Scientific needs for high quality, intercalibrated datasets of $C_n H_o X_p Y_q$ or: Why bother?

Roland von Glasow School of Environmental Sciences University of East Anglia

Tropospheric chemistry

Inorganic gas phase halogens in BL (incl. volcanic plumes, salt lakes)

BrO(, Br₂, BrCl) I_x Cl_x

Halogens in the free troposphere

O₃ reduction due to bromine chemistry

von Glasow et al., ACP, 2004

Yang et al., JGR, 2005

Biogenic Br precursors

Increase in inorg-Br due to VSLS (in pmol/mol):

Nicola Warwick, Cambridge, SOLAS Newsletter, Winter 2007

Appledore Island

Mace Head

Tropospheric chemistry

- Bromine
 - MBL BrO: largely sea salt
 - FT BrO: could be very important for oxidation capacity
 - sea salt key precursor in MBL and partly in FT
 - org-Br: lifetime order of weeks → effect NOT close to source but regional to hemispheric
- Iodine
 - MBL, coastal regions: I₂ key precursor
 - MBL, open ocean (gas phase IO, aerosol enrichment): likely org-I key precursor, lifetime of minutes (CH₂I₂) to minutes/hours → effect fairly close to source
 - free troposphere, UT/LS??? no positive identification of inorganic gaseous iodine so far

Stratospheric chemistry

Key stratospheric overworld VSLS - Very Short-Lived (VSL) Substances SG - organic VSL Source Gas PG VSL Product Gas: halogenated 28 km VSLS organic/ inorganic degradation products Xy - inorganic halogen, X=CI, Br, I from VSL large-scale SG degradation or tropospheric inorganic SG PG transport halogen SGI - Source Gas Injection PGI - Product Gas Injection PGI SGI TTL - Tropical Tropopause Layer ozone VSL ExTL - Extra-tropical Tropopause Layer loss LMS - Lowermost Stratosphere 20 km SG PG XVSL PG SG Xy Xy TTL PG quasi-horizontal LMS VSLS crosscirrus Xv transport 11 km tropopause clouds PGI SGI exchange ExTL SG PG subsidence SG SG frontal washout mid-latitude uplift PG tropical 5 km convection convection troposphere washout 1-2 km hv hν SG PG boundary layer PG SG SG OH OH

Chemical and Dynamical Processes Affecting VSLS

EQUATOR

WMO, 2007

CHBr₃

Butler et al., 2007

Quack and Wallace, 2003

Stratospheric iodine???

- How much is there?
- Is it increasing due to human activity?
- Tropical (vertical) iodine mass balance is not understand

Summary

- Troposphere
 - FT Br might be dominated by org-Br
 - open ocean I might be dominated by org-I
 - lifetime: τ (org-Br) > τ (org-I)
- Stratosphere
 - VSL-Br prob. contributes 3-5 ppt to Br_y
 - VSL-I not understood yet
- for quantitative understanding and input for (global) models we need:
 - global fields of org-Br and org-I as a function of:
 - space
 - time: past (for trend analyses)
 - time: present (for "current" atmosphere)
 - comparable numbers \rightarrow intercalibration!
 - IUPAC/JPL-style assessment of "good" data

Uncertainty for possible future questions and needs

- Troposphere:
 - DL < 1ppt "X", better if DL < 0.2 ppt [several 0.1ppt of XO in background MBL/FT have large effect already → O_3 , DMS!]
 - org-I: detection of "super" short-lived compounds like CH₂I₂ might be key
 - overall required uncertainty: better than 50%
- Stratosphere:
 - WMO 2006: VSL-Br
 - "central value": 5 (3-8) ppt
 - range: 0-10 ppt
 - required: +/- 1ppt
- overall: uncertainty should be good enough to detect trends

WMO, 2007 (Russ Dickerson)