Search the data

Metadata Report for BODC Series Reference Number 1749258


Metadata Summary

Data Description

Data Category Meteorology -unspecified
Instrument Type
NameCategories
Vaisala HMP temperature and humidity sensor  meteorological packages
Vaisala PTB100 barometric pressure sensor  meteorological packages
Gill Windsonic anemometer  anemometers
Skye Instruments SKE510 PAR energy sensor  radiometers
Kipp and Zonen CM6B pyranometer  radiometers
Instrument Mounting research vessel
Originating Country United Kingdom
Originator Mr Martin Bridger
Originating Organization National Marine Facilities Sea Systems
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) UKOARP_ThemeB
 

Data Identifiers

Originator's Identifier D366_PRODQXF_MET
BODC Series Reference 1749258
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2011-06-06 08:08
End Time (yyyy-mm-dd hh:mm) 2011-07-09 12:55
Nominal Cycle Interval 60.0 seconds
 

Spatial Co-ordinates

Southernmost Latitude 45.36083 N ( 45° 21.6' N )
Northernmost Latitude 60.00283 N ( 60° 0.2' N )
Westernmost Longitude 12.02200 W ( 12° 1.3' W )
Easternmost Longitude 10.01383 E ( 10° 0.8' E )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor or Sampling Depth -10.0 m
Maximum Sensor or Sampling Depth -10.0 m
Minimum Sensor or Sampling Height -
Maximum Sensor or Sampling Height -
Sea Floor Depth -
Sea Floor Depth Source -
Sensor or Sampling Distribution Scattered at fixed depths - The sensors are scattered with respect to depth but each remains effectively at the same depth for the duration of the series
Sensor or Sampling Depth Datum Approximate - Depth is only approximate
Sea Floor Depth Datum -
 

Parameters

BODC CODERankUnitsTitle
AADYAA011DaysDate (time from 00:00 01/01/1760 to 00:00 UT on day)
AAFDZZ011DaysTime (time between 00:00 UT and timestamp)
ALATGP011DegreesLatitude north relative to WGS84 by unspecified GPS system
ALONGP011DegreesLongitude east relative to WGS84 by unspecified GPS system
CAPHTU011MillibarsPressure (measured variable) exerted by the atmosphere by barometer and expressed at measurement altitude
CDTASS011Degrees CelsiusTemperature of the atmosphere by dry bulb thermometer
CRELSS011PercentRelative humidity of the atmosphere by humidity sensor
CSLRR1XS1Watts per square metreDownwelling vector irradiance as energy of electromagnetic radiation (solar (300-3000nm) wavelengths) in the atmosphere by pyranometer and taking the maximum value from two or more sensors
DWIRRXMX1Watts per square metreDownwelling vector irradiance as energy of electromagnetic radiation (PAR wavelengths) in the atmosphere by cosine-collector radiometer and taking the maximum value from two or more sensors
EWDASS011Degrees TrueDirection (from) of wind relative to True North {wind direction} in the atmosphere by in-situ anemometer
EWSBSS011Metres per secondSpeed of wind {wind speed} in the atmosphere by in-situ anemometer

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database

UK Ocean Acidification RRS Discovery Cruise D366 Underway Meteorology Data Quality Report

The meteorology data have been through BODC quality control screening. Some intermittent flagging of data have been made. Overall the data for the cruise duration appear good.

Wind channels

The wind speed and direction channels show natural variation but there were no trends that stood out as unrealistic. The absolute wind speed and direction channels were screened and a few spikes flagged suspect.

Irradiance channels

There were some point voltages which were out of range and needed to be flagged 'N'. The remainder of channels were not flagged as these channels by their nature exhibit natural variability and there were no obvious anomalies.


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

Gill Instruments Windsonic Anemometer

The Gill Windsonic is a 2-axis ultrasonic wind sensor that monitors wind speed and direction using four transducers. The time taken for an ultrasonic pulse to travel from the North to the South transducers is measured and compared with the time for a pulse to travel from South to North. Travel times between the East and West transducers are similarly compared. The wind speed and direction are calculated from the differences in the times of flight along each axis. This calculation is independent of environmental factors such as temperature.

Specifications

Ultrasonic output rate 0.25, 0.5, 1, 2 or 4 Hz
Operating Temperature -35 to 70°C
Operating Humidity < 5 to 100% RH
Anemometer start up time < 5 s
Wind speed
Range 0 to 60 m s-1
Accuracy ± 2% at 2 m s-1
Resolution 0.01 m s-1
Response time 0.25 s
Threshold 0.01 m s-1
Wind direction
Range 0 to 359°
Accuracy ± 3° at 12 m s-1
Resolution
Response time 0.25 s

Further details can be found in the manufacturer's specification sheet.

Kipp and Zonen Pyranometer Model CM6B

The CM6B pyranometer is intended for routine global solar radiation measurement research on a level surface. The CM6B features a sixty-four thermocouple junction (series connected) sensing element. The sensing element is coated with a highly stable carbon based non-organic coating, which delivers excellent spectral absorption and long term stability characteristics. The sensing element is housed under two concentric fitting Schott K5 glass domes.

Specifications

Dimensions (W x H) 150.0 mm x 91.5 mm
Weight 850 grams
Operating Temperature -40°C to +80°C
Spectral Range 305 - 2800 nm
(50% points)
Sensitivity 9 -15 µV/W/m2
Impedance (nominal) 70 - 100 ohm
Response Time (95%) 30 sec
Non-linearity < ± 1.2% (<1000 W/m2)
Temperature dependence of sensitivity < ± 2% (-10 to +40°C)
Zero-offset due to temperature changes < ± 4 W/m2 at 5 K/h temperature change

Skye Instruments PAR Energy Sensor Model SKE 510

The SKE 510 is suitable for measuring photosynthetically active radiation (PAR) from natural or artificial light sources. The sensor is fully waterproof and guaranteed submersible to 4m depth, and indoor versions are also available.

The instrument uses a blue-enhanced planar diffused silicon detector to measure energy (in W m-2) over the 400-700 nm waveband. It has a cosine-corrected head and a square spectral response. The sensor can operate over a temperature range of -35 to 70 °C and a humidity range of 0-100% RH.

Specifications

Sensitivity (current) 1.5µA or 100 W m-2
Sensitivity (voltage) 1mV or 100 W m-2
Working Range 0-5000 W m-2
Linearity error 0.2%
Absolute calibration error typ. less than 3%
5% max
Response time - voltage output 10 ns
Cosine error 3%
Azimuth error less than 1%
Temperature co-efficient ±0.1% per °C
Internal resistance - voltage output c. 300 ohms
Longterm stability ±2%
Material Dupont 'Delrin'
Dimensions 34 mm diameter
38mm height
Cable 2 core screened
7 - 2 - 2C
Sensor Passband 400 - 700 nm
Detector Silicon photocell
Filters Glass type and/or metal interference

UK Ocean Acidification RRS Discovery Cruise D366 Underway Meteorology Instrumentation

The instruments used to collect the meteorology datasets are displayed in the table below.

Sensor Serial number Calibration date Deployment
Gill Wind sonic (Option 3) 071123 - -
Skye Instruments SKE510 28558 12/06/2009 Starboard
Skye Instruments SKE510 28563 30/07/2009 Port
Kipp and Zonen Ltd CMB6 962276 17/09/2010 Starboard
Kipp and Zonen Ltd CMB6 962301 19/02/2009 Port
Vaisala PTB100A S3440012 15/09/2010 -
Vaisala HMP45A E1055002 30/09/2010 -

Vaisala Analog Barometers Models PTB100 (A), (B) and PTB101 (B), (C)

The PTB 100 series analog barometers are designed both for accurate barometric measurements at room temperature and for general environmental pressure monitoring over a wide temperature range. The long-term stability of the barometer minimizes the need for field adjustment in many applications.

Physical Specifications

Size 97 x 60 x 22 mm
Weight 85g

The barometers use the BAROCAP* silicon capacitive absolute pressure sensor developed by Vaisala for barometric pressure measurements. The BAROCAP* sensor combines the elasticity characteristics and mechanical stability of a single-crystal silicon with the proven capacitive detection principle.

Sensor Specifications

Model Number Pressure Range
(mbar)
Temperature Range
(°C)
Humidity Range Total Accuracy
PTB100A 800 to 1060 -40 to +60 non-condensing +20 °C ± 0.3 mbar
0 to +40 °C ± 1.0 mbar
-20 to +45 °C ± 1.5 mbar
-40 to +60 °C ± 2.5 mbar
PTB100B 600 to 1060 -40 to +60 non-condensing +20 °C ± 0.5 mbar
0 to +40 °C ± 1.5 mbar
-20 to +45 °C ± 2.0 mbar
-40 to +60 °C ± 3.0 mbar
PTB101B 600 to 1060 -40 to +60 non-condensing +20 °C ± 0.5 mbar
0 to +40 °C ± 1.5 mbar
-20 to +45 °C ± 2.0 mbar
-40 to +60 °C ± 3.0 mbar
PTB101C 900 to 1100 -40 to +60 non-condensing +20 °C ± 0.3 mbar
0 to +40 °C ± 1.0 mbar
-20 to +45 °C ± 1.5 mbar
-40 to +60 °C ± 2.5 mbar

* BAROCAP is a registered trademark of Vaisala

Vaisala Temperature and Relative Humidity HMP Sensors

A family of sensors and instruments (sensors plus integral displays or loggers) for the measurement of air temperature and relative humidity. All are based on a probe containing a patent (HUMICAP) capacitive thin polymer film capacitanece humidity sensor and a Pt100 platinum resistance thermometer. The probes are available with a wide range of packaging, cabling and interface options all of which have designations of the form HMPnn or HMPnnn such as HMP45 and HMP230. Vaisala sensors are incorporated into weather stations and marketed by Campbell Scientific.

All versions operate at up to 100% humidity. Operating temperature ranges vary between models, allowing users to select the version best suited to their requirements.

Further details can be found in the manufacturer's specification sheets for the HMP 45 series, HMP 70 series and HMP 230 series.

UK Ocean Acidification RRS Discovery Cruise D366 Underway Meteorology Data Processing Document

Originator's Data Processing

During the cruise there was a dual logging system in place on the RRS Discovery. Data from the various instruments were logged to the RVS Level-C system file surfmet, and also as NetCDF (binary) through the Ifremer Techsas data logging system.

Wind Channels

Processing was carried out using the RVS software suite only on the wind channels. The RVS processing routine PRO_WIND was run on the navigation data in the bestnav and the relative wind data in the surfmet file. This program was designed to remove the relative variables from the wind data logged by surfmet.

Files delivered to BODC

Filename Data type Start Calendar Day Start Time Finish Calendar Day Finish Time Interval
pro_wind RVS Level-C processed 2011-06-06 08:08:50 2011-07-09 12:55:30 10 seconds
surfmet RVS Level-C raw 2011-06-06 08:08:47 2011-07-09 12:55:53 1 sec

BODC Data Processing

Reformatting

The RVS files were transferred into internal BODC format by merging the files into a single binary file using time as the primary linking key. The time span of the file was from 06/06/2011 08:08:50 to 09/07/2011 12:55:50, with a sampling interval of 60 seconds.

The meteorolgical data were transferred to BODC file format from the surfmet file.

Wind channels

The BODC Matlab procedure 'wincor' was run using relative wind speed and direction, the ship's north-south and east-west velocities with the vane set to 0 degrees at the bow to generate absolute wind speed (EWSBSS01) and direction (EWDASS01). The wind channels were screened and some flags applied to suspect data values.

The originator's variables were mapped to appropriate BODC parameter codes as follows:

surfmet

Channels Description Units BODC Parameter Code Units Conversion Factor
press Pressure (measured variable) exerted by the atmosphere 1 hPa CAPHTU01 1 mbar *1
ppar Raw port PAR sensor voltage 10-2mV DVLTRPSD - channel not transferred V *10-5
spar Raw starboard PAR sensor voltage 10-2mV DVLTRSSD - channel not transferred V *10-5
speed Relative wind speed m s-1 ERWSSS01 - channel not transferred m s-1 *1
direct Relative wind direction Degrees ERWDSS01 - channel not transferred Degrees *1
airtemp Air temperature Degrees Celsius CDTASS01 Degrees Celsius *1
humid Air humidity Percent CRELSS01 Percent *1
ptir Raw port TIR sensor voltage 10-2mV CVLTRP01 - channel not transferred V *10-5
stir Raw starboard TIR sensor voltage 10-2mV CVLTRS01 - channel not transferred V *10-5

Screening

Each data channel was inspected on a graphics workstation and any spikes or periods of dubious data were flagged. The power of the workstation software was used to carry out comparative screening checks between channels by overlaying data channels. A map of the cruise track was simultaneously displayed in order to take account of the oceanographic context.

Field Calibrations

No calibration against sample data were applied to the meteorological channels.

Manufacturer's Calibrations

Irradiance channels

The following manufacturer's calibrations were applied to the PAR and TIR voltages sensors using the equation:

Calibrated PAR or TIR (W m-2 ) = (voltage x 10 6 ) / calibration coefficient

Parameter and Instrument Equation calibration coefficient Comments
Port PAR SKE 510 1204 28563 DWIRRPSD = DVLTRPSD x 93545.37 10.69 µV / W m-2 Merged to single parameter: DWIRRXMX
Starboard PAR SKE 510 1204 28558 DWIRRSSD = DVLTRSSD x 91996.32 10.87 µV / W m-2
Port TIR Kipp and Zonen CMB6 962301 CSLRRP01 = CVLTRP01 x 101626.02 9.84 µV / W m-2 Merged to single parameter: CSLRR1XS
Starboard TIR Kipp and Zonen CMB6 962276 CSLRRS01 = CVLTRS01 x 97276.26 10.28 µV / W m-2

The port and starboard channels for PAR and TIR were each merged based on the maximum value from the paired channels to give one definitive channel.


Project Information

UKOARP Theme B: Ocean acidification impacts on sea surface biology, biogeochemistry and climate

The overall aim of this theme is to obtain a quantitative understanding of the impact of ocean acidification (OA) on the surface ocean biology and ecosystem and on the role of the surface ocean within the overall Earth System.

The aims of the theme are:

  • To ascertain the impact of OA on planktonic organisms (in terms of physiological impacts, morphology, population abundances and community composition).
  • To quantify the impacts of OA on biogeochemical processes affecting the ocean carbon cycle (both directly and indirectly, such as via availability of bio-limiting nutrients).
  • To quantify the impacts of OA on the air-sea flux of climate active gases (DMS and N2O in particular).

The main consortium activities will consist of in-situ measurements on three dedicated cruises, as well as on-deck bioassay experiments probing the response of the in-situ community to elevated CO2. Most of the planned work will be carried out on the three cruises to locations with strong gradients in seawater carbon chemistry and pH; the Arctic Ocean, around the British Isles and the Southern Ocean.

Weblink: http://www.oceanacidification.org.uk/research_programme/surface_ocean.aspx


Data Activity or Cruise Information

Cruise

Cruise Name D366 (D367)
Departure Date 2011-06-06
Arrival Date 2011-07-09
Principal Scientist(s)Eric Pieter Achterberg (University of Southampton School of Ocean and Earth Science)
Ship RRS Discovery

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification