seamount at around 2800m and traversing up towards the start of the first Knipovich dive site (2000m) The primary target is deep fossil corals.

Dive aims:

1 Collect fossil corals deep – at greatest depths (2800-2500) target any type, scleractinians,

bamboos etc. Shallower than 2500m focus on the solitaries as in prior dives.

2. Live collections

Solitary scleractinians (only large ones this time)

- Stylasterids (if possible!)
- 1 Large enallapsamia
- 1 * deep large bamboo
- 1* primnoid
- 5. Different types of sponges –especially yellow ones
- 5 Push cores 2 sets of 3 taken at roughly start and end
- 6 2* Niskins near to sediment and live corals
- 7. Biology: if abundant collect 5 squat lobsters, 5 * holothurians (see picture) and set of ten

other organisms where easy to collect 10.

- 8. Pick up easily collected plastics
- 9. Two small rocks- try to get rocks with sponges on them.

Basket configuration: 3* nets, 17 times yellow tubes, no lid on bio box. **Total number of: ISIStoolMAP___; Dive Sample Sheets___; Dive Video Sheets___.**

RRS James Cook JC094: ISIS Dive 231 Plan

s Cook JC94 station no: 033 Isis Dive: 231 Date: 08 November 2013 Site: VEMA Location (start point): 10° 44.5794 44° 34.77 Launch Time (GMT): Start Dive Depth: 1400m Bottom in sight (GMT): Approximate duration: 18hours? Longer or shorter depending on sampling Dive lead scientist: LFR

Dive Description. This dive begins at about 1400m and will traverse up the ridge axis to about 1000m. We have seen great diversity of corals in this depth range before, so we hope that it will be equally as interesting here. There is a possibility that the shallow slope rather than the steep edges will yield few samples. If that is the case we may adjust the dive plan part way through or bring up the ROV and dive again before midnight. AAIW starts at about 1000m with a core at around 800m. We certainly hope to sample in that depth range, and whether we reach those waters in this dive depends on our progress. We will have another dive that gets up to 600m whilst at VEMA, so if we find lots of samples deeper we can collect those and leave shallow for another day. Focus all efforts on large fossil solitary corals.

Dive aims:

PRIORITY: Collect fossil corals. Preferred are solitary, but other fossils are ok too, especially if

they are of a reasonable size (ie not centimetre scale coral rubble)

2. Live coral collections for proxy work

Large solitary scleractinians try to get different species if possible

Stylasterids if they are to be found

Large enallapsamia, large bamboo, large corallium towards start and end

- 3. Small solitary scleractinians set of 15 for reproduction / genetics
- 5. Different types of sponges –especially yellow ones
- 5 Push cores 2 sets of 3 taken at roughly start and end
- 6 2* Niskins near to sediment and live corals
- 7. Genetics biology: Collect 10 of organisms on the genetics list. + 1* primnoid.
- 8. Pick up easily collected plastics
- 9. Two small rocks- try to get rocks with sponges on them.

Basket configuration: 3* nets, 17 times yellow tubes, no lid on bio box.

RRS James Cook JC094: ISIS Dive 232 Plan

s Cook Isis Dive: 232 Date: 11 November 2013 Location (start point): 10° 43.699 44° 25.484 Start Dive Depth: 1400m Approximate duration: Dive lead scientist: LFR Dive Description.: JC94 station no: 041 Site: VEMA Launch Time (GMT): Bottom in sight (GMT):

Dive aims: This dive aims to sample fossil corals within AAIW (< 1000m, see attached CTD plot) It also aims to look at the fauna/seafloor at the same depth as the last dive but on steeper terrain to help us chose our next dive site wisely.

PRIORITY: Collect fossil corals. Preferred are solitary, but other fossils are ok too, especially if

they are of a reasonable size (ie not centimetre scale coral rubble)

2. Live coral collections for proxy work

LARGE solitary scleractinians try to get different species if possible, and at about 1°C

spacing (only needed from 1000m up since we got lots on last dive, 1000m – 600m should be

about 5C to about 8C)

Stylasterids if they are to be found

IN AAIW: Large enallapsamia, large bamboo, large corallium

- 5. Different types of sponges focus on AAIW vase one would be nice
- 5 Push cores 2 sets of 3 taken at roughly start and end
- 6 2* Niskins near to sediment and live corals
- 7. Genetics biology: Collect 10 of organisms on the genetics list. + 1* primnoid.
- 8. Pick up easily collected plastics
- 9. Two small rocks- try to get rocks with sponges on them.

Basket configuration: 3* nets, 17 times yellow tubes, no lid on bio box.

RRS James Cook JC094: ISIS Dive 233 Plan

s Cook Isis Dive: 233 Date: 12 November 2013 Location (start point): 10°46.8756 N 44°35.9064W Start Dive Depth: 3000m Approximate duration: 18 hours Dive lead scientist: LFR JC94 station no: 042 Site: VEMA Launch Time (GMT): Bottom in sight (GMT):

Dive aims: The dive will follow a ridge on the north side of vema moving approximately due south to a local maxima at about 1600m. We will focus on collecting the deepest fossil corals (>2500m), so we should go slowly at the beginning looking carefully for fossil coral material. Collect any types of fossils at the start since we are unlikely to find much. We not get distracted by looking at other organisms (!) since we have a lot of ground to cover, and may well come back here for a video and MB survey if we like the site.

PRIORITY: Collect fossil corals. Preferred are solitary, but other fossils are ok too, especially if

they are of a reasonable size and deep (ie not centimetre scale coral rubble)

2. Live coral collections for proxy work

LARGE solitary scleractinians try to get different species if possible

Stylasterids if they are to be found - large ones would be great

Deep only: Large enallapsamia, large bamboo, large corallium

- 9. Two small rocks early on so we don't forget! try to get rocks with sponges on them.
- 5. Different types of sponges
- 5 Push cores 2 sets of 3 taken at roughly start and end
- 6 2* Niskins near to sediment and live corals
- 7. Genetics biology: Collect 10 of organisms on the genetics list.
- 8. Pick up easily collected plastics

Basket configuration: 3* nets, 17 times yellow tubes, no lid on bio box.

RRS James Cook JC094: ISIS Dive 234 Plan

Ship: RRS James Cook

JC94 station no: 043

Isis Dive: 234 Date: 13 November 2013

Site: VEMA

Location (start point): 10°43.69 N 44°25.48W Start Dive Depth: ~1300m Approximate duration: 18 hours Dive lead scientist: VH Launch Time (GMT): Bottom in sight (GMT):

Dive aims: This dive will revist the site of Dive 232 making swath map of the steep slopes wher corals were observed. At first an overview map will be made, then a higher reolsution map followed by sets of video mosaics.

PLEASE FIRE ALL FIVE NISKIN BOTTLES TOGETHER AT START OF TRANSECT.

PRI		т	v.
FNI	Un		ι.

MB bathymetry

Video mosaic

Niskin bottles

Basket configuration: Reson multibeam in vertical position. Niskin bottles.

RRS James Cook JC094: ISIS Dive 235 Plan

s Cook Isis Dive: 235 Date: 16 November 2013 Location (start point): 14°51.663 N 48°14.3508W Start Dive Depth: 1400m Approximate duration: 18 hours Dive lead scientist: LFR JC94 station no: 045 Site: VAY Launch Time (GMT): Bottom in sight (GMT):

Dive aims: This is the first dive on Vayda Seamount and we hope to get an idea of what we are likely to find here. The seamount is covered in rough topography including knolls and ridges, and may also have plateaus more similar to Carter than to Vema. The first dive will start near the top of a distinct EW trending ridge and traverse approximately due east towards a series of local bathymetric highs. Once we are at about 1100m we will decide whether to go up the cone shaped 900m feature to the NE, or continue to traverse to an 800m ridge to the East. Since we did not collect many fossil solitary corals on Vema, they will be the focus of the collections on Vayda Seamount.

PRIORITY: Collect fossil corals. Preferred are solitary, but other fossils are ok too, especially if

they are of a reasonable size (ie not centimetre scale coral rubble)

Secondary aims

1. Live coral collections for proxy work.

LARGE solitary scleractinians try to get different species if possible

Stylasterids if they are to be found - one large one best

ONE EACH OF Large enallapsamia, large bamboo, large corallium

- 2 Push cores 2 sets of 3 taken at roughly start and end
- 3 2* Niskins near to sediment and live corals
- 5. Different types of sponges
- 2. Two small rocks early on so we don't forget! Try to get rocks with sponges on them.
- 7. Genetics biology: Collect 10 of organisms on the genetics list.
- 8. Pick up easily collected plastics

Basket configuration: 3* nets, 17 times yellow tubes, no lid on bio box.

RRS James Cook JC094: ISIS Dive 236 Plan

s Cook

Isis Dive: 236 Date: 17 November 2013 Location (start point): 14°53.4798 N 48°9.0018W Start Dive Depth: 850m Approximate duration: 18 hours Dive lead scientist: LFR JC94 station no: 046 Site: VAY Launch Time (GMT): Bottom in sight (GMT):

Dive aims: This dive will aim go from 850m up to the top of Vayda Seamount from the north west. The start will be in the south west direction, then we will turn and head south east up a couple of step like features and plateaus. The top should be flat at 400m. The start of the dive will be in the core of AAIW, at about 6C, and by the end we should be at

The start of the dive will be in the core of AAIW, at about 6C, and by the end we should be at the upper extent of AAIW in ~10C water giving a 4C range (see CTD plot)

PRIORITY: Collect fossil corals. Preferred are solitary, but other scleractinian fossils are ok too,

especially if they are of a reasonable size (ie not centimetre scale coral rubble) - Enallapsammia

seems to be a good bet as it has a thick skeleton

Secondary aims

1. Live coral collections for proxy work - try to space at around 1C if possible

850m = 5.5C, 560m = 7.5C, 480m = 9C, 400m= 10C

Solitary corals of reasonable size (not the tiny ones)

Stylasterids (small ok), Ennallapsammia (small ok)

- 2. One each of Large Enallapsammia, Large bamboo, Large stylasterid, Large Corrallium
- 3 Push cores 2 sets of 3 taken at roughly start and end
- 4 2* Niskins near to sediment and live corals
- 5. Different types of sponges
- 6. Two small rocks early on so we don't forget! Try to get rocks with sponges on them.
- 7. Genetics biology: Collect 10 of organisms on the genetics list where it is easy.
- 8. Pick up easily collected plastics

Basket configuration: 4* nets, 17 times yellow tubes, no lid on bio box. No scoop.

RRS James Cook JC094: ISIS Dive 237 Plan

s CookJC94 station no: 049Isis Dive: 237Date: 20 November 2013Site: VAYLocation (start point): 14°50.9952 N 48°15.988WLaunch Time (GMT):Start Dive Depth: 2200mBottom in sight (GMT):Approximate duration: 18 hoursBottom in sight (GMT):Dive lead scientist: LFRDive aims: The dive will traverse up the south side of the seamount in a northward directionending up on a ridge to the east of the start of Dive235.Bottom in a northward direction

PRIORITY: Collect fossil corals. Preferred are solitary, but other scleractinian fossils are ok too, especially if they are of a reasonable size (ie not centimetre scale coral rubble) – Enallapsammia seems to be a good bet as it has a thick skeleton. Deeper samples preferred.

Secondary aims

- 1. Live coral collections for proxy work
 - Solitary corals of reasonable size (not the tiny ones)
 - Stylasterids (small ok), Ennallapsammia (small ok)
- 2. One each of Large Enallapsammia, Large bamboo, Large stylasterid deeper better
- 3 Push cores 2 sets of 3 taken at roughly start and middle
- 4 2* Niskins near to sediment and live corals
- 5. Different types of sponges
- 6. Two small rocks early on so we don't forget! Try to get rocks with sponges on them.
- 7. Genetics biology: Collect 10 of organisms on the genetics list where it is easy.
- 8. Pick up easily collected plastics –NO LINES OR WIRES, DO NOT STOP. DO NOT COLLECT

Basket configuration: 4* nets, 17 times yellow tubes, no lid on bio box. No scoop.

RRS James Cook JC094: ISIS Dive 238 Plan

s Cook

JC94 station no: 055

Isis Dive: 238Date:22 November 2013Site: VAYLocation (start point):14°53.4318 N 48°9.065WLaunch Time (GMT):Start Dive Depth:800mBottom in sight (GMT):

Approximate duration: 18 hours

Dive lead scientist: VH

Dive aims: This is a swath bathymetry dive with the Reson MB system facing downwards. The track will be a series of N-S swath tracks to cover the area seen in the earlier parts of Dive 236.

Basket configuration: Reson MB system, downward facing.

RRS James Cook JC094: ISIS Dive 239 Plan

s Cook

Isis Dive: 239 Date: 24 November 2013 Location (start point): 14°50.9952 N 48°15.988W Start Dive Depth: 2200m Approximate duration: 18 hours Dive lead scientist: LFR Dive aims: The dive will JC94 station no: 056 Site: GAM Launch Time (GMT): Bottom in sight (GMT):

PRIORITY: Collect fossil corals. Preferred are solitary, but other scleractinian fossils are ok too, especially if they are of a reasonable size (ie not centimetre scale coral rubble) – Enallapsammia seems to be a good bet as it has a thick skeleton. Deeper samples preferred.

Secondary aims

- 1. Live coral collections for proxy work
 - Solitary corals of reasonable size (not the tiny ones)
 - Stylasterids (small ok), Ennallapsammia (small ok)
- 2. One each of Large Enallapsammia, Large bamboo, Large stylasterid deeper better
- 3 Push cores 2 sets of 3 taken at roughly start and middle
- 4 2* Niskins near to sediment and live corals
- 5. Different types of sponges
- 6. Two small rocks early on so we don't forget! Try to get rocks with sponges on them.
- 7. Genetics biology: Collect 10 of organisms on the genetics list where it is easy.
- 8. Pick up easily collected plastics

Basket configuration: 4* nets, 17 times yellow tubes, no lid on bio box. No scoop.

RRS James Cook JC094: ISIS Dive 240 Plan

s Cook

Isis Dive: 240 Date: 25 November 2013 Location (start point): 15°26.8830 N 51°5.492W Start Dive Depth: 2100m Approximate duration: 18 hours Dive lead scientist: LFR JC94 station no: 058 Site: GRM Launch Time (GMT): Bottom in sight (GMT):

Dive aims: The last dive of the cruise will start at 220m on the north side of Gramberg Seamount and will end up at the start of dive 239. Overall we will be travelling southwards, although changing from south west to south east. At first we will look for fossil corals from 2200m up to about 1600m on the first knoll. We should not spend more than half of the dive here. If we have not been able to collect two sets of push cores, then we will pull up and head to WP209 and look for anew push core site on the plain. If we have six push cores already we will head straight for WP210 and start to traverse up the same knoll as dive 239 filling up all nets and scoops.

PRIORITY: We should prioritise collect fossil corals above everything else. Preferred are

solitary, but other scleractinian fossils are ok too, especially if they are of a reasonable size.

Fossil Enallapsammia seems to be a good bet as it has a thick skeleton.

- 2. Push cores 2 sets of 3 both on first knoll if possible
- 3. 2* Niskins near to sediment and live corals

Secondary aims

- 1. Live coral collections for proxy work
 - Solitary corals on first knoll, including Javania (deepest we have is 1500m)
 - Long bamboo if it has ring anemones.
 - Colonial Scleractinia any below 1800m and any that are not Enallapsammia e.g.
 Madrepora/Lophelia above 1800m
- 2. Unusual and easily collected sponges
- 3. Two small rocks early on so we don't forget! Try to get rocks with sponges on them.
- 4. Genetics biology: Collect 10 of organisms on the genetics list where it is easy.
- 5. Pick up easily collected plastics

Basket configuration: 4* nets, 17 times yellow tubes, no lid on bio box. Scoop. **Total number of: ISIStoolMAP___; Dive Sample Sheets___; Dive Video Sheets___.**

-9°13'0"N

JC094 Cruise Report, Appendix 7

Appendix 8: Sponge samples

Lat (N)	Lon (W)	Depth	Station	Region	Gear	Gear #	Event	Event #	Sample #	
9 12.967	21 18.967	1079	004	EBA	ROV	222	SCP	2 or 6	B0151_dry	-80°C
9 13.069	21 18.960	994	004	EBA	ROV	222	SCP	17	B0155_dry	-80°C
9 12.967	21 18.967	1079	004	EBA	ROV	222	SLP/SCP/NET	2 or 6	F0001_sponge)
9 14.3182	21 19.3438	298	005	EBA	ROV	223	ARM	32	B0177_dry	-80°C
9 14.3182	21 19.3438	298	005	EBA	ROV	223	SLP	33	B0179_dry	-80°C
9 11.83	21 17.10	2073	007	EBA	ROV	224	ARM	16	B0195_dry	-80°C
9 12.3426	21 17.8684	1413	007	EBA	ROV	224	SCP	49	B0197_dry	
9 12.3426	21 17.8684	1414	007	EBA	ROV	224	SLP	48	B0198_dry	
			007	EBA	ROV	224			B0196_dry	-80°C
9 12.2092	21 17.6454	1569	007	EBA	ROV	224	ARM	27	B0194_dry	-80°C
9 12.3354	21 17.8464	1431	007	EBA	ROV	224	SCP	44	B0200_dry	-80°C
9 12.3626	21 17.8901	1381	007	EBA	ROV	224	NET	53	F030	
9 12.1568	21 17.5757	1544	007	EBA	ROV	224	ARM	24	B0768_dry	-80°C
9 12.3354	21 17.8464	1431	007	EBA	ROV	224	SCP	44	B0200_dry	
			007	EBA	ROV	224			B0199_dry	-80°C
9 10.8707	21 16.4810	2302	011	EBA	ROV	225	ARM	15	B0723_dry	
9 10.9064	21 16.4825	2278	011	EBA	ROV	225	NET	27	B0725_dry	
9 11.4132	21 16.7843	2318	011	EBA	ROV	225	ARM	35	B0958_dry	-80°C
9 12.4539	21 18.037	1364	015	EBA	ROV	227	SLP	31	B0977_dry	
		1345-								
9 12.32	21 17.93	1354	015	EBA	ROV	227	SLP	1	B0978_dry	
9 12.3578	21 17.9407	1326	015	EBA	ROV	227	SLP	13	B0975_dry	-80°C
9 12.4209	21 17.9958	1366	015	EBA	ROV	227	NET	27	F0047	
9 12.33	21 17.93	1345	015	EBA	ROV	227	ARM	5	F0044_live	
9 12.33	21 17.93	1345	015	EBA	ROV	227	ARM	5	F0044_dead	
9 13.1851	21 18.6127	973	015	EBA	ROV	227	NET	55	F0053	
9 13.3095	21 18.7374	798	015	EBA	ROV	227	SCP	58	F0054	
9 12.32	21 17.93	1364	015	EBA	ROV	227	SLP	1-6	F0059	
5 36.48	26 57.68	1575	021	EBB	ROV	228	SCP	23	F0065	
5 36.48	26 57.68	1575	021	EBB	ROV	228	SCP	23,33,39	B1214_dry	
5 36.48	26 57.68	1575	021	EBB	ROV	228	SCP	23,33,39	B1106_dry	
5 36.3	26 57.8	1758-	021	EBB	ROV	228	SLP	20	B1222_dry	

		1850			1				1		
5 36.4894	26 57.6211	1505	021	EBB	ROV	228	ARM		25	B1101_dry	-80/-20°C
5 36.6650	26 57.4576	1484	021	EBB	ROV	228	ARM		45	B1104_dry	-80/-20°C
5 36.8448	26 57.5701	1445	021	EBB	ROV	228	SLP		41	B1102_dry	-80/-20°C
5 36.06	26 58.04	1450	021	EBB	ROV	228	SLP		6	B1105_dry	-80/-20°C
5 36.5373	26 57.4738	1989	021	EBB	ROV	228	SLP/ARM	41/42		B0071_dry	
5 37.6191	26 56.5725	628	022	EBB	ROV	229	SLP		64	B01113_dry	-80°C
5 37.6020	26 56.6877	701	022	EBB	ROV	229	SLP		61	B01116_dry	-80°C
5 37.5038	26 57.4780	971	022	EBB	ROV	229	SLP		30	B0078_dry	-80°C
5 37.3753	26 57.43	959	022	EBB	ROV	229	SLP		34	B01112_dry	-80/-20°C
5 37.6165	26 56.5177	611	022	EBB	ROV	229	SCP		68	B1280_dry	
5 37.5975	26 56.8829	771	022	EBB	ROV	229	SLP		49	B01115_dry	-80°C
5 37.5002	26 57.8064	1039	022	EBB	ROV	229	SLP		12	B01114_dry	-80/-20°C
5 36.1755	26 57.89	1950	021	EBB	ROV	228	SLP		17	B1203_dry	
5 35.6665	26 58.5758	2307	026	EBB	ROV	230	ARM		57	B01140_dry	-80/-20°C
5 35.6665	26 58.5758	2307	026	EBB	ROV	230	ARM		57	B01157_dry	-80/-20°C
5 35.6665	26 58.5758	2307	026	EBB	ROV	230	ARM		57	B01163_dry	
5 35.651	26 58.631	2355	026	EBB	ROV	230	SLP		53	B01153_dry	
5 35.6665	26 58.5758	2307	026	EBB	ROV	230	ARM		57	B01147_dry	-80°C
5 35.651	26 58.631	2355	026	EBB	ROV	230	SLP		53	B01143_dry	
5 35.651	26 58.631	2355	026	EBB	ROV	230	SLP		53	B01132_dry	
5 35.7147	26 58.4732	2257	026	EBB	ROV	230	SLP		62	B1384_dry	
5 35.7147	26 58.4732	2257	026	EBB	ROV	230	SLP		62	B1363_dry	
5 35.7147	26 58.4732	2257	026	EBB	ROV	230	SLP		62	B1370_dry	
5 35.7147	26 58.4732	2257	026	EBB	ROV	230	SLP		62	B1349_dry	
5 35.7147	26 58.4732	2257	026	EBB	ROV	230	SLP		62	B1387_dry	
5 35.7147	26 58.4732	2257	026	EBB	ROV	230	SLP		62	B1373_dry	
5 35.7147	26 58.4732	2257	026	EBB	ROV	230	SLP		62	B1366_dry	
5 35.7147	26 58.4732	2257	026	EBB	ROV	230	SLP		62	B1381_dry	
5 35.5494	26 59.1887	2618	026	EBB	ROV	230	ARM/SLP		31	B01162_dry	-80/-20°C
5 35.360	26 59.643	2820	026	EBB	ROV	230	SLP		11	B01142_dry	-80°C
5 35.5494	26 59.1887	2618	026	EBB	ROV	230	ARM/SLP		31	B01175_dry	-80/-20°C
5 35.8410	26 58.3224	2170	026	EBB	ROV	230	SLP		68	B1280_dry	
5 35.5494	26 59.1887	2618	026	EBB	ROV	230	SLP			B1173_dry	-80/-20°C
5 35.360	26 59.65	2824	026	EBB	ROV	230			7	B1326_dry	-20°C

	I	2597-		I	1	l	I	1		I	
		2257	026	EBB	ROV	230	ARM	29/61		B01152_dry	
5 35.6665	26 58.5758	2307	026	EBB	ROV	230	ARM		57	B1392_dry	
5 35.651	26 58.631	2355	026	EBB	ROV	230	SLP		53	B01133_dry	
5 35.7490	26 58.9377	2494	026	EBB	ROV	230	SLP		37	B01174_dry	
5 35.7147	26 58.4732	2257	026	EBB	ROV	230	SLP		62	B1352_dry	
5 35.7147	26 58.4732	2257	026	EBB	ROV	230	SLP		62	B1360_dry	
5 35.7147	26 58.4732	2257	026	EBB	ROV	230	SLP		62	B1354_dry	
5 35.7147	26 58.4732	2257	026	EBB	ROV	230	SLP		62	B1375_dry	
5 35.7147	26 58.4732	2257	026	EBB	ROV	230	SLP		62	B01171_dry	-80/-20°C/Ethanol
5 35.7147	26 58.4732	2257	026	EBB	ROV	230	SLP		62	B01172_dry	-80°C
5 37.18	26 57.53	1162	026	EBB	ROV	230	NET		74	B01177_dry	-20°C
5 35.6665	26 58.5758	2307	026	EBB	ROV	230	ARM		57	B01165_dry	-80/-20°C
5 37.17	26 57.653	1164	026	EBB	ROV	230	NET		71	B01176	
10 44.											
5977	44 34.4791	1355	033	VEM	ROV	231	SLP		36	B0846_dry	-80°C
10 44.4060	44 33.7595	1140	033	VEM	ROV	231	ARM		59	B0507_dry	-80°C
		4000	033	VEM	ROV	231	SLP	31/47		B1517_dry	
		1382- 1309	033	VEM	ROV	231				D1570 dm/	
		1309	033	VEM	ROV	231				B1573_dry B01615_dry	-80°C
10 43.0365	44 25.3227	858	041	VEM	ROV	232	SLP		30	B01675_dry	-80°C
10 43.0305	44 25.3227	595-628	041	VEM	ROV	232	SLP	48/60	30	B1816_dry	-00 C
10 42.7	44 25.2	595-628 595-628	041	VEM	ROV	232	SLP	48/60		B1789_dry	
10 42.7	44 25.2	595-628 568	041	VEM	ROV	232	NET	46/60	79	B1884_dry	
10 42.4002	44 24.8295	568	041	VEM	ROV	232	NET		79 79	B1856_dry	
10 42.4002	44 25.2	595-628	041	VEM	ROV	232	SLP	48/60	19	B1876_dry	
10 42.6931	44 25.2240	595-028	041	VEM	ROV	232	NET	40/00	59	B1725_dry	
10 42.0931	44 25.0831	595	041	VEM	ROV	232	SLP		59 72	B1725_dry B1791_dry	
10 42.9629	44 25.3104	808	041	VEM	ROV	232	NET		33	B1590_dry	
10 43.713	44 25.508	1302	041	VEM	ROV	232	ARM	41/42	55	B1698_dry	-80°C/Ethanol
10 42.7	44 25.2	595-628	041	VEM	ROV	232	SLP	48/60		B1872_dry	
10 42.7	44 25.2	595-628	041	VEM	ROV	232	SLP	48/60		B1785_dry	
10 42.7	44 25.2	595-628	041	VEM	ROV	232	SLP	48/60		B1806_dry	
10 42.7	77 20.2	555-020	041		ROV	232		+0,00		B01613_dry	-80°C
	I	I	041			2.52	I	I			-00 0

10 43.651	44 25.470	1175	041	VEM	ROV	232	SLP	8	B01670_dry	-80/-20°C/Ethanol
10 42.7	44 25.2	595-628	041	VEM	ROV	232	SLP	48/60	B1820_dry	
10 43.3690	44 25.3794	1014	041	VEM	ROV	232	ARM	21	B01605_dry	-80°C
10 43.3248	44 25.2721	976	041	VEM	ROV	232	SLP	23	B01623_dry	-80°C
			041	VEM	ROV	232			B01625_dry	-80°C
10 42.5170	44 25.0570	569	041	VEM	ROV	232	ARM	75	B01686_dry	-80°C
10 42.7	44 25.2	595-628	041	VEM	ROV	232	SLP	48/60	B1844_dry	
10 46.132	44 36.027	2230	042	VEM	ROV	233	SLP	48	B01696_dry	-80°C
10 46.132	44 36.027	2230	042	VEM	ROV	233	SLP	48	B01664_dry	-80°C
10 46.3912	44 36.0308	2433	042	VEM	ROV	233	SLP	42	B01684_dry	
10 46.85	44 35.91	2985	042	VEM	ROV	233	SLP	41/42	B01627_dry	-80°C
10 46.842	44 35.906	2981	042	VEM	ROV	233	SLP	7	B01674_dry	-80°C
10 45.1434	44 36.1018	1578	042	VEM	ROV	233	NET	98	B01694_dry	
10 96.8204	44 36.9606	2887	042	VEM	ROV	233	ARM	20	B01607_dry	-80/-20°C/Ethanol
			042	VEM	ROV	233			B0521_P	
10 45.2647	44 36.1526	1648	042	VEM	ROV	233	SLP	92	B01609_dry	-80°C
14 51.6408	48 14.2023	1407	045	VAY	ROV	235	SLP	36	B01681_dry	-80°C
		1421-								
		1150	045	VAY	ROV	235	ARM	48/70/84	B1875_dry	
14 51.788	48 14.491	1483	045	VAY	ROV	235	ARM	7	B01661_dry	-80°C
14 51.788	48 14.491	1483	045	VAY	ROV	235	ARM	7	B01683_dry	-80°C
14 52.0669	48 12.8946	1106	045	VAY	ROV	235	SLP	102	B01691_dry	-80°C
14 51.9618	48 13.2168	1150	045	VAY	ROV	235	ARM	84	B01671_dry	-80/-20°C
14 51.65	48 14.22	1412	045	VAY	ROV	235	SLP	30/33	B1855_dry	
14 51.7107	48 13.9479	1259	045	VAY	ROV	235	SLP	71/72	B1859_dry	
14 51.788	48 14.491	1483	045	VAY	ROV	235	ARM	71/72	B01693_dry	
		1406-	0.45		DOV	005				
44 50 000	40.0.004	1425	045	VAY	ROV	235		0.1	B01683b_dry	0000
14 53.380	48 9.204	795	048	VAY	ROV	236	SLP	24	B01632_dry	-80°C
14 53.389	48 9.176	806	048	VAY	ROV	236	ARM	20	B01647_dry	-80°C/Ethanol
15 53.3	48 9.3	747-754	048	VAY	ROV	236	SLP	42/43/45	B2023_dry	
14 53.324	48 9.298	772	048	VAY	ROV	236	ARM	38	B2028_dry	
14 53.5095	48 9.0015	865	048	VAY	ROV	236	SLP	10	B01657_dry	-80°C
14 53.1748	48 9.3904	710	048	VAY	ROV	236	SLP/ARM	49	B1952_dry	
14 53.4248	48 7.3011	1153	048	VAY	ROV	236	SLP	80	B01637_dry	-80/-20°C

14 53.4248	48 9.1185	824	048	VAY	ROV	236	SLP	18	B0789 dry	-80°C
14 53.043	48 7.448	868	048	VAY	ROV	236	SLP	93	B01641_dry	-80°C
14 53.1748	48 9.3904	710	048	VAY	ROV	236	ARM/SLP	49	B1951_dry	-80°C
		1339-							_ ,	
14 53.79	48 7.1	1366	048	VAY	ROV	236	SLP	72/73	B2015_dry	
14 53.3150	48 9.3222	742	048	VAY	ROV	236	SLP	41	B0791_dry	-80°C
14 53.3150	48 9.3222	742	048	VAY	ROV	236	SLP	41	B0790_dry	-80°C
14 53.5095	48 9.0015	865	048	VAY	ROV	236	SLP	10	B2077_dry	
14 51.0480	48 15.9643	2181	049	VAY	ROV	237	ARM	6	B1965_dry	-80/-20°C
14 51.8006	48 15.3652	1706	049	VAY	ROV	237	ARM	39	B1963_dry	-80/-20°C
14 51.9084	48 15.3436	1612	049	VAY	ROV	237	SLP	44	B1962_dry	
		1612-								
14 51.9	48 15.34	1622	049	VAY	ROV	237	ARM/SLP	40-44	B1966_dry	-80°C
			049	VAY	ROV	237			B1964_dry	-80°C
14 51.4627	48 15.4797	1854	049	VAY	ROV	237	SLP	29	B1968_dry	-80°C
14 51.392	48 15.665	1959	049	VAY	ROV	237	SLP	20	B1970_dry	-80°C
14 51.306	48 15.307	2008	049	VAY	ROV	237	SLP	12	B1961_dry	-80/-20°C
15 23.871	51 5.568	1127	056	GRM	ROV	239	SLP	45	B1954_dry	-80°C
15 24	51 5.468	1090	056	GRM	ROV	239	SLP	44	B1963_dry	
15 25.2405	51 5.2018	1484	056	GRM	ROV	239	SLP	11	B1960_dry	
15 25.2405	51 5.2018	1484	056	GRM	ROV	239	SLP	11	B1958_dry	-80°C
15 25.1666	51 5.2792	1382	056	GRM	ROV	239	ARM	31	B1956_dry	
15 25.2836	51 5.2256	1460	056	GRM	ROV	239	SLP	22	B1955_dry	-80°C
15 24.8	51 5.3	1445	056	GRM	ROV	239	SLP	36-40	B2294_dry	
15 25	51 5	1520	056	GRM	ROV	239	SLP	1/21/42	B2236_dry	
15 25.4570	51 04.9561	1720	058	GRM	ROV	240		28	B1985_dry	
15 26.7190	51 05.7559	1869	058	GRM	ROV	240		12	B1986_dry	
15 26.7190	51 05.7559	1869	058	GRM	ROV	240		12	B1987_dry	
15 26.7181	51 05.7636	1869	058	GRM	ROV	240			B1983_dry	-80/-20°C
15 26.798	51 05.526	2034	058	GRM	ROV	240		71/72	B1981_dry	-80/-20°C
		1869-								
15 26.7181	51 05.7	1888	058	GRM	ROV	240		09/11/14	B1984_dry	
45 00 7404	E1 0E 7	1869-	050			0.40		00/44/44		
15 26.7181	51 05.7	1888	058	GRM	ROV	240		09/11/14	B1982_dry	
			058	GRM	ROV	240		?	B1988_dry	
	l	l	058	GRM	ROV	240		l	Black slurp?	

	058	GRM	ROV	240		Blue net?	
	058	GRM	ROV	240		with B1986/7?	

Appendix 9. Sedimentary Logs

JC094 Cruise Report, Appendix 9

JC094	1_018_TRS2_GVY	_001_S0065			
SCALE (m)	ЛОГООА	MUD SAND GRAVEL	STRUCTURES / FOSSILS	NOTES	BIOTURBATION
		-clay -sitt -gran -cobb -cobb			
_			රු		\$ \$
			æ	Large mottling patches	\$\$\$\$
1 —			රු		\$\$\$\$
			හ		S
-			හ		
	i i i i i i i i i i i i i i i i i i i		රු		
2 —			රු		\$ \$
			රු		
-			හ		\$ \$
			\otimes))))
3 —			රු		s
	[]}		රිං		
-			රු		s
			හි		\$ \$
4 —	F		රිං		\$\$ \$\$\$
			රිං	Large mottling patches near top of layer	\$\$\$
-			හ		
			හි	Large mottling patches	\$\$\$\$
5 —	J		$^{\odot}$		s
]		8	Sharp 0.5-1cm thick very dark grey band at 519 cm depth	\$

JC094	1_035_VEM_GVY_	007 S0104			
SCALE (m)	Логоди	MUD SAND GRAVEL	STRUCTURES / FOSSILS	NOTES	BIOTURBATION
			හ	Wet and slushy	\$
			<u> </u>	Sediment at 33-56.5 cm seems to be a repetition of 0-33 cm.	s s
	14		- &	56.5-60cm: Stiff clay mixed with volcanic minerals and fragmented forams	
1 —				Frequent black mottling-like features are visible beneath the surface of this layer.	
_					
2 —			<u> </u>	Horizontal laminations of volcanic minerals, forams and tiny rock fragments	
			හ	Coarse foram sand	
3 —			8	Frequent black mottling-like features beneath the surface of this layer.	\$\$\$\$ \$ \$\$\$\$
_				Tiny volcanic mineralgrains	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4 —			æ	Frequent black mottling-like features beneath the surface of this layer. Frequent black laminations beneath the	
_				surface of this layer.	
			&	Frequent black laminations beneath the surface of this layer	
5 —			& <u>*</u>	Horizontal beddings of foram sands	

JC094	4_038_VEM_GVY_	008_S0113			
SCALE (m)	ГІТНОГОСУ	MUD SAND GRAVEL	STRUCTURES / FOSSILS	NOTES	BIOTURBATION
		-clay -clay -cobb -cobb -oul	STRUC		BIC
			හ	Very wet and slushy	\$ \$
-	نا		හ		\$\$
1 —			හ		\$ \$
_			හි	Very wet and slushy. Dark grey mud patches extensive at 148-158 cm depth.	
			æ	Layer has patches of yellowish brown mud. Greyish brown slightly sandy mud patches present at 175 cm and 177 cm depth.	
2 —					
-				Frequent black mottlings can be seen underneath the layer	
3 —					
-					
4 —					
_					\$\$\$
5 —					
-					
6 —					
-					
7 —					
_					

JC094_059_GRM_GVY_014_S0172								
SCALE (m) LITHOLOGY	MUD SAND GRAVEL	STRUCTURES / FOSSILS	NOTES	BIOTURBATION				
		& & <t< td=""><td>Small patches of pale brown slightly silty coarse sand at 153 to 155 cm depth. 2cm-size patches of slightly silty light orange medium/coarsesand at 167-169 cm depth. Smallpatches of light orange silty coarse sand are present. A patch of pink slightly silty coarse sand at 213-214 cm. 1-2cm patches of pink slightly silty coarse sand at 265-266 cm and 278-279cm. Patches of pink slightly silty mediumsand at 297-298 cm. Discontinuous orange silty mediumsand unit at 356-360cm and 369-370cm depth.</td><td>\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</td></t<>	Small patches of pale brown slightly silty coarse sand at 153 to 155 cm depth. 2cm-size patches of slightly silty light orange medium/coarsesand at 167-169 cm depth. Smallpatches of light orange silty coarse sand are present. A patch of pink slightly silty coarse sand at 213-214 cm. 1-2cm patches of pink slightly silty coarse sand at 265-266 cm and 278-279cm. Patches of pink slightly silty mediumsand at 297-298 cm. Discontinuous orange silty mediumsand unit at 356-360cm and 369-370cm depth.	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$				

SAMPLE LOG SHEET

Station No:		ISIS Dive number :				for guidance on event numbering DVL screen, lat and long from 'SUB' tab	Sheet No:			
Event	Event Event Type GMT Latitu		Event Type	Latitude	Longitude	Depth (m)	Sample description	Location	B, F, S, W	Logger Initials

Event type: NSK (niskin bottle), Slurp (slurp with ROV), SCP (scoop with ROV), PSH (push core with ROV), NET (net with ROV), ARM (arm with rov), TRS (transect start), TRE (transect end)

VIDEO LOG SHEET

Station No.		ISIS Dive number	Sheet No.				
HDPPT/HDSCI /SCORPIO/PAL	KiPro	Date	Time start GMT	Time end GMT	Comments/Observations	To Lab	Return- ed

HD MEDIA LOG

Station No:			Platform: ISIS ROV			Dive Number:			Sheet Number:																						
Date	HDSCI/HDPT/	KiPro	Time Start	Time End	File Nome	Commonto	Copied to		Copied to		Copied to		Copied to		Copied to		Copied to		Copied to		Copied to		Copied to		Copied to		Chec	k files	Pro	tect	Delete
(GMT)	SCORPIO/PAL	(1/2/3)	(GMT)	(GMT)	File Name	Comments	RAID	WD	RAID	WD	RAID	WD	KiPro/ empty trash																		

JC94 ROV ISIS DIVE:

DATE:

	Martyn Rowse (contractor)	
	Russell Locke	Allan Davies
NMFD ROV team:	James Cooper	Dave Edge
Sea Systems Cruise Manager:	N/A	
ROV Operations Supervisor:	Dave Turner	
Principal Scientist:	Laura Robinso	on
Cruise Dates:	13 th Oct 2013	to 30 th Nov 2013 (JC094)

NMFD Techs:

Ben Poole Dave Childs Martin Bridger Ian Murdoch

Cruise Outline:

This cruise proposal will cross the Tropical Atlantic with start and end ports mostly likely in Brazil and Cape Verde. The science goals include:

(a) mapping deep water coral habitats and reconstruction of their population history through dating work

(b) geochemical proxy calibrations pairing seawater with modern corals and core top sediments

(c) reconstruction of the history of Antarctic intermediate and bottom waters, and of North Atlantic deep water either side of the mid Atlantic Ridge.

The tools required for this project are

(a) Coring ? multi cores for good collection of undisturbed core tops, longer coring for paleoclimate records

(b) Seawater collections - trace metal clean and regular sampling

(c) Deep water corals ? Isis or similar ROV for careful imaging and collecting of deep water corals.

20 (Dive no. 221 to Dive no.240)

Total run time for (JC094) thrusters:	425.56 hrs
Total time at seabed or survey depth:	371.79 hrs
Isis ROV total run time:	3527.95 hrs
Max Depth and Dive Duration:	2980 m and 19.92 hrs (Dive 233)
	(23.58 hrs in water)
Max Dive Duration and Depth:	41.82 hrs at 900m (Dive 236)
	(43.75 hrs in water)
Shallowest Depth and Duration	500 m for 17.1 hrs (Dive 226)
	(18.27 hrs in water)
	Reson Seabat (267.25GB)
	Techas (8.55GB)
	CTD (613.5MB)
	DVLNAV (30.48GB)
	Sonardyne (1.18GB)
	OFOP Event Logger (704.5MB)
	HD Video (50TB)
	Scorpio Digital Still (88.08GB)
Video 6TB Hard disks	Master1 Mybook Ser # WUM233600264
	Master2 Mybook Ser # WUM233600265
	Master3 Mybook Ser # WUM233600274
	Master4 Mybook Ser # WUM233600254
	Master5 Mybook Ser # WUM233600273
	Master5 Mybook Ser # WUM233600263
	Master5 Mybook Ser # WUM225000572
	Master5 Mybook Ser # WUM225000586
	Master5 Mybook Ser # WUM233600252
	Master5 Mybook Ser # WUM233600257
ND. A second of the LCOOA Let \mathbf{D} of \mathbf{r}	in an the Lie DAID service from a maint of an and

NB: A copy of the JC094 Isis Data will remain on the Isis RAID system for a period of one month commencing from the end date of the cruise after which it will be deleted.

Contents

5.

6.

- 1. Mobilisation
- 2. De-Mobilisation
- 3. Isis Handling System
 - 3.1 Hydraulic Power Unit (HPU):
 - 3.2 Storage Drum/ Traction Winch/Umbilical:
 - 3.3 Launch and Recovery System (LARS):
 - 3.4 CCTV:
 - 3.5 Portable Hydraulic Deck Pack

4.	ISIS Externa	l Equipment
----	--------------	-------------

- 4.1 Elevator A:
 - 4.2 Elevator B:
 - 4.3 USBL & LBL Acoustic System (Sonardyne):
 - 4.4 Football Floats:
 - 4.5 Suction Sampler
 - 4.6 Push Cores
 - 4.7 Niskin Bottle Arrangement

Isis ROV

- 5.1 Thrusters:
- 5.2 Vehicle Main System Compensators
- 5.3 Tool Sled
- 5.4 Hydraulic System:
- 5.5 Manipulators:
- 5.6 Pan & Tilt Units:
- 5.7 CWDM Fibre Optic Multiplexor
- 5.8 Cameras:
- 5.9 Lights:
- 5.10 Lasers:
- 5.11 Sonars:
 - Doppler (300khz) Tritech Imaging Reson Multibeam
- 5.12 Digiquartz Pressure Sensor:
- 5.13 Electrical Systems and Wiring
- 5.14 Altimeter:
- 5.15 Novatech Radio/Strobe Beacons
- 5.16 PRIZM FO Comms
- 5.17 Scientific sensors
 - CTD: SBE49
 - Thermometer: SBE38 Turbidity: ECO-NTU-RTD
 - ICL Probe
- 5.18 Low Voltage JB (port side)
- 5.19 High Power JB (Starboard side)

Isis System Topside:

- 6.1 Clearcoms:
- 6.2 Jetway
- 6.3 Device Controller:
- 6.4 Techsas PC:
- 6.5 Clam PC
- 6.6 Event Logger PC:

6.7 Reson PC:
6.8 Tritech PC
6.9 Topside PC:
6.10 DVLNAV PC:
6.11 Engineer PC:
6.12 Video Recording/Archiving
6.13 Network Video Stream:

7. Isis Topside Technical Details: 7.1 Ship Connections: 7.2 Fibre Optic Terminations: 7.3 Power Supplies 7.4 Air Conditioning Units

8.

ISIS Dive Summary (hrs run)

1. Mobilisation:

Southampton:	2 nd Oct to 5 th Oct 2013
Tenerife:	13 th Oct (approx. 5hrs)

The Isis system was mobilised in Southampton. Due to the rebuild of the storage drum and installation of the new umbilical a load test was carried out for the Dynamic and Static testing of the complete LARS system. This was carried out using a Spectra rope wound on top of the storage drum cable (full). A 10,000kg water bag was attached and deployed outboard using the LARS. In a fully extended position the bag was slowly filled. The winch was gently hauled and veered at every 1000kg interval up to the max haul/veer SWL of 7000kg. At this point the winch stopped hauling and veering allowing a static test (brake test) to be carried out. 9000kg was applied (SWL *1.25) and held for 5 mins.

Prior to the load test a full electrical insulation resistance and continuity test was carried out using our 5kv Meggar which confirmed the electrical integrity of the cable. We also utilized our recently acquired Time Domain Reflectomitry machine (a Biccotest TDR225) to obtain a "Prior to putting into service" record of the characteristics of the cable. An initial calibration for the instrument was obtained from the manufacturer's cable length tape which is installed during the lay-up of the cable. It is proposed that routine tests of the cable be carried out prior to each cruise so that a history of cable characteristics can be obtained which can be utilized as part of a predictive maintenance campaign and replacement projection plan.

Following the testing of the deployment system, the LARS was collapsed and made ready for sea. The majority of the mobilisation of the Isis system was completed in Southampton including the termination and load testing of the umbilical. The ROV was placed and secured on the rear deck between the Isis spares container and Isis miscellaneous container. Upon arrival in Tenerife the LARS was erected and ROV positioned into the A frame. Connection and final preparation of the ROV was completed on passage to the work site.

2. De-Mobilisation:

Trinidad Port of Spain: 30th Nov to 2nd Dec 2013

The de-mobilisation took place in Port of Spain, Trinidad.

The Dynacon traction head, LARS, Control Consul, and HPU were shipped direct to Dynacon, Bryan, Texas. All Isis containers, and Storage Drum were shipped to the UK.

3. Isis Handling System:

3.1 Hydraulic Power Unit (HPU):

Prior to the cruise the hydraulic oil and all hydraulic filters were changed. The filter housings and other parts were refurbished and a partial repaint was completed in house. As a result the unit worked well for the duration of the cruise.

Future modifications/requirements:

- None reported this cruise.
- Sent to Dynacon as part of the Traction Winch and LARS refurbishment.

3.2 Storage Drum/ Traction Winch/ Umbilical:

During the pre-cruise preparations a bespoke cable cooling system was designed and built in house which has replaced a Heath Robinson set up that was used on previous cruises. This proved to be an excellent addition to the storage drum.

This was the first time following the refurbishment of the storage drum and the installation of the new umbilical that the system had been used. During the installation of the umbilical onto the storage drum it was noted that the umbilical outer armor did not appear that tight, or indeed look as good as it could have. Approximately 100m was removed from the cotton reel before winding onto the storage drum commenced. Following the termination of the umbilical during the mobilisation it was again noted that wire did not look as tight as it should have, however a good termination was made and tested.

On passage to the first work station a slight detour was made to take the ship to deep water (deeper than the required max dive site) so that an umbilical stream (vertical deployment) could be carried out. This was done in 4,100m of water with the electrical termination put into an oil compensated vessel, and the mechanical termination attached to a 200kg weight and swivel mechanism. It was hoped that this stream would relieve any built up torque in the umbilical.

Following the streaming of the umbilical, the tension of the new storage drum drive chain and also the storage drum disk brake were adjusted.

Following Dive 225 (5th dive) the outer armor was showing further signs of looking less tight than after the termination, and with the vehicle having to make a couple of turns prior to being lifted out of the water, it was thought that some torque was building up. It was after this dive that the gimbal unit was lifted out of the vehicle so as to be able to inspect the inner core of the umbilical. It was noted that severe turns had been put into the electrical-F/O inner. (See below)

It was at this point it was decided to re-terminate the umbilical and remove a length of the cable in an attempt find a tighter section. Approx 140m was removed. The umbilical was load tested to 7000kg.

Following Dive 226 the gimbal unit was again removed from the ROV and an inspection of the inner umbilical was made. It was noted that the inner had yet again twisted but not as severe as previously experienced.

The termination was removed and disconnected from the vehicle. The twists in the inner were untwisted and tested electrically and for F/O attenuation. It was decided at this point that the umbilical was still usable and did not require a re-termination.

Due to the turns appearing so soon after a termination it was thought that more streaming of the umbilical was required. The umbilical termination was again attached a 200kg weight with the electrical-F/O element placed into the oil compensated vessel. 4 x deployments were made to 4300m with an hour stationary at the bottom of each deployment. During these deployments correspondence with engineers at NOC took place, of which their advice, taken from their dealing with Rochester, was to use a much heavier weight. It was thought that that this heavier weight would even out the tension in the deployed umbilical, helping to relieve torque within the wire.

A 950kg Kasten Core bomb was attached and a further 5th deployment was made.

A following 5 x dives were carried out on this termination, of which each time the gimbal unit was removed from the ROV and the inner core of the umbilical inspected for any signs of turns developing. No turns developed during these dives.

Following Dive 230 it was decided that a re-term be made due to the 5 day steam and time available to do so. 100m of umbilical was removed in an attempted to get to a tighter laid outer armor. 100m also gets past the area where the floats are attached, of which can get a little damaged during the attachment and removal process. A 7000kg load test was carried out.

Following Dive 234 signs of turns developing below the potted termination were identified. These were removed by disconnecting the electrical and F/O connections in the junction box, spinning out and then re-connecting. This is not an ideal situation, though does however prevent the inner from building up too many turns, thus then requiring being re-terminated. The remainder 6 dives were inspected for turns, but no significant amount of twist was identified.

During Dive 236 it was noted that some fishing line was caught around the umbilical. At which point in the dive it was picked up is a bit of a mystery. This developed to be a significant amount of line during the recovery process, of which most of the tangle ended up on top of the vehicle, still connected to more subsea. The stbd vertical thruster was isolated during the latter stages of recovery to stop entanglement with motor and blades. Recovery was made without incident, with the lines trailing into the sea being cut as the ROV came onto deck. Due to this entanglement several of the football floats were pushed together along the umbilical, which in the process broke one of the outer umbilical armor strands. This was later inspected, repaired by cutting out the damaged wire and securing using bulldog and insulating tape. This was deemed satisfactory for the remaining four dives of which were completed without any further complications.

Future modifications/recommendations/maintenance:

- Send removed 140m section of umbilical to Rochester for testing and evaluation.
- Talk to Rochester regarding problem.
- Talk to WHOI and Rueben Mills (Ocean exploration Trust) with regards to issues with their umbilical's.
- Send Traction Head and HPU to Dynacon. Traction head for refurbishment. (2013/14 FY)

3.3 Launch and Recovery System (LARS):

This worked well for the duration of the cruise.

Future modifications/recommendations/maintenance:

• Send to Dynacon for refurbishment (2013/14 FY)

3.4 CCTV:

The CCTV system used for launch, recover and winch monitoring performed without problems though on initial power up it was discovered that a power terminal had corroded away on the passage from Southampton on the pan and tilt camera. This was quickly diagnosed and repaired prior to the first dive. One camera providing a through A frame, a 2nd and 3rd providing storage and traction winch and a pan & tilt unit for following vehicle and floats when at the surface. The new LED floodlights purchased prior to the cruise proved a great success enabling both work to be carried out on ISIS and to enable the CCTV system to continue to be of use during the hours of darkness.

Future modifications/recommendations/maintenance:

- Inspection and refurbishment as necessary is needed following JC094 it would be advantageous if the individual cables feeding the pan and tilt camera be replaced with a single cable of the correct specification together with the refurbishment of the various connectors.
- It is recommended that two further units be purchased which would enable us to have complete autonomy from the ships lighting.

3.5 Portable Hydraulic Deck Pack Unit

As part of the pre cruise preparation a water filtration unit and a remote control facility was fitted to the deck pack. This enabled us to regularly flush and purge the hydraulic system without running the hydraulic motor on ISIS. (Running any of the ISIS motors out of water quickly leads to an overheating situation.) The use of the deck pack enabled us to operate the vehicle safely on deck for extended periods.

4. ISIS External Equipment:

4.1 Elevator A: Not on cruise.

Future modifications required:

• None

4.2 Elevator B:

Not on cruise.

Future modifications required:

• None

4.3 USBL & LBL Acoustic System (Sonardyne):

ISIS control room USBL suite (PC and NCU)

NCU

Unit was restarted in consort with reboots of USBL PC, as a precautionary measure. USBL PC froze on several occasions and finally failed on Dive 239. The spare USBL PC was used as a replacement, using the hard drive from the existing PC

Future modifications/recommendations/maintenance:

• Investigate computer 'freezing' problem with excessive cooling fan operation

Ranger USBL survey PC

When entering the sound velocity file, the 'tracking maximum depth' box should be filled in appropriately for the working depth. Tracking will cease if the range is too small for the actual depth, as was discovered on Dive 240. Default depth seems to be 2000m. This option is in the 'Environmental' tab on the main menu bar.

Homer

Not used for the duration of the cruise.

Compatt Beacons

Dive 221 was aborted at 550m due to USBL tracking not being established, using Beacon 0210. It was consequently tested on a wire and tracked using both the ship and ROV Ranger system. The reason for the initially failure is unknown, but Unit 0110 was used throughout the cruise, as a precautionary measure given the unreliability of Unit 0210.

Future modifications/recommendations/maintenance:

• All USBL batteries are to be disposed of in the ships battery disposal.

4.4 Football Floats:

The older 5000m floats worked well for the duration of the cruise

Future modifications/recommendations/maintenance:

• Check and re-tighten float latches where necessary

4.5 Suction Sampler:

The suction sampler worked well throughout most of the cruise however some technical problems were encountered with the sampler rotation mechanism, early on.

During operation at the normal hydraulic operating pressure of ~1500 PSI the suction chamber would rotate at high speed then come to a complete stop, jammed between two of the suction positions. On one occasion the mechanism drive chain also broke and had to be replaced. After re-occurrence of this problem, the rotation mechanism was dismantled and examined. The mechanism looked okay but it was found that hydraulic motor could not produce much torque and so was replaced.

After re-assembly and adjustment of the hydraulic operating pressure down to approximately 1000 PSI the suction sampler worked okay.

During operation the suction hose did occasionally get blocked, preventing samples from reaching the chamber. This appeared to be due to irregular shaped large fossil corals, so an effort was made not to allow corals to be sucked past the suction nozzle gate.

Future modifications/recommendations/maintenance:

- Strip down and repair the faulty hydraulic rotation motor. Check operating pressure and maximum flow.
- Locate and repair leaks to outer chamber wall and lid.
- Look into improving lighting/camera on suction sampler.
- Strip down and service suction motor.
- Ensure suction sampler spares kit is replenished and enough spare suction hose is in stock.

4.6 Push Cores:

These worked well for the duration of the cruise.

Future modifications/recommendations/maintenance:

- Check number of tubes remaining and stock accordingly for next cruise.
- Look into design for core catcher.

4.7 Niskin Bottle Arrangement:

This worked significantly better than previous cruises. Only five bottles were used to avoid firing loops from getting tangled.

Future modifications/recommendations/maintenance:

- Investigate design changes to improve ease of cocking and repeatability of firing.
- Spares for Niskin bottles (to include rubber tubing, nylon firing lines and crimps)

5. Isis ROV:

5.1 Thrusters:

All thrusters worked well for the duration of the cruise. Slight leakage from the fwd lateral started after the 5th or 6^{th} dive. This was monitored, and however did not worsen significantly to warrant a seal replacement.

Future modifications/improvements/maintenance:

- Do the thrusters require the belafram pressure balance reservoir? Or could it be replace by an end cap incorporating a bleed to aid bleeding on assembly and water drain point.
- Check thruster spares and ensure sufficient are held in stock (including rotors).
- Fit bleed valve to spare thruster motor to ensure that it is a swappable spare.

Thruster Controllers:

The bi-pod thruster assembly located on the forward port mounting failed midway through the cruise during/following Dive 225, resulting in the inability to enable or drive the Port Vertical (PV) thruster motor. The pod assembly contains two drive block units, labeled 4A (for the PV thruster and 4B, a spare)

Unit 4B was temporarily used to drive the PV thruster for Dive 226, but a DC ground fault (GF) indication was present. To avoid potentially causing further damage the unit was disabled for the remainder of the dive though it was still available for use in an emergency.

Maintenance and inspection of the pod revealed water ingress possibly through a corroded high current 4 pin *Subconn* connector. Two of the connectors where replaced (those for unit 4A) and damage to the base plate face was repaired with the application of 9uM diamond paper. It should be noted also that the spare base plate unit was found to have a slightly damaged connector face.

Drive block 4A was disassembled and two surface mount 74 logic IC's where found to have suffered corrosion to their pins such that there was damage to the PCB tracks.

The IC's were de-soldered and re-attached and damaged tracking cleaned. No corrosion was found on the separate drive block controller board, which is screened by insulating gel, the only damage was on the communications board. Drive block 4A was able to enable and drive the PV thruster motor, for Dive 227 onwards; however a DC ground fault still persisted. Following this dive the unit was opened again to further investigate the DC ground fault and to also check that the water ingress had ceased. During this process it was discovered that one set of brake resistors were showing a very low resistance to earth. These were changed for a new set. Unfortunately these changes made no significant changes to the ground fault.

This ground fault only occurs at surface and gradually disappears during a dive and returns again as the ROV ascends. This indicates a pressure related problem which is still as yet unresolved.

Drive block 4B was disassembled and corrosion was found on the test connector blocks. The corrosion was cleaned, however 4B still manifests an unacceptably high leakage fault current and was deemed to be used only in an emergency.

Future modifications/improvements/maintenance:

- Contact suppliers for update on availability of drive block units
- Start to look at replacements as present ones may be obsolete.
- Find out what WHOI are doing to get round this problem
- Manufacture spare pod and mid plane.

5.2 Vehicle Main System Compensators:

The vehicle main system compensators worked well for the whole duration of the cruise and no significant oil loss or pressure drop was observed between dives.

A small leak from one of the science bus bulkhead connectors was noted at the start of the cruise. This did not worsen or present and further problems.

Future modifications/improvements/maintenance:

• None

5.3 Tool Sled:

Drawer:

The draw worked well for the duration of the cruise. The drawer worked well for the duration of the cruise. The drawer was removed completely during the vertical swath dive to increase overall vehicle buoyancy and to improve vehicle trim.

Future modifications/improvements/maintenance:

• None

Swing Arms:

This worked well for the duration of the cruise. The port swing arm was removed for the Reson SWATH electronics bottle.

Future modifications/improvements/maintenance:

- Strip and service both port and stbd units.
- Check latching pin position to ensure pin locates properly when closed and adjust if necessary.
- Service both latching pin hydraulic cylinders.

5.4 Hydraulic System:

The ISIS hydraulic system worked well for the duration of the cruise with no significant problems encountered. However during a couple of post-dive hydraulic oil checks it was suspected that water had entered the system as the appearance was cloudy. No source of obvious water ingress was found and the problem did not occur with any logical regularity. Upon discovery of contaminated oil the hydraulic reservoir was drained and the system flushed through using the deck pack and the Cardev water separator filters. Following Dive 234 during the post-dive checks it was noted that there was contaminated oil inside the hydraulic motor. The motor was removed and during inspection it was found that the rotor was damaged and so was replaced. During the flushing of the hydraulic system, as described above, on this post dive it was also noted that the manipulator pressure hoses had failed and were blistering when under pressure. All the affected hoses were replaced. At this point in time it was thought that these failed hoses may have contributed to the ingress of water noticed on the previous dives. Following Dive 236 it was again noted that the blisters had re-appeared when the system was pressurized. This time further investigation took place, with the conclusion that the blisters were the outer protective coating de-laminating from the hose. The hoses were continued in service monitoring for further problems. The remaining dives continued without any further damage, and water ingress was negligible.

Future modifications/improvements/maintenance:

- Flush system thoroughly
- Replace all filters/seperators and re-stock spares.
- Conduct visual inspection of hydraulic system and all hoses.
- Check that the type of hydraulic hose currently being used is suitable and ensure that enough spare hose is ordered.

5.5 Manipulators:

Port Side: KRAFT

The Kraft Predator arm was used extensively for sampling on most dives and worked reliably for the majority of the cruise.

During the final few dives (Dive 235) it was noticed that the arm had developed a twitch on the azimuth motor and that the jaws had started to stick closed. During the pre-dive for Dive 236 the arm failed on the azimuth actuator by which the azimuth potentiometer had to be changed. Following a full recalibration of the arm and a service of the sticky jaws, the arm functioned without further problems for the remaining five dives of the cruise. The Kraft mini master was swapped out following Dive 235 as problems with the indexing button were being experienced.

Future modifications/improvements/maintenance:

- Service of Kraft Predator used during JC094. Repair azimuth motor. Perform visual inspection and replace any leaking seals.
- Re-stock rotator pot in spares kit.
- Service mini master indexing button

Starboard Side: Schilling T4

The Schilling T4 arm was not used as extensively as the Kraft Predator due to vehicle tool configuration but performed well and remained reliable throughout the cruise.

Future modifications/improvements/maintenance:

• Perform visual inspection of Schilling T4. Flush compensating oil.

5.6 Pan & Tilt Units:

Following the installation of the Sidus pan and tilt unit on the light bar, the unit failed to take any calibration points and eventually failed to work in all directions. It was at this point it was decided to fit the spare Kongsberg unit which required some modifications to the camera controller software.

Following this both pan and tilt units worked well for the duration of the cruise.

Future modifications/improvements/maintenance:

- Flush comps on both units.
- Inspect and service as necessary
- Retire Sidus unit

5.7 CWDM Fibre Optic Multiplexor

This worked well for the cruise duration

Future modifications/improvements/maintenance:

- Spares should be obtained or complete 2nd system
- See Scorpio Camera section

5.8 Cameras:

Pegasus:

Used on Pilot Pan and Tilt with Pilot HD.

Following dive 235 the unit was repositioned to the vehicle central side of the pilot pan and tilt. This camera was now to be used as the primary pilot camera, whilst the pilot HD has to be re-positioned to the science pan and tilt.

Worked well for the duration of this cruise

Future modifications/improvements/maintenance:

• White balance did not appear to work from the Devcon GUI – the Insite GUI was found not to be compatible with Windows 7.

Super Scorpio digital still :

This unit worked well for cruise duration with deck lead download of images.

Future modifications/improvements/maintenance:

- Investigate marks on inside of glass dome.
- Include camera control in proposed joy-box development
- Prior to the cruise an attempt to improve image download speeds by rewiring from the prizm Ethernet port to the CWDM board failed. To resolve this new connectors appropriate to high speed Ethernet should be installed, possibly the same as the proven RESON connector

High Definition Pilot and Science camera units

Following Dive 232 it was noted that a crack had appeared on the dome of the science HD camera (unit Ser No. xxxxx).

The unit was removed from the vehicle. HD pilot was relocated to the science pan and tilt.

Future modifications/improvements/maintenance:

- Rtn camera for dome repair
- Rtn controllers for zoom drift repair
- Notify Insight of zoom drift and relation to iris control
- Investigate pal video lines on both HD pbof's

Mini Cams: Uplook , Drawer, LED Sampler/Gauges All worked well for the duration of the cruise.

Future modifications/improvements/maintenance:

• None

Mercury (Aft Cam):

This is an excellent low light monochrome camera providing sharp pictures with minimal lighting and is well suited for vehicle rear view monitoring. No problems were encountered.

Future modifications/improvements/maintenance:

• None.

5.9 Lights:

2 x Aphos LED (set at 100% power output) Port and starboard outer unit on ROV 2 x Aphos LED (set at 75% power output) port and Starboard inner unit on ROV

During dive 229 it was noted that the Port outer (100% power) LED was flickering. The unit was isolated for a period and then started again. It then appeared to be functioning normally for the rest of the dive. Dive 230 pre-dive demonstrated that the light was still functioning and therefor was used for this dive. Unfortunately during this dive the unit failed completely and was isolated at the GUI. It was also noted during this dive that the Stbd outer (100% power LED) looked considerably dimmer.

Following this dive both units were deck tested, resulting in the port unit coming on initially and then not at all and the stbd unit coming on but in a very dim capacity.

Both units were removed from the ROV and tested independently using the test unit and software from the manufacturers. Both units were still showing 100% output but were however clearly not delivering the 'brightness' that they should.

For Dive 232 two new 100% power LEDs were fitted to replace the failed units. These functioned well for the remainder of the cruise. It was noted on the GUI that the Port outer was drawing 1.5 amps when it should be similar to that of the Starboard outer of 2.1Amps. Visible power output was clearly running at 100%.

Future modifications/improvements/maintenance:

- Sort out Serial Nos and hrs run on the units to be returned to Cathx
- Rtn to Cathx.
- Investigate GUI amp readings compared to test rig power drawn readings 3.7 amps bench 2.1 amps GUI
 2.6 amps bench 1.5 amps GUI

5.10 Lasers:

Dive 232 laser on the fixed Scorpio failed. It was unknown as to which unit out of the pair had failed. Both units were tested and serviced on deck checking out ok during Dive 233 pre-dive. Laser module failed again on Dive 233.

Dive 234 was to be a swath dive with no lasers required, so it was decided to put the two green lasers on in this position and test. From this dive it was concluded that the fault must be in the laser harness. As this would involve opening the main junction box, it was agreed with science that we would no longer use this harness, but instead would reposition the lasers from the science HD/pan and tilt onto the fixed Scorpio position. No further problems were encountered.

Future modifications/improvements/maintenance:

- Check all lasers
- Replacement harness to fitted
- Order spare harnesses

5.11 Sonar's:

RDI Doppler WorkHorse Navigator 300KHz:

This operated well for the duration of the cruise.

Future modifications/improvements/maintenance:

• If money becomes available a spare should be purchased as they have been known to leak through transducer interface.

Tritech Imaging (Fwd):

The new Tritech Super Seaking dual frequency head performed well for the majority of the cruise. A GF developed part way through Dive 235, of which during the unit was isolated until required or end of the dive.

Future modifications/improvements/maintenance:

• If money becomes available a spare should be purchased.

Reson Multibeam

This system was only used on two (three -LFR) dive this cruise. On both occasions it worked well with no problems encountered. On the second dive it was used in a vertical configuration, mounted to the front of the ROV, between the top and bottom beam of the ROV frame. The tool sled, and swing arms were removed to save buoyancy and help trim the vehicle to the horizontal.

Future modifications/improvements/maintenance:

• Blanks required for cables

5.12 Digiquartz Pressure Sensor:

Worked well for the duration of the cruise.

Future modifications/improvements/maintenance:

• None

5.13 Electrical Systems and Wiring:

The DC deck cable is not functioning. Possibly due to failure to energize the HV relay.

Future modifications/improvements/maintenance:

• Investigate and repair

5.14 Altimeter:

Worked well for the duration of the cruise.

5.15 Novatech Radio/Strobe Beacons

Worked well for the duration of the cruise

5.16 PRIZM – FO Comms

Fibre optic losses through the entire system were in the order of 6-8db.

5.17 Scientific Sensors

CTD: SBE49 Ser no 4970149 - 0279

Whilst the unit performed correctly throughout the cruise it was discovered that after a number of dives the conductivity cell within the unit became contaminated and ceased to function. This was remedied by dismantling the unit and thoroughly cleaning the sensor and connecting pipes. It was suspected that the unit's location on the floor tray of ISIS made it susceptible to contamination from sediment disturbed by ISIS each time the vehicle landed on the sea bed. It is suggested that an alternative location be chosen for subsequent cruises higher up within the vehicle to mitigate this problem.

Thermometer: SBE38 Ser# Not fitted

Turbidity: ECO-NTU-RTD Not fitted

ICL Probe: Not fitted

5.18 Low Voltage JB (port side):

The PAL composite lines in the cables to high definition cameras PILOT and SCIENCE are not connected into composite video ports in the LV junction box. This is to be remedied at base. A science bus 7pin connector was notes to be slowly weeping at the beginning for the cruise.

Future modifications/improvements/maintenance:

- Documentation to be sorted.
- The current science bus connector plate is too replaced, ultimately by MCIL connectors.

5.19 HighPower JB (Starboard Side).

Prior to the cruise an additional lighting circuit was installed to utilize the spare lighting capacity in the high power tube, however this was not implemented on this cruise but was available should any of the other circuits have failed.

6. Isis System Topside:

6.1 Clearcoms:

Worked well for the duration of the cruise.

Future modifications/improvements/maintenance:

- None
- Identify no of spare headsets, or spares if necessary.

6.2 Jetway:

This operated well for the duration of the cruise.

A remote emergency stop facility was introduced on this cruise which, whilst not tested in anger, provided reassurance that should a fault develop within the jetway compartment then any one passing would have the opportunity to shut down the unit without opening the compartment and exposing themselves to possible injury.

Future modifications/improvements/maintenance:

• It is proposed that during the inter cruise layup further enhancements such as remote indicator lights etc be provided. It is also suggested that an oil change and check of the transformer internal connections be made.

6.3 Device Controller:

At the beginning of the cruise control software was modified to accommodate a 2nd Kongsberg Pan & Tilt in replacement of the ROS science unit

Future modifications/improvements/maintenance:

• Previous cruise recommendations remain

6.4 Techsas PC:

Operated well for the duration of the cruise

Future modifications/improvements/maintenance:

• None

6.5 CLAM PC:

Due to a failure of the serial com1 port which communicates with the remote winch control unit a spare PC was instated.

Future modifications/improvements/maintenance:

• Investigate potential repair of com port

6.6 Event Logger PC:

Operated well for the duration of the cruise

Future modifications/improvements/maintenance:

• None

6.7. Reson 7125 Multibeam:

Operated well for cruise duration

Future modifications/improvements/maintenance:

• Obtain cable and blank spares

6.8 Tritech Super Seaking PC:

Operated well for cruise duration

A ground fault appeared on this channel during Dive 235 but was found not associated with this device. The unit was only powered on when deemed necessary, due to the uncertainty of the GF problem.

Future modifications/improvements/maintenance:

• Investigate GF problem

6.9 Topside PC:

Operated well for the duration of the cruise

Future modifications/improvements/maintenance:

• None

6.10 DVLNAV PC:

Operated well for the duration of the cruise

Future modifications/improvements/maintenance:

• None

6.11 Pilot/Engineer PC

Operated well for the duration of the cruise

Future modifications/improvements/maintenance:

• None

6.12 Video Recording / Archiving

4 off AJA KiPro recorders connected to HD1 Science, HD2 Pilot, HD3 Scorpio and selectable composite channel provided video recording.

A main laboratory setup of 2 imac computers, 3 off 18TB (45TB total usable) Promise Raid 5 with Thunderbolt connectivity to WD MyBooks provided an archiving / editing facility. The 2nd imac computer was installed with Final Cut Pro X for editing

Future modifications/improvements/maintenance:

- A 4th 18TB Promise unit should be sourced as this cruise demonstrated the requirement for additional capacity as we now routinely recording 3 off HD video channels.
- Funding provided investigation to progress to a direct 4 channel video recording / archiving system

6.13 Network Video Stream:

Prior to the cruise the Avermedia PC unit was replaced with an Axis 4 channel video server. Live frame rate and compression controlled video was streamed on the ship network for science to monitor via a

web browser or Axis software made available for download on the ship science server. An Avocent feed was supplied to the bridge DP position from the main lab.

7. Isis Topside Technical Details:

7.1 Ship Connections:

All ship data connections were made via Hangar Fieldbus FB17 junction box,

A remote HD-SDI fibre video feed was made via the new Hangar deep tow fibre junction box which breaks out in the aft section of the main lab. From here a fibre line was installed to the plot table viewing area.

This cruise saw the introduction of a KVM matrix for control of the ROV system computers. This comprised of 2 off 32 channel master stations (1 redundant) and associated remote consoles. This worked extremely well simplifying operations and enabled the setup of a remote pc console in the main lab for science to prepare event logger and multibeam computers prior to dives. The screen display was extended to the plot table area for general viewing.

7.2 Fibre Optic Terminations:

The stock of old ST FO connectors are now depleted, after 2 re-terminations, however new crimp and glue connectors currently supplied by RS and other suppliers have proven successful in terminating onto the armoured jacket.

Future modifications/improvements/maintenance:

- Check all test equipment.
- Replace and stock connectors, glue etc

7.3 Power Supplies

See remarks under Jetway.

Future modifications/improvements/maintenance:

• General check and refurbish as necessary – see also under Jetway.

7.4 Air Conditioning Units

Worked well for the duration of the cruise

Future modifications/improvements/maintenance:

• Look at an additional unit to improve overall cooling of control containers

8.0 ISIS Dive Summary (hrs run)

Cruise No.	Dive No.	Dive Hrs.	System Total Hrs	Max Depth (m)	Time at Bottom (hrs)
JC094	221	3.53		560	0
JC094	222	16.91		1079	14.53
JC094	223	17.22		666	16.18
JC094	224	18.87		2132	15.6
JC094	225	23.9		2742	19.38
JC094	226	18.27		500	17.1
JC094	227	21.18		1300	18.73
JC094	228	20.9		1987	17.75
JC094	229	19.5		1279	17.65
JC094	230	25.07		2823	21.97
JC094	231	24.62		1494	22.32
JC094	232	19		1270	17.32
JC094	233	23.58		2980	19.92
JC094	234	18.92		1540	15.88
JC094	235	23.67		1509	21.22
JC094	236	43.75		900	41.82
JC094	237	22.08		2280	19.25
JC094	238	19.25		840	14.55
JC094	239	25.17		1520	23.17
JC094	240	20.17		2175	17.45
JC094 Totals	(20 dives)	425.56	3527.95	2980	371.79