SAMS Report No. 288

RV Knorr Cruise KN221-02
9th July – 1st August 2014

Cruise Principal Scientist Prof. William Johns, RSMAS University of Miami
UK PI: Prof. Stuart A. Cunningham

Editor
Loïc Houpert
Title
RV *Knorr* Cruise KN221-02, 9th July – 1st August 2014. OSNAP Mooring Cruise Report

Reference
Oban, UK: Scottish Association for Marine Science, Oban, 54pp. (Scottish Association for Marine Science Report, No. 288)

Abstract
This cruise report details the scientific programme for SAMS led by Professor Stuart Cunningham of the Scottish Association for Marine Science (SAMS) on R/V *Knorr* cruise 221-02. Cruise 221-02 is a contribution to the international Overturning in the Subpolar North Atlantic Programme (OSNAP). Three additional scientific teams (from Rosentield School of Marine and Atmospheric Sciences, Royal Netherlands Institute for Sea Research, and Woods Hole Oceanographic Institution) participated on this cruise. SAMS objectives were to deploy moorings in the Rockall Trough, measuring temperature, salinity, currents and bottom pressure and; deploy Seaglider SG604 “Jura” in the Hatton-Rockall Basin.

The OSNAP array as deployed between June and August 2014 is purposefully designed to provide a continuous record of the full-water column, trans-basin fluxes of heat, mass and freshwater in the subpolar North Atlantic, on a section from Newfoundland to Greenland to Scotland.

Keywords

Issuing Organisation
Scottish Association for Marine Science
Scottish Marine Institute
Oban, Argyll, PA37 1QA UK
Tel: +44(0) 1631 559000 Email: info@sams.ac.uk
Table of Contents

SAMS Report No. 288 .. 1

RV Knorr Cruise KN221-02 ... 1

- Document Data Sheet ... 3
- Scientific and Ship’s Personnel ... 7
- R/V Knorr .. 9
- Itinerary ... 9
- Acknowledgements ... 9
- Introduction ... 9

The International Overturning in the Subpolar North Atlantic Programme 10

- Rockall Trough and Scottish Slope Current Array ... 10
- References ... 13

Mooring Operations .. 16

- Mooring Deployment Method.. 16
- Deployment of the AL-500 Trawl-Resistant Bottom Mount .. 17
- Instrument Sampling Rates and Configuration Files ... 18
- Mooring Trilaterations .. 18
- Table Of Acoustic Releases ... 18
- CTD Microcat Calibration Dips ... 18
- Microcat set-up .. 19
- Microcat data download .. 19
- Microcat conversion to .raw RDB format .. 19
- Microcat comparison with rosette CTD sensors .. 19

Autonomous underwater vehicle: Seaglider .. 21

- Deployment piloting ... 21
- Seaglider Data .. 22

Shipboard underway data .. 22

- Thermosalinograph .. 22
- Shipboard Acoustic Doppler Current Profiler ... 23

Appendices .. 24

- Appendix 1: OSNAP Principal Investigators and responsibilities 24
- Appendix 2: Mooring Diagrams ... 26
- Appendix 3: Mooring Deployment Locations and water depths 30
<table>
<thead>
<tr>
<th>Officers & Crew</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kent Sheasley</td>
<td>Master</td>
</tr>
<tr>
<td>Derek Bergeron</td>
<td>Chief Mate</td>
</tr>
<tr>
<td>Max Kantor</td>
<td>Second Mate</td>
</tr>
<tr>
<td>Joshua Woodrow</td>
<td>Third Mate</td>
</tr>
<tr>
<td>Pete Liarikos</td>
<td>Botswain</td>
</tr>
<tr>
<td>Paul St. Onge</td>
<td>A/B</td>
</tr>
<tr>
<td>Leo Fitz</td>
<td>A/B</td>
</tr>
<tr>
<td>Kevin Roth</td>
<td>A/B</td>
</tr>
<tr>
<td>Clindor Cacho</td>
<td>O/S</td>
</tr>
<tr>
<td>Mark Anderson</td>
<td>O/S</td>
</tr>
<tr>
<td>Pete Marczak</td>
<td>Chief Engineer</td>
</tr>
<tr>
<td>Jean Lavache</td>
<td>First Engineer</td>
</tr>
<tr>
<td>Vassile Tudorn</td>
<td>Third Engineer</td>
</tr>
<tr>
<td>Nikolas Alexander</td>
<td>Electrician</td>
</tr>
<tr>
<td>Kyle Covert</td>
<td>Oiler</td>
</tr>
<tr>
<td>Marty Bronson</td>
<td>Oiler</td>
</tr>
<tr>
<td>Eric Witte</td>
<td>Steward</td>
</tr>
<tr>
<td>Teressa MacMartin</td>
<td>Cook</td>
</tr>
<tr>
<td>Thomas Leong</td>
<td>Mess Attendant</td>
</tr>
<tr>
<td>Amy Simoneau</td>
<td>SSSG</td>
</tr>
<tr>
<td>Robb Hagg</td>
<td>SSSG</td>
</tr>
</tbody>
</table>

Table 1 *Details of the ship’s crew on cruise KN221-02*
<table>
<thead>
<tr>
<th>Scientific and Technical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill Johns</td>
</tr>
<tr>
<td>Mark Graham</td>
</tr>
<tr>
<td>Adam Houk</td>
</tr>
<tr>
<td>Thania Papapostolou</td>
</tr>
<tr>
<td>Yang Liu</td>
</tr>
<tr>
<td>Laura de Steur</td>
</tr>
<tr>
<td>Leon Wuis</td>
</tr>
<tr>
<td>Marco Stoffelen</td>
</tr>
<tr>
<td>Maurits Kooreman</td>
</tr>
<tr>
<td>Stuart Cunningham</td>
</tr>
<tr>
<td>John Beaton</td>
</tr>
<tr>
<td>Karen Wilson</td>
</tr>
<tr>
<td>Rachel Vezza</td>
</tr>
<tr>
<td>Clare Johnson</td>
</tr>
<tr>
<td>Amy Bower</td>
</tr>
<tr>
<td>Heather Furey</td>
</tr>
<tr>
<td>Sija Zou</td>
</tr>
</tbody>
</table>

Table 2 Details of science personnel on cruise KN221-02
R/V Knorr

The research vessel *Knorr* is owned by the U.S. Navy and operated by WHOI for the ocean research community. Launched in 1968, delivered to Woods Hole in 1970, and completely overhauled in 1991. The ship can carry a crew of 22 and a scientific party of 32 to sea for as long as 60 days. She will be decommissioned at the end of 2014 and replaced by the R/V *Armstrong*.

R/V *Knorr* was named for Ernest R. Knorr, a distinguished hydrographic engineer and cartographer who was appointed Chief Engineer Cartographer of the U.S. Navy Hydrographic office in 1860. Knorr was one of the leaders of the Navy’s first systematic charting and surveying effort from 1860 to 1885.

Itinerary

Reykjavik, Iceland Sunday 6th July to Reykjavik, Iceland Friday 1st August.

Acknowledgements

We thank Captain Kent Sheasley and the officers and crew of the R/V *Knorr* (Table 1) for their ‘can do’ attitude and proactive support of the science programme. Our best wishes go to you in this the last year of service for the *Knorr*. May the new R/V *Armstrong* go on to achieve as much and be such a happy ship. Professor William Johns as P.I. for this cruise ensured that the maximum science was achieved and perfectly balanced the demands from three science teams.

Introduction

This report details the scientific programme led by Professor Stuart Cunningham of the Scottish Association for Marine Science (SAMS) on R/V *Knorr* cruise 221-02 as a contribution to the international Overturning in the Subpolar North Atlantic Programme (OSNAP)\(^1\). Three additional scientific teams participated on this cruise (Table 2). Professor William Johns from the Rosenstiel School of Marine and Atmospheric Sciences (RSMAS), University of Miami led and planned the cruise. Also participating was a team from the Royal Netherlands Institute for Sea Research (NIOZ) led by Dr Laura De Steur. Dr Amy Bower led a team from the Woods Hole Oceanographic Institution (WHOI).

SAMS objectives were to: 1. deploy moorings in the Rockall Trough, measuring temperature, salinity, currents and bottom pressure and; 2. Deploy Seaglider SG604 “Jura” on the Hatton Plateau. One mooring was deployed on a second cruise in October 2014 (see Appendix 4).

RSMAS objectives were to: 1. Deploy moorings on the eastern flank of the Reykjanes Ridge and across the Iceland Basin measuring temperature, salinity and currents and; 2. Occupy a section of CTD/LADP stations from the Scottish continental shelf, through the Iceland Basin across the Reykjanes Ridge and part way across the Irminger Basin (Figure 1).

NIOZ objectives were to deploy moorings on the western flank of the Reykjanes Ridge and into the deeper parts of the Irminger Basin.

\(^1\) www.o-snap.org
WHOI objectives were to: 1. Continue installing an array of sound source moorings for acoustically tracking RAFOS\(^2\) floats; 2. Deploy RAFOS floats in the Irminger and Iceland Basins.

The International Overturning in the Subpolar North Atlantic Programme

The OSNAP array as deployed between June and August 2014 is purposefully designed to measure heat and fresh-water fluxes in the subpolar gyre (SPG) on a section from Newfoundland to Greenland to Scotland (Figure 1).

The initial phase of OSNAP will run for five years (Table 3), and involves scientists from seven countries (Appendix 1), including a team from the Scottish Association for Marine Science (SAMS).

Figure 1: The OSNAP line, comprising: (A) German 53°N western boundary array and Canadian shelf-break array; (B) US West Greenland boundary array; (C) US/UK East Greenland boundary array; (D) Netherlands western Mid-Atlantic Ridge array; (E) US eastern Mid-Atlantic Ridge array; (F) UK glider survey (yellow) over the Hatton-Rockall Basin and Rockall Trough; (G) UK Rockall Trough and Scottish Slope Current array. Red dots: US float launch sites. Blue star: US OOI Irminger Sea global node. Black concentric circles: US sound sources.

Rockall Trough and Scottish Slope Current Array

The array (Figure 2) will (i) quantify the flux of northward-flowing warm and saline water through the Rockall Trough and across the Hatton-Rockall Basin (HRB), and (ii) determine the magnitude and variability of the cold overflow across the Wyville-Thomson Ridge. Measurement locations are determined by the long established section across Rockall Trough (62 occupations since 1975), which provides a multi-decadal context for our new observations ([Holliday, N. P., and S. A. Cunningham, 2013]).

\(^2\) http://www.whoi.edu/instruments/viewInstrument.do?id=1061
The array is designed for westward continuity with the US Iceland Basin measurements. Warm, saline water of subtropical origin enters the SPG between Greenland and Scotland, 8.5±1.0 Sv of which flows northward into the Nordic Seas ([Østerhus et al., 2005]). Across the OSNAP line, three regions of warm water transport are found: in the Iceland Basin, over the Hatton-Rockall Basin (HRB), and in the Rockall Trough ([Brambilla and Talley, 2008]).

The Iceland Basin, to be measured by the US, supports eddy transports, recirculating components of the North Atlantic Current (NAC), and part of the NAC throughflow to the Nordic Seas. The Rockall Trough branch, which flows northward along the UK and European continental shelf, is warmer and more saline than the other two branches, so it dominates the freshwater budgets and heat supply to the Nordic Seas ([Hansen et al., 2008] and [Marzocchi et al. 2015]).

Observations and models broadly agree with this description, but its variability and the division between the branches is poorly understood ([Hansen et al., 2008]). A leading idea for the variability of this warm water path is that the strength and properties of the branches are driven by the horizontal expansion and contraction of the SPG due to multiannual thermohaline forcing over the gyre ([Häkkinen and Rhines, 2004], [Hátún et al., 2005]). When the SPG retreats to the west, the salinity of Rockall Trough Atlantic waters increases; this change propagates into the Nordic Seas, impacting its T and S structure ([Holliday et al., 2008]).

The warm water path is subject to intra- to decadal forcing by both buoyancy and winds, impacting the subpolar Atlantic Meridional Overturning Circulation (AMOC) with downstream consequences for the Nordic Seas and Arctic Ocean. The net northward transport of 3-5 Sv through the Rockall Trough is mostly contained in a Shelf Edge Current (SEC) at depths <1200 m. The SEC, is hypothesized to be driven by the large-scale density distribution of the NE Atlantic. A meridional dynamic height difference between the southern entrance of the Rockall Trough and the Wyville-Thomson Ridge (to the north) provides a positive northward pressure gradient ([Huthnance, 1984]). Variability of the SEC on inter-annual timescales is therefore likely due to changes to the large-scale density distribution, particularly at the entrance to the Rockall Trough ([Holliday, 2003]). On shorter timescales (seasonal and sub-seasonal), variations in wind forcing are thought to dominate SEC variability ([Souza et al., 2001]).

A smaller proportion of warm water flows northward through the mid-basin Rockall Trough: hydrographic estimates made over a 23-year period suggest between 0-8 Sv ([Holliday et al., 2000]). The extent to which this range aliases short-term variability, or is describing decadal changes, is unknown. Observations suggest that the net northwards flux over the HRB is small and that the local circulation is weaker than in the Rockall Trough ([Bacon, 1997]). In contrast, the OSSE (Observing System Simulation Experiments) model shows a core of velocity at 100-500 m depth over the western Plateau slope with a core northward transport of 5 Sv, and an additional ~1 Sv transport over the HRB. Uncertainties over the presence and strength of these features are unresolved. The northern Rockall Trough is separated from the Faroe-Shetland Channel by the Wyville Thomson Ridge, limiting northward transport to depths <1200 m. Faroe-Shetland Channel Bottom Water is known to flow occasionally into the Rockall Trough as the Wyville-Thomson Overflow (WTO) ([Sherwin et al., 2008]). The resulting water masses are identified by their T/S characteristics.
but their transports have never been quantified. Evidence for the WTO can be found in bottom sediments along Feni Ridge ([Howe et al., 2001]). In the model, 3.5 Sv flows southward above and along the Feni Ridge, with a velocity maximum around 1700 m (Figure 2). We use both observational evidence and the OSSE model to plan our observation programme.

Table 3 Schedule of project activities

We will determine the volume, temperature and salinity transports across a line from the Scottish continental shelf to a full depth US mooring near 21°W in the eastern Iceland Basin. In the Rockall Trough, we will deploy an array comprising five moorings (Figure 2). It will continuously monitor the SEC and WTO with current meters. Two dynamic height end-point moorings will measure transports in the interior Rockall Trough. Uncertainties over the net circulation in this region lead us to plan a continuous glider patrol from the Scottish continental shelf across Rockall Trough to the HRB and as far west as the US Iceland Basin end-point mooring. The 4-month planned mission duration is based on battery life (high-latitude, cold-water endurance). Each mission will cross the Rockall Trough twice and the HRB four times, enabling the calculation of time-varying fluxes through the Trough (in conjunction with the moored data), and over the HRB.

The Rockall Trough mooring array consists of five moorings (Appendix 2) with the following objectives: **RTWB1** & **RTEB1** are end-point density moorings measuring the baroclinic circulation across the width of the Rockall Trough using CTDs distributed in the vertical; **RTWB1** & **RTWB2** measure the Wyville-Thomson Ridge overflow current along the Feni Ridge using current meters; **RTEB1, RTADCP1 & RTADCP2** measure the Shelf Edge Current using current meters and 75khz long-ranger acoustic Doppler current profilers. **RTWB1** and **RTEB1** include bottom pressure recorders to determine the barotropic variability across the Rockall Trough. The Rockall Trough section will also be surveyed by glider up to 10 times per year as the glider transits to and from the Hatton Bank at the beginning and end of the 4-monthly glider missions. The distribution of CTDs, current meters, bottom pressure recorders and ADCPs is shown by the symbols marked on the key in Figure 2.

The array as deployed in July 2014 consists of three moorings and one bottom mounted ADCP in a trawl resistant frame (details about the mooring deployments are shown in Appendix 3). RTADCP1 was deployed in October 2014 (deployment report in Appendix 4). Figure 3 is a schematic showing each mooring, instrument, location beacons and releases by name and serial number.
A summary of the locations of the CTDs casts carried out during the cruise is shown on Figure 4, together with the moorings’ locations deployed by the different scientific teams.

Figure 2: Schematic of the Rockall Trough and Scottish Shelf Edge Current array. Color contours: 15 year mean meridional velocity (m.s$^{-1}$, positive northward) from the FLAME 1/12° OSSE model. Thin black contours: potential density (kg m$^{-3}$). Thick black line: meridional transport integrated eastwards from zero in the west. Mooring M4: US Iceland Basin end-point mooring (not part of the UK proposal). Zig-zag line: glider patrol over Hatton-Rockall Basin. Rockall Trough moorings: RTWB1, RTWB2, RTEB1 measure endpoint density and the Wyville-Thomson Overflow; RTEB1, the Rockall Trough. RTADCP1, RTADCP2 measure the Shelf Edge Current. See key for instrument distribution. The Rockall Trough section will be surveyed by glider ~6 times per year.

References

Figure 3: Rockall Trough and Scottish Slope Current Array as deployed in July 2014. RTADCP1 deployed in October 2014.
Figure 4: Bathymetry from ETOPO1 (m). Top panel, location of every 4th CTD station. Lower panel, location of deployed moorings. IC moorings (NIOZ Irminger Current moorings, orange); D & M (RSMAS Iceland Basin moorings, red); SS moorings (WHOI RAFOS sound source moorings, yellow); RT (SAMS Rockall Trough moorings, blue).

Mooring Operations

Mooring Deployment Method

Moorings (Appendix 2) were deployed anchor last using a Lebus double-barrelled winch from the Royal Netherlands Institute for Sea Research (NIOZ). This necessitated reverse winding of the wires as supplied by NOCS, because at the time of preparation it was thought the TSE direct winch would be used. Reverse winding was achieved using a pair of reelers, the receiving reeler, was electrically driven and controlled by a foot pedal, the donor reeler had adjustable hydraulic drag to keep the wire taught.

On deployments the donor reeler was also used to feed wire to the double-barrelled winch. NIOZ personnel operated the winch. From the winch the wire passed through a large-throated block suspended from a telescopic arm mounted centrally on the ship's moveable A-frame. This arrangement provided for a wide range of positioning to facilitate stopping off the wire and guiding instruments and buoyancy over the stern without damage. Stopping off was managed using a rope fastened to a large deck cleat and run through a block just below the fairlead on the outboard side of the Lebus winch. The rope was terminated with a small, crane-type hook with a
safety catch that clipped into rings for stopping off. No problems were encountered with this method.

Heavy components such as syntactic buoys and anchors were lifted overboard using a quick release hook on a winch wire from the Royal Netherlands Institute for Sea Research. Tow speeds during deployments varied from 0.7 to 1.5 knots.

Deployment of the AL-500 Trawl-Resistant Bottom Mount

The AL-500 held a Teledyne RD1 75KHz remote head ADCP and external battery case fitted with a Benthos 866-A acoustic release (Table 4), was deployed using a three-legged bridle and an IXSEA acoustic release, and lowered to near sea-bed using the ship’s crane. The upper end of each leg was attached to a ring above the release, each leg led down and passed through a lifting point on the AL-500 Trawl-Resistant Bottom Mount (TRBM) base then led up to the jaw of the supporting IXSEA release (Appendix 2). During deployment the IXSEA’s pinger function was activated in order to view its depth on an echo sounder. On nearing the seabed it was discovered that the vessel was 0.24 km off the target position and the target depth was 380m instead of 400m. The decision was made to reposition the ship without recovering the TRBM. The move was made at a speed of 10m/min. When on target the TRBM was lowered a further 20m to 400m. It was then raised 1m and the Ixsea release fired. During this time the ranges were also made to the Benthos release within the TRBM. On release no discernable change was seen in the ranges from the Benthos unit but the crane’s wire tension display indicated a reduction of approximately 120kg. The calculated weight of the TRBM in seawater including instruments was 87kg so the weight reduction was considered to indicate that the TRBM was clear of the seabed when released. When the IXSEA release was recovered it was found that two legs of the bridle were intact but one was missing; only a short piece remained where it was attached to a ring above the IXSEA release. It was clear from the length of the remaining piece that one leg of the bridle had been in contact with a corner of the release lifting bail and that it had cut through by the contact.

Some discussion followed as to how and when the three-legged bridle had become two-legged and what effect this may have had on the attitude of the TRBM before and after release. Did it land upright or inverted? Ranges to the Benthos release had been made before and after release by the Ixsea unit and the number of acceptable returns was found to be very high and consistent throughout.

Examination of photographs taken at the start of deployment showed the failed bridle leg had been one of the two going to corners of the square-based TRBM and not the one leading to the centre of the opposite side. Since a corner leg had failed the TRBM would have hung with the corner of the failed leg closest to the seabed (if the centre leg has failed it would have had the effect of hanging the TRBM from two corners with the opposite edge parallel to the seabed).

The manufacturer of the TRBM, Flotation Technology, describes the AL500 as a “free-fall deployable system” on its website however the product manual offers no detail on this method but does describe a method of lowering the TRBM to the seabed for release. Opinions and previous experiences varied as to the relative merits of each deployment method. Freefall deployment: less accurate positioning, unknown descent dynamics. Lowered deployment: more accurate positioning, possibilities of landing inverted.

Weights known
TRBM weight in air* 780kg (from Knorr crane)
TRBM weight in sea water* 87kg (from Knorr crane)
Recovery pod buoyancy in sea water* 214kg (calculated)
Base weight in sea water 301kg (calculated)
Includes instruments (ADCP, battery case & acoustic release)

Instrument Sampling Rates and Configuration Files
Details of Iridium beacons are indicated in Appendix 5. Instrument configuration files with mooring positions are detailed in Appendix 6.

Mooring Trilaterations
Post deployment mooring locations on the sea-bed were determined by acoustic trilateration of the releases (Appendix 7).

Table Of Acoustic Releases

<table>
<thead>
<tr>
<th>Mooring</th>
<th>A/R model</th>
<th>Serial number</th>
<th>Originating</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADCP2</td>
<td>Benthos 866-A</td>
<td>59517</td>
<td>Marine Scotland</td>
</tr>
<tr>
<td>WB1</td>
<td>Ixsea AR861</td>
<td>1759</td>
<td>OSNAP</td>
</tr>
<tr>
<td>WB1</td>
<td>Ixsea AR861</td>
<td>1493</td>
<td>OSMOSIS</td>
</tr>
<tr>
<td>WB2</td>
<td>Ixsea AR861</td>
<td>1136</td>
<td>NMEP</td>
</tr>
<tr>
<td>WB2</td>
<td>Ixsea AR861</td>
<td>1758</td>
<td>OSNAP</td>
</tr>
<tr>
<td>EB1</td>
<td>Ixsea AR861</td>
<td>1137</td>
<td>DIMES</td>
</tr>
<tr>
<td>EB1</td>
<td>Ixsea AR861</td>
<td>1756</td>
<td>OSNAP</td>
</tr>
<tr>
<td>Spare</td>
<td>Ixsea AR861</td>
<td>899</td>
<td>SAMS</td>
</tr>
<tr>
<td>Spare</td>
<td>Ixsea AR861</td>
<td>1326</td>
<td>SAMS</td>
</tr>
<tr>
<td>Spare</td>
<td>Ixsea AR861</td>
<td>1272</td>
<td>NMEP</td>
</tr>
<tr>
<td>Spare</td>
<td>Ixsea AR861</td>
<td>1270</td>
<td>NMEP</td>
</tr>
<tr>
<td>Spare</td>
<td>Ixsea AR861</td>
<td>1753</td>
<td>OSNAP</td>
</tr>
<tr>
<td>Spare</td>
<td>Ixsea AR861</td>
<td>1763</td>
<td>OSNAP</td>
</tr>
</tbody>
</table>

Table 4: Acoustic releases, serial numbers, and previously associated project. Releases were selected with separated serial numbers and from different projects. Releases were all serviced on board and tested for communications and release function on CTD calibration dips to depths equal or greater than their operational depth.

CTD Microcat Calibration Dips
All microcats and acoustic releases (Table 4) deployed on the SAMS moorings were tested prior to deployment. The acoustic releases were test-fired at a depth similar to those to which they would be deployed. All fired successfully on the first cast with the exception of S/N 1136 which subsequently fired correctly on a repeat trial (see Appendix 8 for details of casts).

Microcats were calibrated on two cal-dips to 3085 and 2353 m respectively (casts 004 and 005, see Appendix 8 for details of casts). The microcats were attached to straps placed around the rosette frame, and compared to the rosette CTD sensors during several stops during the upcast, with each stop lasting approximately five minutes (see Appendix 9 for details about the processing and calibration for the ship-based CTD).
Microcat set-up

The microcats were set-up using *SeaBirds SeaTerm V2* software. For the calibration dips each microcat was programmed as below:

- **Sample interval (secs)**: 10
- **Data format**: 3
- **Transmit realtime**: off
- **Sync mode**: off

with the ‘start date’ and ‘start time’ appropriate to the date and time of the calibration cast. All commands were captured to a *.cap* file named in the format *XXXXX.cap* where *XXXXX* is the instrument S/N. These files were stored in
/moor/raw/kn221/microcat_cal_dip/castY where *Y* is the appropriate cast number.

Microcat data download

Immediately after each cal dip, the microcats were stopped using the ‘STOP’ command within *SeaTerm V2*. Data were then downloaded, again using *SeaTerm V2*, in a *.XML* and *.HEX* format. The *.HEX* file was then converted to a *.CNV* file using the *SBE3 Data Processing’s Data Conversion Module* which was launched automatically from *SeaTerm*. Four data files were generated:

- *XXXXX_cal_dip_data.cnv*
- *XXXXX_cal_dip_data.hex*
- *XXXXX_cal_dip_data.xml*
- *XXXXX_cal_dip_data.xmlcon*

where *XXXXX* is the microcat S/N. These files are stored in
/moor/raw/kn221/microcat_cal_dip/castY where *Y* is the appropriate cast number.

Microcat conversion to .raw RDB format

The first step of the microcat processing converts the microcat data into the RDB format used within the RAPID project. This step creates .raw files that contain: header information, a standard date and time format, and SI units rather than imperial units. The conversion to .raw files is achieved using *mc_call_caldip_kn221.m*, which calls *microcat2rodb_3.m*. The converted data files are stored in the format: *castY_XXXXX.raw* in directory:
/moor/proc_calib/kn221/cal_dip/microcat/castY
where *Y* is the cast number, and *XXXXX* the microcat S/Ns. This step requires a file named *castYinfo.dat* where *Y* is the cast number, containing metadata for the caldip and serial numbers of the microcats deployed.

Microcat comparison with rosette CTD sensors

The second step for microcat cal dips is the comparison of the microcat sensors with the CTD rosette sensors. Due to problems with the primary conductivity sensor on the rosette system (prior to replacement), the initial microcat calibration discussed here was carried out using the rosette primary temperature sensor, and rosette secondary conductivity sensor. This conductivity sensor has not currently been calibrated using bottle conductivity values; hence the calibration detailed here is not final and is therefore not discussed in detail. The secondary conductivity sensor, and replacement primary conductivity sensor for the rosette system, will be...
calibrated using bottle samples. The initial primary sensor is being returned to *SeaBird* for a post-cruise factory calibration.

The differences between the rosette system sensors and microcat sensors (rosette value minus microcat value) were calculated for each five minute stop on the upcast using *mc_ctd_compare_cond2_kn221.m*.

In general the microcats performed well. The difference between the rosette and microcat pressure sensors was depth dependent and ranged from +3 to -5 m (Figure 5). The standard deviation of differences within each calibration stop was small (around ±1-2 m) with the difference decreasing with time during the stop. The largest variability in differences was seen in calibration stops in the upper few hundred meters, and the stop nearest the seabed.

The mean difference between the rosette and microcat pressure sensors at each bottle stop varied between -0.005 and +0.005 °C but was often close to zero (Figure 5). Variability of the differences within each calibration stop was fairly small with values not exceeding -0.01 °C or +0.01 °C from the rosette sensor value. Again the largest variability was observed in calibration stops in the upper few hundred meters, and the stop nearest the seabed.

Slightly larger variability was observed in the differences between the rosette and microcat conductivity sensors. In general the mean difference at each stop ranged from zero to -0.005 ms/cm, with variability within a single stop not exceeding -0.01 or +0.01 ms/cm from the rosette sensor value (Figure 5). However, four microcats showed a larger mean offset: Microcat 11334 had a mean conductivity difference of around -0.012 ms/cm, whilst microcat 10578 had mean difference of +0.01 ms/cm, and microcat 10575 had a large mean offset of +0.04 ms/cm. As there was no associated increase in variability of the intra-stop differences however, a good calibration can still be applied despite the larger offsets.

A conductivity cap was accidently left on microcat 10576 causing a delay in both the conductivity and temperature sensors responding to changing water properties. However, once this delay was taken into account, the mean differences for both the temperature and conductivity sensors were near zero.

Figure 5: Example microcat calibration plot showing differences of pressure, temperature and conductivity against pressure. (CTD-microcat).
Although we originally planned to not use the two worst performing microcats (11334 and 10575), failure of two other microcats (10577 and 11287) during mooring deployment WB1 meant that these 'spares' were used - the logic being it was better to deploy a large offset microcat that had been cal-dipped than a microcat with no known calibration. Microcat 10577 had a damaged titanium thread, and microcat 11287 became difficult to communicate with. No other problems were encountered.

Final calibrations will be obtained post-cruise after final calibration of the shipboard CTD system.

Autonomous underwater vehicle: Seaglider

Serial number: SG604 Jura

Release position – 57° 59.0329’ N, 21° 01.5287’ W

Release time and date – 0941 16/07/2014 UTC

Weather conditions on the launch day were clear and calm with no wind, offering ideal conditions for operations from the aft deck of the R/V Knorr.

The pre-deployment self-test was carried out on the evening before the launch date. Self-test was carried out in accordance with the ‘Pre-Launch Self-Test and Set-Up Sequence’ provided by North Atlantic Glider Base (NAGB) with the glider, encompassing the sea-level test, autonomous self-test and the internal pressure-test. All sections of the self-test were completed satisfactory and confirmation of glider to base communications was obtained from the pilot via email.

Pre-launch set-up was conducted immediately prior to the launch in accordance with the Final launch sequence provided. Confirmation that the set-up was complete and the glider was cleared for launch was received from the pilot at NAGB based at SAMS via satellite phone and email.

On reaching the launch site the ship came to a complete stop for the duration of the launch. The glider was lowered off the aft deck by the A-frame. It was secured by a soft rope around the rudder lifting point. On reaching the water the rope was slipped free and the glider maintained its position unaided. No buoyancy check was required before release as the glider had been tested in waters significantly fresher than the deployment location. The glider’s orientation in the water was as expected, with the waterline at rudder-level and angle slightly off vertical. The ship moved away cautiously while the glider was observed until it began its first dive.

A CTD cast at the release position was not included in the ship’s program and not carried out after the glider release. For future glider launches the CTD cast will be listed as a component of the launch procedure to ensure it is not over looked.

The launch procedure ran smoothly without incident, the favourable weather being a major factor contributing to the ease of launch. Confirmation of a successful first dive was received via email from the base pilot. After this progress of Jura was followed on the SAMS glider webpage.

Deployment piloting

Following the launch, the pilot first sent Jura on a shallow dive to 30m, then gradually increased the diving depth down to 1000m while adjusting the glider’s flight parameters. Once the glider was flying correctly, an in-flight compass calibration was performed. This involves making the glider do two dives, one at a shallow angle with the batteries fully rolled to port, and the other at a steep angle with the batteries to starboard, both at a high sensor sampling.
These were performed at dives 8 and 9. Compass calibration coefficients were then calculated in Matlab using a script provided by the Seaglider manufacturer (Kongsberg Underwater Technology, Inc.), and sent to the glider the following day before dive 13. Depth-average currents calculated for dives 1 to 12 should therefore be treated with caution.

Mission plan:

Jura’s planned route is a succession of transects along the 58° parallel, between mooring M4 and the 500m contour on the west side of the Rockall Bank. The waypoints were set to:

M4 57° 59.56’N 21° 08.61’W (mooring site)
EAST 58° 0.0’N 14° 42.0’W

Jura was first sent to the waypoint “M4”, which was reached at 03:10 UTC on the 17/07/2014, then started heading towards “EAST”.

The glider is equipped with a Seabird CTD, an Aanderaa oxygen optode and a Wetlabs ECO-puck (fluorescence, 600nm backscatter and C-DOM). All sensors were turned on for the first few dives in order to check they were all functioning correctly, and to observe their energy usage. It was then decided to turn off the optode and ECO-puck to maximise the CTD sampling. For the next few days the pilot tested various sampling resolutions, and finally set the sampling rate to 5 seconds in the upper 150m (thermocline area), and 10s between 150 and 1000m. These sampling rates should ensure an endurance of 6 months (the planned recovery date is early January 2015).

The sampling rates and waypoints may be adjusted throughout the mission, according to environmental conditions, glider energy usage and science requirements.

Seaglider Data

SAMS glider self-test and launch procedures are held by NAGB. Progress of SAMS operated gliders and preliminary data can be viewed at: http://velocity.sams.ac.uk/gliders/. The data are transmitted to BODC in near real-time and forwarded onto the GTS. Delayed mode dataset will also be submitted to BODC within 6 months of the end of the mission. The full glider mission report will also be finalised within six months of the end of the mission and will be available at: http://velocity.sams.ac.uk/gliders/mission_list.php.

Shipboard underway data

A suite of underway data were collected onboard, and processed into 1 minute daily summary files which were downloaded from the ships drive as .csv files. Data include meteorological parameters, navigation data and seawater temperature and salinity data from 5 m. Data are named in the format: KNYYMMDD_00.csv and stored in /cruise_data/underway. The data are not quality checked.

Thermosalinograph

Values of surface temperature and salinity were continuously monitored using a Sea-Bird temperature-conductivity recorder installed in the ship’s seawater intake line, and logged by the vessel’s underway recording system (Figure 6).
Figure 6: Bathymetry of the North Atlantic overlaid by temperature from the thermosalinograph.

Shipboard Acoustic Doppler Current Profiler

Upper ocean currents were continuously measured with a dual vessel-mounted Acoustic Doppler Current Profiler (ADCP) system consisting of a 300kHz and 75kHz Ocean Surveyor system. The depth range of good velocity data from the 300kHz system typically extended to 80m below the vessel, and to approximately 600-800m for the 75kHz system, depending on sea state conditions. Data were processed onboard in real time using the UHDAS acquisition system. Gyrocompass data were continuously corrected by a POS-MV inertial navigation system.
Appendix 1: OSNAP Principal Investigators and responsibilities

<table>
<thead>
<tr>
<th>Principal Investigator</th>
<th>Laboratory</th>
<th>OSNAP array component</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States of America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susan Lozier</td>
<td>Duke University</td>
<td>Susan has responsibility for the coordination of international and national projects associated with OSNAP. As such, she has responsibility for integrating the measurements of OSNAP East and West to produce a continuous record of the North Atlantic subpolar AMOC, the overall goal of this international effort. Finally, Susan is responsible for program communication to international and U.S. OSNAP collaborators, the project website and the web-accessible OSNAP database maintained at Duke University.</td>
</tr>
<tr>
<td>Amy Bower</td>
<td>Woods Hole Oceanographic Institution</td>
<td>Amy Bower is responsible for the OSNAP Floats program, an effort designed to trace the pathways of overflow waters in the basin and to assess the connectivity of currents crossing the OSNAP line.</td>
</tr>
<tr>
<td>Fiamma Straneo</td>
<td>Woods Hole Oceanographic Institution</td>
<td>U.S. East Greenland boundary current array.</td>
</tr>
<tr>
<td>Robert Pickart</td>
<td>Woods Hole Oceanographic Institution</td>
<td>U.S. West Greenland boundary current array.</td>
</tr>
<tr>
<td>United Kingdom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheldon Bacon</td>
<td>National Oceanography Centre</td>
<td>Sheldon is a Principal Investigator for UK-OSNAP and has overall responsibility for the project and linking with international partners.</td>
</tr>
<tr>
<td>Penny Holliday</td>
<td>National Oceanography Centre</td>
<td>Penny is leading the U.K. OSNAP Programme Manager and leads observations being made in the deep western boundary current near Greenland, and is Project Manager for UK-OSNAP.</td>
</tr>
<tr>
<td>Chris Wilson</td>
<td>National Oceanography Centre</td>
<td>Chris is leading the work to use Argo float data to make seasonal estimates of Subpolar Gyre circulation and mixing.</td>
</tr>
<tr>
<td>Stuart Cunningham</td>
<td>Scottish Association for Marine Science</td>
<td>Stuart is leading the observations of the eastern part of the monitoring array, using moorings to measure volume, heat and salt flux in the eastern gyre.</td>
</tr>
<tr>
<td>Mark Inall</td>
<td>Scottish Association for Marine Science</td>
<td>Mark is leading the observations of the eastern part of the monitoring array, with innovative use of gliders to measure volume, heat and salt flux in the eastern gyre.</td>
</tr>
<tr>
<td>David Marshall</td>
<td>University of Oxford</td>
<td>David is a Principal Investigator examining Subpolar Gyre forcing anomalies and teleconnections. With Dr Helen Johnson, the analysis will make use of adjoint modelling and theoretical analysis to identify the teleconnections between forcing anomalies and the strength and structure of the Subpolar Gyre.</td>
</tr>
<tr>
<td>Helen Johnson</td>
<td>University of Oxford</td>
<td>Helen is examining Subpolar Gyre forcing anomalies and teleconnections. This analysis will make use of adjoint modelling and theoretical analysis to identify the teleconnections between forcing anomalies and the strength and structure of the Subpolar Gyre.</td>
</tr>
<tr>
<td>Ric Williams</td>
<td>University of Liverpool</td>
<td>Ric is a Principal Investigator leading analysis of how ocean heat storage in the Subpolar Gyre varies over time. The analysis will use a combination of data assimilation and forward model integrations look at how changes in surface fluxes affect heat storage and heat transport.</td>
</tr>
<tr>
<td>Vassil Roussenov</td>
<td>University of Liverpool</td>
<td>NOCL researcher.</td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td>Role and Details</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Blair Greenan</td>
<td>Bedford Institute of Oceanography</td>
<td>Blair has responsibility for the coordination of the Canadian contribution to OSNAP on the Labrador Slope. As such, he is responsible for coordinating with other Canadian organizations involved in OSNAP West as well as with the German research group for the 53N line (Johannes Karstensen).</td>
</tr>
<tr>
<td>Brad de Young</td>
<td>Memorial University of Newfoundland</td>
<td>Brad is the Canadian representative on the OSNAP steering committee. He works in partnership with Blair Greenan and Guoqi Han to coordinate the Canadian contribution to OSNAP on the Labrador Slope. He is also an investigator with the Vitals program in the Labrador Sea, deploying moorings in the Labrador Sea in 2015/16 and gliders there on the Labrador Shelf from 2014-2016.</td>
</tr>
<tr>
<td>Guoqi Han</td>
<td>Northwest Atlantic Fisheries Centre</td>
<td>(Northwest Atlantic Fisheries Centre, DFO) – Guoqi is responsible for deployment of moorings inshore of the OSNAP shelf-break array at 53N on the Labrador Slope. He works in partnership with Blair Greenan and Brad deYoung to coordinate the Canadian contribution to OSNAP.</td>
</tr>
<tr>
<td>Johannes Karstensen</td>
<td>Jürgen Fischer Martin Visbeck</td>
<td>The GEOMAR group, Johannes Karstensen, Jürgen Fischer and Martin Visbeck are international contributors to OSNAP primarily via a mooring array (53°N array) that is located at the southern exit of the Labrador Sea, where the OSNAP west section intersects with the Labrador Shelf. The array is configured to measure transport and properties of the Deep Western Boundary Current in different water mass classes. Installed in 1997, it is maintained from Kiel since then (now by the GEOMAR Helmholtz Centre for Ocean Research Kiel, in Kiel, Germany). The GEOMAR group will further contribute to the larger scale hydrography and add their expertise on direct current observations (LADCP measurements). The group is also involved in the European Union “North Atlantic Climate” (NACLIM) project (www.naclim.eu) in the Workpackage on transports in the Subpolar North Atlantic (WP2.2).</td>
</tr>
<tr>
<td>Laura de Steur</td>
<td>Royal Netherlands Institute for Sea Research (NIOZ)</td>
<td>Laura is primarily responsible for the mooring array in the northward flowing Irminger Current on the Reykjanes Ridge in the Irminger Sea and interpretation of the data obtained by it. The array consists of four tall moorings measuring the velocity, temperature and salinity of the Irminger Current. This data will provide volume and heat transport in this branch of the AMOC and the variability therein. The array will first be deployed in summer 2014 and will be serviced in 2015 and 2016 and 2018. In addition hydrographic measurements will be obtained during the yearly fieldwork providing near-synoptic high-resolution vertical profiles of temperature and salinity. Laura represents The Netherlands in the OSNAP steering committee.</td>
</tr>
<tr>
<td>Herle Mercier</td>
<td>Ifremer</td>
<td>Reykjanes Ridge moorings array to be deployed in 2015.</td>
</tr>
<tr>
<td>Xiaopei Lin</td>
<td>Ocean University of China</td>
<td>Xiaopei Lin is a Principal Investigator for China-OSNAP with overall responsibility for the Chinese contribution and for linkages with international partners.</td>
</tr>
<tr>
<td>Dexing Wu</td>
<td>Ocean University of China</td>
<td>Dexing Wu is a Principal Investigator for China-OSNAP and responsible for the gliders that will measure volume, heat and salt flux in the eastern subpolar gyre.</td>
</tr>
</tbody>
</table>
Appendix 2: Mooring Diagrams

Rockall Trough WB1 deployed

Design: 18-Jun-2014

76 m McLane-12°

92 m 4x17° glass

95 m Nortek on load bar (estimate)

101 m SBE37 SMP 100

242 m 31° synt 1500m

249 m SBE37 SMP 210

488 m 40° synt 1500m

495 m Nortek on load bar (estimate)

501 m SBE37 SMP 550

751 m SBE37 SMP 710

991 m 5x17° glass

996 m Nortek on load bar (estimate)

1002 m SBE37 SMP 1000

1199 m 4x17° glass

1596 m AR-2 and BPR

1250 m SBE37 SMP 1250

Anchor 1600 kg (dry weight)
(Wet weight = 1220kg)
(Safe weight = 1410kg)
Rockall Trough WB2 deployed

Design: 13–Nov–2013

980 m McLane-12"

996 m Billings 3 sphere
#2 chain-13

999 m 4x17" glass
shac-link-shac

1002 m Nortek on load bar (estimate)
#3 343m 3/16" line
shac-link-shac

1347 m 4x17" glass
shac-link-shac

1351 m Nortek on load bar (estimate)
#4 top
411m 3/16" line
shac-link-shac

1576 m SBE37 SMP
#5 bottom

1764 m 2x17" glass
shac-link-shac

1766 m Nortek on load bar (estimate)
#6 top
6m 3/16" line
shac-link-shac

1771 m SBE37 SMP
#5 bottom
shac-link-shac

1773 m 5x17" glass
shac-link-shac

1778 m AR-2

1799 m Anchor 500 kg (dry weight) (Wet weight = 435kg) (Safe weight = 417kg)
shac-link-shac

50 ft Shac

34 Shac

32 ft Shac

30 ft Shac

28 ft Shac

26 ft Shac

24 ft Shac

20 ft Shac

18 ft Shac

16 ft Shac

14 ft Shac

12 ft Shac

10 ft Shac
RTADCP 1 & 2

Float with pan and instrument mounts:

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Calculated Value (lbs)</th>
<th>Tol. (lbs)</th>
<th>Actual MIN</th>
<th>Actual MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buoyancy in SW</td>
<td>470</td>
<td>±10</td>
<td>457</td>
<td>483</td>
</tr>
<tr>
<td>Weight in air</td>
<td>798</td>
<td>±10</td>
<td>788</td>
<td>808</td>
</tr>
</tbody>
</table>

Full unit with base:

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Calculated Value (lbs)</th>
<th>Tol. (lbs)</th>
<th>Actual MIN</th>
<th>Actual MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight in SW</td>
<td>192</td>
<td>±10</td>
<td>182</td>
<td>202</td>
</tr>
<tr>
<td>Weight in air</td>
<td>3,746</td>
<td>±10</td>
<td>3,706</td>
<td>3,786</td>
</tr>
</tbody>
</table>

Weight & buoyancy values below DO NOT include instrument
Appendix 3: Mooring Deployment Locations and water depths

<table>
<thead>
<tr>
<th>Mooring</th>
<th>Date</th>
<th>Start Deploy</th>
<th>End Deploy</th>
<th>Anchor Seabed</th>
<th>wd at Ancr posn (m)</th>
<th>Fall back (m)</th>
<th>Av descent rate m/min</th>
<th>Irridium Beacons</th>
<th>AR s/n</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTWB1</td>
<td>17/07/2014</td>
<td>09:31:00</td>
<td>11:45:24</td>
<td>57 28.24</td>
<td>42.30</td>
<td>1600</td>
<td>180</td>
<td>155</td>
<td>240m : B11-041 : 300234060475980</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1759</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1493</td>
</tr>
<tr>
<td>RTWB2</td>
<td>17/07/2014</td>
<td>14:41:40</td>
<td>15:40:40</td>
<td>57 28.22</td>
<td>19.87</td>
<td>1800</td>
<td>152</td>
<td>92</td>
<td>980m : B11-042 : 300234060477980</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1136</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1758</td>
</tr>
<tr>
<td>RTEB1</td>
<td>18/07/2014</td>
<td>08:14:24</td>
<td>11:34:00</td>
<td>57 05.96</td>
<td>32.88</td>
<td>1975</td>
<td>237</td>
<td>165</td>
<td>240m : B11-047 : 300234060478980</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1756</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1137</td>
</tr>
<tr>
<td>RTADCP1³</td>
<td>29/10/2014</td>
<td>15:31</td>
<td></td>
<td>57 06.18</td>
<td>20.28</td>
<td>1546</td>
<td>147</td>
<td>50</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AL-500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>J14110-001</td>
</tr>
<tr>
<td>RTADCP2</td>
<td>18/07/2014</td>
<td>14:03:30</td>
<td>16:12:00</td>
<td>57 05.98</td>
<td>16.52</td>
<td>396</td>
<td>0</td>
<td>10</td>
<td>none</td>
</tr>
<tr>
<td>Seaglider</td>
<td>16/07/2014</td>
<td>09:41:00</td>
<td>09:41:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Benthos</td>
</tr>
<tr>
<td>SG604 Jura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>59517</td>
</tr>
</tbody>
</table>

³ Deployed the 29/10/2014, see Appendix 4 for details.
Appendix 4: RTADCP1 Deployment Report from RRS *Discovery* Cruise DY017

Mooring description

One mooring was deployed during cruise RRS *Discovery* Cruise DY017. On 29/10/2014 an acoustic current meter was deployed in support of the OSNAP project by John Beaton for Stuart Cunningham of SAMS. The deployment was named RTADCP1.

AL-500 with concrete base ready for deployment, ADCP heads protected by white dome.

The plan was to deploy the 75KHz ADCP in a low profile seabed mount at latitude 57.1°N and depth 750m at an expected longitude of approximately 9.33°W. The deployment consisted of a Teledyne RD Instruments 75KHz ADCP in a DeepWater Buoyancy AL-500 Trawl Resistant Bottom Mount (TRBM) with a non-recoverable concrete base. The AL-500 was fitted with a pair of Ixsea AR861 acoustic releases to provide redundancy in the event of individual failure. Recovery aids fitted were a Novatech Iridium beacon and a Novatech strobe, both pressure activated on surfacing.
Deploying the TRBM

Deployment was by freefall from the surface with a detachable 'buoyancy parachute' consisting of three 17” Benthos glass spheres on ½” chain above an Ixsea acoustic release that could be released once the frame was confirmed on the seabed. Pre-deployment tests included a pressure and function test of all three acoustic releases by attaching to a CTD frame and lowering to 1000m then firing at 800m.

The entire package was lifted with the port-hand crane and swung out over the stern inside the extended stern gantry. With the entire package under the surface of the water a Seacatch quick release was used to release it from the crane at 1531 (57.10179°N, 9.33682°W). The TRBM and parachute were tracked, using an Ixsea TT801 deck unit, at a descent rate of about 50m/min and was on the bottom at 1546 with a slant range of 789m. Before release was attempted the vessel moved off the drop zone by several hundred meters.

Parachute failure

At 1602 the parachute was released and release confirmations received but it failed to surface maintaining a steady slant range of 935m. Multiple release attempts were made returning slight variations in range but due to the swell and position keeping it was not possible to say whether the height the parachute had changed. At 1608 a diagnostic test was made that confirmed the release was vertical and the battery voltage was 8.9V.
AL-500 showing three-legged bridle and part of buoyancy parachute (top).

It was thought the most likely reason the parachute did not detach successfully was one or more of the eyes of the three-legged bridle suspending the TRBM becoming trapped after the acoustic release was activated.

Trilateration

Confirmation of the TRBM’s location was carried out by trilateration.

Position 1 57.09818°N, 9.32464°W slant range 1227m
Position 2 57.09843°N, 9.35067°W slant range 1184m
Position 3 57.11046°N, 9.34013°W slant range 1110m

The position of RTADCP1 was fixed at 57.10302°N, 9.33799°W which is 147m NNW of the drop position.

Two days later at 0125 on 31/10/2014 communication was again made with the parachute acoustic release s/n 1916 from position 57.10239°N, 9.32892°W and slant range 938m. The release was confirmed as still in place and in the vertical orientation. Range and diagnostic commands were made to the TRBM’s internal releases, s/n 899 & 1326, to confirm realistic ranges and correct horizontal orientations.

Instrument serial numbers

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Serial Number(s)</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL-500 TRBM</td>
<td>s/n J14110-001</td>
<td></td>
</tr>
<tr>
<td>Teledyne RDI 75KHz ADCP</td>
<td>s/n 20467</td>
<td>512Mb memory card</td>
</tr>
<tr>
<td>Ixsea AR861 acoustic release</td>
<td>s/n 899</td>
<td>A:1A7A R:1A55 D:1A49</td>
</tr>
<tr>
<td>Ixsea AR861 acoustic release</td>
<td>s/n 1326</td>
<td>A:18B4 R:1855 D:1849</td>
</tr>
<tr>
<td>Ixsea AR861 acoustic release</td>
<td>s/n 1916</td>
<td>A:090D R:0955 D:0949</td>
</tr>
<tr>
<td>Novatech strobe beacon</td>
<td></td>
<td>no serial number</td>
</tr>
</tbody>
</table>
Novatech Iridium beacon s/n M00146 IMEI: 300434060123920 on at 1405 29/10/2014
One email alert was received from the Iridium beacon at 1418 prior to deployment.
The anticipated recovery date for this mooring is during June 2015.

ADCP pre-deployment test.

[BREAK Wakeup B]
WorkHorse Broadband ADCP Version 50.40
Teledyne RD Instruments (c) 1996-2010
All Rights Reserved.
>DEPLOY?
Deployment Commands:
CF = 11111 Flow Ctrl (EnsCyc;PngCyc;Binry;Ser;Rec)
CK Keep Parameters as USER Defaults
CR # Retrieve Parameters (0 = USER, 1 = FACTORY)
CS Start Deployment
EA = +00000 Heading Alignment (1/100 deg)
EB = +00000 Heading Bias (1/100 deg)
ED = 00000 Transducer Depth (0 - 65535 dm)
ES = 35 Salinity (0-40 pp thousand)
EX = 11111 Coord Transform (Xform: Type,Tilts,3 Bm,Map)
EZ = 111101 Sensor Source (C,D,H,P,R,S,T)
RE Recorder ErAsE
RN Set Deployment Name
TE = 01:00:00.00 Time per Ensemble (hrs:min:sec/sec/100)
TF = **/**/**,**:**:** Time of First Ping (yr/mon/day,hour:min:sec)
TP = 01:20.00 Time per Ping (min:sec/sec/100)
TS = 14/10/20,17:46:18 Time Set (yr/mon/day,hour:min:sec)
WD = 111 100 000 Data Out (Vel,Cor,Amp; PG,St,P0; P1,P2,P3)
WF = 0704 Blank After Transmit (cm)
WN = 030 Number of depth cells (1-128)
WP = 00045 Pings per Ensemble (0-16384)
WS = 1600 Depth Cell Size (cm)
WV = 175 Mode 1 Ambiguity Vel (cm/s radial)
>SYSTEM?
System Control, Data Recovery and Testing Commands:
AC Output Active Fluxgate & Tilt Calibration data
AF Field calibrate to remove hard/soft iron error
AR Restore factory fluxgate calibration data
AX Examine compass performance
AZ Zero pressure reading
CB = 411 Serial Port Control (Baud; Par; Stop)
CP # Polled Mode (0 = NORMAL, 1 = POLLED)
CZ Power Down Instrument
FC Clear Fault Log
FD Display Fault Log
OL Display Features List
PA ---------- Pre-Deployment Tests
PC1 -------------- Beam Continuity
PC2 -------------- Sensor Data
PS0 -------------- System Configuration
PS3 -------------- Transformation Matrices
RR -------------- Recorder Directory
RF -------------- Recorder Space used/free (bytes)
RY -------------- Upload Recorder Files to Host
>TS?
>TS 14/10/20, 17:46:32 --- Time Set (yr/mon/day,hour:min:sec)
>PS0
Instrument S/N: 20467
 Frequency: 76800 HZ
Configuration: 4 BEAM, JANUS
 Match Layer: 10
 Beam Angle: 20 DEGREES
Beam Pattern: CONVEX
Orientation: DOWN
 Sensor(s): HEADING TILT 1 TILT 2 DEPTH TEMPERATURE PRESSURE
Pressure Sens Coefficients:
 c3 = +1.773849E-10
 c2 = -1.369659E-06
 c1 = +1.395053E+00
 Offset = -1.095539E+02
Temp Sens Offset: -0.03 degrees C
CPU Firmware: 50.40 [0]
Boot Code Ver: Required: 1.16 Actual: 1.16
DEMOD #1 Ver: ad48, Type: 1f
DEMOD #2 Ver: ad48, Type: 1f
PWRTIMG Ver: 85d3, Type: 6
Board Serial Number Data:
48 00 00 07 68 CA 30 09 REC727-1004-06A
25 00 00 07 28 4B 4E 09 HPA727-3009-00B
3C 00 00 07 68 C9 DE 09 CPU727-2011-00E
AB 00 00 07 68 B6 41 09 DSP727-2001-06H
8B 00 00 07 68 DC 8F 09 TUN727-1005-06A
5D 00 00 07 68 DF FF 09 HIP727-3007-00A
>PA
PRE-DEPLOYMENT TESTS
CPU TESTS:
 RTC.................................PASS
 RAM.................................PASS
 ROM.................................PASS
RECORDE TESTS:
 PC Card #0......................DETECTED
 Card Detect......................PASS
 Communication..................PASS
DOS Structure..................PASS
Sector Test (short)..............PASS
PC Card #1..........................NOT DETECTED

DSP TESTS:
Timing RAM..........................PASS
Demod RAM..........................PASS
Demod REG..........................PASS
FIFOs..................................PASS

SYSTEM TESTS:
XILINX Interrupts... IRQ3 IRQ3 IRQ3 ...PASS
Wide Bandwidth....................***FAIL***
Narrow Bandwidth...................PASS
RSSI Filter.........................PASS
Transmit............................***FAIL***

SENSOR TESTS:
H/W Operation......................PASS
>RS ERR 005: EXTRA PARAMETERS ENCOUNTERED
>PC1

BEAM CONTINUITY TEST
When prompted to do so, vigorously rub the selected beam’s face.
If a beam does not PASS the test, send any character to the ADCP to automatically select the next beam.
Collecting Statistical Data...
 26 26 31 28
Rub Beam 1 = PASS
Rub Beam 2 = PASS
Rub Beam 3 = PASS
Rub Beam 4 = PASS
>CZ
Powering Down

ADCP program log file.

[BREAK Wakeup B]
WorkHorse Broadband ADCP Version 50.40
Teledyne RD Instruments (c) 1996-2010
All Rights Reserved.
>CR1
[Parameters set to FACTORY defaults]
>CQ255
>CF11101
>EA0
>EB0
>ED0
>ES35
>EX11111
>EZ1111111
>WA50
>WB1
>WD111100000
>WF704
>WN50
>WP30
>WS1600
>WV175
>TE01:00:00.00
>TF14/10/26 16:00:00
>TP02:00.00
>CK
[Parameters saved as USER defaults]
> The command CS is not allowed in this command file. It has been ignored.
> The following commands are generated by this program:
> CF?
CF = 11101 --------------- Flow Ctrl (EnsCyc;PngCyc;Binry;Ser;Rec)
>CF11101
> RN RTAD1
> cs
Appendix 5: Details of iridium beacons

<table>
<thead>
<tr>
<th>Mooring</th>
<th>Position on mooring</th>
<th>S/N</th>
<th>IMEI</th>
</tr>
</thead>
<tbody>
<tr>
<td>WB1</td>
<td>Upper (240 m)</td>
<td>B11-041</td>
<td>300234060475980</td>
</tr>
<tr>
<td>WB1</td>
<td>Lower (490 m)</td>
<td>B11-044</td>
<td>300234060471960</td>
</tr>
<tr>
<td>WB2</td>
<td>~ 980 m</td>
<td>B11-042</td>
<td>300234060477980</td>
</tr>
<tr>
<td>EB1</td>
<td>Upper (240 m)</td>
<td>B11-047</td>
<td>300234060478980</td>
</tr>
<tr>
<td>EB1</td>
<td>Lower (490 m)</td>
<td>B11-045</td>
<td>300234060476980</td>
</tr>
<tr>
<td>Spare</td>
<td></td>
<td>B11-052</td>
<td>300234060573000</td>
</tr>
<tr>
<td>Spare</td>
<td></td>
<td>11-051</td>
<td>300234060471740</td>
</tr>
<tr>
<td>Spare</td>
<td></td>
<td>11-048</td>
<td>300234060474980</td>
</tr>
<tr>
<td>Spare</td>
<td></td>
<td>11-054</td>
<td>300234060475730</td>
</tr>
<tr>
<td>Spare</td>
<td></td>
<td>11-053</td>
<td>300234060479980</td>
</tr>
<tr>
<td>Spare</td>
<td></td>
<td>11-052</td>
<td>300234060573000</td>
</tr>
</tbody>
</table>
Appendix 6: Instrument Setup Details

MOORING RTWB1

SeaBird SBE37 Microcat

<table>
<thead>
<tr>
<th>S/N</th>
<th>11335, 10577, 10575, 10578, 10579, 11334, 11288, 11289</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample interval (secs)</td>
<td>1800</td>
</tr>
<tr>
<td>Data format</td>
<td>3</td>
</tr>
<tr>
<td>Transmit realtime</td>
<td>off</td>
</tr>
<tr>
<td>Sync mode</td>
<td>off</td>
</tr>
<tr>
<td>Start date (dd/mm/yy)</td>
<td>17/07/14</td>
</tr>
<tr>
<td>Start time (hh:mm:ss)</td>
<td>08:00:00</td>
</tr>
</tbody>
</table>

Nortek Aquadopp

<table>
<thead>
<tr>
<th>S/N</th>
<th>11021, 11023, 11026, 11028, 11029</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement interval (secs)</td>
<td>1200</td>
</tr>
<tr>
<td>Average interval (secs)</td>
<td>180</td>
</tr>
<tr>
<td>Blanking distance (m)</td>
<td>0.50</td>
</tr>
<tr>
<td>Measurement load (%)</td>
<td>4</td>
</tr>
<tr>
<td>Diagnostics interval (min)</td>
<td>720</td>
</tr>
<tr>
<td>Diagnostics samples</td>
<td>20</td>
</tr>
<tr>
<td>Compass update rate (secs)</td>
<td>1</td>
</tr>
<tr>
<td>Co-ordinate system</td>
<td>ENU</td>
</tr>
<tr>
<td>Speed of sound (m/s)</td>
<td>1500</td>
</tr>
<tr>
<td>Analog input 1</td>
<td>none</td>
</tr>
<tr>
<td>Analog output</td>
<td>disabled</td>
</tr>
<tr>
<td>File wrapping</td>
<td>off</td>
</tr>
<tr>
<td>TellTale</td>
<td>off</td>
</tr>
<tr>
<td>AcousticModem</td>
<td>off</td>
</tr>
<tr>
<td>Serial output</td>
<td>off</td>
</tr>
<tr>
<td>Baud rate</td>
<td>9600</td>
</tr>
<tr>
<td>Start date (dd/mm/yy)</td>
<td>17/07/14</td>
</tr>
<tr>
<td>Start time (GMT, hh:mm:ss)</td>
<td>06:00:00</td>
</tr>
</tbody>
</table>

SeaBird SBE53 BPR

<table>
<thead>
<tr>
<th>S/N</th>
<th>34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td>kn221-02: rtwb1 sa02sc</td>
</tr>
<tr>
<td>Tide measurement interval (mins)</td>
<td>30</td>
</tr>
<tr>
<td>Tide measurement duration (mins)</td>
<td>30</td>
</tr>
<tr>
<td>Frequency of reference measurement</td>
<td>every 96 tide samples</td>
</tr>
<tr>
<td>Start date (dd/mm/yy)</td>
<td>17/07/2014</td>
</tr>
<tr>
<td>Start time (GMT, hh:mm:ss)</td>
<td>06:00:00</td>
</tr>
</tbody>
</table>

MOORING RTWB2

SeaBird SBE37 Microcat

<table>
<thead>
<tr>
<th>S/N</th>
<th>11290, 11320</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample interval (secs)</td>
<td>1800</td>
</tr>
</tbody>
</table>
Data format 3
Transmit realtime off
Sync mode off
Start date (dd/mm/yy) 17/07/14
Start time (hh:mm:ss) 14:00:00

Nortek Aquadopp
S/N 11030, 11032, 11042
Measurement interval (secs) 1200
Average interval (secs) 180
Blanking distance (m) 0.50
Measurement load (%) 4
Diagnostics interval (min) 720
Diagnostics samples 20
Compass update rate (secs) 1
Co-ordinate system ENU
Speed of sound (m/s) 1500
Analog input 1 none
Analog output disabled
File wrapping off
TellTale off
AcousticModem off
Serial output off
Baud rate 9600
Start date (dd/mm/yy) 17/07/14
Start time (GMT, hh:mm:ss) 06:00:00

MOORING RTEB1

SeaBird SBE37 Microcat
S/N 11321, 11322, 11323, 11324, 11325, 11331, 11332, 11333
Sample interval (secs) 1800
Data format 3
Transmit realtime off
Sync mode off
Start date (dd/mm/yy) 18/07/14
Start time (hh:mm:ss) 06:00:00

Nortek Aquadopp
S/N 11047, 11055, 11058, 11063, 11064, 11067
Measurement interval (secs) 1200
Average interval (secs) 180
Blanking distance (m) 0.50
Measurement load (%) 4
Diagnostics interval (min) 720
Diagnostics samples 20
Compass update rate (secs) 1
Co-ordinate system: ENU
Speed of sound (m/s): 1500
Analog input 1: none
Analog output: disabled
File wrapping: off
TellTale: off
AcousticModem: off
Serial output: off
Baud rate: 9600
Start date (dd/mm/yy): 17/07/14
Start time (GMT, hh:mm:ss): 06:00:00

SeaBird SBE53 BPR
S/N 81
Header: kn221-02 rteb1 sa02sc
Tide measurement interval (mins): 30
Tide measurement duration (mins): 30
Frequency of reference measurement: every 96 tide samples
Start date (dd/mm/yy): 17/07/14
Start time (GMT, hh:mm:ss): 06:00:00

MOORING RTADCP2

Workhorse Broadband ADCP
S/N 20466

Copy of RTAD2.whp
;Set PC clock to GMT
CR1
CQ255
CF11111
EA0
EB0
ED4000
ES35
EX11111
EZ11111101
WA50
WB1
WD111100000
WF704
WN31
WP20
WS1600
WV175
TE01:00:00.00
TP03:00.00
TF14/07/17 09:00:00
CK
CS
Instrument = Workhorse Long Ranger
Frequency = 76800
Water Profile = YES
Bottom Track = NO
High Res. Modes = NO
High Rate Pinging = NO
Shallow Bottom Mode= NO
Wave Gauge = NO
Lowered ADCP = NO
Beam angle = 20
Temperature = 5.00
Deployment hours = 9600.00
Battery packs = 4
Automatic TP = YES
Memory size [MB] = 32
Saved Screen = 2

Consequences generated by PlanADCP version 2.02:
First cell range = 24.33 m
Last cell range = 504.33 m
Max range = 630.71 m
Standard deviation = 1.36 cm/s
Ensemble size = 768 bytes
Storage required = 7.03 MB (7372800 bytes)
Power usage = 1582.03 Wh
Battery usage = 3.5

WARNINGS AND CAUTIONS:
Advanced settings has been changed.

Copy of WinSc[RTAD2].pdf
WD = 111 100 000 -------- Data Out (Vel,Cor,Amp; PG,St,P0; P1,P2,P3)
WF = 0704 ----------------- Blank After Transmit (cm)
WN = 030 ------------------ Number of depth cells (1-128)
WP = 00045 ----------------- Pings per Ensemble (0-16384)
WS = 1600 ------------------ Depth Cell Size (cm)
WV = 175 ------------------ Mode 1 Ambiguity Vel (cm/s radial)

>SYSTEM?
System Control, Data Recovery and Testing Commands:
AC ------------------------ Output Active Fluxgate & Tilt Calibration data
AF ------------------------ Field calibrate to remove hard/soft iron error
AR ------------------------ Restore factory fluxgate calibration data
AX ------------------------ Examine compass performance
AZ ------------------------ Zero pressure reading

CB = 411 ------------------- Serial Port Control (Baud; Par; Stop)
CP # ----------------------- Polled Mode (0 = NORMAL, 1 = POLLED)
CZ ------------------------ Power Down Instrument

FC ------------------------ Clear Fault Log
FD ------------------------ Display Fault Log

OL ------------------------ Display Features List

PA ------------------------ Pre-Deployment Tests
PC1 ------------------------ Beam Continuity
PC2 ------------------------ Sensor Data
PS0 ------------------------ System Configuration
PS3 ------------------------ Transformation Matrices

RR ------------------------ Recorder Directory
RF ------------------------ Recorder Space used/free (bytes)
RY ------------------------ Upload Recorder Files to Host

>TS?
TS 14/07/14,10:40:11 --- Time Set (yr/mon/day,hour:min:sec)

>PS0
Instrument S/N: 20466
 Frequency: 76800 HZ
 Configuration: 4 BEAM, JANUS
 Match Layer: 10
 Beam Angle: 20 DEGREES
 Beam Pattern: CONVEX
 Orientation: DOWN
 Sensor(s): HEADING TILT 1 TILT 2 DEPTH TEMPERATURE PRESSURE
Pressure Sens Coefficients:
 c3 = +1.404564E-10
 c2 = -9.991955E-07
 c1 = +1.257229E+00
 Offset = +7.763256E+01
Temp Sens Offset: -0.08 degrees C
CPU Firmware: 50.40 [0]
Boot Code Ver: Required: 1.16 Actual: 1.16
DEMOD #1 Ver: ad48, Type: 1f
DEMOD #2 Ver: ad48, Type: 1f
PWRTIMG Ver: 85d3, Type: 6

Board Serial Number Data:
5A 00 00 07 68 D8 00 09 REC727-1004-06A
DD 00 00 07 68 F9 06 09 HPI727-3007-00A
C3 00 00 07 68 C2 86 09 CPU727-2011-00E
2E 00 00 07 68 F8 CE 09 DSP727-2001-06H
6F 00 00 07 28 4B 43 09 HPA727-3009-00B
F6 00 00 07 68 E2 9F 09 TUN727-1005-06A

>PAPRE-DEPLOYMENT TESTS

CPU TESTS:

RTC.................................PASS
RAM....................................PASS
ROM....................................PASS

RECORDER TESTS:
Card Detect..........................PASS
Communication.........................PASS
DOS Structure..........................PASS
Sector Test (short)....................PASS

DSP TESTS:

Timing RAM.............................PASS
Demod RAM..............................PASS
Demod REG..............................PASS
FIFOs..................................PASS

SYSTEM TESTS:
XILINX Interrupts... IRQ3 IRQ3 IRQ3 ...PASS
Wide Bandwidth........................***FAIL***
Narrow Bandwidth.......................PASS
RSSI Filter.............................PASS
Transmit..............................***FAIL***

SENSOR TESTS:
H/W Operation..........................PASS

Press any key to quit sensor display ...
All Sensors are Internal Only.

>PC2

>PC1

BEAM CONTINUITY TEST
beam's face.
the ADCP to automatically select the next beam.

>CZ

Powering Down
Appendix 7: Mooring Trilaterations

Mooring RTWB1

<table>
<thead>
<tr>
<th>Trilateration point</th>
<th>A/R</th>
<th>S/N</th>
<th>Latitude (°N)</th>
<th>Longitude (°W)</th>
<th>Slant range (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1759</td>
<td>57.5005</td>
<td>12.7068</td>
<td>3709</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1493</td>
<td>57.5009</td>
<td>12.7067</td>
<td>3741</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1759</td>
<td>57.4471</td>
<td>12.7461</td>
<td>3956</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1493</td>
<td>57.4472</td>
<td>12.7463</td>
<td>3947</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1759</td>
<td>57.4466</td>
<td>12.6704</td>
<td>3755</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1493</td>
<td>57.4467</td>
<td>12.6703</td>
<td>3756</td>
<td></td>
</tr>
</tbody>
</table>

Trilateration mooring position: 57.471 °N, 12.705 °W
Fallback: 180 m

Mooring RTWB2

<table>
<thead>
<tr>
<th>Trilateration point</th>
<th>A/R</th>
<th>S/N</th>
<th>Latitude (°N)</th>
<th>Longitude (°W)</th>
<th>Slant range (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1136</td>
<td>57.5074</td>
<td>12.3302</td>
<td>4502</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1758</td>
<td>57.5076</td>
<td>12.3302</td>
<td>4515</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1136</td>
<td>57.4510</td>
<td>12.3717</td>
<td>3735</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1758</td>
<td>57.4510</td>
<td>12.3716</td>
<td>3726</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1136</td>
<td>57.4503</td>
<td>12.2872</td>
<td>3918</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1758</td>
<td>57.4505</td>
<td>12.2871</td>
<td>3921</td>
<td></td>
</tr>
</tbody>
</table>

Trilateration mooring position: 57.470 °N, 12.331 °W
Fallback: 152 m

Mooring RTEB1

<table>
<thead>
<tr>
<th>Trilateration point</th>
<th>A/R</th>
<th>S/N</th>
<th>Latitude (°N)</th>
<th>Longitude (°W)</th>
<th>Slant range (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1137</td>
<td>57.13345</td>
<td>9.5528</td>
<td>4223</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1137</td>
<td>57.0791</td>
<td>9.5897</td>
<td>3851</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1137</td>
<td>57.0792</td>
<td>9.5035</td>
<td>3964</td>
<td></td>
</tr>
</tbody>
</table>

Trilateration mooring position: 57.099 °N, 9.548 °W
Fallback: 237 m

Mooring RTADCP2

As this mooring was lowered to around 1 m above the seabed before release, no trilateration was carried out.
Appendix 8: Details of Instruments Lowered on CTD Calibration Cast

<table>
<thead>
<tr>
<th>CTD Cast Number</th>
<th>Instrument Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type</td>
</tr>
<tr>
<td>002 (Cal dip 2)</td>
<td>A/R</td>
</tr>
<tr>
<td></td>
<td>A/R</td>
</tr>
<tr>
<td></td>
<td>A/R</td>
</tr>
<tr>
<td>003 (Cal dip 3)</td>
<td>A/R</td>
</tr>
<tr>
<td></td>
<td>A/R</td>
</tr>
<tr>
<td></td>
<td>A/R</td>
</tr>
<tr>
<td>004 (Cal dip 4)</td>
<td>Microcat</td>
</tr>
<tr>
<td></td>
<td>A/R</td>
</tr>
<tr>
<td>N/A (400 m)</td>
<td>BPR</td>
</tr>
<tr>
<td></td>
<td>BPR</td>
</tr>
<tr>
<td></td>
<td>Benthos</td>
</tr>
<tr>
<td>005 (Cal dip 5)</td>
<td>microcat</td>
</tr>
<tr>
<td></td>
<td>microcat</td>
</tr>
</tbody>
</table>
Appendix 9: CTD and calibration processing

<table>
<thead>
<tr>
<th>Station Number</th>
<th>MMM DD YYYY</th>
<th>Lat DEG</th>
<th>Lat MIN</th>
<th>Lon DEG</th>
<th>Lon MIN</th>
<th>Pmin DBAR</th>
<th>Pmax DBAR</th>
<th>Depth m</th>
<th>Bottle samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Jul 07 2014 13:41:20</td>
<td>61</td>
<td>31.80</td>
<td>32</td>
<td>36.66</td>
<td>2</td>
<td>999</td>
<td>2329</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>Jul 07 2014 20:48:20</td>
<td>60</td>
<td>58.36</td>
<td>34</td>
<td>25.50</td>
<td>3</td>
<td>3024</td>
<td>3014</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Jul 08 2014 15:59:13</td>
<td>59</td>
<td>15.20</td>
<td>35</td>
<td>7.11</td>
<td>2</td>
<td>3096</td>
<td>3092</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Jul 08 2014 20:44:01</td>
<td>59</td>
<td>20.36</td>
<td>34</td>
<td>39.90</td>
<td>2</td>
<td>3129</td>
<td>3116</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>Jul 09 2014 01:15:10</td>
<td>59</td>
<td>20.10</td>
<td>34</td>
<td>39.54</td>
<td>3</td>
<td>3114</td>
<td>3105</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Jul 13 2014 18:05:15</td>
<td>58</td>
<td>2.08</td>
<td>27</td>
<td>48.11</td>
<td>4</td>
<td>2369</td>
<td>2373</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>Jul 18 2014 17:39:54</td>
<td>57</td>
<td>0.09</td>
<td>85</td>
<td>99.70</td>
<td>2</td>
<td>117</td>
<td>134</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Jul 18 2014 18:53:32</td>
<td>57</td>
<td>3.02</td>
<td>91</td>
<td>29.80</td>
<td>2</td>
<td>292</td>
<td>313</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>Jul 18 2014 20:08:59</td>
<td>57</td>
<td>5.93</td>
<td>92</td>
<td>50.10</td>
<td>1</td>
<td>1410</td>
<td>1416</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>Jul 18 2014 22:16:50</td>
<td>57</td>
<td>8.87</td>
<td>94</td>
<td>21.00</td>
<td>2</td>
<td>1937</td>
<td>1943</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>Jul 19 2014 01:07:46</td>
<td>57</td>
<td>14.13</td>
<td>10</td>
<td>2.96</td>
<td>2</td>
<td>2111</td>
<td>2111</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>Jul 19 2014 10:15:37</td>
<td>57</td>
<td>30.26</td>
<td>12</td>
<td>15.02</td>
<td>4</td>
<td>1807</td>
<td>1812</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>Jul 19 2014 13:09:46</td>
<td>57</td>
<td>32.12</td>
<td>12</td>
<td>38.12</td>
<td>3</td>
<td>1638</td>
<td>1645</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>Jul 19 2014 15:30:07</td>
<td>57</td>
<td>32.58</td>
<td>12</td>
<td>51.93</td>
<td>2</td>
<td>1067</td>
<td>1079</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>Jul 19 2014 17:13:15</td>
<td>57</td>
<td>33.04</td>
<td>12</td>
<td>59.98</td>
<td>2</td>
<td>282</td>
<td>298</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>Jul 19 2014 18:45:16</td>
<td>57</td>
<td>33.96</td>
<td>13</td>
<td>19.73</td>
<td>3</td>
<td>159</td>
<td>178</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>Jul 19 2014 20:03:40</td>
<td>57</td>
<td>34.99</td>
<td>13</td>
<td>37.84</td>
<td>1</td>
<td>97</td>
<td>114</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>Jul 20 2014 10:36:59</td>
<td>57</td>
<td>39.94</td>
<td>18</td>
<td>41.86</td>
<td>2</td>
<td>700</td>
<td>716</td>
<td>6</td>
</tr>
<tr>
<td>18</td>
<td>Jul 20 2014 13:03:29</td>
<td>57</td>
<td>43.72</td>
<td>19</td>
<td>13.72</td>
<td>2</td>
<td>902</td>
<td>917</td>
<td>7</td>
</tr>
<tr>
<td>19</td>
<td>Jul 20 2014 15:33:47</td>
<td>57</td>
<td>47.50</td>
<td>19</td>
<td>44.82</td>
<td>3</td>
<td>1301</td>
<td>1316</td>
<td>12</td>
</tr>
<tr>
<td>20</td>
<td>Jul 20 2014 18:07:48</td>
<td>57</td>
<td>50.12</td>
<td>20</td>
<td>8.37</td>
<td>3</td>
<td>1552</td>
<td>1573</td>
<td>12</td>
</tr>
<tr>
<td>21</td>
<td>Jul 20 2014 20:35:05</td>
<td>57</td>
<td>52.68</td>
<td>20</td>
<td>29.85</td>
<td>2</td>
<td>2247</td>
<td>2257</td>
<td>12</td>
</tr>
<tr>
<td>22</td>
<td>Jul 20 2014 23:25:52</td>
<td>57</td>
<td>54.91</td>
<td>20</td>
<td>51.31</td>
<td>2</td>
<td>2006</td>
<td>2015</td>
<td>12</td>
</tr>
<tr>
<td>23</td>
<td>Jul 21 2014 02:19:06</td>
<td>57</td>
<td>57.30</td>
<td>21</td>
<td>11.97</td>
<td>2</td>
<td>2978</td>
<td>3001</td>
<td>12</td>
</tr>
<tr>
<td>24</td>
<td>Jul 21 2014 06:45:17</td>
<td>57</td>
<td>57.58</td>
<td>21</td>
<td>51.40</td>
<td>2</td>
<td>3048</td>
<td>3029</td>
<td>12</td>
</tr>
<tr>
<td>25</td>
<td>Jul 21 2014 11:04:29</td>
<td>57</td>
<td>57.47</td>
<td>22</td>
<td>30.72</td>
<td>2</td>
<td>3013</td>
<td>2994</td>
<td>12</td>
</tr>
<tr>
<td>26</td>
<td>Jul 21 2014 15:17:44</td>
<td>57</td>
<td>57.62</td>
<td>23</td>
<td>10.37</td>
<td>2</td>
<td>3018</td>
<td>3002</td>
<td>11</td>
</tr>
<tr>
<td>27</td>
<td>Jul 21 2014 19:24:10</td>
<td>57</td>
<td>57.67</td>
<td>23</td>
<td>49.82</td>
<td>2</td>
<td>2967</td>
<td>2949</td>
<td>11</td>
</tr>
<tr>
<td>28</td>
<td>Jul 21 2014 23:28:16</td>
<td>57</td>
<td>57.66</td>
<td>24</td>
<td>29.41</td>
<td>3</td>
<td>2851</td>
<td>2840</td>
<td>12</td>
</tr>
<tr>
<td>29</td>
<td>Jul 22 2014 03:44:18</td>
<td>57</td>
<td>57.56</td>
<td>25</td>
<td>6.95</td>
<td>2</td>
<td>2766</td>
<td>2758</td>
<td>12</td>
</tr>
<tr>
<td>30</td>
<td>Jul 22 2014 07:55:32</td>
<td>57</td>
<td>57.66</td>
<td>25</td>
<td>44.73</td>
<td>2</td>
<td>2760</td>
<td>2749</td>
<td>12</td>
</tr>
<tr>
<td>31</td>
<td>Jul 22 2014 11:41:40</td>
<td>57</td>
<td>57.68</td>
<td>26</td>
<td>22.72</td>
<td>4</td>
<td>2851</td>
<td>2844</td>
<td>12</td>
</tr>
<tr>
<td>32</td>
<td>Jul 22 2014 15:44:04</td>
<td>57</td>
<td>57.67</td>
<td>27</td>
<td>0.69</td>
<td>3</td>
<td>2706</td>
<td>2697</td>
<td>10</td>
</tr>
<tr>
<td>33</td>
<td>Jul 22 2014 19:23:09</td>
<td>57</td>
<td>58.63</td>
<td>27</td>
<td>34.11</td>
<td>2</td>
<td>2269</td>
<td>2274</td>
<td>12</td>
</tr>
<tr>
<td>34</td>
<td>Jul 22 2014 23:10:40</td>
<td>57</td>
<td>59.70</td>
<td>28</td>
<td>4.25</td>
<td>3</td>
<td>2423</td>
<td>2426</td>
<td>12</td>
</tr>
<tr>
<td>35</td>
<td>Jul 23 2014 02:12:52</td>
<td>58</td>
<td>4.97</td>
<td>28</td>
<td>20.44</td>
<td>2</td>
<td>2311</td>
<td>2316</td>
<td>12</td>
</tr>
<tr>
<td>36</td>
<td>Jul 23 2014 05:26:15</td>
<td>58</td>
<td>10.34</td>
<td>28</td>
<td>36.77</td>
<td>2</td>
<td>2323</td>
<td>2325</td>
<td>12</td>
</tr>
<tr>
<td>37</td>
<td>Jul 23 2014 08:11:30</td>
<td>58</td>
<td>15.64</td>
<td>28</td>
<td>52.85</td>
<td>2</td>
<td>2222</td>
<td>2229</td>
<td>12</td>
</tr>
<tr>
<td>Station</td>
<td>Date/Time</td>
<td>Depth (m)</td>
<td>Temperature (°C)</td>
<td>Salinity</td>
<td>Conductivity (μS/cm)</td>
<td>TDS (ppm)</td>
<td>CAS (ppm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>-----------</td>
<td>------------------</td>
<td>----------</td>
<td>----------------------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Jul 23 2014 15:51:19</td>
<td>58</td>
<td>29.38</td>
<td>32.35</td>
<td>3</td>
<td>2541</td>
<td>2540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Jul 23 2014 18:48:42</td>
<td>58</td>
<td>33.30</td>
<td>44.02</td>
<td>2</td>
<td>1999</td>
<td>2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Jul 24 2014 00:02:40</td>
<td>58</td>
<td>41.92</td>
<td>10.05</td>
<td>3</td>
<td>1717</td>
<td>1728</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Jul 24 2014 02:13:29</td>
<td>58</td>
<td>45.70</td>
<td>21.90</td>
<td>2</td>
<td>1625</td>
<td>1648</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Jul 24 2014 04:22:43</td>
<td>58</td>
<td>49.81</td>
<td>34.65</td>
<td>2</td>
<td>1607</td>
<td>1620</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Jul 24 2014 06:21:42</td>
<td>58</td>
<td>50.18</td>
<td>48.32</td>
<td>3</td>
<td>1467</td>
<td>1481</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Jul 24 2014 08:12:48</td>
<td>58</td>
<td>50.49</td>
<td>2.07</td>
<td>2</td>
<td>1388</td>
<td>1380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Jul 24 2014 10:09:02</td>
<td>58</td>
<td>50.94</td>
<td>16.01</td>
<td>3</td>
<td>1447</td>
<td>1454</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Jul 24 2014 12:04:30</td>
<td>58</td>
<td>52.32</td>
<td>29.66</td>
<td>3</td>
<td>1506</td>
<td>1529</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Jul 24 2014 14:02:41</td>
<td>58</td>
<td>53.66</td>
<td>43.30</td>
<td>3</td>
<td>1624</td>
<td>1645</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Jul 24 2014 16:06:04</td>
<td>58</td>
<td>55.01</td>
<td>57.02</td>
<td>3</td>
<td>1774</td>
<td>1788</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Jul 24 2014 18:13:49</td>
<td>58</td>
<td>56.69</td>
<td>12.54</td>
<td>3</td>
<td>1478</td>
<td>1501</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Jul 24 2014 20:06:33</td>
<td>58</td>
<td>58.22</td>
<td>27.93</td>
<td>2</td>
<td>1869</td>
<td>1869</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Jul 24 2014 22:10:43</td>
<td>58</td>
<td>59.68</td>
<td>42.11</td>
<td>1</td>
<td>1848</td>
<td>1874</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Jul 25 2014 00:27:34</td>
<td>59</td>
<td>1.38</td>
<td>58.64</td>
<td>4</td>
<td>2248</td>
<td>2252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Jul 25 2014 03:03:03</td>
<td>59</td>
<td>2.85</td>
<td>14.03</td>
<td>3</td>
<td>2191</td>
<td>2200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Jul 25 2014 05:25:54</td>
<td>59</td>
<td>4.46</td>
<td>29.53</td>
<td>3</td>
<td>2310</td>
<td>2313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Jul 25 2014 07:51:15</td>
<td>59</td>
<td>6.03</td>
<td>45.33</td>
<td>3</td>
<td>2152</td>
<td>2164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Jul 25 2014 10:17:13</td>
<td>59</td>
<td>7.64</td>
<td>1.15</td>
<td>3</td>
<td>2847</td>
<td>2855</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Jul 25 2014 13:05:38</td>
<td>59</td>
<td>9.32</td>
<td>17.71</td>
<td>4</td>
<td>2597</td>
<td>2607</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Jul 26 2014 01:05:18</td>
<td>59</td>
<td>16.09</td>
<td>21.91</td>
<td>4</td>
<td>3041</td>
<td>3026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Jul 26 2014 04:33:57</td>
<td>59</td>
<td>17.64</td>
<td>38.55</td>
<td>3</td>
<td>3136</td>
<td>3124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Jul 27 2014 21:58:13</td>
<td>56</td>
<td>40.40</td>
<td>40.61</td>
<td>1</td>
<td>1051</td>
<td>1070</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Jul 27 2014 23:22:57</td>
<td>56</td>
<td>42.48</td>
<td>41.96</td>
<td>3</td>
<td>1768</td>
<td>1828</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Jul 28 2014 01:21:08</td>
<td>56</td>
<td>43.96</td>
<td>43.02</td>
<td>3</td>
<td>2183</td>
<td>2191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Jul 28 2014 05:02:15</td>
<td>56</td>
<td>46.01</td>
<td>43.98</td>
<td>4</td>
<td>1890</td>
<td>1843</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Jul 28 2014 07:08:25</td>
<td>56</td>
<td>48.09</td>
<td>44.94</td>
<td>1</td>
<td>1100</td>
<td>1120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Jul 28 2014 08:41:33</td>
<td>56</td>
<td>51.18</td>
<td>47.18</td>
<td>2</td>
<td>1530</td>
<td>1524</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Jul 28 2014 10:30:16</td>
<td>56</td>
<td>53.75</td>
<td>49.12</td>
<td>3</td>
<td>2339</td>
<td>2335</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Jul 28 2014 12:45:51</td>
<td>56</td>
<td>56.41</td>
<td>51.18</td>
<td>4</td>
<td>2446</td>
<td>2474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Jul 28 2014 15:02:45</td>
<td>56</td>
<td>58.48</td>
<td>52.95</td>
<td>4</td>
<td>1946</td>
<td>1988</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A8: Summary of CTD stations, times, positions and bottle sample numbers.
CTD System Configuration

One CTD system was prepared; the main water sampling arrangement was a WHOI made, 24-way stainless steel frame system, (WHOI-01), and the sensor configuration was as follows:

- **Sea-Bird 9plus** underwater unit, s/n 09P-462
- **Sea-Bird 3P** temperature sensor, s/n 03P-4195, Frequency 0
- **Sea-Bird 4C** conductivity sensor, s/n 04C-2147, Frequency 1
- Digiquartz temperature compensated pressure sensor, s/n 63505, Frequency 2
- **Sea-Bird 3P** temperature sensor, s/n 03P-4252, Frequency 3
- **Sea-Bird 4C** conductivity sensor, s/n 04C-2768, Frequency 4
- **Sea-Bird 5T** submersible pump, s/n 05T-2148-3K
- **Sea-Bird 5T** submersible pump, s/n 05T-3107-3K
- **Sea-Bird 32 Carousel 24 position pylon**, s/n 323109-450
- **Sea-Bird 11plus** deck unit, s/n 11P-0462

Additional Instruments

Ocean Test Equipment 10 litre water samplers were used in positions 2, 4, 6, 8, 10, 12, 13, 17, 18, 20, 22, 24. For each cast 3-12 bottles were used, the amount determined by depth (shallower water depth=less bottles, Figure 7.1).

- **WET Labs ECO-AFL/FL**, Fluorometer, s/n FLNRTURD-304, A/D voltage 0
- **WET Labs, ECO-NTU**, Turbidity Meter, s/n FLNRTURD-304, A/D voltage 1
- **WET Labs C-Star**, Transmissometer, s/n CST-118DR, A/D voltage 2
- Altimeter, s/n PSA916-1632, A/D voltage 4
- **Sea-Bird 43** oxygen sensor, s/n 1679, A/D voltage 5
- **SPAR/Surface Irradiance**, s/n 20313
- **Knudsen 320 B/R Echosounder**, s/n K2K-90-0224

Sea-Bird 9plus configuration

- Sea-Bird 9plus configuration file C:\Data\ctd\KN221-02.xmlcon was used for all CTD casts, and details are as follows:
 - Frequency channels suppressed : 0
 - Voltage words suppressed : 0
 - Computer interface : RS-232C
 - Deck unit : SBE11plus Firmware Version >= 5.0
 - Scans to average : 1
 - NMEA position data added : Yes
 - NMEA depth data added : No
 - NMEA time added : No
 - NMEA device connected to : deck unit
 - Surface PAR voltage added : Yes
 - Scan time added : No
 - 1) Frequency 0, Temperature
 - Serial number : 4195
 - Calibrated on : 11-Oct-13
 - G : 4.37157395e-003
2) Frequency 1, Conductivity
2.1. 07/05/2014 – 07/20/2014
Serial number : 2670
Calibrated on : 17-Oct-13
G : -9.76268941e+000
H : 1.3060244e+000
I : -9.98006005e-005
J : 7.62793708e-005
CTcor : 3.2500e-006
CPcor : -9.57000000e-008
Slope : 1.00000000
Offset : 0.00000

2.2. 07/20/2014 – end
Serial number : 2147
Calibrated on : 10-Oct-13
G : -1.00444181e+001
H : 1.40306110e+000
I : -2.56196619e-003
J : 2.42588888e-004
CTcor : 3.2500e-006
CPcor : -9.57000000e-008
Slope : 1.00000000
Offset : 0.00000

3) Frequency 2, Pressure, Digiquartz with TC
Serial number : 63505 SBE090462
Calibrated on : 2012-03-15
C1 : -4.872453e+004
C2 : 2.143123e-002
C3 : 1.347220e-002
D1 : 3.959500e-002
D2 : 0.000000e+000
T1 : 2.994567e+001
T2 : -2.488396e-004
T3 : 3.985300e-006
T4 : 7.998620e-010
T5 : 0.000000e+000
Slope : 0.99989000
Offset : -1.74580
AD590M : 1.282050e-002
AD590B : -9.111540e+000

4) Frequency 3, Temperature, 2
Serial number : 4252
Calibrated on : 10-Oct-13
G : 4.35853437e-003
H : 6.46918839e-004
I : 2.28013364e-005
J : 1.87007817e-006
F0 : 1000.000
Slope : 1.00000000
Offset : 0.0000

5) Frequency 4, Conductivity, 2
Serial number : 2768
Calibrated on : 10-Oct-13
G : -1.06579210e+001
H : 1.52215584e+000
I : -1.41086542e-003
J : 2.16929308e-004
CTcor : 3.2500e-006
CPcor : -9.57000000e-008
Slope : 1.00000000
Offset : 0.0000

6) A/D voltage 0, Fluorometer, WET Labs ECO-AFL/FL
Serial number : FLNTURTD-304
Calibrated on : 2008-03-10
Dark output : 0.0710
Scale factor : 1.00000000e+001

7) A/D voltage 1, Turbidity Meter, WET Labs, ECO-NTU
Serial number : FLNTURTD-304
Calibrated on : 20080310
ScaleFactor : 5.000000
Dark output : 0.048000

8) A/D voltage 2, Transmissometer, WET Labs C-Star
Serial number : CST-1118DR
Calibrated on : 2008-04-30 20140131update
M : 21.8770
B : -1.3560
Path length : 0.250

9) A/D voltage 3, Free

10) A/D voltage 4, Altimeter
10.1. 07/05/2014 – 07/24/2014
Serial number : PSA916-1162
Calibrated on :
Scale factor : 15.000
Offset : 0.200

10.2. 07/24/2014 – end
Serial number : PSA916-1632
Calibrated on :
Scale factor : 15.000
Offset : 0.200

11) A/D voltage 5, Oxygen, SBE 43
 Serial number : 1679
 Calibrated on : 23-Oct-13
 Equation : Sea-Bird
 Soc : 4.55930e-001
 Offset : -4.97100e-001
 A : -3.66900e-003
 B : 1.91110e-004
 C : -2.62760e-006
 E : 3.60000e-002
 Tau20 : 2.23000e+000
 D1 : 1.92634e-004
 D2 : -4.64803e-002
 H1 : -3.30000e-002
 H2 : 5.00000e+003
 H3 : 1.45000e+003

12) A/D voltage 6, Free
13) A/D voltage 7, Free
14) SPAR voltage, Unavailable
15) SPAR voltage, SPAR/Surface Irradiance
 Serial number : 20313
 Calibrated on : 2/20/2013
 Conversion factor : 1563.22000000
 Ratio multiplier : 1.00000000
 Scan length : 40

Water Sampler Data:
 Water Sampler Type: SBE Carousel
 Number of bottles: 24
 Port: COM2/COM4
 Enable remote firing: NO
 Firing sequence: Table driven
 Fire order Bottle position:
 1 2
 2 4
 3 6
 4 8
 5 10
 6 12
 7 13
 8 17
 9 18
 10 20
 11 22
 12 24
Sea-Bird Data Processing

CTD cast data was post-processed according to the SBE Data Processing guidelines. Bottle fire scan was set to 36 scans.

Autosal Salinometer

One salinometer, a Guildline Autosal 8400B, s/n 59210, was configured for salinity analysis. It was installed in the R/V Knorr analytical lab (1-57-2) with a temperature between 23° and 24° C. The Autosal set point was 24° C. The Salinometer was initially calibrated to read 24+6760. For each run a new file was opened. Temperature reading was first taken by a digital thermometer and later by a Sea-Bird SBE37 Microcat (which was more accurate). During the time in which the salinometer is not used (also in a longer break between casts), a DI water bottle is attached to the instrument and the flow rate is turned to the lowest speed. After removing the DI water, the tube is rinsed 3 times with left over standard solution.

Standardisation

Each new file is started with a Standardisation of the Instrument with a new (unopened) bottle of standard solution. OSIL IAPSO Standard seawater was used. Batch: P155, $K_{15} = 0.99981$, Practical Salinity 34.993, Expiration Date: 19th Sept 2015. The standard seawater bottle is shaken, opened and attached to the Salinometer. A good seal is important. The beacon sign on the computer opens a pop up window. The Salinometer is flushed 3 times with the solution and the fourth filling stays in the tube. The ‘get ratio’ button prompts a switch of the handle to read. After the ratio is taken it is important to turn the handle back to Standby. Then the water is flushed once more and another reading is taken. This procedure is continued until 3 readings of similar values are achieved, the last of which is accepted. The water is flushed out once more (and the tube left empty) before removing the bottle. After removal, the remaining seawater on the sample intake tube is wiped with a ‘delicate task wipe’.

Seawater Sample

Water samples for calibration of the profiles were collected using a 24-bottle Rosette system containing 10 liter Niskin bottles. For most of the stations, 12 bottle samples were collected; however on very shallow stations as few as three bottles were fired, and during periods of the cruise that had a very close station spacing (e.g., over the top of the Reykjanes Ridge and in Bight Fracture zone), only 8 bottles were fired.

Each sample is shaken thoroughly before opening and attaching it to the Salinometer. The Salinometer is flushed 3 times and refilled a 4th time. The function handle is then switched to read, which prompts a pop up window with a 10 second countdown. It is essential that no flushing or minus sign appear at the reading on the Salinometer. If either does appear, turn the suppression handle until the flushing stops or the minus sign turns to plus. After the readings are taken the water is flushed out and refilled again and the handle switched to read. This procedure is continued once more to get 3 readings in total. For none of the samples an additional reading was necessary.

After the values appear in the program’s spread sheet, the bottle number is entered manually. The number is entered as three digit cast, space, and bottle number (e.g. 003 1 for the first seawater sample of the third cast).
Then the water is flushed out and the tube left empty before removing the bottle. After the removal, the remaining seawater on the sample intake tube is wiped with a ‘delicate task wipe’. Before closing the file, another standardisation is completed as described above.

Notes:
- if there are any air bubbles in the tube, the reading is not viable. Please flush the water and try again.
- if the bubble persists, the decreasing of the inflow speed may remove it.

CTD Data Processing

Raw data from the CTD were directly logged to a PC from the Sea-Bird deck unit using the Sea-Bird software Seasave Win 32 V7.21k. The data then underwent the following routines in SBE Data Processing to apply instrument calibrations and convert from frequency data to physical units.

Data conversion modules
1. Data conversion: Converts raw data from a .hex file to engineering units and stores converted data in a .cnv file and a .ros file. Data from the Upcast and downcast were converted. Output format was selected as ASCII output. The scan range offset was set to be -4 and the scan range duration to be 8s.
2. Bottle Summary: Summarizes data from the water sampler bottle .ros file storing results in .btl file.

Data processing modules
1. Align CTD: Align data relative to pressure
2. Wild Edit: Mark data value with badflag to eliminate wild points.
3. Window Filter: Filter data with triangle, cosine, boxcar, Gaussian, or median window. Low pass filter A (lat, lon, Beam Attenuation, Beam Transmission, Fluorescence, Turbidity, time constant 0.03s. Low pass filter B (depth, pressure), time constant 0.15s.
5. Derive: Calculate derived variables, such as salinity, density, sound velocity, oxygen, potential temperature, dynamic height etc. The thermodynamic properties are based on EOS-80. Average sound Velocity: min pressure 20db, minimum salinity 20psu. Potential Temperature Anomaly A0=0, A1=0, A1 Multiplier= Salinity. Oxygen window size= 5s and Tau corrections are applied. Descent and Acceleration window size= 2s.
6. Bin average: Average data into bins based on pressure of 1db and time of 1s. Both times the number of scans per bin are included, the scans marked bad are excluded. 0 scans are skipped over. Upcast and downcast are processed. Surface bin is not included.

File manipulation modules
Translate: Convert data format in .cnv file from ASCII to binary.