JR260B

Table of Contents

List of Figures	.5
List of Tables	.6
1. Introduction	.7
1.1 Rationale	.7
1.2 R260b Western Core Box	.7
1.3 Scientific Personnel	.7
1.4 JCR Officers and Crew	.7
1.5 Acknowledgements	.8
1.6 Cruise events summary	.8
1.7 PSO Cruise Diary	.8
1.8 Cruise Track	12
2 Oceanography	13
2.1 CTD	13
2.1.1 Introduction	13
2.1.2 CTD instrumentation and deployment	13
2.2.3 Data acquisition and preliminary processing	14
2.1.4 SBE35 high precision thermometer	15
2.2 Underway data	15
2.2.1 Underway navigation data	15
2.2.1 Ocean logger and meterological data	16
3. Acoustics	17
3.1 Acoustic instrumentation	17
3.1.1 Introduction	17
3.1.2 Aim	17
3.1.3 Methods/System specification	17
3.2 EK60 Calibration	19
3.2.1 Data coverage	20
3.2.2 Problems encountered	22
3.3 Deployment of the ES853 Echo Sounder	23
3.3.1 Introduction	23
3.3.2 Deployment	23
3.3.3 Data	
3.3.4 Discussion	31
4. Deployment Gear	32
4.1 RMT8 with DWNM sytstem	32
4.1.1 Down Wire Net Monitor	32

4.1.2 RMT8	
4.2 Epibenthic Sledge	33
4.3 Shallow Underwater Camera System (SUCS)	34
5. Moorings	36
5.1 General	36
5.2 3200m sediment trap mooring @ P2	36
5.3 3700m sediment trap mooring @ P3	37
5.4 Work Carried Out and Setup/Configuration of Moorings	38
5.4.1 3200m sediment trap mooring @ P2	
5.4.2 3700m sediment trap mooring @ P3	42
5.4.3 Shallow water WCB mooring	46
5.5 hardware in general on all three moorings	49
6. Western Core Box	50
6.1 Narrative	50
7. RMT8 Nets	52
7.1 Deployments	52
7.2 Macrozooplankton	53
7.2.1 Gear	53
7.2.2 Catch sorting and processing	53
7.2.3 Energetic study	55
7.2.5 Genetic study	56
7.3 Krill length frequency, maturity stage and shape	57
7.3.1 Introduction	57
7.3.2 Methods	57
7.3.3 Data	57
7.4 Photography of krill samples	59
7.5 Tolerance mechanisms and responses of Euphausia superb to hypoxia: a come euphausiid species from three oxygen minimum zones of the Eastern Pacific	
8. Shallow Underwater Camera System	63
9. Nitrous oxide N_2O : Sampling for stable isotope analysis and continuous of measurements in the surface ocean	
9.1 Background and Objective	66
9.2 Sampling and Measurements	66
10. Technical Support	70
10.1 AME Report	70
10.2 JR260B ICT Cruise Report	82
10.2.1 Data Logging Systems	82
10.2.2 Scientific Equipment PCs	

82
83
83
83
85
97
98
101

List of Figures

Figure 1 - ES853 echo sounder with serial cable connection	.23
Figure 2 - The deployment configuration of the ES853 system with cables, battery and	
computer connection.	.24
Figure 3 - (a) The echo sounder is shown mounted beneath the RMT cross. (b) The echo	
sounder's position (circled) is visible during net deployment and recovery. (c) The battery	
pack (highlighted) is shown strapped above the RMT electronics bottle	.25
Figure 4 - The echo sounder is shown in a revised position, occupying the space previously	
	.26
Figure 5 - (a) Echo sounder system mounted on the frame of the SUCS camera. (b) SUCS	
camera during recovery showing the setup of the echo sounder system.	.26
Figure 6 - (a) The doughnut platform with the support cross, fishing lines and echo sounder	
system. (b) The JCR, doughnut platform and support boat in Stromness Bay	
Figure 7. Uncalibrated Sv from Event 38, showing the interval when the echosounder was	
submerged.	.29
Figure 8. Acoustic data collected by the EK60 during event 95, showing krill swarms in the	e
upper 60 m	.29
Figure 9. A screen caputre of data visualisation in Echoview after motion correction and	
depth compensation, using data from Event 95.	.30
Figure 10. Raw acoustic data collected during calibration of the ES853 in Stromness.	
Figure 11 - DWNM cross underside with ES853 echosounder	
Figure 12 - DWNM cross top side with ES853 battery	
Figure 13 - CTD mounted on EBS frame on the port back	
Figure 14 - Front of EBS with Camera (centre) Lasers (each side of camera) and Lights (or	
the outsides)	
Figure 15 - Echosounder ES853 mounted with its battery pack onto the SUCS tripod	
Figure 16 - P2 Mooring position: Calculated mooring position on JCR micropolt with cruis	
track in purple.	
Figure 17 - P3 Mooring location: Calculated mooring position by triangulation	
Figure 18 - Sediment trap mooring (3200m) @ P2: design diagram	
Figure 19 - Sediment trap mooring (3700m) @ P3: design diagram	
Figure 20 - Shallow water mooring (300m) @ WCB: design diagram	
Figure 21 - Krill length probability density function from all stations	
Figure 22. (a) Krill photography setup with magnetically mounted flash guns, camera stand	
and krill board. (b)	
Figure 23. Example of lateral view of a typical sample board.	
Figure 24 - SUCS Photo 1	
Figure 25 - SUCS Photo 2	
Figure 26 - EK60 120kHz showing krill following SUCS downcast	
Figure 27 - Map of CTD stations sampled for N_2O stable isotope analysis	
Figure 28 - N ₂ O/CO analyser, Los Gatos Research, Inc	
Figure 29 - Valve board, connecting the N ₂ O/CO analyser to the equilibrator headspace,	.00
marine air line and reference gases.	69
Figure 30 - Percolating packed bed equilibrator, connected to ship's pumped seawater supp	
in chemistry lab.	
	,

List of Tables

Table 1 - Scientific Personnel 7
Table 2 - JCR Officers and Crew
Table 3 - Cruise Events Summary 8
Table 4 - CTD filenames
Table 5 - CTD casts
Table 6 - EK60 Default Settings
Table 7 - EK60 Calibrated Settings 19
Table 8 - Echoview Settings 20
Table 9 - Echoview operators for EV template file 20
Table 10 - Acoustic Transects
Table 11 - RMT8 log and catch listing 22
Table 12. Deployments of the ES853 during JR260B. 24
Table 13. Sequence of events for ES853 calibration. 27
Table 14 - P2 mooring triangulated location
Table 15 - P3 mooring triangulated location
Table 16 - Western Core Box XBT, CDT, and RMT8 Events
Table 17 - RMT8 Net events52
Table 18 - RMT Net events 54
Table 19 - Location and numbers of invertebrate species sampled in South Georgia waters
during cruise JR260B55
Table 20 - Krill length frequency
Table 21 - SUCS events 63
Table 23 - CTD casts sampled for N ₂ O stable isotope analysis. Each sample consists of three
sub-samples, ~ 550 ml each. Samples will be analysed after return of the ship to the UK at the
stable isotope lab SIL at the University of East Anglia UEA67
Table 24: Sampling times for 20 ml seawater samples from pumped supply for GC-ECD
measurements and subsequent comparison to laser-based N2O analyser data

1. Introduction

1.1 Rationale

JR260b is a 19 day Western Core Box cruise to determine the distribution and biomass of krill just off South Georgia. In addition there was an AFI-CGS "Unravelling the origin of the isotope anomaly in atmospheric N_2O " led by Jan Kaiser (UEA) and a collaborator from the AWI investigating the effects of hypoxia on krill.

1.2 R260b Western Core Box

Since 1981 BAS have undertaken cruises to determine krill biomass as part of the ongoing assessment of the status of the marine ecosystem in the region of South Georgia. This unique time series, known as the "Western Core Box" is part of the Ecosystem Programme contribution to BAS' national capability. It is comprised of an acoustic grid survey of 8 transects each of 80 km in length, together with associated net and oceanographic sampling and the calibration of the acoustic instrumentation. In addition to the acoustic survey, which covers a wide area but has limited temporal coverage, there are three moorings (one in the Western Core Box and one south and one north of South Georgia) to provide a temporal context. These moorings had been recovered during an earlier cruise (JR260a) at the beginning of the season, a key task of this cruise was to re-deploy these mooring. Finally a series of stratified net samples around the WCB mooring was required to validate the acoustic backscatter series collected by the ADCP and WCP on the WCB mooring. These were undertaken over a 24 hour period to provide information on diurnal variation.

1.3 Scientific Personnel

-		
Sophie Fielding	BAS	
Vsevolod Afanasyev	BAS	
Dave Connor	BAS	
Peter Enderlein	BAS	
Imke Grefe	UEA	
Damien Guihen	BAS	
Jeremy Robst	BAS	
Ryan Saunders	BAS	
Gabi Stowasser	BAS	
Nelly Tremblay	AWI	
Table 1 - Scientific Personnel		

1.4 JCR Officers and Crew

Chapman, Graham P Cox, Jo Evans, Simon Thompson, Ben Barratt, Tom Waddicor, Charlie Cutting, Dave Collard, Glynn Pickard, Colin Ditchfield, Jim Eadie, Steve Wright, Simon PSO, Acoustician AME Data Management Equipment Ocean chemistry Biological oceanography ITS Krill/fish biology Bioenergetics Krill biogeochemistry

Master JCR Chief Offr, JCR 2nd Offr, JCR 3rd Offr, JCR 3rd Offr, JCR ETO, Comms Chief Eng, JCR 2nd Eng, JCR 2nd Eng, JCR 3rd Eng, JCR 4th Eng, JCR Deck Eng, JCR

Dunbar, Nick	ETO Eng, JCR
Williams, Heather	Cadet
Roberts, John	Cadet
Gibson, Hamish	Purser
Stewart, George	Bosun
Jenkins, Derek	Bosun's Mate
Mullaney, Cliff	SG1
Leggett, Colin	SG1
O'Duffy, John	SG1
McGowan, John	SG1
Estibeiro, Tony	SG1
Robinshaw, Mark	MG1
Ashworth, Matt	MG1
Walker, Keith	Cook
Molloy, Paddy	2 nd Cook
Weston, Kenny	Sr Stwd
Newall, Jimmy	Stwd
Lee, Derek	Stwd
Patterson, Tom	Stwd
Rudd, James	Doc
Table 2 - JCR Officers and Crew	

1.5 Acknowledgements

Sophie Fielding PSO

This cruise represents the long term time series measurements (WCB) efforts for the ecosystems programme. The cruise was manned by a small number of scientists, who all played their relevant parts with enthusiasm which enabled the objectives of this cruise to be completed. We would like to acknowledge the enthusiasm, interest and hard work of the ships officers and crew in enabling this cruise to be completed successfully. This cruise was part of the LTMS Ecosystems programme component of PSPE and NERC Antarctic Funding Initiative.

1.6 Cruise events summary

Undertaking	Date	Event numbers
Test station	30/12/2011	1 – 7
P3 mooring deployment	31/12/2011	8-13
WCB mooring 24 hr station	01/01/2012	14-20
WCB acoustics, CTD,	02-05/01/2012	21-64
fishing		
WCB mooring 24 hr station	06/01/2012	65-71
Stromness calibration	07-08/01/2012	72-76
WCB mooring deployment	09/01/2012	78-79
P2 mooring deployment	10/01/2012	83-84
Gully 24 hr station (aborted)	11/01/2012	85-90
Gear Test	12/01/2012	91-94
Table 3 - Cruise Events Summary		

1.7 PSO Cruise Diary

26/12/2011

10:30 – ships party join ship and commence mobilisation. Unpacked the two containers and finished at 17:00 to allow science staff to recover from flight

27/12/2011

08:00 - Continue mobilisation alongside at FIPASS. Airfreight of WCP and ADCP arrived.

28/12/2011

08:00 – depart from Stanley FIPASS. Anchor off Gypsy cove. Weather moderate, sunny skies. Complete mobilisation at 11:30 and then head to South Georgia. Wind behind us so making rapid progress to P3.

29/12/2011

10:30 – Ships fire drill, major incident plan evoked, provided a 1.5 hour diversion to the day of passage.

30/12/2011

09:30 – Commenced test station, starting with SUCS system. Had a few computer crashes but performed okay generally. CTD worked fine, Imke collected first samples. Then MOCNESS fired okay (although with some delay on triggers). The pressure sensor is gash, and 5 codends were lost on retrieval. RMT8 practise went well, with all teams getting there. Finished test station around 15:30 and proceeded on towards P3.

31/12/2011

Four acoustic transects across the mooring were undertaken overnight.

05:00 CTD to 1000m

07:00 Commence mooring, with approximately 2 hours prep. Just as the mooring was ready to be deployed a hydraulic oil leak was found from the port seismic boom. This was cleared up and at 10:30 we commenced deployment of the mooring. Finished at 13:00. Triangulate then head off to target fish 18:00 - 22:00. One haul on no targets got a few krill for Nelly.

01/01/2012

New Year celebrations with the ringing of the ships bell by ETO Nic and engineering cadet John started the New Year. Acoustic transects over night (four) before RMT stratified net at the WCB mooring location. Due to the swell the net was fished from 150 to 100 m and then 100 to 50 m to reduce tension on the wire. This was started at 07:30, followed by a CTD for Imke. One acoustic transect was completed before attempting a second RMT stratified haul, which was unfortunately aborted due to a cracked pipe on the stern gantry. Two SUCS deployments were undertaken whilst the stern gantry was being fixed. Few krill were observed in the water column, but many were seen at depth seemingly attracted by the light on the SUCS system.

The gantry was fixed and two more RMT stratified net hauls were undertaken in addition to one more acoustic transect, before breaking off to head to the beginning of the WCB transect 1.1 (southern end)

02/01/2012

The weather has calmed considerably, and the WCB transect commenced at 06:00. Two transects were completed by 16:00 LT and the night was set up for 2 CTDs, 2 stratified RMTs and target fishing. As a result of freshening winds it was decided to complete the two stratified nets before commencing target fishing. The second stratified net (W1.2N) yielded krill for length frequency and no target was fished.

03/01/2012

The morning CTD W1.2N was completed by 03:15 and the ship relocated to start the WCB2.1 transect from the northern end. Acoustic transects proceeded followed by the deep CTD. Then RMT8 stratified, two krill target RMTs that both successfully caught krill and then a further RMT8 stratified haul followed by the shallow CTD preceding the next days transects.

04/01/2012

The ship commenced WCB transect 3.1 from the southern end, all XBTs undertaken. Following on from the transects the night consisted of 2 CTDs (3.2 north and south), 2 stratified RMT8s (at the CTD locations) and 2 target RMT8 hauls, one on the shelf and one off shelf. Large krill catches resulted.

05/01/2012

Last day of the corebox and the weather starting to freshen. Both transects completed in reasonable conditions and a night of target fishing looking for a large swarm to put the RMT8, SUCS and CTD through. Failed to find decent targets. An attempt to fish a swarm only visible in the 120 kHz data (the 38 kHz was obscured by bubbles) was aborted due to tension on the wire.

06/01/2012

The midnight stratified RMT8 was cancelled as a result of swell and the night was spent undertaking acoustic transects. The first stratified net was undertaken at 07:00 and the day was spent alternating between acoustic transects, RMT8 stratified nets and SUCS. The evening ended with a targeted trawl to collect krill for Hugh Fernley W. This caught only enough krill for Nelly to continue her experiments with and we returned to the 24 hour station.

07/01/2012

The stratified net haul started the day, including a large catch of krill to fulfil our 5 kg krill quota for Hugh. After the haul we relocated to Stromness harbour to commence calibration of the echosounders and testing of the MOCNESS. Arriving to stunning views and a pleasant sunny day at Stromness. A CTD was undertaken to calculate the relevant alpha and speed of sound and calibration commenced with the small ES853 from an inflated doughnut anchored against a small boat. The WCP was suspended in test mode from the aft starboard effer crane afterwards, whilst most people got the opportunity for a boat trip around Leith and Husvik. Finally the EK60 calibration was undertaken during the evening, finishing just after midnight.

08/01/2012

The morning commenced at 08:00 with a MOCNESS dip (minus nets) to examine whether the pressure sensor was reading results that could be converted to something sensible. The conclusion after comparison between the pressure reading and wire out was that it was not predictable, and therefore not usable in the current circumstances. After 4 Norwegians were delivered to the ship from KEP on the Pharos through a boat transfer in Stromness harbour. Following on the SUCS was deployed to examine the seabed and potentially ships anchor chain (unsuccessful in this case). The vessel departed Stromness at 14:00 heading east in search of small krill at the commonly fished bank. At 22:00 a krill swarm was fished resulting in a nice sample of subadult krill.

09/01/2012

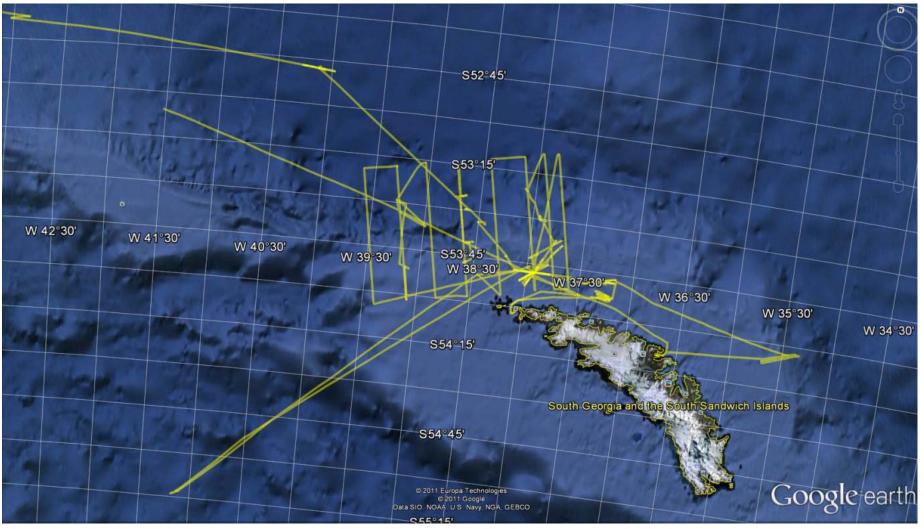
The ship headed west to the Gully station in preparation for undertaking a 24 hour stratified net series. The ship undertook three transects, before examination of the weather identified that the next couple of days would provide the only certain opportunity for deploying the WCB and P2 mooring. The Gully station was interrupted and the ship headed to the WCB mooring site to deploy the mooring. At 16:30 a CTD was undertaken at the mooring position, before the WCB mooring was deployed. A test EBS followed the mooring deployment to examine the new camera position recently mounted to the EBS frame. A final krill trawl was undertaken before heading to the P2 mooring position (12 hours away).

10/01/2012

We arrived at P2 approximately 11:00. A 1600m CTD was undertaken prior to the mooring deployment. The mooring deployment commenced 14:45 and the ship moved off position to return to the Gully station at 18:00 in thick fog.

11/01/2012

We returned to the Gully station at 09:41 and commenced with an acoustic transect, followed by a SUCS deployment and then a stratified net (200-100,100-0) at the station. Preceding the stratified net the RMT8 was washed due to considerable dead krill within the net. The afternoon comprised of acoustic transects before assessing the conditions for an RMT8 stratified at 18:00. Due to a considerable swell, although not adverse wind, the RMT8 was postponed. The evening was spent looking for a large krill swarm to deploy the SUCS through and the CTD in the swarm and outside. This was located at 22:00 and the SUCS and CTD commenced, although the krill were most ephemeral and disappeared whenever equipment went into the water. The midnight stratified net at the Gully station was abandoned and since the station was now no longer 24 hours, the station was abandoned and the ship relocated to more sheltered waters for some EBS and RMT8 tests in the morning.


12/01/2012

The morning commenced with three RMT8 trials, testing the altimeter in a number of positions to examine clear detection of the seabed. This followed with one EBS trial, before the ship heading to Bird Island to pick up 1 passenger for the return trip to Stanley. The evening was spent target fishing in relatively sheltered waters to the north east of Bird Island. One successful haul of smallish krill completed the work around South Georgia and the ship headed for Stanley at 22:30.

13/01/2012

Lumpy passage to Stanley ongoing.

1.8 Cruise Track

2 Oceanography

David Connor (based on JR245 report from Hugh Venables)

2.1 CTD

2.1.1 Introduction

A Conductivity-Temperature-Depth (CTD) unit was used to vertically profile the water column. **Fourteen** casts were carried out in total, including one test station, six as part of the Western Core Box survey (full depth or 1000m), one prior to the acoustics calibration with the rest at target fishing stations and mooring locations to full depth, 1000m or 1600m. CTD positions are included in Table Ocea.1. CTD profiles were numbered by ship event number.

2.1.2 CTD instrumentation and deployment

An SBE32 carousel water sampler, holding 24 12-litre niskin bottles, an SBE9Plus CTD and an SBE11Plus deck unit were used. The SBE9Plus unit held dual SBE3Plus temperature and SBE4 conductivity sensors and a *Paroscientific* pressure sensor. An SBE35 Deep Ocean Standards Thermometer makes temperature measurements each time a bottle is fired, and time, bottle position and temperature are stored, allowing comparison of the SBE35 readings with the CTD and bottle data. Additional sensors included an altimeter, a fluorometer, an oxygen sensor, a photosynthetically active radiation (PAR) sensor and a transmissometer. The altimeter returns real time accurate measurements of height off the seabed within approximately 100m of the bottom. This allows more accurate determination of the position of the CTD with respect to the seabed than is possible with the Simrad EA600 system, which sometimes loses the bottom and, in deep water, often returns depths that are several tens of metres deeper than the true bottom location.

A fin attached to the CTD frame reduced rotation of the package underwater. The CTD package was deployed from the mid-ships gantry on a cable connected to the CTD through a conducting swivel.

CTD data were collected at 24Hz and logged via the deck unit to a PC running Seasave Win32 version 7.21d (Sea-Bird Electronics, Inc.), which allows real-time viewing of the data. The procedure was to start data logging, deploy the CTD, then stop the instrument at 10m wireout, where the CTD package was left for at least two minutes to allow the seawater-activated pumps to switch on and the sensors to equilibrate with ambient conditions. The pumps are typically expected to switch on between 30 and 60 seconds after the instrument is deployed, but during JR260B they could take up to 2 ½ minutes to switch on.

After the 10m soak, the CTD was raised to as close to the surface as wave and swell condition allowed and then lowered to within 10m of the seabed or to the maximum depth specified. Bottles were fired on the upcast, where the procedure was to stop the CTD winch, hold the package *in situ* for a few seconds to allow sensors to equilibrate, and then fire a bottle. The sensor averages these readings to produce one value for each bottle fire. Short times between firing pairs of bottles led to no SBE35 readings for the second bottle of the pair.

Bottle firing depths were determined by Imke Grefe as required by the Nitrous oxide N_2O project as outlined in section 8. Water samples were taken from five stations with event numbers 003, 016, 026, 035, and 083. Water sample details and identification can be found in section 8.

No salinity calibrations samples were taken.

2.2.3 Data acquisition and preliminary processing

The CTD data were recorded using SeaSave 911plus/917plus Win32 version 7.21d, which created four files:

JR260B[NNN].hex	ascii hex-encoded data file
JR260B[NNN].XMLCON	XML configuration file containing calibration information
JR260B[NNN].hdr	ascii header file containing sensor information
JR260B[NNN].bl	ascii file containing bottle fire information
Table 4 CTD filenames	

Table 4 - CTD filenames

where NNN is the CTD event number (column 1 in Table Ocea.1). The output was a file named *JR260[NNN].cnv*. The *Data Conversion* module calculates parameters using the coefficients detailed in Table 2.1 as follows:

Pressure:
$$P = C\left(1 - \frac{T_0^2}{T^2}\right)\left(1 - D\left(1 - \frac{T_0^2}{T^2}\right)\right)$$

where *P* is the pressure (dbar), *T* is the pressure period in μ sec, $D = D_1 + D_2 U$, $C = C_1 + C_2 U + C_3 U$ and $T_0 = T_1 + T_2 U + T_3 U_2 + T_4 U_3 + T_5 U_4$ are calculated from the coefficients detailed in Table Ocea.2, where *U* is the temperature in °C.

Conductivity:
$$cond = \frac{\left(g + hf^2 + if^3 + jf^4\right)}{10\left(1 + \delta t + \varepsilon p\right)}$$

where *cond* is the conductivity in Sm⁻¹, *p* is pressure, *t* is temperature, $\delta = CTcor$ and $\varepsilon = CPcor$. All coefficients are included in Table Ocea.2.

Temperature: temp(ITS90) = $\frac{1}{\left\{g + h\left[\ln(f_0/f)\right] + i\left[\ln^2(f_0/f)\right] + j\left[\ln^3(f_0/f)\right]\right\}} - 273.15$

Where the temperature, *temp*, is measured in $^{\circ}C$, g, h, i and j are coefficients detailed in Table Ocea.2 and f is the frequency output by the sensor.

Oxygen:
$$oxy = (Soc(V + Voffset))e^{Tcor.T}Oxsat(T, S)e^{Pcor.P}$$

where oxy is dissolved oxygen in ml/l, V is the voltage output from the SBE43 sensor, Oxsat is oxygen saturation (ml/l), a function of temperature, T, salinity, S, and pressure, P, and the remaining coefficients are detailed in Table Ocea.2.

PAR:
$$PAR = \left(\frac{multiplier.10^{9}.10^{(V-B)/M}}{C}\right) + offset$$

where *V*, *B*, *M*, *offset*, *multiplier* and *C*, the calibration constant, can be found in Table Ocea.2.

Fluorescence:
$$flsc = \frac{slope(10e^{(V/slope factor)} - 10e^{VB})}{10e^{V1} - 10e^{Vacetone}} + offset$$

Where *flsc* is measured in μ g/l, *V* is the fluorometer output voltage and the remaining coefficients can be found in Table Ocea.2.

Transmission: Light transmission = M.output voltage + B

where light transmission is measured in % and *M* and *B* are derived from measured voltages through air and water in light and darkness, and are included in Table Ocea.2.

Time	Event No	Lat	Lon	Wire Out
12/01/2012 02:48	90	-53.87324	-37.22312	215
12/01/2012 02:16	89	-53.8738	-37.22055	202
10/01/2012 14:28	83	-55.21103	-41.11782	1600
09/01/2012 19:50	78	-53.79781	-37.93561	270
07/01/2012 12:30	72	-54.15884	-36.69426	60
05/01/2012 05:35	52	-53.36143	-38.0824	1000
04/01/2012 20:25	47	-53.71407	-37.96568	112
04/01/2012 06:02	41	-53.78512	-38.58324	175
03/01/2012 20:19	35	-53.43141	-38.69462	1000
03/01/2012 05:30	29	-53.49267	-39.25002	1000
02/01/2012 20:28	26	-53.84643	-39.14276	260
01/01/2012 12:21	16	-53.79756	-37.93478	275
31/12/2011 08:25	8	-52.80849	-40.11302	1000
30/12/2011 13:48	3	-52.6347	-42.82203	1000

Table 5 - CTD casts

2.1.4 SBE35 high precision thermometer

Data from the SBE35 thermometer were not downloaded during this cruise.

2.2 Underway data

2.2.1 Underway navigation data

Navigational data were collected continuously throughout the cruise. Instrumentation was as follows:

Ashtec ADU2 GPS: antenna 1 used to determine the ship's position; antennae 2-4 used to determine pitch, roll and yaw.

Ashtec GLONASS GG24 (accurate to $\approx 15m$)

Sperry Mk 37 Model D Gyrocompass

Seatex GPS (Seapath 200)

Hull-mounted Simrad EA600 Hydrographic 12kHz Echosounder (transducers located approximately 5m below the water level). It must be noted that the datastream is still called 'sim500', so all programs are named according to this, despite the instrument being an EA600.

Navigational data were collected every second, whilst the bathymetric data were logged every 10 seconds.

2.2.1 Ocean logger and meterological data

Surface ocean and meteorological data were logged continuously throughout the cruise. Ocean data were collected from the ship's uncontaminated seawater supply, whilst the meteorological data were measured by instruments on the forward mast. Instruments were as follows:

Oceanlogger

SeaBird Electronics SBE45 CTD Turner Designs 10-AU Fluorometer

Meteorological data

Photosynthetically Active Radiation (PAR) 1, Parlite Quanum Sensor, Kipp & Zonen Photosynthetically Active Radiation (PAR) 2, Parlite Quanum Sensor, Kipp & Zonen Solar Radiation 1, Proto1 SPLite, Kipp & Zonen Solar Radiation 2, Proto1 SPLite, Kipp & Zonen Air temperature/humidity 1, Chilled Mirror Hygrometer MBW, PM-20251/1, Temperature Sensor Pt100, PM-20252/1 Anemometer (this logs wind speed relative to the ship. At this time there is no datastream for true wind, but this can be calculated from relative wind and navigational data, if required).

Both surface ocean and meteorological data were collected at 5 second intervals.

Problems

The T1/H1 temperature and humidity sensor would report a zero value at length for periods of the cruise. The values always returned during the cruise. The AME report has noted the possible fault.

3. Acoustics

Sophie Fielding, Peter Enderlein

3.1 Acoustic instrumentation

3.1.1 Introduction

The EK60 was run throughout JR260B to collect information on the horizontal and vertical distribution of krill and to derive estimates of krill biomass for the Western Core Box and each 24 hour station.

3.1.2 Aim

Collection of acoustic data to accompany all transects, acoustic surveys, and net tows during the South Georgia survey.

Backup and process the acoustic data

3.1.3 Methods/System specification

Software versions Simrad ER60 v. 2.2.1 Sonardata Echolog 60 v 4.10.1.6230 Sonardata Echoview v 4.20.59.8698 Live viewing Sonardata Echoview v 4.20.59.8698 Processing

HASP Dongle BAS3 licensed for base, bathymetry, analysis export, live viewing, school detection and virtual echogram was used to run the echolog and echoview in live viewing mode. The echosounder pc AP10 and the EK60 workstation 2 are integrated into the ship's LAN. ER60 .raw data files were logged to a Sun workstation jrua, using a Samba connection, which is backed up at regular intervals. All raw data were collected to 1000 m. Echolog was run on workstation 2 and wrote compressed files also directly to the Sun workstation via a Samba connection.

Echolog compression settings

Final compression settings used in Echolog for all frequencies were:

- 1) Power data only (angle data is still available from the raw files)
- 2) From 0 500 m (38 kHz), 0 500 (120 kHz) and 0 500 (200 kHz) data only (data from greater depths are available from the raw files)
- 3) Average samples where both Sv below -100 dB and TS below -20 dB
- 4) Maximum number of samples to average: 50
- 5) DO NOT use average samples below echosounder detected bottom unless sure of bottom detection

File locations

All raw data were saved in a general folder JR260b\raw, all echolog data were saved in the folder JR260b\ek6. All files were prefixed with JR260. Calibration data were additionally saved to the calibration folder.

EK60 (ER60) settings

The EK60 software was upgraded over the summer and the calibration settings of the transducers either changed or reset. As a result, the EK60 was run from the beginning of the cruise up to the 7th January using some default settings (Table default settings). The EK60 was calibrated on the 7th January 2012, and the calibration applied to the transducers – therefore after January 7th the settings are different. Table calibrated settings lists the settings applied to the EK60 after calibration.

Variable	38 kHz	120 kHz	200 kHz
Ping interval (per sec)	2	2	2
Sound velocity (m/s)	1462	1462	1462
Mode	Active	Active	Active
Transducer type	ES38	ES120-7	ES200-7
Transceiver Serial no.	009072033fa5	00907203422d	009072033f91
Transducer depth (m)	0	0	0
Absorption coef. (dB/km)	10.3802	27.7924	41.1059
Pulse length (ms)	1.024	1.024	1.024
Max Power (W)	2000	500	300
2-way beam angle (dB)	-20.70	-20.70	-19.60
Sv transducer gain (dB)	25.5	25.7	27.0
Sa correction (dB)	0.0	0.0	0.0
Angle sensitivity along	22	21	23
Angle sensitivity athwart	22	21	23
3 dB Beam along	7.0	7.0	8.0
3 dB Beam athwart	7.1	7.1	7.90
Along offset	0	0	0
Athwart offset	0	0	0
Table C EKCO Default	0.44		

Table 6 - EK60 Default Settings

It was thought that the EK60 was controlled through the SSU, under a group EK60&EA600&ADCP. The EK60 was the master, with a ping rate set to 2 seconds. The ADCP was run in water column mode (as a slave with an external trigger). Within this setup the ADCP only pings every other trigger, therefore its resolution is slightly reduced at 1 ping every 4 seconds. There appeared to be some noise on the EK60 that could only be removed by turning the ADCP off, it was decided to leave on. However, during the calibration it was identified that the EK60 was not actually being controlled by the SSU, despite all indications of the SSU (the EK60 data being green and red, instead of grey when not controlled). After the calibration the EK60 was correctly interfaced with the SSU.

SSU setti	ngs
-----------	-----

EA600	external trigger	Tx pulse	
EK60	external trigger	Calculated	(Set to 2 seconds in ER60 software)
ADCP	external trigger	Tx pulse	(this setting only works if the bottom
tracking mode	e is off)		

3.2 EK60 Calibration

An acoustic calibration was carried out in Stromness Harbour, South Georgia on 07/01/2012. The ship was anchored, its movement balanced by minimal DP usage, and all over the side water deposits stopped. The EK60 and EA600 were triggered through the SSU and the ADCP was switched off. Each transducer was calibrated in turn, although all transducers were operating at the time. Standard ER60 calibration procedures were used as documented for previous cruises (the relevant copper sphere was moved through all quadrants of each transducer). In addition the sphere was held on-axis for extra periods of time to enable calibration variables to be determined in Echoview.

A CTD was undertaken on the morning of the calibration. Temperature and salinity were averaged from 6 (depth of the transducers) to 30 m (depth of the calibration sphere) and were 2.43°C and 33.71 PSU resulting in a speed of sound constant of 1462 m/s (Kongsberg software calculation). The speed of sound was updated into the ER60 software.

Each transducer was calibrated at the settings used throughout the cruise. Parameters from the ER60 lobes calibration were updated onto the ER60 software (Table calibrated settings), in addition an Echoview calculation of the calibration was calculated (Table Echoview settings).

Date (dd/mm/yyyy)	07/01/2012	08/01/2012	08/01/2012			
Location	Stromness	Stromness	Stromness			
Time (GMT)	23:05	00:15	01:30			
Frequency (kHz)	38	120	200			
GPT serial no	009072033fa5	00907203422d	9072033191			
Comments	EA600 on	EA600 on	EA600 on			
Water temperature (°C)	2.43	2.43	2.43			
Salinity (PSU)	33.71	33.71	33.71			
Sound velocity (m/s)	1462	1462	1462			
Absorption coeff	10.0433	27.5080	40.6769			
(dB/km)						
Ping rate (sec ⁻¹)	1	1	1			
Transmit Power (W)	2000	500	300			
Pulse length (ms)	1.024	1.024	1.024			
Bandwidth (kHz)	2.43	3.03	3.09			
Sample Interval (m)	0.186	0.186	0.186			
Original gain (dB)	25.5	25.7	27.0			
Original Sa correction	0.0	0.0	0.0			
(dB)						
Theoretical TS of	-33.70	-40.70	-44.85			
sphere (dB)						
New gain (dB)	25.51	22.15	23.61			
New Sa correction (dB)	-0.51	-0.41	-0.22			
Table 7 - EK60 Calibrated Settings						

Table 7 - EK60 Calibrated Settings

Table Echoview settings

Parameter	38kHz	120 kHz	200 kHz
Alpha (dB/km)	10.0433	27.5080	40.6769
Theoretical TS (dB)	-33.70	-40.3	-44.85

TS gain	25.48	22.06	23.64
Sa correction	-0.22	0.55	-0.19

Table 8 - Echoview Settings

Data processing in echoview

Post-processing was undertaken in Echoview. One template EV file was set up using the compressed data files with the following operators.

Variable name	Operator	Operand 1	Operand 2
F resampled even	Resample by number of	Fileset 1 Sv raw pings	
	pings	Τ?	
F bad data	Region bitmap	F resampled even	
F surface bottom	Line bitmap	F resampled even	
F all bad	And	F bad data	F surface bottom
F bad masked	Mask	F resampled even	F all bad
F resample 1 ping	Resample by number of	F bad masked	
	pings		
F resample original	Resample by number of	F resample 1 ping	
	pings		
F dropout range	Data range bitmap	F resample original	
F no dropout	Mask	F bad masked	F dropout range
F noise	Data generator	F no dropout	
F-noise	Linear minus	F no dropout	F noise
F convolute	3x3 convolution	F-noise	
F spike detect	Minus	F-noise	F convolute
F spike mask	Data range bitmap	F spike detect	
F-noise-spike	Mask	F-noise	F spike mask
F-500m	Resample by distance	F-noise-spike	
	interval		

Table 9 - Echoview operators for EV template file

3.2.1 Data coverage

Acoustic transects

Acoustic transects were run at the Western Core Box, Western Core Box mooring location and at a Gully station to to generate information on the vertical distribution of krill over a 24 hour period. Each transect consisted of a 10 nmile run at 10 knots down or upwind (or swell if more influential) with the mid-point as the station. Transect times and names are given in Table Acoustics_transects.

Station	Transect	Date	Start	End time	Comments
	name		time		
			(GMT)		
P3	P3_T1	31/12/11	02:59	04:00	Downwind
P3	P3_T2	31/12/11	05:21	06:21	Upwind
P3	P3_T3	31/12/11	06:31	07:33	Downwind
P3	P3_T4	31/12/11	07:37	08:08	U/W break off for mooring
WCB_M	WCB_MT1	01/01/12	03:55	04:56	Downwind
WCB_M	WCB_MT2	01/01/12	05:08	06:32	Upwind
WCB_M	WCB_MT3	01/01/12	06:40	07:41	Downwind
WCB_M	WCB_MT4	01/01/12	07:49	09:10	Upwind
WCB_M	WCB_MT5	01/01/12	12:56	13:40	Upwind
WCB_M	WCB_MT6	01/01/12	13:42	14:47	Downwind

					
WCB_M	WCB_MT7	01/01/12	22:51	23:52	Downwind
WCB_M	WCB_MT8	02/01/12	01:28	02:11	U/W break off for WCB
WCB	WCB1.1	02/01/12	09:00	13:45	South to North
WCB	WCB1.2	02/01/12	14:54	19:12	North to South
WCB	WCB2.1	03/01/12	09:00	13:41	North to South
WCB	WCB2.2	03/01/12	14:42	19:03	South to North
WCB	WCB3.1	04/01/12	09:00	13:36	South to North
WCB	WCB3.2	04/01/12	14:48	19:07	North to South
WCB	WCB4.1	05/01/12	09:00	13:40	North to South
WCB	WCB4.2	05/01/12	14:17	18:57	South to North
WCB_M	WCB_MT9	06/01/12	02:38	03:41	Downwind
WCB_M	WCB_MT10	06/01/12	03:50	04:50	Upwind
WCB_M	WCB_MT11	06/01/12	04:58	06:03	Downwind
WCB_M	WCB_MT12	06/01/12	06:10	07:11	Upwind
WCB_M	WCB_MT13	06/01/12	07:18	08:26	Downwind
WCB_M	WCB_MT14	06/01/12	08:32	09:32	Upwind
WCB_M	WCB_MT15	06/01/12	12:19	13:19	Downwind
WCB_M	WCB_MT16	06/01/12	18:00	19:00	Downwind
WCB_M	WCB_MT17	06/01/12	19:08	20:09	Upwind
WCB_M	WCB_MT18	06/01/12	22:58	23:58	Downwind
Gully S	GS_T1	09/01/12	10:00	11:02	Downwind
Gully S	GS_T2	09/01/12	11:07	12:05	Upwind
Gully S	GS_T3	09/01/12	12:13	13:14	Downwind
WCB_M	WCB_MT19	09/01/12	14:22	15:23	Downwind
WCB_M	WCB_MT20	09/01/12	15:31	16:31	Upwind
WCB_M	WCB_MT21	09/01/12	16:39	17:41	Downwind
WCB_M	WCB_MT22	09/01/12	17:49	18:48	Upwind
Gully S	GS_T4	11/01/12	12:41	13:41	Downwind
Gully S	GS_T5	11/01/12	18:23	19:23	Downwind
Gully S	GS_T6	11/01/12	19:31	20:35	Upwind
Gully S	GS_T7	11/01/12	23:12	00:12	Downwind
	a subtle Tesus set				

Table 10 - Acoustic Transects

Target fishing

There were three types of RMT8 net strategies: oblique, stratified and target (Table Acoustics_RMT8). Oblique were fished from the surface to 200 m and back to the surface at the WCB stations, stratified were between specified depths, e.g. 200 - 100, and targeted were on krill swarms identified from the EK60. The target fishing used the normal strategy of heading downwind searching for targets. Once found, the ship sails on for $\frac{1}{2}$ mile more and then turns ready to shoot the net.

Event	Date	Net 1 open-	Net 2 open-	Туре	Comments
Num		closed	closed		
5	30/12/11	17:01-17:04	17:06-17:09	Test	Discard
6	30/12/11	17:52-17:57	17:58-18:03	Test	Discard
14	01/01/12	00:41-00:51	00:53-00:54	Target	No target some krill
					caught

Table Acoustics_RMT8

15	01/01/12	10:41-11:01	11:07-11:28	Stratified	150-100,100-50
19	01/01/12	21:18-21:39	21:40-22:01	Stratified	150-100,100-50
20	02/01/12	00:38-00:58	00:59-01:20	Stratified	150-100,100-50
27	02/01/12	21:41-22:10	22:11-22:41	Oblique	0-200-0 W1.2S
28	03/01/12	01:08-01:39	01:40-02:11	Oblique	0-200-0 W1.2N
36	03/01/12	22:12-22:45	22:45-23:15	Oblique	0-200-0 W2.2N
37	04/01/12	01:37-01:39	01:41-01:45	Target	Krill
38	04/01/12	02:39-02:44	04:26-04:43	Target	Krill
39	04/01/12	03:56-04:26	21:32-21:53	Oblique	0-200-0 W2.2S
48	04/01/12	21:10-21:32	23:56-00:04	Oblique	0-200-0 W3.2S
49	04/01/12	23:46-23:49	02:29-02:31	Target	Krill
50	05/01/12	02:27-02:29	04:27-04:57	Target	Krill
51	05/01/12	03:55-04:27	04:27-04:57	Oblique	0-200-0 W3.2N
64	06/01/12	01:29-01:33	01:33-01:34	Target	Net 2 aborted due to
					tension
65	06/01/12	10:33-10:53	10:53-11:27	Stratified	140-100,100-20
67	06/01/12				Net aborted due to
					incorrect closure
68	06/01/12	16:24-16:44	16:44-17:04	Stratified	150-100,100-20
69	06/01/12	21:20-21:42	21:43-22:13	Stratified	150-100,100-20
70	07/01/12	01:42-01:47	01:48-01:50	Target	Krill
71	07/01/12	03:18-03:38	03:39-03:59	Stratified	150-100,100-20
77	07/01/12	00:59-01:02		Target	Net 2 aborted due to
					tension
82	10/01/12	02:01-02:04	02:05-02:08	Target	Small krill
86	11/01/12				Net wash
87	11/01/12	16:32-17:03	17:08-17:38	Stratified	180-100,100-20
91	12/01/12	11:20-11:54			Altimeter test
92	12/01/12	12:22-12:40			Altimeter test
93	12/01/12	12:57-13:09			Altimeter test
95	13/01/12	00:08-00:12	00:14-00:18	Target	Small krill
Table 44	DMTO Is a sud	antals Bathan			

Table 11 - RMT8 log and catch listing

3.2.2 Problems encountered

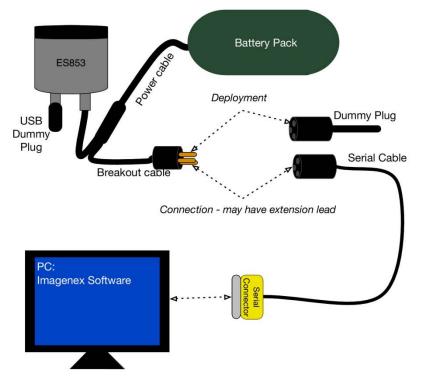
The EK60 did not crash at all throughout the cruise. The only outstanding issue was the nonintegration of the EK60 with the SSU, despite all indications suggesting it was. This can be corrected easily by the user.

3.3 Deployment of the ES853 Echo Sounder

Damien, Sophie Fielding

3.3.1 Introduction

The ES853 echo sounder is a custom designed instrument manufactured by Imagenex (Figure 1). The unit has an acoustic frequency of 120 Hz, sampling to a range of 100 m with 0.5 m bin intervals and is pressure rated to a depth of 1000 m. The onboard transducer has a beam angle of 10° beam angle. The hardware amplifier has a configurable 20 or 40 dB gain option. The echo sounder can be deployed to log to internal memory or to an attached MS Windows based computer using the manufacturer's supplied software. When logging to internal memory, the echo sounder records data to its 2 GB built-in solid state memory card. Depending on the deployment configuration, the unit pings at different rates. When attached to a computer the echo sounder will ping as fast as it is capable, approximately 2 Hz. When set to stand-alone mode and logging to memory, the ping rate is 1 Hz. When in glider mode, a mode used when mounted onboard an iRobot Seaglider, data is logged to memory and the ping rate is 0.25 Hz.


Figure 1 - ES853 echo sounder with serial cable connection.

The echo sounder was deployed in order to collect data needed to test its ability to resolve targets such as krill swarms. It was also necessary to calibrate the echo sounder so that the returned backscatter data can be equated to target strength, an important quantity in the estimation of biomass. An identical echo sounder will form a portion of the payload carried on an iRobot seaglider to be deployed in the upcoming JR255A GENTOO cruise in the Weddell Sea. To understand the data to be collected, it was necessary to collect data in controlled circumstances, where the ships EK60 echo sounder will be used as a comparison during further analysis. The ES853 has a Source Level of 211.1 dB re 1 μ Pa @ 1m and a Receiver Response of -178.2 dB re 1V/ μ Pa.

3.3.2 Deployment

The echo sounder was deployed on three different platforms but in each case the elements of the system were the same, consisting of a battery pack (with rechargeable NiMH batteries giving a nominal 24V), a power cable with breakout serial interface and the ES853. Changing the mode of the echo sounder or live logging of data on a PC was done through a connection with the serial interface (Figure 2). A 50m extension cable was used repeatedly when the system was exposed or on the back deck, pre deployment. Serial communication with the echo sounder was achieved using the Imagenex software. Upon deployment, the serial connection was established and the mode of the echo sounder changed from *Normal Mode* (which does not log to the ES853 memory) to *Stand Alone*, which samples at a rate of 1 Hz and logs internally. On one occasion, *Glider Mode* was selected to trial the collection of data at 0.25 Hz.

Logged data was downloaded by USB connection with a PC, where the echo sounder's internal memory is mounted as a removable drive requiring no drivers or additional software beyond a modern operating system.

Figure 2 - The deployment configuration of the ES853 system with cables, battery and computer connection.

The echo sounder was deployed 18 times during the cruise (Table 1) and the hardware gain was set at 40 dB in all but the first two cases (Events 12 and 19), during which the gain was 20 dB, and during the calibration at Stromness, where the hardware gain was variable.

File Name	Data Name	Event	Date	Platform
JR260B_ES000008.853	jr260b_echo1	14	01/01/2012 00:23:00	RMT Cross
JR260B_ES000009.853	jr260b_echo2	19	01/01/2012 21:00:50	RMT Cross
JR260B_ES000010.853	jr260b_echo3	27	02/01/2012 21:27:10	RMT Cross
JR260B_ES000011.853	jr260b_echo4	28	03/01/2012 00:53:55	RMT Cross
JR260B_ES000012.853	jr260b_echo5	36	03/01/2012 22:03:00	RMT Cross

Table 12. Deployments of the ES853 during JR260B.

JR260B_ES000013.853	jr260b_echo6	38	04/01/2012 02:25:20	RMT Cross
JR260B_ES000014.853	jr260b_echo7	50	05/01/2012 02:01:45	RMT Cross
JR260B_ES000015.853	jr260b_echo8	51	05/01/2012 03:38:40	RMT Cross
JR260B_ES000016.853	jr260b_echo9	64	06/01/2012 01:15:20	RMT Cross
JR260B_ES000017.853	jr260b_echo10	69	06/01/2012 20:59:00	RMT Cross
JR260B_ES000018.853	jr260b_echo11	70	07/01/2012 00:47:15	RMT Cross
JR260B_ES000019.853	jr260b_echo12	71	07/01/2012 03:04:10	RMT Cross
JR260B_stromness1.853	jr260b_echo_strom_calib	73	07/01/2012 13:40:15	Doughnut
JR260B_ES000020.853	jr260b_echo13	82	10/01/2012 01:50:40	RMT Cross
JR260B_ES000021.853	jr260b_echo14	88	12/01/2012 01:29:05	SUCS Frame
JR260B_ES000022.853	jr260b_echo15	91	12/01/2012 11:09:10	RMT Cross
JR260B_ES000023.853	jr260b_echo16	92	12/01/2012 12:11:30	RMT Cross
JR260B_ES000024.853	jr260b_echo17	95	12/01/2012 23:49:30	RMT Cross

3.3.2.1 ES853 mounted on the RMT cross

The echo sounder system was mounted on the RMT cross during towed net deployments. The battery pack was strapped inside the frame, above the electronics bottle. The cable was strapped in place around the frame and the echo sounder was mounted on a bracket in a position normally occupied by the RMT altimeter. The altimeter was repositioned at the rear of the cross. The echo sounder's transducer was positioned at approximately 45 ° to the crosses orientation, such that it would be facing downwards during towing (Figure 3).

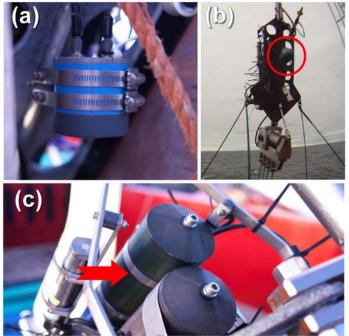


Figure 3 - (a) The echo sounder is shown mounted beneath the RMT cross. (b) The echo sounder's position (circled) is visible during net deployment and recovery. (c) The battery pack (highlighted) is shown strapped above the RMT electronics bottle.

The ship's positional and winch information, along with the depth, pitch and roll of the cross are recorded to the ship's SCS data collection system. This was downloaded for each deployment of the echo sounder onboard the cross.

Before the last deployment of the echo sounder on the RMT cross (Event 95), the echo sounder was repositioned closer to the front of cross, to the position previously occupied by the flow meter and an additional high density plastic bar was added to give the terminals clearance from the cross (Figure 4). The flow meter was moved down the mounting rail, such

that the flow was unimpeded. This action was taken because of the presence of a constant, strong and acoustic signal in the near bins of the echo sounder, believed to be the reflection of the pings from the nets bars. This new arrangement allowed for a beam direction slightly ahead of the position of the nets and provides the option for future positioning of the echo sounder facing laterally into krill swarms, rather than vertically downwards.

Figure 4 - The echo sounder is shown in a revised position, occupying the space previously held by the flow meter.

3.3.2.2 ES853 mounted on the SUCS

The echo sounder system was mounted on the SUCS camera frame during a deployment of the camera through a krill swarm (Event 88). The battery pack and cable was strapped to a horizontal support bar of the frame, while the ES853 was mounted to an upright support via a high density plastic bracket (

Figure 5). The depth of the camera is not currently logged, though the amount of cable payed out is recorded to the video image. Not having a log of depth means that the bins cannot be adjusted for real depth.

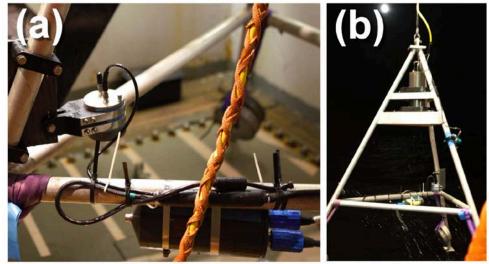


Figure 5 - (a) Echo sounder system mounted on the frame of the SUCS camera. (b) SUCS camera during recovery showing the setup of the echo sounder system.

3.3.2.3 ES853 Calibration in Stromness

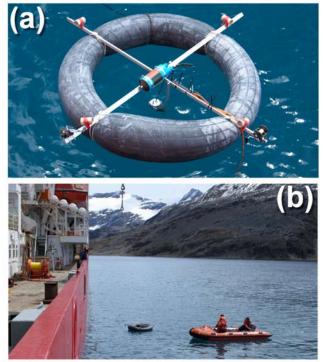


Figure 6 - (a) The doughnut platform with the support cross, fishing lines and echo sounder system. (b) The JCR, doughnut platform and support boat in Stromness Bay.

For calibration of the echo sounder, a small floating platform was constructed. The platform, referred to as 'The Doughnut', consisted of an inflatable ring and a cross support with fishing reels, to lower a sphere of known target strength to various depths. The target was kept, as much as possible, within the beam axis. The cross also supported the echo sounder system, with the echo sounder suspended by a beam, facing downwards approximately 10 cm below the surface of the water (Figure 6a). The echo sounder was connected to a ship-based PC via a 50 meter extension cable. The data from the echo sounder was logged to the PC and the hardware gain settings of the echo sounder were changed dynamically using the software interface. Table 2 shows the timing of events during the calibration. All times listed are for 7^{th} January 2012.

Time	Event
13:40:15	Record to computer started - 40db
14:00:00	All ships echo sounders turned off
14:34:40	Start 5 minute record at 40db gain
14:40:00	Start 5 minute record at 20db gain
14:50:30	Switched to 40db gain
14:54:30	Upper target is likely the rope in the water
15:00:00	Start 5 minute record at 40 db gain(target lowered to ~30m)
15:06:00	Start 5 minute record at 20 db gain
15:12:20	Switched to 40db gain
15:14:00	Target lowered to ~40m
15:16:30	Start 5 minute record at 40 db gain
15:22:30	Start 5 minute record at 20 db gain
15:28:30	Switched to 40db gain
15:30:00	Target lowered to ~50m
15:33:00	Start 5 minute record at 40 db gain
15:40:00	Start 5 minute record at 20db gain

Table 13	Sequence	of	events	for	FS853	calibration.
Table 13.	Sequence	U	evenus	101	E3033	campration.

15:46:00	Switched to 40db gain				
15:50:00	Target lowered to ~60m				
15:52:00	Start 5 minute record at 40 db gain				
15:58:00	Start 5 minute record at 20 db gain				
16:04:50	Switched to 40db gain				
16:06:30	Communication with echo sounder lost				
16:07:10	Record stop				

The target used was a tungsten carbide sphere. Given the conditions in the top 30 m (temperature of 2.43 °C, salinity of 33.71, as measured by CTD), the speed of sound was 1462 m s⁻¹ and the α of the sphere was 27.51, at 120 kHz. The target strength (T_s) of the sphere was therefore -39.73 dB.

3.3.2.4 Issues with deployment

Several problems arose during the deployment of the echo sounder system. The most significant of which was the dropout of communications with the unit. As seen in Table 2, communication with the echo sounder was lost at 16:06. This was at the very end of the calibration procedure, thus did not necessitate restarting the calibration. The exact cause of the drop outs is not known as often a reconnection would solve the problem. It is posited that the length of the extension cable pushed the transmission capabilities of the serial connection to its limits.

It was found that even when not logging or connected to a PC, the echo sounder continued to draw power from the battery pack when connected. This resulted in a loss of power between deployments and necessitated the recharging of the battery pack. The remedy for this situation was to disconnect the power cable from the battery pack and to terminate each side with dummy plugs. By isolating the power supply during long periods of dormancy, the charged battery pack was seen to last for many deployments of the echo sounder. On initial connection to the USB port of the echo sounder, the early onset of corrosion of the pins was observed. The pins were carefully swabbed to remove the oxidized residue and compressed air used to dry the connection. Further remedial action may be required to prevent the deterioration of the situation. Upon completion of the cruise, both the serial and USB ports were treated with compressed air to ensure that they were dry for transit. Once the ship returns to port and stability of a work surface can be assured, the delicate pins of both ports will be inspected and cleaned. The use of silicone grease on the terminals will be considered for future deployments.

There remains an issue where the exact start time of the data acquisition is not known as the echo sounder takes several seconds to respond to a change of mode command. This interval was seen to increase with the introduction of the 50 m extension serial cable and in extreme cases could be up to 10 seconds long.

3.3.3 Data

The data recorded by the echo sounder was successfully recovered and catalogued. An example of the data recorded is shown in Figure 7. This figure depicts the data recorded during Event 38 and is typical of the data collected during RMT hauls. To calculate a backscatter value (S_v), albeit uncalibrated, the hardware gain of 40 dB and the constant C (Source Level + Receiver Response) have been subtracted from the data and Time Varied Gain (TVG) has been added. The strong targets in the first 10 m at the beginning and end of the deployment are the backscatter from the ship as the RMT cross was deployed.

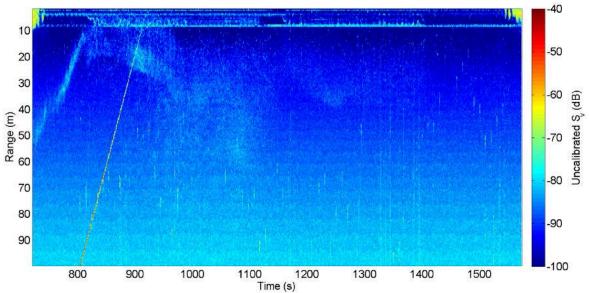


Figure 7. Uncalibrated Sv from Event 38, showing the interval when the echosounder was submerged.

Approximately 90 seconds into the transect, a strong signal appears in the furthest bin and over the next 100 seconds appears through successively higher bins. This was a recurring feature of the deployments and occurred with at regular intervals of about 14 minutes during longer deployments. It is suggested that this is out of phase interference from ship-based echo sounding instruments.

Strong linear patterns were observed in the upper 8 m of the transect. These features, too, were typical of the data collected while echo sounder was deployed on the RMT cross. It is likely that these features were caused by backscatter from the net array. This assertion is strengthened by the near disappearance of the features during the final RTM deployment (Event 95), where the echo sounder was positioned so that the beam was angled slightly forward and thus clear of the nets. Data collected by the EK60 calibrated echo sounder during Event 95 is shown in Figure 8. Swarming krill in the upper depths can be seen.

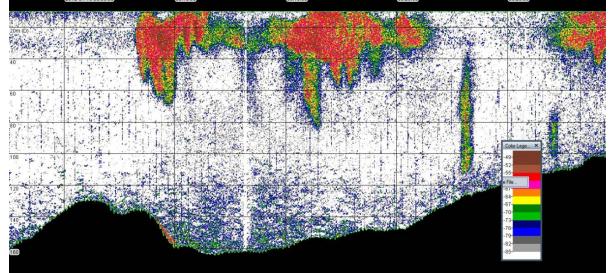


Figure 8. Acoustic data collected by the EK60 during event 95, showing krill swarms in the upper 60 m.

The down-wire net monitor (DWNM) positional data collected by the RMT cross sensors was matched with the timing of the acoustic data. The addition of GPS, roll, pitch, heading and depth data made it possible to export from Matlab files readable by Echoview. An accurate estimate of the position of the cross has not yet been made but for the purposes of

development, a rudimentary estimate was made using the depth of the cross and the length of cable payed out. No consideration has yet been given to sagging of the cable under its own weight or the lateral inertia of the net due to drag. The data exported to Echoview allow, through the use of a motion correction and towed body function, the correction of the acoustic data for changes in the orientation and depth of the echo sounder. An example of this is shown in Figure 9. The data displayed in Figure 9 is uncalibrated Sv. It is in this format that the ES853 data, once properly calibrated, will be compared with the acoustic data collected by the ship-based EK60 echo sounder. First analysis shows a reasonable agreement, within a few dB, between the echo sounders. The difference may be addressed when the calibration of the ES853 is applied.

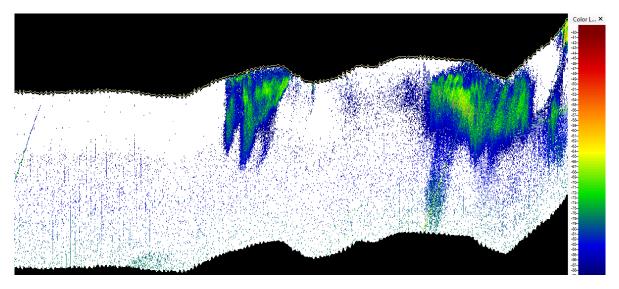


Figure 9. A screen caputre of data visualisation in Echoview after motion correction and depth compensation, using data from Event 95.

The deployment of the echo sounder on the doughnut platform (Event 73) showed that the echo sounder was capable of resolving the tungsten carbide sphere to depths in excess of 60 m. The known target strength of the sphere will be used to calibrate the echo sounder so that the target strength of features observed during RMT cross and glider deployments can be calculated accurately. The raw data collected is displayed in Figure 10. The five darker bands in the figure correspond with the echo sounder applying a gain of 20 dB to the signal, as opposed to the 40 dB gain applied at all other times. The target can be seen progressively lowered through the bins until it disappears from the 20 dB gain while at 63 m. Features such as the anchor rope in the water are also visible at shallow depths at intervals during the time series.

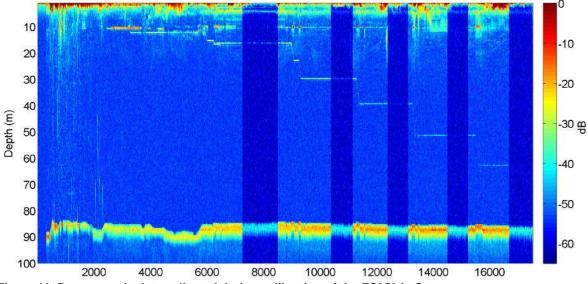


Figure 10. Raw acoustic data collected during calibration of the ES853 in Stromness.

3.3.4 Discussion

The echo sounder generally performed well. Though occasional connection drop outs could not be explained, reconnection of the cables and/or restarting the software generally solved the problem. An important lesson is the draining of the battery even when not actively engaged. The action of disconnecting the battery has solved this issue when dealing with ship-based short term deployments. It remains to be seen, however, how the echo sounder will perform over extended durations, such as onboard the glider.

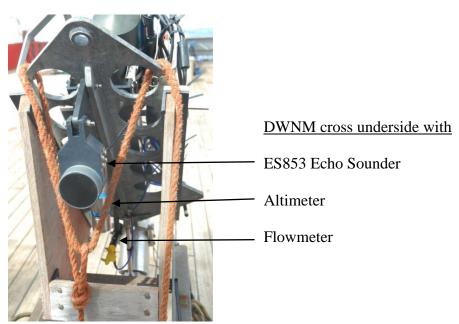
The positioning of the echo sounder on the RMT cross is of critical importance. The backscatter from the net structure is sufficient to mask the legitimate targets of the first 10 m of range, arguably the most important of the profile as it correlates most strongly with the net catch. The repositioning of the echo sounder to the front of the cross seems to have alleviated this issue, though it remain to be seen in future deployments if the acoustic data corresponds well with the net catch.

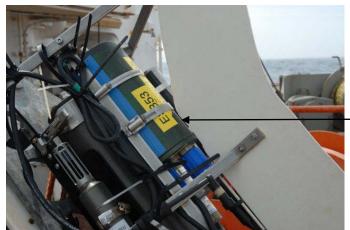
Systematic interference of the ship's acoustic instrumentation with the echo sounder is not a major issue as it is easily identified and disregarded.

There is currently little understanding of how the echo sounder performance varies as the voltage of the battery pack declines. It is suggested that further work be carried out to determine if battery voltage significantly impacts target strength. The manufacturer specifies a voltage range of 22 to 32 V DC. As voltage is not logged by the echo sounder, it may be necessary to routinely monitor and charge the battery pack to ensure that it continues to function within normal parameters.

4. Deployment Gear

Peter Enderlein


4.1 RMT8 with DWNM sytstem


4.1.1 Down Wire Net Monitor

During this cruise the DWNM had been used on the 'Biological wire' for the RMT8. As the termination was still the old one from last year a load test to 3.2to was successfully done to ensure the termination was still good.

The system worked very well and we had no problems with either the PC side or the Underwater Unit. To mount the stand alone Echo-sounder ES853 with its battery pack, the Altimeter was mounted further back on the cross, to have space for the ES853 on the Altimeter place. This seems to be working fine, apart that the Altimeter struggled to get constant readings. Therefore the Altimeter was moved back to its original position and the Flowmeter was mounted in the back with the ES853 in the front. This arrangement seems to be the best for all three instruments as they all performed very well in this arrangement.

Figure 11 - DWNM cross underside with ES853 echosounder

DWNM cross top side with

ES853 battery housing mounted

Figure 12 - DWNM cross top side with ES853 battery

4.1.2 RMT8

The RMT8 was deployed 29 times successfully for target fishing and stratified hauls. In worked perfectly fine, apart from one occasion when the port safety shackles linked to the upper part of the side wire was ripped apart during the trawl, leaving the side wire hanging down so it had to be recovered with a hook. The reason why the shackle was ripped apart is still unknown, as this has never happened before.

When pulling in the upper net, on several occasions they cod end clips got caught on the net below resulting in small rips in the nets. These were then repaired. In Stromness the bottom net was then replaced by a brand new net.

4.2 Epibenthic Sledge

The Epibenthic Sledge (EBS) was only used three time this cruise for test purpose. The reason for testing was that the EBS with the new DWCS (deep water camera system), it lights and lasers and a self-contained SBE 37 CTD will be used later in the season without the support from PE.The EBS was deployed with a ship speed of 1 kn, veering the cable with max of 40 m/min up to 1.5 of water depth. It was trawled then for 10 min at 1 kn. After the trawling ship speed was reduced to 0.5 kn and the EBS was recovered at 30 m/min until the EBS had cleared the seabed. Hauling speed was then increased to 45 m/min. During the first two deployments the CTD was not fitted onto the EBS, but for the last deployment the CTD was fitted onto the EBS frame. The first trawls showed that the camera was not the right way around and that the angle had to be changed. Also the lights needed slight adjustment in there angle to avoid dark spots on each bottom side of the video. A test on deck in darkness was conducted to determine if the changes showed improvements. The test was successful and therefore the video images from the last deployment showed a good illuminated area in front of the sledge. The DWCS and the CTD worked fine and are definitive a good upgrade for the EBS.

Figure 13 - CTD mounted on EBS frame on the port back

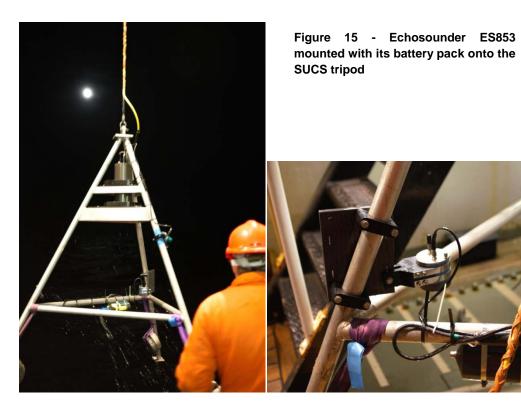


Figure 14 - Front of EBS with Camera (centre) Lasers (each side of camera) and Lights (on the outsides)

4.3 Shallow Underwater Camera System (SUCS)

The SUCS system was used in the same configuration as previous in the season during JR262. For details about its design and setup please see the cruise report from JR262 and the introduction in the SUCS cruise report.

During this cruise the SUCS performed during the 7 deployments as it did during JR262. In general the system was most stable in water depth of about 150m in calm seas. It became more unstable with increased survey depth and increased ship movements. Any change in the tension of the cable during for example during landing SUCS on the seabed or picking it up, caused the link between the UW camera and the deck unit to crash. Quite often the system recovered by itself after approx. 20 - 30 sec but the PC had to be rebooted on several occasions, when it would not recover by itself. With careful winch handling during landing and recovery by getting the system smoothly on and of the seabed and the self recovery after a link break made the SUCS system a very useful and reliable UW-photo and video system. During this cruise the stand alone Echo sounder ES853 with its battery pack was mounted for several deployments onto the tripod to gather acoustic data.

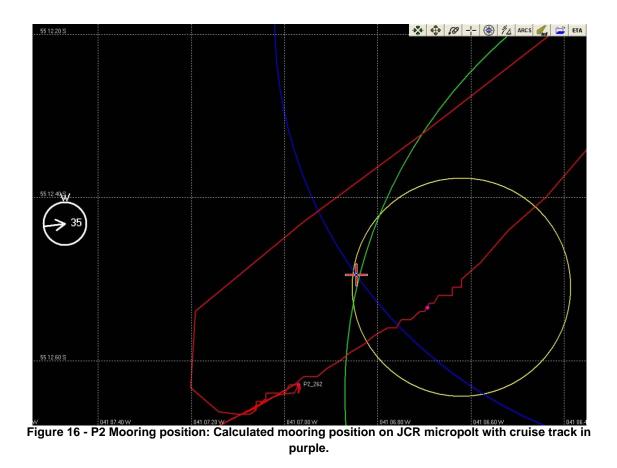
5. Moorings

Peter Enderlein & Sophie Fielding

5.1 General

During JR260B the WCB shallow water mooring and both deep sediment trap moorings were successfully redeployed. All moorings went through major maintenance as all the ropes, shackles and chains were replaced. All moorings were deployed buoy first as was done on the previous cruises. Because of weather conditions both main buoys of the sediment trap moorings where picked up by the main rope and not via a separate cable. This worked fine.

5.2 3200m sediment trap mooring @ P2


It was redeployed on **10.01.12**, the buoy entered the water @ 17:45 GMT and the main weight was cut @ 19:30 GMT at 55.20872S and 41.11114W. To release the main weights a sacrificial rope was used.

Because of the pendulum effect having deployed the mooring buoy first, the mooring was pinged after the deployment to determine its position by triangulation. The ship moved from its position approx. ¹/₂ nm first W and then again ¹/₂ nm NE and then again ¹/₂ nm NW. The positions, water depth, acoustic distance and the calculated radius where:

Position	Time	Triangulation		Latitude	Longitude
P1	19:56	Depth	3115	55.20850	41.11047
		Ping distance	3105		
		Radius	249		
P2	20:13	Depth	3122	55.20300	41.10123
		Ping distance	3279		
		Radius	1002		
P3	20:50	Depth	3131	55.21061	41.09742
		Ping distance	3312		
		Radius	1080		

Table 14 - P2 mooring triangulated location

This gave the following triangulation, with a relative position of 55° 12.4948 S and 41° 06.8459 W where we believe the 3200m mooring is sitting:

5.3 3700m sediment trap mooring @ P3

The mooring was redeployed on **31.12.11** @ 13:31 GMT with the buoy first again. After the deployment of all the equipment, the weight was finally released at 15:40 GMT at 52.80885S and 40.11142W

Again the mooring was pinged after the deployment to determine its position by triangulation. The ship moved from its position approx. $\frac{1}{2}$ nm first E and then again $\frac{1}{2}$ nm S. The positions, water depth, acoustic distance and the calculated radius where:

Position	Time	Triangulation		Latitude	Longitude
P1	16:15	Depth	3700	52.81055	40.11767
		Ping distance 3841			
		Radius	1027		
P2	16:55	Depth	3700	52.80084	40.10402
		Ping distance	3851		
		Radius	1071		
P3	17:11	Depth		52.80991	40.10187
		Ping distance	3769		
		Radius	484		

Table 15 - P3 mooring triangulated location

This gave the following triangulation, with a relative position of 52° 48.5414 S and 40° 06.3124 W where we believe the 3700m mooring is sitting:

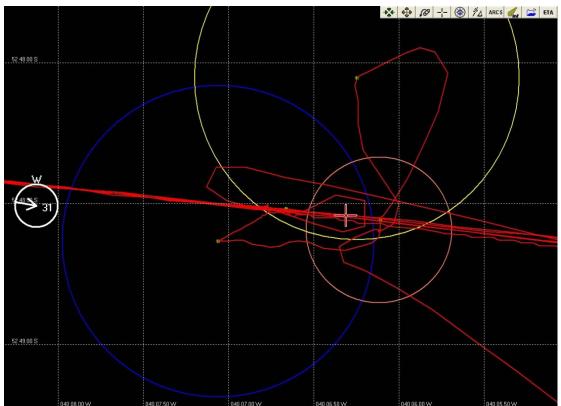


Figure 17 - P3 Mooring location: Calculated mooring position by triangulation.

5.4 Work Carried Out and Setup/Configuration of Moorings

5.4.1 3200m sediment trap mooring @ P2

NOVATEC beacon: R09, Ch B, 159.48 MHz

Acoustic Releases

Acoustic releases: 93 + 573

- new batteries
- tested

ARGOS beacon 335519 replaced by Irmasat beacon 13901110

- new Irmasat beacon 13901110
- tested

NOVATEC Combo beacon: R09-020

- new batteries
- tested

CTD 37 SMP 29579: 2462 on main buoy

- new batteries
- set-up instrument for re-deployment
 - set real time clock to PC clock (p. 28)
 - check instruments is ok and clock is set properly by using "DS"command (p. 27)
 - set-up instrument for "Autonomous Sampling" following the instructions on page 24
 - samplenum=0 automatically makes entire memory available for recording
 - sample interval: 900 sec

NEWADCP WHS300 : 15548

- replaces the lost one
- set-up instrument for re-deployment
 - erase data (p.16 WinSC)
 - start WinSC for set up instrument
 - set-up instrument
 - Number of bins: 30 (1-128)
 - Bin size (m): 8 (0.2-16)
 - Pings per Ensemble: 10
 - Interval: 15 min
 - Duration: 550 days
 - Transducer depth: 200 m
 - save deployment settings
 - start time: 00:00:01 11.01.12
 - set up ADCP real time clock to PC clock
 - don't verify the compass (needless on a ship)
 - run pre-deployment tests to check instrument

Sediment trap: Parflux No: ML11966-02

- new batteries (14x C Cells + 1x 9V Block battery)
- Always disconnect the cable on the Sediment trap first, before unplugging the Computer end!!

Parflux sediment trap deployment settings:

5.4.1.1 PS2 Sediment Trap Deployment

Schedule Verification

Event 1 of $22 = 01/15/2012 \ 00:00:00$

Event	2 of $22 = \frac{02}{01} \frac{2012}{2012} \frac{000000}{200000}$
Event	3 of $22 = \frac{02}{15} \frac{2012}{2012} \frac{00:00:00}{00:00}$
Event	4 of $22 = 03/01/2012 \ 00:00:00$
Event	5 of $22 = 04/01/2012 \ 00:00:00$
Event	6 of $22 = 05/01/2012 \ 00:00:00$
Event	7 of $22 = 06/01/2012 \ 00:00:00$
Event	8 of $22 = 07/01/2012 \ 00:00:00$
Event	9 of 22 = 08/01/2012 00:00:00
Event	10 of $22 = \frac{09}{01}/2012 \ 00:00:00$
Event	11 of $22 = 10/01/2012 \ 00:00:00$
Event	12 of $22 = 11/01/2012 \ 00:00:00$
Event	13 of $22 = \frac{12}{01}/2012\ 00:00:00$
Event	14 of $22 = \frac{12}{15} \frac{2012}{2000000}$
Event	15 of $22 = 01/01/2013 \ 00:00:00$
Event	16 of $22 = 01/15/2013 \ 00:00:00$
Event	17 of $22 = \frac{02}{01} \frac{2013}{2013} \frac{000000}{00000}$
Event	18 of $22 = \frac{02}{15} \frac{2013}{2013} \frac{000000}{200000}$
Event	19of $22 = 03/01/2013 \ 00:00:00$
Event	20 of $22 = 04/01/2013 \ 00:00:00$
Event	21 of $22 = 05/01/2013 \ 00:00:00$
Event	22 of 22 = 06/01/2013 00:00:00

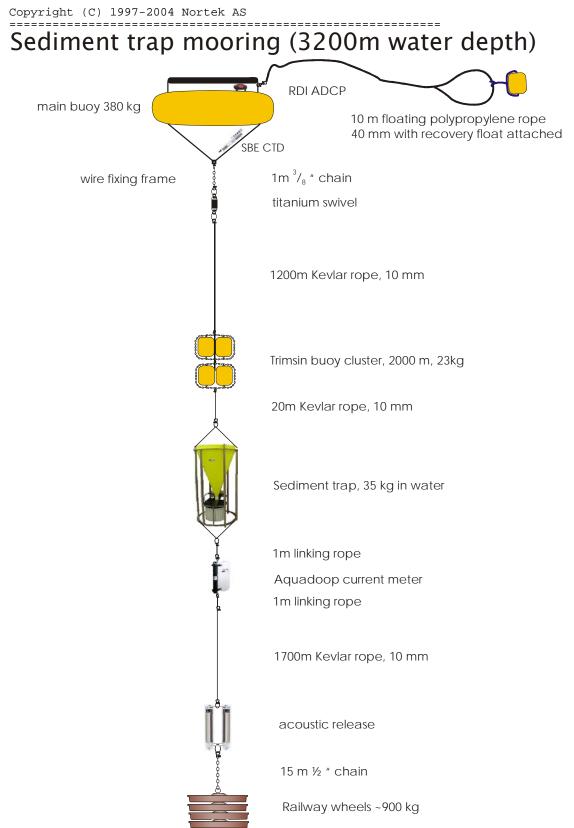
Current meter: Aquadopp No A2L - 1792

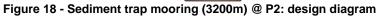
- new batteries
 - The current meter batteries (lithium) are extremely expensive and those batteries deployed during last season will be returned to the UK with the view to finding a local manufacturer.

```
_____
Deployment : 1792
Start at
               : 11/01/2012 00:00:01
Comment:
3200 m mooring at P2
                                          _____
                    _____
Measurement interval (s) : 900
Average interval (s) : 60
Blanking distance (m) : 0.37
Diagnostics interval(min) : N/A
Diagnostics samples : N/A

Measurement load (%) : 4

Power level : HIGH


Compass upd. rate (s) : 900


Coordinate System : ENU

Speed of sound (m/s) : MEASURED

Salinity (ppt) : 34

File wrapping : OFF
                _____
                                               _____
Assumed duration (days) : 550.0
Battery utilization (%) : 243.0
Battery level (V) : 11.4
Recorder size (MB) : 89
Recorder free space (MB) : 85.192
Memory required (MB) : 2.1
Vertical vel. prec (cm/s) : 1.4
Horizon. vel. prec (cm/s) : 0.9
                                           _____
Aquadopp Version 1.28
```


5.4.2 3700m sediment trap mooring @ P3

NOVATEC beacon: U07-029, Ch A, 154.585 MHz

5.4.2.1 Acoustic Releases

Acoustic releases: 290 + 1022

- new batteries
- tested

Sonar Bell:

• new SonarBell attached to main rope approx. 50-100m above releases

ARGOS beacon 60210 replaced by Irmasat beacon 12098770

- new Irmasat beacon 12098770
- tested

NOVATEC Combo beacon: U07-029

- new batteries
- tested

CTD 37 SMP 43742: 4852 on main buoy

- new batteries
- set-up instrument for re-deployment
 - set real time clock to PC clock (p. 28)
 - check instruments is ok and clock is set properly by using "DS"command (p. 27)
 - set-up instrument for "Autonomous Sampling" following the instructions on page 24
 - samplenum=0 automatically makes entire memory available for recording
 - sample interval: 900 sec

CTD 37 SMP 43742: 4855 at estimated 500 m

- new batteries
- set-up instrument for re-deployment
 - set real time clock to PC clock (p. 28)
 - check instruments is ok and clock is set properly by using "DS"command (p. 27)
 - set-up instrument for "Autonomous Sampling" following the instructions on page 24
 - samplenum=0 automatically makes entire memory available for recording
 - sample interval: 900 sec

ADCP WHS300 - I - UG26: 7522

- new batteries
- set-up instrument for re-deployment
 - erase data (p.16 WinSC)
 - start WinSC for set up instrument
 - set-up instrument
 - Number of bins: 30 (1-128)
 - Bin size (m): 8 (0.2-16)
 - Pings per Ensemble: 10
 - Interval: 15 min
 - Duration: 550 days
 - Transducer depth: 200 m
 - save deployment settings in prepared folder
 - set up ADCP real time clock to PC clock
 - don't verify the compass (needless on a ship)
 - run pre-deployment tests to check instrument

Sediment trap: Parflux No: ML11966-01

- new batteries (14x C Cells + 1x 9V Block battery)
 o do not remove both batteries at the same time!
- Always disconnect the cable on the Sediment trap first, before unplugging the Computer end!!

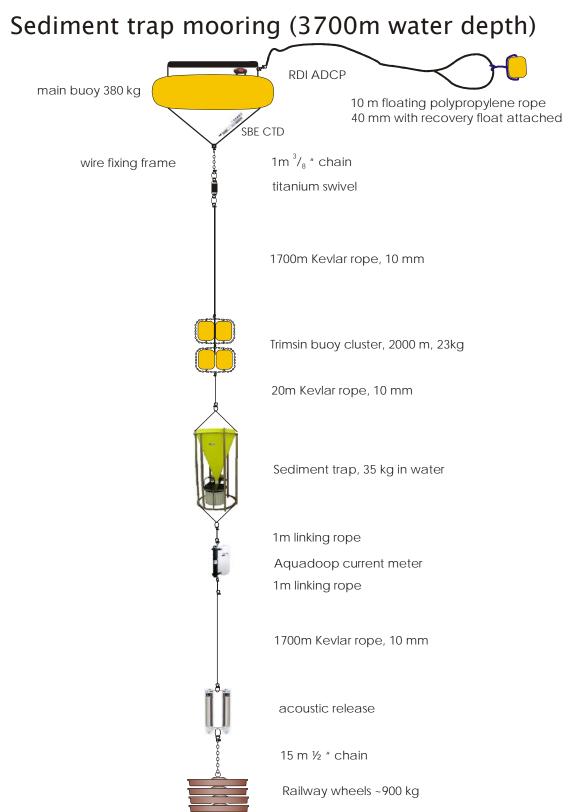
Parflux sediment trap deployment settings (21 cups)

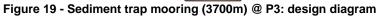
5.4.2.2 PS3 Sediment Trap Deployment

Schedule Verification

Event	1 of $22 = 01/01/2012 00:00:00$
Event	2 of $22 = 01/15/2012 \ 00:00:00$
Event	3 of $22 = \frac{02}{01} \frac{2012}{2012} \frac{0000000}{20000000000000000000000000000$
Event	4 of $22 = \frac{02}{15} \frac{2012}{2012} \frac{000000}{200000}$
Event	5 of 22 = 03/01/2012 00:00:00
Event	6 of 22 = 04/01/2012 00:00:00
Event	7 of $22 = 05/01/2012 \ 00:00:00$
Event	8 of 22 = 06/01/2012 00:00:00
Event	9 of $22 = 07/01/2012 \ 00:00:00$
Event	10 of $22 = \frac{08}{01} = 00000000000000000000000000000000000$
Event	11 of $22 = \frac{09}{01}/2012 \ 00:00:00$
Event	12 of $22 = 10/01/2012 \ 00:00:00$
Event	13 of $22 = 11/01/2012 \ 00:00:00$
Event	14 of $22 = \frac{12}{01} \frac{2012}{2012} \frac{0000000}{000000}$
Event	15 of $22 = \frac{12}{15} \frac{2012}{200000000000000000000000000000000$
Event	16 of $22 = 01/01/2013 \ 00:00:00$

Event 17 of $22 = 01/15/2013 \ 00:00:00$ Event 18 of $22 = 02/01/2013 \ 00:00:00$ Event 19 of $22 = 02/15/2013 \ 00:00:00$ Event 20 of $22 = 03/01/2013 \ 00:00:00$ Event 21 of $22 = 04/01/2013 \ 00:00:00$ Event 22 of $22 = 05/01/2013 \ 00:00:00$


Current meter: Aquadopp No A2L - 1793 at estimated 2000 m water depth


- new batteries
 - The current meter batteries (lithium) are extremely expensive and those batteries deployed during last season will be returned to the UK with the view to finding a local manufacturer.

Aquadopp current meter deployment settings

_____ Deployment : 1793 Start at : 01/01/2012 00:00:01 Comment: 3700 m mooring at P3 _____ Measurement interval (s): 900 Average interval (s):60 Blanking distance (m): 0.37 Diagnostics interval(min): 720 Diagnostics samples :20 Measurement load (%):4Power level : HIGH Compass upd. rate (s): 900 : ENU Coordinate System Speed of sound (m/s) : MEASURED Salinity (ppt) : 34 File wrapping : OFF -----Assumed duration (days): 550.0 Battery utilization (%): 258.0 Battery level (V):11.4 Recorder size (MB): 89 Recorder free space (MB): 87.527 Memory required (MB): 3.0 Vertical vel. prec (cm/s): 1.4 Horizon. vel. prec (cm/s): 0.9 _____

Aquadopp Version 1.28

5.4.3 Shallow water WCB mooring

All hardware was replaced and checked, line lengths are back to 30 m, and a new release was linked in with the old 572 release. All linking bars where new as well as the main U bolt on top of the paired releases.

The mooring was redeployed on 09/01/2012 and the weight was released at 21:09:00 GMT @ 53.79785S and 37.93623W

NOVATEC beacon R09-021: Ch. C.: 160.725 MHz

5.4.3.1 Acoustic Releases

5.4.3.2 Work on mooring

Acoustic release 572 & 1218

- new batteries
- tested
- new release 1218 tested

NOVATEC Combo beacon: R09-021

- new batteries
- tested

Sonar Bell

• new SonarBell attached to main rope approx. 10m above releases

ARGOS beacon 35520 replaced by Irmasat beacon 12094770

- new Irmasat beacon 12094770
- tested

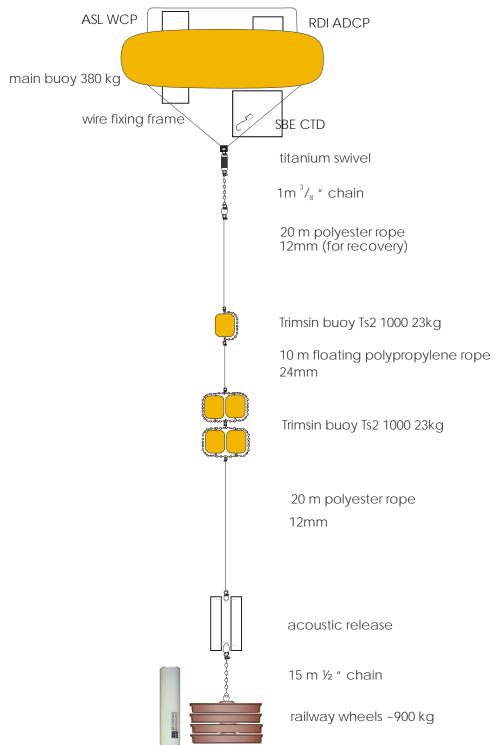
WCP

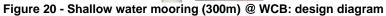
- got new WCP from factory, NO: WCP45
- no firmware update was done as per recommendation from ASL, as we had no chance to calibrate and test it.
- New deployment file: JR260_WCP.mfawcp
- Screen dump under JR260_WCP.doc

CTD 37 SMP 43742: 2463

- new batteries
- 1 screw of Condutivity cell guard sheard off, need to be taken out, best would be swap with an other CTD, 1 screw replaced

Get new CTD, so this one can go for repairs Get new screw: part NO:30859


- set-up instrument for re-deployment
 - set real time clock to PC clock (p. 28)


- check instruments is ok and clock is set properly by using "DS"command (p. 27)
- set-up instrument for "Autonomous Sampling" following the instructions on page 24
- samplenum=0 automatically makes entire memory available for recording
- sample interval: 240 sec
- •

ADCP WHS300 - I - UG26: 2967

- new batteries
- set-up instrument for re-deployment
 - erase data (p.16 WinSC)
 - start WinSC for set up instrument
 - set-up instrument
 - Number of bins: 30 (1-128)
 - Bin size (m): 8 (0.2-16)
 - Pings per Ensemble: 10
 - Interval: 15 min
 - Duration: 550 days
 - Transducer depth: 200 m
 - save deployment settings in prepared folder
 - set up ADCP real time clock to PC clock
 - don't verify the compass (needless on a ship)
 - run pre-deployment tests to check instrument

shallow water mooring (300m water depth)

5.5 hardware in general on all three moorings

- The main section of chain, which the Trimsin buoy clusters are attached, replaced on all 3 moorings
- Section of chain connecting the main buoy replaced on all 3 moorings
- Shackles on the main buoy changed on all 3 moorings
- All shackles replaced on all other parts of the moorings
- New eyelinks added to the moorings to increase ease of recovery and deployment of moorings

6. Western Core Box

6.1 Narrative

The Western Core Box (WCB) survey was run in the normal west to east direction. W1.1 was started at the southern end at 09:00 on 2/01/2012. The sea was reasonable and there was little dropout, the weather forecast indicated a nice 4 day window for the WCB in total. XBTs were run (at 6 knots) through the first transect (at 10 knots) and completed. At the end of the second transect (W1.2) a shallow CTD was undertaken followed by both RMT8 stratified hauls at the stations. This was followed by a deep CTD (1000m) before commencing the second (W2.1 and W2.2) set of transects. The deep CTD was undertaken followed by a stratified RMT8. There was then an opportunity for two target hauls, before the shallow stratified haul followed by the shallow CTD then on to the start of W3. The third day followed in a similar fashion to the second with transects, 2 CTDs, 2 stratified nets and 2 target hauls. The fourth day of transects was completed in slightly lumpy seas and freshening winds, but all in all the WCB was completed successfully.

(GMT)XBTs $W1.1$ 21 $02/01/2012$ $09:00$ $W1.1$ 22 $02/01/2012$ $10:02$ $W1.1$ 23 $02/01/2012$ $11:10$ $W1.1$ 24 $02/01/2012$ $12:31$ $W1.1$ 25 $02/01/2012$ $13:40$ $W2.1$ 30 $03/01/2012$ $09:03$ $W2.1$ 31 $03/01/2012$ $10:11$ $W2.1$ 32 $03/01/2012$ $11:19$ $W2.1$ 33 $03/01/2012$ $12:30$ $W2.1$ 34 $03/01/2012$ $13:41$ $W3.1$ 42 $04/01/2012$ $10:07$ $W3.1$ 43 $04/01/2012$ $11:16$ $W3.1$ 45 $04/01/2012$ $12:27$ $W3.1$ 46 $04/01/2012$ $13:36$ $W4.1$ 53 $05/01/2012$ $09:00$ $W4.1$ 54 $05/01/2012$ $10:08$ $W4.1$ 57 $05/01/2012$ $12:33$
W1.122 $02/01/2012$ $10:02$ W1.123 $02/01/2012$ $11:10$ W1.124 $02/01/2012$ $12:31$ W1.125 $02/01/2012$ $13:40$ W2.130 $03/01/2012$ $09:03$ W2.131 $03/01/2012$ $10:11$ W2.132 $03/01/2012$ $11:19$ W2.133 $03/01/2012$ $12:30$ W2.134 $03/01/2012$ $13:41$ W3.142 $04/01/2012$ $10:07$ W3.144 $04/01/2012$ $12:27$ W3.146 $04/01/2012$ $13:36$ W4.153 $05/01/2012$ $10:08$ W4.155 $05/01/2012$ $11:20$
W1.123 $02/01/2012$ $11:10$ W1.124 $02/01/2012$ $12:31$ W1.125 $02/01/2012$ $13:40$ W2.130 $03/01/2012$ $09:03$ W2.131 $03/01/2012$ $10:11$ W2.132 $03/01/2012$ $11:19$ W2.133 $03/01/2012$ $13:41$ W3.142 $04/01/2012$ $09:02$ W3.143 $04/01/2012$ $10:07$ W3.145 $04/01/2012$ $12:27$ W3.146 $04/01/2012$ $13:36$ W4.153 $05/01/2012$ $09:00$ W4.154 $05/01/2012$ $10:08$ W4.155 $05/01/2012$ $11:20$
W1.124 $02/01/2012$ $12:31$ W1.125 $02/01/2012$ $13:40$ W2.130 $03/01/2012$ $09:03$ W2.131 $03/01/2012$ $10:11$ W2.132 $03/01/2012$ $11:19$ W2.133 $03/01/2012$ $12:30$ W2.134 $03/01/2012$ $13:41$ W3.142 $04/01/2012$ $09:02$ W3.143 $04/01/2012$ $11:16$ W3.145 $04/01/2012$ $12:27$ W3.146 $04/01/2012$ $13:36$ W4.153 $05/01/2012$ $09:00$ W4.154 $05/01/2012$ $10:08$ W4.155 $05/01/2012$ $11:20$
W1.125 $02/01/2012$ $13:40$ W2.130 $03/01/2012$ $09:03$ W2.131 $03/01/2012$ $10:11$ W2.132 $03/01/2012$ $11:19$ W2.133 $03/01/2012$ $12:30$ W2.134 $03/01/2012$ $13:41$ W3.142 $04/01/2012$ $09:02$ W3.143 $04/01/2012$ $10:07$ W3.145 $04/01/2012$ $11:16$ W3.145 $04/01/2012$ $13:36$ W4.153 $05/01/2012$ $09:00$ W4.155 $05/01/2012$ $10:08$ W4.155 $05/01/2012$ $11:20$
W2.130 $03/01/2012$ $09:03$ W2.131 $03/01/2012$ $10:11$ W2.132 $03/01/2012$ $11:19$ W2.133 $03/01/2012$ $12:30$ W2.134 $03/01/2012$ $13:41$ W3.142 $04/01/2012$ $09:02$ W3.143 $04/01/2012$ $10:07$ W3.145 $04/01/2012$ $12:27$ W3.146 $04/01/2012$ $13:36$ W4.153 $05/01/2012$ $09:00$ W4.154 $05/01/2012$ $10:08$ W4.155 $05/01/2012$ $11:20$
W2.1 31 $03/01/2012$ $10:11$ W2.1 32 $03/01/2012$ $11:19$ W2.1 33 $03/01/2012$ $12:30$ W2.1 34 $03/01/2012$ $13:41$ W3.1 42 $04/01/2012$ $09:02$ W3.1 43 $04/01/2012$ $10:07$ W3.1 44 $04/01/2012$ $11:16$ W3.1 45 $04/01/2012$ $12:27$ W3.1 46 $04/01/2012$ $13:36$ W4.1 53 $05/01/2012$ $09:00$ W4.1 55 $05/01/2012$ $10:08$ W4.1 55 $05/01/2012$ $11:20$
W2.132 $03/01/2012$ $11:19$ W2.133 $03/01/2012$ $12:30$ W2.134 $03/01/2012$ $13:41$ W3.142 $04/01/2012$ $09:02$ W3.143 $04/01/2012$ $10:07$ W3.144 $04/01/2012$ $11:16$ W3.145 $04/01/2012$ $12:27$ W3.146 $04/01/2012$ $13:36$ W4.153 $05/01/2012$ $09:00$ W4.154 $05/01/2012$ $10:08$ W4.155 $05/01/2012$ $11:20$
W2.133 $03/01/2012$ $12:30$ W2.134 $03/01/2012$ $13:41$ W3.142 $04/01/2012$ $09:02$ W3.143 $04/01/2012$ $10:07$ W3.144 $04/01/2012$ $11:16$ W3.145 $04/01/2012$ $12:27$ W3.146 $04/01/2012$ $13:36$ W4.153 $05/01/2012$ $09:00$ W4.154 $05/01/2012$ $10:08$ W4.155 $05/01/2012$ $11:20$
W2.1 34 $03/01/2012$ $13:41$ W3.1 42 $04/01/2012$ $09:02$ W3.1 43 $04/01/2012$ $10:07$ W3.1 44 $04/01/2012$ $11:16$ W3.1 45 $04/01/2012$ $12:27$ W3.1 46 $04/01/2012$ $13:36$ W4.1 53 $05/01/2012$ $09:00$ W4.1 54 $05/01/2012$ $10:08$ W4.1 55 $05/01/2012$ $11:20$
W3.142 $04/01/2012$ $09:02$ W3.143 $04/01/2012$ $10:07$ W3.144 $04/01/2012$ $11:16$ W3.145 $04/01/2012$ $12:27$ W3.146 $04/01/2012$ $13:36$ W4.153 $05/01/2012$ $09:00$ W4.154 $05/01/2012$ $10:08$ W4.155 $05/01/2012$ $11:20$
W3.143 $04/01/2012$ $10:07$ W3.144 $04/01/2012$ $11:16$ W3.145 $04/01/2012$ $12:27$ W3.146 $04/01/2012$ $13:36$ W4.153 $05/01/2012$ $09:00$ W4.154 $05/01/2012$ $10:08$ W4.155 $05/01/2012$ $11:20$
W3.144 $04/01/2012$ $11:16$ W3.145 $04/01/2012$ $12:27$ W3.146 $04/01/2012$ $13:36$ W4.153 $05/01/2012$ $09:00$ W4.154 $05/01/2012$ $10:08$ W4.155 $05/01/2012$ $11:20$
W3.145 $04/01/2012$ $12:27$ W3.146 $04/01/2012$ $13:36$ W4.153 $05/01/2012$ $09:00$ W4.154 $05/01/2012$ $10:08$ W4.155 $05/01/2012$ $11:20$
W3.14604/01/201213:36W4.15305/01/201209:00W4.15405/01/201210:08W4.15505/01/201211:20
W4.15305/01/201209:00W4.15405/01/201210:08W4.15505/01/201211:20
W4.15405/01/201210:08W4.15505/01/201211:20
W4.1 55 05/01/2012 11:20
W4 1 57 05/01/2012 12:33
W4.1 58 05/01/2012 13:40
W4.2 59 05/01/2012 14:17
W4.2 60 05/01/2012 15:28
W4.2 61 05/01/2012 16:42
W4.2 62 05/01/2012 17:52
W4.2 63 05/01/2012 18:57
CTDs
W1.2S 26 02/01/2012 20:29

Table 16 - Western Core Box XBT, CDT, and RMT8 Events

W1.2N W2.2N W2.2S W3.2S W3.2N	29 35 41 47 52	03/01/2012 03/01/2012 04/01/2012 04/01/2012 05/01/2012	05:33 20:18 06:02 20:17 05:35
RMT8			
W1.2S	27	02/01/2012	21:40
W1.2N	28	03/01/2012	01:04
W2.2N	36	03/01/2012	20:18
Target	37	04/01/2012	01:34
Target	38	04/01/2012	02:37
W2.2S	39	04/01/2012	03:55
W3.2S	48	04/01/2012	21:08
Target	49	04/01/2012	23:34
Target	50	05/01/2012	02:06
W3.2N	51	05/01/2012	03:54
Target	64	06/01/2012	01:23

7. RMT8 Nets

Sophie Fielding, et al.

7.1 Deployments

Three types of RMT8 deployments were undertaken during JR260b. Target trawls on krill swarms identified from the EK60 data. Oblique hauls where RMT8 net 1 was opened at the surface and the net deployed to 200 m before closing the net and vice versa. Finally stratified hauls were used where the net was opened at discrete depth horizons from the bottom upwards. The choice of deployment type depended on the task. Target hauls were made to supply Nelly Tremblay and the WCB team with krill for live incubations, preserved for different projects in Cambridge and for length frequency. Oblique hauls were only undertaken at the Western Core Box CTD positions. In this case one catch was worked up and the other preserved. Finally the stratified hauls were undertaken at the 24 hour stations, each catch was worked up and preserved. In some samples only a subsample was preserved due to the size of the catch.

Event	Date	Net 1 open-	Net 2 open-	Туре	Comments
Num		closed	closed		
5	30/12/11	17:01-17:04	17:06-17:09	Test	Discard
6	30/12/11	17:52-17:57	17:58-18:03	Test	Discard
14	01/01/12	00:41-00:51	00:53-00:54	Target	No target some krill
					caught
15	01/01/12	10:41-11:01	11:07-11:28	Stratified	150-100,100-50
19	01/01/12	21:18-21:39	21:40-22:01	Stratified	150-100,100-50
20	02/01/12	00:38-00:58	00:59-01:20	Stratified	150-100,100-50
27	02/01/12	21:41-22:10	22:11-22:41	Oblique	0-200-0 W1.2S
28	03/01/12	01:08-01:39	01:40-02:11	Oblique	0-200-0 W1.2N
36	03/01/12	22:12-22:45	22:45-23:15	Oblique	0-200-0 W2.2N
37	04/01/12	01:37-01:39	01:41-01:45	Target	Krill
38	04/01/12	02:39-02:44	04:26-04:43	Target	Krill
39	04/01/12	03:56-04:26	21:32-21:53	Oblique	0-200-0 W2.2S
48	04/01/12	21:10-21:32	23:56-00:04	Oblique	0-200-0 W3.2S
49	04/01/12	23:46-23:49	02:29-02:31	Target	Krill
50	05/01/12	02:27-02:29	04:27-04:57	Target	Krill
51	05/01/12	03:55-04:27	04:27-04:57	Oblique	0-200-0 W3.2N
64	06/01/12	01:29-01:33	01:33-01:34	Target	Net 2 aborted due to tension
65	06/01/12	10:33-10:53	10:53-11:27	Stratified	140-100,100-20
67	06/01/12				Net aborted due to
					incorrect closure
68	06/01/12	16:24-16:44	16:44-17:04	Stratified	150-100,100-20
69	06/01/12	21:20-21:42	21:43-22:13	Stratified	150-100,100-20
70	07/01/12	01:42-01:47	01:48-01:50	Target	Krill
71	07/01/12	03:18-03:38	03:39-03:59	Stratified	150-100,100-20
77	07/01/12	00:59-01:02		Target	Net 2 aborted due to

Table 17 - RMT8 Net events

					tension
82	10/01/12	02:01-02:04	02:05-02:08	Target	Small krill
86	11/01/12				Net wash
87	11/01/12	16:32-17:03	17:08-17:38	Stratified	180-100,100-20
91	12/01/12	11:20-11:54			Altimeter test
92	12/01/12	12:22-12:40			Altimeter test
93	12/01/12	12:57-13:09			Altimeter test
95	13/01/12	00:08-00:12	00:14-00:18	Target	Small krill

7.2 Macrozooplankton

Gabriele Stowasser, Sophie Fielding, Ryan Saunders, Peter Enderlein, Nelly Tremblay, Damien O'Gaoithin, Jeremy Robst, David Connor, Imke Grefe and Will Goodall-Copestake

7.2.1 Gear

The RMT8 was used to characterise the macrozooplankton community in the Western Corebox in 200m stratified hauls (Table). Three types of RMT8 deployments were undertaken during JR260b. Target trawls on krill swarms identified from the EK60 data. Oblique hauls where RMT8 net 1 was opened at the surface and the net deployed to 200 m before closing the net and vice versa. Finally stratified hauls were used where the net was opened at discrete depth horizons from the bottom upwards. The choice of deployment type depended on the task. Target hauls were made to supply Nelly Tremblay and the WCB team with krill for live incubations, preserved for different projects in Cambridge and for length frequency. Oblique hauls were only undertaken at the Western Core Box CTD positions. In this case one catch was worked up and the other preserved. Finally the stratified hauls were undertaken at the 24 hour stations, each catch was worked up and preserved. In some samples only a subsample was preserved due to the size of the catch.

7.2.2 Catch sorting and processing

Stratified hauls

For the stratified hauls the total catch was sorted and quantified. Numbers caught and total weight was obtained for each species. For some groups specific identification was not possible and identification will be verified through re-examination in the laboratory in either Cambridge or by consulting colleagues specializing in these taxa outside BAS. All material collected in the second net was preserved in formalin. Specimens of key species found in the Scotia Sea were collected for genetic and energetic studies and preserved at -80°C (Table). Where specimens of the euphausiid *Thysanoessa* sp. were caught, subsamples were collected for collaborator Jaime Farber-Lorda at the University of , Mexico, and preserved at -80°C. All data were recorded in an Excel database.

Targeted hauls

The catch of targeted hauls was sorted and quantified. Where live *Euphausia superba* were caught samples were taken for live incubations and subsamples were frozen at -80° C for genetic and energetic studies. In hauls, where sufficient numbers of *E. superba* were caught, length-frequency data was collected (see chapter on krill length frequency). Krill total length was measured on 100 fresh krill, using the standard BAS measurement from the anterior edge of the eye to the tip of the telson, with measurements rounded down to the nearest mm

(Morris et al. 1988). Maturity stage was assessed using the scale of Makarov and Denys with the nomenclature described by Morris et al. (1988).

Event	Date	Net 1 open-	Net 2 open-	Туре	Comments
Num		closed	closed		
5	30/12/11	17:01-17:04	17:06-17:09	Test	Discard
6	30/12/11	17:52-17:57	17:58-18:03	Test	Discard
14	01/01/12	00:41-00:51	00:53-00:54	Target	No target some krill
					caught
15	01/01/12	10:41-11:01	11:07-11:28	Stratified	150-100,100-50
19	01/01/12	21:18-21:39	21:40-22:01	Stratified	150-100,100-50
20	02/01/12	00:38-00:58	00:59-01:20	Stratified	150-100,100-50
27	02/01/12	21:41-22:10	22:11-22:41	Oblique	0-200-0 W1.2S
28	03/01/12	01:08-01:39	01:40-02:11	Oblique	0-200-0 W1.2N
36	03/01/12	22:12-22:45	22:45-23:15	Oblique	0-200-0 W2.2N
37	04/01/12	01:37-01:39	01:41-01:45	Target	Krill
38	04/01/12	02:39-02:44	04:26-04:43	Target	Krill
39	04/01/12	03:56-04:26	21:32-21:53	Oblique	0-200-0 W2.2S
48	04/01/12	21:10-21:32	23:56-00:04	Oblique	0-200-0 W3.2S
49	04/01/12	23:46-23:49	02:29-02:31	Target	Krill
50	05/01/12	02:27-02:29	04:27-04:57	Target	Krill
51	05/01/12	03:55-04:27	04:27-04:57	Oblique	0-200-0 W3.2N
64	06/01/12	01:29-01:33	01:33-01:34	Target	Net 2 aborted due to
					tension
65	06/01/12	10:33-10:53	10:53-11:27	Stratified	140-100,100-20
67	06/01/12				Net aborted due to
					incorrect closure
68	06/01/12	16:24-16:44	16:44-17:04	Stratified	150-100,100-20
69	06/01/12	21:20-21:42	21:43-22:13	Stratified	150-100,100-20
70	07/01/12	01:42-01:47	01:48-01:50	Target	Krill
71	07/01/12	03:18-03:38	03:39-03:59	Stratified	150-100,100-20
77	07/01/12	00:59-01:02		Target	Net 2 aborted due to
					tension
82	10/01/12	02:01-02:04	02:05-02:08	Target	Small krill
86	11/01/12				Net wash
87	11/01/12	16:32-17:03	17:08-17:38	Stratified	180-100,100-20
91	12/01/12	11:20-11:54			Altimeter test
92	12/01/12	12:22-12:40			Altimeter test
93	12/01/12	12:57-13:09			Altimeter test
95	13/01/12	00:08-00:12	00:14-00:18	Target	Small krill

Table 18 - RMT Net events

Project	Species	Event*	Number sampled	Storage
	Calycopsis borchgrevinki	28	2	-80°C
	Calycopsis borchgrevinki	51	7	-80°C
	Chaetognatha spp.	27	10	-80°C
	Chaetognatha spp.	28	5	-80°C
	Cyphocaris sp.	28	1	-80°C
	Diphyes sp.	28	2	-80°C
	Diphyes sp.	36	8	-80°C
	Diphyes sp.	51	1	-80°C
	Euphausia superba	27	20	-80°C
	Euphausia superba	77	20	-80°C
	Euphausia triacantha	14	10	-80°C
CS	Euphausia triacantha	27	20	-80°C
etio	Galiteuthis glacialis	27	2	-80°C
ğ	Galiteuthis glacialis	28	4	-80°C
Energetics	Galiteuthis glacialis	51	3	-80°C
	Mysidacea spp.	87	21	-80°C
	Parandania boecki	28	7	-80°C
	Polychaeta	28	2	-80°C
	Salpa thompsoni	14	4	-80°C
	Salpa thompsoni	28	18	-80°C
	Salpa thompsoni	36	9	-80°C
	Salpa thompsoni	77	132	-80°C
	Sibogitta sp.	27	7	-80°C
	Sibogitta sp.	28	6	-80°C
	Themisto gaudichaudii	87	50	-80°C
	Themisto gaudichaudii	14	20	-80°C
	Tomopteris sp.	14	38	-80°C
	Euphausia superba	28	75	-80°C
	Euphausia superba	37	50	-80°C
	Euphausia superba	49	50	-80°C
ζ ρ	Euphausia superba	82	100	-80°C
tic	Euphausia superba	95	50	-80°C
net	Euphausia triacantha	27	50	-80°C
Genetics	Euphausia triacantha	36	50	-80°C
	Themisto gaudichaudii	27	73	-80°C
	Themisto gaudichaudii	36	50	-80°C
	Themisto gaudichaudii	87	50	-80°C
	Thysanoessa sp.	36	50	-80°C

 Table 19 - Location and numbers of invertebrate species sampled in South Georgia waters during cruise

 JR260B

* For geographical position of Events see table

7.2.3 Energetic study

Food quality has fundamental implications for the ecology of all species and yet few data exist in the literature concerning the energy content of fish and crustaceans from the Southern

Ocean. The energy content of prey is a key factor controlling the structure of food webs as well as behavioural traits such as the proportion of time higher predators may spend foraging versus socialising or resting. The energy density of prey items can vary substantially between species as well as their being differences within species. These variations have been attributed to differences in relative status (size, age, reproductive state) and/or seasonal or geographical differences and influences. The aim during this cruise was to extend our existing sample collection of prominent prey species of the Scotia Sea (e.g. *Themisto gaudichaudii, Salpa thompsoni, E. superba*) and collect specimens from different regions. All specimens taken for energetic analysis are listed in Table.

7.2.5 Genetic study

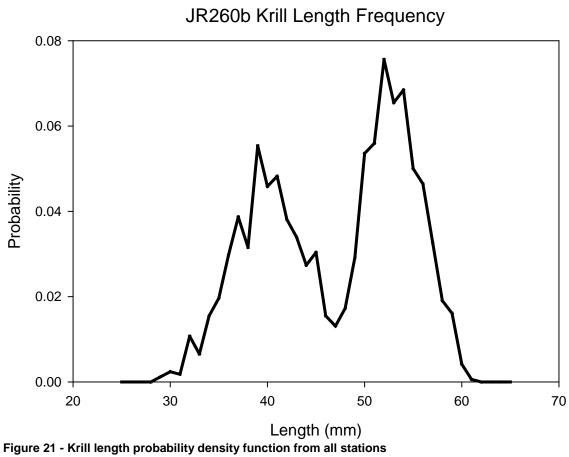
A further aim during this cruise was to sample multiple krill species for evolutionary genetics research projects based at BAS Cambridge, where DNA would be extracted from the krill and multiple genetic loci PCR amplified and sequenced. The resulting sequence information will be used to start building a multi-gene molecular phylogeny of krill, the aim of which is to resolve the contradictions and weakly resolved nodes that occur in krill molecular phylogenies produced to date. When large sample sizes are available, DNA sequence information will be used for population-genetic historical demography analysis. These analyses generate historical trajectories of krill population size through time that can be compared with existing trajectories for *E. superba* and with paleo-environmental data (e.g. climate change inference) so that we can build up a picture of how krill communities (as opposed to just single species) may have changed in response to glacial-timescale climate change. Several sample-sets of 50-100 specimens of E. superba were collected from contrasting areas in Western Corebox waters to test for possible differences in population structure within the same year of recruitment. Furthermore Themisto gaudichaudii was sampled for genetic analysis at several stations (Table). In South Georgia waters T. gaudichaudii can be an important prey for higher predators, particularly in years of low krill abundance. However, little information exists on their population structure and dynamics in this region and currently no information exists on the molecular phylogeny of this species. Samples were bagged in batches of 25 and frozen at -80°C until further analysis.

7.3 Krill length frequency, maturity stage and shape

7.3.1 Introduction

Antarctic krill (*Euphausia superba*) were sampled to determine the variation in the structure of the population around South Georgia and to provide parameters required in the target strength model for krill biomass estimation.

7.3.2 Methods


Krill samples were taken from RMT8 samples where there were sufficient numbers of krill to select 100 decent state specimens for length frequency, maturity and krill shape photographs. Krill were laid out on blue plastic boards (in pre-drilled grooves) and photographed using a Nikon DX3 with two flash guns on a stand. The same krill were then measured for length and staged. Krill total length was measured, using the standard BAS measurement from the anterior edge of the eye to the tip of the telson, with measurements rounded down to the nearest millimetre (Morris et al. 1988). Maturity stage was assessed using the scale of Makarov and Denys with the nomenclature described by Morris et al. (1988).

7.3.3 Data

Krill length frequency data were input into a spreadsheet on the L drive "JR260b_krill_length_frequencies.xls. The Net event numbers from which krill were measured and whether they were photographed is identified in Table krill_lf with the mean length of those events and the data is displayed in Figure Krill_lf

n)

Table 20 - Krill length frequency

7.4 Photography of krill samples

As part of the investigation of length frequency, each sample measured both laterally and dorsally. The photographs were taken for use in the development in a computerised approach to calculating the shape of krill to better inform a krill target strength model.

Krill were arranged on plastic boards in five rows of four. The boards were a medium to dark blue colour, intended to optimize the contrast with the krill bodies. Five grooves were machine-melted into the boards. Melting was preferable to cutting as it reduced the scattering of light from rough edges.

A Nikon D3X with an attach Nikon 60 mm macro lens and Hoya Skylight filter was mounted level, above the board such that the board was almost filling the field of view (Figure 1a). Two magnetically mounted flash guns were positioned low, either side of the board (Figure 1b), approximately 1 m apart and connected to the camera.

The camera was set in Manual mode with an aperture of F25 and an exposure of 1/125.

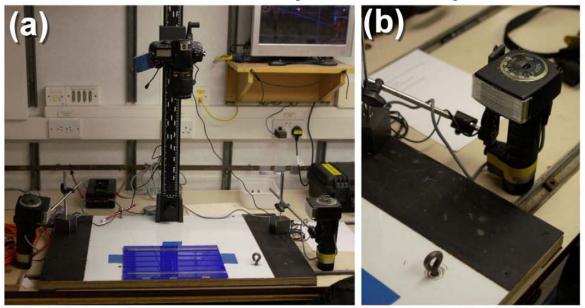


Figure 22. (a) Krill photography setup with magnetically mounted flash guns, camera stand and krill board. (b)

The photos were downloaded directly from the camera, catalogued and renamed to include the cruise number and image sequence. A list of the photographs and details of the associated event number, date etc. is included in Appendix XX.

An example photograph is shown in Figure 2.

Figure 23. Example of lateral view of a typical sample board.

7.5 Tolerance mechanisms and responses of Euphausia superb to hypoxia: a comparison with euphausiid species from three oxygen minimum zones of the Eastern Pacific

8. Shallow Underwater Camera System

SUCS was designed by Peter Enderlein to the specification from Dave Barnes to gain high resolution images of exact areas of benthic habitats. The requirement was to have a single cable design, whereby the cable had to be strong enough to hold the whole UW unit, to power up the UW unit, allow two way communications, the live streaming of low resolution video footage and being able to take high resolution still photos, which have to uploaded back on board for storage. The electronic design of the system was undertaken by Carl Robinson, who had developed a standalone Camera system before with similar components, which reduced the overall electronic design time.

SUCS was successfully deployed during cruise JR262 in October 2011 and it was noted that it had potential to make midwater video observations of krill swarms, as well as seafloor photographs. As a result it was brought onto JR260B with an aim to video krill in the midwater column and at depth. In addition, when opportunities arose, the camera was deployed to the seabed for additional photographs for Dave Barnes.

Event	Date	Time (GMT)	Records	Comments
1	30/12/2011	12:46-13:00	1 video, 2 midwater stills	
2	30/12/2011	13:10-13:30	2 videos, 3 midwater stills	
17	01/01/2012	17:13-17:41	7 videos, 5 midwater stills, 2	
			seabed stills	
18	01/01/2012	18:09-18:55	5 videos, 1 midwater still, 4	
			seabed stills	
40	04/01/2012	05:17-05:44	3 videos, 2 seabed stills	
66	06/01/2012	14:19-15:04	7 videos, 7 seabed stills	
76	08/01/2012	16:15-16:41	4 videos	
85	11/01/2012	14:35-15:14	4 videos, 7 seabed stills	
88	12/01/2012	01:33-02:03	3 videos, 4 seabed stills	Dropped through
				krill swarm

Table 21 - SUCS events

It appeared that the lights of the SUCS system was attracting krill, so whilst krill were observed on the seabed, it is not possible to identify whether they were there, or attracted by the lights. Photo 1 shows krill at the seabed, Photo 2 shows the same seabed image after the lights were switched off for 2 minutes.

Figure 24 - SUCS Photo 1

Figure 25 - SUCS Photo 2

The EK60 120 kHz data shows how the krill were drawn down from the scattering layer following the SUCS system.

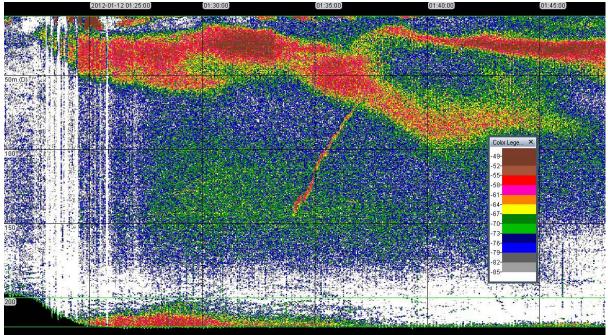


Figure 26 - EK60 120kHz showing krill following SUCS downcast

Prior to the SUCS deployment, there was a large indication that krill were swarming at the seabed below the surface swarm, seen in the EK60 data as a strong scattering layer just above the seabed.

9. Nitrous oxide N₂O: Sampling for stable isotope analysis and continuous concentration measurements in the surface ocean

Imke Grefe, PhD student (University of East Anglia UEA, UK)

Supervisors: Jan Kaiser, Paul Dennis, Alina Marca (UEA, UK), Thomas Röckmann (University Utrecht, Netherlands)

9.1 Background and Objective

Nitrous oxide N₂O is an important greenhouse gas and precursor of ozone depleting substances in the stratosphere. Natural sources of this trace gas are bacterial nitrification and denitrification. Stable isotope signatures can be useful tracers of biological cycling and the excess of the heavy oxygen isotope ¹⁷O (Δ ¹⁷O) in N₂O is a potential tracer of bacterial sources. Measuring the Δ ¹⁷O signal in marine samples would help constraining the contribution of the ocean to the global N₂O budget. The Southern Ocean is a highly dynamic area of the global overturning circulation where older water masses are upwelled and new deepwater is generated. This setting allows for sampling of various water masses, which can then be compared for their N₂O stable isotope composition.

Another approach of investigating the role of the oceans is comparing concentrations of dissolved N_2O in the surface ocean with the background signal in the marine air. Air-sea gas exchange calculations give insight in the amount of flux in- and out of the ocean.

9.2 Sampling and Measurements

Water samples for stable isotope analysis were taken from CTD casts on and off the shelf (table 1, figure 1). Five to seven depths were sampled, focussing on changes in the oxygen profile. Enhanced N₂O production from nitrification is expected in zones of lower oxygen concentrations. Isotope signatures of those production regions will be compared to surface samples from 10 m depths. It was also tried to sample different water masses, identified by changes in temperature and salinity. Samples were drawn bubble-free from Niskin bottles in 550 ml glass flasks, allowing the water to overflow three times the sample volume to avoid contamination from the atmosphere. Sample flasks were closed gas-tight with a butyl rubber stopper and aluminium crimp seals. To stop biological activity until analysis, 1 ml of mercuric chloride were added. 1 ml of helium was injected to avoid potentially compromising the seal when water warms up and expands. The gas headspace expands and compresses without building up as much pressure as a liquid.

Figure 27 - Map of CTD stations sampled for N₂O stable isotope analysis.

Table 22 - CTD casts sampled for N₂O stable isotope analysis. Each sample consists of three sub-samples, ~ 550 ml each. Samples will be analysed after return of the ship to the UK at the stable isotope lab SIL at the University of East Anglia UEA.

Event	Bottle number	Depth	Sample ID		
	1	1000			
JR260B_003	1	1000	JR260B-1	JR260B-2	JR260B-3
	3	300	JR260B-4	JR260B-5	JR260B-6
	5	100	JR260B-7	JR260B-8	JR260B-9
	7	60	JR260B-10	JR260B-11	JR260B-12
	9	10	JR260B-13	JR260B-14	JR260B-15
JR260B_016	1	275	JR260B-16	JR260B-17	JR260B-18
	3	140	JR260B-19	JR260B-20	JR260B-21
	5	80	JR260B-22	JR260B-23	JR260B-24
	7	50	JR260B-25	JR260B-26	JR260B-27
	9	10	JR260B-28	JR260B-29	JR260B-30
JR260B_026	1	260	JR260B-31	JR260B-32	JR260B-33
	3	200	JR260B-34	JR260B-35	JR260B-36
	5	90	JR260B-37	JR260B-38	JR260B-39
	7	50	JR260B-40	JR260B-41	JR260B-42
	9	10	JR260B-43	JR260B-44	JR260B-45
JR260B_035	1	1000	JR260B-46	JR260B-47	JR260B-48
	3	500	JR260B-49	JR260B-50	JR260B-51
	5	200	JR260B-52	JR260B-53	JR260B-54

	7 9	50 10	JR260B-55 JR260B-58	JR260B-56 JR260B-59	JR260B-57 JR260B-60
JR260B_083	1	1600	JR260B-61	JR260B-62	JR260B-63
	3	1100	JR260B-64	JR260B-65	JR260B-66
	5	700	JR260B-67	JR260B-68	JR260B-69
	8	350	JR260B-70	JR260B-71	JR260B-72
	9	150	JR260B-73	JR260B-74	JR260B-75
	11	50	JR260B-76	JR260B-77	JR260B-78
	13	10	JR260B-79	JR260B-80	JR260B-81

A laser-based N₂O/CO analyser (*Los Gatos Research, Inc.*) was used for measurements of dissolved N₂O in the surface ocean (figure 2). The analyser was connected to an equilibrator (figure 3), as well as to an intake for marine air via a valve board (figure 4). Measurements were alternated between water from the ship's pumped seawater supply, background concentrations in the air and three references, close to ambient concentrations. Measurements were taken at 1 Hz and can therefore resolve small-scale changes in surface ocean concentrations. Saturation and air-sea gas exchange will be calculated from analyser data, temperature in the equilibrator, sea surface temperature and –salinity from the ship's sensors. Raw data from the analyser will be quality controlled (e.g. flushing time of cavity when switching between gases) and drift corrected after post-cruise calibration of the reference gases against primary standards. Initial problems with the analyser's build-in computer freezing up were experienced. Those could be resolved by adjusting a potentiometer on the switching power supply, following emailed instructions of the manufacturer. The analyser was running without further issues from the afternoon of 29 December until the end of the cruise.

Discrete 20 ml samples from the pumped seawater supply were taken and preserved with 3 ml mercuric chloride for analysis with a gas chromatograph connected to an electron capture detector GC-ECD at UEA. Results will be compared to the analyser's measurements.

Figure 28 - N₂O/CO analyser, Los Gatos Research, Inc.

Figure 30 - Percolating packed bed equilibrator, connected to ship's pumped seawater supply in chemistry lab.

Figure 29 - Valve board, connecting the N_2O/CO analyser to the equilibrator headspace, marine air line and reference gases.

Date	Time (Sample ID	
	start sampling	stop sampling	
6/1/12	12:20	12:30	JR260B 1a - 1d
6/1/12	16:22	16:30	JR260B 2a - 2d
9/1/12	14:20	14:30	JR260B 3a - 3d
11/9/12	18:43	18:50	JR260B 4a - 4d
11/9/12	20:00	20:05	JR260B 5a - 5d
12/1/12	17:42	17:47	JR260B 6a - 6d
14/1/12	13:45	13:51	JR260B 7a - 7d

Table 23: Sampling times for 20 ml seawater samples from pumped supply for GC-ECD measurements and subsequent comparison to laser-based N₂O analyser data.

10. Technical Support

Vsevolod Afanasyev, Jeremy Robst

10.1 AME Report

Cruise:JR260B Start date:27/11/2011 Finish date:15/01/2012 Name of AME engineer: Vsevolod Afanasyev Name of principle scientist (PSO): Sophie Fielding

Instrument	Used ?	Comments
XBT (aft UIC) (PC, I/F box, handgun)	Y	
Scintillation counter (prep lab)		
AutoSal (labs on upper deck) S/N 63360		
AutoSal (labs on upper deck) S/N 65763		
AutoSal (labs on upper deck) S/N 68533		
Portasal S/N 68164		
Magnetometer STCM1 (aft UIC)		
AME workshop PC	Y	

GPS, MRU, Gyro

GPS		
Furuno GP32	Y	
(bridge – port side)		
DGPS		
Ashtec ADU5	Y	
(bridge – port side)		

DGPS, MRU Seatex Seapath (UIC – swath suite)	Y	Seapath overheated – rear fan filter removed.
DGPS Ashtec Glonass GG24 (bridge – starboard side)	Y	
Gyro synchro to RS232 Navitron NT925HDI (UIC – aft)	Y	
TSS HRP (UIC repeater)	Y	

ACOUSTIC

Instrument	Used ?	Comments
ADCP (aft UIC)	Y	
Waterfall Hydrophone (aft UIC)		
EM122 (for'd UIC)	Y	
TOPAS (for'd UIC)		
EPC plotter (used with TOPAS)		
EK60 (mid UIC)	Y	
HP deskjet 1 (used with EK)		
HP deskjet 2 (used with EK)		
SSU (for'd UIC)	Y	
SVP S/N3298 (cage when unused)		
SVP S/N3314 (cage when unused)		
10kHz IOS pinger Sonardyne USBL (aft UIC)		

OCEANLOGGER

Instrument	Used ?	Comments
Main logging PC hardware and software	Y	
Barometer (back of logger rack) #V145002 (7/03)	Y	
Barometer #V145003 (7/03)	Y	
TH1, Air humidity & temp (for'd mast) #60599556	Y	Occasionally drops to 0. Self - recovers.
TH2, Air humidity & temp (for'd mast) #60599558	Y	
Thermosalinograph SBE45 (prep lab) #4524698-0016		
Thermosalinograph SBE45 # 4538936-0130	Y	
Thermosalinograph SBE45 #4524698-0018 (7/04)		
Uncontaminated seawater temp SBE38 #		
SBE45 + SBE38 Interface #		
Fluorometer (prep lab)	Y	
Transmissometer C- STAR CST-1399DR	Y	
TIR sensor (pyranometer) (for'd mast) #112993 TIR1	Y	
TIR sensor #112992 TIR2	Y	

OCEANLOGGER – cont.

PAR sensor (for'd mast) #110127 PAR1	Y	
PAR sensor #110126 PAR2	Y	
Flow meter + Transmitter (prep room) #11950	Y	
Uncontaminated seawater temp (transducer space)	Y	

CTD (all kept in cage/ sci hold when not in use)

Instrument	Used ?	Comments
CTD PC	Y	
Deck unit 1 SBE11plus S/N 11P15759-0458		
Deck unit 2 SBE11plus S/N 11P20391-0502	Y	
Underwater unit SBE9plus #09P15759-0480 Press #67241		
Underwater unit SBE9plus #09P20391-0541 Press #75429		
Underwater unit SBE9plus #09P30856-0707 Press #89973		
Underwater unit SBE9plus #09P35716-0771 Press #93686	Y	
Carousel & pylon SBE32 #3215759-0173		
Carousel & pylon SBE32		

#0248		
Carousel & Pylon 24 Bottle	Y	
CTD swivel linkage	Y	
CTD swivel S/N196115		
CTD swivel S/N196111	Y	

umps	– please state which prinary and secondary
Y	Primary Temp. (Primary – Secondary OK)
Y	Secondary Temp. (Primary – Secondary OK)
Υ	Secondary Cond.
Y	Primary Cond.
Y	Primary pump. CONSTANT OFFSET (PTIMARY-SECONDARY)
Y	Secondary pump. CONSTANT OFFSET (PTIMARY-SECONDARY)
	Y Y Y Y Y Y

CTD contd – C & T & pumps – please state which primary and secondary

Pump SBE5T	
# 53415	

CTD contd

Instrument	Used ?	Comments
Fluorometer Aquatracka MkIII #097324001	Y	
Fluorometer Aquatracka MkIII #088249		
Standards Thermometer SBE35 #3515759-0005		
Standards Thermometer SBE35 # 3527735-0024		
Standards Thermometer SBE35 # 3535231-0047	Y	
Altimeter PA200 #2130.26993	Y	IT PINGS TOO FAST, OCCASIONALLY RESULTING IN FALSE BOTTOM SIGNAL
Altimeter PA200 #7742.163162		
Altimeter PA200 #2130.27001		
Transmissometer C- Star #CST-1279DR	Y	
Transmissometer C- Star #CST-527DR		
Transmissometer C- Star CST 846DR		
Oxygen sensor SBE43 #0242	Y	
Oxygen sensor SBE43 #0245		
Oxygen sensor SBE43 #0620		
Oxygen sensor SBE43 #0676		
PAR sensor #7235	Y	

PAR sensor #7252	
PAR sensor #7274	
PAR sensor #7275	
LADCP #14443	
LADCP #15060	
LADCP #	
LADCP Battery Pack	
AME Laptop (BBTalk)	
CTD contd	
Notes on any other part of CTD e.g. faulty cables, wire drum slip ring, bottles, swivel, frame, tubing etc.	

AME UNSUPPORTED INSTRUMENTS BUT LOGGED

Instrument	Used ?	Comments
EA600 (bridge and UIC remote)	Y	
Anemometer	Y	
Gyro	Y	
DopplerLog	Y	
EMLog	Y	
CLAM winch monitoring system	Y	

At the end of the cruise, please ensure that:

- the XBT is left in a suitable state (store in cage if not to be used for a while do not leave on deck or in UIC as it will get kicked around). Remove all deck cables at end of cruise prior to refit.
- the salinity sample bottles have been washed out and left with deionised water in – please check this otherwise the bottles will build up crud and have to be replaced.
- the CTD is left in a suitable state (washed (including all peripherals), triton + deionised water washed through TC duct, empty syringes put on T duct inlets to keep dust out and stored appropriately). Be careful about freezing before next use this will damage the C sensors (run through with used standard seawater to reduce the chance of freezing before the next use). Remove all the connector locking sleeves and wash with fresh water. Blank off all unconnected connectors. See the CTD wisdom file for more information. If the CTD is not going to be used for a few weeks, at the end of your cruise please clean all connectors and attach dummy plugs or fit the connectors back after cleaning if they are not corroded.
- the CTD winch slip rings are cleaned if the CTD has been used this prevents failure through accumulated dirt.
- the SVP is left in a suitable state (washed and stowed). Do not leave this on deck without a cover for any length of time as it rusts. Stow inside at end of cruise.
- all manuals have been returned to the designated drawers and cupboards.
- you clean all the fans listed below every cruise or every month, whichever is the longer.

Please clean the intake fans on the following machines:

Instrument	Cleaned?
Oceanlogger	N
EM120, TOPAS, NEPTUNE UPSs	N
Seatex Seapath	N
Topas tweendeck	N
EM120 Tween deck	N

Additional notes and recommendations for change / future work

<u>Altimeter</u>

Ping rate is too fast.

10.2 JR260B ICT Cruise Report

13/01/2012 Jeremy Robst

10.2.1 Data Logging Systems

10.2.1.1 SCS

Date / Time	Event
15:19 25/12/2011	New leg started
XX:XX 18(?)/01/2012	Leg finished, new leg started

No problems occurred with the SCS data logging system.

10.2.1.2 Seapath 320 GPS

The Seapath 320 PC crashed on 30 December at 17:04, almost certainly due to overheating – the front panel temperature was reading 51.4 degrees. The filter on the rear fan was removed and the temperature returned to around 45 degrees where it has remained.

10.2.2 Scientific Equipment PCs

10.2.2.1 XBT

A new XBT PC was installed on the previous cruise by Johnnie Edmonston and Julian Klepacki. This is running Windows XP and has a USB interface to communicate with the XBT launcher.

It was slightly modified this cruise; it was given a fixed IP address of 10.104.254.234 (on the Data LAN). A password was set for the xbt account, and the U: drive was mapped to <u>\\jrlb\xbt</u> so data could be logged directly to the leg data location.

The XBT software was configured to store Realtime, Overlay data and Calibration Coefficients to U:\data (a symbolic link to /data/cruise/jcr/current/xbt), and backup data to C:\data. The options to automatically create EDF files and backup data were ticked. Finally K9NT was installed, the Windows Time service disabled and the Windows Firewall disabled so the PC now synchronises time with the broadcasts from the SCS.

10.2.2.2 SUCS

The SUCS PC was used almost as configured on the JR262 cruise except it was moved onto the Data LAN with a fixed IP address of 10.104.254.37, so the anti-virus could be removed. The Windows time service was stopped and K9NT installed to synchronise with broadcasts from the SCS.

10.2.2.3 MOCNESS

The timezone on the MOCNESS PC was changed to GMT and k9 installed to synchronise with the SCS.

10.2.3 Other Shipboard Computer Systems

No problems were encountered with any of the other shipboard computer systems – the Netware server JRNA, PCs, ESX virtual machine server and Unix fileserver all functioned normally.

10.3 Data Management

David Connor

10.3.1 DPS (Data Processing System)

Some of the data requests on this cruise have been completed by using the DPS utilities. All DPS code is stored on JRLB under /users/dacon/dps/. They are also stored on the cruise work directory for JR260B under data_management.

10.3.1.1 XML Chains

general/bridgetrack.xml – Combines Seatex-gga position information with eventlog entries for the current science cruise. This is exported to KML. This provides quick access to viewing the ships track and events.

JR260B/damien/*.xml – Two DPS chains that satisfy the data requests for Damien O'Gaoithin outline in 10.3.2.

JR260B/imke/*.xml – Six DPS chains that satisfy the data request for Imke Grefe in section 10.3.2

10.3.1.2 Future Recommendations

I think it could be useful if we add a sub-directory in the standard cruise data structure for the dps. It would be useful to have a cruise specific and a cruise non-specific area that are linked together. Some scripts would be useful cruise-to-cruise and others are specifically for serving data requests on that cruise.

10.3.2 Data Requests

Damien O'Gaoithin – British Antarctic Survey

Work Summary: Using ES853 echosounder on various deployed instruments throughtout the cruise. Data request covers geo-referencing the echo sounder (ES853) casts. Requested data:

- SCS Underway
 - Seatex-gga lat/lon time reference
 - Winch cable_out + others
 - o Gyro heading

Imke Grefe – UEA

Work Summary: N20 gas analysis of underway water sampling and CTD water sampling. Requested Data:

- SCS Underway
 - o Lat/lon
 - Oceanlogger sea surfrace temp and salinity Note: currently uncalibrated
 - o Speed, heading
 - Wind + factors for calculating truewind
 - o Water depth

- CTD Profiles
 - CTD quick look data exports of downcast graphs
 - Uncalibrated CTD profiles
 - Calibrated CTD profiles

Nelly Trembley – AWI

Work Summary: respiration rates will be provided by nelly in text files Requested Data:

- CTD profiles
- Underway data

Appendix A: Krill Image File Reference Table

Image	Date	Event	Net	Board	View
JR260B_krill_image_1.JPG	01/01/2012	19	1	1	Lateral
JR260B_krill_image_2.JPG	01/01/2012	19	1	1	Dorsal
JR260B_krill_image_3.JPG	01/01/2012	19	1	2	Lateral
JR260B_krill_image_4.JPG	01/01/2012	19	1	2	Dorsal
JR260B_krill_image_5.JPG	01/01/2012	19	1	3	Lateral
JR260B_krill_image_6.JPG	01/01/2012	19	1	3	Dorsal
JR260B_krill_image_7.JPG	01/01/2012	19	1	4	Dorsal
JR260B_krill_image_8.JPG	01/01/2012	19	1	4	Dorsal
JR260B_krill_image_9.JPG	01/01/2012	19	1	5	Lateral
JR260B_krill_image_10.JPG	01/01/2012	19	1	5	Dorsal
JR260B_krill_image_11.JPG	01/01/2012	20	2	1	Lateral
JR260B_krill_image_12.JPG	01/01/2012	20	2	1	Dorsal
JR260B_krill_image_13.JPG	01/01/2012	20	2	2	Lateral
JR260B_krill_image_14.JPG	01/01/2012	20	2	2	Dorsal
JR260B_krill_image_15.JPG	01/01/2012	20	2	3	Lateral
JR260B_krill_image_16.JPG	01/01/2012	20	2	3	Dorsal
JR260B_krill_image_17.JPG	01/01/2012	20	2	4	Lateral
JR260B_krill_image_18.JPG	01/01/2012	20	2	4	Dorsal
JR260B_krill_image_19.JPG	01/01/2012	20	2	5	Lateral
JR260B_krill_image_20.JPG	01/01/2012	20	2	5	Dorsal
JR260B_krill_image_21.JPG	03/01/2012	28	1	1	Lateral
JR260B_krill_image_22.JPG	03/01/2012	28	1	1	Dorsal
JR260B_krill_image_23.JPG	03/01/2012	28	1	2	Lateral
JR260B_krill_image_24.JPG	03/01/2012	28	1	2	Dorsal
JR260B_krill_image_25.JPG	03/01/2012	28	1	3	Lateral
JR260B_krill_image_26.JPG	03/01/2012	28	1	3	Dorsal
JR260B_krill_image_27.JPG	03/01/2012	28	1	4	Dorsal
JR260B_krill_image_28.JPG	03/01/2012	28	1	4	Lateral
JR260B_krill_image_29.JPG	03/01/2012	28	1	5	Dorsal
JR260B_krill_image_30.JPG	03/01/2012	28	1	5	Lateral
JR260B_krill_image_31.JPG	03/01/2012	28	1	6	Dorsal
JR260B_krill_image_32.JPG	03/01/2012	28	1	6	Lateral
JR260B_krill_image_33.JPG	04/01/2012	37	1	1	Lateral
JR260B_krill_image_34.JPG	04/01/2012	37	1	1	Dorsal
JR260B_krill_image_35.JPG	04/01/2012	37	1	2	Lateral
JR260B_krill_image_36.JPG	04/01/2012	37	1	2	Dorsal
JR260B_krill_image_37.JPG	04/01/2012	37	1	3	Lateral
JR260B_krill_image_38.JPG	04/01/2012	37	1	3	Dorsal
JR260B_krill_image_39.JPG	04/01/2012	37	1	5	Lateral
JR260B_krill_image_40.JPG	04/01/2012	37	1	5	Dorsal
JR260B_krill_image_41.JPG	04/01/2012	37	1	6	Lateral

JR260B_krill_image_42.JPG	04/01/2012	37	1	6	Dorsal
JR260B_krill_image_43.JPG	04/01/2012	37	2	1	Lateral
JR260B_krill_image_44.JPG	04/01/2012	37	2	1	Dorsal
JR260B_krill_image_45.JPG	04/01/2012	37	2	2	Lateral
JR260B_krill_image_46.JPG	04/01/2012	37	2	2	Dorsal
JR260B_krill_image_47.JPG	04/01/2012	37	2	3	Lateral
JR260B_krill_image_48.JPG	04/01/2012	37	2	3	Dorsal
JR260B_krill_image_49.JPG	04/01/2012	37	2	4	Lateral
JR260B_krill_image_50.JPG	04/01/2012	37	2	4	Dorsal
JR260B_krill_image_51.JPG	04/01/2012	37	2	5	Lateral
JR260B_krill_image_52.JPG	04/01/2012	37	2	5	Dorsal
JR260B_krill_image_53.JPG	04/01/2012	38	2	1	Lateral
JR260B_krill_image_54.JPG	04/01/2012	38	2	1	Dorsal
JR260B_krill_image_55.JPG	04/01/2012	38	2	2	Lateral
JR260B_krill_image_56.JPG	04/01/2012	38	2	2	Dorsal
JR260B_krill_image_57.JPG	04/01/2012	38	2	3	Lateral
JR260B_krill_image_58.JPG	04/01/2012	38	2	3	Dorsal
JR260B_krill_image_59.JPG	04/01/2012	38	2	4	Lateral
JR260B_krill_image_60.JPG	04/01/2012	38	2	4	Dorsal
JR260B_krill_image_61.JPG	04/01/2012	38	2	5	Lateral
JR260B_krill_image_62.JPG	04/01/2012	38	2	5	Dorsal
JR260B_krill_image_63.JPG	04/01/2012	38	1	1	Lateral
JR260B_krill_image_64.JPG	04/01/2012	38	1	1	Dorsal
JR260B_krill_image_65.JPG	04/01/2012	38	1	2	Dorsal
JR260B_krill_image_66.JPG	04/01/2012	38	1	2	Lateral
JR260B_krill_image_67.JPG	04/01/2012	38	1	3	Dorsal
JR260B_krill_image_68.JPG	04/01/2012	38	1	3	Lateral
JR260B_krill_image_69.JPG	04/01/2012	38	1	4	Dorsal
JR260B_krill_image_70.JPG	04/01/2012	38	1	4	Lateral
JR260B_krill_image_71.JPG	04/01/2012	38	1	5	Lateral
JR260B_krill_image_72.JPG	04/01/2012	38	1	5	Dorsal
JR260B_krill_image_73.JPG	05/01/2012	49	1	1	Lateral
JR260B_krill_image_74.JPG	05/01/2012	49	1	1	Dorsal
JR260B_krill_image_75.JPG	05/01/2012	49	1	2	Dorsal
JR260B_krill_image_76.JPG	05/01/2012	49	1	2	Lateral
JR260B_krill_image_77.JPG	05/01/2012	49	1	3	Dorsal
JR260B_krill_image_78.JPG	05/01/2012	49	1	3	Lateral
JR260B_krill_image_79.JPG	05/01/2012	49	1	4	Dorsal
JR260B_krill_image_80.JPG	05/01/2012	49	1	4	Lateral
JR260B_krill_image_81.JPG	05/01/2012	49	1	5	Dorsal
JR260B_krill_image_82.JPG	05/01/2012	49	1	5	Lateral
JR260B_krill_image_83.JPG	05/01/2012	49	2	1	Dorsal
JR260B_krill_image_84.JPG	05/01/2012	49	2	1	Lateral
JR260B_krill_image_85.JPG	05/01/2012	49	2	2	Dorsal
JR260B_krill_image_86.JPG	05/01/2012	49	2	2	Lateral

JR260B_krill_image_88.JPG 05/01/2012 49 2 3 Dorsal JR260B_krill_image_89.JPG 05/01/2012 49 2 4 Dorsal JR260B_krill_image_90.JPG 05/01/2012 49 2 4 Lateral JR260B_krill_image_91.JPG 05/01/2012 49 2 5 Lateral JR260B_krill_image_93.JPG 05/01/2012 50 1 1 Dorsal JR260B_krill_image_93.JPG 05/01/2012 50 1 2 Lateral JR260B_krill_image_95.JPG 05/01/2012 50 1 3 Dorsal JR260B_krill_image_95.JPG 05/01/2012 50 1 3 Darsal JR260B_krill_image_98.JPG 05/01/2012 50 1 4 Lateral JR260B_krill_image_101.JPG 05/01/2012 50 1 4 Lateral JR260B_krill_image_103.JPG 05/01/2012 50 2 1 Lorsal JR260B_krill_image_103.JPG 05/01/2012 50 2 Lateral						
JR2608_krill_image_89.JPG 05/01/2012 49 2 4 Lateral JR2608_krill_image_91.JPG 05/01/2012 49 2 5 Dorsal JR2608_krill_image_92.JPG 05/01/2012 50 1 1 Dorsal JR2608_krill_image_92.JPG 05/01/2012 50 1 1 Lateral JR2608_krill_image_94.JPG 05/01/2012 50 1 2 Dorsal JR2608_krill_image_95.JPG 05/01/2012 50 1 3 Dorsal JR2608_krill_image_93.JPG 05/01/2012 50 1 3 Lateral JR2608_krill_image_90.JPG 05/01/2012 50 1 4 Lateral JR2608_krill_image_10.JPG 05/01/2012 50 1 5 Lateral JR2608_krill_image_10.JPG 05/01/2012 50 2 1 Dorsal JR2608_krill_image_10.JPG 05/01/2012 50 2 Lateral JR2608_krill_image_10.JPG 05/01/2012 50 2 Lateral	JR260B_krill_image_87.JPG	05/01/2012	49	2	3	Dorsal
JR2608_krill_image_90.JPG 05/01/2012 49 2 4 Lateral JR2608_krill_image_91.JPG 05/01/2012 49 2 5 Lateral JR2608_krill_image_93.JPG 05/01/2012 50 1 1 Dorsal JR2608_krill_image_93.JPG 05/01/2012 50 1 1 Lateral JR2608_krill_image_94.JPG 05/01/2012 50 1 3 Dorsal JR2608_krill_image_97.JPG 05/01/2012 50 1 3 Dorsal JR2608_krill_image_98.JPG 05/01/2012 50 1 4 Dorsal JR2608_krill_image_103.JPG 05/01/2012 50 1 4 Dorsal JR2608_krill_image_103.JPG 05/01/2012 50 2 1 Dorsal JR2608_krill_image_103.JPG 05/01/2012 50 2 1 Lateral JR2608_krill_image_104.JPG 05/01/2012 50 2 3 Dorsal JR2608_krill_image_104.JPG 05/01/2012 50 2 Dorsal	JR260B_krill_image_88.JPG	05/01/2012	49	2	3	Lateral
JR2608_krill_image_91.JPG 05/01/2012 49 2 5 Dorsal JR2608_krill_image_92.JPG 05/01/2012 50 1 1 Dorsal JR2608_krill_image_94.JPG 05/01/2012 50 1 2 Dorsal JR2608_krill_image_95.JPG 05/01/2012 50 1 2 Dorsal JR2608_krill_image_96.JPG 05/01/2012 50 1 3 Dorsal JR2608_krill_image_90.JPG 05/01/2012 50 1 4 Dorsal JR2608_krill_image_100.JPG 05/01/2012 50 1 4 Dorsal JR2608_krill_image_101.JPG 05/01/2012 50 1 5 Lateral JR2608_krill_image_103.JPG 05/01/2012 50 2 1 Dorsal JR2608_krill_image_103.JPG 05/01/2012 50 2 2 Dorsal JR2608_krill_image_103.JPG 05/01/2012 50 2 3 Lateral JR2608_krill_image_107.JPG 05/01/2012 50 2 1	JR260B_krill_image_89.JPG	05/01/2012	49	2	4	Dorsal
JR2608_krill_image_92.JPG 05/01/2012 49 2 5 Lateral JR2608_krill_image_93.JPG 05/01/2012 50 1 1 Dorsal JR2608_krill_image_95.JPG 05/01/2012 50 1 2 Dorsal JR2608_krill_image_96.JPG 05/01/2012 50 1 3 Dorsal JR2608_krill_image_97.JPG 05/01/2012 50 1 3 Lateral JR2608_krill_image_98.JPG 05/01/2012 50 1 4 Dorsal JR2608_krill_image_100.JPG 05/01/2012 50 1 4 Dorsal JR2608_krill_image_103.JPG 05/01/2012 50 1 5 Lateral JR2608_krill_image_104.JPG 05/01/2012 50 2 1 Dorsal JR2608_krill_image_104.JPG 05/01/2012 50 2 3 Dorsal JR2608_krill_image_104.JPG 05/01/2012 50 2 4 Dorsal JR2608_krill_image_103.JPG 05/01/2012 50 2 Lateral	JR260B_krill_image_90.JPG	05/01/2012	49	2	4	Lateral
JR260B_krill_image_93.JPG 05/01/2012 50 1 1 Dorsal JR260B_krill_image_94.JPG 05/01/2012 50 1 2 Dorsal JR260B_krill_image_95.JPG 05/01/2012 50 1 2 Lateral JR260B_krill_image_97.JPG 05/01/2012 50 1 3 Dorsal JR260B_krill_image_99.JPG 05/01/2012 50 1 4 Lateral JR260B_krill_image_100.JPG 05/01/2012 50 1 4 Lateral JR260B_krill_image_102.JPG 05/01/2012 50 1 5 Dorsal JR260B_krill_image_103.JPG 05/01/2012 50 2 1 Dorsal JR260B_krill_image_104.JPG 05/01/2012 50 2 1 Lateral JR260B_krill_image_105.JPG 05/01/2012 50 2 1 Dorsal JR260B_krill_image_105.JPG 05/01/2012 50 2 4 Lateral JR260B_krill_image_110.JPG 05/01/2012 50 2 4	JR260B_krill_image_91.JPG	05/01/2012	49	2	5	Dorsal
JR260B_krill_image_94.JPG 05/01/2012 50 1 1 Lateral JR260B_krill_image_95.JPG 05/01/2012 50 1 2 Dorsal JR260B_krill_image_97.JPG 05/01/2012 50 1 3 Dorsal JR260B_krill_image_98.JPG 05/01/2012 50 1 4 Dorsal JR260B_krill_image_99.JPG 05/01/2012 50 1 4 Lateral JR260B_krill_image_101.JPG 05/01/2012 50 1 4 Lateral JR260B_krill_image_103.JPG 05/01/2012 50 2 1 Lateral JR260B_krill_image_104.JPG 05/01/2012 50 2 2 Dorsal JR260B_krill_image_105.JPG 05/01/2012 50 2 2 Dorsal JR260B_krill_image_107.JPG 05/01/2012 50 2 3 Dorsal JR260B_krill_image_110.JPG 05/01/2012 50 2 4 Lateral JR260B_krill_image_113.JPG 05/01/2012 64 2 2	JR260B_krill_image_92.JPG	05/01/2012	49	2	5	Lateral
JR260B_krill_image_95.JPG 05/01/2012 50 1 2 Dorsal JR260B_krill_image_96.JPG 05/01/2012 50 1 3 Dorsal JR260B_krill_image_97.JPG 05/01/2012 50 1 3 Lateral JR260B_krill_image_99.JPG 05/01/2012 50 1 4 Lateral JR260B_krill_image_101.JPG 05/01/2012 50 1 4 Lateral JR260B_krill_image_102.JPG 05/01/2012 50 2 1 Dorsal JR260B_krill_image_103.JPG 05/01/2012 50 2 1 Lateral JR260B_krill_image_104.JPG 05/01/2012 50 2 1 Lateral JR260B_krill_image_105.JPG 05/01/2012 50 2 2 Lateral JR260B_krill_image_107.JPG 05/01/2012 50 2 3 Dorsal JR260B_krill_image_113.JPG 05/01/2012 50 2 4 Lateral JR260B_krill_image_113.JPG 05/01/2012 64 2 2	JR260B_krill_image_93.JPG	05/01/2012	50	1	1	Dorsal
JR260B_krill_image_96.JPG 05/01/2012 50 1 2 Lateral JR260B_krill_image_97.JPG 05/01/2012 50 1 3 Dorsal JR260B_krill_image_99.JPG 05/01/2012 50 1 4 Dorsal JR260B_krill_image_100.JPG 05/01/2012 50 1 4 Lateral JR260B_krill_image_101.JPG 05/01/2012 50 1 5 Dorsal JR260B_krill_image_103.JPG 05/01/2012 50 2 1 Dorsal JR260B_krill_image_104.JPG 05/01/2012 50 2 2 Dorsal JR260B_krill_image_104.JPG 05/01/2012 50 2 2 Lateral JR260B_krill_image_104.JPG 05/01/2012 50 2 2 Lateral JR260B_krill_image_104.JPG 05/01/2012 50 2 2 Lateral JR260B_krill_image_104.JPG 05/01/2012 50 2 4 Lateral JR260B_krill_image_113.JPG 05/01/2012 50 2 4 Lateral JR260B_krill_image_114.JPG 05/01/2012 64	JR260B_krill_image_94.JPG	05/01/2012	50	1	1	Lateral
JR2606_krill_image_97.JPG 05/01/2012 50 1 3 Dorsal JR260B_krill_image_98.JPG 05/01/2012 50 1 4 Dorsal JR260B_krill_image_100.JPG 05/01/2012 50 1 4 Lateral JR260B_krill_image_101.JPG 05/01/2012 50 1 5 Dorsal JR260B_krill_image_102.JPG 05/01/2012 50 2 1 Lateral JR260B_krill_image_103.JPG 05/01/2012 50 2 1 Lateral JR260B_krill_image_104.JPG 05/01/2012 50 2 2 Lateral JR260B_krill_image_105.JPG 05/01/2012 50 2 2 Lateral JR260B_krill_image_107.JPG 05/01/2012 50 2 3 Dorsal JR260B_krill_image_110.JPG 05/01/2012 50 2 4 Dorsal JR260B_krill_image_111.JPG 05/01/2012 64 2 1 Lateral JR260B_krill_image_113.JPG 05/01/2012 64 2 2 <td>JR260B_krill_image_95.JPG</td> <td>05/01/2012</td> <td>50</td> <td>1</td> <td>2</td> <td>Dorsal</td>	JR260B_krill_image_95.JPG	05/01/2012	50	1	2	Dorsal
JR260B_krill_image_98.JPG 05/01/2012 50 1 3 Lateral JR260B_krill_image_100.JPG 05/01/2012 50 1 4 Lorsal JR260B_krill_image_101.JPG 05/01/2012 50 1 5 Dorsal JR260B_krill_image_102.JPG 05/01/2012 50 1 5 Lateral JR260B_krill_image_103.JPG 05/01/2012 50 2 1 Dorsal JR260B_krill_image_104.JPG 05/01/2012 50 2 2 Lateral JR260B_krill_image_105.JPG 05/01/2012 50 2 2 Lateral JR260B_krill_image_105.JPG 05/01/2012 50 2 3 Lateral JR260B_krill_image_107.JPG 05/01/2012 50 2 4 Lateral JR260B_krill_image_109.JPG 05/01/2012 50 2 4 Lateral JR260B_krill_image_111.JPG 05/01/2012 50 2 4 Lateral JR260B_krill_image_113.JPG 05/01/2012 64 2 1 Lateral JR260B_krill_image_113.JPG 05/01/2012 64	JR260B_krill_image_96.JPG	05/01/2012	50	1	2	Lateral
JR2606_krill_image_99.JPG 05/01/2012 50 1 4 Dorsal JR2608_krill_image_100.JPG 05/01/2012 50 1 5 Dorsal JR2608_krill_image_101.JPG 05/01/2012 50 1 5 Lateral JR2608_krill_image_102.JPG 05/01/2012 50 2 1 Dorsal JR2608_krill_image_104.JPG 05/01/2012 50 2 2 Dorsal JR2608_krill_image_104.JPG 05/01/2012 50 2 2 Dorsal JR2608_krill_image_105.JPG 05/01/2012 50 2 3 Lateral JR2608_krill_image_107.JPG 05/01/2012 50 2 3 Dorsal JR2608_krill_image_109.JPG 05/01/2012 50 2 4 Lateral JR2608_krill_image_110.JPG 05/01/2012 50 2 4 Lateral JR2608_krill_image_111.JPG 05/01/2012 64 2 1 Lateral JR2608_krill_image_114.JPG 05/01/2012 64 2 4 <td>JR260B_krill_image_97.JPG</td> <td>05/01/2012</td> <td>50</td> <td>1</td> <td>3</td> <td>Dorsal</td>	JR260B_krill_image_97.JPG	05/01/2012	50	1	3	Dorsal
JR260B_krill_image_100.JPG 05/01/2012 50 1 4 Lateral JR260B_krill_image_101.JPG 05/01/2012 50 1 5 Dorsal JR260B_krill_image_102.JPG 05/01/2012 50 2 1 Dorsal JR260B_krill_image_103.JPG 05/01/2012 50 2 1 Lateral JR260B_krill_image_104.JPG 05/01/2012 50 2 2 Dorsal JR260B_krill_image_105.JPG 05/01/2012 50 2 2 Lateral JR260B_krill_image_107.JPG 05/01/2012 50 2 4 Dorsal JR260B_krill_image_109.JPG 05/01/2012 50 2 4 Lateral JR260B_krill_image_110.JPG 05/01/2012 50 2 4 Lateral JR260B_krill_image_111.JPG 05/01/2012 64 2 1 Lateral JR260B_krill_image_114.JPG 05/01/2012 64 2 Lateral JR260B_krill_image_114.JPG 05/01/2012 64 2 Lateral JR260B_krill_image_114.JPG 05/01/2012 64 2 J	JR260B_krill_image_98.JPG	05/01/2012	50	1	3	Lateral
JR260B_krill_image_101.JPG 05/01/2012 50 1 5 Dorsal JR260B_krill_image_102.JPG 05/01/2012 50 2 1 Dorsal JR260B_krill_image_103.JPG 05/01/2012 50 2 1 Lateral JR260B_krill_image_104.JPG 05/01/2012 50 2 2 Dorsal JR260B_krill_image_105.JPG 05/01/2012 50 2 3 Lateral JR260B_krill_image_106.JPG 05/01/2012 50 2 3 Dorsal JR260B_krill_image_109.JPG 05/01/2012 50 2 4 Lateral JR260B_krill_image_110.JPG 05/01/2012 50 2 4 Lateral JR260B_krill_image_111.JPG 05/01/2012 64 2 1 Lateral JR260B_krill_image_113.JPG 05/01/2012 64 2 2 Lateral JR260B_krill_image_114.JPG 05/01/2012 64 2 Lateral JR260B_krill_image_114.JPG 05/01/2012 64 2 Lateral <td>JR260B_krill_image_99.JPG</td> <td>05/01/2012</td> <td>50</td> <td>1</td> <td>4</td> <td>Dorsal</td>	JR260B_krill_image_99.JPG	05/01/2012	50	1	4	Dorsal
JR260B_krill_image_102.JPG 05/01/2012 50 1 5 Lateral JR260B_krill_image_103.JPG 05/01/2012 50 2 1 Lorsal JR260B_krill_image_104.JPG 05/01/2012 50 2 2 Dorsal JR260B_krill_image_105.JPG 05/01/2012 50 2 2 Lateral JR260B_krill_image_106.JPG 05/01/2012 50 2 3 Lateral JR260B_krill_image_107.JPG 05/01/2012 50 2 3 Dorsal JR260B_krill_image_109.JPG 05/01/2012 50 2 4 Lorsal JR260B_krill_image_110.JPG 05/01/2012 64 2 1 Lateral JR260B_krill_image_112.JPG 05/01/2012 64 2 2 Dorsal JR260B_krill_image_114.JPG 05/01/2012 64 2 2 Lateral JR260B_krill_image_114.JPG 05/01/2012 64 2 4 Lateral JR260B_krill_image_114.JPG 05/01/2012 64 2 4 Lateral JR260B_krill_image_114.JPG 05/01/2012 64	JR260B_krill_image_100.JPG	05/01/2012	50	1	4	Lateral
JR260B_krill_image_103.JPG 05/01/2012 50 2 1 Dorsal JR260B_krill_image_104.JPG 05/01/2012 50 2 2 Dorsal JR260B_krill_image_105.JPG 05/01/2012 50 2 2 Lateral JR260B_krill_image_106.JPG 05/01/2012 50 2 3 Lateral JR260B_krill_image_107.JPG 05/01/2012 50 2 3 Dorsal JR260B_krill_image_109.JPG 05/01/2012 50 2 4 Lateral JR260B_krill_image_110.JPG 05/01/2012 64 2 1 Lateral JR260B_krill_image_112.JPG 05/01/2012 64 2 1 Lateral JR260B_krill_image_113.JPG 05/01/2012 64 2 2 Lateral JR260B_krill_image_114.JPG 05/01/2012 64 2 3 Dorsal JR260B_krill_image_114.JPG 05/01/2012 64 2 4 Lateral JR260B_krill_image_114.JPG 05/01/2012 64 2 4 Lateral JR260B_krill_image_115.JPG 05/01/2012 64	JR260B_krill_image_101.JPG	05/01/2012	50	1	5	Dorsal
JR260B_krill_image_104.JPG 05/01/2012 50 2 1 Lateral JR260B_krill_image_105.JPG 05/01/2012 50 2 2 Lateral JR260B_krill_image_106.JPG 05/01/2012 50 2 3 Lateral JR260B_krill_image_107.JPG 05/01/2012 50 2 3 Lateral JR260B_krill_image_109.JPG 05/01/2012 50 2 4 Dorsal JR260B_krill_image_110.JPG 05/01/2012 50 2 4 Lateral JR260B_krill_image_111.JPG 05/01/2012 64 2 1 Dorsal JR260B_krill_image_112.JPG 05/01/2012 64 2 2 Dorsal JR260B_krill_image_113.JPG 05/01/2012 64 2 2 Lateral JR260B_krill_image_115.JPG 05/01/2012 64 2 4 Lateral JR260B_krill_image_115.JPG 05/01/2012 64 2 5 Dorsal JR260B_krill_image_115.JPG 05/01/2012 64 2 5 Dorsal JR260B_krill_image_121.JPG 05/01/2012 64	JR260B_krill_image_102.JPG	05/01/2012	50	1	5	Lateral
JR2608_krill_image_105.JPG 05/01/2012 50 2 2 Lateral JR2608_krill_image_106.JPG 05/01/2012 50 2 3 Lateral JR2608_krill_image_107.JPG 05/01/2012 50 2 3 Dorsal JR2608_krill_image_109.JPG 05/01/2012 50 2 4 Dorsal JR2608_krill_image_110.JPG 05/01/2012 50 2 4 Lateral JR2608_krill_image_111.JPG 05/01/2012 64 2 1 Dorsal JR2608_krill_image_112.JPG 05/01/2012 64 2 2 Dorsal JR2608_krill_image_113.JPG 05/01/2012 64 2 2 Dorsal JR2608_krill_image_114.JPG 05/01/2012 64 2 3 Dorsal JR2608_krill_image_115.JPG 05/01/2012 64 2 4 Dorsal JR2608_krill_image_116.JPG 05/01/2012 64 2 5 Dorsal JR2608_krill_image_117.JPG 05/01/2012 64 2 5 Dorsal JR2608_krill_image_120.JPG 07/01/2012 70	JR260B_krill_image_103.JPG	05/01/2012	50	2	1	Dorsal
JR260B_krill_image_106.JPG 05/01/2012 50 2 Lateral JR260B_krill_image_107.JPG 05/01/2012 50 2 3 Lateral JR260B_krill_image_109.JPG 05/01/2012 50 2 4 Dorsal JR260B_krill_image_110.JPG 05/01/2012 50 2 4 Lateral JR260B_krill_image_111.JPG 05/01/2012 64 2 1 Dorsal JR260B_krill_image_112.JPG 05/01/2012 64 2 2 Dorsal JR260B_krill_image_113.JPG 05/01/2012 64 2 2 Dorsal JR260B_krill_image_114.JPG 05/01/2012 64 2 2 Lateral JR260B_krill_image_115.JPG 05/01/2012 64 2 4 Dorsal JR260B_krill_image_116.JPG 05/01/2012 64 2 4 Dorsal JR260B_krill_image_117.JPG 05/01/2012 64 2 5 Dorsal JR260B_krill_image_117.JPG 05/01/2012 64 2 5 Lateral JR260B_krill_image_120.JPG 07/01/2012 70 1	JR260B_krill_image_104.JPG	05/01/2012	50	2	1	Lateral
JR260B_krill_image_107.JPG 05/01/2012 50 2 3 Lateral JR260B_krill_image_108.JPG 05/01/2012 50 2 4 Dorsal JR260B_krill_image_109.JPG 05/01/2012 50 2 4 Lateral JR260B_krill_image_110.JPG 05/01/2012 64 2 1 Dorsal JR260B_krill_image_111.JPG 05/01/2012 64 2 1 Lateral JR260B_krill_image_112.JPG 05/01/2012 64 2 2 Dorsal JR260B_krill_image_113.JPG 05/01/2012 64 2 2 Lateral JR260B_krill_image_114.JPG 05/01/2012 64 2 2 Lateral JR260B_krill_image_114.JPG 05/01/2012 64 2 3 Dorsal JR260B_krill_image_115.JPG 05/01/2012 64 2 4 Lateral JR260B_krill_image_117.JPG 05/01/2012 64 2 5 Dorsal JR260B_krill_image_113.JPG 05/01/2012 64 2 5 Dorsal JR260B_krill_image_121.JPG 07/01/2012 70	JR260B_krill_image_105.JPG	05/01/2012	50	2	2	Dorsal
JR260B_krill_image_108.JPG 05/01/2012 50 2 3 Dorsal JR260B_krill_image_109.JPG 05/01/2012 50 2 4 Lateral JR260B_krill_image_110.JPG 05/01/2012 64 2 1 Dorsal JR260B_krill_image_111.JPG 05/01/2012 64 2 1 Lateral JR260B_krill_image_113.JPG 05/01/2012 64 2 2 Lateral JR260B_krill_image_114.JPG 05/01/2012 64 2 2 Lateral JR260B_krill_image_115.JPG 05/01/2012 64 2 3 Dorsal JR260B_krill_image_116.JPG 05/01/2012 64 2 4 Lateral JR260B_krill_image_116.JPG 05/01/2012 64 2 4 Lateral JR260B_krill_image_117.JPG 05/01/2012 64 2 5 Dorsal JR260B_krill_image_119.JPG 05/01/2012 64 2 5 Lateral JR260B_krill_image_120.JPG 07/01/2012 70 1 Lateral JR260B_krill_image_121.JPG 07/01/2012 70 1	JR260B_krill_image_106.JPG	05/01/2012	50	2	2	Lateral
JR260B_krill_image_109.JPG 05/01/2012 50 2 4 Dorsal JR260B_krill_image_110.JPG 05/01/2012 50 2 4 Lateral JR260B_krill_image_111.JPG 05/01/2012 64 2 1 Dorsal JR260B_krill_image_112.JPG 05/01/2012 64 2 2 Dorsal JR260B_krill_image_113.JPG 05/01/2012 64 2 2 Lateral JR260B_krill_image_114.JPG 05/01/2012 64 2 2 Lateral JR260B_krill_image_115.JPG 05/01/2012 64 2 4 Dorsal JR260B_krill_image_116.JPG 05/01/2012 64 2 4 Lateral JR260B_krill_image_117.JPG 05/01/2012 64 2 5 Dorsal JR260B_krill_image_119.JPG 05/01/2012 64 2 5 Lateral JR260B_krill_image_119.JPG 05/01/2012 64 2 5 Lateral JR260B_krill_image_120.JPG 07/01/2012 70 1 Lateral JR260B_krill_image_121.JPG 07/01/2012 70 1	JR260B_krill_image_107.JPG	05/01/2012	50	2	3	Lateral
JR260B_krill_image_110.JPG 05/01/2012 50 2 4 Lateral JR260B_krill_image_111.JPG 05/01/2012 64 2 1 Dorsal JR260B_krill_image_112.JPG 05/01/2012 64 2 1 Lateral JR260B_krill_image_113.JPG 05/01/2012 64 2 2 Dorsal JR260B_krill_image_114.JPG 05/01/2012 64 2 2 Lateral JR260B_krill_image_115.JPG 05/01/2012 64 2 3 Dorsal JR260B_krill_image_116.JPG 05/01/2012 64 2 4 Lateral JR260B_krill_image_117.JPG 05/01/2012 64 2 4 Lateral JR260B_krill_image_119.JPG 05/01/2012 64 2 5 Lateral JR260B_krill_image_120.JPG 07/01/2012 70 1 1 Dorsal JR260B_krill_image_121.JPG 07/01/2012 70 1 1 Lateral JR260B_krill_image_122.JPG 07/01/2012 70 1 2 Lateral JR260B_krill_image_124.JPG 07/01/2012 70	JR260B_krill_image_108.JPG	05/01/2012	50	2	3	Dorsal
JR260B_krill_image_111.JPG 05/01/2012 64 2 1 Dorsal JR260B_krill_image_112.JPG 05/01/2012 64 2 1 Lateral JR260B_krill_image_113.JPG 05/01/2012 64 2 2 Dorsal JR260B_krill_image_114.JPG 05/01/2012 64 2 2 Lateral JR260B_krill_image_114.JPG 05/01/2012 64 2 3 Dorsal JR260B_krill_image_115.JPG 05/01/2012 64 2 4 Dorsal JR260B_krill_image_116.JPG 05/01/2012 64 2 4 Lateral JR260B_krill_image_117.JPG 05/01/2012 64 2 5 Dorsal JR260B_krill_image_119.JPG 05/01/2012 64 2 5 Lateral JR260B_krill_image_120.JPG 07/01/2012 70 1 Lateral JR260B_krill_image_121.JPG 07/01/2012 70 1 Lateral JR260B_krill_image_123.JPG 07/01/2012 70 1 Lateral JR260B_krill_image_124.JPG 07/01/2012 70 1 Lateral	JR260B_krill_image_109.JPG	05/01/2012	50	2	4	Dorsal
JR260B_krill_image_112.JPG 05/01/2012 64 2 1 Lateral JR260B_krill_image_113.JPG 05/01/2012 64 2 2 Dorsal JR260B_krill_image_114.JPG 05/01/2012 64 2 2 Lateral JR260B_krill_image_114.JPG 05/01/2012 64 2 3 Dorsal JR260B_krill_image_115.JPG 05/01/2012 64 2 4 Dorsal JR260B_krill_image_116.JPG 05/01/2012 64 2 4 Lateral JR260B_krill_image_117.JPG 05/01/2012 64 2 5 Dorsal JR260B_krill_image_118.JPG 05/01/2012 64 2 5 Lateral JR260B_krill_image_120.JPG 07/01/2012 70 1 1 Dorsal JR260B_krill_image_121.JPG 07/01/2012 70 1 2 Dorsal JR260B_krill_image_122.JPG 07/01/2012 70 1 2 Lateral JR260B_krill_image_123.JPG 07/01/2012 70 1 3 Lateral JR260B_krill_image_124.JPG 07/01/2012 70	JR260B_krill_image_110.JPG	05/01/2012	50	2	4	Lateral
JR260B_krill_image_113.JPG05/01/20126422DorsalJR260B_krill_image_114.JPG05/01/20126422LateralJR260B_krill_image_115.JPG05/01/20126423DorsalJR260B_krill_image_116.JPG05/01/20126424DorsalJR260B_krill_image_117.JPG05/01/20126424LateralJR260B_krill_image_118.JPG05/01/20126425DorsalJR260B_krill_image_119.JPG05/01/20126425LateralJR260B_krill_image_120.JPG07/01/20127011DorsalJR260B_krill_image_121.JPG07/01/20127011LateralJR260B_krill_image_122.JPG07/01/20127012DorsalJR260B_krill_image_123.JPG07/01/20127012LateralJR260B_krill_image_124.JPG07/01/20127013DorsalJR260B_krill_image_125.JPG07/01/20127013LateralJR260B_krill_image_126.JPG07/01/20127014DorsalJR260B_krill_image_127.JPG07/01/20127014DorsalJR260B_krill_image_128.JPG07/01/20127015DorsalJR260B_krill_image_128.JPG07/01/20127015DorsalJR260B_krill_image_129.JPG07/01/20127015DorsalJR260B_krill_image_130.JPG09/01/201277<	JR260B_krill_image_111.JPG	05/01/2012	64	2	1	Dorsal
JR260B_krill_image_114.JPG05/01/20126422LateralJR260B_krill_image_115.JPG05/01/20126423DorsalJR260B_krill_image_116.JPG05/01/20126424DorsalJR260B_krill_image_117.JPG05/01/20126424LateralJR260B_krill_image_118.JPG05/01/20126425DorsalJR260B_krill_image_119.JPG05/01/20126425LateralJR260B_krill_image_120.JPG07/01/20127011DorsalJR260B_krill_image_121.JPG07/01/20127012DorsalJR260B_krill_image_122.JPG07/01/20127012DorsalJR260B_krill_image_123.JPG07/01/20127013DorsalJR260B_krill_image_125.JPG07/01/20127013LateralJR260B_krill_image_126.JPG07/01/20127014DorsalJR260B_krill_image_127.JPG07/01/20127014DorsalJR260B_krill_image_127.JPG07/01/20127014DorsalJR260B_krill_image_128.JPG07/01/20127015DorsalJR260B_krill_image_128.JPG07/01/20127015DorsalJR260B_krill_image_128.JPG07/01/20127015DorsalJR260B_krill_image_129.JPG07/01/20127015DorsalJR260B_krill_image_129.JPG07/01/201270 <td< td=""><td>JR260B_krill_image_112.JPG</td><td>05/01/2012</td><td>64</td><td>2</td><td>1</td><td>Lateral</td></td<>	JR260B_krill_image_112.JPG	05/01/2012	64	2	1	Lateral
JR260B_krill_image_115.JPG05/01/20126423DorsalJR260B_krill_image_116.JPG05/01/20126424DorsalJR260B_krill_image_117.JPG05/01/20126424LateralJR260B_krill_image_118.JPG05/01/20126425DorsalJR260B_krill_image_119.JPG05/01/20126425LateralJR260B_krill_image_120.JPG07/01/20127011DorsalJR260B_krill_image_121.JPG07/01/20127011LateralJR260B_krill_image_122.JPG07/01/20127012DorsalJR260B_krill_image_123.JPG07/01/20127012LateralJR260B_krill_image_124.JPG07/01/20127013DorsalJR260B_krill_image_125.JPG07/01/20127013LateralJR260B_krill_image_126.JPG07/01/20127014DorsalJR260B_krill_image_127.JPG07/01/20127014DorsalJR260B_krill_image_128.JPG07/01/20127014DorsalJR260B_krill_image_128.JPG07/01/20127015DorsalJR260B_krill_image_129.JPG07/01/20127015DorsalJR260B_krill_image_129.JPG07/01/20127015DorsalJR260B_krill_image_129.JPG07/01/20127015DorsalJR260B_krill_image_129.JPG07/01/201270 <t< td=""><td>JR260B_krill_image_113.JPG</td><td>05/01/2012</td><td>64</td><td>2</td><td>2</td><td>Dorsal</td></t<>	JR260B_krill_image_113.JPG	05/01/2012	64	2	2	Dorsal
JR260B_krill_image_116.JPG05/01/20126424DorsalJR260B_krill_image_117.JPG05/01/20126424LateralJR260B_krill_image_118.JPG05/01/20126425DorsalJR260B_krill_image_119.JPG05/01/20126425LateralJR260B_krill_image_120.JPG07/01/20127011DorsalJR260B_krill_image_121.JPG07/01/20127011LateralJR260B_krill_image_122.JPG07/01/20127012DorsalJR260B_krill_image_123.JPG07/01/20127012LateralJR260B_krill_image_124.JPG07/01/20127013DorsalJR260B_krill_image_125.JPG07/01/20127013LateralJR260B_krill_image_126.JPG07/01/20127014DorsalJR260B_krill_image_127.JPG07/01/20127014DorsalJR260B_krill_image_128.JPG07/01/20127014DorsalJR260B_krill_image_128.JPG07/01/20127015DorsalJR260B_krill_image_128.JPG07/01/20127015DorsalJR260B_krill_image_129.JPG07/01/20127015DorsalJR260B_krill_image_130.JPG09/01/20127711Dorsal	JR260B_krill_image_114.JPG	05/01/2012	64	2	2	Lateral
JR260B_krill_image_117.JPG05/01/20126424LateralJR260B_krill_image_118.JPG05/01/20126425DorsalJR260B_krill_image_119.JPG05/01/20126425LateralJR260B_krill_image_120.JPG07/01/20127011DorsalJR260B_krill_image_121.JPG07/01/20127011LateralJR260B_krill_image_122.JPG07/01/20127012DorsalJR260B_krill_image_123.JPG07/01/20127012LateralJR260B_krill_image_124.JPG07/01/20127013DorsalJR260B_krill_image_125.JPG07/01/20127013LateralJR260B_krill_image_126.JPG07/01/20127014DorsalJR260B_krill_image_127.JPG07/01/20127015DorsalJR260B_krill_image_128.JPG07/01/20127015DorsalJR260B_krill_image_128.JPG07/01/20127015DorsalJR260B_krill_image_129.JPG07/01/20127015DorsalJR260B_krill_image_130.JPG09/01/20127711Dorsal	JR260B_krill_image_115.JPG	05/01/2012	64	2	3	Dorsal
JR260B_krill_image_118.JPG05/01/20126425DorsalJR260B_krill_image_119.JPG05/01/20126425LateralJR260B_krill_image_120.JPG07/01/20127011DorsalJR260B_krill_image_121.JPG07/01/20127011LateralJR260B_krill_image_122.JPG07/01/20127012DorsalJR260B_krill_image_123.JPG07/01/20127012LateralJR260B_krill_image_124.JPG07/01/20127013DorsalJR260B_krill_image_125.JPG07/01/20127013LateralJR260B_krill_image_126.JPG07/01/20127014DorsalJR260B_krill_image_127.JPG07/01/20127014DorsalJR260B_krill_image_128.JPG07/01/20127015DorsalJR260B_krill_image_128.JPG07/01/20127015DorsalJR260B_krill_image_129.JPG07/01/20127015DorsalJR260B_krill_image_130.JPG09/01/20127711Dorsal	JR260B_krill_image_116.JPG	05/01/2012	64	2	4	Dorsal
JR260B_krill_image_119.JPG05/01/20126425LateralJR260B_krill_image_120.JPG07/01/20127011DorsalJR260B_krill_image_121.JPG07/01/20127012DorsalJR260B_krill_image_122.JPG07/01/20127012DorsalJR260B_krill_image_123.JPG07/01/20127012LateralJR260B_krill_image_124.JPG07/01/20127013DorsalJR260B_krill_image_125.JPG07/01/20127013LateralJR260B_krill_image_126.JPG07/01/20127014DorsalJR260B_krill_image_127.JPG07/01/20127014DorsalJR260B_krill_image_128.JPG07/01/20127015DorsalJR260B_krill_image_128.JPG07/01/20127015DorsalJR260B_krill_image_129.JPG07/01/20127015DorsalJR260B_krill_image_130.JPG09/01/20127711Dorsal	JR260B_krill_image_117.JPG	05/01/2012	64	2	4	Lateral
JR260B_krill_image_120.JPG07/01/20127011DorsalJR260B_krill_image_121.JPG07/01/20127011LateralJR260B_krill_image_122.JPG07/01/20127012DorsalJR260B_krill_image_123.JPG07/01/20127012LateralJR260B_krill_image_124.JPG07/01/20127013DorsalJR260B_krill_image_125.JPG07/01/20127013LateralJR260B_krill_image_126.JPG07/01/20127014DorsalJR260B_krill_image_127.JPG07/01/20127014DorsalJR260B_krill_image_128.JPG07/01/20127015DorsalJR260B_krill_image_129.JPG07/01/20127015DorsalJR260B_krill_image_130.JPG09/01/20127711Dorsal	JR260B_krill_image_118.JPG	05/01/2012	64	2	5	
JR260B_krill_image_121.JPG 07/01/2012 70 1 1 Lateral JR260B_krill_image_122.JPG 07/01/2012 70 1 2 Dorsal JR260B_krill_image_123.JPG 07/01/2012 70 1 2 Lateral JR260B_krill_image_123.JPG 07/01/2012 70 1 2 Lateral JR260B_krill_image_124.JPG 07/01/2012 70 1 3 Dorsal JR260B_krill_image_125.JPG 07/01/2012 70 1 3 Lateral JR260B_krill_image_126.JPG 07/01/2012 70 1 4 Dorsal JR260B_krill_image_127.JPG 07/01/2012 70 1 4 Dorsal JR260B_krill_image_128.JPG 07/01/2012 70 1 4 Dorsal JR260B_krill_image_128.JPG 07/01/2012 70 1 5 Dorsal JR260B_krill_image_129.JPG 07/01/2012 70 1 5 Dorsal JR260B_krill_image_130.JPG 09/01/2012 77 1 1 Dorsal	JR260B_krill_image_119.JPG	05/01/2012	64	2	5	
JR260B_krill_image_122.JPG 07/01/2012 70 1 2 Dorsal JR260B_krill_image_123.JPG 07/01/2012 70 1 2 Lateral JR260B_krill_image_124.JPG 07/01/2012 70 1 3 Dorsal JR260B_krill_image_125.JPG 07/01/2012 70 1 3 Lateral JR260B_krill_image_126.JPG 07/01/2012 70 1 4 Dorsal JR260B_krill_image_127.JPG 07/01/2012 70 1 4 Dorsal JR260B_krill_image_128.JPG 07/01/2012 70 1 4 Dorsal JR260B_krill_image_128.JPG 07/01/2012 70 1 5 Dorsal JR260B_krill_image_129.JPG 07/01/2012 70 1 5 Dorsal JR260B_krill_image_130.JPG 09/01/2012 77 1 1 Dorsal	JR260B_krill_image_120.JPG	07/01/2012	70	1	1	Dorsal
JR260B_krill_image_123.JPG 07/01/2012 70 1 2 Lateral JR260B_krill_image_124.JPG 07/01/2012 70 1 3 Dorsal JR260B_krill_image_125.JPG 07/01/2012 70 1 3 Lateral JR260B_krill_image_126.JPG 07/01/2012 70 1 4 Dorsal JR260B_krill_image_126.JPG 07/01/2012 70 1 4 Dorsal JR260B_krill_image_127.JPG 07/01/2012 70 1 4 Dorsal JR260B_krill_image_128.JPG 07/01/2012 70 1 5 Dorsal JR260B_krill_image_129.JPG 07/01/2012 70 1 5 Dorsal JR260B_krill_image_130.JPG 09/01/2012 77 1 1 Dorsal	JR260B_krill_image_121.JPG	07/01/2012	70	1	1	Lateral
JR260B_krill_image_124.JPG07/01/20127013DorsalJR260B_krill_image_125.JPG07/01/20127013LateralJR260B_krill_image_126.JPG07/01/20127014DorsalJR260B_krill_image_127.JPG07/01/20127014DorsalJR260B_krill_image_128.JPG07/01/20127015DorsalJR260B_krill_image_129.JPG07/01/20127015DorsalJR260B_krill_image_130.JPG09/01/20127711Dorsal			70	1	2	Dorsal
JR260B_krill_image_125.JPG07/01/20127013LateralJR260B_krill_image_126.JPG07/01/20127014DorsalJR260B_krill_image_127.JPG07/01/20127014DorsalJR260B_krill_image_128.JPG07/01/20127015DorsalJR260B_krill_image_129.JPG07/01/20127015DorsalJR260B_krill_image_130.JPG09/01/20127711Dorsal	v _		70	1	2	Lateral
JR260B_krill_image_126.JPG07/01/20127014DorsalJR260B_krill_image_127.JPG07/01/20127014DorsalJR260B_krill_image_128.JPG07/01/20127015DorsalJR260B_krill_image_129.JPG07/01/20127015DorsalJR260B_krill_image_130.JPG09/01/20127711Dorsal	JR260B_krill_image_124.JPG	07/01/2012	70	1	3	Dorsal
JR260B_krill_image_127.JPG07/01/20127014DorsalJR260B_krill_image_128.JPG07/01/20127015DorsalJR260B_krill_image_129.JPG07/01/20127015DorsalJR260B_krill_image_130.JPG09/01/20127711Dorsal	JR260B_krill_image_125.JPG	07/01/2012	70	1	3	Lateral
JR260B_krill_image_128.JPG 07/01/2012 70 1 5 Dorsal JR260B_krill_image_129.JPG 07/01/2012 70 1 5 Dorsal JR260B_krill_image_130.JPG 09/01/2012 77 1 1 Dorsal	v _		70			
JR260B_krill_image_129.JPG 07/01/2012 70 1 5 Dorsal JR260B_krill_image_130.JPG 09/01/2012 77 1 1 Dorsal			70	1	4	
JR260B_krill_image_130.JPG 09/01/2012 77 1 1 Dorsal						
				1		
JR260B_krill_image_131.JPG 09/01/2012 77 1 1 Lateral			77			
	JR260B_krill_image_131.JPG	09/01/2012	77	1	1	Lateral

JR260B_krill_image_132.JPG	09/01/2012	77	1	2	Lateral
JR260B_krill_image_133.JPG	09/01/2012	77	1	2	Dorsal
JR260B_krill_image_134.JPG	09/01/2012	77	1	3	Dorsal
JR260B_krill_image_135.JPG	09/01/2012	77	1	3	Lateral
JR260B_krill_image_136.JPG	09/01/2012	77	1	4	Dorsal
JR260B_krill_image_137.JPG	09/01/2012	77	1	4	Lateral
JR260B_krill_image_138.JPG	09/01/2012	77	1	5	Dorsal
JR260B_krill_image_139.JPG	09/01/2012	77	1	5	Lateral
JR260B_krill_image_140.JPG	10/01/2012	82	2	1	Dorsal
JR260B_krill_image_141.JPG	10/01/2012	82	2	1	Lateral
JR260B_krill_image_142.JPG	10/01/2012	82	2	2	Dorsal
JR260B_krill_image_143.JPG	10/01/2012	82	2	2	Lateral
JR260B_krill_image_144.JPG	10/01/2012	82	2	3	Dorsal
JR260B_krill_image_145.JPG	10/01/2012	82	2	3	Lateral
JR260B_krill_image_146.JPG	10/01/2012	82	2	4	Dorsal
JR260B_krill_image_147.JPG	10/01/2012	82	2	4	Lateral
JR260B_krill_image_148.JPG	10/01/2012	82	2	5	Dorsal
JR260B_krill_image_149.JPG	10/01/2012	82	2	5	Lateral
JR260B_krill_image_150.JPG	12/01/2012	95	1	1	Dorsal
JR260B_krill_image_151.JPG	12/01/2012	95	1	1	Lateral
JR260B_krill_image_152.JPG	12/01/2012	95	1	2	Dorsal
JR260B_krill_image_153.JPG	12/01/2012	95	1	2	Lateral
JR260B_krill_image_154.JPG	12/01/2012	95	1	3	Dorsal
JR260B_krill_image_155.JPG	12/01/2012	95	1	3	Lateral
JR260B_krill_image_156.JPG	12/01/2012	95	1	4	Dorsal
JR260B_krill_image_157.JPG	12/01/2012	95	1	4	Lateral
JR260B_krill_image_158.JPG	12/01/2012	95	1	5	Dorsal
JR260B_krill_image_159.JPG	12/01/2012	95	1	5	Lateral
JR260B_krill_image_160.JPG	12/01/2012	95	2	1	Dorsal
JR260B_krill_image_161.JPG	12/01/2012	95	2	1	Lateral
JR260B_krill_image_162.JPG	12/01/2012	95	2	2	Dorsal
JR260B_krill_image_163.JPG	12/01/2012	95	2	2	Lateral
JR260B_krill_image_164.JPG	12/01/2012	95	2	3	Lateral
JR260B_krill_image_165.JPG	12/01/2012	95	2	3	Dorsal
JR260B_krill_image_166.JPG	12/01/2012	95	2	4	Dorsal
JR260B_krill_image_167.JPG	12/01/2012	95	2	4	Lateral
JR260B_krill_image_168.JPG	12/01/2012	95	2	5	Dorsal
JR260B_krill_image_169.JPG	12/01/2012	95	2	5	Lateral

Appendix B: CTD Log

Time	Event No	Lat	Lon	Depth	Cable Out	Bottle	Pressure	Temp (CTD)	Sal (CTD)	Comment
30/12/2011			-							CTD In Water. File:
13:48	3	-52.6347	42.82203	3192.66	1		-2.4			JR260B_003
30/12/2011			-							—
13:50	3	-52.63469	42.82169	3192.25						CTD start down
30/12/2011			-							
14:10	3	-52.63471	42.82033	3099.82	1000		1012			CTD at bottom.
30/12/2011			-							
14:11	3	-52.6347	42.82034	3105.99	1000	1	1013	2	34.7	Bottle fired.
30/12/2011			-							
14:12	3	-52.6347	42.82035	3147.09	1000					CTD start up
30/12/2011			-							CTD out of water. 10
14:37	3	-52.63468	42.82022	3157.63	-4					bottles fired.
31/12/2011			-							CTD in water. File:
08:25	8	-52.80849	40.11302	3796.57	-2		-2.4			JR260B_008
31/12/2011			-							
08:28	8	-52.80856	40.11317	3785.65	5					CTD start down
31/12/2011			-							
08:46	8	-52.80871	40.11362	3796.16	1000		1013			CTD at bottom
31/12/2011			-							
08:47	8	-52.80869	40.11361	3796.59	1000					CTD start up
31/12/2011			-							CTD out of water. No
09:04	8	-52.80867	40.11361	3785.83	-4					bottles fired.
01/01/2012			-							CTD in water. File:
12:21	16	-53.79756	37.93478	301.24	5					JR260B_016
01/01/2012			-							
12:25	16	-53.79756	37.93462	300.04	6					CTD start down
01/01/2012	16	-53.79754	-	299.46	211					CTD at bottom

12:30			37.93459		ĺ				
01/01/2012			-						
12:32	16	-53.79754	37.93462	302.47	275	1			Bottle fired.
01/01/2012			-						
12:32	16	-53.79754	37.93463	300.74	275	2			Bottle fired.
01/01/2012			-						
12:33	16	-53.79754	37.93462	301.02	275				CTD start up from bottom
01/01/2012			-						
12:38	16	-53.79756	37.93465	300.23	140	3			Bottle fired.
01/01/2012			-						
12:38	16	-53.79755	37.93464	300.01	140	4			Bottle fired.
01/01/2012			-						
12:40	16	-53.79755	37.93461	300.53	80	5	82.76	0.34	Bottle fired.
01/01/2012			-						
12:41	16	-53.79755	37.93462	300.52	80	6			Bottle fired.
01/01/2012			-						
12:42	16	-53.79755	37.93462	299.17	50	7	51.5		Bottle fired.
01/01/2012			-						
12:42	16	-53.79755	37.93463	299.66	50	8			Bottle fired.
01/01/2012			-						
12:44	16	-53.79756	37.93463	301.02	10	9			Bottle fired.
01/01/2012			-						
12:44	16	-53.79755	37.93462	300.64	10	10			Bottle fired.
01/01/2012									CTD on deck. 10 bottles
12:50	16	-53.79755	-37.9346	300.44	-15				fired.
02/01/2012			-						CTD in water. File:
20:28	26	-53.84643	39.14276	285.41	-3				JR260B_026
02/01/2012			-						
20:32	26	-53.84642	39.14275	285.8					CTD start down
02/01/2012			-						
20:38	26	-53.84642	39.14277	286.38	260				CTD at bottom
02/01/2012	26	-53.84643	-	287.36	260	1			Bottle fired.

20:38			39.14277							
02/01/2012			-							
20:38	26	-53.84643	39.14277	286.83	260	2				Bottle fired.
02/01/2012			-							
20:39	26	-53.84644	39.14278	286.38	260					CTD start up from bottom
02/01/2012			-							
20:41	26	-53.84643	39.14278	286.5	200	3		1.49	34.2	Bottle fired.
02/01/2012			-							
20:41	26	-53.84643	39.14278	286.5	200	4				Bottle fired.
02/01/2012			-							
20:44	26	-53.84644	39.14278	287.28	90	5				Bottle fired.
02/01/2012			-							
20:44	26	-53.84644	39.14278	285.6	90	6				Bottle fired.
02/01/2012			-							
20:46	26	-53.84643	39.14278	285.71	50	7		1.87	38.83	Bottle fired.
02/01/2012			-							
20:46	26	-53.84643	39.14278	286.02	50	8				Bottle fired.
02/01/2012			-							
20:48	26	-53.84643	39.14278	285.6	10	9				Bottle fired.
02/01/2012			-							
20:48	26	-53.84644	39.14278	286.1	10	10				Bottle fired.
02/01/2012			-							CTD on deck. 10 bottles
20:50	26	-53.84645	39.14281	286.09	-6					fired.
03/01/2012			-							
05:30	29	-53.49267	39.25002	3145.38	1					CTD in water
03/01/2012			-							
05:33	29	-53.49267	39.25023	3145.49	5					CTD start down.
03/01/2012			-							
05:51	29	-53.4927	39.25115	3147	1000		1015			CTD at bottom.
03/01/2012			-							
05:52	29	-53.49271	39.25113	3146.85	999					CTD start up

03/01/2012			-							CTD on deck. No bottles
06:11	29	-53.49277	39.25119	3147.47	-2					fired.
03/01/2012			-							
20:19	35	-53.43141	38.69462	3496.94	10					CTD in water
03/01/2012										
20:21	35	-53.43146	-38.6947	3494.7						CTD down
03/01/2012			-							CTD at bottom - 1005m
20:38	35	-53.43186	38.69499	3494.5	1000		1013			depth
03/01/2012			-							
20:39	35	-53.43185	38.69499	3494.78	1000	1	1013	1.71	34.69	Bottle fired. 1005m
03/01/2012										
20:39	35	-53.43184	-38.695	3494.43	1000	2	1013	1.71	34.69	Bottle fired. 1005m
03/01/2012			-							
20:40	35	-53.43184	38.69505	3494.59	1000					CTD start up from bottom
03/01/2012			-							
20:49	35	-53.43185	38.69524	3494.87	500	3	505.6	2.14	34.59	Bottle fired. 502.8m
03/01/2012			-							
20:49	35	-53.43184	38.69524	3495.08	500	4	505.6	2.14	34.59	Bottle fired. 502.8m depth
03/01/2012			-							
20:55	35	-53.43185	38.69521	3495.52	200	5	202.5	1.37	34.26	Bottle fired. 200.9m depth
03/01/2012			-							
20:55	35	-53.43186	38.69521	3495.44	200	6	202.5	1.37	34.26	Bottle fired. 200.9m depth
03/01/2012						_				
20:59	35	-53.43186	-38.6952	3495.53	50	7	51.8	2.31	33.7	Bottle fired. 51.28m depth
03/01/2012			-		- 0				~~ -	
20:59	35	-53.43185	38.69521	3496.09	50	8	51.8	2.31	33.7	Bottle fired. 51.28m depth
03/01/2012	25	53 43405	-	2406 47	10	0	11.0	2.4		
21:00	35	-53.43185	38.69521	3496.17	10	9	11.6	3.1	33.7	Bottle fired. 3.1m depth
03/01/2012	25	F2 4210C		2405.00	10	10	11.0	2.4		Dottle fined 11 Fine denth
21:01	35	-53.43186	38.69521	3495.66	10	10	11.6	3.1	33.7	Bottle fired. 11.54m depth
03/01/2012			-							CTD on deck. 10 bottles
21:02	35	-53.43184	38.69524	3496.06	-2					fired.

04/01/2012			-				
06:02	41	-53.78512	38.58324	206.78	8		CTD in water
04/01/2012			-				CTD on deck. No bottles
06:12	41	-53.78516	38.58342	206.79	19		fired.
04/01/2012			-				
20:17	47	-53.71396	37.96544	133.17	-5		CTD in water
04/01/2012			-				
20:20	47	-53.71398	37.96551	133.06	1		CTD start down
04/01/2012			-				
20:25	47	-53.71407	37.96568	132.86	112		CTD at bottom.
04/01/2012							
20:25	47	-53.71407	-37.9657	132.91	112		CTD start up
04/01/2012			-				CTD on deck. No bottles
20:28	47	-51.81414	55.47956	1229.73			fired.
05/01/2012							
05:35	52	-53.36143	-38.0824	2661.06	2		CTD in water
05/01/2012			-				
05:38	52	-53.36143	38.08242	2660.66	2		CTD start down
05/01/2012			-				
05:56	52	-53.36143	38.08246	2660.59	1000		CTD start up from bottom
05/01/2012			-				
05:56	52	-53.36142	38.08246	2660.6	1000	1013	 CTD at bottom.
05/01/2012			-				CTD on deck. No bottles
06:14	52	-53.36147	38.08243	2660.22	-5		fired.
07/01/2012			-				
12:30	72	-54.15884	36.69426	80.06	6		CTD in water
07/01/2012			-				
12:34	72	-54.15883	36.69427	79.88	7		 CTD start down
07/01/2012			-				CTD at bottom. Alt:
12:38	72	-54.15883	36.69426	80.06	60	60.33	 26.20m
07/01/2012			-				
12:39	72	-54.15883	36.69425	80.08	55		CTD start up from bottom.

07/01/2012			-							CTD on deck. No bottles
12:44	72	-54.15883	36.69426	79.87	8					fired.
09/01/2012			-							
19:38	78	-53.79782	37.93561	297.02	8					CTD in water
09/01/2012			-							
19:39	78	-53.79781	37.93561	299.22	7					CTD start down
09/01/2012										
19:45	78	-53.79781	-37.9356	296.81	270		271			CTD at bottom. Alt: 21
09/01/2012			-							
19:45	78	-53.79781	37.93559	296.84	270					CTD start up
09/01/2012			-							CTD on deck. No bottles
19:50	78	-53.79781	37.93561	297.93	-1					fired.
10/01/2012			-							
14:28	83	-55.21103	41.11782	3146.95	-1					CTD in water
10/01/2012			-							
14:32	83	-55.21095	41.11778	3146.93						CTD start down
10/01/2012			-							
14:59	83	-55.21051	41.11627	3150.04	1600					CTD at bottom
10/01/2012			-							
15:01	83	-55.21051	41.11624	3149.99	1600	1	1623	1.13	34.7	Bottle fired. Depth: 1608
10/01/2012			-							
15:01	83	-55.21051	41.11624	3149.99	1599	2				Bottle fired w/ 1.
10/01/2012			-							
15:01	83	-55.21051	41.11625	3149.99	1599					CTD start up
10/01/2012										
15:12	83	-55.21055	-41.1162	3150.34	1100	3	1114.9	1.73	34.7	Bottled fired. Depth: 1106
10/01/2012			-			_				
15:12	83	-55.21054	41.11621	3150.16	1100	4				Bottle fired w/3.
10/01/2012			-	2450.00	700	_	74.0	2.44	a	
15:22	83	-55.21053	41.11621	3150.23	700	5	710	2.11	34.65	Bottle fired. Depth: 705
10/01/2012		FF 34050	-	2450.40		~				
15:22	83	-55.21053	41.11621	3150.13	700	6				Bottle fired w/ 5.

10/01/2012										
15:29	83	-55.21055	-41.1162	3150.3	350	7	355	2.23	34.49	Bottle fired. Depth: 353.5
10/01/2012										
15:30	83	-55.21055	-41.1162	3150.27	350	8				Bottle fired w/7.
10/01/2012			-							
15:34	83	-55.21054	41.11619	3150.24	150	9	153.7	1.22	34.17	Bottle fired. Depth: 152.6
10/01/2012			-							
15:34	83	-55.21053	41.11619	3150.12	150	10				Bottle fired w/9.
10/01/2012										
15:37	83	-55.21054	-41.1162	3150.32	50	11	54.36	1.71	33.8	Bottle fired. Depth: 53.1
10/01/2012			-							
15:37	83	-55.21054	41.11621	3150.16	50	12				Bottle fired w/11.
10/01/2012			-							
15:39	83	-55.21055	41.11621	3150.27	10	13	13.8	2.02	33.7	Bottle fired. Depth: 13.7
10/01/2012			-							
15:39	83	-55.21054	41.11621	3150.33	10	14				Bottle fired w/13.
10/01/2012			-							CTD on deck. 14 bottles
15:42	83	-53.87322	37.22311	240.9	-4					fired.
12/01/2012			-							
02:16	89	-53.8738	37.22055	226.1	9					CTD in water
12/01/2012			-							
02:19	89	-53.8738	37.22055	226.07	7					CTD start down
12/01/2012			-							
02:23	89	-53.87378	37.22052	225.97	202		204			CTD at bottom: alt: 19
12/01/2012			-							
02:24	89	-53.87378	37.22051	225.89	202					CTD start up
12/01/2012			-							CTD on deck. No bottles
02:29	89	-53.8738	37.22052	226.46	-5					fired.
12/01/2012			-							
02:48	90	-53.87324	37.22312	240.77	-1					CTD in water
12/01/2012			-							
03:01	90	-53.87324	37.22307	240.31	215		218			CTD at bottom. Alt: 18

12/01/2012			-					
03:01	90	-53.87324	37.22308	240.66	215			CTD start up
12/01/2012			-					CTD on deck. No bottles
03:07	90	-53.87322	37.22311	240.9	-4			fired.

Appendix C: CTD Sample Log

Event	Bottle #	Depth	Sample ID	Sample ID	Sample ID
3	1	1000	JR260B-1	JR260B-2	JR260B-3
3	3	300	JR260B-4	JR260B-5	JR260B-6
3	5	100	JR260B-7	JR260B-8	JR260B-9
3	7	60	JR260B-10	JR260B-11	JR260B-12
3	9	10	JR260B-13	JR260B-14	JR260B-15
16	1	275	JR260B-16	JR260B-17	JR260B-18
16	3	140	JR260B-19	JR260B-20	JR260B-21
16	5	80	JR260B-22	JR260B-23	JR260B-24
16	7	50	JR260B-25	JR260B-26	JR260B-27
16	9	10	JR260B-28	JR260B-29	JR260B-30
26	1	260	JR260B-31	JR260B-32	JR260B-33
26	3	200	JR260B-34	JR260B-35	JR260B-36
26	5	90	JR260B-37	JR260B-38	JR260B-39
26	7	50	JR260B-40	JR260B-41	JR260B-42
26	9	10	JR260B-43	JR260B-44	JR260B-45
35	1	1000	JR260B-46	JR260B-47	JR260B-48
35	3	500	JR260B-49	JR260B-50	JR260B-51
35	5	200	JR260B-52	JR260B-53	JR260B-54
35	7	50	JR260B-55	JR260B-56	JR260B-57
35	9	10	JR260B-58	JR260B-59	JR260B-60
83	1	1600	JR260B-61	JR260B-62	JR260B-63
83	3	1100	JR260B-64	JR260B-65	JR260B-66
83	5	700	JR260B-67	JR260B-68	JR260B-69
83	8	350	JR260B-70	JR260B-71	JR260B-72
83	9	150	JR260B-73	JR260B-74	JR260B-75
83	11	50	JR260B-76	JR260B-77	JR260B-78
83	13	10	JR260B-79	JR260B-80	JR260B-81

See section 9 for details on samples

Appendix D: XBT Log

Time	Lat	Lon	Depth	Station	Station	File	Comment
30/12/2011	-	-				File:	
19:27:00	52.6567	42.7446	3033.1	Test	Event 7	T5_00002	
						File:	
						T5_00003	
						(failed	
						computer	
02/01/2012	-	-		WCB 1.1	Event	start),	
09:10:08	53.5103	39.5539	3178.92	#1	21	T5_00004	
						File:	
						T5_00005	
						(aborted	
						computer	
02/01/2012	-	-		WCB 1.1	Event	start),	
10:11:03	53.8759	39.4456	302.41	#2	22	T5_00006	
02/01/2012	-	-	-		Event	File:	
11:30:29	53.6813	53.4928	39.2512	WCB 1.1	23	T5_00007	Launched successfully but incorrect data during drop.
02/01/2012	-	-		WCB 1.1	Event	File:	
11:35:30	53.6691	39.5071	2153.24	#3	23	T5_00008	
02/01/2012	-	-		WCB 1.1	Event	File:	
12:38:55	53.5103	39.5539	3178.92	#4	24	T5_00009	
02/01/2012	-	-		WCB 1.1	Event	File:	
14:39:51	53.3074	39.3358	3906.05	#5	25	T5_00010	
						File:	
03/01/2012	-	-		WCB 2.1	Event	T5_00011,	
09:04:58	53.2937	39.0363	4569.53	#1	30	T5_00012	
03/01/2012	-	-		WCB 2.1	Event	File:	
09:06:19	53.2959	39.0356	4023.61	#1	30	T5_00013	

						File:	
						T5_00014,	
						T5_00015,	Problems with seating launch tube. Would go in and
03/01/2012	-	-		WCB 2.1	Event	T5_00016,	trigger computer start before pin was pulled. Three
10:06:17	53.4537	38.9866	3084.08	#2	31	T5_00017	aborted computer starts before launch
						File:	
03/01/2012	-	-		WCB 2.1	Event	T5_00018,	
11:15:31	53.6305	38.9323	1420.06	#3	32	T5_00019	One false start.
03/01/2012	-	-		WCB 2.1	Event	File:	
12:29:19	53.8134	38.8753	229.4	#4	33	T5_00020	
03/01/2012	-	-		WCB 2.1	Event	File:	
13:32:06	53.9778	38.8242	194.57	#5	34	T5_00021	
04/01/2012	-	-		WCB 3.1	Event	File:	
09:00:18	53.9266	38.2206	104.52	#1	42	T5_00022	
04/01/2012	-			WCB 3.1	Event	File:	
10:10:57	53.7427	-38.28	236.48	#2	43	T5_00023	
04/01/2012	-	-		WCB 3.1	Event	File:	
11:20:01	53.5679	38.3367	2102.11	#3	44	T5_00024	
04/01/2012	-	-		WCB 3.1	Event	File:	
12:31:01	53.3905	38.3943	2965.84	#4	45	T5_00025	
04/01/2012	-	-		WCB 3.1	Event	File:	
13:41:35	53.2132	38.4511	3770.28	#5	46	T5_00026	
05/01/2012	-	-		WCB 4.1	Event	File:	
09:00:26	53.1637	37.9645	3530.9	#1	53	T5_00027	
05/01/2012	-	-		WCB 4.1	Event	File:	
10:13:07	53.3441	37.9012	2970.61	#2	54	T5_00028	
05/01/2012	-	-		WCB 4.1	Event	File:	
11:24:32	53.5245	37.8441	1384.41	#3	55	T5_00029	
05/01/2012	-	-		WCB 4.1	Event	File:	
12:15:19	53.6607	37.7979	135.8	#4	56	T5_00030	XBT failed during drop. Data very irregular.
05/01/2012		-		WCB 4.1	Event	File:	
12:20:08	-53.141	37.8351	3378.35	#4	57	T5_00031	

05/01/2012	-	-		WCB 4.1	Event	File:
13:46:08	53.8731	37.7184	112.06	#5	58	T5_00032
05/01/2012	-			WCB 4.2	Event	File:
14:22:07	53.8445	-37.597	114.93	#1	59	T5_00033
05/01/2012	-	-		WCB 4.2	Event	File:
15:32:56	53.6652	37.6585	146.35	#2	60	T5_00034
05/01/2012	-	-		WCB 4.2	Event	File:
16:42:15	53.4927	37.7148	1929.61	#3	61	T5_00035
05/01/2012	-	-		WCB 4.2	Event	File:
17:51:53	53.3173	37.7742	3956.43	#4	62	T5_00036
05/01/2012		-		WCB 4.2	Event	File:
19:01:18	-53.141	37.8351	3378.35	#5	63	T5_00037

Appendix E: All Events Log

Time	Event	Lat	Lon	Comment	Station	Event	Туре	Gear No
30/12/2011		-						
12:38		52.63448	-42.82267	V/L on DP				
30/12/2011		-						
12:40		52.63469	-42.82262	V/L stopped on station				
30/12/2011		-		SUCS deployed for test. Veering to				
12:47	1 (SUCS test)	52.63472	-42.82257	100m	TEST	1	SUCS	1
30/12/2011		-						
12:49	1 (SUCS test)	52.63472	-42.82259	Stopped at 100m. Taking photographs			SUCS	
30/12/2011		-						
13:00	1 (SUCS test)	52.63472	-42.82257	SUCS recovered to deck			SUCS	
30/12/2011		-						
13:12	2 (SUCS test)	52.63471	-42.82265	SUCS deployed. Veering to 50m	TEST	2	SUCS	2
30/12/2011		-						
13:14	2 (SUCS test)	52.63467	-42.82267	SUCS stopped at 50m. Taking photo			SUCS	
30/12/2011		-						
13:21	2 (SUCS test)	52.63469	-42.82264	Veering to 100m			SUCS	
30/12/2011		-						
13:30	2 (SUCS test)	52.63471	-42.82263	SUCS recovered on deck			SUCS	
30/12/2011								
13:48	3 (CTD test)	-52.6347	-42.82203	CTD deployed	TEST	3	CTD	1
30/12/2011		-						
14:09	3 (CTD test)	52.63469	-42.82031	CTD stopped @ 1000m			CTD	
30/12/2011		-						
14:39	3 (CTD test)	52.63468	-42.82019	Recovered on deck			CTD	
30/12/2011	•	-		Increase to 2knots for deploying				
15:16	,	52.63467	-42.82023	MOCNESS	TEST	4	MOCNESS	1
30/12/2011	4 (MOCNESS	-		Commence deploying MOCNESS for				
15:17	test)	52.63465	-42.82024	testing			MOCNESS	
30/12/2011	4 (MOCNESS	-	-42.8267	MOCNESS in the water			MOCNESS	

15:24	test)	52.63466						
30/12/2011	4 (MOCNESS	-						
15:27	test)	52.63467	-42.82947	MOCNESS deployed veering			MOCNESS	
30/12/2011	4 (MOCNESS	-						
15:41	test)	52.63465	-42.84227	Wire out 289m commence hauling			MOCNESS	
30/12/2011	4 (MOCNESS							
15:56	test)	-52.6345	-42.85592	MOCNESS at the surface			MOCNESS	
30/12/2011	4 (MOCNESS	-		MOCNESS recovered on deck preparing				
16:00	test)	52.63449	-42.85955	to deploy RMT 8. Vessel off D.P			MOCNESS	
30/12/2011		-						
16:43	5 (RMT 8 Test)	52.63642	-42.89099	Commence deploying RMT 8	TEST	5	RMT	1
30/12/2011		-						
16:45	5 (RMT 8 Test)	52.63683	-42.89247	RMT 8 in the water			RMT	
30/12/2011		-						
16:49	5 (RMT 8 Test)	52.63702	-42.89623	RMT 8 deployed			RMT	
30/12/2011		-						
17:10	5 (RMT 8 Test)	52.63827	-42.91801	Wire out 407m commence hauling			RMT	
30/12/2011		-						
17:24	5 (RMT 8 Test)	52.63931	-42.935	RMT 8 at the surface			RMT	
30/12/2011		-						
17:27	5 (RMT 8 Test)	52.63952	-42.9385	RMT 8 recovered on deck			RMT	
30/12/2011		-						
17:40	6 (RMT 8 Test 2)	52.64084	-42.94927	Commence deploying RMT 8	TEST	6	RMT	2
30/12/2011		-						
17:42	6 (RMT 8 Test 2)	52.64118	-42.95121	RMT 8 in the water			RMT	
30/12/2011		-						
17:46	6 (RMT 8 Test 2)	52.64142	-42.95652	RMT 8 deployed			RMT	
30/12/2011		-						
17:55	6 (RMT 8 Test 2)	52.64226	-42.96656	Wire out 211 commence hauling			RMT	
30/12/2011		-						
18:11	6 (RMT 8 Test 2)	52.64389	-42.98579	RMT 8 at the surface			RMT	
30/12/2011	6 (RMT 8 Test 2)	-	-42.99025	RMT 8 recovered on deck			RMT	

18:15		52.64434						
30/12/2011		-		Gantry and deck all secure vessel				
18:35	6 (RMT 8 Test 2)	52.64917	-42.9968	proceeding to P3				
30/12/2011		-						
19:20	7 (XBT 1)	52.65597	-42.77235	Slow to 7 knots for XBT deployment	TEST	7	XBT	1
30/12/2011		-						
19:27	7 (XBT 1)	52.65665	-42.74463	XBT deployed			XBT	
30/12/2011		-						
19:33	7 (XBT 1)	52.65716	-42.72513	XBT finished increase speed to 2000kw				
31/12/2011	P3 acoustic	-		Commence acoustic transect. Heading				
02:59	transect	52.79959	-40.25131	096 degrees			AT	1
31/12/2011	P3 acoustic	-		completed line turning around to				
04:00	transect	52.81764	-39.97473	restart the line			AT	
31/12/2011	P3 acoustic	-						
04:11	transect	52.81792	-39.97572	Restart line heading 276(T)			AT	2
31/12/2011	P3 acoustic	-		completed line turning around to				
05:13	transect	52.79964	-40.25289	restart the line			AT	
31/12/2011	P3 acoustic	-						
05:21	transect	52.80025	-40.24964	Restart line heading 096(T)			AT	3
31/12/2011	P3 acoustic	-		completed line turning around to				
06:21	transect	52.81752	-39.97587	restart the line			AT	
31/12/2011	P3 acoustic	-						
06:31	transect	52.81765	-39.97529	Restart line heading 276(T)			AT	4
31/12/2011	P3 acoustic	-		completed line turning around to				
07:33	transect	52.80007	-40.25376	restart the line			AT	
31/12/2011	P3 acoustic	-						
07:37	transect	52.79937	-40.25351	Restart line heading 096(T)			AT	5
31/12/2011	P3 acoustic	-						
08:08	transect	52.80702	-40.13997	completed line end of survey			AT	
31/12/2011		-						
08:19		52.80844	-40.11282	Vessel stopped on DP				
31/12/2011	8 (CTD 1)	-	-40.113	CTD deployed		8	CTD	2

08:25		52.80849						
31/12/2011		-						
08:46	8 (CTD 1)	52.80871	-40.11359	CTD stopped at 1000m			CTD	
31/12/2011		-						
09:06	8 (CTD 1)	52.80867	-40.1136	CTD recovered on deck			CTD	
31/12/2011		-						
09:15	8 (CTD 1)	52.80865	-40.1136	CTD secure on deck			CTD	
31/12/2011		-						
09:16		52.80867	-40.11359	Vessel off DP proceding to mooring site				
31/12/2011		-		Vessel stopped on DP for mooring				
09:43		52.81801	-40.05487	deployment				
31/12/2011		-						
11:56		52.81451	-40.05607	Hydraulic leak fixed. Recharge system.				
31/12/2011		-		Leak occured port seismic boom. Minor				
12:08		52.81454	-40.05612	spill - contained				
31/12/2011		-						
13:20		52.81446	-40.05615	System restored. Test stern gantry				
				Test satisfactory. Increase speed to 0.2				
31/12/2011		-		knots. Commence deployment				
13:26	9 (P3 mooring)	52.81367	-40.05596	operation		9	MOORING	1
31/12/2011		-						
13:31	9 (P3 mooring)	52.81365	-40.05643	Main buoy deployed			MOORING	
31/12/2011		-						
13:47	9 (P3 mooring)	52.81297	-40.05739	Sonarbell deployed			MOORING	
31/12/2011		-						
13:59	9 (P3 mooring)	52.81284	-40.05932	SBE CTD deployed			MOORING	
31/12/2011		-						
14:33	9 (P3 mooring)	52.81139	-40.07754	Trimson buoy cluster deployed			MOORING	
31/12/2011		-		Sediment trap and Aquadoop current	T			
14:40	9 (P3 mooring)	52.81132	-40.07883	meter deployed			MOORING	
31/12/2011		-		Mooring streaming astern hanging				
15:37	9 (P3 mooring)	52.80895	-40.11061	weight over ready to release			MOORING	

31/12/2011 15:40	9 (P3 mooring)	- 52.80885	-40.11142	Weight released approx EA 600 depth 3800m. Stern Position 52 48.5185(S) 040 06.6632(W) C.O.G 280(T) x 0.5knots. P3 mooring fully deployed		MOORING	
31/12/2011 16:14	10 (Hydrophone)	- 52.81053	-40.11766	Hydrophone deployed 1st triangulation of P3. Drop site brg 060(T) x 500m	10	MOORING	1
31/12/2011 16:15	10 (Hydrophone)	- 52.81055	-40.11767	Hydrophone clear of the water 3841m range of the mooring. Vessel moving to next position for triangulation		MOORING	
31/12/2011 16:38	11(Hydrophone)	- 52.80931	-40.10197	Hydrophone deployed for triangulating	11	MOORING	2
31/12/2011 16:41	11(Hydrophone)	- 52.80929	-40.10202	Hydrophone clear of the water unable to get range. Vessel off D.P relocating for triangulation		MOORING	
31/12/2011 16:52	12 (Hydrophone)	- 52.79995	-40.10108	Vessel on D.P	12	MOORING	3
31/12/2011 16:55	12 (Hydrophone)	- 52.80084	-40.10402	Hydrophone deployed 2nd triangulation of P3. Drop site brg 208(T) x 985m		MOORING	
31/12/2011 16:57	12 (Hydrophone)	- 52.80083	-40.10402	Range for Mooring 3853m Hydrophone recovered. Vessel off D.P relocating next triangulating		MOORING	
31/12/2011 17:07	13 (Hydrophone)	-52.8099	-40.10136	Vessel on D.P			
31/12/2011 17:09	13 (Hydrophone)	- 52.80989	-40.10189	Hydrophone deployed 3rd triangulation of P3. Drop site brg 283(T) x 630m	13	MOORING	4
31/12/2011 17:11	13 (Hydrophone)	- 52.80991	-40.10187	Mooring range 3769m hydrophone recovered		MOORING	
31/12/2011 17:12	13 (Hydrophone)	-52.8099	-40.10185	Vessel off D.P completed triangulation deck secure. Vessel proceeding to WCB mooring			

01/01/2012		-			1		
00:30	14 (RMT8 - 1)	53.55919	-38.44441	V/L ready to deploy RMT8	14	RMT	3
01/01/2012		-					
00:38	14 (RMT8 - 1)	53.55892	-38.45427	RMT8 deployed		RMT	
				RMT 8 recovered on deck. V/L			
01/01/2012		-		proceeding to WCB mooring for			
01:05	14 (RMT8 - 1)	53.55845	-38.48767	acoustic transect		RMT	
01/01/2012	WCB Mooring	-		Commence acoustic transect Hdg			
03:55	acoustic transect	53.79819	-38.07709	090(T)		AT	6
01/01/2012	WCB Mooring	-		completed line turning around to			
04:56	acoustic transect	53.79807	-37.79208	restart the line		AT	
01/01/2012	WCB Mooring	-					
05:08	acoustic transect	53.79799	-37.79396	Restart line heading 270(T)		AT	7
01/01/2012	WCB Mooring	-		completed line turning around to			
06:32	acoustic transect	53.79776	-38.07828	restart the line		AT	
01/01/2012	WCB Mooring	-					
06:40	acoustic transect	53.79751	-38.07615	Restart line heading 090(T)		AT	8
01/01/2012	WCB Mooring						
07:41	acoustic transect	-53.7978	-37.79382	complete line turning		AT	
01/01/2012	WCB Mooring	-					
07:49	acoustic transect	53.79839	-37.79509	Restart line heading 270(T)		AT	9
				Complete transect line slow to 2.5knots			
01/01/2012	WCB Mooring	-		to assess suitability of conditions for			
09:10	acoustic transect	53.79748	-38.07419	RMT		AT	
				Conditions suitable for RMT. Turn to			
01/01/2012	WCB Mooring	-		reposition 2nm downwind of mooring			
09:22	acoustic transect	53.79687	-38.09408	site			
01/01/2012		-					
10:32	15 (RMT 8 - 2)	53.79793	-37.88701	RMT 8 deployed	15	RMT	4
01/01/2012		-					
11:40	15 (RMT 8 - 2)	53.79776	-37.96204	RMT 8 recovered on deck		RMT	
01/01/2012		-					
12:12		53.79743	-37.93454	Vessel on D.P			

01/01/2012		-					
12:21	16 (CTD 2)	53.79756	-37.9348	CTD Deployed	16	CTD	3
01/01/2012		-					
12:25	16 (CTD 2)	53.79755	-37.93463	CTD Veering to 275m		CTD	
01/01/2012		-					
12:33	16 (CTD 2)	53.79754	-37.93463	All stopped @ 275m		CTD	
01/01/2012		-					
12:48	16 (CTD 2)	53.79755	-37.9346	CTD Recovered on deck		CTD	
01/01/2012	WCB Mooring	-		Vessel off DP. Commence acoustic			
12:56	acoustic transect	53.79752	-37.9346	transect		AT	10
01/01/2012	WCB Mooring	-					
13:40	acoustic transect	53.79784	-38.07298	Turning to commence transect line		AT	
01/01/2012	WCB Mooring			completed line turning around to			
14:47	acoustic transect	-53.7977	-37.79633	restart the line		AT	
				Ceased acoustic line. Vessel slowed to			
				minimum for steerage ready to deploy			
01/01/2012	WCB Mooring	-		RMT 8 waiting for stern gantry leak to			
15:14	acoustic transect	53.79784	-37.86848	be fixed			
01/01/2012		-		Vessel on D.P waiting for leak to be			
15:20		53.79796	-37.87364	fixed			
01/01/2012		-		Stern gantry leak not fixed commence			
17:10	17 (SUCS 1)	53.79795	-37.87388	deploying SUCS	17	SUCS	3
01/01/2012		-		SUCS deployed Veering EA 600 depth			
17:13	17 (SUCS 1)	53.79796	-37.87387	168m		SUCS	
01/01/2012		-					
17:19	17 (SUCS 1)	53.79795	-37.87385	SUCS on seabed capturing image		SUCS	
01/01/2012		-		SUCS clear of the seabed. Move ahead 5			
17:23	17 (SUCS 1)	53.79795	-37.87386	m		SUCS	
01/01/2012		-					
17:25	17 (SUCS 1)	53.79795	-37.87392	SUCS on the seabed capturing image		SUCS	
01/01/2012		-		SUCS clear of the seabed moving ahead			
17:29	17 (SUCS 1)	53.79796	-37.87394	5m		SUCS	

01/01/2012		-					
17:31	17 (SUCS 1)	53.79795	-37.87403	SUCS on the seabed capturing image		SUCS	
01/01/2012		-		SUCS clear of the seabed commence			
17:34	17 (SUCS 1)	53.79794	-37.874	recovery		SUCS	
01/01/2012		-					
17:40	17 (SUCS 1)	53.79794	-37.87404	SUCS clear of the water		SUCS	
01/01/2012		-					
17:41	17 (SUCS 1)	53.79793	-37.87397	SUCS recovered on deck		SUCS	
01/01/2012		-		Vessel off D.P Proceeding the WCB			
17:44	17 (SUCS 1)	53.79793	-37.87452	mooring site for SUCS			
01/01/2012		-					
18:05	18 (SUCS 2)	53.79797	-37.93025	Vessel on D.P for SUCS			
01/01/2012		-					
18:08	18 (SUCS 2)	53.79824	-37.93011	Vessel all stoped on D.P.			
01/01/2012		-					
18:09	18 (SUCS 2)	53.79823	-37.93012	Commence deploying SUCS	18	SUCS	4
01/01/2012		-		SUCS deployed Veering EA 600 depth			
18:12	18 (SUCS 2)	53.79821	-37.93013	284m		SUCS	
01/01/2012		-					
18:21	18 (SUCS 2)	53.79823	-37.93013	SUCS on the seabed capturing image		SUCS	
01/01/2012		-		SUCS clear of the seabed moving ahead			
18:27	18 (SUCS 2)	53.79823	-37.93009	5m		SUCS	
01/01/2012		-					
18:30	18 (SUCS 2)	53.79824	-37.93022	SUCS on the seabed capturing image		SUCS	
01/01/2012		-		SUCS clear of the seabed moving ahead			
18:38	18 (SUCS 2)	53.79821	-37.93022	5m		SUCS	
01/01/2012		-					
18:41	18 (SUCS 2)	53.79823	-37.93025	SUCS on the seabed capturing image		SUCS	
01/01/2012		-		SUCS clear of the seabed commence			
18:45	18 (SUCS 2)	53.79826	-37.93027	recovery		SUCS	
01/01/2012		-					
18:54	18 (SUCS 2)	53.79822	-37.93025	SUCS clear of the water		SUCS	

01/01/2012		_		SUCS recovered on deck vessel waiting				
18:55	18 (SUCS 2)	53.79823	-37.93028	for stern gantry leak to be fixed			SUCS	
01/01/2012		-	07.00010	Gantry leak fixed. V/L off DP preparing				
21:03		53.79769	-37.87812	for RMT deployment				
01/01/2012		-						
21:07	19 (RMT 3)	53.79769	-37.8806	Commence RMT deployment @ 2.5kts		19	RMT	5
01/01/2012		-						
21:11	19 (RMT 3)	53.79789	-37.88555	RMT deployed			RMT	
01/01/2012		-						
21:26	19 (RMT 3)	53.79776	-37.90255	Commence hauling RMT			RMT	
01/01/2012		-		RMT recovered to deck. Resume				
22:10	19 (RMT 3)	53.79771	-37.95326	accoustic transects			RMT	
01/01/2012	WCB Mooring	-		Commence downwind transect run				
22:51	acoustic transect	53.79763	-38.08204	heading 090 deg			AT	11
01/01/2012	WCB Mooring	-		Commence upwind transect run				
23:52	acoustic transect	53.79785	-37.79704	heading 270 deg			AT	12
02/01/2012								
00:31	20 (RMT 4)	-53.7978	-37.87506	RMT 8 deployed		20	RMT	6
02/01/2012		-		RMT 8 recovered on deck. Continue				
01:28	20 (RMT 4)	53.79777	-37.93954	with acoustic transect			RMT	
02/01/2012	WCB Mooring	-		Complete acoustic survey. V/L				
02:11	acoustic transect	53.79785	-38.07108	proceeding to WCB 1.1			AT	
02/01/2012		-						
09:00	WCB1.1	54.05632	-39.3913	Start transect @ 1.1S. 6 knots for XBT			AT	13
02/01/2012		-						
09:00	21 (XBT1)	54.05632	-39.3913	XBT deployed at 6 knots		21	XBT	2
02/01/2012		-						
09:03	21 (XBT1)	54.05146	-39.39307	XBT completed increase to 10 knots			XBT	
02/01/2012		-						
10:02	22(XBT2)	53.89257	-39.44091	Commence slowing to 6 knots for XBT		22	XBT	3
02/01/2012								
10:09	22(XBT2)	-53.8791	-39.4445	XBT deployed at 6 knots			XBT	

02/01/2012		-						ĺ
10:11	22(XBT2)	53.87594	-39.44556	XBT completed increase to 10 knots			XBT	
02/01/2012								
11:10	23 (XBT 3)	-53.7174	-39.49285	Commence slowing to 6 knots for XBT		23	XBT	4
02/01/2012		-						
11:19	23 (XBT 3)	53.70093	-39.4975	XBT Deployed at 6 knots (failed).			XBT	
02/01/2012		-						
11:26	23 (XBT 3)	53.68938	-39.50095	2nd XBT Deployed at 6 knots			XBT	
02/01/2012		-						
11:28	23 (XBT 3)	53.68614	-39.50189	XBT completed increase to 10 knots			XBT	
02/01/2012		-						
12:23	24 (XBT 5)	53.53942	-39.54552	Commence slowing to 6 knots for XBT		24	XBT	5
02/01/2012		-						
12:31	24 (XBT 4)	53.52352	-39.55015	XBT deployed at 6 knots			XBT	
02/01/2012		-						
12:36	24 (XBT 4)	53.51549	-39.55258	XBT completed increase to 10 knots			XBT	
02/01/2012		-						
13:34	25 (XBT 5)	53.36114	-39.5984	Commence slowing to 6 knots for XBT		25	XBT	6
02/01/2012		-						
13:40	25 (XBT 5)	53.34848	-39.602	XBT deployed at 6 knots			XBT	
02/01/2012		-		Finish Transect 1.1 proceeding to				
13:45	25 (XBT 5)	53.34033	-39.60432	position 1.2N			AT	
02/01/2012				Commence transect @ 1.2 N @ 10				
14:54	Transect 1.2N	-53.3198	-39.30285	knots			AT	14
02/01/2012	WCB Transect	-						
19:12	1.2	54.02398	-39.08931	Complete transect 1.2			AT	
02/01/2012		-						
20:21	26 (CTD1.2S)	53.84654	-39.14239	V/L on DP for CTD	WCB 1.2S	26	CTD	4
02/01/2012		-						
20:29	26 (CTD1.2S)	53.84644	-39.14275	CTD 1.2S deployed			CTD	
02/01/2012		-						
20:38	26 (CTD1.2S)	53.84643	-39.14278	CTD @ 260m			CTD	

02/01/2012		-						
20:52	26 (CTD1.2S)	53.84644	-39.14278	CTD recovered to deck			CTD	
02/01/2012		-		v/l off DP 2nm downwind of 1.2CTDS				
21:30		53.85856	-39.08959	for RMT				
02/01/2012		-						
	27 (RMT5)	53.85825	-39.09106	Commence deployment of RMT		27	RMT	7
02/01/2012		-						
21:40	27 (RMT5)	53.85624	-39.10077	RMT deployed			RMT	
02/01/2012								
22:14	27 (RMT5)	-53.8479	-39.13651	Commence hauling RMT			RMT	
02/01/2012		-						
22:50	27 (RMT5)	53.83961	-39.17463	RMT recovered to deck			RMT	
03/01/2012		-						
01:04	28 (RMT 6)	53.50498	-39.1902	RMT 8 deployed		28	RMT	8
03/01/2012		-						
02:17	28 (RMT 6)	53.49189	-39.2551	RMT 8 recovered on deck			RMT	
03/01/2012		-						
05:21		53.49274	-39.25084	Vessel on DP				
03/01/2012		-						
05:25	29 (CTD 1.2N)	53.49266	-39.24949	Commence CTD deployment	WCB 1.2N	29	CTD	5
03/01/2012		-						
05:30	29 (CTD 1.2N)	53.49268	-39.25002	CTD in water soaking			CTD	
03/01/2012		-		CTD deployed veering to 1000m EA600				
05:33	29 (CTD 1.2N)	53.49267	-39.25023	depth 3145m			CTD	
03/01/2012								
05:51	29 (CTD 1.2N)	-53.4927	-39.25116	Wire out 100m commence hauling			CTD	
03/01/2012		-						
06:10	29 (CTD 1.2N)	53.49277	-39.25115	CTD at the surface			CTD	
03/01/2012		-						
06:11	29 (CTD 1.2N)	53.49277	-39.25115	CTD recovered on deck			CTD	
03/01/2012		-		CTD secure on deck vessel proceeding				
06:20	29 (CTD 1.2N)	53.49277	-39.25115	to W2.1N to start transect				

03/01/2012	WCB 2.1 start	-					
09:00	acoustic transect	53.28572	-39.03874	Start transect 2.1 at 2.1N		AT	15
03/01/2012		-					
09:03	30 (XBT6)	53.29056	-39.0372	XBT deployed at 6 knots	30	XBT	7
03/01/2012		-					
09:08	30 (XBT6)	53.29868	-39.03477	XBT completed increase to 10 knots		XBT	
03/01/2012		-					
09:32	33 (XBT 9)	53.36087	-39.0154	XBT completed increase to 10 knots		XBT	FIX
03/01/2012		-					
10:06	31 (XBT7)	53.45296	-38.98682	Commence slowing for XBT	31	XBT	8
03/01/2012		-					
10:11	31 (XBT7)	53.46331	-38.98358	XBT deployed at 6 knots		XBT	
03/01/2012		-					
10:17	31 (XBT7)	53.47336	-38.98025	XBT completed increase to 10 knots		XBT	
03/01/2012		-					
11:16	32 (XBT 8)	53.63175	-38.9319	Commence slowing to 6 knots for XBT	32	XBT	9
03/01/2012		-					
11:19	32 (XBT 8)	53.63797	-38.92993	XBT Deployed at 6 knots (failed).		XBT	
03/01/2012		-					
11:21	32 (XBT 8)	53.64142	-38.92855	XBT deployed at 6 knots		XBT	
03/01/2012		-					
11:26	32 (XBT 8)	53.64929	-38.92641	XBT completed increase to 10 knots		XBT	
03/01/2012		-					
12:25	33 (XBT 9)	53.80531	-38.87799	Commence slowing to 6 knots for XBT	33	XBT	10
03/01/2012							
12:30	33 (XBT 9)	-53.8146	-38.87498	XBT deployed at 6 knots		XBT	
03/01/2012		-					
13:32	34 (XBT 10)	53.97745	-38.8243	Commence slowing to 6 knots for XBT	34	XBT	11
03/01/2012							
13:41	34 (XBT 10)	-53.9941	-38.81879	XBT deployed at 6 knots		XBT	
03/01/2012		-					
14:42	Transect W 2.2	53.96211	-38.52665	Commence 10kt Transect.		AT	16

03/01/2012		-		Complete transect 2.2 relocate to 2.2N				
19:03	WCB transect 2.2	53.25482	-38.75079	CTD site			AT	
03/01/2012		-						
20:10	35 (CTD2.2N)	53.43164	-38.69418	V/L on DP for CTD 2.2N				
03/01/2012		-						
20:18	35 (CTD2.2N)	53.43139	-38.69468	CTD deployed	WCB	35	CTD	6
03/01/2012		-						
20:39	35 (CTD2.2N)	53.43186	-38.69499	CTD @ 1000m			CTD	
03/01/2012		-						
21:04	35 (CTD2.2N)	53.43183	-38.69521	CTD recovered to deck			CTD	
03/01/2012		-		Relocating for RMT Gantry leak				
21:21		53.42799	-38.67664	identified				
03/01/2012		-						
21:26		53.42629	-38.67269	V/L off DP				
03/01/2012				V/L on DP 2nm downwind of CTD2.2N				
21:45	36 (RMT7)	-53.4248	-38.6393	site. Awaiting gantry fix				
03/01/2012		-		Gantry fixed V/L off DP prepare for				
22:01	36 (RMT7)	53.42444	-38.63935	RMT				
03/01/2012		-						
22:10	36 (RMT7)	53.42473	-38.64765	RMT deployed		36	RMT	9
03/01/2012								
23:19	36 (RMT7)	-53.4351	-38.7215	RMT 8 recovered on deck			RMT	
04/01/2012		-						
01:34	37 (RMT 8)	53.67512	-38.56091	RMT 8 deployed		37	RMT	10
04/01/2012		-						
01:52	37 (RMT 8)	53.67756	-38.58118	RMT 8 recovered on deck			RMT	
04/01/2012		-						
02:37	38 (RMT 9)	53.67162	-38.53752	RMT 8 deployed		38	RMT	11
04/01/2012				RMT 8 recovered on deck. V/L				
02:57	38 (RMT 9)	-53.6746	-38.55679	proceeding to W2.2CTDS			RMT	
04/01/2012		-		RMT secure on deck vessel proceeding				
03:09	38 (RMT 9)	53.67697	-38.56748	to next site for RMT deployment				

04/01/2012								
03:51	39 (RMT 10)	-53.769	-38.53272	Commence deployment of RMT8		39	RMT	12
04/01/2012		-						
03:55	39 (RMT 10)	53.77035	-38.53602	RMT8 deployed veering			RMT	
04/01/2012		-						
04:27	39 (RMT 10)	53.78184	-38.56755	RMT8 stopped at 318m			RMT	
04/01/2012		-						
04:30	39 (RMT 10)	53.78297	-38.57065	Commence hauling RMT8			RMT	
04/01/2012		-						
04:52	39 (RMT 10)	53.79066	-38.59279	RMT at surface			RMT	
04/01/2012		-						
04:56	39 (RMT 10)	53.79196	-38.59662	RMT recovered to deck			RMT	
04/01/2012		-		RMT secure on deck vessel proceeding				
04:58	39 (RMT 10)	53.79225	-38.59771	to next site for SUCS deployment			RMT	
04/01/2012		-						
05:16		53.78481	-38.57486	Vessel on DP				
04/01/2012								
05:17	40 (SUCS 3)	-53.7847	-38.57489	Commence deployment of SUCS		40	SUCS	5
04/01/2012		-		SUCS deployed veering EA600 depth				
05:20	40 (SUCS 3)	53.78469	-38.57488	205m			SUCS	
04/01/2012		-						
05:29	40 (SUCS 3)	53.78469	-38.5749	SUCS on the seabed capturing image			SUCS	
04/01/2012		-						
05:32	40 (SUCS 3)	53.78468	-38.57487	Commence recovering SUCS			SUCS	
04/01/2012		-						
05:42	40 (SUCS 3)	53.78468	-38.57483	SUCS at surface			SUCS	
04/01/2012		-		SUCS on deck vessel moved on DP to				
05:44	40 (SUCS 3)	53.78471	-38.57491	CTD site W2.2S			SUCS	
04/01/2012		-						
05:53		53.78492	-38.58318	Vessel stopped on DP				
04/01/2012		-						
05:58	41 (CTD 2.2S)	53.78489	-38.58321	Commence CTD deployment	WCB	41	CTD	7

04/01/2012		-					
06:02	41 (CTD 2.2S)	53.78509	-38.58323	CTD soaking		CTD	
04/01/2012		-					
06:04	41 (CTD 2.2S)	53.78516	-38.58327	CTD veering EA600 depth 207m		CTD	
04/01/2012		-					
06:08	41 (CTD 2.2S)	53.78514	-38.58339	CTD stopped at 183m		CTD	
04/01/2012		-					
06:12	41 (CTD 2.2S)	53.78515	-38.58342	CTD at surface		CTD	
04/01/2012		-					
06:15	41 (CTD 2.2S)	53.78515	-38.58341	CTD recovered on deck		CTD	
04/01/2012		-		CTD secure off DP proceeding to start			
06:23	41 (CTD 2.2S)	53.78512	-38.5834	of transect W3.1S for 0600		CTD	
04/01/2012	WCB Transect	-					
09:00	3.1	53.92714	-38.22041	Commence transect 3.1 @ 3.1S		AT	17
04/01/2012		-					
09:00	42 (XBT11)	53.92714	-38.22041	XBT deployed @ 6 knots	42	XBT	12
04/01/2012							
09:02	42 (XBT11)	-53.9238	-38.22134	XBT completed increase to 10 knots		XBT	
04/01/2012		-					
10:03	43 (XBT12)	53.75852	-38.27544	Commence slowing to 6 knots for XBT	43	XBT	13
04/01/2012		-					
10:07	43 (XBT12)	53.75074	-38.27787	XBT deployed @ 6 knots		XBT	
04/01/2012		-					
10:08	43 (XBT12)	53.74748	-38.2787	XBT completed increase to 10 knots		XBT	
04/01/2012		-					
11:06	44 (XBT 13)	53.59214	-38.32885	Commence slowing to 6 knots for XBT	44	XBT	14
04/01/2012		-					
11:16	44 (XBT 13)	53.57443	-38.33488	XBT deployed at 6 knots		XBT	
04/01/2012		-					
11:21	44 (XBT 13)	53.56632	-38.33723	XBT completed increase to 10 knots		XBT	
04/01/2012		-					
12:18	45 (XBT 14)	53.41334	-38.38668	Commence slowing to 6 knots for XBT	45	XBT	15

04/01/2012		-						
12:27	45 (XBT 14)	53.39724	-38.39211	XBT deployed @ 6 knots			XBT	
04/01/2012		-						
12:30	45 (XBT 14)	53.39235	-38.39377	XBT completed increase to 10 knots			XBT	
04/01/2012								
13:29	46 (XBT 15)	-53.235	-38.44418	Commence slowing to 6 knots for XBT		46	XBT	16
04/01/2012		-						
13:36	46 (XBT 15)	53.22244	-38.44844	XBT deployed @ 6 knots			XBT	
04/01/2012		-						
14:48	WCB transect 3.2	53.18388	-38.14075	Commence acoustic transect			AT	18
04/01/2012		-						
19:07	WCB transect 3.2	53.89151	-37.90606	Transect completed			AT	
04/01/2012		-						
20:11	47 (CTD3.2S)	53.71371	-37.96478	V/L on DP for CTD	WCB	47	CTD	8
04/01/2012		-						
20:17	47 (CTD3.2S)	53.71396	-37.96544	CTD deployed			CTD	
04/01/2012		-						
20:25	47 (CTD3.2S)	53.71407	-37.96566	CTD @ depth 112m			CTD	
04/01/2012		-						
20:30	47 (CTD3.2S)	53.71408	-37.96573	CTD recovered to deck			CTD	
04/01/2012		-						
20:35		53.71408	-37.96576	VL off DP				
04/01/2012								
21:08	48 (RMT11)	-53.7028	-37.9284	RMT deployed		48	RMT	13
04/01/2012		-						
21:33	48 (RMT11)	53.71009	-37.9527	Commence hauling RMT			RMT	
04/01/2012		-						
22:01	48 (RMT11)	53.71958	-37.98053	RMT recovered to deck			RMT	
04/01/2012		-		All secure on deck. Turn to run				
22:09		53.72255	-37.98942	downwind for target fishing				
04/01/2012		-						
23:34	49 (RMT 12)	53.60796	-37.72414	RMT 8 deployed		49	RMT	14

05/01/2012		-						
00:11	49 (RMT 12)	53.62161	-37.75446	RMT 8 recovered on deck			RMT	
05/01/2012		-						
02:06	50 (RMT 13)	53.51014	-37.88537	RMT 8 deployed		50	RMT	15
05/01/2012								
02:39	50 (RMT 13)	-53.5083	-37.92286	RMT 8 recovered on deck			RMT	
05/01/2012		-						
03:50	51 (RMT 14)	53.38896	-38.05328	Commence deploying RMT 8		51	RMT	16
05/01/2012		-						
03:54	51 (RMT 14)	53.38613	-38.05399	RMT deployed veering			RMT	
05/01/2012		-						
04:29	51 (RMT 14)	53.36619	-38.07725	Wire out 411m commence hauling			RMT	
05/01/2012		-		RMT 8 at the surface commence				
05:00	51 (RMT 14)	53.35037	-38.10024	recovery			RMT	
05/01/2012		-		RMT 8 recovered on deck. V/L				
05:05	51 (RMT 14)	53.34797	-38.10381	proceeding to W3.2CTDN			RMT	
05/01/2012								
05:29	52 (CTD 3.2N)	-53.3615	-38.08196	Vessel on D.P at W3.2N	WCB	52	CTD	9
05/01/2012		-						
05:31	52 (CTD 3.2N)	53.36152	-38.08204	Commence deploying CTD			CTD	
05/01/2012		-						
05:35	52 (CTD 3.2N)	53.36144	-38.08238	CTD Soaking			CTD	
05/01/2012		-		CTD deployed Veering EA600 depth				
05:38	52 (CTD 3.2N)	53.36142	-38.08242	2661m			CTD	
05/01/2012		-						
05:56	52 (CTD 3.2N)	53.36143	-38.08246	CTD stopped at 1000m			CTD	
05/01/2012		-						
06:13	52 (CTD 3.2N)	53.36147	-38.08242	CTD at surface			CTD	
05/01/2012		-						
06:15	52 (CTD 3.2N)	53.36147	-38.08244	CTD recovered to deck			CTD	
05/01/2012		-		Vessel off DP proceeding to start of				
06:24	52 (CTD 3.2N)	53.36146	-38.08247	transect W4.1N for 0900				

05/01/2012		-					
09:00	WCB transect 4.1	53.16296	-37.96475	Start transect		AT	19
05/01/2012		-					
09:00	53 (XBT16)	53.16296	-37.96475	XBT deployed at 6 knots	53	XBT	17
05/01/2012		-					
09:07	53 (XBT16)	53.17455	-37.96043	XBT completed increase to 10 knots		XBT	
05/01/2012		-					
10:04	54 (XBT17)	53.32803	-37.90722	Commence slowing for XBT	54	XBT	18
05/01/2012		-					
10:08	54 (XBT17)	53.33604	-37.90405	XBT deployed @ 6 knots		XBT	
05/01/2012		-					
10:14	54 (XBT17)	53.34551	-37.9007	XBT completed increase to 10 knots		XBT	
05/01/2012		-					
11:12	55 (XBT 18)	53.50235	-37.8513	Commence slowing for XBT	55	XBT	19
05/01/2012		-					
11:20	55 (XBT 18)	53.51709	-37.84663	XBT deployed		XBT	
05/01/2012		-					
11:24	55 (XBT 18)	53.52364	-37.84441	Increase speed to 10 knots		XBT	
05/01/2012		-					
12:23	56 (XBT 19)	53.68107	-37.79102	Slow to 6 knots for XBT deployment	56	XBT	20
05/01/2012		-					
12:29	56 (XBT 19)	53.69155	-37.78803	XBT Deployed (failed).		XBT	
05/01/2012		-					
12:33	57 (XBT 19)	53.69794	-37.78582	2nd XBT Deployed at 6 knots	57	XBT	21
05/01/2012		-					
12:35	57 (XBT 19)	53.70115	-37.78454	Increase speed to 10 knots		XBT	
05/01/2012		-					
13:32	58 (XBT 19)	53.85353	-37.73307	Slow to 6 knots for XBT deployment	58	XBT	22
05/01/2012		-					
13:40	58 (XBT 19)	53.86734	-37.72878	XBT deployed		XBT	
05/01/2012		-					
13:40	Transect 4.1	53.86734	-37.72878	Transect 4.1 completed		XBT	

05/01/2012		-					
14:13	59 (XBT 20)	53.86192	-37.59123	Slow to 6 knots for XBT deployment	59	XBT	23
05/01/2012		-					
14:17	59 (XBT 20)	53.85446	-37.59384	XBT deployed		XBT	
05/01/2012		-					
14:17	Transect 4.2	53.85446	-37.59384	Commence acoustic transect		AT	20
05/01/2012		-					
15:17	60 (XBT 21)	53.69586	-37.64737	Slowing down to 6 knots for XBT	60	XBT	24
05/01/2012		-					
15:28	60 (XBT 21)	53.67602	-37.65472	XBT deployed increasing to 10knots		XBT	
05/01/2012		-					
15:32	60 (XBT 21)	53.66779	-37.65782	Vessel proceeding at 10knots		XBT	
05/01/2012		-					
16:28	61 (XBT 22)	53.51702	-37.70654	Slowing down to 6 knots for XBT	61	XBT	25
05/01/2012		-					
16:40	61 (XBT 22)	53.49645	-37.71335	Slowing down to 6 knots for XBT		XBT	
05/01/2012		-					
16:42	61 (XBT 22)	53.49316	-37.7146	XBT deployed increasing to 10knots		XBT	
05/01/2012							
16:45	61 (XBT 22)	-53.4867	-37.71697	Vessel at 10 knots		XBT	
05/01/2012		-					
16:55	61 (XBT 22)	53.45932	-37.72658	Vessel at 10 knots		XBT	
05/01/2012		-					
17:52	62 (XBT 23)	53.31715	-37.77423	XBT deployed increasing to 10knots	62	XBT	26
05/01/2012		-					
18:50	63 (XBT 24)	53.15996	-37.82836	Slowing down to 6 knots for XBT	63	XBT	27
05/01/2012		-		Completed transect line W4.2N XBT			
18:57	63 (XBT 24)	53.14834	-37.83238	deployed		AT	
05/01/2012		-					
19:02	63 (XBT 24)	53.13979	-37.83549	XBT complete		XBT	
05/01/2012		-					
19:09		53.13469	-37.84012	V/L stopped on DP for RMT trial			

05/01/2012								
19:36				V/L off DP proceed to WCB mooring site				
06/01/2012		-						
01:23	64 (RMT 15)	53.64199	-37.71546	RMT deployed		64	RMT	17
06/01/2012		-		RMT recovered to deck procceding to				
01:47	64 (RMT 15)	53.65448	-37.73226	WCB mooring position			RMT	
06/01/2012	WCB Mooring	-			WCB			
02:38	acoustic transect	53.74282	-37.82551	Commence acoustic transect	Mooring		AT	21
06/01/2012	WCB Mooring			completed line turning around to				
03:41	acoustic transect	-53.8499	-38.05053	restart the line			AT	
06/01/2012	WCB Mooring	-						
03:50	acoustic transect	53.84723	-38.0522	Restart line heading 055(T)			AT	22
06/01/2012	WCB Mooring	-		completed line turning around to				
04:50	acoustic transect	53.74982	-37.81964	restart the line			AT	
06/01/2012	WCB Mooring	-						
04:58	acoustic transect	53.74902	-37.81771	Restart line heading 235 degrees			AT	23
06/01/2012	WCB Mooring	-		completed line turning around to				
06:03	acoustic transect	53.84591	-38.05146	restart the line			AT	
06/01/2012	WCB Mooring							
06:10	acoustic transect	-53.8462	-38.05371	Restart line heading 055(T)			AT	24
06/01/2012	WCB Mooring	-						
07:11	acoustic transect	53.74943	-37.81876	Complete line turn to restart			AT	
06/01/2012	WCB Mooring	-						
07:18	acoustic transect	53.74923	-37.81729	Restart line heading 235 degrees			AT	25
06/01/2012	WCB Mooring	-						
08:26	acoustic transect	53.84567	-38.05183	Complete line turn to restart			AT	
06/01/2012	WCB Mooring	-						
08:32	acoustic transect	53.84688	-38.05387	Restart line heading 055(T)			AT	26
06/01/2012	WCB Mooring	-		Complete acoustic survey. Assesing				
09:32	acoustic transect	53.74953	-37.81941	conditions for RMT			AT	
06/01/2012		-						
10:22	65 (RMT 16)	53.77631	-37.90393	RMT 8 deployed		65	RMT	18

06/01/2012		-					
11:34	65 (RMT 16)	53.80953	-37.95293	RMT 8 recovered on deck		RMT	
06/01/2012	WCB Mooring	-					
11:48	acoustic transect	53.81645	-37.96307	Commence acoustic transect		AT	27
06/01/2012	WCB Mooring						
12:12	acoustic transect	-53.7978	-37.93567	End of transect line. Commence turn		AT	
06/01/2012	WCB Mooring	-					
12:19	acoustic transect	53.86941	-37.99977	Commence downwind transect run		AT	28
06/01/2012	WCB Mooring	-					
13:19	acoustic transect	53.72367	-37.86911	End of transect line. Commence turn		AT	
06/01/2012	WCB Mooring	-					
13:23	acoustic transect	53.71996	-37.86564	Commence upwind transect run		AT	29
06/01/2012		-					
14:03		53.79772	-37.93671	V/L on DP			
06/01/2012		-					
14:19	66 (SUCS 4)	53.79779	-37.93565	SUCS deployed veering to depth 312m	66	SUCS	6
06/01/2012		-					
14:29	66 (SUCS 4)	53.79776	-37.93566	SUCS on bottom taking photo		SUCS	
06/01/2012		-					
14:36	66 (SUCS 4)	53.79779	-37.93565	SUCS off seabed moving ahead 5m		SUCS	
06/01/2012		-					
14:40	66 (SUCS 4)	53.79782	-37.93569	SUCS on bottom taking photo		SUCS	
06/01/2012		-					
14:43	66 (SUCS 4)	53.79781	-37.9357	SUCS off seabed moving ahead 5m		SUCS	
06/01/2012		-					
14:45	66 (SUCS 4)	53.79782	-37.93574	SUCS on bottom taking photo		SUCS	
06/01/2012		-					
15:03	66 (SUCS 4)	53.79783	-37.93578	SUCS at the surface		SUCS	
06/01/2012		-					
15:04	66 (SUCS 4)	53.79783	-37.93578	SUCS recovered to deck		SUCS	
				SUCS secure on deck vessel on DP			
06/01/2012		-		proceeding 2nm downwind of waypoint			
15:14	66 (SUCS 4)	53.79784	-37.93579	for RMT deployment		SUCS	

06/01/2012		-					
15:39	67 (RMT 17)	53.76701	-37.91178	Commence deployment of RMT8	67	RMT	19
06/01/2012		-					
15:44	67 (RMT 17)	53.76977	-37.91376	RMT8 deployed veering		RMT	
06/01/2012		-		Commence recovery of RMT8 for re-			
15:47	67 (RMT 17)	53.77182	-37.91539	cocking		RMT	
06/01/2012							
15:53	67 (RMT 17)	-53.7757	-37.91852	RMT8 at the surface		RMT	
06/01/2012		-					
15:57	67 (RMT 17)	53.77819	-37.92027	RMT8 recovered on deck		RMT	
06/01/2012		-					
16:06	68 (RMT 18)	53.78331	-37.92397	Commence re-deployment of RMT8	68	RMT	20
06/01/2012		-					
16:11	68 (RMT 18)	53.78586	-37.92565	RMT8 deployed veering		RMT	
06/01/2012		-					
16:25	68 (RMT 18)	53.79556	-37.93218	Wire out 225m stopped veering		RMT	
06/01/2012		-					
16:35	68 (RMT 18)	53.80159	-37.93709	Commence hauling RMT8		RMT	
06/01/2012		-					
17:08	68 (RMT 18)	53.82142	-37.95366	RMT 8 at the surface		RMT	
06/01/2012		-					
17:13	68 (RMT 18)	53.82462	-37.9561	RMT 8 recovered on deck		RMT	
06/01/2012	WCB Mooring	-		RMT 8 and deck secure increase to 10			
17:42	acoustic transect	53.84842	-37.97735	knots resume acoustic transect		AT	30
06/01/2012	WCB Mooring	-		completed line turning around to			
17:53	acoustic transect	53.87002	-37.99905	restart the line		AT	
06/01/2012	WCB Mooring	-					
18:00	acoustic transect	53.87021	-38.00164	Restart line heading 029T)		AT	31
06/01/2012	WCB Mooring	-		completed line turning around to			
19:00	acoustic transect	53.72427	-37.86878	restart the line		AT	
06/01/2012	WCB Mooring	-					
19:08	acoustic transect	53.72055	-37.86423	Restart line heading 229(T)		AT	32

06/01/2012	WCB Mooring	-		completed line turning around to			
20:09	acoustic transect	53.86782	-37.99801	restart the line		AT	
06/01/2012	WCB Mooring						
20:19	acoustic transect	-53.8631	-37.99384	Restart line heading 029T)		AT	33
06/01/2012							
21:12	69 (RMT19)	-53.7695	-37.90859	RMT deployed	69	RMT	21
06/01/2012		-		RMT recovered to deck. Resume			
22:21	69 (RMT19)	53.80698	-37.94394	accoustic transects		RMT	
06/01/2012	WCB Mooring	-					
22:58	acoustic transect	53.86877	-37.99952	Start transect heading 029deg		AT	34
06/01/2012	WCB Mooring	-		Complete acoustic survey. Commence			
23:58	acoustic transect	53.72251	-37.86695	target fishing		AT	
07/01/2012		-					
00:53		53.61192	-37.77091	V/L on DP. Stern gantry problem			
07/01/2012		-					
01:18		53.61197	-37.77056	Stern gantry fixed. V/L off DP			
07/01/2012		-					
01:24	70 (RMT 20)	53.61441	-37.77327	RMT 8 deployed	70	RMT	22
07/01/2012							
01:57	70 (RMT 20)	-53.6334	-37.78862	RMT 8 recovered on deck		RMT	
07/01/2012		-		Reduce speed to 2.5 knots for RMT			
03:01	71 (RMT 21)	53.76258	-37.89725	deployment	71	RMT	23
07/01/2012		-					
03:08	71 (RMT 21)	53.76855	-37.90534	Commence RMT deployment		RMT	
07/01/2012							
03:11	71 (RMT 21)	-53.7705	-37.90713	RMT deployed veering		RMT	
07/01/2012							
03:28	71 (RMT 21)	-53.7807	-37.91611	Wire out 240m		RMT	
07/01/2012		-					
03:31	71 (RMT 21)	53.78257	-37.9178	Commence hauling RMT		RMT	
07/01/2012		-					7
04:04	71 (RMT 21)	53.80314	-37.93791	RMT at surface		RMT	

07/01/2012		-					
04:09	71 (RMT 21)	53.80628	-37.94107	RMT recovered to deck		RMT	
07/01/2012		-		RMT 8 and deck secure vessel			
04:25	71 (RMT 21)	53.81616	-37.95079	proceeding to Stromness			
07/01/2012		-					
11:45		54.15888	-36.69364	Commence rigging lines for calibration			
07/01/2012		-					
12:21		54.15883	-36.69427	Lines rigged boat recovered.			
07/01/2012		-					
12:30	72(CTD)	54.15884	-36.69426	CTD Deployed - soaking.	72	CTD	10
07/01/2012		-					
12:34	72(CTD)	54.15883	-36.69426	Veering CTD to 60m		CTD	
07/01/2012		-					
12:38	72(CTD)	54.15883	-36.69426	CTD at 60m commence hauling.		CTD	
07/01/2012		-					
12:44	72(CTD)	54.15883	-36.69426	CTD on deck gantry stowed.		CTD	
07/01/2012		-					
13:40		54.15874	-36.69458	JR3 launched			
07/01/2012		-		ES853 doughnut in water positioning			
13:44	73 (ES853)	54.15874	-36.69459	with JR3.	73	ES853	1
07/01/2012		-					
14:15	73 (ES853)	54.15875	-36.69459	JR3 clear of doughnut.		ES853	
07/01/2012		-		Completed calibrating commenced			
16:13	73 (ES853)	54.15878	-36.69462	recovering.		ES853	
07/01/2012		-					
16:21	73 (ES853)	54.15876	-36.69461	ES853 and doughnut recovered.		ES853	
07/01/2012		-					
16:24		54.15876	-36.6946	JR3 recovered.		ES853	
07/01/2012		-		Commence deploying WCP off stbd			
18:41	74 (WCP 1)	54.15877	-36.69461	effer	74	WCP	1
07/01/2012		-		WCP in the water hanging off the stbd			
18:42	74 (WCP 1)	54.15878	-36.69461	effer		WCP	

07/01/2012		-					
20:58	74 (WCP 1)	54.15874	-36.69463	WCP recovered to deck		WCP	
07/01/2012		-		Sphere centered underneath			
23:06		54.15883	-36.69467	echosounder. Commencing calibration.		WCP	
08/01/2012							
02:14		-54.1588	-36.69466	Calibration finished.		WCP	
08/01/2012							
11:25	75 (MOCNESS 2)	-54.1597	-36.6924	Deploy Mocness frame unit	75	MOCNESS	2
08/01/2012		-					
11:56	75 (MOCNESS 2)	54.15931	-36.692	Mocness frame unit recovered to deck		MOCNESS	
08/01/2012		-					
15:38		54.15934	-36.69175	Vessel on D.P ready for SUCS			
08/01/2012		-					
16:15	76 (SUCS 5)	54.15849	-36.69514	Commence deploying SUCS	76	SUCS	7
08/01/2012		-		SUCS in the water Veering EA 600			
16:16	76 (SUCS 5)	54.15848	-36.69513	depth 64m		SUCS	
08/01/2012		-					
16:25	76 (SUCS 5)	54.15852	-36.69487	SUCS just above the Seabed		SUCS	
08/01/2012		-					
16:26	76 (SUCS 5)	54.15853	-36.69487	Vessel moving 10m to Port		SUCS	
08/01/2012							
16:29	76 (SUCS 5)	-54.1586	-36.69497	SUCS just above Seabed		SUCS	
08/01/2012							
16:33	76 (SUCS 5)	-54.1586	-36.69495	Vessel moving 10m astern		SUCS	
08/01/2012		-					
16:35	76 (SUCS 5)	54.15865	-36.69483	SUCS just above the Seabed		SUCS	
08/01/2012		-					
16:37	76 (SUCS 5)	54.15865	-36.69485	Commence recovering SUCS		SUCS	
08/01/2012		-					
16:40	76 (SUCS 5)	54.15864	-36.69481	SUCS clear of the water		SUCS	
08/01/2012		-					
16:41	76 (SUCS 5)	54.15865	-36.69482	SUCS recovered on deck		SUCS	

08/01/2012		-					
17:05		54.15865	-36.69482	Vessel off D.P			
08/01/2012		-					
23:10	Acoustic transect	54.10158	-35.69321	Commence turn		AT	35
08/01/2012				Turn completed. Commence downwind			
23:16	Acoustic transect	-54.1145	-35.68598	transect		AT	
09/01/2012		-		V/L on reduced speed ready to deploy.			
00:21	77 (RMT 22)	54.05206	-35.39678	Problem with RMT 8	77	RMT	24
09/01/2012		-					
00:50	77 (RMT 22)	54.04905	-35.37524	Problem fixed. RMT 8 deployed		RMT	
09/01/2012		-					
01:14	77 (RMT 22)	54.05221	-35.40102	RMT 8 recovered on deck		RMT	
09/01/2012		-					
01:53		54.05383	-35.44996	V/L proceeding to Gully station			
09/01/2012	GS Acoustic	-		Commence transect heading 255			
10:00	Transect	53.78033	-37.17468	degrees		AT	36
09/01/2012	GS Acoustic	-					
11:02	Transect	53.82192	-37.44881	Commence turn		AT	
09/01/2012	GS Acoustic						
11:07	Transect	-53.8218	-37.45134	Commence downwind transect run		AT	37
09/01/2012	GS Acoustic	-					
12:05	Transect	53.77945	-37.18032	Commence turn		AT	
09/01/2012	GS Acoustic	-					
12:13	Transect	53.77845	-37.1733	Commence upwind transect run		AT	38
09/01/2012	GS Acoustic	-		Finish GS transect. Proceed to WCB			
13:14	Transect	53.82193	-37.44799	mooring psn		AT	
09/01/2012	WCB Mooring	-		Commence transect. Heading 270			
14:22	acoustic transect	53.79787	-37.7947	degrees		AT	39
09/01/2012	WCB Mooring	-		completed line turning around to			
15:23	acoustic transect	53.79777	-38.08001	restart the line		AT	
09/01/2012	WCB Mooring	-					
15:31	acoustic transect	53.79748	-38.07682	Restart line heading 090(T)		AT	40

09/01/2012	WCB Mooring	-		completed line turning around to			
16:31	acoustic transect	53.79766	-37.79612	restart the line		AT	
09/01/2012	WCB Mooring	-					
16:39	acoustic transect	53.79822	-37.79149	Restart line heading 270(T)		AT	41
09/01/2012	WCB Mooring			completed line turning around to			
17:41	acoustic transect	-53.7974	-38.07676	restart the line		AT	
09/01/2012	WCB Mooring	-					
17:49	acoustic transect	53.79757	-38.0764	Restart line heading 090(T)		AT	42
09/01/2012	WCB Mooring	-		completed line turning around to			
18:48	acoustic transect	53.79772	-37.79583	restart the line		AT	
09/01/2012	WCB Mooring	-					
18:56	acoustic transect	53.79801	-37.79156	Restart line heading 270(T)		AT	43
09/01/2012		-					
19:28	78 (CTD)	53.79784	-37.93304	Vessel on DP for CTD deployment	78	CTD	11
09/01/2012		-		Vessel stopped on DP commence			
19:31	78 (CTD)	53.79766	-37.93513	deployment of CTD		CTD	
09/01/2012		-					
19:35	78 (CTD)	53.79774	-37.93537	CTD deployed water depth 296m		CTD	
09/01/2012		-					
19:44	78 (CTD)	53.79781	-37.93563	CTD stopped at 270m		CTD	
09/01/2012		-					
19:52	78 (CTD)	53.79782	-37.93561	CTD on deck		CTD	
09/01/2012	79 (WCB	-		V/L 300m down current of deployment			
20:44	Mooring)	53.79861	-37.93126	site commence deployment	79	MOORING	2
09/01/2012	79 (WCB	-					
20:45	Mooring)	53.79859	-37.93136	Buoy in water		MOORING	
09/01/2012	79 (WCB	-					
21:09	Mooring)	53.79785	-37.93623	Mooring released - stern position 53		MOORING	
09/01/2012	79 (WCB	-		Move astern to locate mooring on echo			
21:15	Mooring)	53.79768	-37.93712	sounders		MOORING	
09/01/2012	79 (WCB	-					
21:25	Mooring)	53.79792	-37.93556	Mooring located on sounders		MOORING	

09/01/2012		-					
22:09	80 (EBS 1)	53.77199	-38.00084	Vessel on DP for EBS deployment	80	EBS	1
09/01/2012		-					
22:40	80 (EBS 1)	53.77144	-37.99694	EBS deployed		EBS	
09/01/2012		-					
22:51	80 (EBS 1)	53.77094	-37.99232	EBS on seabed		EBS	
09/01/2012		-					
23:00	80 (EBS 1)	53.77059	-37.98815	Commence EBS recovery		EBS	
09/01/2012		-					
23:17	80 (EBS 1)	53.77037	-37.98552	EBS recovered to deck		EBS	
09/01/2012		-					
23:53	81 (EBS 2)	53.77031	-37.98548	EBS deployed	81	EBS	2
10/01/2012		-					
00:22	81 (EBS 2)	53.76966	-37.97791	Commence EBS recovery		EBS	
10/01/2012		-					
00:30	81 (EBS 2)	53.76956	-37.97679	EBS recovered to deck		EBS	
10/01/2012		-					
01:58	82 (RMT 23)	53.79711	-38.11069	RMT 8 deployed	82	RMT	25
10/01/2012		-					
02:17	82 (RMT 23)	53.79785	-38.08918	RMT recovered to deck		RMT	
10/01/2012		-					
02:26		53.79845	-38.07746	Vessel on passage to P2 mooring			
10/01/2012		-					
14:24	83 (CTD P2)	55.21106	-41.11781	Vessel all stoped on D.P.	83	CTD	12
10/01/2012		-					
14:29	83 (CTD P2)	55.21104	-41.11782	CTD Deployed veering to 1600m		CTD	
10/01/2012		-					
15:00	83 (CTD P2)	55.21051	-41.11625	Wire out 1600m commence hauling		CTD	
10/01/2012		-					
15:40	83 (CTD P2)	55.21054	-41.11621	CTD at the surface		CTD	
10/01/2012		-					
15:43	83 (CTD P2)	55.21055	-41.1162	CTD recovered on deck		CTD	

				Gantry and block all secure vessel			
10/01/2012		-		proceeding 3200m down wind for			
15:53	83 (CTD P2)	55.21112	-41.11844	deployment of P2. Vessel off D.P			
10/01/2012		-					
16:14	84 (P2 mooring)	55.21975	-41.16504	Vessel on D.P	84	MOORING	3
10/01/2012		-		All stopped on D.P 3200m downwind of			
16:19	84 (P2 mooring)	55.22047	-41.1632	P2 ready for deployment		MOORING	
10/01/2012		-		Vessel moving 060(T) commence			
17:45	84 (P2 mooring)	55.22485	-41.15976	deploying P2		MOORING	
10/01/2012		-					
17:50	84 (P2 mooring)	55.22475	-41.15945	Main buoy in the water paying out line		MOORING	
10/01/2012		-					
18:23	84 (P2 mooring)	55.21782	-41.13842	Trimson buoy cluster deployed		MOORING	
10/01/2012		-		Sediment trap and Aquadoop current			
18:30	84 (P2 mooring)	55.21748	-41.13741	meter deployed		MOORING	
				Weight released position of stern at			
10/01/2012		-		time of release 55 degrees 12.5235'			
19:30	84 (P2 mooring)	55.20872	-41.11114	South 041 degrees 06.6698' West		MOORING	
10/01/2012		-					
19:54	84 (P2 mooring)	55.20852	-41.11046	Hydrophone deployed to ping mooring		MOORING	
10/01/2012				Mooring at a range of 3105m corrected			
19:56	84 (P2 mooring)	-55.2085	-41.11047	depth 3115m		MOORING	
10/01/2012		-					
20:00	84 (P2 mooring)	55.20847	-41.11047	Hydrophone recovered		MOORING	
10/01/2012		-					
20:09	84 (P2 mooring)	55.20305	-41.10128	Hydrophone redeployed		MOORING	
10/01/2012				Mooring at a range of 3279m corrected			
20:13	84 (P2 mooring)	-55.203	-41.10123	depth 3122m		MOORING	
10/01/2012		-					
20:15	84 (P2 mooring)	55.20305	-41.10115	Hydrophone recovered		MOORING	
10/01/2012		-					
20:47	84 (P2 mooring)	55.21062	-41.09746	Hydrophone redeployed		MOORING	

10/01/2012		-		Mooring at a range of 3312m corrected			
20:50	84 (P2 mooring)	55.21061	-41.09742	depth 3131m		MOORING	
10/01/2012							
20:52	84 (P2 mooring)	-55.2106	-41.09743	Hydrophone recovered		MOORING	
10/01/2012		-					
20:56		55.21055	-41.09748	Vessel off DP			
11/01/2012	GS Acoustic	-					
12:41	Transect	53.80041	-37.45416	Commence acoustic transect Hdg 090		AT	44
11/01/2012	GS Acoustic	-					
13:41	Transect	53.80036	-37.17206	Commence turn		AT	
11/01/2012	GS Acoustic	-		Commence upwind transect run			
13:49	Transect	53.80037	-37.17023	heading 270 deg		AT	45
11/01/2012		-					
14:24		53.79996	-37.30743	V/L on DP			
11/01/2012		-					
14:35	85 (SUCS 6)	53.80023	-37.31238	SUCS deployed	85	SUCS	8
11/01/2012		-					
14:44	85 (SUCS 6)	53.80023	-37.31241	SUCS on seabed capturing image		SUCS	
11/01/2012		-					
14:55	85 (SUCS 6)	53.80025	-37.31251	SUCS off seabed moving ahead 5m		SUCS	
11/01/2012		-					
14:58	85 (SUCS 6)	53.80025	-37.31257	SUCS on seabed		SUCS	
11/01/2012		-					
14:59	85 (SUCS 6)	53.80025	-37.31258	Commence recovery of SUCS		SUCS	
11/01/2012		-					
15:12	85 (SUCS 6)	53.80027	-37.31255	SUCS at the surface		SUCS	
11/01/2012		-					
15:14	85 (SUCS 6)	53.80026	-37.31256	SUCS recovered on deck		SUCS	
11/01/2012		-					
15:23	85 (SUCS 6)	53.80056	-37.31053	Deck secure Vessel off D.P			
11/01/2012		-					
15:47	86 (RMT8 24)	53.80054	-37.24289	Commence deploying RMT 8 for a wash	86	RMT	26

11/01/2012		-					
15:52	86 (RMT8 24)	53.80066	-37.24833	RMT 8 in the water		RMT	
11/01/2012		-					
16:01	86 (RMT8 24)	53.80078	-37.25791	Commence recovering RMT8		RMT	
11/01/2012		-					
16:06	86 (RMT8 24)	53.80091	-37.26212	RMT8 at the surface		RMT	
11/01/2012		-					
16:09	86 (RMT8 24)	53.80098	-37.26502	RMT8 recovered on deck		RMT	
11/01/2012		-					
16:16	87 (RMT8 25)	53.80115	-37.27234	Commence deploying RMT 8	87	RMT	27
11/01/2012		-					
16:19	87 (RMT8 25)	53.80117	-37.27507	RMT8 deployed veering		RMT	
11/01/2012		-					
16:42	87 (RMT8 25)	53.80147	-37.29931	Wire out 334m commence hauling		RMT	
11/01/2012		-					
17:46	87 (RMT8 25)	53.80122	-37.36859	RMT8 recovered on deck		RMT	
11/01/2012		-		RMT 8 and deck secure increase to 10			
18:04	87 (RMT8 25)	53.80056	-37.40601	knots resume acoustic transect		RMT	
11/01/2012	GS Acoustic	-		completed line turning around to			
18:16	Transect	53.79968	-37.45428	restart the line		AT	46
11/01/2012	GS Acoustic	-					
18:23		53.80015	-37.454	Restart line heading 090(T)		AT	47
11/01/2012	GS Acoustic	-		completed line turning around to			
19:23		53.80035	-37.17367	restart the line		AT	
11/01/2012							
19:31		-53.8007	-37.17004	Restart line heading 270(T)		AT	48
11/01/2012		-		Complete accoustic transect. Relocate			
20:35	Transect	53.80014	-37.45157	for RMT		AT	
				Weather conditions unsuitable for			
11/01/2012		-		deployment of RMT8 relocate to			
21:28		53.80618	-37.25963	resume acoustic survey		AT	
11/01/2012	GS Acoustic	-	-37.17279	Resume acoustic transect heading 270		AT	49

21:59	Transect	53.80053		degrees			
11/01/2012	GS Acoustic	-					
23:05	Transect	53.80021	-37.45138	Commence turn		AT	
11/01/2012	GS Acoustic	-		Commence downwind transect run			
23:12	Transect	53.80072	-37.45527	heading 090 deg		AT	50
12/01/2012	GS Acoustic			Complete transect line proceeding			
00:12	Transect	-53.8002	-37.17211	South to different transect line		AT	
12/01/2012		-					
00:47	Acoustic transect	53.88391	-37.17971	Commence upwind transect		AT	51
12/01/2012		-					
01:06		53.87027	-37.24036	Swarm spotted. Commence turn			
12/01/2012		-					
01:20		53.87308	-37.21852	V/L on DP			
12/01/2012		-					
01:33	88 (SUCS 7)	53.87385	-37.22059	SUCS deployed	88	SUCS	9
12/01/2012							
01:45	88 (SUCS 7)	-53.8738	-37.22054	SUCS on seabed		SUCS	
12/01/2012		-					
01:52	88 (SUCS 7)	53.87379	-37.22051	SUCS off seabed		SUCS	
12/01/2012		-					
01:57	88 (SUCS 7)	53.87381	-37.22052	SUCS stopped at 30m		SUCS	
12/01/2012							
02:03	88 (SUCS 7)	-53.8738	-37.2205	SUCS recovered to deck		SUCS	
12/01/2012							
02:16	89 (CTD)	-53.8738	-37.22055	CTD deployed	89	CTD	13
12/01/2012		-					
02:20	89 (CTD)	53.87381	-37.22054	Veering CTD to 200m		CTD	
12/01/2012		-					
02:24	89 (CTD)	53.87378	-37.22051			CTD	
12/01/2012		F0.0700		CTD recovered to deck v/l moving		070	
02:29	89 (CTD)	-53.8738	-37.22049	ahead at 1.5 knots on DP		CTD	
12/01/2012		-	-37.22311	V/L stopped on DP			

02:39		53.87322					
12/01/2012		-					
02:52	90 (CTD)	53.87324	-37.22309	CTD deployed	90	CTD	14
12/01/2012		-					
02:57	90 (CTD)	53.87325	-37.22308	Veering to 220m		CTD	
12/01/2012		-					
03:01	90 (CTD)	53.87324	-37.22308	Wire out 215m commence hauling		CTD	
12/01/2012		-					
03:05	90 (CTD)	53.87323	-37.2231	CTD at the surface		CTD	
12/01/2012		-					
03:08	90 (CTD)	53.87323	-37.22307	CTD recovered on deck		CTD	
12/01/2012		-					
03:19	90 (CTD)	53.87327	-37.22311	Gantry and block secure		CTD	
12/01/2012		-		Vessel off D.P carrying out SWATH			
03:33		53.87327	-37.22314	survey ready for deploying EBS		CTD	
12/01/2012		-					
11:13		53.88906	-37.22849	V/L off DP			
12/01/2012		-					
11:19	91 (RMT 26)	53.88945	-37.23301	RMT 8 deployed	91	RMT	28
12/01/2012		-					
11:54	91 (RMT 26)	53.89204	-37.26924	RMT 8 recovered on deck		RMT	
12/01/2012		-					
12:21	92 (RMT 27)	53.89248	-37.32131	RMT 8 deployed	92	RMT	29
12/01/2012		-					
12:38	92 (RMT 27)	53.89292	-37.33774	RMT 8 recovered on deck		RMT	
12/01/2012		-					
12:57	93 (RMT 28)	53.89237	-37.3531	RMT 8 deployed	93	RMT	30
12/01/2012		-					
13:11	93 (RMT 28)	53.89283	-37.3666	RMT 8 recovered on deck		RMT	
12/01/2012		-					
13:49		53.88916	-37.22706	V/L on DP			
12/01/2012	94 (EBS 3)	-	-37.22854	Increase speed to 1 knot	94	EBS	3

13:56		53.88961					
12/01/2012		-					
14:00	94 (EBS 3)	53.88984	-37.23041	EBS deployed		EBS	
12/01/2012		-					
14:10	94 (EBS 3)	53.89035	-37.23504	EBS on seabed		EBS	
12/01/2012		-		Decrease speed to 0.5 knots.			
14:20	94 (EBS 3)	53.89081	-37.23967	Commence recovery		EBS	
12/01/2012		-					
14:36	94 (EBS 3)	53.89092	-37.24335	EBS recovered to deck		EBS	
12/01/2012							
14:56		-53.891	-37.24413	Vessel off D.P proceeding to Bird Island			
12/01/2012		-					
21:48		53.89926	-37.8524	Resume Science			
12/01/2012		-					
23:59	95 (RMT 29)	53.88978	-37.49905	RMT 8 deployed	95	RMT	31
13/01/2012		-					
00:26	95 (RMT 29)	53.89013	-37.52518	RMT recovered to deck		RMT	
13/01/2012		-					
00:53		53.88733	-37.55449	Vessel all secure on passage to stanley			
15/01/2012	96 (Sonar bell	-		Vessel slowing down to deploy Sonar			
16:08	test)	51.97098	-53.23447	bell	96	SONARBELL	1
15/01/2012	-						
16:13	test)	-51.9685	-53.24321	Vessel on D.P		SONARBELL	
15/01/2012	96 (Sonar bell	-					
16:14	test)	51.96848	-53.24319	Commence deploying Sonar Bell		SONARBELL	
15/01/2012	96 (Sonar bell	-		Sonar Bell deployed EA 600 depth			
16:17	test)	51.96846	-53.24321	2122m veering		SONARBELL	
15/01/2012	96 (Sonar bell	-					
16:22	test)	51.96848	-53.24321	Wire out 150m		SONARBELL	
15/01/2012	•	-					
16:23	test)	51.96847	-53.24321	Veering		SONARBELL	
15/01/2012	96 (Sonar bell	-	-53.24322	Wire out 350m		SONARBELL	

16:29	test)	51.96849				
15/01/2012	96 (Sonar bell	-				
16:39	test)	51.96849	-53.24323	Veering	SONARBELL	
15/01/2012	96 (Sonar bell	-				
16:43	test)	51.96849	-53.24321	Wire out 500m	SONARBELL	
15/01/2012	96 (Sonar bell					
16:45	test)	-51.9685	-53.24322	Veering	SONARBELL	
15/01/2012	96 (Sonar bell	-				
16:50	test)	51.96849	-53.24322	Wire out 700m	SONARBELL	
15/01/2012	96 (Sonar bell	-				
16:53	test)	51.96848	-53.24323	Veering	SONARBELL	
15/01/2012	96 (Sonar bell	-				
16:57	test)	51.96846	-53.24319	Wire out 850m	SONARBELL	
15/01/2012	96 (Sonar bell	-				
17:02	test)	51.96844	-53.24318	commence hauling sonar bell	SONARBELL	
15/01/2012	96 (Sonar bell	-				
17:24	test)	51.96844	-53.24321	Sonar bell clear of the water	SONARBELL	
15/01/2012	96 (Sonar bell	-		Sonar bell recovered to deck gantry		
17:27	test)	51.96846	-53.24322	stowed	SONARBELL	
15/01/2012	96 (Sonar bell	-				
17:32	test)	51.96886	-53.24564	Gantry and deck secure vessel off D.P		
15/01/2012	96 (Sonar bell	-				
17:37	test)	51.96894	-53.25785	Resume passage to Stanley		