JR200 - AUTUMN CRUISE

Leith Station, South Georgia. Picture courtesy of J. Klepacki

11th March to 18th April, 2009

Life cycles and trophic interactions of the Scotia Sea pelagic community: from the South Orkneys to the Polar Front DISCOVERY 2010.

CONTENTS

1. INTRODUCTION Rebecca Korb PSO	11
1.1 Background rationale to JR200	11
1.2 JR200 Cruise overview 1.2.1 Cruise transect 1.2.2 Cruise stations	12 12 13
1.3 PSO Narrative	18
1.4 Acknowledgments	26
1.5 JR200 Scientists and Support Personnel 1.5.1 Cruise Photo	27 28
1.6 JCR Officers and Crew	29
2. PHYSICAL OCEANOGRAPHY Hugh Venables & James Screen	30
<i>2.1 Introduction</i> Aim Data acquisition	30 30 30
2.2 Underway Navigational Data Instrumentation and data collection 2.2.2 Processing 2.2.3 Problems encountered	<i>30</i> 30 31 32
 2.3 Underway Oceanlogger and Meteorogical Data 2.3.1 Instrumentation and data collection 2.3.2 Processing 2.3.3 Problems encountered 2.3.4 Salinity samples 2.3.5 Conductivity calibration 2.3.6 Oxygen isotope samples 	33 33 34 35 35 36 36
 2.4 Vessel-Mounted Acoustic Doppler Current Profiler 2.4.1 Introduction 2.4.2 Instrumentation 2.4.3 Configuration 2.4.4 Outputs 2.4.5 Post-processing of data 2.4.6 Output Files 2.4.7 Calibration 	37 37 38 39 39 41 42
2.5 CTD Deployment And Data Acquisition 2.5.1 Introduction 2.5.2 CTD instrumentation and deployment 2.5.3 Instrumentation changes & problems with CTD deployments 2.5.4 Data acquisition and preliminary processing	43 43 43 44 44

 2.5.5 SBE35 high precision thermometer 2.5.6 Salinity samples 2.5.7 Oxygen isotope samples 2.5.8 CTD data processing 2.5.9 CTD calibration 	46 46 46 46 49
2.6 Expendable Bathythermographs (XBT's) 2.6.1 Introduction 2.6.2 Deployment 2.6.3 Processing 2.6.4 Additional comments	54 54 54 54 54
3. MOORINGS Peter Enderlein, David Pond, Hugh Venables, Sohpie Fielding	56
3.1 Redeployment of sediment trap moorings during JR 200	56
3.2 3200m Discovery2010 sediment trap mooring	59
3.3 3700m Discovery2010 sediment trap mooring	64
3.4 Shallow water WCB mooring	68
4. MACRONUTRIENT ANALYSIS Mick Whitehouse and Min Gordon	70
4.1 Introduction	70
4.2 Aims	70
4.3 Sample collection and analytical methods	70
4.4 Data analysis	71
4.5 Problems	71
4.6 References	72
5. PARTICULATES Dave Pond	73
5.1 Introduction	73
5.2 Data Coverage	73
6. IRON CHEMISTRY Sebastian Steigenberger& Daria Hinz	74
6.1 A study of the iron biogeochemistry in the Scotia Sea	74
6.1.1 Introduction	74
6.1.2 Sample Methods	74
6.1.3 Method of analysis	75
6.1.4 Results	75
6.1.5 Recommendations and future work	77
6.1.6 Equipment	77
6.1.7 Acknowledgements	78

6.1.8 References	78
6.2 Study of phytoplankton response to naturally iron enriched regions of Scotia Sea	of the 78
6.2.1 Overview	78
6.2.2 Phytoplankton physiology	79
6.2.3 Underway measurements on ship's non-toxic supply	79
6.2.4 Discrete measurements of samples from 5-day bioassays	79
6.2.5 Discrete measurements of samples from 24-hour bioassays	80
6.2.6 CTD casts 6.2.7 SEM	81 82
6.2.8 Acknowledgements	82
6.2.9 References	82
7. PHYTOPLANKTON BIOMASS & PRODUCTIVITY Rebecca Korb & Min Gordon	83
7.1 Introduction	83
7.2 Aims	83
7.3 Methods and data coverage 7.3.1 Primary production 7.3.2 Chlorophyll a 7.3.3 Species composition 7.3.4 Photosynthetic physiology 7.3.5 Additional	83 83 83 84 84 84
7.4 Results	84
8. MESOZOOPLANKTON SAMPLING Peter Ward & Geraint Tarling	87
8.1 Longhurst Hardy Plankton Recorder (LHPR) studies 8.1.1 Background 8.1.2 Method	87 87 87
8.2 Oithona similis (Copepoda:Cyclopoida): lifecycles and population dy	
 8.2.1 Introduction 8.2.2 Method 8.2.3 Carbon analysis 8.2.4 Bongo Net samples 8.2.5 References 	<i>88</i> 88 89 89 89 89
8.3 MOCNESS sampling 8.3.1 Background 8.3.2 Method 8.3.3 Samples collected	90 90 91 94

9. KRILL ECOLOGY Sophie Fielding & Angus Atkinson	109
9.1 Krill length Frequency Introduction Methods	109 109 109
9.2 Feeding Ecology of Antarctic krill	110
9.2.1 OBJECTIVE 1: FECAL EGESTION BY ANTARCTIC KRILL Introduction Aims Methods Data coverage and Preliminary Results Problems encountered/recommendations References	110 110 111 111 112 113 113
9.2.2 OBJECTIVE 2: PILOT STUDY OF IRON EXCRETION BY KRILL Introduction Method Results	114 114 114 115
OBJECTIVE 3: WATER FILTRATION FOR SEDIMENT ANALYSIS Introduction Methods Results	116 116 116 116
10. KRILL DISEASES Ruth Hicks	118
Sampling of krill to screen for disease in the Southern Ocean: effects on standing stock and implications of changing climates	118
10.1 Background	118
10.2 Sampling	119
10.3 Acknowledgements	119
10.4 References	120
11. KRILL GENOMICS, POP.GENETICS & MATURITY ANALYSIS Geraint Tarling 11.1 Background	121 <i>121</i>
 11.2 Methods 11.2.1 Genomic expression analysis 11.2.2 Dissection of the brain, optic lobes and eyes of krill 	121 121 121
11.3 Results	123
12. ACOUSTICS Sophie Fielding, Peter Enderlein, Geraint Tarling	127
12.1 Acoustic instrumentation Introduction Aim	127 127 127

Methods/System specification	127
12.2 EK60 Calibration	129
12.3 Data processing	132
12.4 Acoustic surveys	132
12.5 Target fishing	133
12.6 Problems encountered	135
13. PREDATOR OBSERVATIONS Andrew Black	136
13.1. Introduction	136
13.2. Aims	136
13.3. Methods	136
13.4 Data coverage	137
13.6 Problems and recommendations	140
13.8 References	141
14. FISH AND MACROZOOPLANKTON	143
Gabriele Stowasser, Yves Cherel, Anton van de Putte, José Xa Fielding, Geraint Tarling	avier, Sophie
14.1 Introduction	143
14.2 Gear	143
14.3 Catch sorting and processing	143
14.4 Preliminary results	144
14.5 Collaboration Projects: Dr Geraint Tarling	149
14.6 Collaboration Projects: Dr José Xavier	150
14.7 Collaboration Projects:Dr Anton van de Putte	150
14.8 Collaboration Projects: Dr Yves Cherel	151
14.9 Tissue sampling for stable isotope analysis 14.9.1 Background 14.9.2 Sampling	<i>151</i> 151 152
15. POLAR FRONT WORK	154
Sophie Fielding, Hugh Venables, Peter Enderlein, Gabi Stowas Anton Van de Putte, Jose Xavier, Pete Ward	sser, Yves Cherel,
15.1 Introduction	154
15.2 Finding the Polar Front	154
16.3 Polar Front Station strategy	156

16.3.1 PFn 16.3.2 PFs	157 157
16.4 Comments, Problems and future suggestions	158
16. SCIENTIFIC SUPPORT Peter Enderlein, Julian Klepacki, Johnnie Edmonste Nathan Cunningham	on & 159
16.1 Gear Report 16.1.1 General 16.1.2 Down Wire Net Monitor 16.1.3 RMT25 16.1.4 RMT8 16.1.5 LHPR 16.1.6 MOCNESS Net 16.1.7 Bongo and Mini-Bongo Net 16.1.8 Recommendations	159 159 159 160 160 160 160 160
 16.2 AME Report 16.2.1 GPS, MRU, Gyro 16.2.2 ACOUSTIC 16.2.3 OCEANLOGGER 16.2.4 CTD 16.2.5 AME UNSUPPORTED INSTRUMENTS BUT LOGGED 16.2.6 Additional notes and recommendations for change / future work 	162 164 165 166 168 172 173
16.3 ICT Report	174
16.3.1 Acquisition machines SCS Netmonitor CTD PC XBT PC ADCP Scintillation Counter	174 174 174 174 175 175 175
16.3.2 Servers JRNA JRUA / JRUB AMS3	175 175 175 175
<i>16.3.3 PC's</i> Chief Engineers PC Combined office PC Virus ridden laptop Earl Grey attacks laptop	175 175 175 176 176
16.4 Data Management	177
16.4.1 BASNet	177

16.4.2 Near-real-time JCR Data	177
Project Brief	177
Scientific Instrumentation on the JCR	177
Implementation	178
16.4.3 Using Google Earth to Visualise Underway Data	178
16.4.4 Polar View Project	178
16.4.5 Web Based Data Tools	179
16.4.5 Utilities	179
17. PUBLIC UNDERSTANDING OF SCIENCE José Xavier	180
17.1 Introduction	180
17.2 Results	180
17.2.1 World wide web (blogs & WEBSITES)	180
17.2.2 Education, outreach AND media	181
17.2.3 Contact with schools	181
17.3 CONCLUSIONS	182
18. APPENDIX 1 - EVENT LOG	183
19. THE FINAL VIEW - CRUISE PHOTOS	204

Table of Figures and Tables

Fig 1.2.1 Location of the ice edge during the JR200 cruise	14
Fig 1.2.2 Proposed cruise track and station names	15
Fig 1.2.3 JR200 station activities plan	16
Fig 1.2.4 Actual JR200 Cruise Track	17
Fig 1.5.1 Cruise Photo	28
Fig 2.2.1 JR200 cruise track for jdays 70 to 105 from Seatex GPS	32
Fig 2.3.1 1 min avg of SST, salinity & fluorescence from the oceanlogger	37
Table 2.5.1 CTD Casts	50
Table 2.5.2 Instrumentation & configuration for SBE911Plus CTD	52
Table 2.6.1 JR200 XBT deployments	55
Table 3.1.1 3200m mooring triangulation	56
Fig 3.1.1 Calculated 3200m mooring position on JCR micropolt	57
Fig 3.1.2 Calculated 3200m mooring position by triangulation	57
Table 3.1.2 3700m mooring triangulation	58
Fig 3.1.3 Calculated 3700m mooring position on JCR micropolt	58
Fig 3.1.4 Calculated 3700m mooring position by triangulation	59
Fig 3.2.1 Diagram of 3200m Mooring	63
Fig 3.3.1 Diagram of 2700m Mooring	67
Fig 3.4.1 Diagram of Shallow Water Mooring	69
Table 5.2.1 Pond - Samples from bottle 21 of full depth CTD	73
Table 5.2.2 Pond - water collections from chl maxima & 2000m	73
Table 6.1.1 Date, position & depth of sampled GO-FLOs during JR200	75
Table 6.1.2 Date & position of underway samples during JR200	76
Table 6.2.1 Sampling method, location, & dates for bioassay exps	80
Table 6.2.2 Conditions for bioassay experiments	80
Table 6.2.3 Bioassay sub-samples	80
Table 6.2.4 Sampling method, location, & dates for mini bioassay	80
Table 6.2.5 Record of CTD casts for FiRE	81
Table 6.2.6 Depths sampled on CTD casts for FiRE	82
Table 7.1 Phytoplankton samples collected during JR200	85
Fig 7.1 Coverage of underway Chl samples on JR200	86
Table 8.1 LHPR - summary of hauls.	88
FIG 8.3.1 Deployment of MOCNESS	90
Table 8.3.1 MOCNESS deployments	92
Table 8.3.2 Calanoides acutus CV individuals from each MOCNESS net	94
Table 8.3.3 Samples of C. acutus, R. gigas, C. similliums and C. propinquus	95
Fig 9.1.1 Length frequency of all krill caught during JR200	109

Table 9.2.1 Sum of RMT 8 net catches for krill fecal pellet exps.	116
Table 9.2.2 Collection of water samples onto 2 um polycarbonate filters	117
Table 10.1 Sum of net catches used & species sampled for disease screen	120
Fig. 11.2.1 Dissection technique for krill brains, optic lobes and eyes	122
Table 11.3.1 Samples collected for population genetics	123
Table 11.3.2 Samples collected for ovarian analysis	123
Table 11.3.3 Samples collected for RNA analysis	124
Table 11.3.4 Samples collected for brain dissections	125
Table 11.3.5 Krill collected for clock gene DNA analysis	126
Table 12.1.1 EK60 settings	129
Table 12.2.1 Echoview calibration	130
Table 12.2.2 ER60 Calibration	131
Table 12.3.1 Data processing structure	132
Fig 12.4.1 Mesoscale survey design	132
Table 12.4.1 Transect times, directions and speeds	133
Table 12.5.1 RMT8 target hauls times and comments	134
Table 12.5.2 RMT25 target hauls times and comments	135
Table 13.1 Species observed and recorded during acoustic surveys	138
Fig 13.2 Species data recording form	142
Table 14.1 RMT25 Stations during JR200	145
Table 14.2 Fish caught in RMT25 Net hauls during JR200	148
Table 14.5.1 Hyperiid amphipod species for genetic analysis	149
Table 14.5.2 Shelled Pteropds for examination of shell ultrastructure	150
Table 14.9.1 Species collected for stable isotope analysis	153
FIG 15.2.1 OSTIA SST image with overlain dynamic height contours	155
FIG 16.5.2 Dynamic height contours over OSTIA SST	155
Fig 15.3.1 XBT section across Polar Front	156
Fig15.3.2 Shallow CTD section across Polar Front	157
Fig 17.1 Student on the radio station Claretiana in Brazil	181
Fig 17.2 Prof. Miriam Almeida with colleagues and students	182
Fig 19 Final views of the cruise	204

1. INTRODUCTION

1.1 Background rationale to JR200

Rebecca Korb PSO

JR200 was the third of 3 cruises to the Scotia Sea region of the Southern Ocean, providing an autumn perspective to the fieldwork campaign of the DISCOVERY 2010 programme. Previous cruises include JR161 (spring) and JR177 (summer). The three cruises were designed to follow a similar cruise track (to allow inter cruise comparisons) and to sample across the range of environments that typify the Southern Ocean: the ice edge, shelf-seas, open-ocean, HNLC conditions, iron-enriched conditions and frontal areas. Through 2 BAS core science projects and a number of collaborations, we aimed to characterise ecosystem processes, from the impact of micro- and macronutrient availability on primary productivity, through to primary (zooplankton) and secondary (nekton) consumer processes and up to higher predator studies on abundance, distribution and diet.

The FLEXICON (Flexibility and Constraints in Life Histories) project consisted largely of a depth-discrete sampling programme to consider the distribution of different life-cycle stages and body states of key zooplankton species. Acoustic data supplemented these studies as well as providing detailed information on krill and fish swarm structures.

The FOODWEBS (Scotia Sea Food-webs) project took a number of complimentary approaches to consider linkages between different trophic levels, including micro- and macronutrient availability, phytoplankton studies, gut content examinations, stable-isotope analyses, higher-predator tracking studies. In addition, sediment traps deployed near to South Georgia will also provide key insights into carbon flux to the deep ocean. Full details on the background rationale for the Discovery 2010 projects and associated cruises can be found in the JR177 cruise report.

In addition to the core DISCOVERY 2010 work, supplementary projects were supported on the cruise. The Dipycnal and Isopycnal Mixing Experiment in the Scotia Sea (DIMES) programme, of the Physical Sciences Division, had a remit to obtain greater resolution in physical oceanographic parameters across the Scotia Sea. Integration of DIMES into the cruise track increased the frequency of full-depth CTDs between core-sampling stations. The Antarctic Funding Initiative, Collaborative Gearing Scheme (AFI-CGS) project "Diseases of krill in the southern ocean: effects on standing stock and implications of changing climates", took advantage of our regular catches of live krill. Preserved samples will be examined in the UK at CEFAS and a pathogen profile generated. The AFI-CGS project "Iron availability and effects on phytoplankton communities in contrasting production regimes of the Scotia Sea: a seasonal perspective" contributed directly to the aims of FOODWEBS. Measurements of iron concentration were made throughout the cruise, and bioassays carried out, to examine the controlling influence of this micro-nutrient on primary productivity. This cruise also hosted three independently funded collaborators (Jose Xavier, Yves Cherel and Anton van de Putte) to assist in the fishing work throughout the cruise and in particular at the Polar Front.

1.2 JR200 Cruise overview

Rebecca Korb PSO

The design of the main cruise track is described in the JR177 cruise report. Here we specifically describe the criteria relevant to the JR200 cruise track:

- 1) To cover the largest possible range of oceanographic environments common to the Scotia Sea region such as shelf-seas, open ocean, HNLC conditions, iron-enriched conditions and frontal areas. Previously the ice- edge was also included. However, due to its southerly position this year (see Fig 1.2.1) it was not possible to include ice edge stations on JR200.
- 2) As on previous cruises, a number of station locations needed to be responsive, i.e. not fixed positions. Here, we chose to sample at low Fe (R2) and high Fe (R3) environments. The location of these stations was determined by ocean colour, and dynamic height, satellite images. We did not sample responsively at the ice edge (R1), as we did on previous cruises. Instead, we repeated sampling at the location of the JR177 ice station (to the north-west of Signy) and named this R1.
- 3) Other station locations remained fixed so that inter-seasonal (inter-cruise) comparisons are possible.
- 4) Target fishing was more opportunistic in nature than it has been on previous cruises. We searched for targets to fish during transit time between stations and only deployed the RMT8 when we saw a swarm.
- 5) Day time RMT25 fishing was removed from our programme and replaced with extra night time deployments.
- 6) Moorings were only re-deployed at our sediment trap sites (P2 and P3). They had been recovered on a previous cruise.
- 7) A separate cruise to the South Georgia area was cancelled and elements incorporated into JR200. These included 3 nights fishing at the Polar Front (PF), an acoustic calibration of the echosounder in Rosita Harbour (this actually took place in Stromness due to weather issues) and the recovery/re-deployment of the WCB shallow mooring.
- 8) A logistics call to BI needed to be carried out near the end of the cruise.

1.2.1 Cruise transect

The transect line ran southwards from Stanley, FI to our first bio station at R1, then ran eastwards along the northern side of the South Orkneys shelf. East of the South Orkneys, we headed northwards following the usual ERS satellite altimeter track up to the west of South Georgia (see Figs 1.2.2 and 1.2.4). Once at the final station on the altimeter track (P3) we headed west towards the "reactive" high chlorophyll station (R3) then headed northeastwards to a station near to the Polar Front (PFS). The track then ran to Bird Island for logistic purposess, to Stromness for an acoustic calibration and then to the WCB to recover a shallow water mooring before heading back to Stanley.

The underway seawater supply was analysed continuously throughout the cruise for Chl-a concentration, macronutrients, and phytoplankton physiology. Pumped seawater was supplied to the clean container, for micronutrient analysis, using a towfish deployed from the starboard

quarter. XBT's were deployed en-route from the last "bio-station", R3, up to the Polar Front South station (PFS).

1.2.2 Cruise stations

On the main transect leg of JR200, there were 2 types of stations: "bio-stations" and CTD stations. The former consisted of stations that were occupied for ~2 days and where a range of activities were carried out. The latter consisted of near-bottom, CTD casts only (part of the DIMES project). Six "fixed" bio-station locations were retained from last year (R1, C2, C3, C4, P2, P3). Two (R2, R3) were left flexible to be "responsive" to low Fe and high Fe features observed during the cruise. The DIMES CTD's were numbered D1 to D21 irrespective of whether or not they fell in a "bio-station" location or not. Thus a number of stations have 2 names to reflect the "bio-station" location as well as the DIMES CTD location. See Fig 1.2.2 for all station locations and names

There was a set plan of activities to occur over a 48 h period at each of the 8 bio-stations (Fig 1.2.3). This included: full depth CTD's for physical oceanography, chlorophyll, nutrients, particulates (2000 m CTD) and mesozooplankton (400 m CTD); GoFLO bottles for iron chemistry; an FRRF to measure the physiological state of phytoplankton; and a range of nets to sample meso- and macrozooplankton, krill and myctophid fish. The 48 hours included a 12 hour acoustic survey. Previously on JR177 this was a 24 mesoscale survey at the five 'fixed' stations or a 6 h survey at the 'responsive' stations.

In addition, each bio-station had an 6 hours allocated to target fishing with the RMT8. This time slot was largely used in a flexible manner, en-route between stations.

Additional activities were carried out at a few stations along the main transect. A test station was carried out on the leg from Stanley to R1 (at the site of the P1 bio-station rom previous cruises). All gear was deployed in the water to ensure it was working correctly. Moorings were deployed at P2 and P3. An extra RMT25 stratified haul was carried out at the end of the C4 occupation. Another was scheduled for D14 but the weather was not suitable at that site.

The work at the PF front was based around day time activities (CTD's, LHPR, acoustic surveys, bongos) and night time fishing with the RMT25. Station location and naming can be seen in Fig 2. Night time fishing with the RMT25 had the highest priority of the station activities. The scheduling of day time activities was dependent on weather conditions and time of arrival on stations.

Fig 1.2.1 location of the ice edge during the JR200 cruise

Fig 1.2.2 Proposed cruise track and station names

Fig 1.2.3 JR200 station activities plan

Local times	Day 1	Day 2	Day 3
22:00	RMT25 Stratified	MOCNESS	Krill target fishing
23:00		FRRF (night)	RMT8
00:00		LHPR (night)	*****
01:00			Flexible –
02:00			may be en-route along
03:00		CTD (full depth)	transect
04:00	Bongo+Minibongo		
05:00			
06:00	Acoustic survey	LHPR (day)	
07:00			
08:00			
09:00		Go-Flo	
10:00			
11:00		FRRF (day)	
12:00		Bongo + minibong0	
13:00			
14:00		MOCNESS (day)	
15:00			
16:00			
17:00		CTD (2000 m)	
18:00	Krill target fishing		
19:00	RMT8	CTD (400 m - Oithona)	
20:00		MOCNESS (night)	
21:00			

Fig 1.2.4 Actual JR200 Cruise Track

1.3 PSO Narrative

Rebecca Korb PSO

04/03/2009 MOBILISATION 16:30

Four of the JR200 science team (Enderlein, Fielding, Pond & Gordon) left for Stanley to begin mobilisation. The team travelled with the MOD from Brize Norton to Stanley.

08/03/2009 MOBILISATION 16:30

The PSO and the majority of the science team assembled at BAS HQ for trip South with the MOD. Spare parts for the ships winch, which will be used for RMT25, were carried down. At check-in MOD staff complained that zargie boxes were being checked in as luggage. Said they should be cargo.

09/03/2009 17:00 MOBILISATION Lat -51.69163 Lon -57.82414 **19.78°C** Arrived at Stanley at ~2pm (27 hours after setting off from BAS). The 4 science crew members who arrived early had already unpacked the science equipment/gear containers. Nets had been sorted out ,boxes placed in the appropriate labs and chemicals located. A few of the labs had also been setup. This team did an excellent job which should enable us to leave on time /slightly ahead of schedule.

10/03/2009 11:00 MOBILISATION Lat -51.69162 Lon -57.82413 13.59°C

Collected kit bags 8 am (local). General cruise meeting at 8.30 am. Further meetings will be arranged once all gear has been setup. These include fishing group, CTD users, Fe AFI-CGS and producers of bio samples/waste. Points raised were: May sail evening of 11th so need to get gear sorted and lashed down by midday. People thought they would be ready to sail by this date. Jose wants to get dropped off at BI at end of cruise if possible ie to be included in PF work Johnnie to sort out laptops/ PC's, Nathan to set up L drive. Talked to Graham and Simon (2/0) and all of us happy with cruise track/plans. Sebastian complained about the state of the clean container. Very dirty inside, vents had not been shut. Also, no GoFlo rack in the container. Will call Jason Scott at NMF tomorrow. Towfish to go in at the test station.

11/03/2009 11:00 MOBILISATION/TRAVEL Lat -51.6916 -Lon 57.82414 12.46°C

It was confirmed that we would sail today so final preparations made in lab. All science groups are ready to go. Only problems with NOC group as they need water, supplies, etc sorted out once Simon Wright is available. GoFlo rack was not sent down by NMF. They said it was not requested. I have a document to show I asked for it. Seb made a makeshift rack. Lab inspection at 3pm (local)- all labs organised and lashed down. Only things to note were the waste from a previous cruise stored in the cold room and there were a number of chemicals left in the fume hoods from previous cruises. These were poorly labelled and potentially dangerous. Shore leave ended at 4pm followed by a safety briefing. Ship sailed at ~ 5 pm. Requested towfish to go into the water as soon as convenient. Graham said this would be tomorrow after emergency steering test.

12/03/2009 11:00 TRAVEL Lat -53.8101 Lon -55.20323 6.84°C

Emergency steering at 8:00 (local) was followed by deployment of the NOC Fe-towfish. A muster/lifeboat drill was carried out at 10.30. The -80° C contents from near cold room to be moved to -80° C in science hold (only 2 -80° C freezers available, one is near full capacity). A running order of equipment testing (for 13/03/09) was passed to Graham. It was suggested that the CTD and bio wire could be tested today, this did not occur in the end. A problem with the FRRF arose: the deck unit lead is missing. Peter to see if such a lead can be made up on the ship. Midnight meals to start Sat 14th. Weather has remained calm, warm and sunny all day.

12/03/2009 15:47 Lat -54.49264 Lon -54.39194 7.67°C

Set up cruise PSO narrative logsheet.

13/03/2009 22:45 TEST STATON Lat -57.80504 Lon -50.29578 4.25 °C

Ship made good time overnight and arrived at the test station (PS1) early (10:50 am originally estimated to arrive 13.00). Wind has freshened (27 knots) grey skies. After breakfast gear testing began starting with bongo nets then CTD to 150 m (sampled for chl, nutrients, FvFm), CTD for Oithona, LHPR, MOCNESS, RMT8. FRRF not tested as connector not available yet, although it looks promising. Problems with the RMT25 connector meant that this could not be tested in the water at this station. Plan to test this tomorrow a.m. en- route to R1. Go-Flo test aborted on deck as wire is too thick for bottles; this is the same problem as we had last year! Left test station to head to R1 at ~21:30. Weather on departure was calm and foggy. No target fishing carried out overnight.

14/03/2009 22:00 R1 Lat -60.49469 Lon -48.19047 0.93°C

Day started off clear and sunny. RMT25 connector fixed last night. At ~06:00 (local) targets were spotted and target fishing with RMT8 commenced. By 07:00 the net was back on deck. The catch was comprised of mainly krill and salps. Enough krill were caught to allow us to carry on to R1. Tested RMT25, worked fine and we set sail at 11.30 for R1. Around mid-day fog descended again and ships speed reduced. Station reached at around 16:00. Started activities with CTD to 2000 m (Pond), followed by Oithona CTD. A problem with the wire meant this CTD had to be abandoned. 250 m of wire needed to be removed and the CTD re-terminated. Moved on to finish the day with the MOCNESS followed by the FRRF. However during the night the weather deteriorated with up to 40-knot winds and a confused seastate. The FRRF drop was abandoned as well as the LHPR.

15/03/2009 22:00 R1 Lat -60.64355 Lon -48.39192 0.55 °C

At 04:30 local the winds were beginning to die down. Decision was made to get on station and carry out a deep CTD. However at the station there were still problems with the CTD (with the termination) and we decided to postpone this and start the acoustic survey. A revised plan of work activities was drawn up to fit in the CTD, FRRF and LHPR lost during the weather. By the afternoon the CTD was fixed and ready for use tomorrow. Acoustic survey ran until ~16:30 then target fishing was due to begin. A problem with the net monitor meant that neither the RMT8 nor RMT25 could be deployed. Target fishing was cancelled and whilst the monitor was being repaired, we re-located to station to deploy two bongos followed by a mini-bongo. When this had finished the RMT25 was ready to be deployed.

16/03/2009 22:00 R1 Lat -60.51984 Lon -48.17544 1.83 °C

Despite the initial setbacks at this station all events were carried out and the day ran fairly smoothly. RMT25 fishing finished around 04:00 local. 4 depths (nets) were fished for 30 mins. All nets were successful and caught fish. Relocated to station for the deep CTD followed by Oithona, CTD, LHPR, FRRF. GoFlos were cancelled, as they have not been drilled to fit the wire. Bongos, minibongos, MOCNESS, LHPR all deployed. Target fishing was successful. The last activity was the night-time FRRF and then the ship left to head towards D1.

17/03/2009 22:00 D1 &C2 Lat -60.20849 Lon -44.40803 1.13 °C

Steamed eastwards from R1 to the first station of the northbound transect, Dimes station 1 (D1). Poor visibility meant that we could barely see the South Orkneys. However as we steamed along the north of the South Orkney shelf there were plenty of fin whales, fur seals and chinstrap penguins around. Target fishing followed the CTD at D1, on way to C2. No targets were found to fish so went straight into station work starting with the MOCNESS, then CTD (Pond), CTD (Oithona) and the night-time MOCNESS. The bars on the mouth of the MOCNESS were bent and so the mouth did not open fully. However zooplankton were caught but the volume reduced due to the smaller net mouth size during fishing. The FRRF drop was the last activity of the day.

18/03/2009 22:00 C2 Lat -54.15665 Lon -40.78252 -3.42 °C

The sea remained calm today allowing work to proceed smoothly. The day's activities started with an LHPR followed by the deep CTD (>5000 m). The acoustic survey had a delayed start due to overrun of CTD time but ended at same time. During the acoustic survey the higher predator observer, Andy Black, remained outside despite the miserable rain/sleet! There were no/few targets around to fish but the RMT8 was deployed and a few of the hauls were successful in catching krill. The last activity of the day was fishing with the RMT25, both fish and many salps were caught.

19/03/2009 22:00 C2, D3, C3 Lat -59.93592 Lon -44.23926 -0.47 °C

After the RMT25 fishing finished, we relocated to C2 to finish off the stations activities. However, there was a problem with the bio wire which needs a chunk of wire removed and reterminated. We cancelled the remaining LHPR and will re-schedule tomorrows activities (at station C3) to give Peter Enderlein and Simon Wright plenty of time to fix the bio wire. This morning's activities included bongos, minibongos, GoFlos, FRRF, and another set of bongos. The GoFlo winch only had 540 m of wire on it, it was supposed to be 1000 m. It had also been in use by someone else as there were lengths of tape on it every 5m or so. This meant a lot of time had to be spent removing the tape to ensure the messengers slide down the wire. NMF made no mention of this to us and yet they must have known about it. Once again, a very poor service from NMF. Ended the station with FRRF and bongos, then moved to D3 for CTD. Next headed to C3, target fishing on the way. A small amount of krill was caught. At C3 the first activity was the RMT25 which ran overnight.

20/03/2009 22:00 C3 Lat -59.59004 Lon -44.1702 0.22 °C

Peter completed work on fixing the biowire. Completed RMT25 (a small amount of fish and more salps were caught) followed by bongos and then the acoustic survey. Scheduling of station activities (i.e. relocating to station for bongos) and the start point of the acoustic survey (x miles away from the station) mean this activity will almost always start late, perhaps something to bear

in mind for future cruises. Biowire was not ready for MOCNESS (epoxy on the termination needed more time to set) so MOCNESS will be postponed to tomorrow night. The rest of the evening was taken up with target fishing. Krill were caught in the 2nd net, fish caught in the 3rd net. The FRRF appeared to cut out during the night-time deployment.

21/03/2009 22:00 C3 Lat -59.68869 Lon -44.05392 0.05 °C

The biowire was tested and ready for use so started day with LHPR then moved on to deep CTD, LHPR and GoFlos. The FRRF does not appear to be working therefore cancelled. GoFlos were followed by bongos, MOCNESS, CTD's, another MOCNESS and then target fishing en route to the start of the DIMES stations. A number of cattle egrets looking the worse for wear landed on the JCR providing a talking point and distraction from the constant grey skies!

22/03/2009 22:00 D5, D6, D7, D8 &C4 Lat -58.35222 Lon -43.18088 1.82 °C

Another grey day with thick fog throughout the morning. No targets were found to fish in the night so started D5 CTD then D6 CTD. After this target fishing began and krill caught fairly soon after. Proceeded to CTDs 7 & 8 and then C4. The first activity was fishing with the RMT25. One net (400 to 200 m) was split along the side as it was brought to the surface. Believed to be due to the huge amount of salps in the net. The net was repaired and used again. This time there were few salps in the net.

23/03/2009 22:00 C4 Lat -57.88191 Lon -43.08753 0.7 °C

Yet another grey foggy start to the day! After completion of RMT25 headed back to the station for bongos & mongos then started the acoustic survey. Target fishing in the evening was largely unsuccessful. Although there was a few krill caught, the catch was mainly salps. A large fish target was seen but not fished, as the priority was krill and no time left for fishing. Finished the day with the night time MOCNESS. A brief glimpse of the sun was seen today but only as the sun was setting!

24/03/2009 22:00 C4 Lat -58.03005 Lon -42.97102 3.14 °C

The day started off even more miserable with heavy rain but then finally the sun came out for the rest of the day. The FRRF did not work again and will be removed from the schedule for the rest of the cruise. The LHPR (night), deep CTD, LHPR (day), MOCNESS deployed. Change in schedule to bring Oithona CTD forward. This was followed by bongos, GoFlos, CTD (Pond) and an extra RMT25 (1 of 2 allocated slots during the cruise survey). RMT25 criteria : to be placed before the SACCF & carried out at night. Our current location (C4) is the only place & time that the RMT25 can be carried out before we reach R2 tomorrow (where the approx position of the SACCF is). Min Gordon attended the ships health and safety meeting. The Chief Engineer requested a list of all chemicals in the outside chemical lockers.

25/03/2009 22:00 C4, D10, D11 & R2 Lat -56.9803 Lon -42.35203 **0.6** °C Last night's RMT25 fishing went fine but suffered from the huge quantity of salps around. This lead the decision to abandon the area and target fish for krill en-route to D10 and between CTD stations. No targets seen. CTD's carried out at D10 and D11. Targets were fished between D11 and R2 the first had no krill only salps second one was similar. Arrived at R2 at ~20.30 pm local so started with CTD Oithona then the MOCNESS.

26/03/2009 22:00 R2 Lat -56.74251 Lon -42.36308 3.12 °C

Started the day with the LHPR then deep CTD. The CTD was sounding an alarm on the way down. Decided to cancel the cast. CTD recovered and will be examined. On the previous 2 casts (D11 & Oithona CTD) data from the primary and then the secondary sensors looked odd. Station work was running late so we started the acoustic survey after the CTD was cancelled. At the end of the acoustic survey another CTD test was planned. It was ready to be deployed but in the CTD annex the pumps came on early (when there was tension in the wire) so we decided to cancel the cast and check out the CTD further. After this we went target fishing then RMT25 (shallow).

27/03/2009 22:00 R2 Lat -56.76589 Lon -42.15107 1.58 °C

The second RMT25 deep haul was cancelled as there was too much tension on the wire – result of strong currents, big swell and wind. The CTD was tested 3 times during the night/early morning and kept alarming. So deep CTD for the morning had to be cancelled. Having been up all night, Julian needed to get some rest and will work on the CTD later. In the meantime, all activities for the rest of the day were brought forward starting with bongos at ~4 am local time, then LHPR, MOCNESS. The afternoon bongos were reduced to just 1 instead of 2 as there is not much material in the bongos. GoFlos – shallow and deep separate casts. Test on CTD at 5 pm to ~300m . Alarming. Will reterminate (using potting compound instead of heat shrink) and change underwater unit. This will take about 12 hours to set and then CTD will be tested again. We will stay on station until this time. Time to be spent target fishing and fishing with RMT25.

28/03/2009 22:00 R2, D13 & D14 Lat -56.02681 Lon -41.79758 2.75 °C

The deep RMT25 haul from last night worked well and lots of interesting species were caught including squid. Target fishing on a supposed fish layer only caught lots of salps and very few fish. Target fishing for krill was also unsuccessful. After fishing, the ship headed back to the station and is waiting here until we can test out the CTD (need to ensure potting compound on the termination has set). The test failed so we decided to get a profile of nutrients, chl and Fv/Fm using Goflos. This was done using 5 bottles on 2 separate casts, the deepest depth being 120m. Remaining water of shallowest GoFlos used by Dave Pond. An XBT was also deployed as we left the station to head to D13. Tested out the CTD here and this worked fine, so carried on to a full deep, deployment. Fingers crossed it stays working! However, we had more bad luck as the wind increased during the afternoon/evening. Arrived at D14 at ~18.30 local and hove to as the rising wind/seastate were deemed unsuitable for RMT25 and CTD.

29/03/2009 22:00 D14, D15 & P2 Lat -55.25906 Lon -41.35809 3.38 °C

At ~6am the ship was brought back on station (D14) having drifted about 5 nm. The ship was drifting about 1knot and with the heavy swell and wind direction it was not possible to deploy the CTD. We decided to abandon the station and head to D15 where we will reassess the weather. It was fine so carried out CTD then moved on to P2 looking for targets along the way. None found. Arrived at P2 started with bongos & mongos, CTD (Pond), CTD Oithona, RMT25. This worked well and there were no salps in the net for a change!

30/03/2009 22:00 P2 Lat -55.28603 Lon -41.56541 4.07 °C

After RMT25 fishing ended we went into acoustic survey. Peter prepared moorings with aim of deployment tomorrow. No targets were seen during the survey so the target fishing time was spent as surface tows with the RMT8. A number of sub-Antarctic species were caught but no E.

superb. This agrees with the physical oceanography especially the warm water we are in, most likely a meander of the Polar Front. Last activity was the MOCNESS.

31/03/2009 22:00 P2 & D17 Lat -55.25843 Lon -41.35769 1.81 °C

Assessing weather throughout the day to see when schedule can be stopped to carry out mooring deployment. LHPR, CTD (deep), bongos, MOCNESS (day), LHPR(day), GoFlos all carried out as weather not suitable for deploying mooring. Plan is to put out mooring tomorrow starting at 6 a.m. Tonight will steam to D17 and carry out CTD. Nathan has organized a mid cruise quiz to keep us all happy!

01/04/2009 22:00 P2, D18 & D19 Lat -54.48241 Lon -40.945 1.69 °C

Work started on the mooring deployment at around 6 am and was completed by 12.30. All went smoothly even with the new method of deployment (buoy end first instead of weight end first). Moved on to D18 and D19. Target fishing along the way although no targets were seen.

02/04/2009 22:00 D19, D20, D21 & P3 Lat -52.80847 Lon -40.11512 1.49 °C

At D20 there was a heavy swell, which caused the shallow bottles of the CTD cast to misfire. A second shallow CTD cast was carried out with most bottles firing OK but a few missing. Moved off after this and decided to put the RMT8 into the water for half an hour even though no targets were seen. We placed an extra shallow CTD station in the middle of the transect between D20 and P3. This was called D21 and chl/nutrients sampled from it. The weather had not improved by lunchtime (gusty winds with heavy sleet) and decided to postpone mooring work until tomorrow. Started off station work with 1 bongo followed by MOCNESS, CTD (Pond), CTD (Oithona) and finished the day target fishing for krill. Lots of krill were caught when the ship moved to slightly cooler waters to the south of the station (currently temp is ~5.2 °C)

03/04/2009 22:00 P3 Lat -52.80853 Lon -40.1146 0.96 °C

Heavy swell through the night had eased by morning and winds were light. Day started with LHPR, deep CTD bongos and mongo then deployed mooring. All went well again and this work was finished by ~13:00. After the mooring work we did bongos again then LHPR (day), GoFlos, MOCNESS (night) and the RMT25.

04/04/2009 22:00 P3 Lat -52.68116 Lon -40.29946 2.14 °C

Finished the RMT25 and went into acoustic survey. The winds picked up during the morning and it is due to stay fresh for the next few days. At end of acoustic survey (6 pm) headed to R3, spotted a strong target on the way but nothing was caught. Due to weather ship can only steam at <7 knots, will cause a delay in arrival at station. There was no more target fishing as the weather had deteriorated with strong winds and swell.

05/04/2009 22:00 TRAVEL Lat -52.8433 -37.16214 0.65 °C

The storm intensified overnight to Gale force 8. The ship moved slowly towards R3 then hove to for the rest of the day. By the afternoon the storm had eased slightly to a gale force 7 but it was still too rough to carry out any science.

06/04/2009 22:00 R3 Lat -52.86569 Lon -36.83676 1.73 °C

The ship was still hove to in the early morning and had drifted about 20 miles away from R3. At around 4 am the ship turned and headed back towards R3. Waiting for daylight to assess swell and see if we can carry out some activities. If so, we no longer have the time at this station to carry out all station activities. At 6 am the ship was stopped and this new position became the R3 station. We started work there with a set of bongos and a mongo, CTD (deep), GoFlos, MOCNESS, LHPR. Tried to target fish in the evening. The RMT8 was deployed but the swell was too strong and the net brought back on deck. RMT25 fishing was cancelled also.

07/04/2009 22:00 R3 Lat -52.66819 Lon -36.96985 1.56 °C

The ship hove to for most of the night. In the early morning we slowly started heading back to R3. Quite a few icebergs around in this location. Acoustic survey began at 6 am and was originally due to end at midday. However the captain wanted to delay heading to the Polar Front as the weather was not looking good up there. So carried on with acoustic survey until 5 pm then headed to PF station. Had planned to target fish for krill over the NW Georgia Rise but the swell was too great and there were no targets. XBT's will be deployed every 2 hours from leaving R3 up to the PF station.

08/04/2009 22:00 TRAVEL Lat -49.86096 Lon -34.32356 3 °C

Proceeding to the PF station with XBT's every 2 hours. Arrived at ~13:00 and started deploying XBT's every half hour. A heavy swell meant that the ship's course was slightly altered (there were a few 30 degree roles through the day). The XBT section was complete and the ship turned course to move to the northern PF station (there will be 3 stations, one in the PF and one either side of the PF). Attempted to hold the ship on DP at the station but with the confused swell and wind it was not possible to hold position. In the end the ship hove to until the morning when conditions could be reassessed.

09/04/2009 22:00 PF Lat -50.05919 Lon -34.01376 1.89 °C

At 5 am conditions were moderating but still too severe to deploy CTD's etc. An acoustic survey was carried out which ran through the northern station (PFN). The transect direction had to be changed from the original plans due to the heavy swell still present. Also there are now only 2 stations not 3 and these have been named the PFN and PFS. A set of 6 CTD's will be carried out from north of PFN to south of PFS; they are to be called PF1 though to PF6. These CTD's run along the XBT transect. At ~3.30 pm the CTD was deployed to 500 m at PF1. Ship moved south to PF2 and CTD deployed to 1500 m. The current was strong at this site ~1.8 knots. RMT25 fishing was carried out throughout the night.

10/04/2009 22:00 PF Lat -50.60149 Lon -33.85679 3.19 °C

The weather today was good with calm seas and light winds. After the RMT25 fishing finished, the ship was quite a distance from the PFN station and it took ~2.5 hours to head back to station. At PFN a set of bongos & mongo were carried out. We then headed to PF3 for a shallow (500 m) CTD and to PF4 for a deep (1500 m) CTD. At PF4 the acoustic survey was cancelled and the time used to examine a problem with the RMT25 wire. The wire was hung over the back of the ship with a weight attached to remove torque and possible bird caging. This appeared to solve the problem. To fill in time before night-time target fishing an LHPR was deployed. Overnight the RMT25 was fished starting with shallow nets, deep nets, then target fishing.

11/04/2009 22:00 PF Lat -51.12071 Lon -36.04359 2.15 °C

The weather turned with the wind and swell picking up. A CTD was deployed and then bongo/mongo (by the time the last net was on deck conditions were marginal). Turned to start an acoustic survey around PFS. However the weather deteriorated to blizzard like conditions and the survey was abandoned. The weather continued to deteriorate with a heavy swell and gale force 10 gusting to 12. The ship proceeded towards South Georgia although had to take a westerly course.

12/04/2009 22:00 TRAVEL Lat -53.04477 Lon -37.35983 1.86 °C

Heavy rolling all night. At ~7 am the ship managed to turn and head south-eastwards to Bird Island. Throughout the day the wind eased but the heavy swell persisted for most of the morning but began to ease in the early afternoon. By 4 pm conditions had moderated enough to allow target fishing. However no targets were seen. In the evening the towfish was recovered on deck as there were worries it may become entangled in the kelp on the approach to Bird Island. The first mate Robert gave us a briefing about going ashore at Bird Island.

13/04/2009 22:00 BI Lat -54.01897 Lon -38.05439 2.97 °C

Arrived at Bird Island (BI) in the early hours of the morning. Conditions looked calm and good for a relief. The first group of scientists got ashore at ~7.30. This group consisted mainly of people who had not been on the island before. After lunch a second group of people got ashore. The base staff took ships people on various walks to see the local wildlife. This was greatly appreciated and everyone thoroughly enjoyed the chance to stretch their legs and work their cameras. At 5 pm all were back onboard with the exception of Jose who left the ship to overwinter at BI. Anton and the doc also stayed ashore.

14/04/2009 22:00 BI, WCB & STROMNESS Lat -54.1474 Lon -36.61914 1.07 °C

Anton, the doc and 5 BI people were picked up this morning and, once all were onboard, then the ship headed towards the WCB mooring. Once there, the conditions were not suitable for recovering the mooring. The towfish was re-deployed and then we headed inshore and towards Rosita Harbor for target fishing. This was very successful and by 3 pm the towfish was brought back onboard and we were able to head towards Rosita for the calibration. However, when we arrived at Rosita, another ship, the Faros, was already anchored there sheltering from the weather which had picked up, squalls and wind. We decided to head to Stromness for the acoustic calibration. Arrived at 8 pm and proceeded with CTD. A problem with the wire meant the CTD could not be deployed. Instead we used the CTD from the RMT8 net monitor. This failed on the first deployment but after swapping some of the sensors around it worked OK. The acoustic calibration could then proceed and was finished at ~4 am.

15/04/2009 22:00 STROMNESS & WCB Lat -53.76025 Lon -38.31859 2.74 °C

The morning started with glorious sunshine and the stunning scenery of Stromness and South Georgia surrounded us. It was the perfect setting for the cruise photo which all scientists turned up for though some were much more willing than others. The ship prepared to leave at 9 am and then we turned the corner and were treated to the beautiful site of Leith Harbour as the captain and the 3rd mate took the ship in for a closer view. After our site seeing trip we had to get back

to reality and proceeded to the WCB to recover/redeploy the shallow mooring, then the CPR and towfish were deployed and we headed back to Stanley.

16/04/2009 22:00 TRAVEL Lat -53.02606 Lon -44.94706 3.0°C On passage back to Stanley.

17/04/2009 22:00 TRAVEL Lat -52.23377 Lon -52.35999 6.16°C

On passage to Stanley. In the evening we had the end of cruise dinner that consisted of a fantastic sit down meal, speeches and then horse racing in the bar. A great end to the cruise.

18/04/2009 13:22 TRAVEL Lat -51.73541 Lat -56.95660 4.12°C

On passage to Stanley, arrival expected at ~2pm ship time. Demobilisation will begin.

1.4 Acknowledgments

Rebecca Korb PSO

Having spent many seasons on board the JCR, this was my first time as PSO. I found the experience both pleasant and relatively easy. However, all credit for this goes to the experts and professionals that I had the opportunity to work with, both on the cruise and back at BAS HQ. It is only now as PSO that I can appreciate the enormous network of people involved in putting together such a multidisciplinary cruise as JR200. I know there will be people I fail to name directly here but many, many thanks got out to all BAS operations and logistics staff for putting such a large science team in the field.

Despite an extremely tight schedule, almost all our science activities were achieved with only a few problems due to weather. Sincere thanks go to Captain Graham Chapman, his officers and crew, who guided our work through rough seas and were happy to accommodate our ever changing station schedules. Many thanks to our science support staff for their hard work, especially Julian Klepacki for working non stop during a mid cruise crisis, to fix a tired and emotional CTD. I am extremely grateful to the scientists (Peter Enderlein, Sophie Fielding, Min Gordon, David Pond) who arrived 3 days early on the ship to begin mobilization. Finally, I sincerely appreciate the hard work and professionalism of all scientists on board the ship who made my job as PSO a relatively easy one.

1.5 JR200 Scientists and Support Personnel

Angus Atkinson	Krill Ecology	BAS
6	At Sea Observations	
Andy Black		BAS
Yves Cherel	Nekton	Centre d'Etudes Biologiques de Chizé
Nathan Cunningham	Data Management	BAS
Johnnie Edmonston	ICT Support	BAS
Peter Enderlein	Moorings & Sampling Gear	BAS
Sophie Fielding	Acoustics / Krill Ecology	BAS
Min Gordon	Phytoplankton	BAS
Ruth Hicks	Krill Diseases	AFI-CGS, CEFAS
Daria Hinz	Iron Chemistry	AFI-CSS, NOC
Julian Klepacki	AME Support	BAS
Rebecca Korb	PSO, Phytoplankton	BAS
Dave Pond	Biochemistry	BAS
Anton van de Putte	Nekton	Katholieke Universiteit Leuven
Sebastian Steigenberger	Iron Chemistry	AFI-CSS, NOC
James Screen	Oceanography	UEA
Gabi Stowasser	Nekton	BAS
Geraint Tarling	Mesozooplantkon	BAS
Hugh Venables	Oceanography	BAS
Pete Ward	Mesozooplantkon	BAS
Mick Whitehouse	Macronutrients	BAS
Jose Xavier	Nekton	University of Algarve

Fig 1.5.1 Cruise Photo

1.6 JCR Officers and Crew

CHAPMAN Graham P	Master
PATERSON Robert C	Chief Officer
EVANS Simon D	2nd Officer
SPOONER Alexander J	3 rd Officer
SUMMERS John W	Deck Officer
WADDICOR Charles A	ETO (Comms)
CUTTING David J	Chief Engineer
COLLARD, Glynn	2nd Engineer
DITCHFIELD James C	3rd Engineer
EADIE Steven J	4th Engineer
WRIGHT Simon A	Deck Engineer
DUNBAR Nicholas J	ETO (Eng)
GIBSON James S	Purser
STEWART George M	Bosun
JENKINS Derek G	SG1
CAMPBELL Andrew C	SG1
MULLANEY Clifford	SG1
LEGGETT Colin J	SG1
O'DUFFY John P	SG1
MCILHATTON James F	SG1
ROBINSHAW Mark A	MG1
MOORE Carl J	MG1
WALKER Keith A	Cook
BALLARD Glen R 2nd	Cook
WESTON Kenneth	Steward
NEWALL James	Steward
LEE Derek W	Steward
MOTTE Colin	Steward

2. PHYSICAL OCEANOGRAPHY

Hugh Venables and James Screen

2.1 INTRODUCTION

Collection of physical oceanographic data throughout JR200 included the continuous logging of navigational, bathymetric, ocean current, surface ocean and meteorological parameters, in addition to water column profiling at specific locations using a Conductivity-Temperature-Depth (CTD) unit fitted with numerous sensors and Expendable Bathythermographs (XBTs).

2.1.1 Aim

The purpose of the physical oceanographic program was twofold: firstly, to complete a high resolution CTD section between South Orkneys and South Georgia as part of the DIMES project; and secondly, to support the work of the biologists and chemists aboard the JCR, and aid in the selection of suitable sampling locations.

2.1.2 Data acquisition

As previously stated, numerous instruments were employed in the collection of physical data. For ease of reading, each method of data collection will be discussed in a separate section, as follows:

- 2.2 Navigation
- 2.3 Underway (oceanlogger and meteorological data)
- 2.4 Vessel-mounted Acoustic Doppler Current Profiler (VM-ADCP)
- 2.5 CTD profiles
- 2.6 XBT profiles

Each of these sections will include a description of the instrumentation and any necessary configuration information; a description of the data collection; details of any processing carried out thus far; details of problems encountered (and solutions, if found!); some preliminary results, where available; and any recommendations for future work.

2.2 UNDERWAY NAVIGATIONAL DATA

James Screen & Hugh Venables

2.2.1 Instrumentation and data collection

Navigational data were collected continuously throughout the cruise. Instrumentation was as follows:

Ashtec ADU2 GPS: antenna 1 used to determine the ship's position; antennae 2-4 used to determine pitch, roll and yaw.

```
Ashtec GLONASS GG24 (accurate to \approx 15m)
```

Sperry Mk 37 Model D Gyrocompass

Seatex GPS (Seapath 200)

GPS NMEA

Hull-mounted Simrad EA600 Hydrographic 12kHz Echosounder (transducers located approximately 5m below the water level). It must be noted that the datastream is still called 'sim500', so all programs are named according to this, despite the instrument being an EA600!

Navigational data were collected every second, whilst the bathymetric data were logged every 10 seconds.

2.2.2 Processing

Navigational data were processed in Unix and Matlab using modified versions of programs developed by Mike Meredith. Data were initially read into the Unix system, then transferred to Matlab, where the bulk of the processing was carried out.

Unix

get_nav	Calls the scripts get_gyro, get_bestnav, get_gpsash, get_gpsglos, get_gpsnmea, get_seatex and get_tsshrp, which invoke the listit command to retrieve 24 hours of gyrocompass, bestnav, Ashtec (ADU2), Ashtec Glonass (GG24), GPS NMEA, Seatex and tsshrp (heave, pitch and roll) data. Data are saved in subdirectories 'gyro', 'bestnav', 'gpsash', 'gpsglos', 'gpsnmea', 'seatex', and 'tsshrp' as gyro.NNN, bestnav.NNN, gpsash.NNN, gspglos.NNN, gpsnmea.NNN, seatex.NNN and tsshrp.NNN, where NNN is the jday.
get_sim500	Invokes the <i>listit</i> command to retrieve 24 hours of EA600 data. Data are saved as <i>sim500.NNN</i> .

Matlab

- *load_daily.m* Reads in navigation files output by the Unix processing (above) by calling the following functions:
 - *load_daily_bestnav*: reads in text file *bestnav.NNN* and writes data to a Matlab structure array. Data are flagged, such that any variable with flag≠ 50 are poor, and thus discarded. Output is *bestnav/bestnavNNN.mat*.
 - *load_daily_gpsash*: reads in text file *gpsash.NNN* and writes data to Matlab structure array. Data are flagged, such that any variable with flag ≠ 50 are poor, and thus discarded. Output is *gpsash/gpsashNNN.mat*.
 - load_daily_gpsglos: reads in text file gpsglos.NNN and writes data to Matlab structure array. Data are flagged, such that any variable with flag≠ 50 are poor, and thus discarded. Output is gpsglos/gpsglosNNN.mat.

- *load_daily_gpsnmea*: reads in text file *gpsnmea.NNN* and writes data to Matlab structure array. Data are flagged, such that any variable with flag≠ 50 are poor, and thus discarded. Output is *gpsnmea/gpsnmeaNNN.mat*.
- $load_daily_gyro$: reads in text file gyro.NNN and writes data to Matlab structure array. Data are flagged, such that any variable with flag \neq 50 are poor, and thus discarded. Output is gyro/gyroNNN.mat.
- *load_daily_seatex*: reads in text file *seatex.NNN* and writes data to Matlab structure array. Data are flagged, such that any variable with flag ≠ 50 are poor, and thus discarded. Output is *seatex/seatexNNN.mat*.
- *load_daily_tsshrp*: reads in text file *tsshrp.NNN* and writes data to Matlab structure array. Data are flagged, such that any variable with flag \neq 50 are poor, and thus discarded. Output is *tsshrp/tsshrpNNn.mat*.

For a quick visual check, the program then plots bestnav, gpsash, gpsglos, gpsnmea and seatex data over one another (after plotting each dataset the user must hit return to continue), gyrocompass heading, and pitch and roll.

- *plot_seatex_all* Plots entire cruise track. Loads *seatexNNN.mat* for all jdays and GEBCO bathymetry data.
- *loadsim500* Reads in *sim500.NNN* and stores data in Matlab structure array. Saves *sim500_NNN.mat*
- *cleansim500* Loads *sim500_NNN.mat* and sets values ≤0 to NaNs, then uses 1D linear interpolation to fill data gaps. Data are then despiked by calling *dspike* and data gaps are filled by linear interpolation. Data are then cleaned using an interactive editor and gaps filled by linear interpolation. Output is *sim500_NNNclean.mat*. A slight change to the interactive editor was made to speed this process as some days (generally if water is deep and weather is rough) have a large scatter in the depths and a need for significant amounts of the data to be removed. The change was to allow the user to respond with '2' when asked if finished editing, this returned the same axes as the previous edit, skipping setting them in figure 3.

2.2.3 Problems encountered

On two occassions, TSHRP had to be restarted due to the data storage disk filling up. This resulted in short periods when TSHRP data are missing. The cruise track produced from the Ashtec GPS sometimes had a few spurious points, which have not been removed; the Seatex GPS was used for navigational data for all oceanographic purposes.

Fig 2.2.1: JR200 cruise track for jdays 70 to 105 from Seatex GPS. Coastline and bathymetry data are from the GEBCO dataset.

2.3 UNDERWAY OCEANLOGGER AND METEOROGICAL DATA

James Screen & Hugh Venables

2.3.1 Instrumentation and data collection

Surface ocean and meteorological data were logged continuously throughout the cruise. Ocean data were collected from the ship's uncontaminated seawater supply, whilst instruments on the forward mast measured the meteorological data. Instruments were as follows:

Oceanlogger

- SeaBird Electronics SBE45 CTD
- Turner Designs 10-AU Fluorometer

Meteorological data

- Photosynthetically Active Radiation (PAR) 1, Parlite Quanum Sensor, Kipp & Zonen
- Photosynthetically Active Radiation (PAR) 2, Parlite Quanum Sensor, Kipp & Zonen
- Solar Radiation 1, Proto1 SPLite, Kipp & Zonen
- Solar Radiation 2, Proto1 SPLite, Kipp & Zonen

- Air temperature/humidity 1, Chilled Mirror Hygrometer MBW, PM-20251/1, Temperature Sensor Pt100, PM-20252/1
- Anemometer (this logs wind speed relative to the ship. At this time there is no datastream for true wind, but this can be calculated from relative wind and navigational data, if required).

Both surface ocean and meteorological data were collected at 5 second intervals.

2.3.2 Processing

Initial processing was carried out in Unix, which generated files that could be further processed in Matlab.

Unix get underway Calls the scripts get_oceanlog, get_anemom and get_truewind, which invoke the *listit* command to retrieve 24 hours of underway data. Output files are *oceanlog.NNN*, *anemom.NNN* and *truewind.NNN*, where NNN is the jday. Matlab loadunderway Calls functions *loadoceanlog* and *loadanemom* to read *oceanlog*.NNN and anemom.NNN. Data are stored in structure arrays and saved as oceanlogNNN.mat and anemomNNN.mat. The program then calls the function *cleanoceanlog*, which sets unrealistic values to NaNs, uses *dspike* to remove large spikes in conductivity, housing (CTD) temperature and remote (hull) temperature. Linear interpolation is used to fill data gaps. Data from periods of flow >1.5 l/min or <0.4 l/min are also set to NaNs, as are data from 5 minutes after a drop in flow to allow variables to return to normal. Surface ocean data are further cleaned using an interactive editor, which allows manual removal of spikes and flier points. Salinity is then calculated using *ds* salt and the interactive editor is used to remove spikes and flier points. The output is *oceanlogNNNclean.mat*. plot_oceanlog_daily Loads oceanlogNNNclean.mat and seatexNNN.mat, calculates 1 minute averages and plots maps of sea surface temperature, salinity and fluorescence. Bathymetry data from GEBCO are included in the plots. Output files are *oceanlog_navNNN.mat* and oceanlog_navNNN_1minave.mat. Loads *oceanlog_navNNN_1minave.mat* for all jdays and plots sea surface *plot_oceanlog_all* temperature, salinity and fluorescence for the entire cruise track. Bathymetry data from GEBCO are included in the plots. underwayAll Loads oceanlogNNNclean.mat, anemomNNN.mat and oceanlog navNNN.mat, and appends all data to a master file underwayAll_jr200.mat.

2.3.3 Problems encountered

(1) Underway temperatures have previously been observed to be ≈ 0.3 °C too low. This was noted during JR165 (Feb-Apr 2007) and an attempt was made to fix the problem during that summer's refit period. However, the same problem was encountered on JR171 and JR193 (Nov-Dec 2007). During JR177 a concerted effort was made to monitor the problem, and comparisons have been made between CTD data from 6m and synchronous underway data. The code was used again on JR200. *check_oceanlog_ctd* loads *jr200ctdNNN.2db.mat*, *jr200ctdNNN.2db.up.mat* and *oceanlog_navNNN.mat*, and extracts underway temperature, salinity and fluorescence data from times corresponding with those at which the CTD is at 6m depth. Plots of CTD salinity minus underway salinity, CTD temperature minus underway temperature and time change against temperature change are output to the screen, and 6m values are saved in *ctdOceanlog.mat*.

The difference, CTD temperature minus underway temperature, has a scatter of points between - 0.181 and 0.121°C. There is a mean offset of 0.0028°C. The standard deviation is 0.04°C. This appears to be an improvement on previous seasons but an informal check of the data at the beginning of JR218 appeared to show the oceanlogger was 0.4°C too warm.

2.3.4 Salinity samples

Throughout the cruise, water samples were collected for salinity analysis in order to calibrate the underway conductivity sensor. The water samples were collected in 200ml medicine bottles. Standard procedure was to rinse the bottle three times, before filling it to just below the neck to allow room for expansion during warming and to facilitate mixing of the bottle's contents prior to analysis. The rim of each bottle was wiped dry with a tissue, then a plastic seal inserted and the screw cap replaced. Ongoing crates of salt samples were kept in salinometer lab and allowed to equilibrate with ambient conditions for at least 24 hours prior to analysis.

The samples were analysed on one of the shipboard Guildline 8400B Autosal salinometers (s/n 68959), which had been standardised at the beginning of the cruise using Ocean Scientific International Ltd (OSIL) P146-series standard seawater. Prior to, and following, analysis of each water sample crate, a new bottle of standard seawater was analysed to ensure that the salinometer remained stable and in order to derive a calibration offset. In between batches of salinity analysis, the salinometer was flushed, and filled with, milliq. It was noted on JR193 that this led to dilution of (and thus low readings for) the standard prior to the first salinity crate, requiring another standard to be run before analysis of the collected water samples. This issue was resolved by means of flushing the salinometer several times with standard seawater left over from previous analyses before analysing the first standard associated with each crate.

Standard procedure was to invert each sample bottle a few times in order to mix the contents but avoid the introduction of a large number of air bubbles into the sample. The salinometer cell was then flushed three times with the sample, prior to taking the first reading. The cell was then flushed once between subsequent readings, with at least three readings being taken for each sample.

During the cruise the salinometer drifted slightly, with standards reading 1.99981 by the end (up from 1.99964). The offsets between measured salinities (after accounting for the offset in the

standards) and the CTD salinities remained constant. It was therefore considered to be a drift that had been successfully accounted for rather than an issue with the standards.

Once analysed, the conductivity ratios were entered by hand into an Excel spreadsheet, *jr200_master.xls*, converted to salinities and transferred to the Unix system. They were then used to investigate a conductivity offset for the underway sensor along with 6m CTD values found as above for temperature.

2.3.5 Conductivity calibration

Times at which underway salts were collected were entered by hand into the Excel file *Salts underway.xls*. The Matlab script *underwaySaltsCal* reads in *Salts underway.xls*, loads *underwayAll_jr200.mat* and extracts data corresponding to the times at which underway samples were taken. The program assumes that the sample was taken at 30 seconds past the minute recorded in the underway salts log, then extracts the median value for that minute (i.e. the median value for salinity 30 seconds either side of the recorded time). These data are compared with salinity values from water sample analysis (stored in *jr200_master.xls*) and a plot of underway salinity minus sample salinity is plotted to the screen. The offset found relative to CTD 6m salinities shows a drift through the cruise from the oceanlogger being 0.025 too fresh to 0.07 too fresh. This will be investigated fully with the sample and an offset applied to the data.

2.3.6 Oxygen isotope samples

Water samples were collected for oxygen isotope analysis in areas close to/downstream of glacial landmasses. Samples were taken from CTD Niskin bottles and from the underway supply. Standard procedure was to rinse each bottle three times then fill it to the neck, before drying the bottle and sealing it with a rubber insert. A metal cap was then added to the bottle using crimpers. Samples were packed in boxes for transfer back to the UK and will be sent to the NERC Isotope Geosciences Laboratory (NIGL, Keyworth, U.K.) for analysis. Times were written onto a logsheet which was then typed into excel.
JR200: 2009, jday 70:105

Fig 2.3.1: 1 minute averages of SST, salinity and log fluorescence from the oceanlogger for JR200

2.4 VESSEL-MOUNTED ACOUSTIC DOPPLER CURRENT PROFILER

Hugh Venables

2.4.1 Introduction

A 75 kHz RD Instruments Ocean Surveyor (OS75) ADCP was used during this cruise. This has also been used on JR139 (Stansfield 2006), JR161 (Hawker 2006), JR165 (Shoosmith/Renner 2007), JR193 (McCarthy and Venables 2007), JR177 (Venables 2008) and JR218 (Fielding and Venables 2008). The OS75 is capable of profiling to deeper levels in the water column than the previous 150kHz ADCP and can also be configured to run in either narrowband or broadband modes.

2.4.2 Instrumentation

The OS75 unit is sited in the transducer well in the hull of the *JCR*. This is flooded with a mixture of 90% de-ionised water and 10% monopropylene glycol. With the previous 150 kHz unit, the use of a mixture of water/antifreeze in the transducer chest required a post-processing correction to derived ADCP velocities. However, the new OS75 unit uses a phased array transducer that produces all four beams from a single aperture at specific angles. A consequence of the way the beams are formed is that horizontal velocities derived using this instrument are

independent of the speed of sound (vertical velocities, on the other hand, are not), hence this correction is no longer required.

The OS75 transducer on the *JCR* is aligned at approximately 60 degrees relative to the centre line. This differs from the recommended 45 degrees. Shortly after sailing for JR139, the hull depth was measured by Robert Patterson (Chief Officer), and found to be 6.47m. Combined with a value for the distance of the transducer behind the seachest window of 100-200mm and a window thickness of 50mm, this implies a transducer depth of 6.3m. This is the value assumed for JR200, but note that the ship was very heavily laden during cruise JR139, and for other cruises it may be shallower.

During the trials cruise, it was noted that the OS75 causes interference with most of the other acoustic instruments on *JCR*, including the EM120 swath bathymetry system. To circumvent this, the ADCP pinging was synchronised with the other acoustic instruments using the SSU. This issue was investigated in detail on JR218 (which see for full details). On JR200 the Swath was not used (except briefly when deploying moorings) and the ADCP was synchronised with the EK60. The EK60 was master on a 2 second ping rate and the ADCP followed pinging every 4 seconds. When not sychronised (when swath was used briefly when deploying moorings) it would ping every approximately 3.1 seconds. In shallow water the ADCP was set in bottom track mode with varying depths (and therefore ping rates).

The heading feed to the OS75 is the heading from the Seapath GPS unit. This differs from the previous ADCP setup on *JCR*, which took a heading feed from the ship's gyrocompass and required correction to GPS heading (from Ashtech) in post-processing.

2.4.3 Configuration

The OS75 was controlled using Version 1.42 of the RDI VmDas software. The logging PC also had Version 1.13 of the RDI WinADCP software installed. This can be run as a realtime monitor of data but the output bears little resemblance to the processed data so this was not used. The OS75 ran in two modes during JR200: narrowband with bottom-tracking on and narrowband with bottom-tracking off. While bottom tracking the maximum water depth was either set to 250m, 500m or 800m (30, 65 or 100 bins, each 8 metres). Water-tracking was always one hundred 8 metre bins. The matlab code can now (post-JR218) concatenate files with differing numbers of bins. Narrowband profiling was enabled with an 8 metre blanking distance (Note that this blanking distance is larger than the 2m initially used by the RDI technician during the trials cruise. This change was adopted following advice from Dr. Mark Inall and Dr. Deb Shoosmith, who voiced concerns over the quality of data in the top bin. Despite this, there were still periods, especially in bad weather, where the data in the top bin looked bad. The 'set modes' configuration files, as described in JR218 report, were used during the cruise.

Reducing the maximum water depth to less than twice the actual water depth (as measured by the EA600) has two significant advantages (see JR218 report for full details). Firstly it speeds up the ping rate as the instrument spends less time waiting for echoes. This means that at 250m it stays in sync with the EK60 at a two-second ping rate (one water track ping and one bottom track ping

every four seconds, one with each of two EK60 pings). At 500m it manages the two pings in 6 seconds and at 800m it manages them in 8 seconds, which is slow for the water track data and so should be used sparingly in areas where water column data is wanted for science. The second advantage is that the instrument stops listening before it can hear double-bottom echoes (sounds that goes transducer-bottom-surface-bottom-transducer). This leads to cleaner plots of the water column velocities.

Salinity at the transducer was set to zero, and Beam 3 misalignment was set to 60.08 degrees (see above discussion). The full configuration files for each of the modes used are given at the end of this section.

2.4.4 Outputs

The ADCP writes files to a network drive that is samba-mounted from the Unix system. The raw data (.ENR and .N1R) are also written to the local PC hard drive. For use in the matlab scripts the raw data saved to the PC would have to be run through the VMDas software again to create the .ENX files. When the Unix system is accessed (via samba) from a separate networked PC, this enables post-processing of the data without the need to move files.

Output files are of the form JR200_XXX_YYYYYY.ZZZ, where XXX increments each time the logging is stopped and restarted, and YYYYYY increments each time the present filesize exceeds 10 Mbyte.

ZZZ are the filename extensions, and are of the form:-

.N1R (NMEA telegram + ADCP timestamp; ASCII)

.ENR (Beam co-ordinate single-ping data; binary). These two are the raw data, saved to both disks

.VMO (VmDas configuration; ASCII)

.NMS (Navigation and attitude; binary)

.ENS (Beam co-ordinate single-ping data + NMEA data; binary)

.LOG (Log of ADCP communication and VmDas error; ASCII)

.ENX (Earth co-ordinate single-ping data; binary). This is read by matlab processing

.STA (Earth co-ordinate short-term averaged data; binary)

.LTA (Earth co-ordinate long-term averaged data; binary).

The .N1R and .LTA files are streamed back to Cambridge for use in google earth real time plotting.

2.4.5 Post-processing of data

OS75 data were processed on JR200 using Matlab code originated by IFM Kiel. This was adapted by Dr. Mark Inall, Dr. Deb Shoosmith, Angelika Renner, Mark Brandon and Hugh Venables for use with the *JCR* system. The master file for the processing is "OS75_JCR _jr200.m", which calls a lengthy sequence of routines to execute the following steps. Angelika Renner made changes to the main program following JR165, to calibrate narrowband and broadband data separately. These changes are adopted, though no broadband data has been collected.

1) Read RDI binary file with extension .ENX and ASCII file with extension .N1R into Matlab environment.

2) Remove missing data and data with bad navigation

3) Merge Seapath attitude data with single-ping ADCP data.

The program read_nmea_att_jcr.m was modified to cope with a .N1R file where the first line was a PADCP line that was too short. The fix only works if it the first PADCP line that is broken.

4) Correct for transducer misalignment and velocity scaling error (calculated during first runthrough of code, applied during second)

5) Derive ship velocity from Seapath navigation data

6) Perform quality control on data, such that four-beam solution is only permitted. Other screening is performed based on maximum heading change between pings, maximum velocity change between pings, and the error velocity. Angelika Renner, after JR165, added checks on the correlation and also removed data with very strong amplitudes, as this is a sign of interference. The latter check involves a large amount of processing time, which caused problems when ADCP data was wanted rapidly. To solve this the check was removed when data were processed initially (amplitude and misalignment as defaults) but included for post-processing. The filter length was reduced, or the filter removed completely for short files (including when data collection was stopped just after a new 10mb increment of the .ENX file). This stopped the processing stopping with an error.

7) Average data into ensembles of pre-defined length (120 seconds for

JR200). The version of the function average_pings.m was modified slightly to cope with cases found during JR200 which initially caused the processing to crash. These were where there was less than 2 minutes data in the last .N1R file and where there was over two minutes of missing data near the end of a file but followed by good data in the period after the last full two-minute interval. Such cases made the code crash so it was adapted to cope with these eventualities.

8) Calculates transducer misalignment and velocity scaling error (computation done on first runthrough of code, to be applied during second). The data filtering implemented for JR165 was relaxed for this cruise. In particular, heading and speed data outside one standard deviation of the mean were not removed, as it was not seen why these should necessarily be bad. The checks for rapid turning or accelerating were left in and these would catch any spikes in the velocity or heading data. Minor changes were made to calib_calc_bt.m and calib_calc_wt.m so that the trend line was not calculated if there was insufficient data. This allows short files to run successfully, after the above changes to the use of a filter in qual_control.m.

9) Velocities from depths deeper than 86% of the bottom-tracking depth are set to missing.

10) Determine absolute velocities from either bottom-track ship velocity or Seapath GPS (usually the latter).

11) Plots the eastward and northward velocities. Details of this plotting were tidied during JR193 and JR200. In particular, code was added to deal with plotting files that spanned the new year. There is still an issue that for short files too many times are plotted on the x axis, causing them to overlap.

2.4.6 Output Files

Final data are stored in Matlab format. Filenames are of the form:-

1) JR200_00A_0000B_raw.mat, where A is the highest number of the user-incremented files. This is the number that VmDas increments every time logging is stopped and restarted. The version number is B, which increments with the .ENX files, when they reach 10Mb. This contains structured arrays "c" (ensembled-averaged data), and "b" (absolute velocities). Initially the increment was accidentally left as 100Mb from the last cruise. This results in files that sometimes cause matlab to run out of memory. 10 Mb is therefore recommended. The code was changed to load this file if it existed rather than recreate it in post-processing. This is much faster and means that when the large file did process successfully the result could be used instead of trying again.

2) JR200_00A_00000Bd_att.mat, where A and B are as above. This contains the ship's attitude data.

3) JR200_00A_00000B_sgl_ping.mat, where A is as above, and B is the number VmDas increments every time filesize exceeds 10 Mbyte. This contains single-ping data in structured array "d".

4) JR200_00A_000000_ATT.mat. As (3), but for the whole section of data in the user-incremented series A $\,$

5) JR200_00A_00000B_bad_heading.mat. Record of the data points removed due to bad heading

6) JR200_00A_00000B_bad_nav.mat. Record of the data points removed due to bad navigation.

7) jr200_000_000000_A_ave_ping. Two minute averaged data, including ship velocity.

8) jr200_000_000000_A_abs. Two minute averaged data, water velocities.

9) adcp_vel_contours_A.ps Individual plots of data in jr200_000_000000_A_abs, "A" here is the first in any list of files given to OS75_JCR _jr200.m. This was introduced at A=43 so is only present before that if data has been reprocessed.

10) adcp_vel_contours.ps A file with each of the individual plots appended, each as an extra page when converted to pdf.

JR200 Data

The data were collected in a series of files for the section, due to the required changes in configuration file when the VM-ADCP needed to be changed from bottom-tracking to normal mode and also to allow processing of the data during the cruise.

The instrument stopped on one occasion but the reason is unknown. On another occasion all navigation data for a period of approximately four hours was rejected in the processing. These instances need to be investigated. During good weather good quality data were collected to approximately 800m. This depth reduced during bad weather, due to bubbles under the hull absorbing or scattering energy from the beams.

As noted on JR193 and JR177, the ADCP velocities can be contaminated by deployed instruments or the cable. This was linked to CTD deployments on JR193 and was seen again on JR200 for CTD and Bongo net deployments. The problem is that in medium to strong flows the instruments are pulled by the flow so that the cable velocity has a horizontal component, which is recorded by the ADCP. This component must only be in one beam so it should be possible to remove it, Indeed it is perhaps a flaw in the processing that it is not already. This will be further investigated in Cambridge. As calculated on JR193, the intersection should be below 40m (as found) as the beam angle of the ADCP is 30° and the transducer is 23m away from the CTD gantry.

2.4.7 Calibration

While the ship is steaming, the main signal that the ADCP instrument records is the ship speed -12 knots (6 m/s) is 1-2 orders of magnitude greater than the water velocity. This velocity is removed using GPS derived ship velocities but there is clearly the potential for a significant error associated with this process as the output data is the small difference between two large numbers. To address this the velocity of the bottom can be measured and compared directly to the GPS velocity of the ship. This should give the amplitude error for the ADCP and the misalignment with the ship heading. This only works in water where the bottom track ping can reach the sea bed -800m or shallower.

In deeper water the processing uses changes in the ship velocity to assess what proportion of the ship velocity is contaminating the calculated water velocity. This calculation necessarily invokes assumptions that the true water velocity is relatively constant in space (if slowing down) or time (if turning round) and is therefore considered less precise. Similarly to JR177, on JR200 a large number of water track data were collected, from slowing down and speeding up from CTD stations and from the procedure to deploy nets of steaming downwind, turning round and towing them along the same course upwind.

2.5 CTD DEPLOYMENT AND DATA ACQUISITION

Hugh Venables & James Screen

2.5.1 Introduction

A Conductivity-Temperature-Depth (CTD) unit was used to vertically profile the water column. Fifty casts were carried out in total, including one test station, eight biological stations and thirty physics CTDs. Additional CTDs were also carried out to test the CTD and prior to the acoustics calibration. At each of the biological stations, at least three CTDs were carried out: one full depth CTD and two water sample CTDs to 400m and 2000m (or the seabed, if shallower than 2000m). CTD positions are included in Table 2.5.1. CTD profiles were numbered consecutively without discrimination between the different types of station. Thus, the CTD file numbers do not correspond with numbered station positions, and reference should be made to Table 2.5.1 when accessing CTD data.

2.5.2 CTD instrumentation and deployment

An SBE32 carousel water sampler, holding 24 12-litre niskin bottles, an SBE9Plus CTD and an SBE11Plus deck unit were used. The SBE9Plus unit held dual SBE3Plus temperature and SBE4 conductivity sensors and a *Paroscientific* pressure sensor. An SBE35 Deep Ocean Standards Thermometer makes temperature measurements each time a bottle is fired, and time, bottle position and temperature are stored, allowing comparison of the SBE35 readings with the CTD and bottle data. Additional sensors included an altimeter, a fluorometer, an oxygen sensor, a photosynthetically active radiation (PAR) sensor and a transmissometer. The altimeter returns real time accurate measurements of height off the seabed within approximately 100m of the bottom. This allows more accurate determination of the position of the CTD with respect to the seabed than is possible with the Simrad EA600 system, which sometimes loses the bottom or reverts to default values (approximately multiples of 500m) and, in deep water, often returns depths that are several tens of metres different from the true bottom depth. A fin attached to the CTD frame reduced rotation of the package underwater. The CTD package was deployed from the mid-ships gantry on a cable connected to the CTD through a conducting swivel.

CTD data were collected at 24Hz and logged via the deck unit to a PC running Seasave Win32 version 5.30 (Sea-Bird Electronics, Inc.), which allows real-time viewing of the data. The procedure was to start data logging, deploy the CTD, then stop the instrument at 10m wireout, where the CTD package was left for at least two minutes to allow the seawater-activated pumps to switch on and the sensors to equilibrate with ambient conditions. The pumps consistently switched on 60 seconds after the instrument entered the water, as they should.

After the 10m soak, the CTD was typically raised to the surface and then lowered to within 10m of the seabed. Bottles were fired on the upcast, where the procedure was to stop the CTD winch, hold the package *in situ* for a few seconds to allow sensors to equilibrate, and then fire a bottle. The CTD was left at this depth for \approx 15 seconds to allow the SBE35 temperature sensor to take readings over 8 data cycles. The sensor averages these readings to produce one value for each bottle fire. If duplicate bottles were fired at any depth the SBE35 does not take readings unless

there is a 20 second gap between firings. The unit needs time to recharge between firings but can cope with two in succession. Bottles were generally fired in pairs as a compromise between speed and data collection. If the sea state was particularly rough, the CTD package was not raised fully to the surface prior to the downcast.

Bottle firing depths were largely determined by water sample and calibration requirements. Casts where phytoplankton and nutrients were sampled were set to a pattern of bottles fired at depths (metres) of 5, 10, 20, chl max, 30, 40, 50, 60, 80, 100, 120, 140, 160, 180, 200, 400, 600, 800, 1000, 1500, 2000, 2500*, 3000, bottom. *: or 4000m if bottom >4500m. If samples were taken for phytoplankton but not nutrients then only depths of 120m and shallower were required. O18 samples were taken at 5, 10, 30, 50 80, 120, 160, 200, 400, 600, 1000, 2000m and bottom. Any remaining bottles were fired for salinity calibration (small gradient of salinity) but generally salinity samples were taken from the above depths (generally 8 per cast). 300m bottles were added at some stations for stable isotope work in conjunction with the stratified fishing.

2.5.3 Instrumentation changes and problems encountered with CTD deployments

Details of instrumentation and configuration are included in Table 2.5.2. Some changes were made to the CTD instrumentation throughout the cruise, in most cases in response to failure of instruments and the casts on which particular instruments were used are stated in Table 2.5.2. Also worthy of note are the notes appended to Table 2.5.1, regarding issues associated with individual CTDs.

2.5.4 Data acquisition and preliminary processing

The CTD data were recorded using SeaSave Win32 version 5.28e, which created four files:

jr200_ctd[NNN].datbinary data filejr200_ctd[NNN].conascii configuration file containing calibration informationjr200_ctd[NNN].hdrascii header file containing sensor informationjr200_ctd[NNN].blascii file containing bottle fire information

where NNN is the CTD number (column 1 in Table 2.5.1). These were immediately copied to the Unix system and the further files were copied over as they were created. The *.dat* file was then converted from binary to ascii using the SBE Data Processing software version 5.37b *Data Conversion* module. The output was a file named *jr200_ctd[NNN].cnv*. The *Data Conversion* module calculates parameters using the coefficients detailed in Table 2.5.2 as follows:

Pressure:
$$P = C \left(1 - \frac{T_0^2}{T^2} \right) \left(1 - D \left(1 - \frac{T_0^2}{T^2} \right) \right)$$

where *P* is the pressure (dbar), *T* is the pressure period in μ sec, $D = D_1 + D_2 U$, $C = C_1 + C_2 U + C_3 U$ and $T_0 = T_1 + T_2 U + T_3 U_2 + T_4 U_3 + T_5 U_4$ are calculated from the coefficients detailed in Table 2.5.2, where *U* is the temperature in °C.

Conductivity: $cond = \frac{\left(g + hf^2 + if^3 + jf^4\right)}{10\left(1 + \delta t + \varepsilon p\right)}$

where *cond* is the conductivity in Sm⁻¹, *p* is pressure, *t* is temperature, $\delta = CTcor$ and $\varepsilon = CPcor$. All coefficients are included in Table 2.5.2.

Temperature: temp(ITS90) =
$$\frac{1}{\left\{g + h\left[\ln(f_0 / f)\right] + i\left[\ln^2(f_0 / f)\right] + j\left[\ln^3(f_0 / f)\right]\right\}} - 273.15$$

Where the temperature, *temp*, is measured in $^{\circ}C$, *g*, *h*, *i* and *j* are coefficients detailed in Table 2.5.2 and *f* is the frequency output by the sensor.

Oxygen:
$$oxy = (Soc(V + Voffset))e^{Tcor.T}Oxsat(T, S)e^{Pcor.P}$$

where *oxy* is dissolved oxygen in ml/l, *V* is the voltage output from the SBE43 sensor, *Oxsat* is oxygen saturation (ml/l), a function of temperature, *T*, salinity, *S*, and pressure, *P*, and the remaining coefficients are detailed in Table 2.5.2.

PAR:
$$PAR = \left(\frac{multiplier.10^{9}.10^{(V-B)/M}}{C}\right) + offset$$

where V, B, M, offset, multiplier and C, the calibration constant, can be found in Table 2.5.2.

Fluorescence:
$$flsc = \frac{slope(10e^{(V/slope factor)} - 10e^{VB})}{10e^{V1} - 10e^{Vacetone}} + offset$$

Where *flsc* is measured in $\mu g/l$, *V* is the fluorometer output voltage and the remaining coefficients can be found in Table 2.5.2.

Transmission: Light transmission = M.output voltage + B

where light transmission is measured in % and *M* and *B* are derived from measured voltages through air and water in light and darkness, and are included in Table 2.5.2.

The SBE Data Processing *Align* was used to account for the time lag of the oxygen sensor, with data being advanceded by 5 seconds. *Wildedit* was then used to remove outlying values (pass 1: 2sd, 500 scans; pass 2: 10sd, 500 scans). *Cell thermal mass* module was then used to remove the conductivity cell thermal mass effects from the measured conductivity. This reads in the *jr200_ctd[NNN].cnv* file and re-derives the pressure and conductivity, taking into account the temperature of the pressure sensor and the action of pressure on the conductivity cell. The output is another ascii file, named as *jr200_ctd[NNN]_cnv*. The correction applied to the CTD data is detailed below:

Corrected conductivity = *conductivity* + *ctm*

where

$$ctm = -1 \times \left(\frac{1-5\alpha}{2s\beta+4}\right) \times ctm_0 + \frac{2\alpha}{s\beta+2} \times 0.1(1+0.006[T-20]) \times \Delta T$$

and *s* is the sample interval, *T* is temperature, ctm_0 is the uncorrected cell thermal mass, $\alpha = 0.03$ and $\beta = 7.0$. Finally *Translate* converts data to ascii, ready to be read into matlab.

2.5.5 SBE35 high precision thermometer

Data from the SBE35 thermometer were usually uploaded after every cast using the *SeaTerm* program. Once the readings had been written to an ascii file (named *jr200sbeNNN.asc*), the file was opened and the contents checked to make sure the correct number of readings had been stored. The memory of the SBE35 was then cleared using the '*samplenum=0*' command. To check that the memory was clear, the command '*ds*' was entered, which displays the number of data points stored in the instrument's memory. This number should be 0. The date and time are also shown by the *ds* command and these should be checked and corrected if needed.

2.5.6 Salinity samples

At each CTD station 24 niskin bottles were closed at selected depths. In general, eight of these on the full depth CTDs were sampled for salinity analysis, although if duplicate water samples were taken from one bottle, only six or seven bottles were sampled in total. Furthermore, at shallow CTD stations, fewer samples were taken. No salinity samples were collected on the water sample or mooring CTDs. Sampling, storage and analytical procedures were as per those described in Section 2.3.4 (Underway).

Once analysed, the conductivity ratios were entered by hand into *jr200_master.xls*, converted to salinities and used for further CTD data processing.

2.5.7 Oxygen isotope samples

Water samples were also collected for oxygen isotope analysis, as per Section 2.3.5. Samples were taken at 5, 10, 30, 50, 80, 120, 160, 200, 400, 600, 1000, 2000m and from the bottom CTD bottle if deeper. Samples were stored in cardboard boxes, along with photocopies of associated CTD logsheets. The depths and cast details were written into an excel spreadsheet.

2.5.8 CTD data processing

Further processing of CTD data was carried out in Matlab using existing programs, predominantly written by Mike Meredith and Karen Heywood, with modifications by numerous others, and further significant changes made on JR177. The processing routines were split into two subsets: those that could be carried out in the absence of salinity calibration data and those that required the *jr200_master.xls* file containing the salinometer readings. The first subset of programs was run following each CTD cast and allowed a visual check of the data to ensure that the instruments were working correctly and plots to be printed for inspection by others aboard within a few hours of the cast. The second subset was run for those CTDs for which salt samples

had been collected, following the salinity analysis. The first subset of Matlab routines applied to the CTD data is as follows:

- *ctdread200* invokes the *cnv2mat* routine written by Rich Signell to read in the *jr200_ctdNNN_ctm.cnv* file. Data are stored in Matlab arrays and named accordingly. The event number was captured and added to the end of gtime (as a convenience to avoid adding it to all scripts as a separate variable to be resaved). Start, bottom and end times, latitudes and longitudes are entered manually. The start time is entered into t2pos in a jrua window (ssh pstar@jrua, password=pstar) using the syntax: t2pos –d seatex yydddhhmmss. This gives latitude and longitude, which are checked against the logsheet. This time, and the resulting position are then copied and pasted into the matlab window. A further check of the inputted data was added during JR200: the time of the downcast and whole cast, along with the distances covered are printed to the screen for comparison with the logsheet and a warning is issued if they are outside expected bounds. The output file is of the form *jr200_ctdNNN.cal*.
- *offpress200* reads in *jr200_ctdNNN.cal* and sets variables to NaN if pumps were off, and allows the application of an offset pressure. As yet, no offset has been applied to the data because the aim is to determine a single offset for the entire cruise, which will be determined once the CTDs have been completed. Output is *jr200_ctdNNN.wat*.
- *editctd200* reads in *jr200_ctdNNN.wat* and allows manual removal of both the 10m soak prior to the CTD cast, and any data collected at the end of the upcast when the CTD was out of the water. The selected data points are set to NaN for all variables. Primary and secondary conductivity and temperature are then despiked using the interactive editor, with selected data points being set to NaN. These points are also set to NaN for PAR, fluorescence, oxygen and transmission. Output is *jr200_ctdNNN.edt*.
- *interpol200* reads in *jr200_ctdNNN.edt* and uses linear interpolation to fill data gaps generated by *editctd200*. Output is *jr200_ctdNNN.int*.
- salcalapp checks whether bottle files have been generated from salinity samples (see the second subset of routines, below). If it does not find the required file, it loads *jr200_ctdNNN.int* and calculates salinity, potential temperature and σ_θ, σ₂ and σ₄ as per the UNESCO 1983 algorithms by invoking the routines *ds_salt*, *sw_ptmp* and *sw_pden*. θ and salinity are calculated for both the primary and secondary sensors, whilst σ is calculated using primary temperature and conductivity, except for casts 23 and 38 where the secondary sensors are used. Output is *jr200_ctdNNN.var*.
- *splitcast* reads in *jr200_ctdNNN.var* and splits the downcast and upcast into *jr200_ctdNNN.var.dn* and *jr200_ctdNNN.var.up*.
- *fallrate* was added on JR200 (after retrospectively being applied to JR161 and JR177 data). It is a matlab version of the seapath loopedit script. It has to be run after the initial soak is removed as it removes any datapoint on the downcast where pressure is less than one previously recorded or if the fall rate is <0.25 ms⁻¹. Loopedit flags such points (excluding the initial soak if set to) but these flags were not subsequently used in the processing and often did erroneously include the initial soak. This process results in smoother density profiles with fewer apparent overturns. Input and output is *jr200_ctdNNN.var.dn* it is not run on the upcast as it will remove bottle stops.
- *gridctd* reads in both *jr200_ctdNNN.var.dn* and *jr200_ctdNNN.var.up*, and averages the data into 2dbar bins. Data are padded with NaNs to 5999dbar, thereby ensuring that

arrays for all CTDs are the same size. Outputs are *jr200_ctdNNN.2db.mat* and *jr200_ctdNNN.2db.up.mat*.

- *fill_to_surf* reads in *jr200_ctdNNN.2db.mat* and *jr200_ctdNNN.2db.up.mat* and allows any missing data at the surface to be filled with values from the next non-NaN line. This should only be carried out where the upper water column is well mixed. Missing values for the time stamp and PAR are left as NaNs. The output file is the same as the input file.
- ctdplot200 reads in *jr200_ctdNNN.2db.mat* and plots profiles of θ and salinity (both primary and secdondary), σ_{θ} , fluorescence, transmission, oxygen and PAR. Plots are output for the entire CTD depth and for only the upper 200m of the cast. These plots are saved as png files and printed.

The second subset of Matlab programs is as follows:

- *makebot200* reads in *jr200_ctdNNN.ros*, *jr200_ctdNNN.BL* and *jr200_ctdNNN.int*, and extracts CTD pressure, temperature (1 & 2), conductivity (1 & 2), transmission, fluorescence, oxygen and PAR for each bottle fired. It also calculates the standard deviation for pressure, temperature and conductivity, and writes a warning to the screen if those for temperature and conductivity are greater than 0.001. Salinity and potential temperature are calculated from both primary and secondary temperature and conductivity using *ds_salt* and *ds_ptmp*. Results are saved in *jr200botNNN.1st*.
- *readsal200* extracts salinity calibration data from *jr200_master.xls* and reads in *jr200botNNN.1st*. Data from duplicate salinity samples are stored in *niskinsalts.mat*, and if the standard deviation of these samples is >0.002, a warning is written to the screen. Output is *jr200salNNN.mat*.
- *addsal200* reads in *jr200botNNN.1st* and *jr200salNNN.mat*, and stores all salinity information in *jr200botNNN.sal*.
- *setsalflag200* loads *jr200botNNN.sal* and flags those bottles with high standard deviations for temperature and conductivity. Output is *jr200botNNN.sal*.
- *salplot200* loads *jr200_ctdNNN.int* and *jr200botNNN.sal*, and plots sample salinities on top of the CTD salinity profiles, allowing a visual check of the data. Plots of conductivity and temperature standard deviations against CTD salinity minus sample salinity are also generated.
- *sb35read200* loads *jr200sbeNNN.asc*, *jr200botNNN.1st* and *jr200_ctdNNN.cal*, and plots SBE35 temperature minus CTD temperature (1 & 2) for a visual check. The SBE35 data are saved in *jr200botNNN.sb35* and SBE35 temperature minus CTD temperature is saved in *tempcals.all.mat*. This script must be run prior to *salcal200*.
- *salcal200* loads *jr200botNNN.sal*, *jr200_ctdNNN.int* and *tempcals.all.mat*, and uses sample salinities and SBE35 temperatures to calculate conductivity offsets for both CTD sensors. All offsets are stored in *salcals.all.mat*. Plots of temperature and conductivity offsets are output to the screen.
- *calibrations* reads in *tempcals.all.mat* and *salcals.all.mat*, and plots primary and secondary temperature and conductivity minus SBE35 temperature and conductivity calculated from the salinity samples. This allows determination of any offsets that should be applied to calibrate the CTD sensors.
- Once this second subset of programs has been run the offsets found in calibrations are entered into *salcalapp*, which is then run again. Any required temperature or conductivity

offset is applied here, and salinity, θ , and σ are recalculated. Offset data are saved in *jr200botNNN.cal*. All programs following *salcalapp* must then be re-run.

2.5.9 CTD calibration

In total, 792 SBE35 temperature data points were recorded, and 224 salinity samples analysed. Some SBE35 datapoints were lost due to the data not being checked for the first 6 casts and then finding the sensor to be full of previous cruises data. Data were also lost to the sensor failing partially or totally for casts 11-16, after which it was replaced. The offsets have not been finalised but the temp1 is about 0.005 too cold, both temp2s are too close for a non-zero offset to be needed and conductivity1, after accounting for the temperature offset, is approximately 0.003 at the surface with the difference reducing with depth. Conductivity will be calibrated to allow for the possibility of a new formula for calculating salinity in the future but this requires a further check that there are not residual offsets in salinity due to problems with the pressure sensor.

Table 2.5.1 : CTD Casts

'Wout' is the wireout at the bottom depth of the CTD. 'Type' refers to full depth (FD), Pond (Po; 2000m depth, water samples at 2000m and Chlorophyll maximum), Oithona (Oi; 400m depth, water samples at 400, 300, 200, 150, 100, 80, 60, 50, 40, 30, 20 and 10m), and shallow (S) CTDs. 'Station name' is the official name/number of the CTD station in the cruise plan and 'event' is the event number in the JR200 bridge science log. Numbered notes are found at the end of the table.

CTD #	Jday	Time (GMT)	Lat (deg, min)	Lon (deg, min)	Wout (m)	Туре	Station name	Event	Note
001	072	12:21:31	57° 41.36'S	50° 26.05'W	150	S	Test	3	
002	072	13:21:20	57° 41.65'S	50° 25.52'W	400	Oi	Test	4	
003	073	19:09:02	60° 29.96'S	48° 11.65'W	1371	Ро	R1	10	
004	073	20:33:30	60° 29.91'S	48° 11.58'W	191	Oi	R1	11	1
005	075	08:47:10	60° 29.90'S	48° 11.52'W	1371	FD	R1	19	
006	075	10:50:00	60° 29.91'S	48° 11.52'W	400	Oi	R1	20	
007	076	14:24:45	60° 25.87'S	44° 35.58'W	990	FD	D1	31	
008	076	20:21:40	60° 12.51'S	44° 24.48'W	2000	Ро	C2/D2	33	
009	076	22:06:25	61° 12.50'S	44° 24.48'W	400	Oi	C2/D2	34	
010	077	07:31:10	60° 12.51'S	44° 24.50'W	5402	FD	C2/D2	37	
011	078	18:35:40	59° 56.09'S	44° 14.20'W	4674	FD	D3	52	
012	080	07:21:59	59° 41.32'S	44° 03.31'W	4085	FD	C3/D4	66	
013	080	21:26:56	59° 41.32'S	44° 03.24'W	2000	Ро	C3/D4	73	
014	080	23:11:20	59° 41.32'S	44° 03.25'W	400	Oi	C3/D4	74	
015	081	05:15:28	59° 21.34'S	43° 50.19'W	3098	FD	D5	76	
016	081	10:00:40	59° 01.52'S	43° 37.27'W	3050	FD	D6	77	
017	081	15:23:30	58° 41.66'S	43° 24.26'W	2890	FD	D7	79	
018	081	19:43:18	58° 21.72'S	43° 11.32'W	2934	FD	D8	80	
019	083	09:10:22	58° 01.85'S	42° 58.27'W	2770	FD	C4/D9	92	
020	083	19:02:02	58° 01.80'S	42° 58.27'W	400	Oi	C4/D9	95	
021	083	22:36:17	58° 01.80'S	42° 58.27'W	2000	Ро	C4/D9	99	
022	084	11:11:30	57° 35.12'S	42° 42.15'W	2969	FD	D10	102	
023	084	16:19:55	57° 08.41'S	42° 26.03'W	3628	FD	D11	104	2
024	084	23:35:31	56° 45.81'S	42° 13.29'W	400	Oi	R2/D12	107	3
025	085	08:09:57	56° 45.82'S	42° 13.05'W	388	Test	Extra	110	4
026	085	23:12:35	56° 44.39'S	42° 23.43'W	218	Test	Extra	113	4
027	086	00:58:10	56° 47.65'S	42° 11.03'W	317	Test	Extra	114	4
028	086	06:08:47	56° 45.78'S	42° 13.12'W	10	Test	Extra	116	4
029	086	19:42:18	56° 45.80'S	42° 13.13'W	408	Test	Extra	125	4
030	087	16:21:10	56° 23.24'S	42° 00.03'W	3868	FD	D13	134	
031	088	14:21:10	55° 38.06'S	41° 34.27'W	3420	FD	D15	135	
032	088	21:34:33	55° 15.53'S	41° 21.48'W	2000	Ро	P2/D16	139	
033	088	23:22:45	55° 15.53'S	41° 21.48'W	400	Oi	P2/D16	140	
034	090	08:07:30	55° 15.53'S	41° 21.45'W	3528	FD	P2/D16	148	
035	091	01:50:12	54° 54.72'S	41° 10.44'W	3374	FD	D17	156	
036	091	18:44:25	54° 35.33'S	40° 59.67'W	3245	FD	D18	159	
037	092	00:42:10	54° 13.16'S	40° 48.80'W	2443	FD	D19	161	
038	092	04:49:35	53° 53.80'S	40° 38.63'W	1244	FD	D20	162	5
039	092	06:49:38	53° 53.86'S	40° 38.64'W	120	S	D20	163	5
040	092	12:00:17	53° 21.07'S	40° 22.46'W	120	S	Extra	165	
041	092	20:57:40	52° 48.51'S	40° 06.93'W	2000	Ро	P3	168	
042	092	22:40:05	52° 48.52'S	40° 06.88'W	400	Oi	P3	169	
043	093	06:54:10	52° 48.47'S	40° 06.88'W	3729	FD	P3	173	

044	096	11:15:27	52° 51.05'S	37° 05.79'W	2210	FD	R3	191	
045	096	15:27:42	52° 51.05'S	37° 05.79'W	400	Oi	R3	194	
046	099	18:26:38	49° 56.15'S	34° 12.47'W	600	S	PF1	223	
047	099	20:46:65	50° 03.80'S	34° 01.73'W	1500	S	PF2 /PFN	224	
048	100	14:28:28	50° 14.57'S	33° 57.15'W	600	S	PF3	231	
049	100	16:28:20	50° 25.25'S	33° 52.81'W	600	S	PF4	232	
050	101	07:20:40	50° 36.00'S	33° 48.10'W	1500	S	PF5 /PFS	238	

Notes:

- 1) CTD aborted at 191m wireout due to wire damage.
- 2) Problem with primary sensors on down-cast. Disappeared with time. Data from secondary sensor selected during post processing.
- 3) Problem with secondary sensors on both up- and down-casts. Primary sensors working fine. New secondary sensors (see Table 2.5.2) and pumps cleaned following cast.
- 4) CTD aborted due to alarm sounding on deck unit. Temporary, and sometimes persistent, loss of communication between CTD and deck unit. No bottles fired, but data largely meaningful.
- 5) Large swell caused temporary loss of power to CTD. CTD reset itself pumps switched off for a short period and bottle firing program reset making it impossible to fire all bottles.

Table 2.5.2: Details of instrumentation and configuration for SBE911Plus CTD.

En aver et channels aver an es d. O	Channel 4 Therese and there 2 (an etc. 25, 50)
Frequency channels suppressed: 0	Channel 4, Temperature 2 (casts 25-50)
Voltage words suppressed: 0	s/n: 2191
Computer interface: RS-232C	Calibrated: 13/07/07
Scans to average: 1	G: 4.31966392e-003
Surface PAR voltage added: No	H: 6.38833117e-004
NMEA position data added: No	I: 2.27889521e-005
Scan time added: No	J: 2.17620818e-006
	F0: 1000.000
Channel 1, Temperature 1	Slope: 1.00000000
s/n: 4302	Offset: 0.00000
Calibrated: 18/07/07	
G: 4.37269298e-003	Channel 4, Temperature 2 (casts 1-24)
H: 6.42004858e-004	s/n: 4235
I: 2.19025784e-005	Calibrated: 29/07/07
J: 1.81767398e-006	G: 4.3551464e-003
F0: 1000.000	H: 6.45183995e-004
Slope: 1.00000000	I: 2.21076034e-005
Offset: 0.0000	J: 1.74507310e-006
	F0: 1000.000
Channel 2, Conductivity 1	Slope: 1.00000000
s/n: 2875	Offset: 0.00000
Calibrated: 18/07/07	
G: -1.01634295e+001	Channel 5, Conductivity 2 (casts 25-50)
H: 1.40348275e+000	s/n: 1912
I: 8.99756645e-005	Calibrated: 17/07/07
J: 5.82471200e-005	G: -4.16283556e+000
CTcorr: 3.2500e-006	H: 5.36632788e-001
CPcorr: -9.57000000e-008	I: -7.06036394e-004
Slope: 1.00000000	J: 6.30610541e-005
Offset: 0.00000	CTcorr: 3.2500e-006
	CPcorr: -9.57000000e-008
Channel 3, Pressure	Slope: 1.00000000
s/n: 0541-75429	Offset: 0.00000
Calibrated: 18/07/07	
C1: -4.398881e+004	Channel 5, Conductivity 2 (casts 1-24)
C2: -5.551403e-001	s/n: 2813
C3: 1.279490e-002	Calibrated: 17/07/07
D1: 3.603000e-002	G: -9.75792279e+000
D2: 0.000000e+000	H: 1.45435632e+000
T1: 2.986716e+001	I: -5.07100074e-003
T2: -5.274889e-004	J: 4.16613153e-004
T3: 4.0929000e-006	CTcorr: 3.2500e-006
T4: 1.616590e-009	CPcorr: -9.5700000e-008
T5: 0.000000e+000	Slope: 1.00000000
Slope: 0.9994000	Offset: 0.00000
Offset: 0.52570	AD590B: -8.79339e+000
AD590M: 1.287420e-002	
Channel 6, PAR/Irradiance	Channel 10, Fluorometer
(Biospherical/Licor)	s/n: 088-249
(Diospherical/Licor)	5/ II. 000 2+7

s/n: 7235	Calibrated: 13/09/07
Calibrated: 26/07/07	VB: 0.181700
M: 1.00000000	V1: 2.097600
B: 0.00000000	Vacetone: 0.202800
Calibration constant: 35335689045.0	Scale factor: 1.000000
Multiplier: 1.00000000	Slope: 1.000000
Offset: 0.00000000	Offset: 0.000000
Channel 7, Free	Channel 11, Free
Channel 8, Oxygen (SBE43) s/n: 0676 Calibrated: 14/08/07 Soc: 0.3914 Boc: 0.0000 Voffset: -0.4916 Tcor: 0.0023 Pcor: 1.35e-004 Channel 9, Altimeter s/n: 2130.27001 Calibrated: 11/10/06 Scale factor: 15.000 Offset: 0.000	Channel 12, Transmissometer s/n: CST-527DR Calibrated: 14/08/07 M: 21.7287 B: -1.2735 Path length: 0.250 Channel 13, Free
SBE35, Temperature (casts 17-50)	SBE35, Temperature (casts 1-16)
s/n: 0051	s/n: 0047
Calibrated: 27/9/07	Calibrated: 7/6/07
A0: 3.92631784e-003	A0: 4.70995801e-003
A1: -1.03622386e-003	A1: -1.29325515e-003
A2: 1.63062788e-004	A2: 1.93550623e-004
A3: -9.15190184e-006	A3: -1.07498200e-006
A4: 1.97599859e-007	A4: 2.29058494e-007
Slope: 1.000023	Slope: 1.000049
Offset: -0.001512	Offset: -0.001758

2.6 EXPENDABLE BATHYTHERMOGRAPHS (XBTs)

Hugh Venables and James Screen with additional support from Nathan Cunningham, Data Manager

2.6.1 Introduction

A sequence of XBT drops were performed from RRS *James Clark Ross* during JR200 during the transect to and beyond the Polar Front station. The details of the XBT drops are listed in Table 2.6.1.

2.6.2 Deployment

Sippican T5 probes were used and launched using a launcher clamped to the rear of the aft deck. The ship speed was not decreased for deploying probes in order to save time. This led to them not reaching full depth but they did resolve 1400m (at 10 knots) or 1200m (at 11knots) which was sufficient for the work at the Polar Front. Data were logged by a Viglen IBM-type 486 PC running the Sippican WinMk12 software. Data were written directly to the unix system. Uncleaned data was also streamed back to Cambridge in real time.

2.6.3 Processing

Initial processing of the XBT using matlab scripts was carried out. This involved reading the ascii files into matlab (xbtascreadstruc.m) and then using the interactive editor program (same as used for CTD processing) to remove data at the end of the cast and that judged to be bad (xbtedit.m). A contour plot of the section was also produced (contourxbt.m).

2.6.4 Additional comments

The time stamp from the PC is in BST (GMT+1). This is not used in the processing but is in the header of the ascii file.

Time	Latitude	Longitude	Depth	Event number	XBT serial number	Filename	Comment
08/04/2009 21:08	-49.792	-34.423	1280m	221	338831	T5_00023	Successful
08/04/2009 20:29	-49.873	-34.301	1240m	220	338833	T5_00022	Successful, one big spike removed in post processing
08/04/2009 19:58	-49.937	-34.207	1340m	219	338829	T5_00021	Successful
08/04/2009 19:31	-49.994	-34.123	1250m	218	338830	T5_00020	Successful, one big spike removed in post processing
08/04/2009 18:58	-50.065	-34.026	1280m	217	338834	T5_00019	Successful
08/04/2009 18:15	-50.158	-33.981	1260m	216	338835	T5_00018	Successful
08/04/2009 17:45	-50.233	-33.937	1290m	215	338836	T5_00017	Successful
08/04/2009 17:15	-50.319	-33.885	1300m	214	338840	T5_00016	Successful
08/04/2009 16:45	-50.409	-33.837	1200m	213	338839	T5_00015	Successful
01/01/1998 16:15	-50.592	-33.799	1200m	212	338838	T5_00014	Successful
08/04/2009 15:45	-50.592	-33.799	1200m	211	338837	T5_00013	Successful
08/04/2009 14:08	-50.791	-34.123	1430m	210	338873	T5_00012	Successful
08/04/2009 12:12	-51.012	-34.517	1450m	209	338867	T5_00011	Successful, one big spike removed in post processing
08/04/2009 10:28	-51.209	-34.869	1450m	208	338869	T5_00010	Successful
08/04/2009 10:13	-51.236	-34.918		207	338870		No data collected – user error
08/04/2009 08:15	-51.460	-35.313	1450m	206	338874	T5_00009	Successful
08/04/2009 06:07	-51.725	-35.687	1440m	205	338871	T5_00008	Successful
08/04/2009 04:13	-51.965	-36.015	1340m	204	338868	T5_00007	Successful
08/04/2009 02:16	-52.207	-36.346	1525m	203	338872	T5_00006	Successful
08/04/2009 00:17	-52.466	-36.683	1490m	202	338875	T5_00005	Successful
07/04/2009 21:32	-52.729	-37.056	1443m	200	338876	T5_00004	Successful
07/04/2009 19:32	-52.984	-37.437	1400m	199	338866	T5_00003	Successful
28/03/2009 13:40	-56.779	-42.220	1700m	133	338865	T5_00002	Successful. There was no T5_00001

Table 2.6.1: JR200 XBT deployments

3. MOORING CRUISE REPORT

Peter Enderlein, David Pond, Hugh Venables & Sophie Fielding

3.1 Redeployment of both sediment trap moorings during JR 200:

During JR200 both Discovery2010 sediment trap moorings were successfully redeployed, having been recovered during JR187. After double checking with the manufacture Paraflux on deployment techniques regarding the Paraflux Sediment traps, the decision was made to deploy both moorings buoy first instead of weight first as it was done on previous cruises. By deploying buoy first, the tension on the rope is significantly less. This makes it a) easier to deploy, especially since the rope is not biting into the coil of rope on the rope drum b) more safe, as the risk that the mooring rope snags or parts is dramatically reduced. The only downside is that because of the pendulum effect of the mooring, the exact position of the mooring rig is difficult to determine. Therefore a triangulation was done after both deployments to determine the position of the moorings.

The 3200m mooring was redeployed on 01.04.09 @ 11:35 GMT with the buoy first. After the deployment of all the equipment the main weight was finally cut at 13:25 in 3213 m of water depth at 55.20875S and 41.12380W. To release, a sacrificial rope was used.

Because of the pendulum effect having deployed the mooring buoy first, the mooring was pinged after the deployment to determine its position by triangulation. The ship moved from its west position approx. $\frac{1}{2}$ nm first E and then again $\frac{1}{2}$ nm NW. The positions, water depth, acoustic distance and the calculated radius where:

Position	Time	Triangulation		Latitude	Longitude
P1 (W)	14:21	Depth	3150	55.19973	41.12382
		Ping distance	3230		
		Radius	714		
P2 (E)	14:43	Depth	3160	55.19981	41.10817
		Ping distance	3340		
		Radius	1081		
P3 (NW)	15:07	Depth	3158	55.19352	41.11802
		Ping distance	3462		
		Radius	1081		

This gave the following triangulation, with a relatively precise position of **55° 12.3757 S and 41° 07.2568 W** where we believe the 3200m mooring is sitting:

Fig 3.1.1 Calculated 3200m mooring position on JCR micropolt with cruise track in purple.

Fig 3.1.2 Calculated 3200m mooring position by triangulation.

The 3700 m mooring was redeployed on 03/04/2009 @ 14:04 GMT with the buoy first again. After the deployment of all the equipment the weight was finally released at 14:53:00 in 3850 m of water depth at 52.72335 W and 40.14901S

Again the mooring was pinged after the deployment to determine its position by triangulation. The ship moved from its east position approx. $\frac{1}{2}$ nm first W and then again $\frac{1}{2}$ nm NW. The positions, water depth, acoustic distance and the calculated radius where:

Position	Time	Triangulation		Latitude	Longitude
P1 (E)	15:23	Depth	3790	52.72332	40.14853
		Ping distance	3829		
		Radius	545		
P2 (W)	15:52	Depth	3790	52.72333	40.16213
		Ping distance	3810		
		Radius	390		
P3 (NE)	16:24	Depth	3790	52.71757	40.15284
		Ping distance	3883		
		Radius	844		

Table 3.1.2. 3700m mooring triangulation

This gave the following triangulation, with a relatively precise position of 52° 43.4707 S and 40° 09.3897 W where we believe the 3800m mooring is sitting:

Fig 3.1.3 Calculated 3700m mooring position on JCR micropolt with cruise track in purple.

Fig 3.1.4 Calculated 3700m mooring position by triangulation.

Overall the mooring recoveries and redeployments were all very smooth operations so they took far less time then expected. For the next recoveries and redeployments however **12 hours for each operation** should be allocated to allow for any unexpected problems.

3.2 3200m Discovery2010 sediment trap mooring

NOVATEC beacon: R09, Ch B, 159.48 MHz

Acoustic Releases: Deck unit mode: B FR2 – FR2, to release press: safety + command

Codes:		
Release No: 572	release code:	15E0 + 1555
Release No: 573	release code:	15E1 + 1555

Acoustic releases: 572 + 573 new batteries tested

ARGOS beacon: 35519

new batteries tested

NOVATEC Combo beacon: R09-020

new batteries tested

CTD 37 SMP 29579: 2462 on main buoy

data downloaded during JR187 new batteries

set-up instrument for re-deployment set real time clock to PC clock (p. 28) check instruments is ok and clock is set properly by using "DS"command (p. 27) set-up instrument for "Autonomous Sampling" following the instructions on page 24 samplenum=0 automatically makes entire memory available for recording sample interval: 900 sec

ADCP WHS300 - I - UG26: 2965

data downloaded during JR187 new batteries set-up instrument for re-deployment erase data (p.16 WinSC) start WinSC for set up instrument set-up instrument Number of bins: 30 (1-128) Bin size (m): 8 (0.2-16) Pings per Ensemble: 10 Interval: 15 min Duration: 550 days Transducer depth: 200 m save deployment settings start time: 00:01:00 01.04.09 set up ADCP real time clock to PC clock don't verify the compass (needless on a ship) run pre-deployment tests to check instrument

Sediment trap: Parflux No: ML11966-02

data downloaded new batteries (14x C – Cells + 1x 9V Block battery) do not remove both batteries at the same time! Always disconnect the cable on the Sediment trap first, before unplugging the Computer end!!

Parflux sediment trap deployment settings

PS2 Sediment Trap Deployment April 2009 JR200

Enter the time and dates in this format MM DD YY HH MM SS

Event 1 of 22 = 04/01/2009 00:00:00Event 2 of $22 = 05/01/2009 \ 00:00:00$ Event 3 of 22 = 06/01/2009 00:00:00Event 4 of $22 = 07/01/2009 \ 00:00:00$ Event 5 of $22 = \frac{08}{01} \frac{2009}{2009} \frac{000000}{000000}$ Event 6 of 22 = 09/01/2009 00:00:00Event 7 of 22 = 10/01/2009 00:00:00Event 8 of 22 = 11/01/2009 00:00:00Event 9 of $22 = \frac{12}{01} \frac{2009}{2000} \frac{00000000}{2000}$ Event 10 of 22 = 12/15/2009 00:00:00 Event 12 of 22 = 01/15/2010 00:00:00Event 13 of $22 = 02/01/2010 \ 00:00:00$ Event 14 of $22 = 02/15/2010\ 00:00:00$ Event 15 of 22 = 03/01/2010 00:00:00Event 16 of $22 = 04/01/2010\ 00:00:00$ Event 17 of $22 = 05/01/2010\ 00:00:00$ Event 18 of $22 = \frac{06}{01}/2010\ 00:00:00$ Event 19 of $22 = 07/01/2010\ 00:00:00$ Event 20 of 22 = 08/01/2010 00:00:00Event 21 of 22 = 09/01/2010 00:00:00 Event 22 of 22 = 10/01/2010 00:00:00

Current meter: Aquadopp No A2L - 1792

data downloaded

new batteries

The current meter batteries (lithium) are extremely expensive and those batteries deployed during last season will be returned to the UK with the view to finding a local manufacturer.

PS2 CURRENT METER SETTINGS

User setup	
Measurement interval	900 sec
Sampling rate	NORMAL
Average interval	60 sec
Measurement load	4 %
Transmit pulse length	0.75 m
Blanking distance	0.37 m
Compass update rate	900 sec
Diagnostics measurements	DISABLED
Diagnostics - Interval	43200 sec
Diagnostics - Number of samples	20
Diagnostics - Cell number	1
Diagnostics - Number of pings	20
Analog input 1	NONE
External input 2	NONE
Powerlevel	HIGH
Coordinate system	ENU
Sound speed	MEASURED
Salinity	34.0 ppt
Distance between pings	10.00 m
Number of beams	3
Number of pings per burst	1
Software version	1.28
Deployment name	dstm47
Wrap mode	OFF
Deployment time	01/04/2009
Comments	deep water sediment trap
mooring, deployed south	
west of SG at PS2	

Fig 3.2.1 Diagram of 3200m Mooring

3.3 3700m Discovery2010 sediment trap mooring

NOVATEC beacon: U07-029, Ch A, 154.585 MHz

Acoustic Releases:

Deck unit mode: B FR2 – FR2, to release press: safety + command

Codes:

Release No: 290 On FR1 FR2 : B637 Release: B639 Diagnostic: B640 Pinger: B636 + B694

Release No: 1022 ARM, Ranging: 1890 Release code: 1890 + 1855 Release + Pinger: ARM + 1856 Pinger on: ARM + 1847 Pinger of: ARM + 1848 Diagnostic: ARM + 1849

Acoustic releases: 290 + 1022

new batteries tested original part to hold hock in place was not in box, coming from HQ last minute. Simon DE made a new out of stainless steel. Has to be replaced next turnaround.

ARGOS beacon: SN 280, ID 60210

new batteries tested

NOVATEC Combo beacon: U07-029

new batteries tested

CTD 37 SMP 43742: 4852 on main buoy

data downloaded during JR187 new batteries set-up instrument for re-deployment set real time clock to PC clock (p. 28) check instruments is ok and clock is set properly by using "DS"command (p. 27) set-up instrument for "Autonomous Sampling" following the instructions on page 24 samplenum=0 automatically makes entire memory available for recording sample interval: 900 sec

CTD 37 SMP 43742: 4855 at estimated 500 m

data downloaded during JR187 new batteries set-up instrument for re-deployment set real time clock to PC clock (p. 28) check instruments is ok and clock is set properly by using "DS"command (p. 27) set-up instrument for "Autonomous Sampling" following the instructions on page 24 samplenum=0 automatically makes entire memory available for recording sample interval: 900 sec

ADCP WHS300 - I - UG26: 7522

data downloaded during JR187 new batteries set-up instrument for re-deployment erase data (p.16 WinSC) start WinSC for set up instrument set-up instrument Number of bins: 30 (1-128) Bin size (m): 8 (0.2-16) Pings per Ensemble: 10 Interval: 15 min Duration: 550 days Transducer depth: 200 m save deployment settings in prepared folder set up ADCP real time clock to PC clock don't verify the compass (needless on a ship) run pre-deployment tests to check instrument

Sediment trap: Parflux No: ML11966-01

- new batteries (14x C Cells + 1x 9V Block battery)
 o do not remove both batteries at the same time!
- Always disconnect the cable on the Sediment trap first, before unplugging the Computer end!!

Parflux sediment trap deployment settings (21 cups)

PS3 Sediment Trap Deployment April 2009 JR200 Enter the time and dates in this format MM DD YY HH MM SS Event 1 of 22 = 04/04/2009 00:00:00 Event 2 of 22 = 05/01/2009 00:00:00 Event 3 of 22 = 06/01/2009 00:00:00 Event 4 of 22 = 07/01/2009 00:00:00 Event 5 of 22 = 08/01/2009 00:00:00 Event 6 of 22 = 09/01/2009 00:00:00 Event 7 of 22 = 10/01/2009 00:00:00 Event 8 of 22 = 11/01/2009 00:00:00 Event 9 of 22 = 12/01/2009 00:00:00

Event	10	of	22	=	12/15/2009	00:00:00
Event	11	of	22	=	01/01/2010	00:00:00
Event	12	of	22	=	01/15/2010	00:00:00
Event	13	of	22	=	02/01/2010	00:00:00
Event	14	of	22	=	02/15/2010	00:00:00
Event	15	of	22	=	03/01/2010	00:00:00
Event	16	of	22	=	04/01/2010	00:00:00
Event	17	of	22	=	05/01/2010	00:00:00
Event	18	of	22	=	06/01/2010	00:00:00
Event	19	of	22	=	07/01/2010	00:00:00
Event	20	of	22	=	08/01/2010	00:00:00
Event	21	of	22	=	09/01/2010	00:00:00
Event	22	of	22	=	10/01/2010	00:00:00

Current meter: Aquadopp No A2L - 1792 at estimated 2000 m water depth

data downloaded new batteries

The current meter batteries (lithium) are extremely expensive and those batteries deployed during last season will be returned to the UK with the view to finding a local manufacturer.

Aquadopp current meter deployment settings

PS3 CURRENT METER SETTINGS

User setup

900 sec
NORMAL
60 sec
4 %
0.75 m
0.37 m
900 sec
ENABLED
43200 sec
20
1
20
NONE
NONE
HIGH
ENU
MEASURED
34.0 ppt
10.00 m
3
1
1.28
dstm49
OFF
03/04/2009 00:00:00
deep water sediment trap
mooring, deployed North
West of SG at Station PS3

Fig 3.3.1 Diagram of 2700m Mooring

3.4 shallow water WCB mooring

The shallow water WCB mooring was recovered to put the WCP on for the coming winter period. Therefore maintenance was kept to a minimum and the whole mooring was just checked for any visible damage. The batteries where changed in the release which was fired and in the ARGOS beacon. After the battery change and the fitting of the WCP to the main frame, the mooring was redeployed 2 hours after recovery.

The buoy was released at 18:23 GMT and surfaced just 3 minutes later. At 18:58 the whole mooring was successfully recovered. Just an hour later all maintenance was finished and the mooring was redeployed. The weight was released at 20:13 GMT on the 15/04/2009 @ 53.79515S and 37.93578W

NOVATEC beacon: Ch. C.: 160.725 MHz

Acoustic Releases: Deck unit mode: B FR2 – FR2, to release press: safety + command

Codes shallow water mooring:

New release:	No: 217	release code:	04FB + 0455
Old release:	No: 218	release code:	04FC + 0455

Work after recovery on mooring:

Acoustic releases 217 + 218 batteries replaced in releases 217 (C-cells & 9V block)

ARGOS beacon 35520

batteries replaced check instrument (ARGOS beeper) and switch it on

WCP 004

opened instrument and connected battery set-up instrument for deployment set real time clock to PC clock [shift F7] (p.48) check for correct time [shift F1] run RAM & Memory Test to check instrument and erase all data set-up instrument (p.15 pp) Burst Resolution (sec): 1 Burst Interval (sec): 240 Burst counts (pings): 18 Ping length (micro sec): 600 Max range (m): 200 Bin size: 8 Gain: 1 Start time: 15.04.2009 Stop time: 15.04.2010 Save deployment settings as .dpl file in prepared folder

shallow water mooring (300m water depth)

Fig 3.4.1 Diagram of Shallow Water Mooring

4. MACRONUTRIENT ANALYSIS

Mick Whitehouse and Min Gordon

4.1 Introduction

The Southern Ocean is rich in macronutrients that are generally underutilized by phytoplankton. However, there are a number of exceptions to this generalization, particularly in the Scotia Sea and to the north of the North Scotia Ridge. For instance, the abundant phytoplankton growth downstream of South Georgia is well documented (Atkinson et al. 2001, Korb and Whitehouse 2004, Korb et al. 2004). These long lasting blooms benefit from natural Fe fertilization. Likewise the Antarctic Peninsula is probably an Fe source for the central Scotia Sea and the South Orkneys a source for the south to some extent.

Additional controls on phytoplankton growth include light and grazing; the latter both stimulating growth through the remineralisation of nutrients as well as cropping the standing stock. Also the Southern Ocean's latitudinal silicic acid gradient imposes limitations on diatom growth in the northernmost reaches of the Scotia Sea, such as in the vicinity of South Georgia. The three cruises conducted in the present study allow the examination of macronutrient variability, as a proxy for phytoplankton growth, over temporal and spatial scales against the backdrop of differing micronutrient and light availability, and changes in grazing pressure.

4.2 Aims

Data collection falls into three categories: fine-scale underway measurements, CTD profiles, and onboard experiments. Onboard experiments will be detailed elsewhere and are not discussed in this report.

Underway measurements, both along the major south-north transect and on the "acoustic" surveys, will allow an unprecedented view of nutrient variability across the Scotia Sea. The analysis would best be undertaken in tandem with physical, phytoplankton and acoustic data collected at a similar resolution, thus allowing most of the major controls to be considered. Unfortunately micronutrient data cannot be collected so frequently but Fe control may be predicted by NO₃ utilisation and N:P depletion ratios.

CTD profiles will be used to verify underway measurements and to identify gross watermass characteristics. They will also allow comparison with previous studies that have been restricted to meso-large scale measurements.

4.3 Sample collection and analytical methods

Along the major south-north transect and during mesoscale (acoustic) surveys, near-surface water (7 m depth) pumped through the ship's non-toxic seawater supply was monitored for macronutrient levels. Full depth profiles were measured at all major stations where samples were taken from the main CTD cast (see physical oceanography section for depths), and additional profiles were obtained at intervening "Dimes" stations when possible.

When Go-flo bottle casts were successful, samples were obtained for macronutrient analysis. Onboard experiments (a bioassay manipulating Fe and light conditions, and another considering krill remineralisation – both detailed elsewhere) were also monitored for changes in macronutrient concentrations.

All samples were filtered through a cellulose nitrate membrane (Whatman WCN, pore size 0.45 μ m), and the filtrate was analysed colorimetrically for dissolved nitrate+nitrite (NO₃+NO₂-N), ammonium (NH₄-N), silicic acid (Si(OH)₄-Si) and phosphate (PO₄-P) using a Technicon-based segmented-flow analyser (Whitehouse 1997). Data were logged to a PC using a LabVIEW 6i (National instruments) acquisition programme and to a Kipp and Zonen BD300 data acquisition recorder.

4.4 Data analysis

Full data analysis and verification will be undertaken with subsidiary programmes (Whitehouse and Preston 1997) on our return to the UK. The data are subject to a variety of analytical corrections (eg. saline-freshwater RI adjustments), and the underway data require time-lag adjustments to individual chemistry lines. Additionally, for full verification of the vertical nutrient profiles the contemporaneous physical oceanographic measurements from the CTD are required.

4.5 Problems

There were a number of analytical problems that need to be considered for the present dataset and future BAS chemical oceanography. The one major problem is the age of the detection systems on the nutrient analyzer – obsolete for the last 15 years or so. A retinue of faults from temperature-warped filter holders to antiquated optics and a transformer that regularly trips the laboratory's power supply conspire to complicate the analytical procedure and inevitably will detract from data quality. All this and more were documented in a report last year and do not need to be repeated here. Essentially, if macronutrients are to be measured by BAS in the future, the instruments used will require serious attention and drastic renewal.

In addition, two more problems are of note. The speedy turn around times for equipment in the UK between cruises allow little time for method testing and optimization. So the switch a couple of years ago to "Pharmed" tubing on the main drive pumps of the analyzer was a mixed blessing. This new, "rubberized" tubing extends working life by a factor of ten or more but the physical specifications of this type of tube are different to those of the traditional PVC with which standard methods have been developed historically. Thus the BAS chemistry's are all slightly different and the hydraulics of the segmenting air and the process timings are also changed with this switch in tubing use. This has caused a number of problems with some methods, e.g. susceptibility to violent ship's movement and reduced analytical sensitivity. Once the equipment shortfalls detailed above have been resolved then a comprehensive optimization of methods should be undertaken at Cambridge before further shipboard analysis is considered.

A further analytical problem to be reconciled is the sporadic occurrence of spuriously high NH₄ concentrations in samples taken in the water-bottle annex and filtered in the chemistry laboratory. This problem does not occur with samples prepared elsewhere (e.g. the cool room) and analysed in the chemistry laboratory, which indicates that the analytical system itself is not

at fault. Which leaves either the present filtering system (new two years ago thus unlikely) or the environment in which sample preparation takes place as the likely source of contamination. With sufficient time, this problem could be identified in the Cambridge laboratory. However, if it is the environment to blame then resolving the problem will be difficult. To this end, the chemistry laboratory (and probably others) requires thorough cleaning. In addition, the air supply to the laboratory should be re-evaluated and modified if required.

4.6 References

Atkinson A, Whitehouse MJ, Priddle J, Cripps GC, Ward P, Brandon MA (2001) South Georgia, Antarctica: a productive, cold water, pelagic ecosystem. Mar. Ecol. Prog. Ser. 216: 279-308.

Korb R, Whitehouse M (2004) Contrasting primary production regimes around South Georgia, Southern Ocean: large blooms versus high nutrient, low chlorophyll waters. Deep-Sea Res. I, 51:721-738.

Korb RE, Whitehouse MJ, Ward P (2004) SeaWiFS in the southern ocean: spatial and temporal variability in phytoplankton biomass around South Georgia. Deep-Sea Res. II, 51, 99-116. Whitehouse MJ (1997) Automated seawater nutrient chemistry. British Antarctic Survey, Cambridge, 14 pp.

Whitehouse MJ, Preston M (1997) A flexible computer-based technique for the analysis of data from a sea-going nutrient autoanalyser. Analytica chimica Acta 345: 197-20.
5. PARTICULATES

Dave Pond

5.1 Introduction

Particulate material was collected from the chlorophyll maxima to determine the food availability, quality and trophic level (stable isotope) for meso- and macro-zooplankton communities at each site. Additional large volume samples of particulate material were collected from dedicated CTDs to provide sufficient material for the analysis of a wide suit of lipid biomarkers

5.2 Data Coverage

 Table 5.2.1 Samples taken from bottle 21 of the full depth CTD. The downcast fluorescence trace was used to establish depth of the chlorophyll maxima.

Event	Date	Depth	Fatty acid (litres)	Stable isotope (litres)	POC, PON (litres)
E19	16/03/09	20	3	2.5	2.5
E37	18/03/09	20	5.2	2	2
E66	21/03/09	30	3	2.5	2.5
E92	24/03/09	10	4.4	2.5	2.5
E132	28/03/09	20+30	6.4	2	2
E148	31/03/09	20	4.2	2	2
E173	03/04/09	20	4.2	2	2
E191	06/04/09	20	4.2	2	2

Table 5.2.2 Large volume water collections from the chlorophyll maxima and 2000m to correspond with thedepth of the sediment traps deployed at process stations 2 and 3.

Event	Date	Litres filtered	Depth
E10	14/03/09	125	1371
		75	15
E33	18/03/09	100	2000
		75	20
E73	21/03/09	100	2000
		75	30
E99	26/03/09	100	2000
		75	40
E139	29/03/09	100	2000
		100	20
E168	02/04/09	100	2000
		100	20
E199	06/04/09	100	2000
		75	20

6. IRON CHEMISTRY

6.1 A study of the iron biogeochemistry in the Scotia Sea

Sebastian Steigenberger, Daria Hinz, Tom Bibby, Eric Achterberg, Mick Whitehouse & Rebecca Korb

6.1.1 Introduction

Iron is an essential trace element for all living organisms and is of major importance for aquatic photosynthetic organisms. Due to the very low solubility of Fe(III) hydrolysis products the concentration of dissolved iron in the oxygenated upper ocean is extremely low (<0.5 nM in the open ocean). Iron is supplied to the surface ocean via atmospheric transport of dust and its wet and dry deposition (Jickells 2005), as well as via upwelling, entrainment, or mixing of deeper waters relatively rich in nutrients and metals (Johnson 1997, Bowie 2005). Furthermore sea ice and brine has been found to contribute to the iron budget in higher latitudes (Lannzuel 2007).

Since iron deficiency was reported to limit primary production in High Nutrient Low Chlorophyll (HNLC) regions (Martin and Fitzwater 1988; Martin et al. 1990) extensive research has been carried out in the Subarctic Pacific, the Equatorial Pacific and the Southern Ocean (Martin and Fitzwater 1988; Martin et al. 1990).

During JR200 the aim was to sample a series of profiles down to 1000 m depth from the open ocean onto the shelf near South Georgia. In a multi-element approach these samples will be analysed for a range of trace metals, e.g. Mn as a tracer for the influence of the sediment and Ti and Al as aerosol tracers. This should give show the sources of iron in the Scotia Sea.

6.1.2 Sample Methods

Underway

Samples were taken from a steel torpedo fish that was towed at the stern on the starboard side of the ship. Tubing went from the fish into the clean container where it was pumped with a peristaltic pump. Underway samples were filtered online through a 0.2 um Sartobran filter cartridge. All underway samples were acidified to a pH \sim 1.8 with ultra pure HNO₃.

Profiles

Water samples from six depth horizons (10-500 m) were obtained at the last 5 biostation. Samples were taken with 3 General Oceanic (GO-FLO) bottles. The bottles were attached to a plastic coated metal wire and the bottles were released with plastic coated messengers weights.

Initially all 10 GO-FLO bottles were acid washed with 10% HCl 2 times, 1% HCl 2 times, 2% Decon90 and 2 times with acidified seawater (0.1% HCl). However, this only helped to remove the Fe contamination from 3 bottles, which were then deployed in two casts at each biostation.

All samples were acidified to $pH\sim2$ with ultra pure HNO_3 for subsequent analysis for several metals (e.g. Fe, Al, Mn, Co, Ti) on an ICP-MS some time in the future.

In addition to dissolved iron samples, unfiltered, samples were taken and acidified for total dissolvable Fe to be analysed back at NOC.

6.1.3 Method of analysis

Dissolved iron was measured using the flow-injection chemiluminescence method by Obata (1993). Samples were buffered with ammonium acetate to pH 4 and pre-concentrated on a 8 HQ resin column. The samples were then eluted off the column with HCl and mixed with Luminol, H_2O_2 and NH_4OH to create a blue light detected by a photomultiplier as a voltage signal. Concentrations were determined according to standard addition calibration carried out before analysis and comparison with SAFe and samples.

6.1.4 Results

5 GO-FLO profiles (Tab. 6.1.1) were sampled and 65 underway samples (Table 6.1.2) with the tow fish. The majority of the samples will be analysed at NOC.

Even			•		Start			
t	Name	Start Time	End Time	Start Lat	Lon	End Lat	End Lon	depths [m]
	GO-	19/03/2009	19/03/2009	-	-	-	-	(contaminated
47	FLO	11:33:00	14:12:00	60.20819	44.40805	60.20817	44.40796)
	GO-	21/03/2009	21/03/2009	-	-	-	-	(contaminated
68	FLO	14:05:00	15:27:00	59.68859	44.05515	59.68842	44.05462)
	GO-	24/03/2009	24/03/2009	-	-	-	-	(contaminated
98	FLO	21:02:00	22:20:00	58.03005	42.97104	58.03003	42.97100)
	GO-	27/03/2009	27/03/2009	-	-	-	-	
124	FLO	18:00:00	19:17:00	56.76343	42.21861	56.76342	42.21860	500, 300, 200
	GO-	27/03/2009	27/03/2009	-	-	-	-	
126	FLO	20:16:00	20:54:00	56.76815	42.21556	56.76556	42.21289	100, 50, 20
	GO-	28/03/2009	28/03/2009	-	-	-	-	
131	FLO	12:27:00	12:36:00	56.77002	42.21881	56.76802	42.21877	500, 300, 200
	GO-	28/03/2009	28/03/2009	-	-	-	-	
132	FLO	13:00:00	13:26:00	56.78104	42.22177	56.77534	42.21998	100, 50, 20
	GO-	31/03/2009	31/03/2009	-	-	-	-	
154	FLO	20:38:00	21:45:00	55.25847	41.35762	55.25843	41.35762	500, 300, 150
	GO-	31/03/2009	31/03/2009	-	-	-	-	
155	FLO	22:18:00	22:46:00	55.25847	41.35769	55.25843	41.35768	80, 40, 10
	GO-	03/04/2009	03/04/2009	-	-	-	-	
181	FLO	20:57:00	22:02:00	52.80854	40.11459	52.80847	40.11455	500, 300, 150
	GO-	03/04/2009	03/04/2009	-	-	-	-	
182	FLO	22:31:00	22:58:00	52.80856	40.11458	52.80851	40.11457	60, 40, 20
	GO-	06/04/2009	06/04/2009	-	-	-	-	
192	FLO	13:10:00	13:40:00	52.85077	37.09675	52.85074	37.09668	60, 40, 20
	GO-	06/04/2009	06/04/2009	-	-	-	-	
193	FLO	14:11:00	15:17:00	52.85077	37.09670	52.85072	37.09666	500, 300, 150

Table 6.1.1 : Date, position and depth of sampled GO-FLOs during JR200

Table 6.1.2 : Date and position o	f underway samples during JR200
-----------------------------------	---------------------------------

Somulo	Data	Time	Lat	Ton
Sample	Date	Time	Lat	Lon
U1	13/03/2009	07:09	-57.1296	-51.1574
U2	13/03/2009	10:09	-57.6177	-50.5297
U3	14/03/2009	07:39	-59.2155	-49.2436
U4	14/03/2009	08:39	-59.37	-49.1163
U5	14/03/2009	11:09	-59.6172	-48.9018
U6	14/03/2009	17:25	-60.2674	-48.3628
U7	17/03/2009	07:09	-60.4754	-47.1008
U8	17/03/2009	10:19	-60.4583	-45.9939
U9	17/03/2009	13:09	-60.4337	-44.99
U10	18/03/2009	12:29	-60.3501	-44.3832
U11	19/03/2009	17:59	-59.9966	-44.2774
U12	20/03/2009	00:14	-59.8569	-44.1734
U13	22/03/2009	09:24	-59.0896	-43.6644
U14	22/03/2009	12:49	-58.9593	-43.5828
U15	22/03/2009	18:44	-58.5013	-43.2788
U16	25/03/2009	10:04	-57.7048	-42.8791
U17	25/03/2009	14:39	-57.4144	-42.5992
U18	25/03/2009	20:31	-57.0367	-42.3815
U19	28/03/2009	14:19	-56.6851	-42.1714
U20	28/03/2009	15:54	-56.4269	-42.0282
U21	28/03/2009	20:59	-56.1414	-41.8638
U22	29/03/2009	13:19	-55.7114	-41.6137
U23	29/03/2009	18:26	-55.4188	-41.4508
U24	01/04/2009	16:44	-54.9211	-41.0644
U25	01/04/2009	18:09	-54.6505	-41.0124
U26	02/04/2009	00:06	-54.259	-40.832
U27	02/04/2009	08:09	-53.8045	-40.596
U28	02/04/2009	09:24	-53.742	-40.6337
U29	02/04/2009	13:04	-53.2715	-40.3514
U30	02/04/2009	14:39	-53.0038	-40.2158
U31	04/04/2009	22:19	-52.6842	-40.2377
U32	05/04/2009	04:15	-52.795	-39.2321
U33	05/04/2009	08:49	-52.8016	-38.3399
U34	05/04/2009	11:26	-52.8018	-37.8752
U35	07/04/2009	21:15	-52.7646	-37.1151
U36	07/04/2009	23:09	-52.5078	-36.7858
U37	08/04/2009	02:09	-52.222	-36.3662
U38	08/04/2009	05:09	-51.8474	-35.8547
U39	08/04/2009	08:09	-51.4733	-35.3362
U40	08/04/2009	11:19	-51.1144	-34.7002
U40 U41	08/04/2009	13:14	-50.8954	-34.3102
U42	08/04/2009	15:14	-50.6502	-33.8829
U42	08/04/2009	17:11	-50.3325	-33.8786
U43 U44	08/04/2009	17:11	-50.0319	-34.0721
U44 U45	08/04/2009	21:13	-49.7823	-34.0721
U43 U46	12/04/2009	14:19		-34.4392
U46 U47			-51.8865	
U47 U48	12/04/2009	16:25	-52.1757 -52.4819	-36.9033
	12/04/2009	18:26		-36.9517
U49	12/04/2009	20:24	-52.8149	-37.183

U50	14/04/2009	14:29	-53.8615	-37.6276
U51	14/04/2009	15:29	-53.9221	-37.3597
U52	15/04/2009	21:14	-53.7848	-38.1092
U53	15/04/2009	22:14	-53.7516	-38.3834
U54	15/04/2009	23:14	-53.7097	-38.653
U55	16/04/2009	00:14	-53.6689	-38.9204
U56	16/04/2009	01:17	-53.6396	-39.2029
U57	16/04/2009	02:14	-53.6165	-39.4651
U58	16/04/2009	03:14	-53.592	-39.732
U59	16/04/2009	06:14	-53.5063	-40.5069
U60	16/04/2009	09:15	-53.4185	-41.2764
U61	16/04/2009	11:15	-53.357	-41.8144
U62	16/04/2009	13:24	-53.2945	-42.4158
U63	16/04/2009	15:29	-53.2302	-43.0029
U64	16/04/2009	17:29	-53.1706	-43.5737
U65	16/04/2009	19:54	-53.0953	-44.2915

6.1.5 Recommendations and future work

For the future, it would be a great help to send one more person on the cruise to give a hand with the iron work and the bioassays and also to improve the coverage of underway sampling.

6.1.6 Equipment

The clean container: The annex and also the lab area and the laminar flow bench of the clean container provided by NMF were covered in dust due to unsealed ventilation openings, which were then closed with tape before cleaning the whole inside of the container (~1.5 days). The MQ system in the clean container worked well even though the tube connecting to the ship's freshwater line inside the lab had a hole and needed fixing. The plumbing of the sink was leaking into the annex because the pipes of the AC were not properly connected. The laminar flow bench did not have a front cover to keep the inside clean while turned off. Switching the main switch of the clean bench blows the fuses for the whole container and needs to be fixed. The only power socket in the container annex to plug in the peristaltic pump is a Euro socket and not compatible with the British plug of the pump, this needs to be exchanged. The container was lacking a rack for the GO-FLO bottles what made the handling of the bottles more difficult and time consuming.

The GO-FLO bottles: The wire provided for the GO-FLOs was surprisingly too thick so deck engineer Simon Wright had to cut out deeper grooves in to the plastic holders and the titanium screws (~2 days) as he had done already during JR177. Several of the bottles were missing the rubber springs, leaked badly and some were unable to close properly and had to be fixed and adjusted. On the wire there were tape marks stopping the messengers weights to slide down. The winch was provided with only 500 m of wire although the original plan was to sample down to 1000 m depth.

To avoid the hassle of contamination the GO-FLO bottles should be stored in strong sealable bags not only bin bags. The majority of these bottles need to be replaced or their Teflon coating needs to be renewed.

6.1.7 Acknowledgements

I would like to thank S. Wright and J. Klepacki for their help with the GO-FLOs, as well as M.J. Whitehouse, who did the macronutrient analyses of the GO-FLO samples. Also, I would like to thank the captain, officers and crew of the JCR for all their help and patience. The work carried out on cruise JR200 was funded by an AFI-CGS collaboration awarded to Dr. Rebecca Korb. [CGS10/48]. See: http://www.antarctica.ac.uk/afi/awards_round10.php#1048

6.1.8 References

Martin, J. H. and S. E. Fitzwater (1988). "Iron deficiency limits phytoplankton growth in the north-east Pacific subartic." Nature 331: 341-343.

Martin, J. H., et al. (1990). "Iron in Antartic Waters." Nature 345: 156-158.

A.R. Bowie, M.T. Maldonado, R.D. Frew, P.L. Croot, E.P. Achterberg, R.F.C. Mantoura, P.J. Worsfold, C.S. Law and P.W. Boyd, 2001, 2001, 'The fate of added iron during a mesoscale fertilisation experiment in the Southern Ocean', *Deep-Sea Research II*, 48, pgs. 2703-2743

Jickells T.D., An, Z.S., Andersen, K.K., Baker, A.R., Bergametti, G., Brooks, N., Cao, J.J., Boyd, P.W., Duce, R.A., Hunter, K.A., Kawahata, H., Kubilay, N., laRoche, J., Liss, P.S., Mahowald, N., Prospero, J.M., Ridgwell, A.J., Tegen, I. and Torres, R. (2005) Global Iron Connections Between Desert Dust, Ocean Biogeochemistry and Climate, Science 208, 65-71

Johnson, K. S., R. M. Gordon, and K. H. Coale. 1997. What controls dissolved iron in the world ocean? Marine Chemistry 57, 137-161.

6.2 Study of phytoplankton response to naturally iron enriched regions of the Scotia Sea

Daria Hinz¹, Sebastian Steigenberger¹, Mick Whitehouse², Rebecca Korb², Tom Bibby¹, Eric Achtenberg¹

¹National Oceanography Centre, Southampton, ²British Antarctic Survey

6.2.1 Overview

Iron is an essential component of the photosynthetic electron transfer chain and as such iron abundance and phytoplankton abundance are positively correlated. Iron concentrations in the Southern Ocean are generally low owing to the lack of continental derived Aeolian dust inputs. There are however, potential sources of iron into this system – including; seasonal melting sea ice, upwelling, and run-off / dust deposition from islands. The aim of this work, as part of JR200, is to correlate natural iron abundance with phytoplankton abundance, speciation and productivity with respect to the rest of the Scotia Sea food chain.

6.2.2 Phytoplankton physiology

Active chlorophyll *a* fluorescence is a non-invasive method of probing phytoplankton photophysiology by providing information on the functioning of photosystem II within the photosynthetic apparatus (Kolber et al. 1998; Suggett et al. 2005). Changes in biophysical parameters measured by active fluorescence techniques can then be used to infer the factors influencing phytoplankton growth in situ, including nutrient and light availability/stress (e.g. Greene et al. 1994).

During JR200, a Fast Repetition Rate (FRR) fluorometer was used to record continuous underway measurements from the ship's non-toxic supply, discrete measurements from CTD casts, and discrete measurements from bioassay experiments. The machine used was a bench top FIReTM system (Fluorescence Induction and Relaxation of Emission Spectrometer) manufactured by Satlantic (Canada).

6.2.3 Underway measurements on ship's non-toxic supply, Daria Hinz

The bench top FIRe[™] FRRf was connected to the ship's non-toxic supply within the main lab in order to monitor the physiological state of photosystem II (PSII) within the surface phytoplankton population throughout the study area.

Underway sampling was carried out using a flow-through cuvette, which was cleaned daily. Sampling was stopped for discrete measurements, but otherwise ran continuously for the entire cruise. The data will be analyzed at a later date using manufacturer-provided software.

6.2.4 Discrete measurements of samples from 5-day bioassays, Daria Hinz, Sebastian Steigenberger

A series of on-deck bioassay incubation experiments was conducted at four stations (Table 6.2.1). The aim of these experiments was to identify the factors limiting phytoplankton growth. Trace metal clean surface water was collected using the Tow-Fish during the station's acoustic survey, between about 5am and 6am ship's time. 2 litre sample bottles were subjected to varying nutrient and light conditions (Table 6.2.2). Sub-samples from the four Fe addition bioassays were collected at one or two day intervals (Table 6.2.3) and were run through the FIReTM FRRf after being allowed to relax in the dark for >30 minutes before analysis. Data will be analyzed later using manufacturer-provided software (FIReTM).

These experiments will be important demonstrations of conclusions drawn from the sampling of the natural phytoplankton community and nutrient availability in the Scotia Sea.

	Sampling location	Sampling method	Start date	End date
BIO1	Test station	Tow Fish	13/3/09	18/3/09
	(low chl.)			
BIO2	C3	Tow Fish	20/3/09	25/3/09
	(moderate chl.)			
BIO3	P2 – S.SG (moderate chl.)	Tow Fish	30/3/09	4/4/09
BIO4	P3 – N.SG	Tow Fish	4/4/09	9/4/09
	(high chl.)			

Table 6.2.1. Sampling method, location, and dates for bioassay experiments.

	15% of Surface PAR	15% of Surface PAR + Fe addition	2.5% of Surface PAR	2.5% of Surface PAR + Fe addition
Bottle	1-5	6-10	11-15	16-20
Number				

Table 6.2.2 . Conditions for bioassay experiments.

Sub-samples	Days 0 and 5	Days 1 and 3
Fe	Yes	Yes
FRRF	Yes	Yes
Chl	Yes	Yes
Nutrients	Yes	Yes
Lugols	Yes	No
Protein	Yes	No
SEM	Yes	No

Table 6.2.3 . Sub-samples taken and on which day.

6.2.5 Discrete measurements of samples from 24-hour bioassays, Daria Hinz, Sebastian Steigenberger

Two additional, short duration bioassays experiments were run for 24-hours total and subsampled as often as possible (between 1 and 10 hour intervals) (Table 6.2.4). 2 replicates of control (bottles A, C) and Fe added (bottles B, D) conditions were all placed in one incubator. The goal of these experiments was to collect high-resolution data on diel cycles within the bioassay experiments.

	Sampling location	Sampling method	Start date	End date	Comments
Experiment	C2	Tow Fish	19/3/09	20/3/09	Used 15% PAR
1	(moderate chl.)				incubator
Experiment	P2	Tow Fish	31/3/09	1/4/09	Used 2.5% PAR
2	(moderate chl.)				incubator

Table 6.2.4 . Sampling method, location, and dates for 24-hour bioassay experiments.

6.2.6 CTD casts, Daria Hinz

Discrete samples were collected from the niskin rosette during deep station casts and dimes station casts in dark 500 ml bottles and analyzed using the bench top FIReTM FRRf (Table 6.2.6). Samples were taken from 10 shallow depths (Table 6.2.5) and in addition, the chlorophyll maximum sample was size fractionated using 3, 5, 10 and 20 μ m poly-carbonate membrane filters. The data will be analyzed at a later date using software mentioned previously to provide vertical profiles of the abundance and physiology of the phytoplankton community throughout the study area, as well as the physiology and abundance associated with each size fraction.

Date	Event	Station
	number	
12/3/09	3	Test Stn
16/3/09	19	R1
17/3/09	31	Dimes 1
18/3/09	38	C2
21/3/09	66	C3
22/3/09	77	Dimes 6
22/3/09	79	Dimes 7
24/3/09	92	C4
25/3/09	102	Dimes 10
25/3/09	104	Dimes 11
28/3/09	131	R2
29/3/09	134	Dimes 13
29/3/09	135	Dimes 15
31/3/09	148	P2
1/4/09	159	Dimes 18
2/4/09	165	Dimes 21
3/4/09	173	P3
6/4/09	191	R3
10/4/09	231	PF3
10/4/09	232	PF4
11/4/09	238	PF5

Table 6.2.5 . Record of CTD casts.

Depths sampled (m)
120
100
80
60
50
40
30
20
10
5

Table 6.2.6. Depths sampled on CTD casts.

6.2.7 SEM, Daria Hinz

In addition to physiological measurements, samples were taken underway for later analysis using Scanning Electron Microscopy (SEM), to investigate coccolithophore abundance. Water was taken from the non-toxic supply and vacuum filtered through 0.4 μ m nucleopore poly-carbonate filters (Whatman) both underway and on station.

6.2.8 Acknowledgements

Funding for this work was provided by an AFI-CGS grant (a NOCS/BAS collaboration) awarded to Dr. Rebecca Korb. [CGS10/48], http://www.antarctica.ac.uk/afi/awards_round10.php#1048. Special thanks to Min Gordon for her help with chlorophyll analysis & Lugols samples, Dave Pond for the use of his filter rig, and Simon Wright for his technical expertise in altering equipment.

6.2.9 References

Greene, R.M., Kolber, Z., Swift, D.G., Tindale, N.W. and Falkowski, P.G. (1994) Physiological limitation of phytoplankton photosynthesis in the eastern equatorial Pacific determined from variability in the quantum yield of fluorescence. Limnol. Oceanogr. 39 1061-1074

Kolber, Z., Prasil, O. and Falkowski P. G. (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: Defining methodology and experimental protocols. Biochim Biophys Acta 1367: 88–106.

7. PHYTOPLANKTON BIOMASS & PRODUCTIVITY

Rebecca Korb & Min Gordon

7.1 Introduction

Although the Southern Ocean is the largest, high-nutrient, low chlorophyll (HNLC) region in the global ocean, there are areas where phytoplankton blooms occur regularly. Elevated chlorophyll and primary production are typically observed downstream of oceanic islands during the austral summer (e.g. Blain et al 2007). These blooms are generally dominated by diatoms, and potentially represent "hotspots" of carbon export.

In the northern Scotia Sea, large and intense blooms may at times be dominated by non-siliceous species such as dinoflagellates (Korb et al 2008), which could have important implications for carbon export in the region. Key abiotic factors controlling phytoplankton growth are light, iron and silicic acid. In this study, we examine how these environmental conditions (or indices of them) related to the phytoplankton communities over a productivity gradient across the Scotia Sea. In addition, we will compare the results of this autumn cruise to previous cruises carried out in the spring and in the summer to gain a seasonal perspective to phytoplankton community composition.

7.2 Aims

We will measure primary production, phytoplankton biomass and species composition and relate to environmental parameters, across a latitudinal gradient covering both areas of open ocean and shelf waters.

7.3 Methods and data coverage

7.3.1 Primary production

Primary production was measured using the radioisotope 14C following the standard methods of Korb. This method basically follows the JGOFS protocol and uses an on deck incubator with incubations lasting 24 hours in tubes with100, 77, 54, 30, 10, 6, 1, and 0% surface irradiance. Trace metal clean techniques were followed for sample collection. Bottles for incubations were cleaned at BAS (using HCl) and shipped south in plastic bags. Clean water samples were collected from the NOC towfish. However, all radioisotope work was carried out in the radioisotope lab and not in the clean container.

Primary production was measured at all the major biology stations (see Table 7.1)

7.3.2 Chlorophyll a

Chl a profiles were measured on water collected from all major biology stations as well as at a number of physics CTD stations (see Table 7.1). When a full profile was not measured, a sample was collected from the surface and from 20 m. Bottles were fired at nominal depths of 5, 10, 20, 30, 40, 50, 60, 80, 100 and 120 m and at a floating depth determined to be the chlorophyll maxima (from examination of fluorescence data on the downcast). Fluorescence data from the

CTD will be examined back at Cambridge and calibrated against the chlorophyll samples collected. PAR data from the shallow CTD cast will also be examined to determine euphotic depths.

In addition, size fractionated chlorophyll *a*, from 20 m, was measured at all main CTD stations. Chlorophyll samples, from the ships non-toxic seawater supply, were taken whilst the ship was underway. For coverage see Fig 7.1. These samples will be used to calibrate the Oceanlogger fluorescence.

All chlorophyll samples were filtered and then frozen at -20 °C and stored for at least a day until it was convenient to extract and analyse them on the ship.

7.3.3 Species composition

Lugols samples were collected at most stations at a depth of 20 m (see Table 7.1)

7.3.4 Photosynthetic physiology

The BAS FRRF could not be deployed on this trip as the lead connecting the FRRF to its deck unit was missing (it was taken out of the box last year for repair and not replaced before the FRRF was packed south).

7.3.5 Additional

At some stations (see Table 7.1) water samples were taken from the CTD for Si isotope analysis (for Kate Hendry, University of Oxford).

7.4 Results

Full data analysis will be performed back at BAS, Cambridge as many of the data sets are subject to a variety of correction factors, e.g. the chlorophyll standard needs to be calibrated on a spectrophotometer. Additionally, the data can only be fully interpreted with the contemporaneous physical oceanographic measurements from the CTD and Oceanlogger. A full evaluation of all the data should be completed during summer 2008.

Table 7.1. Phytoplankton samples collected during JR200.

Station	names(s)	Prim prod	Chl profile/SF	Chl 20 m	Lugols 20 m	Si isotopes	POC
	Test	у	У		у		у
	R1		У		У	У	у
D1			у		у		у
D2	C2	У	У		У	У	у
D3				У	У		у
D4	C3	У	У		У	У	у
D5				У	У		у
D6			У		У		у
D7			у		У		у
D8				У	У		у
D9	C4	у	у		у	у	у
D10			у		У		у
D11			у		У		у
D12	R2	У	у		У		у
D13			у		у		y *
D14	*	*	*	*	*	*	*
D15			у		У		у
D16	P2	У	у		У	у	у
D17				У	у		у
D18			у		у		у
D19			-	у	y		y
D20			у		y		y
D21			y		y		y
	P3	у	y		y	у	y
	R3	у	y		y	y	у
	PF				у		

* No CTD due to bad weather.

Fig 7.1 Coverage of underway Chl samples on JR200

8. MESOZOOPLANKTON SAMPLING

8.1 Longhurst Hardy Plankton Recorder (LHPR) studies

Peter Ward, Geraint Tarling

8.1.1 Background

As on the two previous cruises (JR161 & 177) LHPR sampling was undertaken at each station to describe the fine-scale (~25 m resolution) of mesozooplankton within the top 1000 m. This year the LHPR had its own dedicated Down-Wire Net Monitor which obviated the need to take the instrument on and off the net frame for each haul. This probably contributed to the greater reliability and freedom from communication problems that we encountered on cruise JR161 and to a lesser extent on JR177.

8.1.2 Method

We wished to undertake 2 deployments at each station; a night-time and a daytime haul to1000 m with a sampling resolution of around 25 m. To achieve this the gauze advance was set to 2 minutes and the net deployed to 1000 m. By paying out cable at around 40-50 m per minute at a ships speed of 2.-2.5kts, one thousand meters net depth was achieved when approximately 2000 m of wire had been paid off the winch drum, a ratio of ~2:1. The LHPR was then allowed to settle at depth and once stable at 1000m the open/close mechanism was switched to the open position, ie in line with the cod-end, and the gauze advance activated. A couple of advances were allowed to clear the net of any material carried down on the descent before hauling to the surface at ~25 m per minute. In this way the depth resolution of each patch of gauze was around 25 m and around 20 m³ of water was swept. Gauzes were cut into respective patches onboard ship and frozen at -20° C to await analysis in the UK.

A total of 14 hauls were undertaken at 8 stations (Table 8.1). At 5 stations both hauls were successfully carried out, although at CS2 the daytime haul was cancelled due to the sea cable needing re-termination and at CS3 the feedback mechanism was found not to be operating on the ascent (E067). This was due to the plug to the motor being partially disengaged. Addition of a cable tie prevented this happening again.

Stations only 1 haul was taken: At R3 only one haul was carried out due to the station being shortened as a result of bad weather. No sampling was undertaken at the Polar Front station (R4) due to poor weather conditions.

Table 8.1 LHPR. Summary of hauls

Station	Event	Patches	Comments
R1	E21 (Day)	42	OK
	E27 (Night)	43	OK
CS2	E37 (Night)	41	OK
CS3	E065 (Night)	43	OK
	E067 (Day)		No feedbacks
CS4	E91 (Night)	45	OK
	E93 (Day)	45	OK
R2	E109 (Night)	46	OK
	E120 (Day)	47	OK
P2	E147 (Night)	44	OK
	E153 (Day)	50	OK
P3	E172 (Night)	43	OK
	E180 (Day)	44	OK
R3	E196 (Day)	46	OK Recovered in darkness

8.2 Oithona similis (Copepoda:Cyclopoida): lifecycles and population dynamics

Peter Ward and Andrew Hirst (Queen Mary College, University of London)

8.2.1 Introduction

Work has continued throughout JR200 on elaborating the lifecycle of this, the most abundant copepod in the Southern Ocean, and probably elsewhere in the world ocean (Gallienne and Robins 2001).

Previous work in the Scotia Sea has focussed on abundance and distribution in relation to temperature (Ward and Hirst 2007) and an assessment of mortality during spring (Hirst and Ward 2008).

Our aim during Q4 cruises, has been, and is, to investigate population structure, recruitment and mortality with regard to prevailing conditions across the Scotia Sea in relation to season.

8.2.2 Method

At all stations sampled we used a variety of methods to capture *Oithona* spp. A motion compensated paired bongo net (0.62m mouth dia) equipped with 100 and 200 micron mesh nets was deployed to 400 m and hauled vertically to the surface, as was a 53micron mesh paired (minibongo) net (0.18 m mouth dia). Additionally a CTD rosette equipped with 24 x 10 l bottles was also deployed to 400 m and 2 bottles sampled each of the following depths, 400, 300, 200, 150, 100, 80, 60, 50, 40, 30, 20 and 10m. Bottle contents were passed through a 53 micron filter and back-washed into 4% formalin preservative. The close spacing of bottle depths in the surface 100 m was based on the results from the spring cruise (JR161) which suggested that the majority of the population was resident in this part of the water column (Hirst and Ward 2008). In the UK, following sample analysis, data on stage abundance from all nets and water bottles will be standardised and compared to assess their relative sampling efficiency. The water bottle samples will also provide fine-scale information on the distribution of life-stages of this and its less abundant congener *Oithona frigida* in relation to physical and environmental variation.

8.2.3 Carbon analysis

Two hundred and fifty adult female *O.similis* were picked from samples obtained at 4 of thestations sampled. Individuals were placed in filtered sea-water in a watch glass and adhering phytoplankton detritus was removed from aliquots of 20 animals at a time. Animals were bulked up and retained on a 25 mm pre-ashed GFF filter which was frozen at -80_oC to await carbon analysis. At two of the stations *O. frigida* was also sufficiently abundant to allow the same procedure to take place.

8.2.4 Bongo Net samples

The bongo samples taken at each station were preserved in 4% sea-water formalin for analysis in the UK. Data will be used to determine community structure across the Scotia Sea and compared with similar data collected during the two previous cruises of this seasonal series.

8.2.5 References

Gallienne CP, Robins DB (2001) Is *Oithona* the most important copepod in the world's oceans? Journal of Plankton Research 23: 1421-143.

Ward P, Hirst AG (2007) *Oithona similis* in a high latitude ecosystem: abundance, distribution and temperature limitation of fecundity rates in a sac spawning copepod. Marine Biology 151: 1099-1110.

Hirst AG, Ward P (2008) Spring mortality of the cyclopoid copepod *Oithona similis* Mortality of the cyclopoid copepod *Oithona similis* in polar waters. Marine Ecology Progress Series 372: 169-180.

8.3 MOCNESS sampling

Geraint Tarling, David Pond, Peter Ward

8.3.1 Background

The principal aim of sampling with the MOCNESS net during the DISCOVERY 2010 cruises was to obtain mesozooplankton specimens from different parts of the water column in a condition suitable for determination of body condition indices such as carbon, nitrogen, lipids and stable isotopes. The MOCNESS is equipped with 9 nets that open in a sequential manner.

Opening and closing of the nets during a double oblique deployment results in a set of depth discrete samples over the sampled water column. Our working hypothesis is that certain developmental stages may occupy different parts of the water dependent on (1) their body condition (2) the stage in the life-cycle and (3) the time of year. The present cruise, carried out in the austral autumn, is the final of a set of three cruises covering also spring (JR161) and summer (JR177).

FIG 8.3.1 1M² MOCNESS NET BEING DEPLOYED

8.3.2 Method

A $1m^2$ MOCNESS (300µm mesh) was deployed at each core sampling station, one deployment during daylight and one during nighttime. Deployments were made to a depth of 1000 m with net 1 opened (wire-out rate of 30 m/min). It was then hauled back in at an average rate of 20 m/min, incrementing regularly through remaining 8 nets. The depth interval were as follows: (Net 2) 1000 to 875 m, (Net 3) 875 to 750 m, (Net 4) 750 to 625 m, (Net5) 625 to 500 m, (Net 6) 500 to 375 m, (Net 7) 375 to 250 m, (Net 8) 250 to 125 m, (Net 9) 125 to 5 m. We aimed to cover the each depth interval over a 10 minute period.

When the nets were aboard, they were sampled by Tarling and Pond to extract small numbers of calanoid copepods (see below). Hicks occasionally took out some euphausiids, mainly *Euphausia triacantha* and Cherel occasionally took out some myctophid fish. Any specimens extracted by Hicks or Cherel were noted on the back of the sample labels.

After sampling, all daytime catches (net 2 to 9) were preserved in 95% Ethanol. All nighttime catches (net 2 to 9) were preserved in Formalin. Net 1 was mostly discarded from day and nighttime catches although some were preserved in 95% Ethanol.

Problems encountered: (1) some twisting during deployment ended up with kinks in the towing bridle. This will need replacing (2) two buckets were lost (3) the stainless steel runner bars became bent and required replacement (4) tow cable damaged

	Time (GMT) Latitude L	anditude F u	ent Number Station Name	Water Depth (m) Relative Win	od Speed	Rate VA	m fut S	hip Speed Net Num	Open Net	Dooth Close I	Net Depth Volume Fil	taged Dura	tion	Comment				
B B			195 B3 DAV											Comment				
					27.1				8		125						-	
									7								$ \rightarrow $	
B B						-21			6								$ \rightarrow $	
B B						-30			5				9					
	06/04/2009 17:46 -52.84188	-37.03099	195 R3 DAY	2187.56	20.8	-20	1343	1.68	4	750	625	660	13					
BAC BAC <td>06/04/2009 17:35 -52.84206</td> <td>-37.04102</td> <td>195 R3_DAY</td> <td>2200.94</td> <td>26.9</td> <td>-15</td> <td>1547</td> <td>2.72</td> <td>3</td> <td>875</td> <td>750</td> <td>565</td> <td>11</td> <td></td> <td></td> <td></td> <td></td> <td></td>	06/04/2009 17:35 -52.84206	-37.04102	195 R3_DAY	2200.94	26.9	-15	1547	2.72	3	875	750	565	11					
Sole	06/04/2009 17:26 -52.84331	-37.04879	195 R3_DAY		30.5	0	1667	2.54	2	1000	875	450	9					
BOOM IN ALLEY BURY DU N N A B A B B B C B B B C B B B C B	06/04/2009 16:30 -52.85013	-37.09244	195 R3_DAY	2258.92	28.5	27	4	2.25	1	0	1000	2131	55					
B B <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									-		-							
																		<u> </u>
									-									<u> </u>
												812						
															in arter 6.6	minutes -	read sola at	end of net
									3			_						<u> </u>
Single 302 Single 302 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td>2520</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									4			2520						
Second M. 10 S									-						pped once a	C 23011 W3		
Biologic 15 Biologic 17									-		-						$ \longrightarrow $	
BABOR 15 BADR Control Control BADR Control Contro Control Control <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									7									
B) <									6								$ \rightarrow$	
Shore			167 P3 DAY	4301.95		-25			5			720	13	Full flow fo	r this net			
S12 S	02/04/2009 18:31 -52.85087	-40.05837	167 P3 DAY	4301.95	28	-25	1428	1.95	4	750	625 bed		9	Flow resum	ed part way	thru		
No. 2000 10.4 classe		-40.06402			27.4	-25	1712	2.05	3									[
HANDON 32.7 47.140 41.218 41.21	02/04/2009 18:06 -52.84005	-40.0714	167 P3 DAY	4501.96	26.9	0	1991	2.15	2	1000	875 bed		14					
INDEWED 1000	02/04/2009 17:04 -52.81215	-40.11167	167 P3_DAY	3981.75	28.3	30	1	2.35	1	0	1000 bed		61	bed flow so	me comms	probs at st	art	
Number 13 91.200 91.200 91.200 92.00 92.00 9 <									-		-	758						
INFORMER 9.1278 1.128 6.2 1.12 6 1.10									-									<u> </u>
HARVAND 4 40 OPE HARVAND 4 40												520	-					<u> </u>
HAR 00000 HA PSI 40 ALISTE DIS NO DIS NO <thdis no<="" th=""> <thdis no<="" th=""> <thdis< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td></thdis<></thdis></thdis>									-									<u> </u>
HAR 2000 HA 43.13 44.1374 15.14 2.14 2 170 70 16 1 1 HAR 2000 HA 3.150 1.150 1.11 2 100 110 2 100 110 2 100 110 2 100 110 2 100 110 2 100 110 2 100 110 2 100 110 2 100 <									-			501	8					<u> </u>
BAD/0000 BAD BA												_	7					
11.002000 162 25.440 44.3838 13.74 20.10 100 1444 77 0 100 13.00200 162 25.146 44.498 148 ft str 101 101 100 110 100									-			_	7					
11.00/2000 013 -9 1.20 9 1.20 9 1.20 9 1.20 9 1.20 1.2						-			-			2494					/	'
11.003/000 0622 42.409 14.4482, MTR 14.493 14.72 14.3 42.0 12.00									-	-								'
B100000000 92.1120 41.4496 144 F2 wT 1071 141 210 120 777 220 440 120 120 B1000000000000000000000000000000000000									-									
Interview 144 1									7									'
International state 144									5									
11.00/2009 03.98 41.3898 14.48 PL, NTE 150.1 161.1 100 <																	$ \longrightarrow $	
11.002/000 02.36 02.38 0.388 1.48 1.17 1.08 1.77 1.08 1.87 1.09 1.77 1.88 1.88 1.88 1.87 1.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\longrightarrow</td> <td></td>									4								$ \longrightarrow $	
Ballon 2000 c2:14 C2:14 <thc2:14< th=""> C2:14 C2:14</thc2:14<>									3									
1270/3000 3231 95.7022 44.3777 11.18 6 277 11 10	31/03/2009 02:14 -55.24474	-41.37774		3364.36		0	2145	1.05	2	1000	875	719						[
1270/3000 3231 95.7022 44.3777 11.18 6 277 11 10	31/03/2009 00:53 -55.27885	-41.32012	145 P2 NITE	4000	18.3	13	4	2.82	1	0	1000	3781	81					
1270/3/2009 1302 +57222 +42.3336 12.87 647 -707 370 370 372 370 372 370 372 370 372 447 8 370 372 447 8 370 370 347 8 50 372 447 8 370 <td></td> <td>-42.35773</td> <td></td> <td>4000</td> <td></td> <td>-30</td> <td>304</td> <td></td> <td>9</td> <td>125</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-42.35773		4000		-30	304		9	125	0							
127/03/2009 14.43 567.300 42.32845 121.82 DAY 4000 23 -90 14.10 1.37 6 500 373 447 8 127/03/2009 14.43 567.322 42.3697 121.82 DAY 4000 35.2 -11 157.1 1.43 4 750 652 491. 8 441 577.17 42.237.67 452.387 457.38 447.484 47.394 4000 27.4 0 242.1 77.87 2 1000 87.7 457.88 27.03/2004 141.37 47.87.00 37.3<	27/03/2009 15:11 -56.75138	-42.3461	121 R2_DAY	4000	20.4	-29	604	1.17	8	250	125	599	10					
12703/2009 9444 +567329 +423377 121 88_DAY 4000 28.3 -40 1432 137 5 623 500 564 10 0 10 12703/2009 9429 +567564 +42.2954 121 88_DAY 4000 28.3 -11 1564 14 3 975 750 560 10 0 10													9					
1270932009 4432 49.75212 44.2.8687 1.11 & 2_DAY 4000 26.2 -9.1 167.1 14.3 47 700 622 491. 6 1									-				8					
1 27032009 4427 547:594 44.2394 121 82 DAV 4000 248 3-1 1964 1.4 3 877 700 560 10 10 27032009 1427 55.7623 44.2397 121 82 DAV 4000 337 30 25 -0.11 1 0 1000 150.1 75 165 8 10 2503209 1212 55.7623 44.2397 121 82 DAV 4001 137 30 25 -0.11 1 0 1000 150.1 75 62 70.7 10 128																		'
1 27/09/2009 54.21 -56.72*0 +42.2376 11.18.2 DAV 4000 27.1 0 21.82 1.73 2 1000 873 4.56 8 12709/2009 5120 -56.76201 +42.37869 108.82, MTE 4001.331 112 -21 281 0.65 9 127 5 607 1007													-					<u> </u>
1 1 0 1000 3601 79 Lost corms # 900 m. Pressed Of. and it went through n 28/09/2009 01:12 -55 Fool -42.3137 100 82 MTE 4001 31 11.2 -21 231 5 6701 100 3601 79 Lost corms # 900 m. Pressed Of. and it went through n 28/09/2009 01:12 -55 Fool -42.3137 100 82 MTE 4081.31 11.2 -21 231 0 1000 3601 79 Lost corms # 900 m. Pressed Of. and it went through n 28/09/2009 02:3 -55 Fool -42.34823 100 82 MTE 4081.31 11.2 -21 78 2.34 7 373 230 250 10.3 10.4									-				10					<u> </u>
1 1													8					-
128/03/2009 02:45 -42.36079 108 82_NTE 40111 12 -22 544 0.72 8 230 125 1001 16.8 26/03/2009 02:45 -56 7636 -42.3423 108 82_NTE 405131 112 -21 789 2.34 7 373 250 550 10.9 <									-	-				LOST COMM	s at 900 m. P	rressed OK	and it went	.through re
28/03/2009 02:45 -56.76207 -42.34823 108 R2_NTE 408131 112 -21 789 2.34 7 375 250 560 10.5 28/03/2009 02:42 -56.76427 +12.3442 100 R2_NTE 408131 10.5 -22 1004 2.55 6 500 375 651 12.2 28/03/2009 02:42 -56.76427 +12.3444 100 R2_NTE 408131 14.4 -21 1325 2.29 5 625 500 437 9 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>'</td>									-		-							'
26/03/2009 02.32 -56 76336 +42.33447 108 82 NITE 408131 10.5 -22 1054 2.56 6 500 375 651 12.2 0 2.8 28/03/2009 02.12 -56 7484 +42.3442 108 82 NITE 408131 14.4 -21 1249 2.84 500 477 9 0 28/03/2009 02.15 -56 7484 +42.3446 108 82 NITE 408131 15.6 -0 1601 1.66 3 873 730 490 9 0 0 0 0.000 875 545 10.3 0 0 0 0 0.000 2256 66 0 0 0 0 0.000 2256 66 0 0 0 0.000 2256 66 0 0 0 0.000 2256 66 0 0 0 0 0 0.000 2256 66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>'</td>									2									'
22/03/2009 02:24 -65.76417 -42.3242 108 R2 NITE 4081.81 14.4 -21 1286 2.29 3 625 423 8 0 0 22/03/2009 02:15 -56.76424 -42.30461 108 R2 NITE 4081.51 10.5 -20 1601 1.65 3 625 423 8.2 0 0 22/03/2009 02:05 -56.7522 +42.30561 108 R2 NITE 4081.51 10.5 -20 1601 1.65 3 625 423 8.2 0 0 22/03/2009 01:05 -56.7522 +42.286 108 R2 NITE 4081.51 11.7 0 1817 1.04 2 1000 875 345 10.5 0 0 1000 235 66.6 0 0 100 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									6									
26/03/2009 02:13 -56.76484 -42.31446 108 R2 NITE 4081 31 14.1 -21 1419 2.21 4 750 625 42.3 8.2 26/03/2009 02:6 -56.7622 -42.3064 108 R2 NITE 4081 31 15.6 -20 1601 1.66 3 875 750 450 9 26/03/2009 02:05 -56.7622 +42.3846 108 R2 NITE 4081 31 15.6 -20 1601 1.66 3 875 750 450 5 7 3 25 5 5 5 7 3 25 5 5 5 7 3 3 4 4 4 4 5 5 7 37 250 757 3 4 4 4 4 5 6 5 6 5 6 5 5 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>12.2</td><td></td><td></td><td></td><td>\longrightarrow</td><td></td></td<>													12.2				$ \longrightarrow $	
26/03/2009 02.06 -56.7522 -42.30561 108 R2_NITE 4081.31 11.6 -20 1601 1.66 3 875 730 490 9 26/03/2009 0125 -56.7522 -42.228 100 R2_NITE 4081.31 11.7 0 1817 1.04 2 1000 875 545 10.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>82</td> <td></td> <td></td> <td></td> <td>\longrightarrow</td> <td></td>									-				82				$ \longrightarrow $	
26/03/2009 01:55 -56.75528 -42.296 108 R2_NTE 4081.31 11.7 0 1817 1.04 2 1000 875 545 10.5 0 26/03/2009 01:95 -56.76512 -42.288 108 R2_NTE 4081.31 7.6 10 3 2.74 1 0 1000 2856 66 0 0 24/03/2009 17:24 -58.0382 -43.11978 94 C4_DAY 2953.5 29.3 21 255 1.87 8 230 125 60.3 14 0 1000 2856 66 0 0 24/03/2009 17:21 -58.0382 -43.10189 94 C4_DAY 3001.76 251 -19 1117 2.1 6 500 375 836 14 0 1000 1000 2302 100.8 10.8													9				$ \longrightarrow $	
26/03/2009 00-39 -56.75912 -42.2233 100 R2 MTE 403131 7.6 10 8 2.74 1 0 1000 2256 66 0 0 24/03/2009 17.34 -58.0342 -43.11978 34 C4 DAY 2953.26 29.3 -21 555 1.87 8 250 125 80.3 14 0 1000 2256 66 0 0 24/03/2009 17.21 -58.0352 -43.10189 34 C4 DAY 2001.75 251.1 -21 325 1.85 7 775 230 73 14 0 1000 2856 14 0 1000 2403/2009 16124 -58.03584 +43.06147 36 C4 DAY 3001.76 22.3 -20 1365 1.61 5 650 300 692 13 0 1000 24/03/2009 16124 -58.03814 +43.0644 94 C4 DAY 3001.76 22.8 -20 1365 1.61 5 650 300 692 13 0 1000 23/03/2009 16124 -58.03814 +43.04815 94 C4 DAY 3001.76 22.8 -20<						0			-				10.5				$ \longrightarrow$	
24/03/2009 17:34 -58.03842 -43.11978 94 C4_DAY 2955.26 29.3 -21 555 1.87 8 250 125 803 14 24/03/2009 17:21 -58.03852 -43.08195 94 C4_DAY 3001.75 251 -21 825 1.87 8 250 755 13						10			1								$ \rightarrow$	
24/03/2009 17:2: -98.0382 -43.0119 94 C4_DAY 3001.76 25.1 -12 82.5 1.86 7 37.5 250 75.5 13 0 0 24/03/2009 17:06 -58.0386 +43.08147 94 C4_DAY 3001.76 25.1 -19 1117 21.0 6 300 37.5 83.6 14 0 0 24/03/2009 15:4 -58.0386 +43.08147 94 C4_DAY 3001.76 22.3 -20 1855 161 5 600 500 502 502 502 12 0 0 0 24/03/2009 16:42 -58.0386 +43.04805 94 C4_DAY 3001.76 25.8 -20 1611 1.69 4 750 525 702 12 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>555</td> <td></td> <td>8</td> <td>250</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							555		8	250								
24/03/2009 16:24 -98.03868 +43.06417 94.04 24/03/2009 16:24 -98.03868 +43.0644 94.04 24.03/2009 16:24 -98.03868 +43.0644 94.04 20.0176 22.3 -20 1365 1.61 5 650 300 692 13 0 24/03/2009 16:24 -58.03864 +43.04605 94.05 DAY 3001.76 22.8 -20 1365 1.61 5 650 300 692 13 0 24/03/2009 16:24 -58.0380 +43.04805 94.05 DAY 3001.76 22.8 -20 1451 1.69 4 730 625 702 12 0 12 12 14.04805 12		-43.10189	94 C4_DAY	3001.76	25.1	-21	825	1.85	7	375	250	755	13					
24/03/2009 16:54 -58.03848 -43.0644 94 C4 DAY 3001.76 22.3 -20 1365 1.61 5 650 500 692 13 13 13 13 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									6									
24/03/2009 16:29 -58.0380 - 43.0315 54.04 DAY 3001.76 22.9 -22 168 3 875 750 725 18 0 24/03/2009 16:19 -58.0380 -43.01821 54.04 DAY 3001.76 22.1 -19 2081 1.92 2 1000 875 597 10 0 24/03/2009 15:07 -58.0380 -43.01821 54.04 DAY 3001.76 22.1 -19 2081 1.92 2 1000 875 597 10 0 10.9 18.9 24.03/200 18.9 24.03/200 18.9 24.03/200 19.2 2 1000 875 597 10 0 10.9 18.9 24.03/200 18.9 24.03/200 18.9 24.03/200 19.2 10.0 875 597 10 0 10.9 18.9 24.03/200 18.9 25.0 18.9 14.2 19.0 10.00 832 70.18.9 18.9 24.03/200 18.9 24.03/2004 18.9 25.0 18.3 13.3 -30 835 2.33 7 375 250	24/03/2009 16:54 -58.03848	-43.0644	94 C4_DAY	3001.76	22.3	-20		1.61										
24/03/2009 16:19 -58.0389 -43.01821 94 C4 DAY 3001.76 22.1 -19 2081 1.92 2 1000 875 597 10 0 24/03/2009 16:19 -58.03705 -42.92355 94 C4 DAY 3001.76 22.1 -19 2081 1.92 2 1000 875 597 10 0 24/03/2009 03:10 -58.03705 +42.92355 94 C4 DAY 3001.54 26 25 16 1.42 1 0 1000 3332 70 18.9V 0 24/03/2009 03:1 -58.0121 -43.1467 89 C4 NITE 2943.3 10.3 -31 567 2.17 8 259 125 505 8.3 0 0 24/03/2009 03:2 -58.01454 +43.13271 89 C4 NITE 293.13 11.3 -30 835 2.13 73 220 521 8.6 0 0 24/03/2009 03:32 -58.01454 +43.12289 89 C4 NITE 292.8 11.4 -30 1136 2.15 6 500 375 619 10.3 0 <																		
24/03/2009 15:07 -58.03705 -42.92355 94 C4_DAY 3001.54 26 25 16 1.42 1 0 1000 3332 70 18.9V 24/03/2009 03:10 -58.021 -43.1467 89 C4_NTE 2943.5 10.3 -31 567 2.17 8 259 125 505 8.3 6 24/03/2009 03:2 -58.0144 -43.13271 89 C4_NTE 2943.5 11.3 -30 835 2.33 7 375 220 521 8.8 6 6 6 300 375 619 10.3 6 11.6 2.15 6 500 375 619 10.3 6 6 300 375 619 10.3 6 6 300 375 619 10.3 6 6 300 375 619 10.3 6 6 300 375 619 10.3 6 10.3 6 300 375 619 10.3 6 10.																		
24/03/2009 03:31 -58.0121 -43.1467 89 C4_NITE 2943.3 10.3 -31 567 2.17 8 259 125 505 8.3 24/03/2009 03:42 -58.0141 -43.13571 89 C4_NITE 2931.53 11.3 -30 835 2.33 7 375 250 521 6.8 24/03/2009 03:32 -58.0154 -43.12289 89 C4_NITE 2928.9 11.4 -30 1136 2.15 6 500 375 619 10.3 6									-	1000								
24/03/2009 03:42 -58.01414 -43.13571 89 C4_NITE 2931.53 11.3 -30 835 2.33 7 375 250 521 6.8 24/03/2009 03:32 -58.01654 -43.12289 89 C4_NITE 2928.9 11.4 -30 1136 2.15 6 500 375 619 10.3	a feetane and a second								-	0								
24/03/2009 03:32 -58.01654 -43.12289 89 C4_NITE 2928.9 11.4 -30 1136 2.15 6 500 375 619 10.3									-									<u> </u>
24/05/2009 0317 - 38.01947 - 44.10376 89 C4 NITE 2918.46 9.6 -20 1478 2.19 5 625 500 955 15.4																		
	24/03/2009 03:17 -58.01947	-43.10376	89 C4 NITE	2918.46	9.6	-20	1478	2.19	,	625	500	955	15.4					

24/03/2009 03:02	-58.02094	-43.08211	89 C4_NITE	2899.18	8.9	-20	1791	2.4	4	750	625	897	14.4	1			
24/03/2009 02:50	-58.02214	-43.06618	89 C4_NITE	2895.19	9.3	-20	2021	2.27	3	875	750	726	12.1	1			
24/03/2009 02:39	-58.02355	-43.04981	89 C4_NITE	2884.87	8.2	27	2202	2.41	2	1000	875	598	10	5			
24/03/2009 01:20	-58.0327	-42.94849	89 C4 NITE	2817.1	13.4	15	1	2.54	1	0	1000	3957	79.6				
22/03/2009 03:08		-44.01637	75 C3 nite	3002.48	12.2	-29	366	0.87	9	125	3	719	10.46				
22/03/2009 02:57		-44.02053	75 C3 nite	3003.43	11.2	-31	696	1.44	8	250	125	732	10.36				
22/03/2009 02:45		-44.02568	75 C3_nite	3001.27	13.2		1059	1.31	7	375	250	758	12.3	_			
		-44.02368		5001.27	13.1	-21			6		375	936.6					
22/03/2009 02:30			75 C3_nite			-29	320	1.38	-	500				Slowed dow			
22/03/2009 02:22		-44.03479	75 C3_nite	3001.32	10.7	-21	1469	1.03	5	625	500	471.8		Net slowing			
22/03/2009 02:18	-59.63341	-44.03619	75 C3_nite	3002.28	11.5	-22	1549	2.55	4	750	625	212	3.51	Very fast st	ill - houting in a	at 15!	
22/03/2009 02:14	-59.63736	-44.03779	75 C3_nite	0	11	-29	1658	0.65	3	875	750 ?		4.03	Now comin	g up far tooeki	60	
22/03/2009 01:48	-59.65256	-44.04394	75 C3 nite	3001.86	9	0	2214	-2.02	2	1000	875	1487	25.5	Difficult cur	rrents - MOCN	ESS coming up	pivery slowly
22/03/2009 00:29	-59.71431	-44.03656	75 C3 nite	3002.39	10.4	17	-16	2.41	1	0	1000	3632	79				<u> </u>
21/03/2009 20:17		-44.18956	72 C3 DAY	4502.21					9	125	0	765	13	1			
21/03/2009 20:07		-44.18956	72 C3 DAY	4502.21		_			8	250	125	600.8	10				
21/03/2009 19:54		-44.18956	72 C3 DAY	4502.21	6.1	-20	737	2.39	7	375	250	704	13				
									-								
21/03/2009 19:42		-44.1776	72 CB DAY	4501.99	4.8	-20	995	2.33	6	500	375	717	13				
21/03/2009 19:29		-44.16523	72 C3_DAY	4165.18	4.8	-20	1263	2.16	6	625	500	723	13				
21/03/2009 19:17	-59.71532	-44.15346	72 C3_DAY	4500	3.9	-20	1513	2.1	4	750	625	689	12				
21/03/2009 19:04	-59.71198	-44.14158	72 C3_DAY	4502.6	4.9	-20	1764	2.1	3	875	750	684	12				
21/03/2009 18:52	-59.70873	-44.13068	72 C3 DAY	4502.16	3.5	0	1986	2.15	2	1000	875	614	12				
21/03/2009 17:44		-44.06113	72 C3 DAY	4500	8.8	28	20	1.48	1	0	1000	3150	66	1970 m cab	le out		
18/03/2009 01:37		-44.34489	35 C2nite	4550.97	22.3	-31	269	1.25	9	125	3	526	9				
18/03/2009 01:27		-44.35084	35 C2nite	4501.34	19.9	-31	569	-0.01	8	250	125	584	9.7				
18/03/2009 01:18		-44.35625	35 C2nite	4501	23.6	-31	849	0.08	7	375	250	519	9.1				
18/03/2009 01:08		-44.36183	35 C2nite	4301	24.8	-31	1147	0.64	6	500	375	567	10				
18/03/2009 01:00		-44.36661	35 C2nite	4501.75	22.2	-30	1387	0.35	5	625	500	465	8.3	l .			
18/03/2009 00:59	-60.16283	-44.36704	35 C2nite	4502	19.9	-30	1409	0.66	4	625	500	498	9	no feedbac	k		
18/03/2009 00:50	-60.16888	-44.37277	35 C2nite	4502	20.3	-31	1689	-0.34	3	875	750	581	10.7	No feedbac	k still - hope th	hat the feedb	ack is taped
18/03/2009 00:39	-60.1758	-44.37927	35 C2nite	4502	22.1	-31	2022	-0.32	2	1000	875	407	7.9	no feedbac	k		
17/03/2009 23:15	-60.22919	-44.4252	35 C2nite	5459.25	22.9	21	22	2.51	1	0	1000	3716	76	No feedbar	k on incremen	tofaet	
17/03/2009 19:44		-44.42936	32 C2day	4502.23	20.9	-31	232	1.58	9	125	4	388				is of thes	
		-44.42918		4501.64	18.4	-30	452	2.26		250	125	454	8.2				
17/03/2009 19:36			32 C2day						8								
17/03/2009 19:29		-44.42888	32 C2day	4501	21.7	-30	662	2.18	7	375	250	382	7.2				
17/03/2009 19:21		-44.42926	32 C2day	4501.93	20.6	-31	900	1.84	6	500	375	400	7.5	5			
17/03/2009 19:14		-44.42914	32 C2day	4500.86	21	-31	1118	2.05	5	625	500	355	7	1			
17/03/2009 19:08	-60.24951	-44.42879	32 C2day	4501.87	20.4	-31	1301	1.83	4	750	625	304	6	5			
17/03/2009 19:02	-60.25292	-44.42866	32 C2day	4500	20.4	-29	1488	2.22	3	875	750	305	7	7			
17/03/2009 18:53	-60.25763	-44.42857	32 C2day	4500	20.5	0	1642	1.15	2	1000	875	442	9				
17/03/2009 17:57		-44.42501	32 C2day	4500	20.8	20	-1	1.81	1	0	1000	1980		1642 m cab	le out		
16/03/2009 20:21		-48.2977	26 R1 day	1502.27	22.5	-20	178	1.88	9	125	3	470	8.8		10.005		
16/03/2009 20:08		-48.28937		1502.27	22.5	-20	430	1.63	8	250	125	670	12	_	<u> </u>		
			25 R1_day														
16/03/2009 19:57		-48.28173	26 R1_day	1515.26	23.9	-21	663	1.75	7	375	250	648	11.6	2			
16/03/2009 19:45		-48.27331	26 R1_day	1489	26.3	-19	899	1.97	6	500	375	649	11.7				
16/03/2009 19:34	-60.45126	-48.26492	26 R1_day	1475	21.7	-20	1124	1.9	5	625	500	608	11.4	1			
16/03/2009 19:21	-60.45683	-48.25565	26 R1 day	1400	23.7	-20	1385	1.76	4	750	625	683	12.4	1			
16/03/2009 19:07		-48.24643	26 R1 day	1458.91	24.6	-20	1672	2.26	3	875	750	771	15				
16/03/2009 18:56		-48.23867	25 R1_day	1458.91	25	0	1852	2.12	2	1000	875	600.1	11				
		-48.19476	26 R1 day	1458.91	23.3	29	6	0.78	1	0	1000	2762	64				
	20.42000	-48.187	12 R1 nite	1913.45	35.7	-21	12	0.99	9	125	7	494.8	9.7		⊢ − 		
16/03/2009 17:51	-60 55115	40.107		1913.46	33.2			0.99	8	250		494.8 303.4					
16/03/2009 17:51 15/03/2009 01:12		40.40680				-20	207		-		125		9.6				
16/03/2009 17:51 15/03/2009 01:12 15/03/2009 01:02	-60.5464	-48.18658	12 R1_nite					0.7									
16/03/2009 17:51 15/03/2009 01:12 15/03/2009 01:02 15/03/2009 00:53	-60.5464 -60.54157	-48.18551	12 R1_nite	1880.32	27.3	-21	404		7	375	250	687.8	12.7	1			
16/03/2009 17:51 15/03/2009 01:12 15/03/2009 01:02 15/03/2009 00:53 15/03/2009 00:40	-60.5464 -60.54157 -60.53531	-48.18551 -48.185	12 R1 nite 12 R1 nite	1880.32 1717.33	27.3 31.7	-20	404 669	1.22	6	500	375	580.8	10.5				
16/03/2009 17:51 15/03/2009 01:12 15/03/2009 01:02 15/03/2009 00:53	-60.5464 -60.54157 -60.53531	-48.18551	12 R1_nite	1880.32	27.3												
16/03/2009 17:31 15/03/2009 01:12 15/03/2009 01:02 15/03/2009 00:53 15/03/2009 00:40	-60.5464 -60.54157 -60.53531 -60.52974	-48.18551 -48.185	12 R1 nite 12 R1 nite	1880.32 1717.33	27.3 31.7	-20	669	1.22	6	500	375	580.8	10.5 15.9	9	ng up and up!		
16/03/2009 17:51 15/03/2009 01:12 15/03/2009 01:02 15/03/2009 00:33 15/03/2009 00:40 15/03/2009 00:29 15/03/2009 00:13	-60.5464 -60.54157 -60.53531 -60.52974 -60.52239	-48.18551 -48.185 -48.18362 -48.18217	12 R1 nite 12 R1 nite 12 R1 nite 12 R1 nite	1880.32 1717.33 1475.38 1432.98	27.3 31.7 30.3	-20 -20 -20	669 883 1212	1.22	6 3 4	500 625 750	375 500 625	580.8 882.9 807.6	10.5 15.9 14.5	9	ng up and up!		
16/08/2009 17:51 15/08/2009 01:12 15/03/2009 01:02 15/03/2009 00:53 15/03/2009 00:05 15/03/2009 00:29 15/03/2009 00:23 14/03/2009 23:58	-60.5464 -60.54157 -60.53531 -60.52974 -60.52239 -60.51475	-48.18551 -48.185 -48.18362 -48.18217 -48.18099	12 R1 nite 12 R1 nite 12 R1 nite 12 R1 nite 12 R1 nite	1880 32 1717 33 1475 38 1432 98 1432 98	27.3 31.7 30.3 34.1 33.3	-20 -20 -20 -22	669 883 1212 1520	1.22 0.73 0.63 0.86	6 5 4 3	500 625 750 875	375 500 625 750	380.8 882.9 807.6 337.4	10.5 15.9 14.5 10.1) Wind pickin	ng up and up!		
16/03/2009 17:51 15/03/2009 01:12 15/03/2009 01:02 15/03/2009 00:53 15/03/2009 00:29 15/03/2009 00:29 15/03/2009 00:13	-60.5464 -60.54157 -60.53531 -60.52974 -60.52239 -60.51475 -60.51	-48.18551 -48.185 -48.18362 -48.18217	12 R1 nite 12 R1 nite 12 R1 nite 12 R1 nite	1880.32 1717.33 1475.38 1432.98	27.3 31.7 30.3 34.1	-20 -20 -20	669 883 1212	1.22 0.73 0.63	6 3 4	500 625 750	375 500 625	580.8 882.9 807.6	10.5 15.9 14.5 10.1 8.2) Wind pickin			

Table 8.3.1 : MOCNESS deployments, showing a record for each net during each deployment

8.3.3 Samples collected

Condition factors of Calanoides acutus

Following the protocol of JR177, individuals of stage CV *Calanoides acutus* were picked from all depth-discrete MOCNESS and placed in individual tin-foil capsules.

It was aimed to obtain between 10 and 12 individuals from each depth-discrete net. This was not achieved for some nets either because of a lack of individuals or because of the dominance of salps which made sorting difficult and left the copepods in poor condition. More than 12 individuals were taken from some nets to use up spare capsules.

The capsules were placed in 96 well plates (one capsule per well) and placed immediately within -80oC freezer. The plates were not dried on board as in JR177 but will be dried back at Cambridge prior to analysis.

[Nb. Unlike JR177, none of the capsules was pre-weighed given that this is not necessary to obtain carbon and nitrogen weights]

MOCNESS depth interval (m)	Net number	R1 (E26)	C2 (E32)	C3 (E72)	C4 (E94)	R2 (E121)	P2 (152)	P3 (E167)	R3 (E195)
1000-875	2	10	10	10	1	5	12	12	15
875-750	3	10	10	10	0	12	10	12	15
750-625	4	10	10	10	6	0	11	12	15
625-500	5	10	10	8	12	10	12	12	15
500-375	6	5	10	10	8	10	11	14	15
375-250	7	10	10	10	12	9	13	12	15
250-125	8	10	10	10	0	2	1	10	14
125-0	9	10	9	10	0	0	3	11	18

Table 8.3.2: The number of Calanoides acutus CV individuals taken from each depth-discrete MOCNESS net

Additional samples of C. acutus, R. gigas, C. similliums and C. propinquus were frozen in solvent (chloroform:methanol) and will be analysed individually for their total lipid, lipid class, fatty acid and fatty alcohol signatures. Prosome length of each copepod was also determined.

Table 8.3.3 Samples of C. ac	utus. R. gigas.	C. similliums	and C. propinguus

#	Station	n Date	Byen	t Net	Net Num				ficroscope uni	ts Prosome (mm)	notes	
1		13/03/2009		Bongo		0-400	F	1	47	3.92		
2		13/03/2009		Bongo		0-400	F	2	51	4.25		
3	Test	13/03/2009	E2	Bongo		0-400	v	3	43	3.58		
4	Test	13/03/2009	E2	Bongo		0-400	v	4	43	3.58		
5	Test	13/03/2009	E2	Bongo		0-400	v	5	3	0.25		
6	Test	13/03/2009	E2	Bongo		0-400	VI	6	32	2.67		
7	Test	13/03/2009	E2	Bongo		0-400	v	7	42	3.50		
8	Test	13/03/2009	E2	Bongo		0-400	VI	8	30	2.50		
9	Test	13/03/2009	E2	Bongo		0-400	v	9	42	3.50		
10	Test	13/03/2009	E2	Bongo		0-400	v	10	42	3.50		
11	R1	14/03/2009	E12	Mocness	2	875-1000	F	1	56	4.67		
12	R1	14/03/2009	E12	Mocness	2	875-1000	F	2	55	4.58		
13	R1	14/03/2009	E12	Mocness	2	875-1000	F	3	56	4.67		
14	R1	14/03/2009	E12	Mocness	2	875-1000	F	4	55	4.58		
15	R1	14/03/2009				875-1000	F	5	49	4.08		
16	R1	14/03/2009				875-1000	F	6	55	4.58		
17	R1	14/03/2009				875-1000	F	7	51	4.25		
18	R1	14/03/2009				875-1000	F	8	55	4.58		
19	R1	14/03/2009				875-1000	F	9	53	4.42		
20 21	R1 R1	14/03/2009 14/03/2009				875-1000 875-1000	F V	10 1	53 46	4.42 3.83		
21 22	R1	14/03/2009				875-1000	v	2	40	3.67		
22	R1	14/03/2009				875-1000	v	3	44	3.67		
24	R1	14/03/2009				875-1000	v	4	46	3.83		
25	R1	14/03/2009				875-1000	v	5	44	3.67		
26	R1	14/03/2009	E12	Mocness	2	875-1000	v	6	49	4.08		
27	R1	14/03/2009	E12	Mocness	2	875-1000	v	7	47	3.92		
28	R1	14/03/2009	E12	Mocness	2	875-1000	v	8	45	3.75		
29	R1	14/03/2009	E12	Mocness	2	875-1000	v	9	47	3.92		
30	R1	14/03/2009	E12	Mocness	2	875-1000	v	10	45	3.75		
31	R1	14/03/2009	E12	Mocness	4	625-750	F	1	56	4.67		
32	R1	14/03/2009	E12	Mocness	4	625-750	F	2	56	4.67		
33	R1	14/03/2009	E12	Mocness	4	625-750	F	3	57	4.75		
34	R1	14/03/2009	E12	Mocness	. 4	625-750	F	4	55	4.58		
35	R1	14/03/2009	E12	Mocness	4	625-750	F	5	55	4.58		
36	R1	14/03/2009				625-750	F	6	5	0.42		
37	R1	14/03/2009				625-750	F	7	55	4.58		
38	R1	14/03/2009				625-750	F	8	56	4.67		
39 40	R1	14/03/2009				625-750	F	9	53	4.42		
40	R1	14/03/2009				625-750	F	10	55	4.58		
41	R1	14/03/2009				625-750	V	1	43	3.58		
42	R1	14/03/2009				625-750 625-750	V V	2	44 43	3.67		
43 44	R1 R1	14/03/2009 14/03/2009				625-750	v v	3	43 44	3.58 3.67		
44 45	R1	14/03/2009				625-750 625-750	v v	4 5	44 46	3.67		
45 46	R1	14/03/2009				625-750	v	6	46	3.75		
40	K1	14/03/2009	E12	mocness	4	023-730	v	U	40	5.15		

								_		
47	R1	14/03/2009	E12	Mocness	4	625-750	v	7	45	3.75
48	R1	14/03/2009	E12	Mocness	4	625-750	v	8	44	3.67
49	R1	14/03/2009	E12	Mocness	4	625-750	v	9	47	3.92
50	R1	14/03/2009	E12	Mocness	4	625-750	v	10	43	3.58
51	R1	14/03/2009	E12	Mocness	5	500-625	F	1	53	4.42
52	R1	14/03/2009	E12	Mocness	5	500-625	F	2	54	4.50
53	R1	14/03/2009	E12	Mocness	5	500-625	F	3	5	0.42
54	R1	14/03/2009	E12	Mocness	5	500-625	F	4	57	4.75
55	R1	14/03/2009	E12	Mocness	5	500-625	F	5	54	4.50
56	R1	14/03/2009			5		F	6	57	4.75
57	R1	14/03/2009			5	500-625	F	7	54	4.50
58	R1	14/03/2009			5		F	8	56	4.50
						500-625				
59	R1	14/03/2009			5	500-625	F	9	57	4.75
60	R1	14/03/2009	E12	Mocness	5	500-625	F	10	57	4.75
61	R1	14/03/2009	E12	Mocness	5	500-625	v	1	43	3.58
62	R1	14/03/2009	E12	Mocness	5	500-625	v	2	46	3.83
63	R1	14/03/2009	E12	Mocness	5	500-625	v	3	41	3.42
64	R1	14/03/2009	E12	Mocness	5	500-625	v	4	47	3.92
65	R1	14/03/2009	E12	Mocness	5	500-625	v	5	45	3.75
66	R1	14/03/2009	E12	Mocness	5	500-625	v	6	46	3.83
67	R1	14/03/2009	E12	Mocness	5	500-625	v	7	45	3.75
68	R1	14/03/2009	E12	Mocness	5	500-625	v	8	45	3.75
69	R1	14/03/2009	E12	Mocness	5	500-625	v	9	45	3.75
70	R1	14/03/2009	E12	Mocness	5	500-625	v	10	47	3.92
71	R1	14/03/2009	E12	Mocness	8	125-250	F	1	49	4.08
72	R1	14/03/2009	E12	Mocness	8	125-250	F	2	53	4.42
73	R1	14/03/2009			8	125-250	F	3	53	4.42
74	R1	14/03/2009			8		F	4	59	4.92
75	R1	14/03/2009			8		F	5	55	4.58
76	R1	14/03/2009			8	125-250	F	6	53	4.42
77	R1	14/03/2009			8		F	7	55	4.58
78	R1	14/03/2009			8	125-250	F	8	57	4.75
79	R1	14/03/2009	E12	Mocness	8	125-250	F	9	53	4.42
80	R1	14/03/2009	E12	Mocness	8	125-250	F	10	52	4.33
81	R1	14/03/2009	E12	Mocness	8	125-250	v	1	45	3.75
82	R1	14/03/2009	E12	Mocness	8	125-250	v	2	45	3.75
83	R1	14/03/2009	E12	Mocness	8	125-250	v	3	45	3.75
84	R1	14/03/2009	E12	Mocness	8	125-250	v	4	45	3.75
85	R1	14/03/2009	E12	Mocness	8	125-250	v	5	46	3.83
86	R1	14/03/2009	E12	Mocness	8	125-250	v	6	47	3.92
87	R1	14/03/2009	E12	Mocness	8	125-250	v	7	42	3.50
88	R1	14/03/2009	E12	Mocness	8	125-250	v	8	44	3.67
89	R1	14/03/2009	E12	Mocness	8	125-250	v	9	42	3.50
90	R1	14/03/2009	E12	Mocness	8	125-250	v	10	46	3.83
91	R1	14/03/2009			9	0-125	F	1	55	4.58
92	R1	14/03/2009			9	0-125	F	2	52	4.33
92 93	R1	14/03/2009			9	0-125	F	2	53	4.33
94	R1	14/03/2009	Е12	worness	9	0-125	V	1	43	3.58

95	R1	14/03/2009	E12	Mocness	9	0-125	v	2	43	3.58
96	R1	14/03/2009			9	0-125	v	3	4	0.33
97	R1	14/03/2009			9	0-125	v	4	46	3.83
98	R1	14/03/2009			9	0-125	v	5	44	3.67
99	R1	16/03/2009			Bongo	0-400	F	1	52	4.33
100	R1	16/03/2009			Bongo	0-400	F	2	53	4.42
100	R1	16/03/2009			Bongo	0-400	F	3	51	4.25
101	R1	16/03/2009			Bongo	0-400	F	4	54	4.50
102	R1	16/03/2009			Bongo	0-400	F	5	52	4.30
103	R1	16/03/2009			Bongo	0-400	V	1	45	3.75
104	R1				, i i i i i i i i i i i i i i i i i i i		v	2		
105	R1	16/03/2009 16/03/2009			Bongo	0-400 0-400	v	3	46 45	3.83 3.75
100	R1	16/03/2009			Bongo	0-400	v	4	43	3.42
107	R1	16/03/2009			Bongo		v	5	41	
108	R1				Bongo	0-400				3.83
	R1	16/03/2009 16/03/2009			6	375-500 375-500	F F	1 2	51	4.25
110					6				55	4.58
111	R1 R1	16/03/2009			6	375-500	F	3	55	4.58
112		16/03/2009			6	375-500	F F	4	55	4.58
113	R1	16/03/2009			6	375-500		5	53	4.42
114	R1	16/03/2009			6	375-500	F	6	54	4.50
115	R1	16/03/2009			6	375-500	F	7	52	4.33
116	R1	16/03/2009			6	375-500	F	8	55	4.58
117	R1	16/03/2009			6	375-500	F	9	57	4.75
118	R1	16/03/2009			6	375-500	F	10	55	4.58
119	R1	16/03/2009			6	375-500	v	1	41	3.42
120	R1	16/03/2009			6	375-500	V	2	45	3.75
121	R1	16/03/2009			6	375-500	V	3	47	3.92
122	R1	16/03/2009			6	375-500	v	4	42	3.50
123	R1	16/03/2009			6	375-500	V	5	45	3.75
124	R1	16/03/2009			7	250-375	F	1	56	4.67
125	R1	16/03/2009			7	250-375	F	2	50	4.17
126	R1	16/03/2009			7	250-375	F	3	54	4.50
127	R1	16/03/2009			7	250-375	F	4	56	4.67
128	R1	16/03/2009			7	250-375	F	5	55	4.58
129		16/03/2009			7	250-375	F	6	47	3.92
130	R1	16/03/2009			7	250-375	F	7	55	4.58
131	R1	16/03/2009			7	250-375	F	8	52	4.33
132	R1	16/03/2009			7	250-375	v	1	45	3.75
133	R1	16/03/2009			7	250-375	v	2	47	3.92
134	R1	16/03/2009			7	250-375	v	3	44	3.67
135	R1	16/03/2009			7	250-375	v	4	44	3.67
136	R1	16/03/2009			7	250-375	v	5	44	3.67
137	R1	16/03/2009			7	250-375	V	6	48	4.00
138	R1	16/03/2009			7	250-375	v	7	44	3.67
139	R1	16/03/2009			7	250-375	V	8	45	3.75
140	R1	16/03/2009			7	250-375	v	9	45	3.75
141	R1	16/03/2009			7	250-375	V	10	42	3.50
142	C2	17/03/2009	E32	Mocness	3	750-875	F	1	54	4.50

V ?

ovary 2/3

143	C2	17/03/2009	E32	Mocness	3	750-875	F	2	52	4.33	
144	C2	17/03/2009	E32	Mocness	3	750-875	F	3	55	4.58	
145	C2	17/03/2009	E32	Mocness	3	750-875	F	4	53	4.42	
146	C2	17/03/2009	E32	Mocness	3	750-875	F	5	55	4.58	
147	C2	17/03/2009	E32	Mocness	3	750-875	F	6	57	4.75	
148	C2	17/03/2009	E32	Mocness	3	750-875	F	7	53	4.42	
149	C2	17/03/2009	E32	Mocness	3	750-875	F	8	55	4.58	
150	C2	17/03/2009	E32	Mocness	3	750-875	F	9	52	4.33	ovar
151	C2	17/03/2009	E32	Mocness	3	750-875	F	10	56	4.67	
152	C2	17/03/2009	E32	Mocness	3	750-875	v	1	47	3.92	
153	C2	17/03/2009	E32	Mocness	3	750-875	v	2	47	3.92	
154	C2	17/03/2009	E32	Mocness	3	750-875	v	3	45	3.75	
155	C2	17/03/2009			3	750-875	v	4	47	3.92	
156	C2	17/03/2009			3	750-875	v	5	45	3.75	
157	C2	17/03/2009			3	750-875	v	6	45	3.75	
158	C2	17/03/2009			3	750-875	v	7	45	3.75	
150	C2	17/03/2009			3	750-875	v	8	46	3.83	
160	C2	17/03/2009			3	750-875	v	9	40	3.75	
				Mocness	3			10	43	3.92	
161	C2					750-875	V				
162	C2	17/03/2009			6	375-500	F	1	55	4.58	
163		17/03/2009			6	375-500	F	2	53	4.42	
164	C2	17/03/2009			6	375-500	F	3	52	4.33	
165	C2	17/03/2009			6	375-500	F	4	52	4.33	
166	C2	17/03/2009			6	375-500	F	5	51	4.25	
167	C2	17/03/2009			6	375-500	F	6	51	4.25	
168	C2	17/03/2009	E32	Mocness	6	375-500	F	7	52	4.33	
169	C2	17/03/2009	E32	Mocness	6	375-500	v	1	45	3.75	
170	C2	17/03/2009	E32	Mocness	6	375-500	v	2	47	3.92	
171	C2	17/03/2009	E32	Mocness	6	375-500	V	3	47	3.92	
172	C2	17/03/2009	E32	Mocness	6	375-500	v	4	47	3.92	
173	C2	17/03/2009	E32	Mocness	6	375-500	V	5	46	3.83	
174	C2	17/03/2009	E32	Mocness	6	375-500	v	6	45	3.75	
175	C2	17/03/2009	E32	Mocness	б	375-500	v	7	46	3.83	
176	C2	17/03/2009	E32	Mocness	6	375-500	v	8	46	3.83	
177	C2	17/03/2009	E32	Mocness	6	375-500	v	9	45	3.75	
178	C2	17/03/2009	E32	Mocness	6	375-500	v	10	46	3.83	
179	C2	17/03/2009	E32	Mocness	8	125-250	F	1	52	4.33	
180	C2	17/03/2009	E32	Mocness	8	125-250	F	2	52	4.33	
181	C2	17/03/2009	E32	Mocness	8	125-250	F	3	48	4.00	
182	C2	17/03/2009	E32	Mocness	8	125-250	v	1	45	3.75	
183	C2	17/03/2009	E32	Mocness	8	125-250	v	2	47	3.92	
184	C2	17/03/2009	E32	Mocness	8	125-250	v	3	46	3.83	
185	C2	17/03/2009	E32	Mocness	8	125-250	v	4	44	3.67	
186	C2	17/03/2009	E32	Mocness	8	125-250	v	5	45	3.75	
187	C2	17/03/2009	E32	Mocness	8	125-250	v	6	43	3.58	
188	C2	17/03/2009	E32	Mocness	8	125-250	v	7	44	3.67	
189	C2	17/03/2009	E32	Mocness	8	125-250	v	8	44	3.67	
190	C2	17/03/2009	E32	Mocness	8	125-250	v	9	45	3.75	

ary

19	1	C2	17/03/2009	E32	Mocness	8	125-250	v	10	45	3.75	
19	2	C2	17/03/2009	E32	Mocness	8	125-250	VI	1	34	2.83	
19	3	C2	17/03/2009	E32	Mocness	8	125-250	VI	2	35	2.92	
19	4	C2	17/03/2009	E32	Mocness	8	125-250	VI	3	35	2.92	
19	5	C2	17/03/2009	E32	Mocness	8	125-250	VI	4	32	2.67	
19	6	C2	17/03/2009	E32	Mocness	8	125-250	VI	5	32	2.67	
19	7	C2	17/03/2009	E32	Mocness	2	875-1000	v	1	44	3.67	
19	8	C2	17/03/2009	E32	Mocness	4	625-750	F	1	55	4.58	
19	9	C2	17/03/2009	E32	Mocness	4	625-750	F	2	56	4.67	
20	0	C2	17/03/2009	E32	Mocness	4	625-750	F	3	53	4.42	
20	1	C2	17/03/2009	E32	Mocness	4	625-750	F	4	55	4.58	
20	2	C2	17/03/2009	E32	Mocness	4	625-750	F	5	54	4.50	
20	3	C2	17/03/2009	E32	Mocness	4	625-750	F	6	57	4.75	
20	4	C2	17/03/2009	E32	Mocness	4	625-750	F	7	56	4.67	
20	5	C2	17/03/2009	E32	Mocness	4	625-750	F	8	56	4.67	
20	6	C2	17/03/2009			4	625-750	F	9	55	4.58	
20	17	C2	17/03/2009	E32	Mocness	4	625-750	v	1	50	4.17	Large V's
20		C2	17/03/2009			4	625-750	v	2	50	4.17	Large V's
20		C2	17/03/2009			4	625-750	v	3	45	3.75	Large V's
21		C2	17/03/2009			4	625-750	v	4	50	4.17	Large V's
21		C2	17/03/2009			4	625-750	v	5	49	4.08	Large V's
21		C2	17/03/2009			4	625-750	v	6	46	3.83	Large V's
21		C2	17/03/2009			4	625-750	v	7	45	3.75	Large V's
21		C2	17/03/2009			4	625-750	v	8	48	4.00	Large V's
21		C2	17/03/2009			4	625-750	v	9	47	3.92	Large V's
21		C2	17/03/2009			4	625-750	v	10	49	4.08	Large V's
21		C2	17/03/2009			5	500-625	v F	1	56	4.67	Large v s
21		C2	17/03/2009			5	500-625	F	2	57	4.07	
21		C2	17/03/2009			5	500-625	F	3	55	4.58	
21		C2	17/03/2009			5	500-625	v	1	47	3.92	
22		C2	17/03/2009			5	500-625	v	2	45	3.75	
22		C2	17/03/2009			5	500-625	v	3	51	4.25	
22		C2	17/03/2009			5	500-625	v	4	46	3.83	
22		C2	17/03/2009			5	500-625	v	5	48	4.00	
22		C2	17/03/2009		Bongo	5	0-400	F	1	53	4.42	
22		C2	17/03/2009		Bongo		0-400	F	2	52	4.33	
22		C2	17/03/2009		Bongo		0-400	IV	1	34	2.83	
22		C2	17/03/2009		Bongo		0-400	IV	2	35	2.92	
22		C2	17/03/2009		Bongo		0-400	IV	3	33	2.75	
23		C2	17/03/2009		Bongo		0-400	IV	4	33	2.75	
23		C2	17/03/2009		Bongo		0-400	IV	5	6	0.50	
					e			V	1			
23		C2 C2	17/03/2009		Bongo Bongo		0-400 0-400	v	2	43 45	3.58	
23			17/03/2009		Ţ.						3.75	
23		C2	17/03/2009		Bongo		0-400	V	3	45	3.75	
23		C2	17/03/2009		Bongo		0-400	V	4	43	3.58	
23		C2	17/03/2009		Bongo		0-400	V	5	43	3.58	
23		C2	17/03/2009		Bongo		0-400	V	6	44	3.67	
23	0	C2	17/03/2009	E44	Bongo		0-400	V	7	44	3.67	

239	C2	17/03/2009	E44	Bongo		0-400	v	8	43	3.58		
240	C2	17/03/2009	E44	Bongo		0-400	v	9	43	3.58		
241	C3	19/03/2009	E54	Bongo		0-400	F	1	55	4.58		
242	C3	19/03/2009	E54	Bongo		0-400	F	2	53	4.42		
243	C3	19/03/2009	E54	Bongo		0-400	F	3	50	4.17		
244	C3	19/03/2009	E54	Bongo		0-400	IV	1	32	2.67		
245	C3	19/03/2009	E54	Bongo		0-400	IV	2	31	2.58		
246	C3	19/03/2009	E54	Bongo		0-400	IV	3	32	2.67		
247	C3	19/03/2009	E54	Bongo		0-400	IV	4	32	2.67		
248	C3	19/03/2009	E54	Bongo		0-400	IV	5	30	2.50		
249	C3	19/03/2009	E54	Bongo		0-400	v	1	48	4.00		
250	C3	19/03/2009	E54	Bongo		0-400	v	2	47	3.92		
251	C3	19/03/2009	E54	Bongo		0-400	v	3	46	3.83		
252	C3	19/03/2009	E54	Bongo		0-400	v	4	44	3.67		
253	C3	19/03/2009		Bongo		0-400	v	5	46	3.83		
254	C3	19/03/2009		Bongo		0-400	v	6	46	3.83		
255	C3	19/03/2009		Bongo		0-400	v	7	45	3.75		
256	C3	19/03/2009		Bongo		0-400	v	8	44	3.67		
257	C3	19/03/2009				0-400	v	9	44	3.67		
258	C3	19/03/2009		-		0-400	v	10	42	3.50		
259	C3	21/03/2009			2	875-1000	F	1	58	4.83		
260	C3	21/03/2009			2	875-1000	F	2	55	4.58		
261	C3	21/03/2009			2	875-1000	F	3	55	4.58		
261	C3	21/03/2009			2	875-1000	F	4	53	4.42		
	C3	21/03/2009			2	875-1000	F	5	56	4.67		
263												
264	C3	21/03/2009			2	875-1000	F	6	55	4.58		
265	C3	21/03/2009			2	875-1000	F	7	55	4.58		
266	C3	21/03/2009			2	875-1000	V	1	45	3.75		
267	C3	21/03/2009			2	875-1000	V	2	47	3.92		
268	C3	21/03/2009			2	875-1000	V	3	47	3.92		
269	C3	21/03/2009			2	875-1000	V	4	48	4.00		
270	C3	21/03/2009			2	875-1000	V	5	46	3.83		
271		21/03/2009			2	875-1000	V	6	45	3.75		
272	C3	21/03/2009			2	875-1000	v	7	47	3.92		
273	C3	21/03/2009			3	750-875	F	1	53	4.42	ovary I/II	high lipid
274	C3	21/03/2009			3	750-875	F	2	53	4.42		high lipid
275	C3	21/03/2009			3	750-875	F	3	57	4.75		high lipid
276	C3	21/03/2009			3	750-875	F	4	49	4.08	propinquus?	high lipid
277	C3	21/03/2009			3	750-875	F	5	57	4.75		high lipid
278	C3	21/03/2009			3	750-875	F	6	59	4.92		high lipid
279	C3	21/03/2009			3	750-875	F	7	54	4.50		high lipid
280	C3	21/03/2009	E72	Mocness	3	750-875	v	1	45	3.75		low lipid
281	C3	21/03/2009	E72	Mocness	3	750-875	v	2	46	3.83		low lipid
282	C3	21/03/2009	E72	Mocness	3	750-875	V	3	43	3.58		low lipid
283	C3	21/03/2009	E72	Mocness	3	750-875	V	4	43	3.58		low lipid
284	C3	21/03/2009	E72	Mocness	3	750-875	V	5	47	3.92		low lipid
285	C3	21/03/2009	E72	Mocness	3	750-875	V	6	47	3.92		low lipid
286	C3	21/03/2009	E72	Mocness	3	750-875	v	7	44	3.67		low lipid

287	C3	21/03/2009	E72	Mocness	4	625-750	F	1	55	4.58	
288	C3	21/03/2009	E72	Mocness	4	625-750	F	2	56	4.67	
289	C3	21/03/2009	E72	Mocness	4	625-750	F	3	57	4.75	
290	C3	21/03/2009	E72	Mocness	4	625-750	F	4	52	4.33	
291	C3	21/03/2009	E72	Mocness	4	625-750	F	5	51	4.25	
292	C3	21/03/2009	E72	Mocness	4	625-750	v	1	43	3.58	
293	C3	21/03/2009	E72	Mocness	4	625-750	v	2	45	3.75	a
294	C3	21/03/2009	E72	Mocness	4	625-750	v	3	44	3.67	
295	C3	21/03/2009	E72	Mocness	4	625-750	v	4	43	3.58	
296	C3	21/03/2009	E72	Mocness	5	500-625	F	1	53	4.42	
297	C3	21/03/2009	E72	Mocness	5	500-625	F	2	57	4.75	
298	C3	21/03/2009	E72	Mocness	5	500-625	F	3	50	4.17	
299	C3	21/03/2009	E72	Mocness	5	500-625	F	4	54	4.50	
300	C3	21/03/2009	E72	Mocness	5	500-625	F	5	51	4.25	
301	C3	21/03/2009	E72	Mocness	5	500-625	v	1	46	3.83	
302	C3	21/03/2009			5	500-625	v	2	44	3.67	
303	C3	21/03/2009			5	500-625	v	3	50	4.17	
304	C3	21/03/2009			5	500-625	v	4	47	3.92	
305	C3	21/03/2009			5	500-625	v	5	47	3.92	
305	C3	21/03/2009			5	500-625	v	6	45	3.75	
300	C3				5	500-625	v	7	45	3.75	
		21/03/2009					v F	1			
308	C3	21/03/2009			6	375-500			53	4.42	
309	C3	21/03/2009			6	375-500	F	2	51	4.25	
310	C3	21/03/2009			6	375-500	F	3	54	4.50	
311	C3	21/03/2009			6	375-500	F	4	51	4.25	
312	C3	21/03/2009			6	375-500	F	5	52	4.33	
313	C3	21/03/2009			6	375-500	v	1	48	4.00	
314	C3	21/03/2009	E72	Mocness	6	375-500	v	2	47	3.92	
315	C3	21/03/2009	E72	Mocness	6	375-500	v	3	46	3.83	
316	C3	21/03/2009	E72	Mocness	6	375-500	v	4	46	3.83	
317	C3	21/03/2009	E72	Mocness	6	375-500	v	5	47	3.92	
318	C3	21/03/2009	E72	Mocness	7	250-375	v	1	43	3.58	
319	C3	21/03/2009	E72	Mocness	7	250-375	v	2	44	3.67	
320	C3	21/03/2009	E72	Mocness	7	250-375	v	3	45	3.75	
321	C3	21/03/2009	E72	Mocness	7	250-375	v	4	46	3.83	
322	C3	21/03/2009	E72	Mocness	7	250-375	v	5	46	3.83	
323	C3	21/03/2009	E72	Mocness	8	125-250	v	1	47	3.92	
324	C3	21/03/2009	E72	Mocness	8	125-250	v	2	46	3.83	
325	C3	21/03/2009	E72	Mocness	8	125-250	v	3	45	3.75	
326	C3	21/03/2009	E72	Mocness	8	125-250	v	4	44	3.67	
327	C3	21/03/2009	E72	Mocness	8	125-250	v	5	43	3.58	
328	C3	21/03/2009	E72	Mocness	9	0-125	v	1	44	3.67	
329	C3	21/03/2009	E72	Mocness	9	0-125	v	2	44	3.67	
330	C3	21/03/2009	E72	Mocness	9	0-125	v	3	45	3.75	
331	C3	21/03/2009	E72	Mocness	9	0-125	v	4	44	3.67	
332	C3	21/03/2009	E72	Mocness	9	0-125	v	5	44	3.67	
333	C4	23/03/2009	E84	Bongo		0-400	F	1	54	4.50	V low production site
334	C4	23/03/2009		-		0-400	F	2	55	4.58	-
				-							

animal lost

ovary 1/2

335	C4	23/03/2009	E84	Bongo		0-400	F	3	54	4.50	
336	C4	23/03/2009	E84	Bongo		0-400	F	4	56	4.67	
337	C4	23/03/2009	E84	Bongo		0-400	F	5	53	4.42	ovary I
338	C4	23/03/2009	E84	Bongo		0-400	F	6	55	4.58	
339	C4	23/03/2009	E84	Bongo		0-400	v	1	45	3.75	
340	C4	23/03/2009	E84	Bongo		0-400	v	2	43	3.58	
341	C4	23/03/2009	E84	Bongo		0-400	v	3	47	3.92	
342	C4	23/03/2009	E84	Bongo		0-400	v	4	45	3.75	
343	C4	23/03/2009	E84	Bongo		0-400	v	5	45	3.75	
344	C4	23/03/2009	E84	Bongo		0-400	v	6	46	3.83	
345	C4	24/03/2009	E94	Mocness	3	750-875	F	1	51	4.25	
346	C4	24/03/2009	E94	Mocness	3	750-875	F	2	51	4.25	
347	C4	24/03/2009	E94	Mocness	3	750-875	F	3	53	4.42	
348	C4	24/03/2009	E94	Mocness	3	750-875	F	4	53	4.42	
349	C4	24/03/2009	E94	Mocness	3	750-875	F	5	52	4.33	
350	C4	24/03/2009	E94	Mocness	3	750-875	v	1	41	3.42	
351	C4	24/03/2009	E94	Mocness	3	750-875	v	2	45	3.75	
352	C4	24/03/2009	E94	Mocness	4	625-750	F	1	56	4.67	
353	C4	24/03/2009	E94	Mocness	4	625-750	F	2	56	4.67	
354	C4	24/03/2009	E94	Mocness	4	625-750	F	3	55	4.58	
355	C4	24/03/2009	E94	Mocness	4	625-750	F	4	55	4.58	
356	C4	24/03/2009	E94	Mocness	4	625-750	F	5	53	4.42	
357	C4	24/03/2009	E94	Mocness	4	625-750	F	6	50	4.17	
358	C4	24/03/2009	E94	Mocness	4	625-750	F	7	53	4.42	ovary I
359	C4	24/03/2009	E94	Mocness	4	625-750	v	1	47	3.92	
360	C4	24/03/2009	E94	Mocness	4	625-750	V	2	47	3.92	
361	C4	24/03/2009	E94	Mocness	4	625-750	v	3	46	3.83	
362	C4	24/03/2009	E94	Mocness	4	625-750	v	4	45	3.75	
363	C4	24/03/2009	E94	Mocness	4	625-750	v	5	5	0.42	
364	C4	24/03/2009	E94	Mocness	4	625-750	v	6	48	4.00	
365	C4	24/03/2009	E94	Mocness	4	625-750	v	7	44	3.67	
366	C4	24/03/2009	E94	Mocness	5	500-625	F	1	54	4.50	
367	C4	24/03/2009	E94	Mocness	5	500-625	F	2	55	4.58	
368	C4	24/03/2009	E94	Mocness	5	500-625	F	3	56	4.67	
369	C4	24/03/2009	E94	Mocness	5	500-625	F	4	53	4.42	
370	C4	24/03/2009	E94	Mocness	5	500-625	F	5	54	4.50	
371	C4	24/03/2009	E94	Mocness	5	500-625	v	1	47	3.92	
372	C4	24/03/2009	E94	Mocness	5	500-625	v	2	45	3.75	
373	C4	24/03/2009	E94	Mocness	5	500-625	v	3	47	3.92	
374	C4	24/03/2009	E94	Mocness	5	500-625	v	4	49	4.08	
375	C4	24/03/2009	E94	Mocness	5	500-625	v	5	47	3.92	
376	C4	24/03/2009	E94	Mocness	6	375-500	F	1	52	4.33	ovary I
377	C4	24/03/2009	E94	Mocness	6	375-500	F	2	56	4.67	
378	C4	24/03/2009	E94	Mocness	6	375-500	F	3	53	4.42	
379	C4	24/03/2009	E94	Mocness	6	375-500	F	4	50	4.17	
380	C4	24/03/2009	E94	Mocness	6	375-500	F	5	50	4.17	
381	C4	24/03/2009	E94	Mocness	6	375-500	V	1	47	3.92	
382	C4	24/03/2009	E94	Mocness	6	375-500	V	2	47	3.92	

383	C4	24/03/2009 E94 1		6	375-500	V	3	46	3.83	dead/almost dead?
384	C4	24/03/2009 E94 1		6	375-500	V	4	45	3.75	dead/almost dead?
385	C4	24/03/2009 E94 1		7	250-375	V	1	46	3.83	
386	C4	24/03/2009 E94 1		7	250-375	V	2	47	3.92	
387	C4	24/03/2009 E94 1		7	250-375	V	3	45	3.75	
388	C4	24/03/2009 E94 1		7	250-375	V	4	46	3.83	
389	C4	24/03/2009 E94 1		8	125-250	V	1	46	3.83	
390	C4	24/03/2009 E94 1		8	125-250	V	2	46	3.83	
391	C4	24/03/2009 E94 1		8	125-250	F	1	57	4.75	
392	R2	27/03/2008 E121 1			875-1000	V	1	43	3.58	C. propinquus
393	R2	27/03/2008 E121 I	Mocness	2	875-1000	v	2	44	3.67	C. propinquus
394	R2	27/03/2008 E121 I	Mocness	2	875-1000	v	3	44	3.67	C. propinquus
395	R2	27/03/2008 E121 I	Mocness	2	875-1000	v	4	43	3.58	C. propinquus
396	R2	27/03/2008 E121 I	Mocness	2	875-1000	v	5	43	3.58	C. propinquus
397	R2	27/03/2008 E121 I	Mocness	2	875-1000	v	6	43	3.58	C. propinquus
398	R2	27/03/2008 E121 I	Mocness	7	250-375	v	1	43	3.58	C. propinquus
399	R2	27/03/2008 E121 1	Mocness	7	250-375	v	2	44	3.67	C. propinquus
400	R2	27/03/2008 E121 I	Mocness	7	250-375	v	3	42	3.50	C. propinquus
401	R2	27/03/2008 E121 1	Mocness	7	250-375	v	4	42	3.50	C. propinquus
402	R2	27/03/2008 E121 I	Mocness	7	250-375	v	5	43	3.58	C. propinquus
403	R2	27/03/2008 E121 I	Mocness	7	250-375	v	6	41	3.42	C. propinquus
404	R2	27/03/2008 E121 I	Mocness	7	250-375	v	7	41	3.42	C. propinquus
405	R2	27/03/2008 E121 I	Mocness	2	875-1000	v	1	44	3.67	
406	R2	27/03/2008 E121 I	Mocness	2	875-1000	v	2	42	3.50	
407	R2	27/03/2008 E121 I	Mocness	2	875-1000	v	3	43	3.58	
408	R2	27/03/2008 E121 I	Mocness	2	875-1000	v	4	41	3.42	
409	R2	27/03/2008 E121 I	Mocness	2	875-1000	v	5	39	3.25	
410	R2	27/03/2008 E121 I	Mocness	2	875-1000	v	6	43	3.58	
411	R2	27/03/2008 E121 I	Mocness	2	875-1000	F	1	55	4.58	
412	R2	27/03/2008 E121 I	Mocness	5	500-625	F	1	85	7.08	R.gigas
413	R2	27/03/2008 E121 I	Mocness	5	500-625	F	2	87	7.25	R.gigas
414	R2	27/03/2008 E121 I	Mocness	5	500-625	F	3	88	7.33	R.gigas
415	R2	27/03/2008 E121 I	Mocness	5	500-625	F	4	92	7.67	R.gigas
416	R2	27/03/2008 E121 I	Mocness	5	500-625	F	5	95	7.92	R.gigas
417	R2	27/03/2008 E121 I	Mocness	5	500-625	F	6	85	7.08	R.gigas
418	R2	27/03/2008 E121 I	Mocness	5	500-625	F	7	85	7.08	R.gigas
419	R2	27/03/2008 E121 1	Mocness	5	500-625	F	8	77	6.42	R.gigas
420	R2	27/03/2008 E121 I	Mocness	5	500-625	v	9	78	6.50	R.gigas
421	R2	27/03/2008 E121 1	Mocness	5	500-625	v	10	72	6.00	R.gigas
422	R2	27/03/2008 E121 1	Mocness	5	500-625	v	11	75	6.25	R.gigas
423	R2	27/03/2008 E121 I	Mocness	5	500-625	v	1	42	3.50	
424	R2	27/03/2008 E121 I	Mocness	5	500-625	V	2	43	3.58	
425	R2	27/03/2008 E121 I	Mocness	5	500-625	V	3	41	3.42	
426	R2	27/03/2008 E121 I	Mocness	5	500-625	V	4	44	3.67	
427	R2	27/03/2008 E121	Mocness	5	500-625	V	5	45	3.75	
428	R2	27/03/2008 E121 I	Mocness	5	500-625	V	6	44	3.67	
429	R2	27/03/2008 E121 1	Mocness	5	500-625	v	7	46	3.83	
430	R2	27/03/2008 E121	Mocness	5	500-625	V	8	41	3.42	

431	R2	27/03/2008 E121 Mod	cness 5	500-625	v	9	41	3.42	
432	R2	27/03/2008 E121 Mod	cness 5	500-625	F	1	46	3.83	
433	R2	27/03/2008 E121 Mod	cness 5	500-625	F	2	56	4.67	
434	R2	27/03/2008 E121 Mod	cness 5	500-625	F	3	54	4.50	
435	R2	27/03/2008 E121 Mod	cness 6	375-500	v	1	42	3.50	
436	R2	27/03/2008 E121 Mod	cness 6	375-500	v	2	43	3.58	
437	R2	27/03/2008 E121 Mod	cness 6	375-500	v	3	45	3.75	
438	R2	27/03/2008 E121 Mod	cness 6	375-500	v	4	45	3.75	
439	R2	27/03/2008 E121 Mod	cness 6	375-500	v	5	47	3.92	
440	R2	27/03/2008 E121 Mod	cness 6	375-500	v	6	42	3.50	
441	R2	27/03/2008 E121 Mod	cness 6	375-500	v	7	42	3.50	
442	R2	27/03/2008 E121 Mod	cness 6	375-500	F	1	52	4.33	
443	R2	27/03/2008 E121 Mod	cness 6	375-500	F	2	55	4.58	
444	R2	27/03/2008 E121 Mod	cness 6	375-500	F	3	57	4.75	
445	R2	27/03/2008 E121 Mod	cness 6	375-500	F	4	6	0.50	
446	R2	27/03/2008 E121 Mod	cness 6	375-500	F	5	52	4.33	Ovary II
447	R2	27/03/2008 E121 Mod	cness 6	375-500	F	6	50	4.17	Ovary II
448	R2	27/03/2008 E121 Mod	cness 6	375-500	F	7	53	4.42	Ovary II
449	R2	27/03/2008 E121 Mod	cness 7	250-375	v	1	39	3.25	
450	PS2	31/03/2009 E152 Mod	cness 3	750-875	v	1	41	3.42	
451	PS2	31/03/2009 E152 Mod	cness 3	750-875	v	2	43	3.58	
452	PS2	31/03/2009 E152 Mod	cness 3	750-875	v	3	44	3.67	
453	PS2	31/03/2009 E152 Mod	cness 3	750-875	v	4	43	3.58	
454	PS2	31/03/2009 E152 Mod	cness 3	750-875	v	5	43	3.58	
455		31/03/2009 E152 Mod		750-875	v	6	46	3.83	
		31/03/2009 E152 Mod		750-875	v	7	42	3.50	
		31/03/2009 E152 Mod		750-875	v	8	42	3.50	
		31/03/2009 E152 Mod		750-875	v	9	41	3.42	
459		31/03/2009 E152 Mod		750-875	v	10	43	3.58	
460		31/03/2009 E152 Mod		750-875	v	1	42	3.50	C. propinquus
461		31/03/2009 E152 Mod		750-875	v	2	44	3.67	C. propinquus
		31/03/2009 E152 Mod		750-875	v	3	44	3.67	C. propinquus
		31/03/2009 E152 Mod		750-875	v	4	43	3.58	C. propinquus
		31/03/2009 E152 Mod			v	5	43	3.58	C. propinquus
		31/03/2009 E152 Mod		750-875	v	6	42	3.50	C. propinquus
		31/03/2009 E152 Mod		750-875	v	7	43	3.58	C. propinquus
		31/03/2009 E152 Mod		750-875	v	8	44	3.67	C. propinquus
468	PS2	31/03/2009 E152 Mod	cness 3	750-875	v	9	43	3.58	C. propinquus
469	PS2	31/03/2009 E152 Mod		750-875	v	10	43	3.58	C. propinquus
470	PS2	31/03/2009 E152 Mod	cness 3	750-875	F	1	87	7.25	R. gigas
		31/03/2009 E152 Mod		750-875	F	2	87	7.25	R. gigas
		31/03/2009 E152 Mod		750-875	F	3	80	6.67	R. gigas
		31/03/2009 E152 Mod		750-875	F	4	73	6.08	R. gigas
		31/03/2009 E152 Mod		750-875	F	5	83	6.92	R. gigas
		31/03/2009 E152 Mod		750-875	v	6	70	5.83	R. gigas
		31/03/2009 E152 Mod		750-875	v	7	70	5.83	R. gigas
		31/03/2009 E152 Mod		750-875	F	8	81	6.75	R. gigas
		31/03/2009 E152 Mod		750-875	v	9	68	5.67	R. gigas
						-			0-0

479	PS2	31/03/2009 E152 Mocness	3	750-875	F	10	63	5.25	R. gigas
480	PS2	31/03/2009 E152 Mocness	3	750-875	v	1	29	2.42	C. simillimus
481	PS2	31/03/2009 E152 Mocness	3	750-875	v	2	27	2.25	C. simillimus
482	PS2	31/03/2009 E152 Mocness	3	750-875	v	3	27	2.25	C. simillimus
483	PS2	31/03/2009 E152 Mocness	3	750-875	v	4	30	2.50	C. simillimus
484	PS2	31/03/2009 E152 Mocness	3	750-875	v	5	27	2.25	C. simillimus
485	PS2	31/03/2009 E152 Mocness	3	750-875	v	6	29	2.42	C. simillimus
486	PS2	31/03/2009 E152 Mocness	3	750-875	v	7	29	2.42	C. simillimus
487	PS2	31/03/2009 E152 Mocness	3	750-875	v	8	29	2.42	C. simillimus
488	PS2	31/03/2009 E152 Mocness	3	750-875	v	9	29	2.42	C. simillimus
489	PS2	31/03/2009 E152 Mocness	3	750-875	v	10	29	2.42	C. simillimus
490	PS2	31/03/2009 E152 Mocness	3	750-875	F	1	35	2.92	C. simillimus
491	PS2	31/03/2009 E152 Mocness	3	750-875	F	2	35	2.92	C. simillimus
492	PS2	31/03/2009 E152 Mocness	5	500-625	v	1	73	6.08	R. gigas
493	PS2	31/03/2009 E152 Mocness	5	500-625	F	2	83	6.92	R. gigas
494	PS2	31/03/2009 E152 Mocness	5	500-625	F	3	91	7.58	R. gigas
495	PS2	31/03/2009 E152 Mocness	5	500-625	F	4	85	7.08	R. gigas
496		31/03/2009 E152 Mocness	5	500-625	F	5	82	6.83	R. gigas
497		31/03/2009 E152 Mocness	5	500-625	F	6	85	7.08	R. gigas
498	PS2	31/03/2009 E152 Mocness	5	500-625	v	7	68	5.67	R. gigas
499		31/03/2009 E152 Mocness	5	500-625	v	8	69	5.75	R. gigas
500		31/03/2009 E152 Mocness	5	500-625	v	9	66	5.50	R. gigas
500		31/03/2009 E152 Mocness	5	500-625	v	10	68	5.67	R. gigas
502		31/03/2009 E152 Mocness	5	500-625	v	1	29	2.42	C.simillimus
502	PS2	31/03/2009 E152 Mocness	5	500-625	v	2	29	2.42	C.simillimus
503		31/03/2009 E152 Mocness	5	500-625	v	3	29	2.33	C.simillimus
505	PS2	31/03/2009 E152 Mocness	5	500-625	v	4		2.33	C.simillimus
		31/03/2009 E152 Mocness	5	500-625	v	5	28 29	2.33	C.simillimus
507		31/03/2009 E152 Mocness	5	500-625	v	6	30	2.42	C.simillimus
507		31/03/2009 E152 Mocness	5	500-625	v	7	29	2.30	C.simillimus
		31/03/2009 E152 Mocness	5	500-625	v	8	29	2.42	C.simillimus
509		31/03/2009 E152 Mocness		500-625					
510		31/03/2009 E152 Mocness	5	500-625	V	9	30	2.50	C.simillimus
			5		v v	10	28	2.33	C.simillimus
512		31/03/2009 E152 Mocness	5	500-625	•	1	42	3.50	C. acutus
		31/03/2009 E152 Mocness	5	500-625	V	2	44	3.67	C. acutus
		31/03/2009 E152 Mocness 31/03/2009 E152 Mocness	5	500-625	V	3	44	3.67	C. acutus C. acutus
			5	500-625 500-625	V	4	43	3.58	
		31/03/2009 E152 Mocness	5 5		V	5	44	3.67	C. acutus C. acutus
		31/03/2009 E152 Mocness		500-625	v v	6	45	3.75	
		31/03/2009 E152 Mocness	5	500-625		7	43	3.58	C. acutus
519		31/03/2009 E152 Mocness	5	500-625	V	8	43	3.58	C. acutus
		31/03/2009 E152 Mocness	5	500-625	V	9	42	3.50	C. acutus
		31/03/2009 E152 Mocness	5	500-625	V	10	43	3.58	C. acutus
		31/03/2009 E152 Mocness	8	125-250	V	1	67	5.58	R. gigas
		31/03/2009 E152 Mocness	8	125-250	V	2	72	6.00	R. gigas
		31/03/2009 E152 Mocness	8	125-250	VI	3	56	4.67	R. gigas
		31/03/2009 E152 Mocness	8	125-250	v	4	69	5.75	R. gigas
526	PS2	31/03/2009 E152 Mocness	8	125-250	V	5	66	5.50	R. gigas

527	PS2	31/03/2009 E152 Mocness	8	125-250	v	6	68	5.67	R. gigas
528	PS2	31/03/2009 E152 Mocness	8	125-250	v	7	71	5.92	R. gigas
529	PS2	31/03/2009 E152 Mocness	8	125-250	v	8	66	5.50	R. gigas
530	PS2	31/03/2009 E152 Mocness	8	125-250	v	9	74	6.17	R. gigas
531	PS2	31/03/2009 E152 Mocness	8	125-250	v	10	67	5.58	R. gigas
532	PS2	31/03/2009 E152 Mocness	8	125-250	v	1	42	3.50	C. propinquus
533	PS2	31/03/2009 E152 Mocness	8	125-250	v	2	40	3.33	C. propinquus
534	PS2	31/03/2009 E152 Mocness	8	125-250	v	3	39	3.25	C. propinquus
535	PS2	31/03/2009 E152 Mocness	8	125-250	v	4	43	3.58	C. propinquus
536	PS2	31/03/2009 E152 Mocness	8	125-250	v	5	43	3.58	C. propinquus
537	PS2	31/03/2009 E152 Mocness	8	125-250	v	6	40	3.33	C. propinquus
538	PS2	31/03/2009 E152 Mocness	8	125-250	v	7	41	3.42	C. propinquus
539	PS2		8	125-250	v	8	42	3.50	C. propinquus
540	PS2	31/03/2009 E152 Mocness	8	125-250	v	9	41	3.42	C. propinquus
541	PS2	31/03/2009 E152 Mocness	8	125-250	v	10	41	3.42	C. propinquus
542	PS2	31/03/2009 E152 Mocness	8	125-250	v	1	27	2.25	C. simillimus
543	PS2	31/03/2009 E152 Mocness	8	125-250	v	2	29	2.42	C. simillimus
544	PS2		8	125-250	v	3	29	2.42	C. simillimus
	PS2	31/03/2009 E152 Mocness	8	125-250	v	4	29	2.42	C. simillimus
546	PS2	31/03/2009 E152 Mocness	8	125-250	v	5	29	2.33	C. simillimus
547	PS2	31/03/2009 E152 Mocness	8	125-250	v	6	28	2.33	C. similimus
	PS2	31/03/2009 E152 Mocness	8		v	7	29	2.42	C. similimus
548				125-250					
549	PS2		8	125-250	V	8	27	2.25	C. simillimus
550	PS2	31/03/2009 E152 Mocness	8	125-250	V	9	28	2.33	C. simillimus
551	PS2	31/03/2009 E152 Mocness	8	125-250	v	10	29	2.42	C. simillimus
552	PS3	02/04/2009 E167 Mocness	2	875-1000	V	1	47	3.92	
553	PS3	02/04/2009 E167 Mocness	2	875-1000	V	2	47	3.92	
554	PS3	02/04/2009 E167 Mocness	2	875-1000	V	3	46	3.83	
555	PS3	02/04/2009 E167 Mocness	2	875-1000	V	4	46	3.83	
556	PS3	02/04/2009 E167 Mocness	2	875-1000	V	5	47	3.92	
557	PS3	02/04/2009 E167 Mocness	2	875-1000	V	6	46	3.83	
558	PS3	02/04/2009 E167 Mocness	2	875-1000	V	7	42	3.50	
559	PS3	02/04/2009 E167 Mocness	2	875-1000	V	8	47	3.92	
560	PS3	02/04/2009 E167 Mocness	2	875-1000	V	9	47	3.92	
561	PS3	02/04/2009 E167 Mocness	2	875-1000	V	10	45	3.75	
562	PS3	02/04/2009 E167 Mocness	3	750-875	V	1	45	3.75	
563	PS3	02/04/2009 E167 Mocness	3	750-875	V	2	46	3.83	
564	PS3	02/04/2009 E167 Mocness	3	750-875	V	3	45	3.75	
565	PS3	02/04/2009 E167 Mocness	3	750-875	V	4	46	3.83	
566	PS3	02/04/2009 E167 Mocness	3	750-875	V	5	44	3.67	
567	PS3	02/04/2009 E167 Mocness	4	625-750	V	1	46	3.83	
568	PS3	02/04/2009 E167 Mocness	4	625-750	v	2	47	3.92	
569	PS3	02/04/2009 E167 Mocness	4	625-750	v	3	48	4.00	
570	PS3	02/04/2009 E167 Mocness	4	625-750	v	4	45	3.75	
571	PS3	02/04/2009 E167 Mocness	4	625-750	v	5	45	3.75	
572	PS3	02/04/2009 E167 Mocness	5	500-625	v	1	42	3.50	
573	PS3	02/04/2009 E167 Mocness	5	500-625	v	2	45	3.75	
574	PS3	02/04/2009 E167 Mocness	5	500-625	v	3	46	3.83	

575	PS3	02/04/2009 E167 Mocness	5	500-625	v	4	47	3.92	
576	PS3	02/04/2009 E167 Mocness	5	500-625	v	5	42	3.50	
577	PS3	02/04/2009 E167 Mocness	6	375-500	v	1	47	3.92	
578	PS3	02/04/2009 E167 Mocness	6	375-500	v	2	45	3.75	
579	PS3	02/04/2009 E167 Mocness	6	375-500	v	3	46	3.83	
580	PS3	02/04/2009 E167 Mocness	6	375-500	v	4	46	3.83	
581	PS3	02/04/2009 E167 Mocness	6	375-500	v	5	45	3.75	
582	PS3	02/04/2009 E167 Mocness	7	250-375	v	1	47	3.92	
583	PS3	02/04/2009 E167 Mocness	7	250-375	v	2	46	3.83	
584	PS3	02/04/2009 E167 Mocness	7	250-375	v	3	44	3.67	
585	PS3	02/04/2009 E167 Mocness	7	250-375	v	4	44	3.67	
586	PS3	02/04/2009 E167 Mocness	7	250-375	v	5	45	3.75	
587	PS3	02/04/2009 E167 Mocness	8	125-250	v	1	45	3.75	
588	PS3	02/04/2009 E167 Mocness	8	125-250	v	2	44	3.67	
589	PS3	02/04/2009 E167 Mocness	8	125-250	v	3	42	3.50	
590	PS3	02/04/2009 E167 Mocness	8	125-250	v	4	45	3.75	
591	PS3	02/04/2009 E167 Mocness	8	125-250	v	1	42	3.50	C. propinquus full guts
592	PS3	02/04/2009 E167 Mocness	8	125-250	v	2	43	3.58	C. propinquus full guts
593	PS3	02/04/2009 E167 Mocness	8	125-250	v	3	38	3.17	C. propinquus full guts
594	PS3	02/04/2009 E167 Mocness	8	125-250	v	4	41	3.42	C. propinquus full guts
595	PS3	02/04/2009 E167 Mocness	8	125-250	v	5	40	3.33	C. propinquus full guts
596	PS3	02/04/2009 E167 Mocness	8	125-250	v	6	41	3.42	C. propinquus full guts
597	PS3	02/04/2009 E167 Mocness	8	125-250	v	7	45	3.75	C. propinquus full guts
598	PS3	02/04/2009 E167 Mocness	2	875-1000	v	1	45	3.75	C. propinquus full guts
599	PS3	02/04/2009 E167 Mocness	2	875-1000	v	2	45	3.75	C. propinquus full guts
600	PS3	02/04/2009 E167 Mocness	2	875-1000	F	3	55	4.58	female
600	PS3 PS3	02/04/2009 E167 Mocness 02/04/2009 E167 Mocness	2 2	875-1000 875-1000	F V	3 4	55 45	4.58 3.75	
600									female
600 601	PS3	02/04/2009 E167 Mocness	2	875-1000	v	4	45	3.75	female C. propinquus full guts
600 601 602	PS3 PS3	02/04/2009 E167 Mocness 02/04/2009 E167 Mocness	2 2	875-1000 875-1000	v v	4 5	45 45	3.75 3.75	female C. propinquus full guts C. propinquus full guts
600 601 602 603 604	PS3 PS3 PS3	02/04/2009 E167 Mocness 02/04/2009 E167 Mocness 02/04/2009 E167 Mocness	2 2 2	875-1000 875-1000 875-1000	v v v	4 5 6	45 45 44	3.75 3.75 3.67	female C. propinquus full guts C. propinquus full guts C. propinquus full guts
600 601 602 603 604	PS3 PS3 PS3 PS3	02/04/2009 E167 Mocness 02/04/2009 E167 Mocness 02/04/2009 E167 Mocness 02/04/2009 E167 Mocness	2 2 2 2	875-1000 875-1000 875-1000 875-1000	v v v v	4 5 6 7	45 45 44 44	3.75 3.75 3.67 3.67	female C. propinquus full guts C. propinquus full guts C. propinquus full guts C. propinquus full guts
 600 601 602 603 604 605 606 	PS3 PS3 PS3 PS3 PS3	02/04/2009 E167 Mocness 02/04/2009 E167 Mocness 02/04/2009 E167 Mocness 02/04/2009 E167 Mocness 02/04/2009 E167 Mocness	2 2 2 2 2	875-1000 875-1000 875-1000 875-1000 875-1000	V V V F	4 5 6 7 1	45 45 44 44 94	3.75 3.75 3.67 3.67 7.83	female C. propinquus full guts C. propinquus full guts C. propinquus full guts C. propinquus full guts R. gigas
 600 601 602 603 604 605 606 	PS3 PS3 PS3 PS3 PS3 PS3	02/04/2009 E167 Mocness 02/04/2009 E167 Mocness 02/04/2009 E167 Mocness 02/04/2009 E167 Mocness 02/04/2009 E167 Mocness 02/04/2009 E167 Mocness	2 2 2 2 2 2 2	875-1000 875-1000 875-1000 875-1000 875-1000 875-1000	V V V F F	4 5 6 7 1 2	45 45 44 94 90	3.75 3.75 3.67 7.83 7.50	female C. propinquus full guts C. propinquus full guts C. propinquus full guts C. propinquus full guts R. gigas R. gigas
600 601 602 603 604 605 606 607 608	PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3	02/04/2009 E167 Mocness 02/04/2009 E167 Mocness 02/04/2009 E167 Mocness 02/04/2009 E167 Mocness 02/04/2009 E167 Mocness 02/04/2009 E167 Mocness	2 2 2 2 2 2 2 2 2	875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000	V V V F F	4 5 6 7 1 2	45 45 44 94 90 4	3.75 3.75 3.67 3.67 7.83 7.50 0.33	female C. propinquus full guts C. propinquus full guts C. propinquus full guts C. propinquus full guts R. gigas R. gigas R. gigas
600 601 602 603 604 605 606 607 608 609	PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3	02/04/2009 E167 Mocness 02/04/2009 E167 Mocness 02/04/2009 E167 Mocness 02/04/2009 E167 Mocness 02/04/2009 E167 Mocness 02/04/2009 E167 Mocness 02/04/2009 E167 Mocness	2 2 2 2 2 2 2 2 2 2 2	875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000	V V V F F F V	4 5 6 7 1 2 3 4	45 45 44 94 90 4 74	3.75 3.75 3.67 3.67 7.83 7.50 0.33 6.17	female C. propinquus full guts C. propinquus full guts C. propinquus full guts C. propinquus full guts R. gigas R. gigas R. gigas R. gigas R. gigas
600 601 602 603 604 605 606 607 608 609 610	PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3	02/04/2009 E167 Mocness 02/04/2009 E167 Mocness	2 2 2 2 2 2 2 2 2 2 2 2 2	875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000	V V V F F F V V	4 5 7 1 2 3 4 5	45 45 44 94 90 4 74 79	3.75 3.75 3.67 7.83 7.50 0.33 6.17 6.58	female C. propinquus full guts C. propinquus full guts C. propinquus full guts C. propinquus full guts R. gigas R. gigas R. gigas R. gigas R. gigas R. gigas
600 601 602 603 604 605 606 607 608 609 610 611	PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3	02/04/2009 E167 Mocness 02/04/2009 E167 Mocness	2 2 2 2 2 2 2 2 2 2 2 2 5	875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000	V V F F V V F	4 5 7 1 2 3 4 5 1	45 45 44 94 90 4 74 79 84	3.75 3.75 3.67 7.83 7.50 0.33 6.17 6.58 7.00	female C. propinquus full guts C. propinquus full guts C. propinquus full guts C. propinquus full guts R. gigas R. gigas R. gigas R. gigas R. gigas R. gigas R. gigas R. gigas
600 601 602 603 604 605 606 607 608 609 610 611	PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3	02/04/2009 E167 Mocness 02/04/2009 E167 Mocness	2 2 2 2 2 2 2 2 2 2 2 2 5 5	875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 500-625 500-625	V V F F V V F F	4 5 7 1 2 3 4 5 1 2	45 45 44 94 90 4 74 79 84 89	3.75 3.67 3.67 7.83 7.50 0.33 6.17 6.58 7.00 7.42	female C. propinquus full guts C. propinquus full guts C. propinquus full guts C. propinquus full guts R. gigas R. gigas R. gigas R. gigas R. gigas R. gigas R. gigas R. gigas R. gigas R. gigas
600 601 602 603 604 605 606 607 608 609 610 611 612 613	PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3	02/04/2009 E167 Mocness 02/04/2009 E167 Mocness	2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5	875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 500-625 500-625 500-625	V V F F V F F F F	4 5 7 1 2 3 4 5 1 2 3	45 45 44 94 90 4 74 79 84 89 87	3.75 3.67 3.67 7.83 7.50 0.33 6.17 6.58 7.00 7.42 7.25	female C. propinquus full guts C. propinquus full guts C. propinquus full guts C. propinquus full guts R. gigas R. gigas
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614	PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3	02/04/2009 E167 Mocness 02/04/2009 E167 Mocness	2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5	875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 500-625 500-625 500-625 500-625	V V F F V F F F V V	4 5 7 1 2 3 4 5 1 2 3 4	45 45 44 94 90 4 74 79 84 89 87 71	3.75 3.67 3.67 7.83 7.50 0.33 6.17 6.58 7.00 7.42 7.25 5.92	female C. propinquus full guts C. propinquus full guts C. propinquus full guts C. propinquus full guts R. gigas R. gigas
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615	PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3	02/04/2009 E167 Mocness 02/04/2009 E167 Mocness	2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5	875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 500-625 500-625 500-625 500-625	V V F F V F F F V F F V F	4 5 6 7 1 2 3 4 5 1 2 3 4 5 5	45 45 44 94 90 4 74 79 84 89 87 71 93	3.75 3.67 3.67 7.83 7.50 0.33 6.17 6.58 7.00 7.42 7.25 5.92 7.75	female C. propinquus full guts C. propinquus full guts C. propinquus full guts C. propinquus full guts R. gigas R. gigas
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616	PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3	02/04/2009 E167 Mocness 02/04/2009 E167 Mocness	2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5	875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 500-625 500-625 500-625 500-625 500-625	V V F F F V F F V F F F	4 5 6 7 1 2 3 4 5 1 2 3 4 5 6	45 44 44 94 90 4 74 79 84 89 87 71 93 93	3.75 3.67 3.67 7.83 7.50 0.33 6.17 6.58 7.00 7.42 7.25 5.92 7.75 7.75	female C. propinquus full guts C. propinquus full guts C. propinquus full guts C. propinquus full guts R. gigas R. gigas
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617	PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3	02/04/2009 E167 Mocness 02/04/2009 E167 Mocness	2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 8	875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 500-625 500-625 500-625 500-625 500-625 500-625	V V F F V F F V F F V F V F	4 5 6 7 1 2 3 4 5 1 2 3 4 5 6 1	45 44 44 94 90 4 74 79 84 89 87 71 93 93 75	3.75 3.67 3.67 7.83 7.50 0.33 6.17 6.58 7.00 7.42 7.25 5.92 7.75 7.75 6.25	female C. propinquus full guts C. propinquus full guts C. propinquus full guts C. propinquus full guts R. gigas R. gigas
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618	PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3	02/04/2009 E167 Mocness 02/04/2009 E167 Mocness	2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5	875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 500-625 500-625 500-625 500-625 500-625 500-625 125-250	V V F F F V F F F V F F V V V	4 5 6 7 1 2 3 4 5 1 2 3 4 5 6 1 2	45 45 44 94 90 4 74 79 84 89 87 71 93 93 75 75	3.75 3.67 3.67 7.83 7.50 0.33 6.17 6.58 7.00 7.42 7.25 5.92 7.75 5.92 7.75 6.25 6.25	female C. propinquus full guts C. propinquus full guts C. propinquus full guts C. propinquus full guts R. gigas R. gigas
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619	PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3	02/04/2009 E167 Mocness 02/04/2009 E167 Mocness	2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5	875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 500-625 500-625 500-625 500-625 500-625 500-625 500-625 500-625 500-625 500-625	V V F F F V F F F V F F V V IV	4 5 6 7 1 2 3 4 5 1 2 3 4 5 6 1 2 3	45 44 44 94 90 4 74 79 84 89 87 71 93 93 75 75 59	3.75 3.67 3.67 7.83 7.50 0.33 6.17 6.58 7.00 7.42 7.25 5.92 7.75 6.25 6.25 6.25 4.92	female C. propinquus full guts C. propinquus full guts C. propinquus full guts C. propinquus full guts R. gigas R. gigas
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620	PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3	02/04/2009 E167 Mocness 02/04/2009 E167 Mocness	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5	875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 500-625 500-625 500-625 500-625 500-625 500-625 125-250 125-250 125-250	V V F F F V F F F V F F V V IV	4 5 6 7 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4	45 44 44 94 90 4 74 79 84 89 87 71 93 93 75 75 59 55	3.75 3.67 3.67 7.83 7.50 0.33 6.17 6.58 7.00 7.42 7.25 5.92 7.75 6.25 6.25 6.25 4.92 4.58	female C. propinquus full guts C. propinquus full guts C. propinquus full guts C. propinquus full guts R. gigas R. gigas
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621	PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3 PS3	02/04/2009 E167 Mocness 02/04/2009 E167 Mocness	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 875-1000 500-625 500-625 500-625 500-625 500-625 500-625 125-250 125-250 125-250	V V F F F V F F F V V F F V V IV V V	4 5 6 7 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5	45 44 44 90 4 74 79 84 89 87 71 93 93 75 75 75 59 55 73	3.75 3.67 3.67 7.83 7.50 0.33 6.17 6.58 7.00 7.42 7.25 5.92 7.75 7.75 6.25 6.25 6.25 4.92 4.58 6.08	female C. propinquus full guts C. propinquus full guts C. propinquus full guts C. propinquus full guts R. gigas R. gigas

PS3	02/04/2009 E167 Mocness	8	125-250	v	8	76	6.33	R. gigas
PS3	02/04/2009 E167 Mocness	8	125-250	IV	9	57	4.75	R. gigas
PS3	02/04/2009 E167 Mocness	8	125-250	v	10	75	6.25	R. gigas
R3	06/04/2009 E195 Mocness	3	750-875	F	1	96	8.00	R.gigas
R3	06/04/2009 E195 Mocness	3	750-875	F	2	93	7.75	R.gigas
R3	06/04/2009 E195 Mocness	3	750-875	v	3	79	6.58	R.gigas
R3	06/04/2009 E195 Mocness	3	750-875	F	4	82	6.83	R.gigas
R3	06/04/2009 E195 Mocness	3	750-875	v	5	82	6.83	R.gigas
R3	06/04/2009 E195 Mocness	3	750-875	v	6	75	6.25	R.gigas
R3	06/04/2009 E195 Mocness	3	750-875	v	1	45	3.75	C. propinquus
R3	06/04/2009 E195 Mocness	3	750-875	v	2	45	3.75	C. propinquus
R3	06/04/2009 E195 Mocness	3	750-875	v	3	45	3.75	C. propinquus
R3	06/04/2009 E195 Mocness	3	750-875	v	4	45	3.75	C. propinquus
R3	06/04/2009 E195 Mocness	3	750-875	v	5	45	3.75	C. propinquus
R3	06/04/2009 E195 Mocness	3	750-875	v	1	47	3.92	C.acutus
R3	06/04/2009 E195 Mocness	3	750-875	v	2	45	3.75	C.acutus
R3	06/04/2009 E195 Mocness	3	750-875	v	3	46	3.83	C.acutus
R3	06/04/2009 E195 Mocness	3	750-875	v	4	45	3.75	C.acutus
R3	06/04/2009 E195 Mocness	3	750-875	v	5	43	3.58	C.acutus
	PS3 PS3 R3 R3 R3 R3 R3 R3 R3 R3 R3 R3 R3 R3 R3	PS3 02/04/2009 E167 Mocness PS3 02/04/2009 E167 Mocness R3 06/04/2009 E195 Mocness R4 06/04/2009 E195 Mocness R3 06/04/2009 E195 Mocness R4 06/04/2009 E195 Mocness R5 06/04/2009 E195 Mocness R4 06/04/2009 E195 Mocness R5 06/04/2009 E195 Mocness R4 06/04/2009 E195 Mocness R5 06/04/2009 E195 Mocness R6 06/04/2009 E195 Mocness	PS3 02/04/2009 E167 Mocness 8 PS3 02/04/2009 E197 Mocness 8 R3 06/04/2009 E195 Mocness 3 R3 06/04/2009 E195 Mocness 3 </th <th>PS3 02/04/2009 E167 Mocness 8 125-250 PS3 02/04/2009 E167 Mocness 8 125-250 R3 06/04/2009 E195 Mocness 3 750-875 R3 06/04/2009 E195 Mocness</th> <th>PS3 02/04/2009 E167 Mocness 8 125-250 V PS3 02/04/2009 E167 Mocness 8 125-250 V R3 06/04/2009 E195 Mocness 3 750-875 F R3 06/04/2009 E195 Mocness 3 750-875 V R3 <td< th=""><th>PS3 02/04/2009 E167 Mocness 8 125-250 IV 9 PS3 02/04/2009 E167 Mocness 8 125-250 V 10 R3 06/04/2009 E195 Mocness 3 750-875 F 1 R3 06/04/2009 E195 Mocness 3 750-875 F 2 R3 06/04/2009 E195 Mocness 3 750-875 F 4 R3 06/04/2009 E195 Mocness 3 750-875 F 4 R3 06/04/2009 E195 Mocness 3 750-875 V 5 R3 06/04/2009 E195 Mocness 3 750-875 V 6 R3 06/04/2009 E195 Mocness 3 750-875 V 1 R3 06/04/2009 E195 Mocness 3 750-875 V 2 R3 06/04/2009 E195 Mocness 3 750-875 V 3 R3 06/04/2009 E195 Mocness 3 750-875 V 4 R3 06/04/2009 E195 Mocness 3 750-875 V 1 R3 06/04/2009 E195 Mocness 3<th>PS3 02/04/2009 E167 Mocness 8 125-250 IV 9 57 PS3 02/04/2009 E167 Mocness 8 125-250 V 10 75 R3 06/04/2009 E195 Mocness 3 750-875 F 1 96 R3 06/04/2009 E195 Mocness 3 750-875 F 2 93 R3 06/04/2009 E195 Mocness 3 750-875 V 3 79 R3 06/04/2009 E195 Mocness 3 750-875 V 3 79 R3 06/04/2009 E195 Mocness 3 750-875 V 5 82 R3 06/04/2009 E195 Mocness 3 750-875 V 6 75 R3 06/04/2009 E195 Mocness 3 750-875 V 1 45 R3 06/04/2009 E195 Mocness 3 750-875 V 2 45 R3 06/04/2009 E195 Mocness 3 750-875 V 3 45 R3 06/04/2009 E195 Mocness 3 750-875 V 4 45</th><th>PS3 02/04/2009 E167 Mocness 8 125-250 IV 9 57 4.75 PS3 02/04/2009 E167 Mocness 8 125-250 V 10 75 6.25 R3 06/04/2009 E195 Mocness 3 750-875 F 1 96 8.00 R3 06/04/2009 E195 Mocness 3 750-875 F 2 93 7.75 R3 06/04/2009 E195 Mocness 3 750-875 V 3 79 6.58 R3 06/04/2009 E195 Mocness 3 750-875 F 4 82 6.83 R3 06/04/2009 E195 Mocness 3 750-875 V 5 82 6.83 R3 06/04/2009 E195 Mocness 3 750-875 V 6 75 6.25 R3 06/04/2009 E195 Mocness 3 750-875 V 6 75 6.25 R3 06/04/2009 E195 Mocness 3 750-875 V 1 45 3.75 R3 06/04/2009 E195 Mocness 3 750-875 V 3</th></th></td<></th>	PS3 02/04/2009 E167 Mocness 8 125-250 PS3 02/04/2009 E167 Mocness 8 125-250 R3 06/04/2009 E195 Mocness 3 750-875 R3 06/04/2009 E195 Mocness	PS3 02/04/2009 E167 Mocness 8 125-250 V PS3 02/04/2009 E167 Mocness 8 125-250 V R3 06/04/2009 E195 Mocness 3 750-875 F R3 06/04/2009 E195 Mocness 3 750-875 V R3 <td< th=""><th>PS3 02/04/2009 E167 Mocness 8 125-250 IV 9 PS3 02/04/2009 E167 Mocness 8 125-250 V 10 R3 06/04/2009 E195 Mocness 3 750-875 F 1 R3 06/04/2009 E195 Mocness 3 750-875 F 2 R3 06/04/2009 E195 Mocness 3 750-875 F 4 R3 06/04/2009 E195 Mocness 3 750-875 F 4 R3 06/04/2009 E195 Mocness 3 750-875 V 5 R3 06/04/2009 E195 Mocness 3 750-875 V 6 R3 06/04/2009 E195 Mocness 3 750-875 V 1 R3 06/04/2009 E195 Mocness 3 750-875 V 2 R3 06/04/2009 E195 Mocness 3 750-875 V 3 R3 06/04/2009 E195 Mocness 3 750-875 V 4 R3 06/04/2009 E195 Mocness 3 750-875 V 1 R3 06/04/2009 E195 Mocness 3<th>PS3 02/04/2009 E167 Mocness 8 125-250 IV 9 57 PS3 02/04/2009 E167 Mocness 8 125-250 V 10 75 R3 06/04/2009 E195 Mocness 3 750-875 F 1 96 R3 06/04/2009 E195 Mocness 3 750-875 F 2 93 R3 06/04/2009 E195 Mocness 3 750-875 V 3 79 R3 06/04/2009 E195 Mocness 3 750-875 V 3 79 R3 06/04/2009 E195 Mocness 3 750-875 V 5 82 R3 06/04/2009 E195 Mocness 3 750-875 V 6 75 R3 06/04/2009 E195 Mocness 3 750-875 V 1 45 R3 06/04/2009 E195 Mocness 3 750-875 V 2 45 R3 06/04/2009 E195 Mocness 3 750-875 V 3 45 R3 06/04/2009 E195 Mocness 3 750-875 V 4 45</th><th>PS3 02/04/2009 E167 Mocness 8 125-250 IV 9 57 4.75 PS3 02/04/2009 E167 Mocness 8 125-250 V 10 75 6.25 R3 06/04/2009 E195 Mocness 3 750-875 F 1 96 8.00 R3 06/04/2009 E195 Mocness 3 750-875 F 2 93 7.75 R3 06/04/2009 E195 Mocness 3 750-875 V 3 79 6.58 R3 06/04/2009 E195 Mocness 3 750-875 F 4 82 6.83 R3 06/04/2009 E195 Mocness 3 750-875 V 5 82 6.83 R3 06/04/2009 E195 Mocness 3 750-875 V 6 75 6.25 R3 06/04/2009 E195 Mocness 3 750-875 V 6 75 6.25 R3 06/04/2009 E195 Mocness 3 750-875 V 1 45 3.75 R3 06/04/2009 E195 Mocness 3 750-875 V 3</th></th></td<>	PS3 02/04/2009 E167 Mocness 8 125-250 IV 9 PS3 02/04/2009 E167 Mocness 8 125-250 V 10 R3 06/04/2009 E195 Mocness 3 750-875 F 1 R3 06/04/2009 E195 Mocness 3 750-875 F 2 R3 06/04/2009 E195 Mocness 3 750-875 F 4 R3 06/04/2009 E195 Mocness 3 750-875 F 4 R3 06/04/2009 E195 Mocness 3 750-875 V 5 R3 06/04/2009 E195 Mocness 3 750-875 V 6 R3 06/04/2009 E195 Mocness 3 750-875 V 1 R3 06/04/2009 E195 Mocness 3 750-875 V 2 R3 06/04/2009 E195 Mocness 3 750-875 V 3 R3 06/04/2009 E195 Mocness 3 750-875 V 4 R3 06/04/2009 E195 Mocness 3 750-875 V 1 R3 06/04/2009 E195 Mocness 3 <th>PS3 02/04/2009 E167 Mocness 8 125-250 IV 9 57 PS3 02/04/2009 E167 Mocness 8 125-250 V 10 75 R3 06/04/2009 E195 Mocness 3 750-875 F 1 96 R3 06/04/2009 E195 Mocness 3 750-875 F 2 93 R3 06/04/2009 E195 Mocness 3 750-875 V 3 79 R3 06/04/2009 E195 Mocness 3 750-875 V 3 79 R3 06/04/2009 E195 Mocness 3 750-875 V 5 82 R3 06/04/2009 E195 Mocness 3 750-875 V 6 75 R3 06/04/2009 E195 Mocness 3 750-875 V 1 45 R3 06/04/2009 E195 Mocness 3 750-875 V 2 45 R3 06/04/2009 E195 Mocness 3 750-875 V 3 45 R3 06/04/2009 E195 Mocness 3 750-875 V 4 45</th> <th>PS3 02/04/2009 E167 Mocness 8 125-250 IV 9 57 4.75 PS3 02/04/2009 E167 Mocness 8 125-250 V 10 75 6.25 R3 06/04/2009 E195 Mocness 3 750-875 F 1 96 8.00 R3 06/04/2009 E195 Mocness 3 750-875 F 2 93 7.75 R3 06/04/2009 E195 Mocness 3 750-875 V 3 79 6.58 R3 06/04/2009 E195 Mocness 3 750-875 F 4 82 6.83 R3 06/04/2009 E195 Mocness 3 750-875 V 5 82 6.83 R3 06/04/2009 E195 Mocness 3 750-875 V 6 75 6.25 R3 06/04/2009 E195 Mocness 3 750-875 V 6 75 6.25 R3 06/04/2009 E195 Mocness 3 750-875 V 1 45 3.75 R3 06/04/2009 E195 Mocness 3 750-875 V 3</th>	PS3 02/04/2009 E167 Mocness 8 125-250 IV 9 57 PS3 02/04/2009 E167 Mocness 8 125-250 V 10 75 R3 06/04/2009 E195 Mocness 3 750-875 F 1 96 R3 06/04/2009 E195 Mocness 3 750-875 F 2 93 R3 06/04/2009 E195 Mocness 3 750-875 V 3 79 R3 06/04/2009 E195 Mocness 3 750-875 V 3 79 R3 06/04/2009 E195 Mocness 3 750-875 V 5 82 R3 06/04/2009 E195 Mocness 3 750-875 V 6 75 R3 06/04/2009 E195 Mocness 3 750-875 V 1 45 R3 06/04/2009 E195 Mocness 3 750-875 V 2 45 R3 06/04/2009 E195 Mocness 3 750-875 V 3 45 R3 06/04/2009 E195 Mocness 3 750-875 V 4 45	PS3 02/04/2009 E167 Mocness 8 125-250 IV 9 57 4.75 PS3 02/04/2009 E167 Mocness 8 125-250 V 10 75 6.25 R3 06/04/2009 E195 Mocness 3 750-875 F 1 96 8.00 R3 06/04/2009 E195 Mocness 3 750-875 F 2 93 7.75 R3 06/04/2009 E195 Mocness 3 750-875 V 3 79 6.58 R3 06/04/2009 E195 Mocness 3 750-875 F 4 82 6.83 R3 06/04/2009 E195 Mocness 3 750-875 V 5 82 6.83 R3 06/04/2009 E195 Mocness 3 750-875 V 6 75 6.25 R3 06/04/2009 E195 Mocness 3 750-875 V 6 75 6.25 R3 06/04/2009 E195 Mocness 3 750-875 V 1 45 3.75 R3 06/04/2009 E195 Mocness 3 750-875 V 3
9. KRILL ECOLOGY

9.1 Krill length Frequency

Sophie Fielding

Introduction

Antarctic krill (*Euphausia superba*) were sampled to determine variation in the structure of the population across the Scotia Sea ecosystem.

Methods

Samples were taken from the targeted RMT8 net hauls that were either directed at acoustic targets or hauled obliquely through shallow depth horizons to find dispersed krill. For all hauls where krill were caught, where the primary aim was to capture live krill for experiments, a random sample was taken from all the remaining krill once the required number of live krill had been extracted.

Krill total length was measured on 100 fresh krill, using the standard BAS measurement from the anterior edge of the eye to the tip of the telson, with measurements rounded down to the nearest mm (Morris et al. 1988). Maturity stage was assessed using the scale of Makarov and Denys with the nomenclature described by Morris et al. (1988). Fig 9.1.1 shows the krill length frequency for all measured krill during JR200 (Ev8_2, Ev28_2, Ev29_1, Ev41_2, Ev62_1, Ev78_1, Ev112_2, Ev171_2, Ev242_2). Once measured the sample was discarded.

Length frequency of all krill measured

FIG 9.1.1 LENGTH FREQUENCY OF ALL KRILL CAUGHT DURING JR200

9.2 Feeding Ecology of Antarctic krill

Angus Atkinson

I had three separate objectives for JR200. The first was to determine fecal egstion rates of *Euphausia superba*, in a similar way to that on the previous cruise in summer, JR177. The second objective was to do a pilot study to measure iron excretion by krill and the third was to filter large volume water samples to determine how much sediment there is in the upper mixed layer at varying distances downstream of South Georgia. I describe these in turn.

9.2.1 OBJECTIVE 1: FECAL EGESTION BY ANTARCTIC KRILL

Introduction

Antarctic krill, *Euphausia superba*, are an important species within Scotia Sea food webs, and potentially also in biogeochemical export of carbon via their sinking fecal pellets. The species has been experimented on repeatedly in the past, but we are still some way from understanding its energy budget. This is because this mobile, schooling species does not appear to behave naturally under laboratory confinement, making the rates obtained open to question.

One approach to this problem has been to measure rate processes immediately after capture, before the animal adapts to confinement. This method is now generally considered as the best to assess feeding rate, by measuring fecal pellet production over the first few hours after capture (Clarke et al. 1988). It has been also been adopted to measure growth, by measuring moulting over the first few days after capture (Quetin et al. 1994). Measuring the rate of fecal pellet production on the one hand gives an insight into the feeding rate (by converting from egestion to ingestion via assimilation efficiency). On the other hand it gives a direct estimate of the rate of material processed by krill and repackaged into fecal pellets. These pellets are then either consumed within the mixed layer or sink to depth.

There is interest among both food web ecologists and biogeochemists in the production and sinking rates of zooplankton fecal pellets. Large grazers with rapidly sinking fecal pellets such as salps or krill can contribute directly to the "biological pump" of carbon and other important elements to the deep ocean. This flux of sinking pellets depends on a suite of factors, including the rate of pellet production, pellet composition and sinking rate.

There have been less than a dozen published measurements of egestion rates of krill. These are characterised by high variability and, surprisingly, none has measured carbon egestion rate directly, the results usually being presented in terms of dry mass. Likewise published data on the composition and sinking rates of the krill fecal pellets are scarce.

Aims

A: Measure egestion rate of freshly caught krill

- 1. To collect krill of a range of sizes from a wide a variety of sites, depths, times of day and food environments across the Scotia Sea.
- 2. To freeze part of the catch as soon as possible for gut contents analysis, for comparison with ambient chl *a* concentration and food composition.
- 3. To incubate a sample of the freshly caught krill for 3-4 hours to measure the hourly rate of fecal carbon and nitrogen production.

This will provide insights into the variability of the rates of fecal egestion, and, if sufficient swarms are sampled, an overview of the amount of C and N egested by the krill population.

B: Measure potential sinking rates of krill fecal pellets

- 1. Determine the sinking velocities of pellets from a wide variety of Scotia Sea environments.
- 2. Relate these to pellet dimensions, krill size and their diets and egestion rates.

The aim of these lab determinations is to examine what factors lead to high potential export fluxes of krill fecal pellets, in addition to the production rate of pellets.

C: Determine the elemental composition of krill fecal pellets

1. Analyse relative amounts of C and N as a proportion of dry mass in pellets from freshly caught krill

The aim of this is firstly to determine the nutritional value of pellets produced under different conditions. Second it will provide insights into assimilation efficiency, to test the idea that when feeding rates are high, assimilation efficiency decreases.

Methods

Objective 1A: fecal egestion rates.

As soon as a krill catch came aboard, a random sub-sample of 50 krill, where possible, were frozen immediately at -80° C for laboratory determination of gut fullness and diet back in Cambridge. Undamaged animals in good condition were then transferred to a 20L bucket of filtered seawater (fsw), provided by Dave Pond and a bucket of water from the non-toxic supply filtered through 60 micron mesh. At hourly intervals for the first 4h after capture the krill were transferred to fresh 10L buckets of the respective filtered waters. This allowed all pellets to settle, allowing them to settle, whence they were pipetted to watch glasses. Pellets were rinsed in fsw, cleaned of any adhering debris under a binocular microscope, and transferred gently to ashed 25 mm GF/F filters. These were frozen at -80° C for analysis of CHN in Cambridge. All filters were photographed for future record of pellet dimensions and quantities as a guide for CHN analysis.

These rates of fecal egestion will be compared with in situ gut contents of krill, which will be analysed on the krill samples frozen immediately after capture. I took water from the non-toxic supply at target fishing sites which was kindly processed for chl *a* by Min. These, in conjunction with their hourly- and CTD-derived chl *a* data will provide information on the food environment to help interpret the egestion rate data.

Objective 1B: pellet sinking rates

Concurrently with the krill incubated for fecal egestion rate measurements, I also incubated larger numbers, where available, in two to four 20L buckets of fsw. Fifty of these pellets were used for determinations of pellet sinking velocity. This was done in a 1L glass measuring cylinder filled with water of known salinity and temperature (Thanks to Hugh for salinity determination). Only intact, regular shape pellets with no adhering debris or protruding hairs were used for these experiments. Potentially suitable pellets were picked at random, without regard to dimensions in order to provide a reasonable representation of the pellet size produced by the krill. Pellets were introduced gently into the top of the cylinder without inducing turbulence and allowed to settle. Once they had attained uniform velocity, their time to sink a given distance was determined. Pellets hitting the sides or sinking vertically were attributed as questionable data.

Objective 1C: pellet composition.

I attacked this objective as follows:

1.Concurrently with the krill incubated for fecal egestion rate measurements, I also incubated larger numbers of animals, where available, in two 20L buckets of fsw. The pellets of these were harvested at hourly intervals for up to 3.5 h, rinsed in fsw and cleaned carefully of any debris, before a brief final rinse in deioinised water and transfer to 2ml micro-centrifuge tubes. These larger volume samples were frozen (-80°C) for later analysis of dry mass and elemental content. For three of these experiments, I divided the pellest in two batches, purified and froze one immediately as normal and did the same for the other half after a day at ambient temperature in the cold room. This is to tests whether the elemental composition of pellets changes over time, reflecting possible degradation.

Data coverage and Preliminary Results

Table 9.2.1 shows the experiments and preservation of freshly caught krill completed for Objectives A, B and C.

Objective 1A: fecal egestion rates

Krill were caught by RMT8, providing 13 catches with freshly frozen krill for gut contents analysis and fecal egestion analysis. These were caught throughout the cruise from a variety of conditions, spanning a range of swarm depths and times of day. I incubated variable numbers of krill per time-point, based on visual assessment of gut fullness of freshly caught krill. This was to attempt to obtain sufficient fecal material for measurement on the CHN analyser. Krill size was remarkably uniform, typically 45-55 mm with no gravid females or young krill in their second year of life.

Overall, fecal egesting rate was highly variable, reflecting the complex feeding behaviour of this species. Fecal egestion rates did not appear to be noticeably lower than those measured in summer on JR177. There was no noticeable day-night difference in egestion rates, although a layer-type feature sampled at 200m at South Georgia 50 m above the seabed had lower egestion rates. There appeared from first impressions to be only a very weak relationship between fecal egestion rate and ambient chl a concentration. I found little decrease in egestion rate over the first two hours of the incubation, like in JR177 but in contrast to some earlier studies. There was no difference in egestion rates whether the krill were in GF/F –fileted water or 60 micron-filtered seawater.

With 9 egestion rate determinations it would be ambitious to attempt a functional analysis of egestion rate against krill size, food quantity and quality, time of day, temperature, swarm depth etc. However the methods were very similar to those from the previous cruise, JR177 done in summer, so the results will be combined in a single paper. We have sampled across sufficient variation to maybe draw some conclusions about overall fecal egestion rates expected for krill in the Scotia Sea and the degree of variation in this.

Objective 1B: pellet sinking rates

I determined the sinking rate of 491 individual pellets across 11 experiments (see Table 9.2.1). The sinking rate of the fecal pellets varied over 40-fold, from 0.031 cm s⁻¹ to1.28 cm s⁻¹ (corresponding to an equivalent theoretical sinking rate of 26 to 1105 m d⁻¹ in motionless water column of equivalent density to the incubation water). Sinking rate depended mainly on pellet width, but also increased with pellet length. However there were clear differences between experiments in the sinking rate of pellets of the same dimensions, which I will relate to diet and feeding rate. There was also inter-swarm variation in the widths of pellets of krill of equivalent size.

Objective 1C: pellet composition

There were sufficient krill caught to obtain bulk samples of fecal pellets from 12 of the catches (Table 9.2.1). In conjunction with the pellets from the freshly caught krill it should give some insights into the digestion processes and into the composition of the pellets.

Problems encountered/recommendations

None. Thanks to great efforts from Peter Enderlein, Sophie Fielding and the whole of the nighttime netting team, we managed to catch krill surprisingly frequently in what was apparently a "poor krill year".

References

Clarke A, Quetin LB, Ross RM (1988) Laboratory and field estimates of the rate of faecal pellet production by Antarctic krill, *Euphausia superba*. Mar Biol 98: 557-563.

Quetin LB, Ross RM, Clarke A (1994) Krill energetics: seasonal and environmental aspects of the physiology of *Euphausia superba*. in: El Sayed SZ (ed) Southern Ocean ecology: the BIOMASS perspective. Cambridge University Press, Cambridge, UK. p 165-184

9.2.2 OBJECTIVE 2: PILOT STUDY OF IRON EXCRETION BY KRILL

Angus Atkinson, Sophie Fielding, Seb Steigenberger, Mick Whitehouse

Introduction

A recent paper suggests that krill are an important species in recycling dissolved iron via their excretion process. A forthcoming AFI9 project aims to examine the role of krill in recycling iron and other elements. The plan is to examine whether krill have roles in excreting, assimilating or repackaging iron into their fecal pellets. This is slightly ambitious for a single field season, so we wanted to benefit on this cruise from having both krill and iron scientists on board to do some pilot studies. This would give time to re-jig methods if there were problems, e.g with contamination.

Method

- a. Fill 20 L aspirator from ironfish supply, filtered through 1.2 micron (3 micron for last expt). Also fill first 2 rinsing buckets (5L)
- b. Mix and pour from carboy into 7 polycarbonate bottles fill to 2.35 L to bottom of neck.
- c. Fill 3rd acid-washed 5L rinsing buckets with remaining water and secure lids.
- d. Bag these in resealables and place in coldroom $(2^{\circ}C)$. Store for up to 3-4 days before use.
- e. During krill fishing, take a 1 L sample of non-toxic supply and store for Min to filter for Chl a concentration
- f. When a krill catch comes in, empty catch into big bucket as normal, then transfer 15 ish healthy krill (preferably of similar size) to a 5L bucket of freshly-collected non-toxic water. This done with an acid-washed spoon.
- g. Transfer to Main Lab, and under cover of a plastic "tent" spoon the krill into 1st then 2nd rinsing bucket and then the 9 healthiest into the 3rd with the acid-washed spoon.
- h. Meanwhile, the other person has selected 20ish random other krill from catch if available (dead/dying OK) and placed them in resealable with label on outside. Then double bag and into minus 80 as the "t-nought" sample.
- i. Take krill plus all the 2L bottles into clean container.
- j. Transfer 3 krill (if average size of ~ 40 mm) to each of 3 bottles with same spoon stowed in resealable when not in use. Other 3 bottles are controls with no krill, and the 7th is only sampled at final timepoint.
- k. Immediately subsample each by mixing, allowing 1 min for any pellets to sink and after 3 small vol rinses, pour 125 ml into a plastic subsample bottle. (Leave all bottles in fridge while not used). If one of the subsample bottles has any pellets (a problem in 3rd expt when pellests were numerous and slow sinking) subsampling is repeated.
- 1. for macronut subsampling pour into barrel of a syringe to its brim, use top bit for a single rinsed (they're already rinsed with MQ) and inject 60 ml through filter into Mick's nutrient bottle. Filters changed every 3rd sample.
- m. store 125 ml subsample bottle in fridge, pending dissolved iron determination by flow injection, whereby they are first filtered through 0.2 micron for dissolved iron determination.
- n. Return all bottles to cold room between subsamples.

- o. Subsampling of all 6 bottles is on set-up and after 2h and 4h.
- **p.** At end of expt final volumes remaining in bottles recorded. Krill are checked to see whether they are swimming freely, temperature measured also.
- **q**. To get the krill and fecal pellets, all 3 experimental bottles were emptied into the empty 3rd rinsing bucket, (use a control sample for rinsing water) and krill spooned out and frozen separately in batches of 3 in resealables in minus 80. Pellets pipetted off with new plastic sterile pipette (first rinsed briefly with MQ) and put in one of the 125 ml sample bottles. These pellets (with about 20 ml of water) then frozen at minus 80, for later analysis of particulate metals.

Future improvements on this:

- 1. Use a big coolbox to store all bottles to keep temp more constant
- 2. Buy more Sartobran 1 micron filters to use once-only.
- 3. Use clear polycarbonate subsampling 125 ml bottles so it is easier to see if pellets have inadvertantly been subsampled

Results

Four experiments were conducted, from events 40,87,171 and 242. Preliminary results from first three experiments were that we did not introduce contamination, and that excretion rates of dissolved iron were very low or zero, in contrast to the findings of the single previous study. From macronuteint analysis of the first experiment, excretion rates of ammonium were comparable to our previous findings.

OBJECTIVE 3: WATER FILTRATION FOR SEDIMENT ANALYSIS

Introduction

I wanted to do some work that links a previous AFI looking at krill diets to a forthcoming one looking at their role in nutrient recycling. The previous AFI found that krill fed on surprisingly high amounts of lithogenic sediment, either derived from surface waters or from the seabed. I therefore wanted to check what the ambient sediment loads were in the waters close to and downstream of South Georgia, since krill could potentially transform the nutrients in this sediment as it passed through their possibly acidic digestive systems.

Methods

Water samples of 10 L were obtained either from the ironfish or the non-toxic supply in the prep lab and filtered onto 2 micron polycarbonate filters, taking care to mix the water thouroughly and ensure that either filters or water had minimal exposure to ship-born dust. Filters were stored in petrislides and placed in the minus 80. 3 replicates were taken from each sample.

Results

Table 9.2.2 describes the 30 samples taken.

Event	Date	Net	Freshly f	shly frozen (t _o) Fecal egestic		tion meas	surement	Bulk	Incubation	No. of	Fecal
	(2008)	no.	krill					pellets	Temp (°C)	pellets	decay
			Time	Approx	No.	No.	No.	(no. h		settled	expt?
			frozen	no.	replicate	time-	krill	after to			
			(GMT-	frozen	buckets	points	per				
			3)				bucket				
8	14/3	2	07:05	20	2	3	20	3.5	1.5	41	-
28	16/3	2	21:52	30	2	3	21	3.5	0.0	25	-
29	16/3	1	22:49	35	1	3	25	3.5	0.5	25	-
41	18/3	1	22:10	100	-	-	-	3	0.5	50	-
54	19/3	1	20:51	30	2	4	23	2.5	1	50	-
61	20/3	2	19:23	25	-	-	-	3.5	1	-	-
62	20/3	1	20:39	30	2	4	19	3.25	1.3	50	Yes
78	22/3	1	11:14	50	2	4	25	3.5	1	50	Yes
88	23/3	1	21:40	25	-	-	-	2.5	1	50	-
105	25/3	2	17:15	10	1	2	5	-	1.5	-	-
112	26/3	2	20:00	30	2	4	15	3.5	2	50	-
171	3⁄4	2	22:55	30	-	-	-	3.25	2	50	Yes
242	14/4	2	15:00	25	2	4	35	3.5	3.5	50	-

Table 9.2.1. A summary of RMT 8 net catches used for krill fecal pellet experiments

Table 9.2.2. Collection of water samples onto 2 micron polycarbonate filters.

NT = non-toxic supply, IF = ironfish, NQ = possibly non-quantitative. Positions recorded here are for the endpoint of sampling – my notebook has start positions. Ship speed was around 10 knots unless stated otherwise.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	At P3 mooring Water collected during MOCNESS 7 knots during gale After gale, during Mocness Filter74 is an NQ crumpled spare b 6 knots, calming after gale.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	At P3 mooring Water collected during MOCNESS 7 knots during gale After gale, during Mocness Filter74 is an NQ crumpled spare b 6 knots, calming after gale.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Water collected during MOCNESS 7 knots during gale After gale, during Mocness Filter74 is an NQ crumpled spare 6 knots, calming after gale.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Water collected during MOCNESS 7 knots during gale After gale, during Mocness Filter74 is an NQ crumpled spare 6 knots, calming after gale.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MOCNESS 7 knots during gale After gale, during Mocness Filter74 is an NQ crumpled spare 6 knots, calming after gale.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 knots during gale After gale, during Mocness Filter74 is an NQ crumpled spare 6 knots, calming after gale.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	After gale, during Mocness Filter74 is an NQ crumpled spare 6 knots, calming after gale.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	 Filter74 is an NQ crumpled spare 6 knots, calming after gale.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Filter74 is an NQ crumpled spare 6 knots, calming after gale.
7 >1000 7/4 2323-2326 IF 52,10.62 36,18.22 75(2) 76(2) 77(2) 8 >1000 8/4 0124-0127 IF 51,55.43 35,57.41 72(2.5) 73(2.5) 78(2.5) 78(2.5) 78(2.5) 78(2.5) 78(2.5) 78(2.5) 78(2.5) 78(2.5) 80(3) 81(3)	Filter74 is an NQ crumpled spare 6 knots, calming after gale.
8 >1000 8/4 0124-0127 IF 51,55.43 35,57.41 72(2.5) 73(2.5) 78(2.5) 9 >1000 8/4 0325-0329 IF 51,40.17 35,36.78 79(3) 80(3) 81(3)	spare 6 knots, calming after gale.
9 >1000 8/4 0325-0329 IF 51,40.17 35,36.78 79(3) 80(3) 81(3)	6 knots, calming after gale.
10 > 1000 12/4 0808-0811 IF 51,30.26 37,38.57 85(3) 86(3) 87(3)	
	No.87 NQ
11 >1000 12/4 1110-1113 IF 51,53.07 37,13.41 88(3) 89(3) 90(3)	Still big swell but 10 knots now
12 >1000 12/4 1739-1743 IF 52,52.64 37,13.71 91(2.5) 92(2.5) 93(2.5)	Filtered at 1830
13 >1000? 12/4 1923-1940 NT 53,08.82 37,26.19 94(2.5) 95(2.5) 96(2.5	
14 3153- 12/4 2143-2302 NT 53,25.17 37,39.24 97(2.5) 98(2.5) 99(2)	7 knots
1924	
15 1024- 12/4 2325-2345 NT 53,37.45 37,48.72 100(2.5) 101(2) 102(2)) 7 knots (100 is NQ)
171	
16 111-136 13/4 0335-0357 NT 53,45.44 37,54.47 103(2) 104(2) 105(2)	
17 22-88 14/4 0752-0814 NT 53,57.12 38,04.29 106(2) 107(1.5) 108(1.	
18 151 14/4 1036-1040 IF 53,48.86 37,50.64 109(2) 110(2) 111(2)) 110 possibly NQ
19 98-150 15/4 1000-1029 NT 54,06.35 36,35.22 122(1.5) 123(1) 124(1)) 8 knots as leaving Leith, calm after
20 250-175 15/4 1258-1324 NT 53,54.29 37,25.14 125(1.5) 126(1) 127(1)) 126 NQ
21 141-277 15/4 1442-1509 NT 53,47.61 37,55.60 128(2) 129(2) 130(2)	
22 352 15/4 1811-1815 IF 53,47.07 38,06.82 131(2) 132(2) 133(2)	
23 326-546 15/4 1946-2012 NT 53,42.83 38,37.43 134(2.5) 135(2.5) 136(2.	5)
24 945-992 15/4 1955-1958 IF 53,40.73 38,51.77 137(2.5) 138(2) 139(2))
25 2051- 16/4 0502-0530 NT 53,26.36 41,05.07 140(2.5) 141(2.5) 142(2.	5) Slight dust on no. 140?
26 1407 16/4 0716-0730 IF 53,23.05 41,34.85 143(2.5) 144(2.5) 145(2.5)	5) Slight dust on no.144?
27 530-565 16/4 0904-0925 NT 53,19.26 42,09.13 146(2.5) 147(2.5) 148(2.	
28 688 16/4 1105-1110 IF 53,16.14 42,38.75 149(2.5) 150(2.5) 151(2.5)	
29 1558- 16/4 1248-1312 NT 53,12.75 43,10.94 152(3) 153(3) 154(3)	
30 2197 16/4 1640-1643 IF 53,05.96 44,15.29 155(3) 156(3) 157(3))

10. KRILL DISEASES

Ruth Hicks

Sampling of krill to screen for disease in the Southern Ocean: effects on standing stock and implications of changing climates

10.1 Background

Antarctic krill, *Euphausia superba*, are a keystone species in the Antarctic aquatic environment. Recent studies have reported a significant decline in krill stocks in the Southern Oceans (Atkinson, 2005). While the driving factor behind such declines is proposed as a temperature regime shift associated with global climate pattern change, the cause of the increased mortality (or reduction in recruitment) is currently unknown. Studies on the diseases of wild crustaceans are severely lacking. Despite their importance as key components of the global food chain, krill are no exception to this, with very few studies carried out on their pathogen fauna. Most of those studies that have been carried out to date have investigated the presence of ectoparasites and metazoan endoparasites (Komaki 1970, Shimazu 1971, 1972a, 1975a, 1975b, Shimazu & Oshima 1972, Kagei et al. 1978). In all of these cases, prevalence has been reported as low, with little inference made as to the potential population-level impact of these infections. More recent studies have demonstrated the presence of ciliates (Tarling & Cuzin-Roudy, 2007), some of which may be implicated in mass mortalities of krill (Gomez-Gutierrez et al., 2003). Also krill have been found to have bacterial infections probably as a result of environmental bacteria entering cavities made by earlier damage from parasitization, (Miwa et al. 2008).

While these studies provide a useful starting point for disease research in these species, a more detailed histopathological and ultrastructural assessment is required to study the potential range of protistan, bacterial, fungal and viral endoparasites potentially present. Since krill spend the majority of their lives in large 'swarms' that presumably aid the transmission and maintenance of micropathogen fauna within their populations, studies on these pathogens using approaches based upon histology and electron microscopy, will likely lead to the generation of disease profiles for krill within different parts of their natural range. It is important to note that as for the diseases of cultured shrimp, these micro-endoparasites are likely to have a greater impact on population dynamics in wild populations and as such, it is timely that their profile be studied in hosts such as krill.

By studying pathogen profiles in krill from across their natural range in the Southern Ocean we will contribute significantly to knowledge on mortality drivers in these populations. Furthermore, by combining disease data with oceanographic and fisheries data for these species may allow for further refinement of stock assessment models for krill and to comment on potential impact of further climate change on disease related mortality across their natural range.

Further to this, few studies have investigated pathogens of the smaller euphausiid species including *Euphausia triacantha*, *Euphausia valentini* and *Thysanoessa* spp. So as a caveat to the main project mentioned above, opportunistic samples of these smaller species will be collected

and preserved, with a view to investigating what pathogens, if any, they are susceptible to and, if present, providing some information as to their pathogen profiles.

10.2 Sampling

Whole, live krill were collected from the RMT-8 net during both day and night hauls. Animals were maintained alive in 10L buckets of seawater, in the cold room prior to preparation for histology, electron microscopy (EM) and molecular diagnostics. Before dissection/fixation all krill were measured using standard BAS protocol, taking total length measurements (from the anterior edge of the eye to the tip of the telson, rounding down to the nearest mm). For histology whole krill were injected directly and subsequently placed within 10 % Davidson's seawater fixative for at least 24 hours before transfer to 70 % industrial methylated spirit (IMS) for storage and transport back to the Cefas laboratory, Weymouth UK. Specific fresh samples were dissected with removal of hepatopancreas tissue for EM and molecular. In these cases, the carcass was then placed into pre-labelled histology cassettes and fixed in the same way as above. Samples analysed for histology will be cross-referred to those collected for electron microscopy and molecular techniques. Pathogens or pathologies identified using histology will be subsequently analysed using electron microscopy (e.g. for identification of viruses or microparasites). Selected samples (e.g. from patently infected krill) were preserved in ethanol for molecular diagnostics on any emerging pathogens discovered. All downstream analyses will occur at the Cefas laboratories in the UK.

An atlas of pathology and pathogens of krill from across the range of sites visited will be generated. In addition, apparent prevalence of individual pathogens at different field sites will be reported to krill population biologists at BAS.

Whole, live specimens of smaller Euphausiid species, were collected opportunistically from the MOCNESS, RMT8 and RMT25 nets during both day and night hauls. They were maintained alive in buckets of fresh seawater prior to dissection/fixation. For the most part they were injected with Davidson's seawater fixative and fixed whole, as described above. However, some of the *E. triacantha* samples were dissected out, with extra hepatopancreas samples taken for EM, as outlined above. Where there was confusion at the time of sampling as to the correct identification of these species, e.g. between similar species such as *E. frigida* and *E. valentini*, ID keys will be consulted to clarify species back at the lab before processing.

10.3 Acknowledgements

This project has only been made possible thanks to a proposal by Geraint Tarling. On not only my behalf, but on that of Cefas in general, I would like to thank Geraint for putting the whole thing together and being a great source of advice/help/knowledge whilst at sea. Also thanks to Beki Korb and Min Gordon for much help with all things health and safety. Last but not least thanks to the awesome fishing team, for catching all the krill!

10.4 References

Atkinson et al. 2005. Nature 432 (7013):100-103 Komaki 1970 J Oceanogr. Soc. Japan 26: 283-295 Shimazu 1971 Jap J Parasitol 20: 83-86 Shimazu 1972 Jap J Parasitol 21: 287-295 Shimazu 1975a Jap J Parasitol 24: 122-128 Shimazu 1975b Bull Jap Soc Sci Fish 41: 813-821 Shimazu & Oshima 1972 Biological Oceanography of the northern North Pacific Ocean, Idemitsu Shoten, Tokyo. pp. 403-409. Kagei et al. 1978 Sci Rep Whales Res Inst 30: 311-313 Gomez-Guiterrez et al. 2003 Science 301 (5631):339 Miwa et al. 2008 J Inv. Pathology 98: 280-286

 $Table \ 10.1 \ \text{a summary of net catches used & species sampled for disease screen. \ \text{Sgs} = \text{south georgia shelf}$

							Species	
Date	Station	Event	Gear	Net	Euphausia superba	Euphausia triacantha	Euphausia valentini	Thysanoessa sp.
14/03/2009	R1	8	RMT8		225			
17/03/2009	R1	29	RMT8		225			
18/03/2009	C2	39, 40, 41	RMT8		225			
19/03/2009	C2	54	RMT8	1	150			
20/03/2009	C3	62	RMT8	1	225			
22/03/2009	D7	78	RMT8	1	225			
23/03/2009	C4	87, 88	RMT8	1	105			
26/03/2009	R2	112	RMT8	2	50			
27/03/2009	R2	121	MOCNESS			54		
31/03/2009	P2	152	MOCNESS			15	10	
02/04/2009	P3	167	MOCNESS	6		23	25	24
03/04/2009	P3	171	RMT8	2	163			
03/04/2009	P3	183	MOCNESS	8	1	11	10	20
07/04/2009	PF	201	RMT8	1		78		
10/04/2009	PF5	235	RMT25	1		147		
14/04/2009	SGS	242	RMT8	1+2	400			

11. KRILL CONDITION: GENOMICS, POPULATION GENETICS AND MATURITY ANALYSIS

Geraint Tarling

11.1 Background

The distribution and state of krill through the Scotia Sea is subject to a number of influences. New techniques are being developed to assess krill state and its influence on distribution, particularly with regards genomic and population genetics. Our aim in the DISCOVERY 2010 cruises was to collect krill from a number of different environments and seasons so that specimens covered a range of states with regards life-cycle stage, moult stage and maturity. We also aimed to collect krill from a number of different times of day to examine genomic expression over the diel cycle. The brains of some krill were dissected and preserved to determine the site from which clock genes are controlled. Between 100 to 200 krill were preserved in 95% Ethanol, so that the population genetic diversity of krill could be assessed over the study region. Another 100 to 200 were preserved in formalin to examine maturity status, particularly of the ovaries.

11.2 Methods

11.2.1 Genomic expression analysis

30 to 40 live krill were extracted from a holding tank. Their total length and maturity were assessed before the two end abdominal segments (including telson and uropods) of the krill were removed and placed into a numbered well-tray. The remainder of the krill was placed either immediately into an individually labelled vial containing ~10 ml of RNA later or into a labelled bag and immersed immediately into super-cooled 95% ethanol (the ethanol having been cooled in the -80°C freezer before being placed in a Duran flask, within which the bags were immersed). The krill (minus abdominal segments) were stored in the -80°C freezer. The abdominal segments were analysed under a microscope for moult stage.

A high abundance of krill larvae were encountered in the early part of the cruise (calyptopes and early furcilia stages). Some were preserved in RNA later and stored in -80°C freezer.

11.2.2 Dissection of the brain, optic lobes and eyes of krill

The heads of between 20 and 30 live *Euphausia superba* were dissected and placed immediately in ZnFA solution for approximately 20 h. They were then washed in HBS and the connective tissue subsequently removed, also under HBS. The dissected brains, optic lobes and eyes were washed further in HBS and then placed in 80% Methanol:20% DMSO for 2 h before being finally preserved in 100% Methanol. Specimens were stored at -80°C. A diagram of the dissection technique is shown below:

VENTRAL

ŀ

DORBAL

VENTRAL

VENTRAL Ophorophone Ophorophone lobe. carapas removed.

Fig. 11.2.1 Dissection technique for krill brains, optic lobes and eyes.

A high abundance of krill larvae were encountered in the early part of the cruise (calyptopes and early furcilia stages). Some were preserved as for krill brain preservation (ie ZnFA to 80:20 MetOH:DMSO, 100% MetOH) and stored in -80°C freezer.

In addition, live krill were extracted from holding tanks and placed into a plastic bag before being immersed into super-cooled 95% ethanol (see above). These will be used for DNA analysis of clock gene diversity.

11.3 Results

The following tables list the samples that were collected for each of the above objectives

Time (GMT)	Latitude		Event	Station	Net Type	Number
		Longitude	Number	Name		of Krill
14/03/2009 09:34	-59.4727	-49.04204	8	En route	RMT8	100
				to R1		
17/03/2009 01:22	-60.4398	-48.22243	29	R1	RMT8	100
20/03/2009 21:38	-59.6058	-44.16973	61	C3	RMT8	100
22/03/2009 13:50	-58.8684	-43.51	78	C4	RMT8	100
03/04/2009 01:27	-52.9264	-40.14797	171	P3	RMT8	200
14/04/2009 16:59	-53.9207	-37.29464	242	South	RMT8	200
				Georgia		

Population genetics

 Table 11.3.1 Samples collected for population genetics. All were preserved in 95% Ethanol

Ovarian analysis

Time	Latitude		Event	Station	Net Type	Number
		Longitude	Number	Name		of Krill
				En route		
14/03/2009 09:34	-59.4727	-49.042	8	to R1	RMT8	100
17/03/2009 01:22	-60.4395	-48.2224	29	R1	RMT8	100
20/03/2009 21:38	-59.6057	-44.1697	61	C3	RMT8	100
22/03/2009 13:50	-58.8683	-43.5099	78	C4	RMT8	100
26/03/2009 22:20	-56.7481	-42.337	112	R2	RMT8	100
03/04/2009 01:27	-52.9264	-40.148	171	P3	RMT8	100
				South		
14/04/2009 16:59	-53.9207	-37.2946	242	Georgia	RMT8	100

Table 11.3.2 Samples collected for ovarian analysis. All were preserved in formalin.

RNA analysis

Table 11.3.3 Samples collected for RNA analysis

Time	Latitude	Longitude	Event Number	Station Name	Net Type	Number of Krill	Preservation Method	BOL
						10		
13/03/2009 11:20	-57.6854	-50.4415	2	P1 (test)	Bongo	larvae	RNA later -80°C	JS/C/09/4810
						~30		
13/03/2009 16:35	-57.6573	-50.4481	6	P1 test	MOCNESS	larvae	RNA later -80°C	JS/C/09/4810
				En route to				
14/03/2009 09:34	-59.4727	-49.042	8	R1	RMT8	40 adults	RNA later -80°C	JS/C/09/4810
17/03/2009 01:22	-60.44	-48.2225	29	R 1	RMT8	40 adults	RNA later -80°C	JS/C/09/4811
18/03/2009 23:51	-60.2129	-44.348	41	C2	RMT8	40 adults	RNA later -80°C	JS/C/09/4812
10/03/2007 23.31	-00.2129	-44.540	41	C2	IXIVI I O	40 auuns	KINA later -00 C	JS/C/09/4012
19/03/2009 23:30	-59.8795	-44.21	54	C2	RMT8	40 adults	RNA later -80°C	JS/C/09/4812
20/03/2009 21:38	-59.6053	-44.1697	61	C3	RMT8	40 adults	RNA later -80°C	JS/C/09/4813
							Rapid freezing in ethanol then -	
22/03/2009 13:50	-58.8682	-43.5098	78	C4	RMT8	30 adults	80°C	JS/C/09/4813
							Rapid frozen in ethanol then -	
03/04/2009 01:27	-52.9264	-40.148	171	P3	RMT8	30 adults	80°C	JS/C/09/4815
				South			Rapid frozen in ethanol then -	
14/04/2009 16:59	-53.9207	-37.2946	242	Georgia	RMT8	30 adults	80°C	JS/C/09/4816

All samples were measured for total length, maturity stage and moult stage. Note that uropod length rather than total length was measured in Event 8. Method of preservation differs between events in the first half compared with the second half of the cruise. Note that the first two entries concern krill larvae rather than adults

Brain Dissections								
Time	Latitude	Longitude	Event Number	Station Name	Net Type	Number of Krill		
13/03/2009 16:35	-57.6573	-50.4481	6	P1 test	MOCNESS	~30 krill larvae		
14/03/2009 09:34	-59.4727	-49.042	8	En route to R1	RMT8	22 adults		
17/03/2009 01:22	-60.4395	-48.2224	29	R1	RMT8	30 adults		
18/03/2009 23:51	-60.2129	-44.3471	41	C2	RMT8	14 adults		
20/03/2009 21:38	-59.6056	-44.1697	61	C3	RMT8	26 adults		
22/03/2009 13:50	-58.8686	-43.5102	78	C4	RMT8	20 adults		
03/04/2009 01:27	-52.9264	-40.148	171	P3	RMT8	20 adults		

Proin Discontions

Table 11.3.4 Samples collected for brain dissections.

Dissected brains were preserved in 100% Methanol and stored at -20°C (having first being dehydrated through ZnFA and 80%:20% Methanol:DMSO). Note that krill larvae were collected for Event 2 and preserved whole using the same dehydration technique and stored in 100% Methanol at -20°C.

Time	Latituda	Longitudo	Event	Station	Net	Number	BOL
	Latitude	Longitude	number	Name	Туре	of Krill	
26/03/2009	-56.7479	-42.3374	112	R2	RMT8	30 krill	JS/C/09/4814
22:20							
03/04/2009	-52.9264	-40.148	171	P3	RMT8	95 krill	JS/C/09/4815
01:27							
14/04/2009	-53.9207	-37.2946	242	South	RMT8	100 krill	JS/C/09/4816
16:59				Georgia			

Table 11.3.5 Krill collected for clock gene DNA analysis.

Events 112 and 171 were immersed into supercooled 95% Ethanol for rapid freezing before being stored at -80°C. In Event 242, the krill were placed directly into the -80°C freezer.

12. ACOUSTICS

Sophie Fielding, Peter Enderlein, Geraint Tarling

12.1 Acoustic instrumentation

Introduction

JR200 is the third of three Discovery 2010 cruises running two transects (Stanley to Signy and Signy to South Georgia) across the Scotia Sea. Within these transects there are a series of stations (C, P and R). At each station dedicated acoustic transects were run within mesoscale surveys (of two different styles depending on station, although acoustic data were collected continuously during the cruise.

Aim

Collection of acoustic data to accompany all transects, acoustic surveys, and net tows during the Scotia Sea survey.

Backup and process the acoustic data

Methods/System specification

Software versions Simrad ER60 v. 2.0 Sonardata Echolog 60 v 4.05.6208 Sonardata Echoview v 4.0.75.6342 Live viewing Sonardata Echoview v 4.20.59.8698 Processing

HASP Dongle BAS3 licensed for base, bathymetry, analysis export, live viewing, school detection and virtual echogram was used to run the echolog and echoview in live viewing mode. The echosounder pc AP10 and the EK60 workstation 2 are integrated into the ship's LAN. ER60 .raw data files were logged to a Sun workstation jrua, using a Samba connection, which is backed up at regular intervals. All raw data were collected to 1000 m. Echolog was run on workstation 2 and wrote compressed files also directly to the Sun workstation via a Samba connection.

Echolog compression settings

Final compression settings used in Echolog for all frequencies were:

- 1) Power data only (angle data is still available from the raw files)
- 2) From 0 500 m (38 kHz), 0 500 (120 kHz) and 0 500 (200 kHz) data only (data from greater depths are available from the raw files)
- 3) Average samples where both Sv below -100 dB and TS below -20 dB
- 4) Maximum number of samples to average: 50
- 5) DO NOT use average samples below echosounder detected bottom unless sure of bottom detection

During the acoustic surveys, when the EK60 was stopped and restarted to mark the beginning and end of a transect, the Echolog programme would occasionally stop logging. As a result the raw files were compressed using Echozip on a local pc and the subsequent .ek60 files were saved to the L drive. The Echozip command to compress a folder of files is (directory has to be c:\program files\sonardata\echoview4):

C:> Echozip_60 –Z L:\science\acoustics\data\ek60\fishing_echolog\holding

File locations

All raw data were saved in a general folder JR200, all echolog data were saved in the folder JR200\echolog. All files were prefixed with JR200. Calibration data were additionally saved to the calibration folder.

EK60 (ER60) settings

The EK60 was only calibrated at the end of the cruise hence it was run throughout JR200 on the most recent settings. Table Acoustics_1 lists the settings the EK60 was run with during JR200. It was noted that the TS gain setting for the 38 kHz has been set (by someone in a previous cruise) to 22.03 – this is 2 dB higher than last years cruise. There is no documentation as to why. It was decided to leave it at these settings since the power into water and pulse length were correct. Finally at the end of the cruise it was found that someone had previously set the 38 kHz 2-way beam angle and TS gain parameters to that of the 200 kHz transducer. The noise on all frequencies was greater than the previous cruises and it is noted that the JCR has not been into the ice this year and there may be a large amount of fouling on the hull as a result. The EK60 settings were not updated following calibration – it is assumed that calibrated settings will be used in post-processing only, although the 38 kHz transducer 2-way beam angle was set to the correct value (-20.70 for the 2-way beam angle and 24.07 for TS gain and -0.63 for the Sa correction).

Table 12.1.1 EKOU Settings			
Variable	38 kHz	120 kHz	200 kHz
Ping interval (per sec)	2	2	2
Salinity (PSU)	34	34	34
Temperature (°C)	1	1	1
Sound velocity (m/s)	1471	1471	1471
Mode	Active	Active	Active
Transducer type	ES38	ES120-7	ES200-7
Transceiver Serial no.	009072033fa5	00907203422d	009072033f91
Transducer depth (m)	0	0	0
Absorption coef. (dB/km)	10.0967	30.8582	43.9717
Pulse length (ms)	1.024	1.024	1.024
Max Power (W)	2000	500	300
2-way beam angle (dB)	-19.60	-20.70	-19.60
Sv transducer gain (dB)	22.03	21.38	22.03
Sa correction (dB)	-0.31	-0.39	-0.31
Angle sensitivity along	23	21	23
Angle sensitivity athwart	23	21	23
3 dB Beam along	0.17	-0.12	0.17
3 dB Beam athwart	-0.24	-0.07	-0.24
Along offset	6.44	7.48	6.44
Athwart offset	6.43	7.48	6.43

Table 12.1.1 EK60 settings

The EK60 was controlled through the SSU, under a group EK60&EA600&ADCP. The EK60 was the master, with a ping rate set to 2 seconds. The ADCP was run in water column mode (as a slave with an external trigger). Within this setup the ADCP only pings every other trigger, therefore its resolution is slightly reduced at 1 ping every 4 seconds. In order to calibrate the ADCP, it is important for the ADCP to be run in bottom tracking mode in on-shelf waters as much as possible. This was achieved, either running the ADCP on its internal trigger in waters around the Falklands, or running the ADCP in bottom-tracking mode in the shallow water around South Georgia.

SSU settings

EA600	external trigger	Tx pulse	
EK60	external trigger	Calculated	(Set to 2 seconds in ER60 software)
ADCP	external trigger	Tx pulse	(this setting only works if the bottom
tracking mode	e is off)		

12.2 EK60 Calibration

An acoustic calibration was carried out in Stromness Harbour, South Georgia on 15/04/2009. The ship was anchored, its movement balanced by minimal DP usage. The EK60 and EA600 were triggered through the SSU and the ADCP was switched off. Each transducer was calibrated in turn, although all transducers were operating at the time. Standard ER60 calibration procedures were used as documented for previous cruises (the relevant copper sphere was moved through all quadrants of each transducer). In addition the sphere was held on-axis for extra periods of time to enable calibration variables to be determined in Echoview.

A CTD was undertaken immediately prior to calibration, in this case using the Down Wire Net Monitor (RMT25) system since the mid-ship CTD was unworkable. Temperature and salinity were averaged from 6 (depth of the transducers) to 27 m (depth of the calibration sphere) and were 3.52°C and 33.49 PSU resulting in a speed of sound constant of 1462 m/s (Francois and Garrison, 1982). The speed of sound was updated into the ER60 software.

Each transducer was calibrated at the settings used throughout the cruise. In addition the 38 kHz transducer was calibrated a second time having reset the transducers parameters to manufacturers settings.

Parameters following two different procedures for calibrating are given in Table 12.2.1 and Table 12.2.2.

Parameter	38kHz	38 kHz	120 kHz	200 kHz				
Alpha (dB/km)	10.02	10.02	28.61	41.65				
Theoretical TS (dB)	-33.70	-33.70	-40.30	-44.90				
TS gain	23.74	23.72	22.14	23.88				
Sa correction	0.06	-0.14	-0.08	0.03				

Table 12.2.1 Echoview calibration

Table 12.2.2 ER60 Calibration

Table 12.2.2 ER60 Cal					
Date	dd/mm/yyyy	15/04/2009	15/04/2009	15/04/2009	15/04/2009
Location		Stromness	Stromness	Stromness	Stromness
Time	hh:mm GMT				
Frequency	kHz	38	38	120	200
Cruise ID		JR200	JR200	JR200	Jr100
Calibrators	1	SF,PEND	SF,PEND	SF,PEND	
Transducer type		ES38	ES38	ES120-7	ES200-7
Transducer serial no		23080	23080	29471	24574
GPT serial no		009072033fa5	009072033fa5	00907203422d	
Comments		Calibrate at wron			5072055151
Environmental param	eters	canorate at wron			
Water temperature	°C	3.52	3.52	3.52	3.52
Salinity	-	33.49	33.49	33.49	33.49
	psu m (a				
Sound velocity*	m/s	1462	1462	1462	1462
Absorption coefficient		10.02	10.02	28.61	41.65
Echosounder paramet					
Ping rate	Sec	1	1	1	1
Transmit power	w	2000	2000	500	300
Pulse length	msec	1.024	1.024	1.024	1.024
Bandwidth	kHz	2.43	2.43	3.03	3.088
Sample interval	m	0.187	0.187	0.187	0.187
Original gain	dB	22.03	24.07	21.38	-22.03
Original Sa correction	dB	-0.31	-0.63	-0.39	-0.31
Two-way beam angle	dB	-19.6	-20.7	-20.7	-19.6
Angle sens along		23	22	21	23
Angle sens athwart		23	22	21	23
Angle offset along	1	0.17	0	-0.12	0.17
Angle offset athwart		-0.24	0	-0.07	-0.24
3dB beamwidth along		6.44	7	7.48	6.44
3dB beamwidth athwa	-	6.43	7.1	7.48	6.43
Background noise	dB	-129	-127	-157	-140
Reference target					
Theoretical TS of sphe	dB	-33.7	-33.7	-40.3	-44.9
TS deviation allowed	dB	6	3	3	6
Depth of target	m	26.5	26.5	26.5	27
Min distance layer	m	20.5	20.5	20.5	24.5
Max distance layer	m	31	31	29	29
TS detection paramet		51	51	23	29
Min value	dB	-50	-50	-50	-50
	•	-30			
Max gain compensation	dB		6	6	6
Max phase deviation		8	8	8	8
Min echolength	%	0.8	0.8	0.8	0.8
Max echolength	%	1.8	1.8	1.8	1.8
Calibration/Beam mod					
Transducer gain	dB	23.85	23.89	22.16	23.83
Sa Correction	dB	-0.59	-0.6	-0.39	-0.25
Athwart Beam Angle	°	6.74	6.9	7.53	6.53
Along Beam Angle	۰	6.68	7	7.63	6.59
Athw offset angle	•	0.03	-0.01	-0.03	-0.14
Along offset angle	•	-0.06	-0.04	-0.08	0.03
RMS of beam model	dB	0.14	0.13	0.17	0.21
Max model result	dB	0.56	0.39	0.43	0.61
Max no. of points		129	117	125	153
Min model result	dB	-0.62	-0.47	-0.52	-0.8
Min no. of points		117	52	103	160
Calibration applied		no	no	no	no
eanstation applied		10			110

12.3 Data processing

Post-processing was undertaken in Echoview. One template EV file was set up using the compressed data files. Since files were created before calibration

VV name	Operator	Operand1	Operand2
Freq resampled even	Resample by number of pings	Fileset1: Sv raw pings T?	
Freq bad data	Region bitmap	Freq resampled even	
Freq surface bottom	Line bitmap	Freq resampled even	
Freq all bad	And	Freq bad data	Freq surface bottom
Freq bad masked	Mask	Freq resampled even	Freq all bad
Freq resample 1ping	Resample by number of pings	Freq bad masked	
Freq resample original	Resample by number of pings	Freq resample 1ping	
Freq dropout range	Data range bitmap	Freq resample original	
Freq no dropout	Mask	Freq bad masked	Freq dropout range
Freq noise	Data generator	Freq no dropout	
Freq-noise	Linear minus	Freq no dropout	Freq noise
Freq convolute	3x3 convolution	Freq-noise	
Freq spike detect	Minus	Freq-noise	Freq convolute
Freq spike mask	Data range bitmap	Freq spike detect	
Freq-noise-spike	Mask	Freq-noise	Freq spike mask
Freq-500m	Resample by distance interval	Freq-noise-spike	

Table 12.3.1 Data processing structure

12.4 Acoustic surveys

Acoustic transects were run at each station. Twelve hours were dedicated to all permanent stations (identified as C, R and P stations). Three transects of 50 km length and 12 km spacing were undertaken at each of the stations (Fig 12.4.1), the direction in which they were run was dependent on weather, sun and current conditions. At the Polar Front station (PFn) the transect lengths were reduced to 30 km to fit into the available time. Unfortunately, due to weather, acoustic transects were not run at PFs. Transect times and names are given in Table 12.4.1.

FIG 12.4.1 MESOSCALE SURVEY DESIGN

Date	Transect	Start	Stop	Bearing	Speed	Comments
		time	time		(knots)	
		(GMT)	(GMT)			
15/03/09	R1_T1	10:54	12:23	240	8.5	Into wind
15/03/09	R1_T2	13:02	15:45	60	10	Down wind through station
15/03/09	R1_T3	16:29	19:18	240	9	Into wind, deviate for iceberg
18/03/09	C2_T1	13:11	15:51	20	10	
18/03/09	C2_T2	16:32	19:14	200	10	
18/03/09	C2_T3	19:56	21:00	20	10	
20/03/09	C3_T1	12:19	15:01	20	10	
20/03/09	C3_T2	15:43	18:24	200	10	
20/03/09	C3_T3	19:03	21:01	20	10	
23/03/09	C4_T1	11:38	14:19	20	10	
23/03/09	C4_T2	15:02	17:44	200	10	
23/03/09	C4_T3	18:28	21:10	20	10	
25/03/09	R2_T1	10:17	13:01	260	10	
25/03/09	R2_T2	13:36	16:27	80	10	
25/03/09	R2_T3	17:11	20:02	260	10	
28/03/09	P2_T1	10:05	12:47	270	10	
28/03/09	P2_T2	13:39	16:20	90	10	
28/03/09	P2_T3	17:06	19:49	270	10	
04/04/09	P3_T1	09:38	12:21	280	10	
04/04/09	P3_T2	13:08	15:52	100	10	
04/04/09	P3_T3	17:13	19:56	280	10	
07/04/09	R3_T1	09:07	11:49	260	10	
07/04/09	R3_T2	12:35	15:23	80	10	
07/04/09	R3_T3	16:40	19:22	260	10	
09/04/09	PFn_T1	10:01	11:37	280	10	
09/04/09	PFn_T2	12:38	14:19	100	10	
09/04/09	PFn_T3	16:20	17:58	280	10	

Table 12.4.1 Transect times, directions and speeds.

12.5 Target fishing

A degree of RMT8 and 25 target fishing was allowed for at each station and was primarily for krill for live incubation experiments (and for fish with the RMT25). Two strategies for target fishing were employed. The first, traditional, strategy was to head downwind searching for targets. Once found, the ship sails on for ½ to 1 mile more (depending on target depth) and then turns ready to shoot the net. This strategy worked well when there were targets and it was found useful to leave the RMT net fully cocked whilst searching to enable a prompt deployment. The second strategy was to do a night-time surface trawl whether there were targets or not. This strategy worked occasionally, on the whole it was normal to bring up empty nets. Ev files were created for each target net, each ev file is listed with event number.ev (e.g. ev1.ev).

Event	Net	Date	Time	Depth	Date	Time	Depth	Comments
no		open	open	open	closed	closed	closed	
028	1	17/03/09	00:35	50	17/03/09	00:38	45	Target marks surface to
								60m
	2	17/03/09	00:40	30	17/03/09	00:43	22	
029	1	17/03/09	01:31	37	17/03/09	01:33	36	Target mark 25-50m
	2	17/03/09	01:39	10	17/03/09	01:40	10	
039	1	18/03/09	22:11	106	18/03/09	22:27	50	Targetless
	2	18/03/09	22:31	16	18/03/09	22:46	4	
040	1	18/03/09	23:09	25	18/03/09	23:19	16	Targetless
	2	18/03/09	23:20	20	18/03/09	23:30	14	
041	1	18/03/09	23:56	20	19/03/09	00:11	14	Targetless
	2	19/03/09	00:12	18	19/03/09	00:27	4	Two targets
053	1	19/03/09			19/03/09			No target seen net
								aborted
	2	19/03/09			19/03/09			
054	1	19/03/09	23:33	25	19/03/09	23:37	15	Target swarm
	2	19/03/09	23:38	20	19/03/09	23:38	20	
061	1	20/03/09	21:49	16	20/03/09	21:59	5	Target swarm 25m
	2	20/03/09	22:01	20	20/03/09	22:11	8	
062	1	20/03/09	23:22	7	20/03/09	23:26	12	Target swarm near surface
	2	20/03/09	23:27	16	20/03/09	23:27	18	
063	1	21/03/09	00:23	200	21/03/09	00:43	215	Target fish layer
	2	21/03/09	00:44	219	21/03/09	00:59	235	
078	1	22/03/09	13:55	50	22/03/09	13:58	20	Target krill swarm
	2	22/03/09	13:59	30	22/03/09	14:04	32	
087	1	23/03/09	22:50	55	23/03/09	23:01	7.5	Targetless
	2	23/03/09	23:02	17	23/03/09	23:12	10	
088	1	24/03/09	00:18	23	24/03/09	00:21	10	Target, mark 10-30m
	2	24/03/09	00:22	19	24/03/09	00:23	14	
105	1	25/03/09	19:37	22	25/03/09	19:44	12	Target very small
								surface marks
	2	25/03/09	19:45	19	25/03/09	19:45	21	
106	1	25/03/09	21:25	13	25/03/09	21:36	9	Target small swarms at
								8m
	2	25/03/09	21:36	15	25/03/09	21:45	7	
112	1	26/03/09	22:40	15	26/03/09	22:45	8	Targetless
	2	26/03/09	22:46	15	26/03/09	22:51	16	
129	1	28/03/09	06:02	20	28/03/09	06:07	15	Targetless
	2	28/03/09	06:10	12	28/03/09	06:15	7	
130	1	28/03/09	06:39	22	28/03/09	06:44	22	Targetless
	2	28/03/09	06:45	30	28/03/09	06:50	38	
144	1	30/03/09	21:41	75	30/03/09	21:51	75	Targetless

Table 12.5.1 RMT8 target hauls times and comments.

		-						
	2	30/03/09	22:00	15	30/03/09	22:10	15	
145	1	30/03/09	22:28	53	30/03/09	22:38	53	Targetless
	2	30/03/09	22:44	25	30/03/09	22:54	22	
160	1	01/04/09	23:15	54	01/04/09	23:25	53	Targetless
	2	01/04/09	23:31	12	01/04/09	23:46	5	
164	1	02/04/09	08:45	65	02/04/09	08:55	20	Targetless
	2	02/04/09	08:56	25	02/04/09	09:06	5	
170	1	03/04/09			03/04/09			Net aborted, no targets
								seen
	2	03/04/09						
171	1	03/04/09	01:40		03/04/09	01:40		Suspect net had opened
								on own
	2	03/04/09	01:40	46	03/04/09	01:44	47	Fishing on target –
								caught krill
187	1	04/04/09	22:46	35	04/04/09	22:52	31	Fishing on surface mark
								– Protomyctophum
								tenisoni
	2	04/04/09	22:53	32	04/04/09	22:58	26	
197	1	07/04/09	01:40	55	07/04/09	01:42	50	Targetless. Net aborted
								due to tension on wire >
								4 tonnes
	2	07/04/09			07/04/09			
201	1	07/04/09	23:26	80	07/04/09	23:34	53	Targetless. Net aborted
								due to tension on wire >
								4 tonnes
	2	07/04/09			07/04/09			

Event	Net	Date	Time	Depth	Date	Time	Depth	Comments
no		open	open	open	closed	closed	closed	
128	1	28/03/09	02:49	271	28/03/09	03:10	252	Fish layer
	2	28/03/09	03:10	254	28/03/09	03:30	250	
227	1	10/04/09	06:41	553	10/04/09	07:11	550	Fish layer 500-600m
	2	10/04/09	07:36	319	10/04/09	08:01	300	Fish layer 300m
237	1	11/04/09	04:41	586	11/04/09	05:06	602	Fish layer 500-600m
	2	11/04/09	05:30	323	11/04/09	05:55	301	Fish layer 300m

12.6 Problems encountered

Apart from the incorrect parameters, no problems were encountered with the EK60. Interference from other acoustic instruments was rare due to all instrumentation being correctly interfaced by the SSU. Use of the bow thrusters was kept at a minimum during all trawling times to prevent noise at the surface. When weather picked up there were periods of increased dropout and higher noise but these are unavoidable. It was however noted that these seemed greater than on previous cruises.

13. PREDATOR OBSERVATIONS

Andrew Black

13.1. Introduction

As a continuation of the predator observations conducted during JR161 (Wakefield 2007) and JR177 (Black and Briggs 2008), the systematic surveys of air breathing predators (seabirds, seals and cetaceans) was carried out throughout the JR200 cruise. Presented here is a brief summary of the data collected.

13.2. Aims

The survey aims to establish the relative abundance of higher predators at each of the mesoscale stations and on passage between stations throughout the JR200 cruise. Along with data collected in previous years, this will help to characterise the higher predator assemblages encountered throughout the Scotia Sea.

The simultaneous recording of higher predator observations and acoustically detected aggregations of prey species will enable an investigation of the spatial cross correlations between these data.

13.3. Methods

The methodology used to record seabird and marine mammal distributions is comprehensively reviewed in Wakefield (2007). The survey technique used during this cruise was consistent with the methodology used during the two previous Discovery 2010 cruises (JR161 and JR177). All surveys were conducted by a single observer (Andrew Black).

In brief, standard seabirds at sea methodology was used to record seabirds and pinnipeds (Tasker et al. 1984, Webb and Durinck 1992, Camphuysen *et al.* 2004). Essentially, all seabirds and marine mammals on the water within a 300-m strip transect on one side of the vessel (the side offering the better viewing conditions) were counted. The 300-m transect limit was defined using a rangefinder, which was determined using Heinemann's (1981) formula. Seabirds and marine mammals recorded sitting on the water were assigned to one of five distance bands (A 0-50m, B 50-100m, C 100-200m, D 200-300m, E >300m), which run parallel to the ships track and are measured from the side of the ship (see Wakefield 2007 Figure pred 1).

In addition to the continuous strip transect for birds on the water, a second set of counts of flying birds were made using a 'snapshot' technique. The 'snapshot' is designed primarily to determine which of the birds flying through the surveyed area should be classed as 'in transect' thus ensuring that the density of flying birds is not over estimated. A 'snapshot' is taken at 300m intervals along the vessels track, the timing of which is determined by the vessel's speed. For example, a vessel travelling at 10knots travels 300m every 60 seconds and therefore 'snapshots' are taken at 60 second intervals. Any birds flying through the transect at the time of the 'snapshot' are classed as 'in transect'. Birds flying through the transect between 'snapshots' are also recorded but these records should not be used when calculating the density of birds recorded.

All animals were initially detected with the naked eye and if necessary the species identification was confirmed with the aid of binoculars. In some cases specific identification was not possible and species such as prions (*Pachyptila spp.*) and diving-petrels (*Pelecanoides spp.*) were generally only identified to genus level. For each observation, the time, species, age, plumage, number, distance or direction of flight, feeding behaviour, inter-specific association and whether 'in transect' was recorded on paper forms (see Appendix Pred 1) to be transcribed to an excel spreadsheet when time allowed. All codes used were the same as those described in Black and Briggs (2008). At the start of each observation period, weather information (wind speed and direction, swell height and direction, cloud cover and precipitation) was recorded.

Additions to standard methodology (followed on all Discovery 2010 cruises)

• In order to link observations with other sources of underway data, especially acoustics, the time, synchronised to the ships UTC chronometer, of each individual observation was recorded. For animals recorded on the water, the time at which the animals passed abeam of the bridge wing was recorded.

• Whenever weather conditions allowed, cetaceans out with the transect but on the observed side of the vessel were recorded. These observations are recorded with a bearing and approximate distance from the vessel when first sighted.

• During mesoscale surveys, if visibility fell below 300m the transect width was reduced to 200m or 100m when necessary. At such times, the timing of the 'snapshot' was also correspondingly reduced to ensure the distance travelled between snapshots was the same as the transect width.

13.4 Data coverage

Priority was given to record the distribution of higher predators during mesoscale acoustic surveys. In total 1,220 km of survey track was achieved during nine acoustic surveys.

The full acoustic survey track consisted of three 50km transects running in parallel, spaced at 12km intervals, with the centre of the middle transect passing through the station position. The direction of the acoustic transects was dependent on the wind direction at the start of the survey.

• At five stations (C4, R2, P2, P3 and R3) the entire 150km track was completed during daylight.

• At three stations (R1, C2 and C3) the survey was cut short due to limited daylight.

• The acoustic survey at the Polar Front station (PF) was shorter by design and consisted of three 30km transects run in parallel at 12km intervals.

Whenever daylight and sea state permitted, surveys were conducted as the vessel steamed between stations and on passage to and from the Falkland Islands.

13.5 Preliminary results

In total, 9,297 animals of at least 39 species were recorded between 12 March and 16 April 2009. The data collected during each mesoscale acoustic survey and the total number of each species recorded is summarised in Table Pred1. The total column includes animals recorded on passage between stations.

	Date		15/03	18/03	20/03	23/03	26/03	30/03	04/04	07/04	09/04
	Survey effort (km travelled)		125	120	135	150	150	150	150	150	90
	Station	Total	R1	C2	C3	C4	R2	P2	P3	R3	PF
Species	Scientific name										
Penguin species		10									1
King penguin	Aptenodytes patagonicus	117				1	5	4	10	8	1
Gentoo penguin	Pygoscelis papua	97									
Chinstrap penguin	P. antarctica	1,158	11	119	446	40	9				
Macaroni penguin	Eudyptes chrysolophus	289				25	3	3	2	6	
Great albatross species	Diomedea spp	2									
Wandering albatross	D. exulans	31			1			1	4	3	1
Southern royal albatross	D. epomophora	5									
Black-browed albatross	Thalassarche melanophrys	220	7	6	4	8	6	7	10	9	1
Grey-headed albatross	T. chrysostoma	113	6		3	4	8	4	12	1	3
Sooty albatross	Phoebetria fusca	13									1
Light-mantled albatross	P. palpebrata	27	1	2		2		4	1		
Giant petrel species	Macronectes spp	28	3	2					1	1	
Southern giant petrel	M. giganteus	77	4	5	2	3		1	7	8	
Northern giant petrel	M. halli	65	5	2	1	1		2	13		
Antarctic fulmar	Fulmarus glacialoides	184	44	9	4		1				
Antarctic petrel	Thalassoica antarctica	2	2								
Cape petrel	Daption capense	91	36	1	15	2	1		4	3	1
Soft-plumaged petrel	Pterodroma mollis	256	3				7	23	22	18	21
Great-winged petrel	P. macroptera	1									
White-headed petrel	P. lesson	2									
Kerguelen petrel	Lugensa brevirostris	162		5	4	7	7	6	21	44	3
Blue petrel	Halobaena caerulea	474		8		57	108	109	40	34	1
Prion species	Pachyptila spp.	2,646	476	108	24	123	445	101	56	12	10
Fairy prion	P. turtur	22	1					6	6	1	1
Grey petrel	Procellaria cinerea	20							1	1	1
White-chinned petrel	P. aequinoctialis	593	29	19	12	17	9	18	148	104	2

Table 13.1 Summary of the species observed during mesoscale acoustic surveys and the total number of each species recorded.

Table 13.1 Cont.

	Date		15/03	18/03	20/03	23/03	26/03	30/03	04/04	07/04	09/04
	Survey effort (km travelled)		125	120	135	150	150	150	150	150	90
	Station	Total	R1	C2	C3	C3	C4	P2	P3	R3	PF
Species	Scientific name										
Great shearwater	Puffinus gravis	3									1
Sooty shearwater	P. griseus	11					2	1			
Little shearwater	P. assimilus	1									
Wilson's storm-petrel	Oceanites oceanicus	377	28	6	13	2	1	9	134	21	2
Grey-backed storm-petrel	Garrodia nereis	3						1			
Black-bellied storm-petrel	Fregetta tropica	648	36	59	44	17	31	13	65	52	46
Diving-petrel species	Pelecanoides spp.	631			1	11	25	12	16	5	16
South Georgia shag	Phalacrocorax georgicanus	4									
Tern species	Sterna spp.	9									
Antarctic tern	S. vittata	7							1		
Franklin's gull	Larus pipixcan	1								1	
Catharacta skua species	Catharacta spp.	12	1	1	1		1	1	1		
Large whale species		15	7	1			3				
Fin whale	Balaenoptera physalus	269	93	3	63	2	3				
Southern right whale	Eubalaena australis	1			1						
Sperm whale	Physeter macrocephalus	1									
Beaked whale species		3			3						
Southern bottlenose whale	Hyperoodon planifrons	3				2				1	
Hourglass dolphin	Lagenorhynchus cruciger	131			9		6	28	10	5	
Fur seal species	Arctocephalus spp	462	41	26	47	16	2	7	38	11	8

The two most numerous 'species' recorded were prions (*Pachyptila spp.*) and chinstrap penguins (*Pygoscelis antarctica*) with 2,646 and 1,158 birds recorded respectively. Although the density of animals recorded throughout the cruise was generally low, there were some notable exceptions.

• At station R1, a large number of fin whales (*Balaenoptera physalus*) was encountered (at a rate of 0.74 animals per km travelled).

• At station C3, fin whales were again frequently sighted, at a rate of 0.47 animals per km travelled, along with significant numbers of chinstrap penguins (*Pygoscelis antarctica*), recorded at a rate of 3.3 birds per km travelled.

13.6 Problems and recommendations

• At the time of this cruise (March and April) the maximum day-length is approximately 12 hours. It was therefore possible for a single observer to cover all mesoscale acoustic surveys and obtain good coverage between stations.

• As noted following both JR161 and JR177, there are some issues regarding the associations between flying birds and the survey base. It is relatively easy to disregard those species that persistently form close associations with the vessel, Cape and giant petrels (*Daption capense* and *Macronectes spp.*) are particularly notable ship associates. However, most species of flying birds will associate with the vessel to some extent and whether a bird is recorded or not can become subjective. Throughout the series of Discovery 2010 cruises, an effort has been made to use consistent methodology and observers to standardise the recording procedure. A detailed description of the method used will help to maintain consistency on future cruises.

• Certain species of seabird (notably penguins and diving-petrels in the Scotia Sea) and marine mammals spend much of the time below the surface and can be difficult to detect. It is therefore important to consider sea state and visibility (for cetaceans) when analysing sightings of these species. With sufficient data, more than 1,000 animals recorded, species specific correction factors can be calculated to compensate for the lower detection rates in the outer bands of the transect. Assuming that seabirds and marine mammals do not alter their behaviour in response to the survey vessel and all animals in bands A and B are detected, the number of animals recorded in each transect band should occur in the ratio of 1:1:2:2 (A:B:C:D). However, in practice fewer than expected birds are generally recorded in the outer bands (C and D). Species specific correction factors can be calculated using the following formula.

Correction factor = $\underline{3(A+B)}$ A+B+C+D

Where A, B, C and D represent the total number of birds recorded in each band.

• Throughout the cruise, the density of higher predators encountered was generally low. It was therefore possible for a single observer to individually record and time stamp each observation. However, on one occasion, while steaming through Stewart Strait (between the Willis Islands

and Bird Island) a high density of birds was encountered and the method had to be adjusted to record only those birds 'in transect'.

Some consideration should be given to the scale at which predator observation data can be analysed and whether it is necessary to time stamp each individual observation. At times when seabird and marine mammal densities are high it would be advantageous to group observations into five minute periods. This would allow the tallying of like observations and allow more time to be spent observing and less recording data. Alternatively, a scribe would be useful, however, the unpredictable nature of predator observations is not always compatible with the voluntary assistants.

13.7 Acknowledgements

For their assistance, patience, understanding and interest, and for providing cups of coffee, we would especially like to thank Captain Graham Chapman, Chief Officer Robert Patterson, the officers of the watch and watch keepers.

13.8 References

Black, A. and Briggs, D. (2008) Discovery 2010 Summer Cruise JR177 December 31 2007 to 16 February 2008: Life cycles and trophic interactions of the Scotia Sea pelagic community: from ice-edge to Polar Front. p 183-187.

Camphuysen, C.J., Fox, T., Leopold, M.F., Petersen, I.K. (2004) *Towards standardised seabirds* at sea census techniques in connection with environmental impact assessments for offshore wind farms in the UK [COWRIE BAM-02–2002], The Crown Estate, London

Heinemann, D. (1981) A range finder for pelagic bird censusing. Journal of Wildlife Management 45:489–493

Tasker, M.L., Jones, P.H., Dixon, T., Blake, B.F. (1984) Counting Seabirds at Sea from Ships - a Review of Methods Employed and a Suggestion for a Standardized Approach. *Auk* **101**:567-577

Wakefield, E. (2007) Discovery 2010 Spring Cruise JR161 October 24 to December 3 2006: A study of pelagic marine food web interactions and condition factors of zooplankton across the Scotia Sea. P145-165.

Webb, A. and Durinck, J. (1992) Counting birds from ships. In: Komdeur J, Bertelsen J, Cracknell G (eds) Manual for aeroplane and ship surveys of waterfowl and seabirds, Vol 19. IWRB Special Publication, p 24-37

Fig 13.2 Species data recording form. JR200 Higher Predator Obs.

Date: <u>12</u> / <u>03</u> / <u>09</u>

Observer: Andy Black Page $\underline{1}$ of $\underline{8}$

Time	Species	Age	Plu.	No.	Dist.	Dir.	Tran.	Ass.	Notes
09,20,00	Start								
23,10	WCP	U		1		S			
24,10	MAC	U		4	С		/		
25,00	WA	A	6	1		NE	/		
25,30	BBA	A		1		N			
26,20	SPP	U		1		0			
27,00	WCP	U		1	B		1		
etc									

14. FISH AND MACROZOOPLANKTON

Gabriele Stowasser, Yves Cherel, Anton van de Putte, José Xavier, Sophie Fielding, Geraint Tarling

14.1 Introduction

The mesopelagic fish and macro-zooplankton are an important part of the Southern Ocean foodweb. In particular mesopelagic myctophid fish are part of an important krill independent pathway linking secondary producers (such as copepods) to higher predators. During JR200 there were three key objectives associated with the Scotia Sea Foodwebs project:

1. To investigate the distribution of the mesopelagic fish community from Signy to the Polar Front to a depth of 1000 m, linking the distribution patterns to the oceanographic features identified during the cruise.

2. Investigate the diet and life-history of key myctophid fish across the latitudinal gradient.

3. Link the distribution of myctophids to the foraging areas of king penguins at the Polar Front. King penguins, which are primarily myctophid eaters, undertake long (2-3 weeks) foraging trips to the Polar Front, but the precise target of these foraging trips is still unknown. Penguins were satellite-tracked in previous seasons to identify key foraging locations and time-depth recorders provided information about diving depth. By fishing in their foraging areas, the aim is to determine the fish resources and biomass targeted by the king penguins and hence to understand why they undertake such long foraging trips.

14.2 Gear

During the cruise the RMT25 was used to characterise the fish and macrozooplankton community at each station from the surface to 1000 m. In response to unsuccessful fishing during daylight hours in the two previous seasons all catches were carried out during the night. The RMT25 was rigged with 2 new nets, with the release mechanism and downwire net-monitor with flow, temperature, salinity and PAR sensors.

14.3 Catch sorting and processing

Depth stratified hauls (1000-700 m; 700-400; 400-200 & 200-surface) were conducted at the majority of stations (21 hauls) (see Table 1), with each net open for 30-45 minutes. In addition 4 hauls (3 RMT25, 1 RMT8) were undertaken at stations targeting fish marks identified on the EK60 echosounder. For all hauls of both the RMT8 and RMT25 the total catch was sorted and quantified. Numbers caught and total weight (when > 1 g) was obtained for each species. For some groups specific identification was not possible and identification will be verified through re-examination in the laboratory in either Cambridge or by consulting colleagues specializing in these taxa outside BAS. Samples were collected from key species for stable isotope analysis and the remainder of the RMT25 catches, with the exception of the large jellies, was preserved in formalin or ethanol. If not sampled for stable isotope analysis or collaborative projects the remainder of RMT8 catches was discarded. Samples of amphipods, decapods and pteropods

were preserved separately for further use in related studies within BAS and outside collaborators. All data were recorded in an Excel database. Fish were separated from the rest of the catch and were measured and sexed (using external sexual characters where present). Otoliths were extracted for identification purposes where external identification was difficult. The majority of fish were measured, sexed and frozen whole. Unusual specimens were fixed in formalin.

14.4 Preliminary results

In general sufficient data was collected to achieve objectives 1 & 2 above, although no samples were obtained from one of the stations north of South Georgia (R3), due to poor weather. In contrast to previous years objective 3 was achieved and we were able to fish both to the South and North end of the Polar Front in cold and warm waters respectively.

Over 2700 fish, belonging to 36 species were caught during this cruise (Table 2) with catches dominated by the myctophids (lantern fish) and bathylagids (deep-sea smelts) with the most abundant species being *Electrona antarctica, Gymnoscopelus braueri, Bathylagus antarcticus, Protomyctophum bolini, Krefftichthys anderssoni,* and *Cyclothone* sp.

97 invertebrate species (predominantly crustacea and gelatinous zooplankton) were identified. Catches were clearly dominated by *Salpa thompsoni* from the most Southern station up to Responsive Station 2 (R2). From the station south of South Georgia (P2) onwards catch composition changed significantly, with euphausids (e.g. *Euphausia triacantha*) and the amphipod *Themisto gaudichaudii* dominating the catches in numbers (net information see Chapter S. Fielding).
Event	Net	Start time	End time	Start Lat.	Start	End Lat.	End Long.	Water	Net depth	Net depth	SST
					Long.			Depth	min.	Max.	mean
		14/03/2009	14/03/2009								
9	Both nets	13:38	14:26	-59.9007	-48.6542	-59.8662	-48.6695	4318	10	20	
		16/03/2009	16/03/2009								
17	Net 1	02:52	03:22	-60.4935	-48.2280	-60.4886	-48.2654	1508	196	405	1.1
		16/03/2009	16/03/2009								
17	Net 2	03:23	03:57	-60.4885	-48.2663	-60.4848	-48.3124	1656	12	202	1.1
		16/03/2009	16/03/2009								
18	Net 2	05:49	06:20	-60.4687	-48.4455	-60.4644	-48.4838	1700	400	703	1.1
		19/03/2009	19/03/2009								
42	Net 1	02:43	03:28	-60.2182	-44.2891	-60.2518	-44.2633	5458	200	401	1.7
		19/03/2009	19/03/2009								
42	Net 2	03:28	04:13	-60.2522	-44.2630	-60.2834	-44.2347	4615	11	208	1.7
		19/03/2009	19/03/2009								
43	Net 1	06:26	06:57	-60.2671	-44.3072	-60.2860	-44.3156	5409	695	1002	1.7
		19/03/2009	19/03/2009								
43	Net 2	06:57	07:29	-60.2865	-44.3159	-60.3075	-44.3251	5277	400	702	1.7
		20/03/2009	20/03/2009								
55	Net 1	02:29	03:14	-59.6883	-44.0670	-59.7223	-44.0908	4284	200	401	1.6
		20/03/2009	20/03/2009								
55	Net 2	03:14	03:47	-59.7226	-44.0910	-59.7464	-44.1045	4379	15	208	1.6
		20/03/2009	20/03/2009								
56	Net 1	06:03	06:50	-59.6980	-44.0847	-59.7221	-44.1407	4210	698	1002	1.7
		20/03/2009	20/03/2009								
56	Net 2	06:51	07:36	-59.7224	-44.1413	-59.7469	-44.1908	4247	397	704	1.6
01	NT - 1	23/03/2009	23/03/2009	50.0000	10 005 5	50.01.(3	12 0 172	2002	202	100	a -
81	Net 1	00:48	01:36	-58.0339	-42.9856	-58.0142	-42.9473	2892	203	409	2.5
0.1	N + 2	23/03/2009	23/03/2009	50.0105	10.0405	5 0.001.4	12 0102	20.42	12	220	<u> </u>
81	Net 2	01:40	02:11	-58.0125	-42.9437	-58.0014	-42.9193	2842	12	220	2.4
02	NT / 1	23/03/2009	23/03/2009	50.0502	10 0000	50.0050	42 0105	20.47	COO	1002	2.5
82	Net 1	05:07	05:52	-58.0502	-42.9666	-58.0258	-42.9186	2947	688	1003	2.5

Table 14.1 : RMT25 Stations during JR200

Event	Net	Start time	End time	Start Lat.	Start	End Lat.	End Long.	Water	Net depth	Net depth	SST
					Long.			Depth	min.	Max.	mean
		23/03/2009	23/03/2009								
82	Net 2	05:53	06:38	-58.0251	-42.9173	-57.9989	-42.8674	2911	400	696	2.4
		25/03/2009	25/03/2009								
100	Net 1	01:14	01:44	-58.0230	-43.0152	-58.0161	-43.0520	2921	198	401	2.4
		25/03/2009	25/03/2009								
100	Net 2	01:45	02:18	-58.0158	-43.0534	-58.0071	-43.0934	2920	25	205	2.4
		25/03/2009	25/03/2009								
101	Net 1	05:12	05:57	-58.0173	-43.0670	-58.0103	-43.1268	2933	698	1000	2.4
		25/03/2009	25/03/2009								
101	Net 2	05:58	06:45	-58.0100	-43.1281	-57.9966	-43.1944	2971	400	704	2.2
		27/03/2009	27/03/2009								
115	Net 1	02:37	03:08	-56.8063	-42.2328	-56.7999	-42.2620	3003	201	406	2.9
		27/03/2009	27/03/2009								
115	Net 2	03:09	03:31	-56.7997	-42.2627	-56.7947	-42.2833	3004	52	211	2.9
		27/03/2009	27/03/2009								• •
127	Net 1	23:04	23:49	-56.7653	-42.2254	-56.7630	-42.2714	3036	693	1002	2.8
105		27/03/2009	28/03/2009		10.0500		12 220 1	2.4.5	200	-	•
127	Net 2	23:50	00:36	-56.7629	-42.2729	-56.7612	-42.3204	3447	399	701	2.8
100	NT	28/03/2009	28/03/2009		10 1000		10 10 50	2.5.5	2.1.5	254	.
128	Net 1	02:49	03:10	-56.7683	-42.1803	-56.7678	-42.1963	3565	245	274	2.4
120		28/03/2009	28/03/2009		40 10/7		40.0107	40.67	2.17	270	2.5
128	Net 2	03:10	03:30	-56.7678	-42.1967	-56.7665	-42.2137	4067	247	270	2.5
1.4.1	NT. (1	30/03/2009	30/03/2009		41 2470	55 2465	41 2620	2572	202	402	4.2
141	Net 1	01:51	02:22	-55.2654	-41.3479	-55.2465	-41.3638	3572	202	402	4.3
141	Not 2	30/03/2009 02:22	30/03/2009	55 2462	11 2611	55 2274	11 2016	2405	25	200	12
141	Net 2	02:22 30/03/2009	02:53 30/03/2009	-55.2462	-41.3641	-55.2274	-41.3816	3495	35	209	4.3
142	Net 1	05:00	05:45	-55.2434	-41.3659	-55.2205	-41.3885	3415	696	1005	4.3
142	INEL I	30/03/2009	30/03/2009	-33.2434	-41.3039	-33.2203	-41.3003	3413	090	1005	4.3
142	Net 2	05:46	06:31	-55.2199	-41.3891	-55.1972	-41.4117	3259	400	701	4.3
142	INCL Z	04/04/2009	00.31	-33.2177	-+1.3071	-33.1712	-+1.411/	5257	+00	/01	4.5
185	Net 1	04/04/2009	04/04/2009	-52.8156	-39.9519	-52.8220	-39.9033	3792	699	1001	5.2
105		00.47	07.34	-52.0150	-37.7319	-32.6220	-37.7033	5174	077	1001	5.4

Event	Net	Start time	End time	Start Lat.	Start	End Lat.	End Long.	Water	Net depth	Net depth	SST
					Long.			Depth	min.	Max.	mean
		04/04/2009	04/04/2009								
185	Net 2	07:35	08:21	-52.8221	-39.9025	-52.8295	-39.8506	3794	401	704	5.2
		09/04/2009	10/04/2009								
225	Net 1	23:32	00:15	-50.0474	-33.9001	-50.0419	-33.8302	5041	699	1000	6.3
		10/04/2009	10/04/2009								
225	Net 2	00:16	01:03	-50.0418	-33.8288	-50.0383	-33.7431	5058	400	705	6.3
		10/04/2009	10/04/2009						• • •		
226	Net 1	03:25	04:11	-50.0473	-33.7431	-50.0447	-33.6677	5026	202	402	6.3
226	N. ()	10/04/2009	10/04/2009	50 0447	22 6666	50 0441	22 5071	5049	21	200	6.2
226	Net 2	04:11	04:56	-50.0447	-33.6666	-50.0441	-33.5871	5048	31	209	6.3
227	Net 1	10/04/2009 06:41	10/04/2009 07:11	-50.0496	-33.6124	-50.0496	-33.5581	5035	518	554	6.3
221	Net I	10/04/2009	10/04/2009	-30.0490	-55.0124	-30.0490	-55.5561	5055	516	554	0.5
227	Net 2	07:36	08:01	-50.0502	-33.5120	-50.0510	-33.4669	5021	285	321	6.3
221	Net 2	10/04/2009	10/04/2009	-30.0302	-33.3120	-50.0510	-33.4007	5021	205	521	0.5
235	Net 1	22:18	23:05	-50.6004	-33.8398	-50.5982	-33.7948	4859	201	409	3.8
200	1101 1	10/04/2009	10/04/2009	20.0001	22.0270	00.0702	55.7710	1007	201	107	5.0
235	Net 2	23:06	23:49	-50.5982	-33.7943	-50.5957	-33.7586	4825	10	212	3.7
		11/04/2009	11/04/2009								
236	Net 1	01:18	02:03	-50.5965	-33.8068	-50.5900	-33.7735	4802	700	1010	3.7
		11/04/2009	11/04/2009								
236	Net 2	02:03	02:48	-50.5899	-33.7732	-50.5855	-33.7393	4756	397	702	3.7
		11/04/2009	11/04/2009								
237	Net 1	04:41	05:06	-50.5998	-33.8235	-50.6035	-33.8015	4891	543	603	3.7
		11/04/2009	11/04/2009								
237	Net 2	05:30	05:55	-50.6058	-33.7811	-50.6078	-33.7609	4937	286	325	3.7

Table 14.2 :	: Fish caught in	RMT25 Net	hauls during JR200
--------------	------------------	-----------	--------------------

Species	N caught
Bathylagus sp.	429
Benthalbella elongate	4
Benthalbella macropinna	11
Borostomias antarcticus	6
Electrona carlsbergi	91
Electrona Antarctica	697
Electrona subaspera	1
Gymnoscopelus bolini	1
Gymnoscopelus fraseri	61
Gymnoscopelus hintonoides	1
Gymnoscopelus nicholsi	12
Gymnoscopelus opisthopterus	2
Gymnoscopelus braueri	562
Krefftichthys anderssoni	236
Lampanyctus (=Nannobrachium) achirus	28
Lampadena sp.	
Lampanyctus sp.	2
Macrouridae sp.	2
Cynomacrurus piriei	4
Muraenolepis sp.	6
Nansenia sp.	1
Nemichthyidae sp.	2
Notolepis sp.	22
Notothenia rossii	1
Nansenia Antarctica	2
Notolepis coatsi	18
Paradiplospinus gracilis	13
Poromitra crassiceps	8
Protomyctophum andriashevi	3
Protomyctophum tension	102
Protomyctophum bolini	259
Protomyctophum parallelum	1
Protomyctophum choriodon	24
Stomias gracilis	2
Stomias sp.	3
unknown fish species	1
Cyclothone sp.	150
Total fish	2769

14.5 Collaboration Projects: Dr Geraint Tarling - British Antarctic Survey

Hyperiid amphipods (Table 3) were sampled and preserved in 95% Ethanol by Geraint Tarling for a collaboration project with Lisa Bryant, Victoria University Wellington, New Zealand, for future examination of population genetics of Southern Ocean hyperiid species. Furthermore shelled pteropods species (Table 4) were collected over the course of the cruise (preserved in 95% alcohol) for future examination of their shell ultrastructure in collaboration with Nina Bednarsek (BAS FAASIS fellow).

Event	Species	Ν	Gear type	Depth intervals
7	Themisto gaudichaudii	20	RMT8	Depth
7	Cyllopus magellanicus	20	RMT8	top 100 m
7	Vibilia cf antarctica	10	RMT8	top 100 m
7	Primno macropa	1	RMT8	top 100 m
18	Cyphocaris richardii	8	RMT25	top 100 m
141	Themisto gaudichaudii	200	RMT25	1000 to 400 m
142	Themisto gaudichaudii	71	RMT25	0 to 200 m
142	Cyphocaris richardii	15	RMT25	700 to 400 m
160	Themisto gaudichaudii	200	RMT25	700 to 400 m
184	Paradania boecki	30	RMT25	0 to 200 m
184	Themisto gaudichaudii	200	RMT25	400 to 200 m
185	Cyphocaris richardii	20	RMT25	200 to 0 m
227	Themisto gaudichaudii	150	RMT25	700 to 400 m
227	Cyphocaris richardii	15	RMT25	500 to 300 m
227	Paradania boecki	30	RMT25	500 to 300 m
235	Themisto gaudichaudii	100	RMT25	500 to 300 m
235	Paradania boecki	20	RMT25	400 to 200 m
236 & 237	Cyphocaris richardii	20	RMT25	400 to 200 m

Table 14.5.1: Hyperiid amphipod species sampled for genetic analysis during cruise JR200

i					
Event	Net	Species	Ν	Sampling	Depth
				gear	interval (m)
82	1	Clio pyramidata	1	RMT25	1000-690
127	1	Clio pyramidata	1	RMT25	1000-694
142	1	Clio pyramidata	2	RMT25	1000-695
160	1	Clio pyramidata	1	RMT8	0-54
171	2	Clio pyramidata	1	RMT8	0-47
		Clio pyramidata			
		and Limacina			
185	1	helicina (large)	10	RMT25	1000-699
226	2	Clio pyramidata	3	RMT25	200-30
226	1	Clio pyramidata	4	RMT25	400-200
227	2	Clio pyramidata	3	RMT25	319-300
235	2	Clio pyramidata	~20	RMT25	206-12
235	1	Clio pyramidata	3	RMT25	407-201
236	1	Clio pyramidata	~3	RMT25	1000-700
237	1	Clio pyramidata	1	RMT25	586-602
237	2	Clio pyramidata	2	RMT25	323-301

Table 14.5.2: Shelled Pteropds sampled for the examination of shell ultrastructure during cruise JR200

14.6 Collaboration Projects: Dr José Xavier - University of Coimbra, Portugal

José Xavier will work on data collected during the three bio-cruises incorporated into Discovery 2010. His focus will be on investigating the biology, distributional patterns and abundance of fish species that are important in the marine ecosystem of the Southern Ocean (e.g. Bathylagus sp.) and other species that play an important role in the diet of top predators (such as myctophids, squid and macrozooplankton).

14.7 Collaboration Projects: `Dr Anton van de Putte - Katholieke Universiteit Leuven, Belgium

Within the framework of the collaboration between BAS and the Universiteit of Leuven samples of various fish species will be subsampled (tissue samples) upon their arrival in Cambridge. These tissue samples will be used for two projects.

The first project is a population genetic study on *Electrona antarctica* for which samples have been exchanged previously. For this tissue samples will be taken from sampling locations where more than 50 individuals have been collected. Sampling populations in the same area can study temporal genetic patterns, allowing estimates of effective populations sizes within the Scotia Sea.

A second project will focus on the molecular barcoding of mesopelagic fish in the Southern Ocean. For this purpose, tissue samples of one to five individuals will be collected, preferable with a photographic record of the specimen. Special attention will be paid to the myctophids for which a more extensive phylogenetic study will be carried out comparing species from the South and North Atlantic. This will allow a better understanding of the mechanisms underlying the colonization of the Southern Ocean by myctophid fish.

14.8 Collaboration Projects: Dr Yves Cherel - Centre d'Etudes Biologiques de Chizé, France

Three main investigations in isotopic ecology will be achieved using specimens/tissue samples collected both at sea and on land (Bird Island) during the duration of the cruise.

Isoscapes (isotopic gradients) within the Scotia Sea will be estimated using spatial variations of the isotopic niches of a few selected species (e.g. *Salpa thompsoni, Euphausia superba, Themisto gaudichaudii, Electrona antarctica, Gymnoscopelus braueri*) collected at various stations within different water masses.

The isotopic niches and trophic levels of the main myctophid fishes collected at the Polar Front will be compared with those from the assemblage of myctophids living in the vicinity of the front in Kerguelen waters (Indian Ocean).

The prey-predator relationships of some selected seabirds and marine mammals (fur seals) will be investigated by comparing their isotopic niches with those of their main prey collected at different stations (e.g. myctophids, *Euphausia superba, Themisto gaudichaudii*).

Finally, a few specimens collected during the cruise (e.g. *Cynomacrurus piriei, Benthalbella elongate and macropinna*) will be used to complete the reference collection of the CEBC (France).

14.9 Tissue sampling for stable isotope analysis

Study: Trophic relationships and carbon flow in the Scotia Sea food web

14.9.1 Background

This project targets key components within the food webs of the Scotia Sea. This area is of special importance since not only does it currently support the most valuable fishery in the Southern Ocean but it is also part of one of the fastest warming areas on the planet. In order to understand the impact commercial exploitation and climate change the Scotia Sea ecosystem we need to first understand the temporal and spatial functioning of trophic pathways in the system. The aim is to quantify regional and seasonal diets of key species and map the distribution and abundance of these species from phytoplankton and zooplankton groups up to higher predators.

The use of stable isotopes as dietary tracers is based on the principle that isotopic concentrations of consumer diets can be related to those of consumer tissues in a predictable fashion. It has been extensively applied in the investigation of trophic relationships in various marine ecosystems and has been used to determine feeding migrations in numerous species. The stepwise enrichment of both carbon and nitrogen in a predator relative to its prey suggests that the predator will reflect the isotopic composition in the prey and isotope values can be used to identify the trophic position of species in the food web investigated. Additionally ¹³C values can successfully be used to identify carbon pathways and sources of primary productivity.

Together with results gathered from fatty acid and conventional gut content studies, stable isotope analysis will allow us to quantify spatial and temporal variability in resource use and energy flow within the Scotia Sea food web. The research will identify key trophic linkages both seasonally and geographically, and will contribute to the development of sustainable management policies for the natural resources in this region.

14.9.2 Sampling

Whole specimens of invertebrate species were collected from the RTM 25, RMT 8 Bongo and MOCNESS nets during both day and night hauls. Animals were identified, bagged, labeled and frozen at -80° C (species catalogue see Table 6). Fish samples were frozen whole and tissue samples will be taken at BAS at the time when samples are returned to Cambridge and the fish will be processed for stomach content analysis. Particulate organic matter (POM) was filtered onto ashed glass fibre filters sampled from shallow CTDs at chlorophyll maximum depth all stations and from depth (100m, 300m, 600m and 1000m) at stations C2, P2, P3 and the Polar Front. Samples were again stored at -80° C prior to analysis in the laboratory.

To gain insight into the feeding of higher predators both blood and feather samples of penguins and flying birds as well as blood and skin samples of fur seals, were collected at Bird Island and Signy parallel to the timing of the cruise. All biochemical analysis will be carried out at BAS, Cambridge and the NERC Mass-spectrometry facility in East Kilbride.

Table 14.9.1: Species collected for stable isotope analysis

Process (P), condensed (C) and responsive (R) stations during cruise JR 177. T = test station), sh = shelf station, PF = Polar Front.

	Т	R 1	C2	C3	C4	R2	P2	D2	Р	S
Species	1	KI	C2	C3	U 4	K2	F 2	P3	F	Η
РОМ	Х	Х	х	х	Х	Х	Х	х	Х	Х
Calycopsis										Х
borgrevichi	Х	Х	х	х	Х	Х		Х	Х	
Diphyes sp.1	Х	Х	х	х	Х	Х		Х	Х	
Atolla wyvillei		Х	х	х	Х	Х	Х	Х	Х	
Periphylla										
periphylla			Х	Х	Х	Х		Х	Х	
Stygiomedusa										
gigantea					Х					
<i>Metridia</i> sp.			х							
Calanoides acutus		Х	Х	Х						
Calanus										
propinquus		Х	х	х						
Calanus simillimus							Х	Х		
Pareuchaeta sp.								Х		
Rhincalanus gigas		Х	х	х						
Themisto										Х
gaudichaudii				х	Х	Х	Х	Х	Х	
Euphausia frigida		Х	х	х			Х	Х	Х	Х
Euphausia										
triacantha				х	Х	Х	Х		Х	
Euphausia superba	Х	Х		х	Х	Х	Х	Х	Х	Х
Euphausia										
vallentini							Х	Х	Х	
<i>Thysanoessa</i> sp.				х		Х		Х	Х	Х
Galiteuthis										
glacialis		Х		Х		Х	Х	Х	Х	
Slosarczykovia										
circumantarctica						Х	Х	Х	Х	
Sagitta sp.		Х				Х	Х	Х	Х	
Salpa thompsoni	Х	Х	х		Х	Х	Х	Х	Х	

15 POLAR FRONT WORK

Sophie Fielding, Hugh Venables, Peter Enderlein, Gabi Stowasser, Yves Cherel, Anton Van de Putte, Jose Xavier, Pete Ward

15.1 Introduction

JR200 represented the third attempt to assess the foodweb structure at and just south of the Polar Front, in particular to understand why King Penguins from South Georgia forage at the Polar Front. During the previous Scotia Sea cruises (JR161 and JR177) King Penguins were simultaneously tracked, using geolocators and argos transmitters, from South Georgia and the Polar Front station work on the ship was positioned according to the King Penguin positions. As no King Penguins were tracked in the 2008/9 season the sampling area had to be chosen based on the foraging areas of King Penguins in previous years relative to the Polar Front, and satellite data on the location of the Polar Front.

15.2 Finding the Polar Front

The two main sources of satellite data are AVISO absolute dynamic height and OSTIA sea surface temperature (SST). Contours of dynamic height are streamlines of geostrophic flow, the flow being proportional to the gradient in dynamic height. This has the advantage of showing where the strong flow of the Polar Front is located but has the disadvantage of being delayed 7 days and not being directly measurable from the ship. The file size at download is 1.5Mb. SST data (file size 7Mb on download, which occasionally failed) are available 1 day delayed and can be measured by the ship's underway oceanlogger (which had been calibrated against the CTD surface temperatures during the cruise).

The disadvantage of SST data is that there is considerable surface heating during the season (from 2°C to 7°C) so it is only possible to define a surface temperature for the Polar Front for a particular area (the magnitude of the surface heating is dependent on latitude and variability is probably decorrelated at some longitudinal separation) at a particular time of year for a particular year. This can be achieved by defining the bounding dynamic heights of the Polar Front (using Elephant Seal transects courtesy of Lars Boehme) and then cross referencing different dynamic height levels to SST through 2007-2009 (the period of OSTIA SST availability). The appropriate dynamic height was chosen by the behaviour of tagged King Penguins in 2007/8 and the SST at that time. The SST for early April 2009 was then found for this dynamic height.

Assessing SST and dynamic height images from the beginning of the cruise allowed a section of the Polar Front to be identified. It was considered suitable for sampling as it was in a similar location to that visited in previous years by tagged penguins and was narrow, allowing a rapid survey across the gradient. It also appeared stable in location. The area to the west, which was closer, was wide with dynamic height contours doubling back on themselves within so it would have been harder and more time consuming to survey. An inevitable consequence of choosing a narrow section of Polar Front was the strong currents, which reached 2 knots in ADCP data.

FIG 15.2.1 OSTIA SST image with overlain dynamic height contours

The magenta contours are the 40 and 65 dyn cm contours that were taken as the approximate south and north edges respectively of the Polar Front. The dynamic height contours are a week older than the SST image so the agreement in the structure is due to the location of the feature being relatively stable. This was produced the day we were steaming towards the area on the 8th April.

FIG 15.2.2 Dynamic height contours over OSTIA SST.

The contours picked out in magenta show the path of the Polar Front with the changing SST signature with latitude and varying width evident.

15.3 Polar Front Station strategy

In order to assess the difference in ecosystem structure at the Polar Front, two survey sites were identified. Polar Front north (PFn - $50^{\circ} 03.79$ ''S and $34^{\circ} 01.40$ ''W) was in the Polar Front, identified through SST, dynamic height and the occurrence of a temperature minimum at ~200m depth – identified from XBTs deployed on transit from R3 to the Polar front (Fig 16.3.1). PFn was positioned 33 nmiles north of the nominally identified Polar Front station position (used as Polar Front south PFs $50^{\circ} 35.99$ '' and $33^{\circ} 48.11$ ''W – to represent south of the Polar Front conditions). In addition, throughout the 3 days allocated, 6 CTDs were planned in a transect across the Polar Front, connecting the two stations PFn and PFs.

Fig 15.3.1 XBT section across Polar Front.

Fig15.3.2 Shallow CTD section across Polar Front.

15.3.1 PFn

On arrival at PFn the weather was not favourable to undertake any science and the vessel spent the night hove-too. During the following day an acoustic survey (3 times 30 km transects) was undertaken around the station (see section 12). A CTD (Ev_223) to 600m was completed at the end of the last acoustic transect marking the most northerly end of the CTD transect across the front. A second CTD (1500m) was undertaken at the PFn position. It was noted that there were strong currents (2 knots) in the area that caused difficulty for the vessel to stay on station, as well as concerns for getting nets – particularly the light LHPR – to the target 1000m. Later it was decided not to deploy the LHPR (since we were fishing with the current due to wind direction) as it may have caught up with the towfish. Three RMT25s (Ev_225-227) were undertaken, two sets of stratified nets (1000-700, 700-400 and 400-200, 200-near surface) and 1 targetted trawl (550m and 300m). In order to sample available mesozooplankton the Bongo net (Ev_228-230) was used. After completion, the vessel headed south to undertake the PFs station work, undertaking two 600m CTDs (Ev_231-232) on the way to continue the CTD transect across the Polar front.

15.3.2 PFs

During transit towards PFs it was noticed that the RMT25 17mm wire had bird-caged, which could prevent fishing that evening. Instead of heading to the first leg of the acoustic survey the ship was stopped and the 17mm wire dangled in the water with a weight on the end to tighten up the wire. This was successful, although there was not enough daylight left to undertake the acoustic survey. It was decided to run an LHPR (Ev_234) prior to the evenings RMT25 fishing.

The RMT25 (Ev_235-237) fishing was undertaken successfully at PFs, in the same fashion as at PFn (2 sets of stratified hauls 400-200,200-near surface and 1000-700, 700-400m and 1 targetted trawl at 550 and 300m), in increasing weather conditions. These were significantly easier without the strong current found at PFn. A CTD to 1500m (Ev_238) and a Bongo (Ev_239) and minibongo (Ev_240) were undertaken before the ship had to become hove-too in worsening weather. As a result an acoustic survey could not be undertaken at PFs, although it should be noted that the station was run through several times with the echosounder running continuously.

15.4 Comments, Problems and future suggestions

First and foremost the Polar front work was completed because of a small weather window and the willing of the ship's personnel and scientific personnel to work in difficult conditions and to optimise opportunities as they arose. Thanks to all.

The strong current, of up to two knots, produced some trouble with getting the RMT25 to the correct depth. It was also fortunate that sea condition meant that the net could be towed along the current (though against would have been faster). Towing across the current could have proved difficult with the wire angle and crossing into different water masses. It would therefore have been better overall to have been in a slightly wider section, with slower currents, if a suitable section was available.

16. SCIENTIFIC SUPPORT

16.1 Gear Report

Peter Enderlein

16.1.1 General

This was the third cruise with a high number of deployments of towed gear. There where over 83 deployments over the stern and more than 50 deployments over the side. Because of the number of different towed gears and their different requirements the cables needed lots of swapping over. At one point the "biowire" was reterminated because the cables electrical termination became unreliable (it was still the termination from last season). The intensive use of the equipment always causes certain wear and tear to the equipment. But everything worked very well with a problem rate of less than 10 %. All equipment was deployed to the maximum depth of 1000 m.

16.1.2 Down Wire Net Monitor

During this cruise the DWNM had been used on the 'Biological wire' for the RMT8 and the LHPR, and on the 17mm co-ax cable (ROV Cable) for towing the RMT25.

This was the first season of the new developed DWNM system. All the equipment was not in water tested and had not been tested on JCR before. Therefore there were a few problems in the beginning but after the initial problems where solved it worked very reliable. The new improved electronics, deck unit, connectors, cables, sensors, and the new software interface are a huge improvement compared to the old system. Having had 3 fully independent systems, to eliminate the swapping over, improved the reliability of the system even further. Also having the batteries from the RMT25 release into the DWNM housing is a big improvement as these batteries are now gets charged automatically by the system. The implementation of the three new DWNM systems is a big step forward regarding workload, reliability and quality.

Having also spares for everything and proper documentation helps a lot. For next season a new set of cables, a spare PC, a spare serial card and 3 more depth sensors should be purchased. That would finish the DWNM system replacement and only "normal" maintenance should be required thereafter.

16.1.3 RMT25

This net was used to make 23 hauls, for stratified hauls and target fishing at the polar front. The new net type where used this year and due to the high number of salps found on the south stations the nets filled up with them on several occasion. This needed the use of the Gilson winch to get the heavy net on deck. This also caused the net to get some damage during these recoveries. The nets need some minor repairs as they have been used now for two seasons in a row. General they are still in good conditions but repairs should be done before they got used again to prevent major damage. The padding put into the mouth layers are not staying in there over time and will be pulled out during deployments so they can be found in the net afterwards. A new way of some moth protection should be found, probably by using a different type. Also

we should look in how to keep the towing loops in place so the nets cannot move inwards. But in general they are very good. Due to the number of deployments and the wear and tear in sometimes not ideal conditions the side wires were worn out and the starboard needed replacing with the spare.

The swivels on top of the side wires prevented them from twisting and in the future we should continue to use swivels so the side wires so they can turn freely. Also the reinforced non-filtering cod-ends proved to be reliable, compared with the once used last year. Only one got damaged slightly and need minor repairs.

16.1.4 RMT8

The RMT8 was used 28 times for target fishing for krill. It worked very well and caught krill in good conditions for live experiments, using the non-filtering cod-ends. At one point one old net was ripped apart which was not spotted in the first instance by the recovery crew. The net was swapped with a new one. Two more new nets should be purchased for next season.

16.1.5 LHPR

The LHPR was used 16 times and worked very well. With the new DWNM system there is now a separate channel given for the Opening Closing mechanism, so it can be turned in the open, closed position as often as required. The LHPR was deployed with the Opening Closing mechanism in the closed position, then opened at 1000 m and left open until it was back on deck. With the given towing speed and ship speed the LHPR made about 40 advances at a 120 sec. interval. Also there where no mismatches between the Gauze advances and the advances given by the software. In the beginning a connector came lose which forced water inside the DWNM housing destroying the electronics.

16.1.6 MOCNESS Net

The MOCNESS Net was deployed 16 times and it worked very well. Only the flowmeter seem to be a little bit sticky on a few occasions, so it was replaced with a spare one. During one deployment the nets got jammed on the feedback system bending the two stainless steel bars, these where replaced by the spare once. A spare PC should be bought to increase backup. Also the towing bridles needs replacing. Additionally we should look in replacing the original connector with the same Micro Wetcon connector used on all other gear.

16.1.7 Bongo and Mini-Bongo Net

The Bongo and Mini-Bongo net were deployed 50 times and worked very well. The new bars, and cod-ends were used on the new spring mechanism and the new top and old bottom ring frame. The cod-ends are a clear improvement to the old ones. During one deployment the spring wire got a little bit damaged and the damage was monitored during the following deployments. As no deterioration happened the spring unit was not replaced as the damage was a one off and not constant.

16.1.8 Recommendations

On a more general note mobilisation this time went very well having had 4 people flying south 4 days ahead of the main team. This allowed a proper mobilisation and reduced pressure during the first few days dramatically.

Demobilisation again relied on good weather condition during passage from and to the Falklands.

Time should be allocated for future cruises especially if the same amount of gear will be used.

We should keep in mind that we need 3 days for mobilisation and 2 day for demobilisation as long as we use the same amount of gear.

16.2 AME Report

Julian Klepacki

FAO: **The BAS AME (electronics) marine scientific instrumentation support engineers**

Cruise Report Instructions

Richard Bridgeman (RIBR) is the first point of contact for marine scientific instrumentation – any questions email (ribr@bas.ac.uk) or phone him (01223 221407); try Steve Bremner (sfbr, 01223 221416) when Richard not available.

Before you leave HQ for cruise support obtain an up to date DVD image of the JCR directories from the M: drive. The database for locating incidentals and spares is now maintained on the JCR by AME and a copy for reference should be sent back to the UK each year. Please contact RIBR if you are unfamiliar with this database. A list of spares/stock required should be included at the end of this report. However critical items must be ordered immediately.

A brief cruise report checklist is required for every cruise AME are responsible for supporting. Include pertinent notes on fault history and diagnosis at the end of the report even if you have already discussed via email. This information will be added to the instrumentation database maintained in the UK.

Please log all problems or changes made to systems in use while the cruise is underway to your own logbook.

At the end of the cruise, please fill in the simple checklist attached, briefly describing any problems or changes made to the instrumentation (including intermittent problems, repairs, expansion, changes to software, etc). Tick 'Used?' against all instruments which were used or logged. This is so we can follow up these issues and keep a good history of our instruments.

In order to help us with calibrations and repairs, please note the serial numbers of the instruments actually used (as listed on the checklist), and also serial numbers of any spares which you swapped or tested due to a fault or fault-finding. Enter any details on the checklist. We now have many spare sensors that are identical except for serial number.

Please leave a copy of the cruise report on the ship in the electronics workshop for the next support engineer and email a copy to RIBR & SFBR.

Name of principle scientist (PSO):	Beki Korb					
Instrument	Used?	Comments				
XBT (aft UIC) (PC, I/F box, handgun)	Y	O.K				
Scintillation counter (prep lab)						
AutoSal (labs on upper deck) S/N 63360						
AutoSal (labs on upper deck) S/N 65763						
AutoSal (labs on upper deck) S/N 68533						
AutoSal (labs on upper deck) S/N 68959	Y	O.K				
Portasal S/N 68164						
Magnetometer STCM1 (aft UIC)	Y	О.К				
AME workshop PC	Y	O.K				

Cruise: JR200Start date: 09/03/2009Finish date: 21/04/2009Name of AME engineer:Julian Klepacki

16.2.1 GPS, MRU, Gyro

GPS Furuno GP32 (bridge – port side)	Y	O.K
DGPS Ashtec ADU5 (bridge – port side)	Y	Needs episodic reset
DGPS, MRU Seatex Seapath (UIC – swath suite)	Y	O.K
DGPS Ashtec Glonass GG24 (bridge – starboard side)	Y	O.K
Gyro synchro to RS232 Navitron NT925HDI (UIC – aft)	Y	O.K
TSS HRP (UIC repeater)	Y	O.K

16.2.2 ACOUSTIC

Instrument	Used?	Comments
ADCP	Y	O.K
(aft UIC)	I	U.K
PES		
(aft UIC)		
EM120	Y	O.K
(for'd UIC)	1	0.K
TOPAS		
(for'd UIC)		
EPC plotter (used with		
TOPAS)		
EK60	Y	O.K
(mid UIC)	1	
HP deskjet 1 (used with		
EK)		
HP deskjet 2 (used with		
EK)		
SSU	Y	O.K - Trigger input still 'grounded' internally via jumpers
(for'd UIC)	-	on myser myser on grounder menning mysers
SVP S/N3298		
(cage when unused)		
SVP S/N3314		
(cage when unused)		
10kHz IOS pinger		
Benthos 12kHz pinger		
S/N 1316 + bracket		
Benthos 12kHz pinger		
S/N 1317 + bracket	-	
MORS 10kHz		
transponder		
Sonardyne USBL		
(aft UIC)		
Sonardyne		
7970 SSM Beacon		
cupboard 709 (by pes)		
Sonardyne 7971 SSM Beacon		
cupboard 709 (by pes)		
captonia (by pes)		

16.2.3 OCEANLOGGER

Instrument	Used?	Comments
	Useu?	Comments
Main logging PC hardware and software	Y	O.K
Barometer		
(back of logger rack)	Y	O.K
#V145002 (7/03)		
Barometer #V145003 (7/03)	Y	O.K
Barometer #Y2610005		
Barometer		
#W4620001		
Air humidity & temp		
(for'd mast)	Y	O.K
#15619015		
Air humidity & temp		
(for'd mast)	Y	Erroneous data, awaiting opportunity for ADC module
#60000120		replacement
Air humidity & temp		
(Drawer No. 907 aft UIC)		
#60000119		
Air humidity & temp		
#15619025		
Air humidity & temp		
#28552023 (HT1, 7/03)		
Air humidity & temp		
#18109036 (HT2, 7/03)		
Thermosalinograph SBE45		
(prep lab)		
#4524698-0016		
Thermosalinograph SBE45		
# 4532920-0072		
Thermosalinograph SBE45		
#4524698-0018 (7/04)	Y	O.K
Fluorometer		
(prep lab)	Y	O.K
TIR sensor (pyranometer)		
(for'd mast)	Y	O.K
#990684		
TIR sensor		
	1	

#32374 (TIR1, 7/03)		
TIR sensor #990685		
TIR sensor #011403 (TIR2, 7/03)		
PAR sensor (for'd mast) #990069	Y	O.K
PAR sensor #990070		
PAR sensor #30335 (PAR1, 7/03)		
PAR sensor # 010224 (PAR2, 7/03)		
Flow meter (prep room) #45/59462		
Uncontaminated seawater temp (transducer space)	Y	О.К

16.2.4 CTD (all kept in cage/ sci hold when not in use)

Instrument	Used?	Comments
Deck unit 1 SBE11plus S/N 11P15759-0458		
Deck unit 2 SBE11plus S/N 11P20391-0502	Y	O.K. Patch lead BNC connection to Sci-wiring failed. BNC replaced.
Underwater unit SBE9plus #09P15759-0480 Press #67241	Y	Deck unit error when connected.
Underwater unit SBE9plus #09P20391-0541 Press #75429	Y	O.K, swopped with 0480, but re-fitted due to 0480 error
Underwater unit SBE9plus #09P30856-0707 Press #89973		
Underwater unit SBE9plus #09P35716-0771 Press #93686		
Carousel & pylon SBE32 #3215759-0173		
Carousel & pylon SBE32 #0248		
Carousel & pylon 24 Bottle	Y	О.К
CTD swivel linkage	Y	О.К
CTD swivel S/N196115	Y	O.K, changed, but not faulty, back in case in cage
CTD swivel S/N196111	Y	O.K, presently fitted to CTD

Temp sensor SBE3plus #03P2191	Y	O.K, secondary T2
Temp sensor SBE3plus #03P2307		
Temp sensor SBE3plus #03P2366		
Temp sensor SBE3plus #03P2679		
Temp sensor SBE3plus #03P2705		
Temp sensor SBE3plus #03P2709		
Temp sensor SBE3plus #03P4235	Y	Secondary T2, changed, erroneous data
Temp sensor SBE3plus #03P4302	Y	O.K, Primary T1
Cond sensor SBE4C #041912	Y	O.K, secondary C2
Cond sensor SBE4C #041913		
Cond sensor SBE4C #042222		
Cond sensor SBE4C #042248		
Cond sensor SBE4C #042255		
Cond sensor SBE4C #042289		
Cond sensor SBE4C #042813	Y	Secondary C2, changed, erroneous data
Cond sensor SBE4C #042875	Y	O.K, Primary C1
Pump SBE5T # 51807	Y	Changed, erroneous T1 and C1
Pump SBE5T # 51813		
Pump SBE5T # 52371	Y	O.K, P1
Pump SBE5T # 52395	Y	O.K, P2

CTD contd – C & T & pumps – please state which primary and secondary

Pump SBE5T # 52400		
Pump SBE5T # 53415	Y	Changed; job lot with T2 and C2

CTD contd

Transformer	TI10	
Instrument	Used?	Comments
Fluorometer Aquatracka MkIII #088216		
Fluorometer Aquatracka MkIII #088249	Y	O.K
Standards Thermometer		
SBE35		
#3515759-0005		
Standards Thermometer		
SBE35 # 3527735-0024		
Standards Thermometer SBE35	Y	Changed feiling to record, costorm ADC feil
# 3535231-0047	I	Changed, failing to record; seaterm ADC fail
Standards Thermometer SBE35	Y	O.K
# 3538936-0051	1	O.K
Altimeter PA200		
#2130.26993		
Altimeter PA200		
#2130.27001	Y	O.K
Transmissometer C-Star		
#CST-396DR		
Transmissometer C-Star		
#CST-527DR	Y	O.K
Transmissometer C-Star CST 846DR		
Oxygen sensor SBE43		
#0242		
Oxygen sensor SBE43		
#0245		
Oxygen sensor SBE43		
#0620		
Oxygen sensor SBE43	Y	0.K
#0676	1	U.K
PAR sensor	Y	0.K
#7235	1	0.8
PAR sensor		

#7252	
PAR sensor #7274	
PAR sensor #7275	

Notes on any other part of CTD e.g.	50m of cable removed. Slip rings cleaned.
faulty cables, wire drum slip ring, bottles,	Cable jammed and damaged, approx 10m
swivel, frame, tubing etc.	removed. Re-terminated (potted)

16.2.5 AME UNSUPPORTED INSTRUMENTS BUT LOGGED

Instrument	Used?	Comments
EA600 (bridge and UIC remote)	Y	O.K
Anemometer	Y	О.К
Gyro	Y	О.К
DopplerLog	Y	О.К
EMLog	Y	О.К
CLAM winch monitoring system	Y	O.K

At the end of the cruise, please ensure

- The XBT is left in a suitable state (store in cage if not to be used for a while do not leave on deck or in UIC as it will get kicked around). Remove all deck cables at end of cruise prior to refit.
- The salinity sample bottles have been washed out and left with deionised water in please check this otherwise the bottles will build up crud and have to be replaced.
- The CTD is left in a suitable state (washed (including all peripherals), triton + deionised water washed through TC duct, empty syringes put on T duct inlets to keep dust out and stored appropriately). Be careful about freezing before next use this will damage the C sensors (run through with used standard seawater to reduce the chance of freezing before the next use). Remove all the connector locking sleeves and wash with fresh water. Blank off all unconnected connectors. See the CTD wisdom file for more information. If the CTD is not going to be used for a few weeks, at the end of your cruise please clean all connectors and attach dummy plugs or fit the connectors back after cleaning if they are not corroded.
- The CTD winch slip rings are cleaned if the CTD has been used this prevents failure through accumulated dirt.
- The SVP is left in a suitable state (washed and stowed). Do not leave this on deck without a cover for any length of time as it rusts. Stow inside at end of cruise.
- All manuals have been returned to the designated drawers and cupboards.
- You clean all the fans listed below every cruise or every month, whichever is the longer.

Please clean the intake fans on the following machines

Instrument	Cleaned?
Oceanlogger	no
EM120, TOPAS, NEPTUNE UPSs	no
Seatex Seapath	no
EM120 Tween Deck	no
TOPAS Tween Deck	no

16.2.6 Additional notes and recommendations for change / future work

DWNM MkIII U.W.U.

Swopped internal +ve and -ve seacable connections. Internal connections were opposite to document diagram. Working o.k

Replaced pressure connector on same UWU, ingress of water led to erroneous readings. Working o.k

Same unit later suffered water ingress. Short circuit on P4 of motor control board damaged track etc. All boards replaced inside unit. Working o.k

Net release motor connection pinout different to diagram. Rewired and working o.k.

CTD

Original supply of mastic based heat-shrink has been found in the cage (x5 1 meter lengths of 1" diameter and x10 1 meter lengths of approx' 12mm diameter reinforced tubing.

Use of encapsulated resin for termination has highlighted advantages, basically impervious to moisture.

Thoughts over using potted termination as and when time allows for curing, i.e. beginning of cruise or between CTDs, if time allows. Use of heat-shrink in emergencies and where time does not allow curing of resin.

Might be worth investigating availability of rapid curing polyurethane resin for terminations?

At present CTD termination is potted.

16.3 ICT Report

Johnnie Edmonston

16.3.1 Acquisition machines

SCS

ACQ Stopped At 03/14/2009, 12:44:13 – data streams still running from previous cruise, stopped acquisition to add netmonitor ACQ Started At 03/14/2009, 12:50:22

ACQ Stopped At 03/14/2009, 14:23:14 acquisition stopped – wrong netmonitor config ACQ Started At 03/14/2009, 14:23:49 acquisition restarted – correct netmonitor config added

ACQ Stopped At 03/22/2009, 21:58:00 - tsshrp grown too large, file renamed tsshrp0 ACQ Started At 03/22/2009, 22:05:27 restarted to create new tsshrp file

ACQ Stopped At 04/05/2009, 13:47:33 tsshrp grown too large, file renamed tsshrp1 ACQ Started At 04/05/2009, 13:48:16 restarted to create new tsshrp file

ACQ Stopped At 04/07/2009, 20:56:41 – web interface not updating, rvs streams not updating, scs restarted and remounted on jrua and jrub ACQ Started At 04/07/2009, 21:04:34 -

ACQ Stopped At 04/08/2009, 23:06:34 logging stopped – ashtec data corrupted ACQ Started At 04/08/2009, 23:06 – logging restarted.

Netmonitor

Serial Card on netmonitor packed up, found serial card in old ctd machine attempted to fit it in to the netmonitor PC, but couldn't find drivers.

Solution was to leave the serial card in the original machine, and turn into the new netmonitor. This involved installing labview and then just copying the netmonitor files onto the PC, location largely irrelevant, through trial and error, it was discovered that all labview installation options must be selected in the install process.

Suggest keeping a stock of cheap and nasty serial cards, the one which failed in the netmonitor was whizzy and expensive, the price of which would have bought a dozen cheap ones, which do the job adequately.

CTD PC

Performed well with no faults.

XBT PC

Performed well with no faults.

ADCP

Performed well with no faults.

Scintillation Counter

Performed well with no faults.

16.3.2 Servers

JRNA

No real problems, some warnings of low disk space on sys, cleared out tmp files.

JRUA / JRUB

Replaced processor at the start of the cruise, and re-installed original disks, thus putting jrua and jrub back into their respective machines.

Had to reboot jrub later to rebuild device list, was unable to see the Tandberg LTO2 tape drive.

AMS3

Stopped responding, due to problems on JRLA.

JRLA – machine restarted and bind restarted, AMS3 restarted, although the imap and smtp services were ok after jrla problems were fixed, the web management interface was not responding.

16.3.3 PC's

Chief Engineers PC

Chief Engineers PC had the hard disk replaced, problem first of all looked like a simple AMOS reinstall, but multiple reinstalls, and various attempts at moving around dll's it was complaining it needed failed to resolve the problem.

Hard drive image made and placed on new disk, all amos problems vanished, and performance increased.

Suggest keeping an image from time to time of that machine, possibly the most involved PC on the ship.

Also suggest higher spec machine, max memory, perhaps internal raid.

Combined office PC

PSU in combined office blew up, big bang, smoke and flames. Replaced.

Virus ridden laptop

Scientists' personal laptop with suspected rootkit, although it was never found and eliminated, exhibited all the behaviour of a virus.

After 3 days of trying to find and eliminate the virus, the machine was completely rebuilt. It took 3 days to download the drivers for this machine; it would be nice if people brought recovery disks with them, and copies of any personally licenced software that they consider vital.

Earl Grey attacks laptop

Scientists personal laptop attacked by Earl grey, luckily no sugar or milk were involved. After 2 days of sulking and generally aberrant driver the laptop decided to play nicely and has largely forgiven its owner with only the touchpad being dodgy. Happy laptop owner given a mouse and congratulated on good taste in tea.

16.4 Data Management

Nathan Cunningham

16.4.1 BASNet

BASNet is a major improvement for the JCR. It facilitates the use and interaction of the data streams collect in ways that were previously impossible. It opens up the opportunity to undertake scientific projects remotely and allows the unique and valuable nature of the JCR data to be disseminated quickly into the scientific community. For example, the Met. Office are extremely interested in receiving near-real-time data from the ship to input directly into their GCMs and Ocean models. This will mean that the profile of BAS as a unique data provider is increased, and enhanced in many positive ways. Not only being involved in collaborating with external institutions, but getting acknowledge for doing so. I can not emphasis enough on how this technology is influence the way we work and think about our data.

16.4.2 Near-real-time JCR Data

Project Brief

- Maintain the requirement for anybody on the ship to get at the data easily.
- Facilitate the viewing, access, retrieval of data from the JCR and Cambridge
- Ensure that a non-specialist interface to the JCR data resource.
- Increase the scientific/data output of the JCR.
- Provide a vital link in the long-term management of LTMS data.

Scientific Instrumentation on the JCR

There is interest and consensus across BSD that access to the JCR data streams in near real-time will offer substantial benefits, efficiencies and productivity to the marine based science being undertaken by the division. In addition, with this further functionality it will help to secure the JCRs reputation as one of the best research ships to accomplish world class Antarctic marine science.

This consideration is made with the recent developments on the US research ships, which have started to provide their data in near-real time.

The main impacts are threefold, firstly it will allow the scientist to have an overview of the environmental, oceanographic, discrete equipment and underway data. Secondly, allow the scientist to react to these conditions and suggest alterations to instrument parameters to ensure the best quality data is collected. Finally, dramatically reduce the turn around time of raw data to proceed data can be, especially if the specialist scientist is not on that particular cruise; for example, anoceanographer to process the ADCP data.

With the implementation of near real time data streaming from the JCR it is understood that it is limited by the narrow bandwidth currently available, but with a coordinated effort most aspects of the JCR instrumentation could be summarised and binned into data packets suitable for

streaming back. The instruments that are currently logged to the central SCS system could be streamed backimmediately as a low priority process over BASnet.

A proof of concept, targeting instrumentation used by for physical oceanography has been achieved. It is complex enough to cover all the aspects of near real time data streaming by initially targeting three instruments and the underway SCS data. These are the CTD, the ADCP and the XBT data and the following things need to be implemented:

1. Develop the reduced data sets that are suitable for streaming back.

a. ADCP – already summaries its data into 2 minute bins.
b. CTD – this will output another data stream a reduce level (1-2 seconds) from the default 1/25th of a second and provide an initially overview of the cast.
c. XBT – produce small ASCII file suitable for streaming back.

- Develop the interface for streaming back data

 a. Work closely with PSD project for streaming back Halley data and develop knowledge and information transfer working practice.
- 3. Scientist/data manager works on streamed data to check that it can be used to
 - a. Provide a succinct overview
 - b. Enough detail to perform initial analysis and suggest alteration to the collection parameters
 - c. c. Does improve the turn around time of the raw data and the overall scientific output. It is important to emphasis that this project should work closely with Peter Kirsch and the Halley data-streaming project.

Implementation

The project was successfully implemented and the proof of concept worked. Data is now streamed back to the UK in near real time. I would like to extend my gratitude to Jeremy Robst, Peter Kirsch, Paul Breen and Dave Judge for all their efforts. This work will help bring about a step change on how BSD can use and interact with the JCR.

16.4.3 Using Google Earth to Visualise Underway Data

The uptake of Google Earth as a quick and easy data visualisation tools has been good and levels of interest are high. Working with a number of scientist onboard the JCR serval useful data discovery products were produced. For example Martin Collins king penguin data was plotted using Google Earth and overlays of sea surface temperature and chlorophyll (from Beki Korb) were combined to help identify where the last polar front process station should be located.

David Judge developed an impressive range of Google Earth tools to help visualise ship data. These tools will be invaluable to how BSD scientist can discover which data sets are of interest. I would like to thank Dave Judge, Peter Kirsch and Paul Breen for all their work, help and support.

16.4.4 Polar View Project

Working with Andrew Fleming a number of Polar View products were available for use on the ship. The most impressive is the high quality sea ice images. These were used by the JCR

Officers to help inform them of the conditions around Signy. The Polar View Project uses Google Earth as its deliver technology and again will help form the suite of scientific tools utilising BASNet. We are successfully streaming in up-to-date Modis images from PML, NEODASS. Many thanks to Andrew Fleming and Peter Miller for getting this to work so well.

16.4.5 Web Based Data Tools

The event logs and integration tools were updated and widely utilised by all on the ship. Many thanks to Jeremy Robst for his hard work.

16.4.5 Utilities

Many thanks to Jeremy and Johnnie for setting up the software utilities (many of which where developed by Jeremy) to bring the processing of the underwaydata etc. into the 21st Century. These include the Google cruise track and the net monitor util. Details of how to use the net_transect.sh utility below.

Hi Nathan,

Ok, I think I've got it all fixed.

You need to change your qry_ input files so that they just contain the event, Net Type (though this can be any string - it detects LHPR/RMT based on the mot0,1 variables so you could have both net types in one file if you want) and then start time, end time - (see ~jpro/jr200a for samples).

Then just run (after doing setup scs)

/nerc/packages/dps/current/utils/net_transect.sh input_filename > stats.csv

and it'll produce the output file with all the stats, net events etc in one go.

Jeremy --<u>jpro@bas.ac.uk</u> | (work) 01223 221402 (fax) 01223 362616 Unix System Administrator

17. PUBLIC UNDERSTANDING OF SCIENCE

José Xavier

17.1 Introduction

During the JR200, numerous education and outreach activities were carried out. Their main objective was to promote polar science, educate the younger generations of the importante of the polar regions and provide various perspectives of the life of a scientist, or of a crew member, onboard of the James Clark Ross during the cruise, as part of the International Polar Year 2007-2009 (IPY). To our knowledge, this is the first time that education and outreach activities are described as part of a cruise report of the British Antarctic Survey.

17.2 Results

In order to reach a wide range of the public, various ways of communication between the James Clark Ross and the world were carried out:

17.2.1 WORLD WIDE WEB (Blogs and websites)

Two blogs were highly active during the cruise. The bi-lingual blog of José Xavier was created for the International Polar Year (www.cientistapolarjxavier.blogspot.com), and was already used on the previous cruise (JR177, between December 2007 and February 2008). The objective of the blog was to provide, on a regular basis in English and Portuguese, interesting information on the science and the living onboard of the James Clark Ross during the JR200 cruise. The great majority of the scientists and crew participated on the blog, either by accepting to be photographed or interviewed, or providing photographs or input in writing.

During the duration of the cruise, more than 1500 hits from more than 50 countries worlwide were recorded. The top 10 countries visiting the blog were: UK, Portugal, USA, France, Brazil, Spain, Belgium, Malaysia, Ireland and Australia. The UK was the country with most interest on the blog.

Another blog was maintained by Anton Van de Putte (<u>www.antonarctica.be</u>), whose focus was transmitting his personal views of the cruise. Although hosted in Belgium this blog is written in English in order to reach a wide audience. With about 65 visits per week the blog received less attention but managed to reach a different audience. The blog received the most interest from within Belgium, but also had visits from the UK, Portugal, Australia, The Netherlands and Czech Republic. Both blogs, clearly advertised each other on their webpage, allowing visitors to get a broad perspective on life and science at sea in the Southern Ocean

José Xavier also wrote weekly to another blog (<u>www.cgd.pt</u>) and an Internet portal (<u>www.portalpolar.pt</u>) about the cruise and its living experiences. Both blog and website are part of the Portugal's polar education and outreach initiatives on promoting polar science, during the new national Antarctic programme, PROPOLAR that initiated during IPY. The cruise has also been mentioned in various websites to show the science that was carried out: www. antarctica.ac.uk (UK), <u>www.ipy.org</u> (Canada), <u>www.apecs.is</u> (Iceland).
17.2.2 EDUCATION, OUTREACH and MEDIA

Scientists have been highly active on Education and outreach activities for the cruise in relation to the International Polar Year. José Xavier joined the International Programme Office of the International Polar Year (IPY-IPO) to participate on the IPY Polar Oceans Day. The objective of IPY Polar Oceans Day (week between 16-20 March) was to link polar scientists related to marine disciplines (e.g. marine biology, oceanography) from the Arctic and Antarctic and provide a forum of discussion between scientists, students, professors, teachers and the general public from all over the world.

José Xavier was interviewed 3 times during the cruise by phone during the IPY Polar Oceans initiatives: twice to Brazil, including a radio interview (Figure 1), and once to Malaysia live during a conference on polar issues.

Figure 17.1. Student on the radio station Claretiana in Brazil asking a question to José Xavier in the Southern Ocean, onboard of the James Clark Ross.

José Xavier was also interviewed by a Portugal national newspaper "Jornal de Notícias" on the work he has been carrying out, when the initial meeting that gathered the 47 countries that signed the Antarctic treaty started in USA, including UK.

17.2.3 CONTACT DIRECTLY WITH SCHOOLS

During the cruise, José Xavier participated in various projects with schools from UK (Cambridge and Derbyshire), from Portugal (Algarve and Lisbon) and Brazil (Rio de Janeiro; Figure 2). The interactions ranged from skype interviews, email questions from students about the cruise, participate on school projects related to polar research and human health. José Xavier performed various interviews of scientists and crew to produce another education and outreach film to educate the younger generations the basic information about polar research, particularly the marine disciplines.

Figure 17.2. Prof. Miriam Almeida with colleagues and students from the college Puríssimo coração de Maria (Brazil).

17.3 CONCLUSIONS

The JR200 was the first cruise to report a number of very productive on education and outreach activities that complemented well with the science. As part of the International Polar Year initiatives, the British Antarctic Survey and other world organizations/committees (e.g. Portugal IPY committee), have been active in linking the polar science carried out by its scientists and the general public. The activities done during this cruise are good examples of how the general public can be easily informed, in a exciting and interesting way, while providing basic knowledge about the polar regions and its importance to the planet.

Time	Event	Event Code	Stn Code	Lat	Lon	Description
12/03/2009 11:38:00	1	NTOW	UND	-53.87666	-55.1322	NOC towfish deployed
12/04/2009 21:36:00	1	NTOW	SGS	-53.00139	-37.33904	Iron fish recovered (starboard quarter).
13/03/2009 11:21:00	2	BON	TEST	-57.68535	-50.44152	Bongo nets deployed
13/03/2009 11:57:00	2	BON	TEST	-57.69171	-50.42993	Bongo net recovered on deck
13/03/2009 12:24:00	3	CTD	TEST	-57.69173	-50.42984	CTD deployed
13/03/2009 12:24:00	3	CTD	TEST	-57.69173	-50.42984	CTD deployed
13/03/2009 12:30:00	3	CTD	TEST	-57.69194	-50.42947	CTD @ 150m commence hauling
13/03/2009 12:47:00	3	CTD	TEST	-57.69429	-50.42515	CTD recovered on deck
13/03/2009 13:21:00	4	CTD	TEST	-57.69426	-50.42517	CTD deployed
13/03/2009 13:34:00	4	CTD	TEST	-57.69512	-50.42363	CTD @ 400m commence hauling
13/03/2009 14:05:00	4	CTD	TEST	-57.70222	-50.41069	CTD recovered on deck
13/03/2009 15:11:00	5	LHPR	TEST	-57.70126	-50.41304	Commence deployment of LHPR
13/03/2009 15:38:00	5	LHPR	TEST	-57.68611	-50.42705	Commence hauling LHPR wire out 1093m
13/03/2009 16:15:00	5	LHPR	TEST	-57.66536	-50.44269	LHPR recovered on deck
13/03/2009 16:35:00	6	MOC	TEST	-57.65751	-50.44797	Commence deployment of MOCNESS
13/03/2009 16:40:00	6	MOC	TEST	-57.65522	-50.44906	MOCNESS in the water being lowered
13/03/2009 16:53:00	6	MOC	TEST	-57.64891	-50.45255	Commence hauling MOCNESS wire out 431m
13/03/2009 17:18:00	6	MOC	TEST	-57.6355	-50.46043	MOCNESS recovered on deck
13/03/2009 18:58:00	7	RMT8	TEST	-57.61881	-50.46671	Commence deployment of RMT 8
13/03/2009 19:06:00	7	RMT8	TEST	-57.61299	-50.46818	RMT 8 deployed.
13/03/2009 20:08:00	7	RMT8	TEST	-57.56813	-50.48395	RMT 8 recovered.
14/03/2009 09:39:00	8	RMT8	R1	-59.46934	-49.04181	RMT 8 deployed.
14/03/2009 10:00:00	8	RMT8	R1	-59.45341	-49.04152	RMT 8 recovered.
14/03/2009 13:38:00	9	RMT25	R1	-59.9007	-48.65419	RMT 25 deployed
14/03/2009 14:20:00	9	RMT25	R1	-59.87131	-48.66813	Net out of the water
14/03/2009 14:26:00	9	RMT25	R1	-59.86624	-48.66949	Net recovered on deck
14/03/2009 19:08:00	10	CTD	R1	-60.4993	-48.19411	CTD deployed depth 1419m
14/03/2009 19:36:00	10	CTD	R1	-60.49868	-48.19313	CTD at 1371m wire out
14/03/2009 20:08:00	10	CTD	R1	-60.49868	-48.19302	CTD recovered.
14/03/2009 20:34:00	11	CTD	R1	-60.49865	-48.19308	CTD deployed.

Appendix 1. Event log. Some descriptions have been modified from the original page to allow table to fit in this document.

14/03/2009 20:43:00	11	CTD	R1	-60.49868	-48.19309	CTD stopped at 245 metres wire out. Wire off sheave in traction winch room.
14/03/2009 21:22:00	11	CTD	R1	-60.49869	-48.19304	CTD recovered. Deck crew spooling off damaged wire for retermination.
14/03/2009 22:32:00	12	MOC	R1	-60.46931	-48.16303	Commence Mocness deployment.
14/03/2009 22:36:00	12	MOC	R1	-60.47164	-48.16429	Mocness deployed. Course over ground approx. 190 to reduce rolling caused by heavy swell.
15/03/2009 01:24:00	12	MOC	R1	-60.55651	-48.18685	MOCNESS recovered on deck
15/03/2009 10:54:00	13	ACO	R1	-60.40145	-48.28587	Commence first leg of acoustic transect. Course 245T. Constant power ~9 knots into wind.
15/03/2009 12:33:00	13	ACO	R1	-60.51989	-48.68636	Transect complete
15/03/2009 13:02:00	13	ACO	R1	-60.59382	-48.60538	Commence 50K downwind transect at constant power giving 10Kts.
15/03/2009 15:46:00	13	ACO	R1	-60.40317	-47.77637	Transect line complete
15/03/2009 16:29:00	13	ACO	R1	-60.50081	-47.68545	Commence transect line 50K Course 245(T)
15/03/2009 19:17:00	13	ACO	R1	-60.6903	-48.5126	Complete 50k transect. Reduced speed to allow positioning of RMT8 net.
15/03/2009 23:54:00	14	BON	R1	-60.50015	-48.19233	Bongo nets deployed
16/03/2009 00:25:00	14	BON	R1	-60.49931	-48.19224	Bongo net recovered on deck
16/03/2009 00:27:00	15	BON	R1	-60.49933	-48.19235	2nd Bongo Net deployed
16/03/2009 01:00:00	15	BON	R1	-60.49932	-48.19233	Bongo net recovered on deck being swapped for Mini-Bongo
16/03/2009 01:07:00	16	MON	R1	-60.49931	-48.19235	Mini-Bongo net deployed
16/03/2009 01:07:00	16	MON	R1	-60.49931	-48.19235	Mini-Bongo net deployed
16/03/2009 01:38:00	16	MON	R1	-60.49931	-48.19235	Mini-Bongo net recovered on deck
16/03/2009 02:33:00	17	RMT25	R1	-60.49768	-48.20241	RMT 25 deployed - Shallow trawl (400m)
16/03/2009 04:01:00	17	RMT25	R1	-60.48444	-48.31625	RMT 25 at the surface recovering net
16/03/2009 04:13:00	17	RMT25	R1	-60.48404	-48.32592	RMT 25 recovered on deck
16/03/2009 04:38:00	18	RMT25	R1	-60.48179	-48.3522	RMT 25 deployed
16/03/2009 06:46:00	18	RMT25	R1	-60.46061	-48.51692	RMT 25 at the surface recovering net
16/03/2009 06:54:00	18	RMT25	R1	-60.46019	-48.52359	RMT 25 recovered on deck
16/03/2009 08:48:00	19	CTD	R1	-60.49846	-48.19192	CTD deployed.
16/03/2009 09:16:00	19	CTD	R1	-60.49845	-48.19199	CTD stopped at 1371 metres wire out.
16/03/2009 10:09:00	19	CTD	R1	-60.49846	-48.19196	CTD recovered.
16/03/2009 10:50:00	20	CTD	R1	-60.49848	-48.19199	CTD deployed.
16/03/2009 11:07:00	20	CTD	R1	-60.49843	-48.19194	CTD @ 400m commence hauling
16/03/2009 11:22:00	20	CTD	R1	-60.49847	-48.19202	CTD recovered on deck
16/03/2009 11:40:00	21	LHPR	R1	-60.49668	-48.19298	Start deploying LHPR
16/03/2009 11:43:00	21	LHPR	R1	-60.49489	-48.19649	LHPR deployed

16/03/2009 12:40:00	21	LHPR	R1	-60.46736	-48.26402	LHPR @ 2435m commence hauling
16/03/2009 14:11:00	21	LHPR	R1	-60.41977	-48.3865	LHPR recovered
16/03/2009 15:18:00	22	FRRF	R1	-60.49822	-48.19192	FRRF deployed
16/03/2009 15:52:00	22	FRRF	R1	-60.49823	-48.19197	FRRF recovered on deck
16/03/2009 15:56:00	23	BON	R1	-60.49823	-48.19199	Bongo nets deployed
16/03/2009 16:25:00	23	BON	R1	-60.4982	-48.19196	Bongo net recovered on deck
16/03/2009 16:28:00	24	BON	R1	-60.49822	-48.19194	Bongo nets deployed
16/03/2009 17:00:00	24	BON	R1	-60.4982	-48.19194	Bongo net recovered on deck
16/03/2009 17:07:00	25	MON	R1	-60.4982	-48.19196	Mini Bongo nets deployed
16/03/2009 17:40:00	25	MON	R1	-60.49822	-48.19192	Mini Bongo nets recovered on deck
16/03/2009 17:49:00	26	MOC	R1	-60.49752	-48.19282	Commence deploying MOCNESS
16/03/2009 17:52:00	26	MOC	R1	-60.49601	-48.19486	MOCNESS deployed
16/03/2009 20:34:00	26	MOC	R1	-60.42557	-48.30618	MOCNESS recovered.
16/03/2009 21:41:00	27	LHPR	R1	-60.52935	-48.16703	LHPR deployed. Course over ground approx. 338T. Head to wind.
16/03/2009 23:56:00	27	LHPR	R1	-60.45701	-48.2219	LHPR recovered
17/03/2009 00:24:00	28	RMT8	R1	-60.45798	-48.22112	RMT 8 deployed for target fishing
17/03/2009 00:50:00	28	RMT8	R1	-60.43492	-48.2264	RMT8 Net recovered on deck
17/03/2009 01:22:00	29	RMT8	R1	-60.44005	-48.22249	RMT8 Net in the water
17/03/2009 01:53:00	29	RMT8	R1	-60.41116	-48.22121	RMT8 Nets finished Finished target fishing
17/03/2009 02:55:00	30	FRRF	R1	-60.49851	-48.19047	FRRF deployed
17/03/2009 03:28:00	30	FRRF	R1	-60.4985	-48.19044	FRRF recovered on deck
17/03/2009 14:25:00	31	CTD	D1	-60.43122	-44.59307	CTD deployed
17/03/2009 14:48:00	31	CTD	D1	-60.43095	-44.59289	CTD @ 990m - commence hauling
17/03/2009 15:22:00	31	CTD	D1	-60.43095	-44.59292	CTD recovered on deck
17/03/2009 17:55:00	32	MOC	C2	-60.28737	-44.42419	Vessel at 2.0 knots head to wind commence deploying MOCNESS
17/03/2009 17:58:00	32	MOC	C2	-60.28552	-44.42521	MOCNESS deployed
17/03/2009 20:21:00	33	CTD	C2	-60.2085	-44.40808	CTD deployed. Water depth 5452 metres.
17/03/2009 20:58:00	33	CTD	C2	-60.20851	-44.40805	CTD stopped at 2000 metres wire out.
17/03/2009 21:40:00	33	CTD	C2	-60.2085	-44.40804	CTD recovered.
17/03/2009 22:05:00	34	CTD	C2	-60.20848	-44.40802	CTD deployed.
17/03/2009 22:16:00	34	CTD	C2	-60.20849	-44.40804	CTD stopped at 400 metres.
17/03/2009 22:38:00	34	CTD	C2	-60.20849	-44.40803	CTD recovered.

17/03/2009 23:16:00	35	MOC	C2	-60.22908	-44.42512	MOCNESS deployed
18/03/2009 00:32:00	35	MOC	C2	-60.18069	-44.38355	Commence hauling MOCNESS wire out 2300m
18/03/2009 01:52:00	35	MOC	C2	-60.12757	-44.33571	MOCNESS recovered on deck
18/03/2009 04:29:00	36	LHPR	C2	-60.24056	-44.43009	Commence deploying LHPR
18/03/2009 04:34:00	36	LHPR	C2	-60.23783	-44.42946	LHPR deployed head into the wind 011(T)
18/03/2009 06:41:00	36	LHPR	C2	-60.16825	-44.39415	LHPR recovered on deck
18/03/2009 07:32:00	37	CTD	C2	-60.20865	-44.40853	CTD deployed.
18/03/2009 09:09:00	37	CTD	C2	-60.20864	-44.40849	CTD stopped at 5402 metres wire out.
18/03/2009 09:20:00	37	CTD	C2	-60.20862	-44.40849	CTD stopped at 5328 metres for spooling gear checks.
18/03/2009 09:28:00	37	CTD	C2	-60.20863	-44.40848	Resume hauling.
18/03/2009 12:25:00	37	CTD	C2	-60.33694	-44.3846	CTD recovered on deck
18/03/2009 13:11:00	38	ACO	C2	-60.45533	-44.35989	Commence acoustic survey
18/03/2009 15:51:00	38	ACO	C2	-60.03461	-44.05089	Vessel completed transect line
18/03/2009 16:32:00	38	ACO	C2	-59.99649	-44.25503	Commence transect line 200(T) x 50K
18/03/2009 19:15:00	38	ACO	C2	-60.42009	-44.56588	End of transect line. Alter course to 290T towards next line.
18/03/2009 19:56:00	38	ACO	C2	-60.38096	-44.76794	Commence 3rd. transect line. Course 020T at 10 knots.
18/03/2009 21:00:00	38	ACO	C2	-60.21454	-44.64483	Complete acoustic survey. Speed reduced. Setting up RMT8.
18/03/2009 22:07:00	39	RMT8	C2	-60.20081	-44.49495	RMT8 deployed.
18/03/2009 22:18:00	39	RMT8	C2	-60.20227	-44.48004	Commence slow haul to bring net close to surface.
18/03/2009 22:48:00	39	RMT8	C2	-60.2059	-44.43854	Commence recovery.
18/03/2009 22:53:00	39	RMT8	C2	-60.20638	-44.43149	RMT recovered.
18/03/2009 23:04:00	40	RMT8	C2	-60.20763	-44.41573	RMT 8 deployed.
18/03/2009 23:34:00	40	RMT8	C2	-60.21079	-44.37525	Net recovered on deck
18/03/2009 23:51:00	41	RMT8	C2	-60.21286	-44.34809	RMT 8 deployed.
19/03/2009 00:31:00	41	RMT8	C2	-60.21687	-44.28741	Net recovered on deck
19/03/2009 02:15:00	42	RMT25	C2	-60.19162	-44.30925	RMT 25 deployed
19/03/2009 04:36:00	42	RMT25	C2	-60.29139	-44.22708	RMT 25 recovered on deck
19/03/2009 05:45:00	43	RMT25	C2	-60.23875	-44.30179	RMT 25 deployed
19/03/2009 08:07:00	43	RMT25	C2	-60.32771	-44.33306	RMT 25 recovered. Moving net aside on deck.
19/03/2009 09:39:00	44	BON	C2	-60.20818	-44.40801	Bongo nets deployed.
19/03/2009 10:10:00	44	BON	C2	-60.20818	-44.408	Bongo nets recovered.
19/03/2009 10:11:00	45	BON	C2	-60.20817	-44.408	Bongo nets redeployed.

19/03/2009 10:45:00	45	BON	C2	-60.20816	-44.40798	Bongo nets recovered.
19/03/2009 10:52:00	46	MON	C2	-60.20817	-44.40798	Mini-bongos deployed.
19/03/2009 11:22:00	46	MON	C2	-60.20818	-44.40801	Mini Bongo nets recovered on deck
19/03/2009 11:33:00	47	GOF	C2	-60.20817	-44.40805	Go-Flo bottles deployed
19/03/2009 14:00:00	47	GOF	C2	-60.20819	-44.40796	Bottles max. depth 540m
19/03/2009 14:12:00	47	GOF	C2	-60.20819	-44.40798	Go-Flo bottles recovered on deck and operation complete
19/03/2009 14:21:00	48	FRRF	C2	-60.20819	-44.40802	FRRF deployed
19/03/2009 14:57:00	48	FRRF	C2	-60.20816	-44.40799	FRRF recovered on deck
19/03/2009 15:01:00	49	BON	C2	-60.20817	-44.408	Bongo nets deployed.
19/03/2009 15:32:00	49	BON	C2	-60.20815	-44.40801	Bongo net recovered on deck
19/03/2009 15:38:00	50	BON	C2	-60.20816	-44.40803	Bongo nets deployed
19/03/2009 16:03:00	50	BON	C2	-60.20816	-44.40802	Bongo net recovered on deck
19/03/2009 16:08:00	51	MON	C2	-60.20816	-44.40802	Mini-Bongo net deployed
19/03/2009 16:37:00	51	MON	C2	-60.20816	-44.40799	Mini Bongo nets recovered on deck
19/03/2009 18:35:00	52	CTD	C2	-59.93473	-44.23675	CTD deployed. EA600 depth 4731 metres.
19/03/2009 19:57:00	52	CTD	C2	-59.93593	-44.23929	CTD stopped at 4674 metres wire out.
19/03/2009 21:45:00	52	CTD	C2	-59.93594	-44.2392	CTD recovered. Securing deck and preparing for target fishing.
19/03/2009 22:25:00	53	RMT8	C2	-59.92152	-44.23014	RMT 8 deployed for target fishing
19/03/2009 22:44:00	53	RMT8	C2	-59.9332	-44.24468	RMT 8 recovered. (Net not opened. Target missed.)
19/03/2009 23:30:00	54	RMT8	C2	-59.87916	-44.21005	RMT 8 deployed for target fishing
19/03/2009 23:50:00	54	RMT8	C2	-59.89426	-44.20996	Net recovered on deck
20/03/2009 02:00:00	55	RMT25	C3	-59.66591	-44.05377	RMT25 Deployed
20/03/2009 04:11:00	55	RMT25	C3	-59.7563	-44.10856	RMT 25 recovered on deck
20/03/2009 05:05:00	56	RMT25	C3	-59.66878	-44.01003	RMT 25 deployed
20/03/2009 08:16:00	56	RMT25	C3	-59.76412	-44.22846	RMT 25 recovered. Proceeding approx. 7 miles to station for bongo nets.
20/03/2009 09:09:00	57	BON	C3	-59.6879	-44.05422	Bongo nets deployed.
20/03/2009 09:39:00	57	BON	C3	-59.68793	-44.05424	Bongo nets recovered.
20/03/2009 09:40:00	58	BON	C3	-59.68792	-44.05424	Bongo nets redeployed.
20/03/2009 10:10:00	58	MON	C3	-59.68791	-44.05424	Bongo nets recovered.
20/03/2009 10:16:00	59	MON	C3	-59.68792	-44.05423	Mini bongos deployed.
20/03/2009 10:47:00	59	MON	C3	-59.6879	-44.05425	Mini bongos recovered.
20/03/2009 12:20:00	60	ACO	C3	-59.93783	-43.9919	Commence acoustic survey

20/03/2009 15:00:00	60	ACO	C3	-59.51386	-43.7185	Complete 50k transect.
20/03/2009 15:43:00	60	ACO	C3	-59.47876	-43.92123	Commence transect line 198(T) x 50k
20/03/2009 18:24:00	60	ACO	C3	-59.90593	-44.19647	Complete 50k transect.
20/03/2009 19:03:00	60	ACO	C3	-59.87399	-44.39925	Commence 3rd. transect line. Course 018(T) x 50K
20/03/2009 21:38:00	61	RMT8	C3	-59.60604	-44.16973	RMT 8 deployed.
20/03/2009 22:17:00	61	RMT8	C3	-59.57834	-44.16928	RMT recovered. Ship heading towards previous acoustic track.
20/03/2009 23:14:00	62	RMT8	C3	-59.66554	-44.26022	RMT 8 deployed for target fishing
20/03/2009 23:40:00	62	RMT8	C3	-59.63923	-44.25915	RMT 8 recovered.
21/03/2009 00:11:00	63	RMT8	C3	-59.65737	-44.24646	RMT 8 deployed for target fishing (trawled greater depth to catch fish not krill)
21/03/2009 01:20:00	63	RMT8	C3	-59.58962	-44.24277	Net recovered on deck - returning to stn. @ 10K for FRRF
21/03/2009 02:32:00	64	FRRF	C3	-59.68855	-44.05462	FRRF deployed
21/03/2009 03:06:00	64	FRRF	C3	-59.68857	-44.05463	FRRF recovered on deck
21/03/2009 04:03:00	65	LHPR	C3	-59.68665	-44.06748	LHPR deployed
21/03/2009 06:13:00	65	LHPR	C3	-59.64255	-44.19678	LHPR recovered on deck
21/03/2009 07:22:00	66	CTD	C3	-59.68871	-44.05498	CTD deployed. EA600 depth 4143 metres.
21/03/2009 08:34:00	66	CTD	C3	-59.6887	-44.05499	CTD stopped at 4085 metres.
21/03/2009 10:21:00	66	CTD	C3	-59.68871	-44.05498	CTD recovered.
21/03/2009 10:40:00	67	LHPR	C3	-59.6891	-44.06439	LHPR deployed.
21/03/2009 11:32:00	67	LHPR	C3	-59.69453	-44.12427	Commence hauling LHPR
21/03/2009 12:54:00	67	LHPR	C3	-59.70443	-44.22295	LHPR Recovered
21/03/2009 14:05:00	68	GOF	C3	-59.68842	-44.0548	Go-Flo bottles deployed
21/03/2009 14:05:00	68	GOF	C3	-59.68842	-44.0548	Go-Flo bottles deployed
21/03/2009 14:40:00	68	GOF	C3	-59.68851	-44.05494	Go-Flo bottles stopped at 500m
21/03/2009 14:40:00	68	GOF	C3	-59.68851	-44.05494	Go-Flo bottles stopped at 500m
21/03/2009 15:00:00	68	GOF	C3	-59.68853	-44.05515	Commence hauling Go-Flo bottles
21/03/2009 15:00:00	68	GOF	C3	-59.68853	-44.05515	Commence hauling Go-Flo bottles
21/03/2009 15:27:00	68	GOF	C3	-59.68859	-44.05462	Go-Flo bottles recovered on deck
21/03/2009 15:27:00	68	GOF	C3	-59.68859	-44.05462	Go-Flo bottles recovered on deck
21/03/2009 15:35:00	69	BON	C3	-59.68863	-44.05491	Bongo nets deployed
21/03/2009 16:06:00	69	BON	C3	-59.68839	-44.05487	Bongo net recovered on deck
21/03/2009 16:07:00	70	BON	C3	-59.68842	-44.05482	Bongo nets deployed
21/03/2009 16:38:00	70	BON	C3	-59.68839	-44.05481	Bongo net recovered on deck

21/03/2009 16:43:00	71	MON	C3	-59.68838	-44.05483	Mini Bongo nets deployed
21/03/2009 17:13:00	71	MON	C3	-59.6884	-44.05481	Mini Bongo nets recovered on deck Preparing MOCNESS
21/03/2009 17:44:00	72	MOC	C3	-59.68887	-44.06058	MOCNESS deployed
21/03/2009 20:34:00	72	MOC	C3	-59.73502	-44.22752	MOCNESS recovered. Ship on transit to station (approx 6 miles).
21/03/2009 21:27:00	73	CTD	C3	-59.68875	-44.05391	CTD deployed.
21/03/2009 22:06:00	73	CTD	C3	-59.68872	-44.05396	CTD stopped at 2000 metres.
21/03/2009 22:47:00	73	CTD	C3	-59.68875	-44.05396	CTD recovered.
21/03/2009 23:10:00	74	CTD	C3	-59.68876	-44.0539	CTD deployed for 400m cast
21/03/2009 23:22:00	74	CTD	C3	-59.68877	-44.05393	CTD @ 400m commence hauling
21/03/2009 23:50:00	74	CTD	C3	-59.68872	-44.05397	CTD recovered on deck
22/03/2009 00:25:00	75	MOC	C3	-59.71809	-44.03558	MOCNESS deployed
22/03/2009 01:50:00	75	MOC	C3	-59.65158	-44.04379	MOCNESS deployed with 2214m of wire commence hauling
22/03/2009 03:25:00	75	MOC	C3	-59.56872	-44.01022	MOCNESS recovered on deck
22/03/2009 05:15:00	76	CTD	D5	-59.35584	-43.83652	CTD deployed depth 3160m
22/03/2009 06:09:00	76	CTD	D5	-59.35619	-43.83571	CTD at 3098m wire out commence hauling
22/03/2009 07:36:00	76	CTD	D5	-59.35548	-43.8326	CTD recovered. Ship proceeding to D6.
22/03/2009 10:01:00	77	CTD	D6	-59.0254	-43.62105	CTD deployed. EA600 depth 3105 metres.
22/03/2009 10:57:00	77	CTD	D6	-59.02537	-43.62107	CTD stopped at 3050 metres wire out.
22/03/2009 12:10:00	77	CTD	D6	-59.0254	-43.62101	CTD recovered on deck
22/03/2009 13:50:00	78	RMT8	D7	-58.86866	-43.51018	RMT 8 deployed for target fishing
22/03/2009 14:11:00	78	RMT8	D7	-58.85073	-43.49841	Net recovered on deck
22/03/2009 15:23:00	79	CTD	D7	-58.69432	-43.4042	CTD deployed depth 2949m
22/03/2009 16:17:00	79	CTD	D7	-58.69362	-43.4049	CTD at 2890m wire out commence hauling
22/03/2009 17:27:00	79	CTD	D7	-58.69364	-43.4049	CTD recovered on deck
22/03/2009 19:44:00	80	CTD	D8	-58.362	-43.18885	CTD deployed.
22/03/2009 20:38:00	80	CTD	D8	-58.362	-43.18887	CTD at depth. 2934 metres wire out.
22/03/2009 21:50:00	80	CTD	D8	-58.36195	-43.18882	CTD recovered.
23/03/2009 00:28:00	81	RMT25	C4	-58.04266	-43.00365	RMT 25 deployed
23/03/2009 02:30:00	81	RMT25	C4	-57.99769	-42.90715	RMT 25 recovered on deck
23/03/2009 04:19:00	82	RMT25	C4	-58.07108	-43.01567	RMT 25 deployed head to wind 036(T) at 2.5 knots
23/03/2009 07:22:00	82	RMT25	C4	-57.97851	-42.82636	RMT 25 recovered. Securing deck.
23/03/2009 08:19:00	83	BON	C4	-58.03071	-42.97144	On station for Bongo nets.

23/03/2009 08:23:00	83	BON	C4	-58.03072	-42.97145	Bongo nets deployed.	
23/03/2009 08:54:00	83	BON	C4	-58.03071	-42.97146	Bongo nets recovered.	
23/03/2009 08:55:00	84	BON	C4	-58.0307	-42.97145	Bongo nets redeployed.	
23/03/2009 09:27:00	84	BON	C4	-58.0307	-42.97146	Bongo nets recovered.	
23/03/2009 09:31:00	85	MON	C4	-58.03071	-42.97145	Mini bongo nets deployed.	
23/03/2009 10:04:00	85	MON	C4	-58.03072	-42.97142	Mini bongos recovered. Securing gantry.	
23/03/2009 11:38:00	86	ACO	C4	-58.27975	-42.92745	Commence acoustic survey	
23/03/2009 14:20:00	86	ACO	C4	-57.85506	-42.63519	First transect complte - steaming to commence next transect	
23/03/2009 15:02:00	86	ACO	C4	-57.81907	-42.8272	Commence 2nd transect line course 200(T)	
23/03/2009 17:44:00	86	ACO	C4	-58.24062	-43.11593	Completed 2nd 50k transect line	
23/03/2009 18:28:00	86	ACO	C4	-58.20551	-43.30966	Commence 3rd. transect line. Course 020T at 10 knots.	
23/03/2009 21:10:00	86	ACO	C4	-57.78155	-43.01966	End of transect. Ship running back down line at 10 knt seeking targets.	
23/03/2009 22:48:00	87	RMT8	C4	-57.98952	-43.16397	RMT 8 deployed for shallow tow.	
23/03/2009 23:17:00	87	RMT8	C4	-58.00308	-43.18536	RMT 8 recovered.	
24/03/2009 00:00:01	88	RMT8	C4	-58.0236	-43.04427	RMT 8 deployed for shallow target.	
24/03/2009 00:30:00	88	RMT8	C4	-58.01791	-43.0908	RMT 8 recovered.	
24/03/2009 02:41:00	89	MOC	C4	-58.02334	-43.05244	MOCNESS deployed with 2219m of wire commence hauling	
24/03/2009 04:16:00	89	MOC	C4	-58.00657	-43.17925	MOCNESS recovered on deck	
24/03/2009 05:20:00	90	FRRF	C4	-58.03151	-42.97235	FRRF deployed	
24/03/2009 05:54:00	90	FRRF	C4	-58.03051	-42.97186	FRRF recovered on deck	
24/03/2009 06:11:00	91	LHPR	C4	-58.02357	-42.97293	LHPR deployed	
24/03/2009 08:21:00	91	LHPR	C4	-57.94572	-42.97008	LHPR recovered. Securing deck.	
24/03/2009 09:10:00	92	CTD	C4	-58.0309	-42.9713	CTD deployed.	
24/03/2009 10:03:00	92	CTD	C4	-58.03092	-42.97127	CTD stopped at 2770 metres wire out.	
24/03/2009 11:12:00	92	CTD	C4	-58.03091	-42.97129	CTD recovered on deck	
24/03/2009 11:24:00	93	LHPR	C4	-58.02913	-42.97685	LHPR deployed	
24/03/2009 12:17:00	93	LHPR	C4	-58.01066	-43.04837	LHPR @ 2139m commence hauling	
24/03/2009 13:43:00	93	LHPR	C4	-57.97778	-43.14725	LHPR recovered on deck	
24/03/2009 15:07:00	94	MOC	C4	-58.03705	-42.92493	MOCNESS deployed head to wind 276(T) at 2 knots	
24/03/2009 18:05:00	94	MOC	C4	-58.0393	-43.16156	MOCNESS recovered on deck	
24/03/2009 19:02:00	95	CTD	C4	-58.03004	-42.97094	CTD deployed depth 2834m	
24/03/2009 19:13:00	95	CTD	C4	-58.03004	-42.97102	CTD stopped at 400 metres.	

24/03/2009 19:35:00	95	CTD	C4	-58.03004	-42.97104	CTD recovered to deck.
24/03/2009 19:42:00	96	BON	C4	-58.03003	-42.97099	Bongo nets deployed.
24/03/2009 20:17:00	96	BON	C4	-58.03006	-42.97109	Bongo nets recovered.
24/03/2009 20:19:00	97	MON	C4	-58.03008	-42.97105	Mini bongos deployed.
24/03/2009 20:54:00	97	MON	C4	-58.03004	-42.97103	Mini bongos recovered.
24/03/2009 21:02:00	98	GOF	C4	-58.03005	-42.971	Go-Flo weight deployed.
24/03/2009 21:37:00	98	GOF	C4	-58.03005	-42.97104	Go-Flo stopped at 510 metres for 15 minutes.
24/03/2009 22:20:00	98	GOF	C4	-58.03003	-42.97104	Go-Flo complete and weight recovered.
24/03/2009 22:36:00	99	CTD	C4	-58.03005	-42.97101	CTD redeployed.
24/03/2009 23:13:00	99	CTD	C4	-58.03004	-42.97104	CTD @ 2000m commence hauling
24/03/2009 23:56:00	99	CTD	C4	-58.03005	-42.97104	CTD recovered on deck
25/03/2009 00:50:00	100	RMT25	C4	-58.02862	-42.98119	RMT 25 deployed
25/03/2009 02:30:00	100	RMT25	C4	-58.00497	-43.10199	RMT 25 recovered on deck
25/03/2009 04:15:00	101	RMT25	C4	-58.02868	-42.98153	RMT25 deployed
25/03/2009 07:30:00	101	RMT25	C4	-57.98771	-43.24232	RMT 25 recovered. Rearranging deck for target fishing.
25/03/2009 11:11:00	102	CTD	D10	-57.58539	-42.7023	CTD deployed.
25/03/2009 12:06:00	102	CTD	D10	-57.5854	-42.70228	CTD @ 2969m - commence hauling
25/03/2009 13:17:00	102	CTD	D10	-57.58537	-42.70233	CTD recovered on deck
18/03/2009 03:23:00	103	FRRF	C2	-60.20881	-44.40881	FRRF deployed - Event number out of sequence due to duplication with e036
18/03/2009 03:56:00	103	FRRF	C2	-60.20881	-44.40884	FRRF recovered on deck - Event number out of sequence due to duplication with e036
25/03/2009 16:20:00	104	CTD	D11	-57.13992	-42.43367	CTD deployed depth 3683m (Event 103 got assigned to the duplicated FRRF e036)
25/03/2009 17:26:00	104	CTD	D11	-57.13966	-42.43374	CTD wire out 3628m Commence hauling
25/03/2009 18:50:00	104	CTD	D11	-57.13965	-42.43378	CTD recovered on deck
25/03/2009 19:36:00	105	RMT8	D11	-57.07375	-42.39842	RMT 8 deployed back down ship's track.
25/03/2009 20:02:00	105	RMT8	D11	-57.09232	-42.4115	RMT 8 recovered. Resume passage towards station.
25/03/2009 21:13:00	106	RMT8	D11	-56.95708	-42.33135	RMT 8 deployed back down ship's track.
25/03/2009 21:52:00	106	RMT8	D11	-56.98429	-42.34974	RMT 8 recovered. Resume passage towards station.
25/03/2009 23:35:00	107	CTD	R2	-56.76359	-42.22131	CTD deployed for 400m cast
26/03/2009 00:13:00	107	CTD	R2	-56.76532	-42.21993	CTD out of the water
26/03/2009 00:17:00	107	CTD	R2	-56.76531	-42.21988	CTD recovered on deck
26/03/2009 00:50:00	108	MOC	R2	-56.76507	-42.22898	MOCNESS deployed
26/03/2009 03:31:00	108	MOC	R2	-56.75799	-42.3962	MOCNESS recovered on deck

26/03/2009 04:38:00	109	LHPR	R2	-56.76482	-42.21775	Commence deploying LHPR
26/03/2009 04:40:00	109	LHPR	R2	-56.76498	-42.22062	LHPR deployed head into the wind 265(T) at 3 knots
26/03/2009 07:09:00	109	LHPR	R2	-56.7864	-42.40056	LHPR recovered.
26/03/2009 08:10:00	110	CTD	R2	-56.76367	-42.21759	CTD deployed.
26/03/2009 08:45:00	110	CTD	R2	-56.76439	-42.2169	CTD returned to deck for fault investigation.
26/03/2009 10:17:00	111	ACO	R2	-56.83041	-41.78017	Commence acoustic survey
26/03/2009 13:00:00	111	ACO	R2	-56.90762	-42.58259	First transect complete - steaming to commence next transect
26/03/2009 13:47:00	111	ACO	R2	-56.802	-42.61938	Commence next transect
26/03/2009 16:27:00	111	ACO	R2	-56.72442	-41.81821	Second transect line complete
26/03/2009 17:11:00	111	ACO	R2	-56.6182	-41.84996	Commence 3rd. transect line. Course 260(T)
26/03/2009 20:02:00	111	ACO	R2	-56.69561	-42.65119	End of transect. Slowing down for CTD test station.
26/03/2009 22:20:00	112	RMT8	R2	-56.74829	-42.33647	RMT 8 deployed.
26/03/2009 22:57:00	112	RMT8	R2	-56.73958	-42.38287	RMT 8 recovered.
26/03/2009 23:13:00	113	CTD	R2	-56.73978	-42.39034	CTD deployed for 1000m test cast
26/03/2009 23:21:00	113	CTD	R2	-56.73975	-42.39033	Fault with CTD reported - commence recovery for inspection
26/03/2009 23:42:00	113	CTD	R2	-56.74045	-42.39076	Off station - proceeding to station
27/03/2009 00:58:00	114	CTD	R2	-56.79551	-42.18476	CTD deployed
27/03/2009 01:17:00	114	CTD	R2	-56.80234	-42.19066	Commence hauling
27/03/2009 01:22:00	114	CTD	R2	-56.80329	-42.19207	CTD recovered on deck - preparing RMT 25 for fishing
27/03/2009 02:19:00	115	RMT25	R2	-56.80961	-42.2164	RMT 25 deployed
27/03/2009 03:37:00	115	RMT25	R2	-56.79356	-42.28816	Commence recovery of RMT 25
27/03/2009 04:02:00	115	RMT25	R2	-56.7909	-42.30344	RMT 25 recovered on deck
27/03/2009 06:09:00	116	CTD	R2	-56.76306	-42.2186	CTD deployed for testing
27/03/2009 06:18:00	116	CTD	R2	-56.76303	-42.21865	CTD recovered on deck Still fault with CTD. Holding station for further instuctions
27/03/2009 07:20:00	117	BON	R2	-56.76306	-42.2187	Bongo nets deployed.
27/03/2009 07:51:00	117	BON	R2	-56.76307	-42.21864	Bongo nets recovered.
27/03/2009 07:53:00	118	BON	R2	-56.76308	-42.21864	Bongo nets redeployed.
27/03/2009 08:24:00	118	BON	R2	-56.7631	-42.21866	Bongo nets recovered.
27/03/2009 08:29:00	119	MON	R2	-56.7631	-42.21864	Mini bongos deployed.
27/03/2009 09:05:00	119	MON	R2	-56.7653	-42.21647	Mini bongos recovered. Securing gantry.
27/03/2009 09:24:00	120	LHPR	R2	-56.76566	-42.22125	LHPR deployed. Heading WNW course over ground W x S because of current.
27/03/2009 12:00:00	120	LHPR	R2	-56.75833	-42.37994	LHPR recovered on deck

27/03/2009 13:00:00	121	MOC	R2	-56.76638	-42.21262	MOCNESS deployed
27/03/2009 14:18:00	121	MOC	R2	-56.75741	-42.28815	Commence hauling MOCNESS wire out 2180m
27/03/2009 15:34:00	121	MOC	R2	-56.74799	-42.37293	MOCNESS recovered on deck
27/03/2009 16:39:00	122	BON	R2	-56.76343	-42.21859	Bongo nets deployed
27/03/2009 17:12:00	122	BON	R2	-56.76346	-42.2186	Bongo nets recovered on deck
27/03/2009 17:20:00	123	MON	R2	-56.76345	-42.21855	Mini Bongo nets deployed
27/03/2009 17:50:00	123	MON	R2	-56.76343	-42.21858	Mini Bongo nets recovered on deck
27/03/2009 18:00:00	124	GOF	R2	-56.76342	-42.2186	Go-Flo bottles deployed
27/03/2009 18:34:00	124	GOF	R2	-56.76343	-42.2186	Go flo bottles all stopped at 510m
27/03/2009 18:54:00	124	GOF	R2	-56.76342	-42.21861	Commence hauling Go-Flo bottles
27/03/2009 19:17:00	124	GOF	R2	-56.76343	-42.2186	Go-Flo wire recovered.
27/03/2009 19:42:00	125	CTD	R2	-56.76341	-42.21862	CTD deployed for test and for 2000 metre samples.
27/03/2009 19:53:00	125	CTD	R2	-56.764	-42.21777	CTD stopped at 408 metres wire out.
27/03/2009 20:03:00	125	CTD	R2	-56.76487	-42.21658	CTD recovered for examination.
27/03/2009 20:16:00	126	GOF	R2	-56.76556	-42.21556	Go-Flo wire deployed.
27/03/2009 20:54:00	126	GOF	R2	-56.76815	-42.21289	Go-Flo recovered and securing gantry.
27/03/2009 22:09:00	127	RMT25	R2	-56.76504	-42.15945	RMT 25 deployed. Towing west.
27/03/2009 23:13:00	127	RMT25	R2	-56.76473	-42.23495	Commence hauling RMT 25 wire length 2100m
28/03/2009 01:15:00	127	RMT25	R2	-56.7605	-42.35733	RMT 25 recovered. Securing deck.
28/03/2009 02:34:00	128	RMT25	R2	-56.76817	-42.16734	In position 2miles downwind - RMT 25 deployed
28/03/2009 03:50:00	128	RMT25	R2	-56.76436	-42.23176	Commence recovery of RMT 25
28/03/2009 04:12:00	128	RMT25	R2	-56.76338	-42.24125	RMT 25 recovered on deck
28/03/2009 05:58:00	129	RMT8	D13	-56.77894	-42.0968	RMT 8 deployed head to wind 287(T) x 2.5knots
28/03/2009 06:23:00	129	RMT8	D13	-56.78083	-42.12109	RMT 8 recovered on deck
28/03/2009 06:36:00	130	RMT8	D13	-56.7819	-42.13314	RMT 8 deployed
28/03/2009 07:00:00	130	RMT8	D13	-56.78409	-42.15456	RMT 8 recovered on deck. Securing.
28/03/2009 12:27:00	131	GOF	D13	-56.76802	-42.21877	Go-Flo bottles stopped at 127m - commence hauling
28/03/2009 12:36:00	131	GOF	D13	-56.77002	-42.21881	Go-Flo bottles recovered on deck
28/03/2009 13:00:00	132	GOF	D13	-56.77534	-42.21998	Go-Flo bottles deployed for second cast on station
28/03/2009 13:14:00	132	GOF	D13	-56.77841	-42.22089	Go-Flo bottles stopped at 60m - commence hauling
28/03/2009 13:26:00	132	GOF	D13	-56.78104	-42.22177	Go-Flo bottles recovered on deck
28/03/2009 13:40:00	133	XBT	D13	-56.77997	-42.22077	XBT deployed @ 6Kts STW

28/03/2009 13:45:00	133	XBT	D13	-56.77057	-42.21497	XBT OK - increase power and commence passage to D13
28/03/2009 16:21:00	134	CTD	D14	-56.38808	-42.00091	CTD deployed depth 3916m
28/03/2009 17:31:00	134	CTD	D14	-56.38727	-42.00391	CTD wire out 3868m commence hauling
28/03/2009 19:05:00	134	CTD	D14	-56.38728	-42.00395	CTD recovered.
29/03/2009 14:21:00	135	CTD	D15	-55.63445	-41.5711	CTD deployed on the way down to near bottom
29/03/2009 15:24:00	135	CTD	D15	-55.63444	-41.57108	CTD wire out 3420m commence hauling
29/03/2009 16:46:00	135	CTD	D15	-55.63442	-41.57107	CTD recovered on deck
29/03/2009 19:41:00	136	BON	P2	-55.25906	-41.3581	Bongo nets deployed.
29/03/2009 20:13:00	136	BON	P2	-55.25903	-41.35804	Bongo nets recovered.
29/03/2009 20:14:00	137	BON	P2	-55.25903	-41.35808	Bongo nets redeployed.
29/03/2009 20:47:00	137	BON	P2	-55.25903	-41.35809	Bongo nets recovered.
29/03/2009 20:51:00	138	MON	P2	-55.25906	-41.3581	Mini bongos deployed.
29/03/2009 21:20:00	138	MON	P2	-55.25902	-41.35804	Mini bongos recovered.
29/03/2009 21:35:00	139	CTD	P2	-55.25902	-41.35806	CTD deployed.
29/03/2009 22:13:00	139	CTD	P2	-55.25905	-41.35808	CTD stopped at 2000 metres.
29/03/2009 22:53:00	139	CTD	P2	-55.25905	-41.35808	CTD recovered.
29/03/2009 23:23:00	140	CTD	P2	-55.25899	-41.35807	CTD deployed for 400m cast
29/03/2009 23:40:00	140	CTD	P2	-55.25899	-41.35805	CTD @ 400m commence hauling
30/03/2009 01:30:00	141	RMT25	P2	-55.27757	-41.33828	RMT 25 deployed
30/03/2009 02:06:00	141	RMT25	P2	-55.25601	-41.35567	Commence hauling RMT 25 wire length 700m
30/03/2009 03:02:00	141	RMT25	P2	-55.22283	-41.38627	Commence recovery of RMT 25
30/03/2009 03:11:00	141	RMT25	P2	-55.21863	-41.39015	RMT 25 recovered on deck
30/03/2009 04:03:00	142	RMT25	P2	-55.28035	-41.32766	Commence deploying RMT 25
30/03/2009 04:10:00	142	RMT25	P2	-55.27576	-41.33224	RMT 25 deployed heading 328(T) x 2.5knots
30/03/2009 07:12:00	142	RMT25	P2	-55.17808	-41.43135	RMT 25 recovered. Securing deck and removing science mooring ropes from hold.
30/03/2009 10:06:00	143	ACO	P2	-55.36664	-40.96523	Commence acoustic survey at 10 knots. Course over ground 270T.
30/03/2009 12:47:00	143	ACO	P2	-55.36641	-41.74676	Transect complete shift to next transect.
30/03/2009 13:39:00	143	ACO	P2	-55.25876	-41.75107	Commence 2nd transect line course 090 (T)
30/03/2009 16:21:00	143	ACO	P2	-55.25849	-40.9616	Completed 2nd 50k transect line
30/03/2009 17:06:00	143	ACO	P2	-55.15099	-40.96642	Commence 3rd. transect line. Course 270(T)
30/03/2009 19:49:00	143	ACO	P2	-55.15087	-41.75267	End of acoustic transect. Heading into wind, speed reduced, positioning RMT 8 on deck.
30/03/2009 21:34:00	144	RMT8	P2	-55.29734	-41.54048	RMT 8 deployed.

30/03/2009 22:17:00	144	RMT8	P2	-55.27818	-41.58126	RMT 8 recovered.
30/03/2009 22:26:00	145	RMT8	P2	-55.274	-41.59041	RMT 8 redeployed.
30/03/2009 23:02:00	145	RMT8	P2	-55.25823	-41.62629	RMT 8 recovered.
31/03/2009 00:50:00	146	MOC	P2	-55.28061	-41.31706	MOCNESS deployed
31/03/2009 02:16:00	146	MOC	P2	-55.24404	-41.37872	Commence hauling MOCNESS wire out 2100+ m's
31/03/2009 03:44:00	146	MOC	P2	-55.20795	-41.44617	Commence recovering MOCNESS
31/03/2009 03:49:00	146	MOC	P2	-55.20593	-41.45032	MOCNESS recovered on deck
31/03/2009 05:02:00	147	LHPR	P2	-55.28031	-41.32149	LHPR deployed head into the wind 305(T) x 3.5knots
31/03/2009 07:18:00	147	LHPR	P2	-55.23963	-41.4356	LHPR recovered.
31/03/2009 08:08:00	148	CTD	P2	-55.25886	-41.35758	CTD deployed. EA600 depth 3576 metres.
31/03/2009 09:18:00	148	CTD	P2	-55.25883	-41.3576	CTD stopped at 3528 metres.
31/03/2009 10:48:00	148	CTD	P2	-55.25884	-41.35757	CTD recovered.
31/03/2009 10:57:00	149	BON	P2	-55.25886	-41.35755	Bongo nets deployed.
31/03/2009 11:10:00	149	BON	P2	-55.25885	-41.35755	Commence hauling Bongo's
31/03/2009 11:28:00	149	BON	P2	-55.25886	-41.35757	Bongo net on deck
31/03/2009 11:29:00	150	BON	P2	-55.25884	-41.35753	Bongo nets re-deployed for second cast
31/03/2009 11:35:00	150	BON	P2	-55.25885	-41.35756	Commence hauling Bongo's
31/03/2009 12:00:00	150	BON	P2	-55.25883	-41.35756	Bongo net recovered on deck
31/03/2009 12:05:00	151	MON	P2	-55.25883	-41.35754	Mini Bongo nets deployed
31/03/2009 12:18:00	151	MON	P2	-55.25884	-41.35752	Commence hauling Mini-Bongo's
31/03/2009 12:36:00	151	MON	P2	-55.25888	-41.35751	Mini Bongo nets recovered on deck
31/03/2009 13:03:00	152	MOC	P2	-55.26176	-41.35286	MOCNESS deployed
31/03/2009 14:18:00	152	MOC	P2	-55.30359	-41.29611	MOCNESS @ 2242m
31/03/2009 15:43:00	152	MOC	P2	-55.35621	-41.23788	MOCNESS recovered on deck
31/03/2009 17:13:00	153	LHPR	P2	-55.23271	-41.38247	LHPR deployed head to wind 150(T) x 3.5knots
31/03/2009 18:05:00	153	LHPR	P2	-55.26782	-41.33945	LHPR wire out 2273m commence hauling
31/03/2009 19:41:00	153	LHPR	P2	-55.32299	-41.25746	LHPR recovered. Securing deck.
31/03/2009 20:38:00	154	GOF	P2	-55.25845	-41.35762	Go-Flo weight deployed.
31/03/2009 21:03:00	154	GOF	P2	-55.25843	-41.35762	Go-Flos stopped at 510 metres for 20 minutes.
31/03/2009 21:45:00	154	GOF	P2	-55.25847	-41.35762	Go-Flos recovered.
31/03/2009 22:18:00	155	GOF	P2	-55.25844	-41.35769	Go-Flo weight redeployed.
31/03/2009 22:29:00	155	GOF	P2	-55.25843	-41.35768	Go-Flos stopped at 90 metres for 10 minutes.

31/03/2009 22:46:00	155	GOF	P2	-55.25847	-41.35769	Go-Flos recovered.
01/04/2009 01:50:00	156	CTD	D17	-54.91186	-41.17407	CTD deployed
01/04/2009 02:52:00	156	CTD	D17	-54.91188	-41.17402	CTD @ 3374m - commence hauling
01/04/2009 04:20:00	156	CTD	D17	-54.91189	-41.174	CTD recovered on deck
01/04/2009 08:10:00	157	SWA	P2	-55.19762	-41.12445	Ship passes over mooring position heading S, logging swath at 8 knt. Old mooring at 3226 m.
01/04/2009 08:25:00	157	SWA	P2	-55.23067	-41.1238	Ship turned west for swath coverage.
01/04/2009 08:34:00	157	SWA	P2	-55.23335	-41.15524	Ship turned north for swath coverage.
01/04/2009 11:33:00	158	МОО	P2	-55.17664	-41.15241	Start moving ahead @ 0.3K
01/04/2009 11:35:00	158	МОО	P2	-55.17681	-41.15222	Buoy deployed - increasing speed to 0.6K - streaming 1200m of rope
01/04/2009 12:14:00	158	МОО	P2	-55.19067	-41.13499	Connecting TRIMSIN floats + 20m of rope
01/04/2009 12:16:00	158	MOO	P2	-55.19123	-41.13431	TRIMSIN floats deployed - connecting Sediment Trap
01/04/2009 12:23:00	158	МОО	P2	-55.19265	-41.1326	Connecting AQUADOOP
01/04/2009 12:24:00	158	МОО	P2	-55.19284	-41.13236	Sediment Trap & AQUADOOP deployed - streaming 1700m of rope
01/04/2009 12:49:00	158	MOO	P2	-55.19999	-41.12391	Passing original position (55'11.99S 041'07.42W)
01/04/2009 13:19:00	158	MOO	P2	-55.2086	-41.1238	Connecting weight & acoustic releases
01/04/2009 13:23:00	158	MOO	P2	-55.2087	-41.12381	Weight suspended over stern (ready to drop)
01/04/2009 13:25:00	158	MOO	P2	-55.20875	-41.1238	Weight Let-Go in position 55'12.522S 041'07.428W water depth by EA600 3213m
01/04/2009 13:43:00	158	MOO	P2	-55.20874	-41.12381	Start tracking 000 to re-trace path of deployment
01/04/2009 14:21:00	158	MOO	P2	-55.19978	-41.12378	Stopped on original mooring Position looking for signal with overboard hydophone
01/04/2009 14:27:00	158	MOO	P2	-55.19975	-41.12379	Signal identified - start moving East to follow signal
01/04/2009 14:43:00	158	МОО	P2	-55.1998	-41.10815	Stopped on DP 0.5' East of
01/04/2009 14:50:00	158	MOO	P2	-55.19982	-41.10816	Moving 0.5' NW to further identify signal
01/04/2009 15:07:00	158	MOO	P2	-55.19353	-41.11797	Vessel all stopped approx NNE to mooring hydrophone deployed
01/04/2009 15:15:00	158	MOO	P2	-55.19354	-41.11797	Hydrophone recovered on deck vessel off D.P proceeding to site D18
01/04/2009 18:44:00	159	CTD	D18	-54.58972	-40.99616	CTD deployed depth 3277m
01/04/2009 19:43:00	159	CTD	D18	-54.59052	-40.99764	CTD stopped at 3245 metres out.
01/04/2009 21:00:00	159	CTD	D18	-54.59051	-40.99762	CTD recovered.
01/04/2009 23:08:00	160	RMT8	D19	-54.30872	-40.85921	Deploy RMT 8 for shallow water trawl
01/04/2009 23:52:00	160	RMT8	D19	-54.28059	-40.84381	RMT 8 recovered on deck
02/04/2009 00:39:00	161	CTD	D19	-54.21951	-40.81332	CTD deployed
02/04/2009 01:28:00	161	CTD	D19	-54.2195	-40.81333	CTD @ 2443m - commence hauling
02/04/2009 02:26:00	161	CTD	D19	-54.21947	-40.8133	CTD recovered on deck

02/04/2009 04:50:00	162	CTD	D20	-53.89687	-40.64405	CTD deployed depth 1212m
02/04/2009 05:18:00	162	CTD	D20	-53.89769	-40.6442	CTD wire out 1244m commence hauling
02/04/2009 06:08:00	162	CTD	D20	-53.89764	-40.64417	CTD recovered on deck
02/04/2009 06:50:00	163	CTD	D20	-53.89767	-40.64417	CTD deployed
02/04/2009 06:56:00	163	CTD	D20	-53.89766	-40.64417	CTD wire out 120m commence hauling
02/04/2009 07:16:00	163	CTD	D20	-53.89765	-40.64413	CTD recovered. Securing deck.
02/04/2009 08:43:00	164	RMT8	D21	-53.75368	-40.59014	RMT 8 deployed.
02/04/2009 09:12:00	164	RMT8	D21	-53.74542	-40.6194	RMT 8 recovered.
02/04/2009 12:00:00	165	CTD	D21	-53.35126	-40.37429	CTD deployed
02/04/2009 12:07:00	165	CTD	D21	-53.35122	-40.37422	CTD @ 120m commence hauling
02/04/2009 12:21:00	165	CTD	D21	-53.35123	-40.37426	CTD recovered on deck
02/04/2009 15:59:00	166	BON	P3	-52.811	-40.11518	Bongo nets deployed
02/04/2009 16:30:00	166	BON	P3	-52.81	-40.11482	Bongo nets recovered on deck preparing MOCNESS deployment
02/04/2009 17:06:00	167	MOC	P3	-52.81268	-40.11107	MOCNESS deployed Head to wind 150(T) x 2 Knots
02/04/2009 18:08:00	167	MOC	P3	-52.84053	-40.07076	MOCNESS wire out 1991m commence hauling
02/04/2009 19:38:00	167	MOC	P3	-52.88455	-40.02855	MOCNESS recovered.
02/04/2009 20:58:00	168	CTD	P3	-52.80837	-40.11558	CTD deployed.
02/04/2009 21:36:00	168	CTD	P3	-52.8084	-40.11558	CTD stopped at 2000 metres wire out.
02/04/2009 22:16:00	168	CTD	P3	-52.80855	-40.11451	CTD recovered.
02/04/2009 22:40:00	169	CTD	P3	-52.80856	-40.11446	CTD redeployed.
02/04/2009 22:54:00	169	CTD	P3	-52.80858	-40.11457	CTD stopped at 400 metres.
02/04/2009 23:18:00	169	CTD	P3	-52.80855	-40.1145	CTD recovered on deck
03/04/2009 00:35:00	170	RMT8	P3	-52.9306	-40.14952	Deploy RMT 8 for shallow water trawl
03/04/2009 00:52:00	170	RMT8	P3	-52.94506	-40.14674	RMT 8 recovered on deck
03/04/2009 01:27:00	171	RMT8	P3	-52.92635	-40.14797	RMT 8 deployed for shallow target.
03/04/2009 02:00:00	171	RMT8	P3	-52.95639	-40.14732	RMT 8 recovered on deck returning to P3
03/04/2009 03:39:00	172	LHPR	P3	-52.78014	-40.1091	LHPR deployed
03/04/2009 06:01:00	172	LHPR	P3	-52.8671	-40.04871	LHPR recovered on deck
03/04/2009 06:54:00	173	CTD	P3	-52.80801	-40.11445	CTD deployed depth 3786m
03/04/2009 08:04:00	173	CTD	P3	-52.80862	-40.11386	CTD stopped at 3729 metres.
03/04/2009 09:36:00	173	CTD	P3	-52.80865	-40.11382	CTD recovered.
03/04/2009 09:48:00	174	BON	P3	-52.80861	-40.11385	Bongo nets deployed.

03/04/2009 10:19:00	174	BON	P3	-52.80818	-40.11504	Bongo nets recovered.
03/04/2009 10:20:00	175	BON	P3	-52.80817	-40.11505	Bongo nets redeployed.
03/04/2009 10:55:00	175	BON	P3	-52.80773	-40.11641	Bongo nets recovered.
03/04/2009 11:02:00	176	MON	P3	-52.8077	-40.1165	Mini Bongo nets deployed
03/04/2009 11:14:00	176	MON	P3	-52.80726	-40.11789	Commence hauling Mini-Bongo's
03/04/2009 12:54:00	177	MOO	P3	-52.72304	-40.21406	On station - deployment position for 3700m mooring EA600 sounding 3856m
03/04/2009 13:00:00	177	MOO	P3	-52.72355	-40.21409	Start moving ahead - building up speed to 2Kts SOG
03/04/2009 13:04:00	177	MOO	P3	-52.72354	-40.21342	Buoy deployed - paying out 1700m Kevlar line
03/04/2009 13:45:00	177	MOO	P3	-52.72345	-40.17991	Connecting TRIMSIN floats + 20m of rope
03/04/2009 13:49:00	177	MOO	P3	-52.72342	-40.17786	TRIMSIN floats deployed
03/04/2009 13:51:00	177	MOO	P3	-52.72343	-40.17719	Connecting sediment trap & AQUADOOP
03/04/2009 13:56:00	177	MOO	P3	-52.72341	-40.1758	Sediment Trap & AQUADOOP deployed - streaming 1700m of rope
03/04/2009 14:46:00	177	MOO	P3	-52.72335	-40.15053	Connecting acoustic release
03/04/2009 14:49:00	177	MOO	P3	-52.72335	-40.14999	Connecting weight
03/04/2009 14:53:00	177	MOO	P3	-52.72335	-40.14901	Weight let go - EA600 sounding 3850m
03/04/2009 15:23:00	177	MOO	P3	-52.72332	-40.14853	Hydrophone deployed commence triangulating mooring
03/04/2009 15:27:00	177	MOO	P3	-52.72332	-40.14852	Hydrophone recovered on deck vessel moving 270(T) x 0.5nm
03/04/2009 15:52:00	177	MOO	P3	-52.72333	-40.16213	Hydrophone deployed
03/04/2009 15:56:00	177	MOO	P3	-52.72334	-40.16218	Hydrophone recovered on deck vessel moving 045(T) x 0.5nm
03/04/2009 16:24:00	177	MOO	P3	-52.71757	-40.15284	Hydrophone deployed
03/04/2009 16:29:00	177	MOO	P3	-52.71756	-40.15281	Hydrophone recovered on deck completed triangulating mooring preparing for bongos
03/04/2009 16:37:00	178	BON	P3	-52.71759	-40.15284	Bongo nets deployed.
03/04/2009 17:08:00	178	BON	P3	-52.71759	-40.15281	Bongo net recovered on deck
03/04/2009 17:12:00	179	MON	P3	-52.71758	-40.15279	Mini Bongo nets deployed
03/04/2009 17:43:00	179	MON	P3	-52.71757	-40.15281	Mini Bongo nets recovered on deck
03/04/2009 18:06:00	180	LHPR	P3	-52.73693	-40.16579	LHPR deployed head to wind 125(T) x 3.5knots
03/04/2009 18:57:00	180	LHPR	P3	-52.75969	-40.12262	LHPR wire out 2251m commence hauling
03/04/2009 20:19:00	180	LHPR	P3	-52.78962	-40.06432	LHPR recovered.
03/04/2009 20:57:00	181	GOF	P3	-52.80847	-40.11455	Go-Flo weight deployed.
03/04/2009 21:25:00	181	GOF	P3	-52.80852	-40.11459	Stopped at 510 metres for 15 minutes.
03/04/2009 22:02:00	181	GOF	P3	-52.80854	-40.11459	Go-Flos recovered.
03/04/2009 22:31:00	182	GOF	P3	-52.80856	-40.11458	Go-Flo weight redeployed.

03/04/2009 22:40:00	182	GOF	P3	-52.80851	-40.11457	Go-Flos stopped at 70 metres for 10 minutes.	
03/04/2009 22:58:00	182	GOF	P3	-52.80854	-40.11458	Go-Flos recovered.	
03/04/2009 23:21:00	183	MOC	P3	-52.81017	-40.10674	MOCNESS deployed	
04/04/2009 02:10:00	183	MOC	P3	-52.81344	-39.93569	MOCNESS recovered on deck - Moving RMT 25 into Position	
04/04/2009 03:26:00	184	RMT25	P3	-52.80751	-40.05762	RMT25 deployed	
04/04/2009 05:08:00	184	RMT25	P3	-52.81134	-39.93183	Commence recovery of RMT 25	
04/04/2009 05:17:00	184	RMT25	P3	-52.81148	-39.92056	RMT 25 recovered on deck	
04/04/2009 06:01:00	185	RMT25	P3	-52.80781	-40.00894	RMT 25 deployed	
04/04/2009 08:58:00	185	RMT25	P3	-52.83403	-39.81452	RMT 25 recovered.	
04/04/2009 09:38:00	186	ACO	P3	-52.84797	-39.74729	Commence acoustic survey middle leg downwind. 280(T) at 10 knots.	
04/04/2009 12:21:00	186	ACO	P3	-52.76918	-40.47853	Middle transect completed - Proceeding to begin 2nd leg of survey	
04/04/2009 13:08:00	186	ACO	P3	-52.87565	-40.51009	Commence 2nd transect line course 100 (T)	
04/04/2009 15:52:00	186	ACO	P3	-52.95365	-39.77749	Completed 2nd 50k transect line	
04/04/2009 17:14:00	186	ACO	P3	-52.74147	-39.71847	Commence 3rd. transect line. Course 280(T) x 50K	
04/04/2009 19:55:00	186	ACO	P3	-52.66389	-40.44097	Completed 3rd transect line completed acoustic survey	
04/04/2009 22:46:00	187	RMT8	P3	-52.68378	-40.2655	RMT 8 deployed.	
04/04/2009 23:08:00	187	RMT8	P3	-52.68492	-40.24336	RMT 8 recovered. Securing deck for passage to R3.	
06/04/2009 09:08:00	188	BON	R3	-52.85054	-37.10159	Bongo nets deployed.	
06/04/2009 09:42:00	188	BON	R3	-52.85061	-37.10013	Bongo nets recovered.	
06/04/2009 09:44:00	189	BON	R3	-52.85064	-37.10002	Bongo nets redeployed.	
06/04/2009 10:19:00	189	BON	R3	-52.85068	-37.09842	Bongo nets recovered.	
06/04/2009 10:23:00	190	MON	R3	-52.85069	-37.09819	Mini bongos deployed.	
06/04/2009 10:57:00	190	MON	R3	-52.85077	-37.09667	Mini bongos recovered.	
06/04/2009 11:15:00	191	CTD	R3	-52.85069	-37.09668	CTD deployed	
06/04/2009 11:58:00	191	CTD	R3	-52.85073	-37.09669	CTD @ 2210m - commence hauling	
06/04/2009 13:00:00	191	CTD	R3	-52.85076	-37.09669	CTD recovered on deck - preparing for Go-Flo deployment	
06/04/2009 13:10:00	192	GOF	R3	-52.85077	-37.09668	Go-Flo bottles deployed	
06/04/2009 13:20:00	192	GOF	R3	-52.85076	-37.0967	Go-Flo's all stopped at 70m - waiting to haul for 10mins	
06/04/2009 13:33:00	192	GOF	R3	-52.85076	-37.09671	Start hauling Go-Flo's	
06/04/2009 13:40:00	192	GOF	R3	-52.85074	-37.09675	Weight back on deck preparing bottles	
06/04/2009 14:11:00	193	GOF	R3	-52.85072	-37.09669	Go-Flo bottles deployed for second cast on station	
06/04/2009 14:37:00	193	GOF	R3	-52.85076	-37.0967	Bottles @ 510m - waiting 15mins to haul	

06/04/2009 14:54:00	193	GOF	R3	-52.85077	-37.09666	Commence hauling Go-Flo's
06/04/2009 15:17:00	193	GOF	R3	-52.85075	-37.09668	Go-Flo bottles recovered on deck
06/04/2009 15:27:00	194	CTD	R3	-52.85075	-37.09668	CTD deployed depth 2261m
06/04/2009 15:39:00	194	CTD	R3	-52.85078	-37.09668	CTD wire out 400m commence hauiling
06/04/2009 16:01:00	194	CTD	R3	-52.85074	-37.09669	CTD recovered on deck
06/04/2009 16:28:00	195	MOC	R3	-52.85086	-37.09506	Vessel off D.P Head to wind at 2knots commence deploying MOCNESS
06/04/2009 16:31:00	195	MOC	R3	-52.85007	-37.09207	MOCNESS deployed head to wind 080(T) x 2 knots
06/04/2009 17:28:00	195	MOC	R3	-52.84312	-37.04761	MOCNESS wire out 1667m commence hauling
06/04/2009 18:56:00	195	MOC	R3	-52.83841	-36.9764	MOCNESS recovered on deck preparing for LHPR
06/04/2009 19:16:00	196	LHPR	R3	-52.83708	-36.96365	LHPR deployed.
06/04/2009 20:00:00	196	LHPR	R3	-52.84356	-36.91633	LHPR at depth. 1839 metres wire out.
06/04/2009 21:23:00	196	LHPR	R3	-52.85311	-36.8295	LHPR recovered. Rearranging deck for RMT 8 fishing.
07/04/2009 01:36:00	197	RMT8	R3	-52.89351	-37.25558	RMT 8 deployed
07/04/2009 01:43:00	197	RMT8	R3	-52.89203	-37.24729	RMT 8 cancelled due to swell
07/04/2009 01:58:00	197	RMT8	R3	-52.89035	-37.23276	RMT 8 recovered on deck
07/04/2009 09:08:00	198	ACO	R3	-52.81191	-36.73398	Commence acoustic survey heading downwind 260T at 10 knots.
07/04/2009 11:49:00	198	ACO	R3	-52.88952	-37.46295	Transect complete
07/04/2009 12:55:00	198	ACO	R3	-52.7739	-37.4082	Commence 2nd transect line course 080 (T)
07/04/2009 15:21:00	198	ACO	R3	-52.70096	-36.76632	Completed 2nd 50k transect line proceeding to start of 3rd transect line
07/04/2009 16:40:00	198	ACO	R3	-52.91767	-36.70321	Commence 3rd transect line course 260(T) x 50k
07/04/2009 16:40:00	198	ACO	R3	-52.91767	-36.70321	Commence 3rd transect line course 260(T) x 50k
07/04/2009 19:22:00	198	ACO	R3	-52.99612	-37.43849	End of transect.
07/04/2009 19:39:00	199	XBT	PF	-52.97047	-37.41742	XBT completed.
07/04/2009 21:36:00	200	XBT	PF	-52.72153	-37.0434	XBT completed.
07/04/2009 23:27:00	201	RMT8	PF	-52.49709	-36.75229	RMT 8 deployed
07/04/2009 23:50:00	201	RMT8	PF	-52.49386	-36.73119	RMT 8 recovered on deck. Securing aft deck.
08/04/2009 00:22:00	202	XBT	PF	-52.45524	-36.67047	XBT deployed on passage @ 10Kts SOG
08/04/2009 02:23:00	203	XBT	PF	-52.19388	-36.32715	XBT deployed on passage @ 10Kts SOG
08/04/2009 04:19:00	204	XBT	PF	-51.9529	-35.99668	XBT deployed on passage @ 10Kts SOG
08/04/2009 06:12:00	205	XBT	PF	-51.71457	-35.67293	XBT deployed on passage @ 10Kts SOG
08/04/2009 08:22:00	206	XBT	PF	-51.44895	-35.29366	XBT completed.
08/04/2009 10:20:00	207	ХВТ	PF	-51.22403	-34.8956	XBT deployed (failed).

08/04/2009 10:34:00	208	XBT	PF	-51.1984	-34.85023	XBT second attempt successfully completed.
08/04/2009 12:16:00	209	XBT	PF	-51.00669	-34.50729	XBT deployed on passage @ 10Kts SOG
08/04/2009 14:21:00	210	XBT	PF	-50.76726	-34.08173	XBT deployed on passage @ 10Kts SOG
08/04/2009 15:45:00	211	XBT	PF	-50.59459	-33.79891	Vessel at PF site proceeding 000(T) x 100K XBT deployed
08/04/2009 16:15:00	212	XBT	PF	-50.50089	-33.79922	XBT deployed
08/04/2009 16:47:00	213	XBT	PF	-50.40565	-33.84007	XBT deployed
08/04/2009 17:19:00	214	XBT	PF	-50.30865	-33.89181	XBT deployed
08/04/2009 17:47:00	215	XBT	PF	-50.2292	-33.93982	XBT deployed
08/04/2009 18:17:00	216	XBT	PF	-50.15478	-33.98654	XBT deployed
08/04/2009 18:58:00	217	XBT	PF	-50.06748	-34.02443	XBT deployed
08/04/2009 19:36:00	218	XBT	PF	-49.98422	-34.13905	XBT completed.
08/04/2009 20:02:00	219	XBT	PF	-49.92924	-34.2191	XBT completed.
08/04/2009 20:34:00	220	XBT	PF	-49.86238	-34.31717	XBT completed.
08/04/2009 21:12:00	221	XBT	PF	-49.78427	-34.43614	XBT completed.
09/04/2009 10:00:00	222	ACO	PF	-50.08762	-33.82234	Commence acoustic survey middle leg 280T x 30km at 10 knots.
09/04/2009 11:37:00	222	ACO	PF	-50.04092	-34.23478	Middle transect completed - Proceeding to begin 2nd leg of survey
09/04/2009 11:39:00	222	ACO	PF	-50.04107	-34.2424	a/c 230(T) running obliquely across swell to avoid heavy rolling
09/04/2009 12:16:00	222	ACO	PF	-50.10776	-34.34206	a/c 130(T) - heading towards 2nd leg with swell on port bow
09/04/2009 12:40:00	222	ACO	PF	-50.14383	-34.25723	2nd leg of acoustic survey - 100(T) @ 2000kW (set power used due to ships motion)
09/04/2009 14:18:00	222	ACO	PF	-50.19234	-33.85911	transect complete
09/04/2009 14:21:00	222	ACO	PF	-50.19259	-33.8481	a/c 060(T) to run obliquely to swell en route to 3rd leg of survey
09/04/2009 16:20:00	222	ACO	PF	-49.98255	-33.79194	Commence 3rd transect line course 280(T) x 30k
09/04/2009 17:58:00	222	ACO	PF	-49.93464	-34.20506	Completed 3rd trasect line completed acoustic survey
09/04/2009 18:27:00	223	CTD	PF1	-49.9358	-34.20789	CTD deployed depth 5089m
09/04/2009 18:43:00	223	CTD	PF1	-49.93544	-34.20603	CTD wire out 600m commence hauling
09/04/2009 19:10:00	223	CTD	PF1	-49.93468	-34.20114	CTD recovered.
09/04/2009 20:47:00	224	CTD	PF2	-50.06312	-34.02866	CTD deployed. EA600 depth 5020 m. Moving 065T x 0.5 knt to follow wire. Current 1.8 knt
09/04/2009 21:17:00	224	CTD	PF2	-50.0615	-34.02308	CTD at 1500 metres wire out.
09/04/2009 22:03:00	224	CTD	PF2	-50.059	-34.01306	CTD recovered.
09/04/2009 22:35:00	225	RMT25	PF3	-50.05577	-33.99707	RMT 25 deployed. Towing just north of east at \sim 4 knt to maintain water speed of 2 knots.
09/04/2009 23:50:00	225	RMT25	PF3	-50.0447	-33.87206	Commence hauling - wire length 2000m (approx)
10/04/2009 01:48:00	225	RMT25	PF3	-50.03587	-33.66515	RMT 25 recovered on deck. Securing aft deck.

10/04/2009 02:58:00	226	RMT25	PF3	-50.04993	-33.78966	RMT 25 deployed
10/04/2009 05:01:00	226	RMT25	PF3	-50.04396	-33.58064	Commence recovery of RMT 25
10/04/2009 06:07:00	227	RMT25	PF3	-50.04935	-33.67103	RMT 25 deployed.
10/04/2009 08:33:00	227	RMT25	PF3	-50.0517	-33.41084	RMT 25 recovered.
10/04/2009 11:11:00	228	BON	PF3	-50.06647	-33.9102	Bongo net in the water
10/04/2009 11:41:00	228	BON	PF3	-50.06395	-33.89274	Bongo recovered
10/04/2009 11:42:00	229	BON	PF3	-50.06384	-33.89201	Bongo nets recovered to deck and re-deployed
10/04/2009 12:15:00	229	BON	PF3	-50.05957	-33.87317	Bongo net recovered on deck being swapped for Mini-Bongo
10/04/2009 12:18:00	230	MON	PF3	-50.05917	-33.8717	Mini Bongo nets deployed
10/04/2009 12:50:00	230	MON	PF3	-50.05444	-33.85118	Mini Bongo nets recovered on deck
10/04/2009 14:28:00	231	CTD	PF3	-50.24275	-33.95258	CTD deployed for 500m cast
10/04/2009 15:08:00	231	CTD	PF3	-50.23598	-33.94505	CTD recovered on deck
10/04/2009 16:28:00	232	CTD	PF5	-50.4208	-33.87981	CTD deployed depth 4774m
10/04/2009 16:43:00	232	CTD	PF5	-50.42096	-33.87829	CTD wire out 600m commence hauling
10/04/2009 17:03:00	232	CTD	PF5	-50.42119	-33.87749	CTD recovered on deck
10/04/2009 17:19:00	233	RMT25	PF5	-50.42119	-33.87742	Conducting wire deployed
10/04/2009 17:27:00	233	RMT25	PF5	-50.42119	-33.87741	251m wire out commence hauling
10/04/2009 17:37:00	233	RMT25	PF5	-50.42119	-33.8774	Conducting wire and weight recovered on deck
10/04/2009 17:54:00	234	LHPR	PF5	-50.4212	-33.8774	LHPR ready vessel off D.P proceeding to PFS
10/04/2009 19:02:00	234	LHPR	PF5	-50.60102	-33.92624	LHPR deployed.
10/04/2009 21:11:00	234	LHPR	PF5	-50.60112	-33.81264	LHPR recovered. Preparing RMT 25 net.
10/04/2009 21:55:00	235	RMT25	PF5	-50.6017	-33.8599	Commence RMT 25 deployment.
10/04/2009 22:01:00	235	RMT25	PF5	-50.60146	-33.8561	RMT 25 deployed. Towing east towards PFS.
10/04/2009 23:55:00	235	RMT25	PF5	-50.59577	-33.7556	RMT 25 recovered on deck
11/04/2009 00:40:00	236	RMT25	PF5	-50.60091	-33.83574	RMT 25 deployed (deep trawl)
11/04/2009 03:16:00	236	RMT25	PF5	-50.58435	-33.72111	Commence recovery of RMT 25
11/04/2009 03:24:00	236	RMT25	PF5	-50.58349	-33.71848	RMT 25 recovered on deck
11/04/2009 04:15:00	237	RMT25	PF5	-50.59529	-33.84731	RMT 25 deployed
11/04/2009 06:15:00	237	RMT25	PF5	-50.60756	-33.74788	Commence recovery of RMT 25
11/04/2009 06:25:00	237	RMT25	PF5	-50.60723	-33.74334	RMT 25 recovered on deck
11/04/2009 07:24:00	238	CTD	PF5	-50.59993	-33.80173	CTD deployed.
11/04/2009 07:51:00	238	CTD	PF5	-50.59985	-33.80176	CTD stopped at 1500 metres wire out.

11/04/2009 08:42:00	238	CTD	PF5	-50.59872	-33.80584	CTD recovered.
11/04/2009 08:54:00	239	BON	PF5	-50.59933	-33.80372	Bongo nets deployed.
11/04/2009 09:29:00	239	BON	PF5	-50.59807	-33.80712	Bongo nets recovered.
11/04/2009 09:31:00	240	MON	PF5	-50.59804	-33.80711	Mini bongos deployed.
11/04/2009 10:04:00	240	MON	PF5	-50.59665	-33.81091	Mini bongos recovered.
14/04/2009 13:15:00	241	NTOW	SGS	-53.79134	-37.92952	NOC towfish deployed
14/04/2009 18:14:00	241	NTOW	SGS	-53.96351	-37.32031	Towfish recovered
14/04/2009 16:59:00	242	RMT8	SGS	-53.92067	-37.29464	RMT 8 deployed
14/04/2009 17:57:00	242	RMT8	SGS	-53.9601	-37.31959	RMT 8 recovered on deck
14/04/2009 23:29:00	243	CTD	Stromness	-54.15969	-36.69636	Net monitor lowered from stern gantry for CTD profile (in lieu of m.ships gantry CTD)
14/04/2009 23:35:00	243	CTD	Stromness	-54.15968	-36.69635	Net monitor recoverd and being swapped for alternate unit
14/04/2009 23:44:00	244	CTD	Stromness	-54.15969	-36.69636	Deploy 2nd net monitor over stern
14/04/2009 23:50:00	244	CTD	Stromness	-54.15962	-36.6965	Net monitor recovered on deck
15/04/2009 00:00:01	245	ACO	Stromness	-54.15978	-36.69614	Forward calibration messenger (belly rope) rigged
15/04/2009 00:30:00	245	ACO	Stromness	-54.15912	-36.69423	Fore and Aft line rigged
15/04/2009 01:19:00	245	ACO	Stromness	-54.15927	-36.69337	Calibration sphere in position
15/04/2009 06:57:00	245	ACO	Stromness	-54.16013	-36.69563	Completed calibration
15/04/2009 18:14:00	245	ACO	Stromness	-53.79273	-37.93128	Vessel on D.P mode for recovering mooring
15/04/2009 18:20:00	245	ACO	Stromness	-53.79267	-37.93018	Hydrophone deployed
15/04/2009 18:23:00	245	ACO	Stromness	-53.79265	-37.93018	Buoy released
15/04/2009 18:26:00	245	ACO	Stromness	-53.79263	-37.9302	Mooring sighted at the surface
15/04/2009 18:35:00	245	ACO	Stromness	-53.79592	-37.93592	Mooring alongside vessel
15/04/2009 18:43:00	245	ACO	Stromness	-53.79562	-37.93747	Trimsin buoy recovered on deck
15/04/2009 18:48:00	245	ACO	Stromness	-53.79553	-37.93817	2 Trimsin buoys recovered on deck
15/04/2009 18:58:00	245	ACO	Stromness	-53.79533	-37.93934	Main buoy recovered on deck
15/04/2009 20:05:00	245	ACO	Stromness	-53.79605	-37.9325	Ready for redeployment. Increasing speed to 2 knots.
15/04/2009 20:07:00	245	ACO	Stromness	-53.79594	-37.93293	Commence redeployment.
15/04/2009 20:08:00	245	ACO	Stromness	-53.7958	-37.93344	Buoy in the water and released.
15/04/2009 20:13:00	245	ACO	Stromness	-53.79515	-37.93578	Weight released.
15/04/2009 20:33:00	246	NTOW	SGS	-53.7953	-37.93536	Iron fish deployed. Commence making way for CPR deployment.
 15/04/2009 20:36:00	247	CPR	SGS	-53.79496	-37.93693	CPR deployed. Increasing speed.

The End!

Sunrise somewhere in the Scotia Sea

Invasion of the cattle egrets

The perfect storm

Bird obs S. Ocean style

PSO penguin kissing

And finally.....a hairy night at the races.

