Metadata Report for BODC Series Reference Number 1030712
Metadata Summary
Problem Reports
Data Access Policy
Narrative Documents
Project Information
Data Activity or Cruise Information
Fixed Station Information
BODC Quality Flags
SeaDataNet Quality Flags
Metadata Summary
Data Description |
|||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Data Identifiers |
|||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Time Co-ordinates(UT) |
|||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Spatial Co-ordinates | |||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Parameters |
|||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||
|
Problem Reports
No Problem Report Found in the Database
Data Access Policy
Public domain data
These data have no specific confidentiality restrictions for users. However, users must acknowledge data sources as it is not ethical to publish data without proper attribution. Any publication or other output resulting from usage of the data should include an acknowledgment.
The recommended acknowledgment is
"This study uses data from the data source/organisation/programme, provided by the British Oceanographic Data Centre and funded by the funding body."
Narrative Documents
Sea-Bird Dissolved Oxygen Sensor SBE 43 and SBE 43F
The SBE 43 is a dissolved oxygen sensor designed for marine applications. It incorporates a high-performance Clark polarographic membrane with a pump that continuously plumbs water through it, preventing algal growth and the development of anoxic conditions when the sensor is taking measurements.
Two configurations are available: SBE 43 produces a voltage output and can be incorporated with any Sea-Bird CTD that accepts input from a 0-5 volt auxiliary sensor, while the SBE 43F produces a frequency output and can be integrated with an SBE 52-MP (Moored Profiler CTD) or used for OEM applications. The specifications below are common to both.
Specifications
Housing | Plastic or titanium |
Membrane | 0.5 mil- fast response, typical for profile applications 1 mil- slower response, typical for moored applications |
Depth rating | 600 m (plastic) or 7000 m (titanium) 10500 m titanium housing available on request |
Measurement range | 120% of surface saturation |
Initial accuracy | 2% of saturation |
Typical stability | 0.5% per 1000 h |
Further details can be found in the manufacturer's specification sheet.
Instrument Description
CTD Unit and Auxiliary Sensors
A Sea-Bird Electronics SBE 25 Sealogger CTD unit was used. Water samples were collected with a SBE 35 Carousel, which was attached to the CTD frame. The CTD unit included the following sensors.
Sensor | Manufacturer | Model | Serial number | Calibration date |
---|---|---|---|---|
Pressure | Sea-Bird | 0583 | 2006-06-14 | |
Temperature | Sea-Bird | 4357 | 2008-02-12 | |
Conductivity | Sea-Bird | 2864 | 2008-02-08 | |
Fluorometer | Sea-Tech | 206 | ||
Transmissometer | Sea-Tech | 238D | 1996-08-02 | |
PAR | Chelsea | 46071 | 2002-07-02 | |
PAR | Chelsea | 46072 | 2002-07-02 |
Sea-Bird SBE 25 SEALOGGER CTD
The SBE 25 SEALOGGER is a research-quality CTD profiling system used for coastal, estuarine and, can also be a practical option, for deep-water work. It is easily configured in the field for a wide range of auxiliary sensors. The SEALOGGER is self-powered, requires no conductive cable, and is designed for use up to 6800 meters (10,000 psia). It uses the SBE3F temperature and SBE4 conductivity sensors as well as having an external strain gauge pressure sensor. It provides pump-controlled T-C ducted flow, samples at 8 Hz, records internally and provides simultaneous real-time data via its built-in RS-232 interface.
The standard CTD unit comes with a plastic housing (rated to 600 m), although this can be replaced by aluminium housing for depths up to 6800 m.
Specifications
Parameter | SBE 25 |
---|---|
Temperature | Range: -5 to +35 °C Accuracy: 0.002 °C Resolution: 0.0003 °C |
Conductivity | Range: 0 to 7 S m-1 (0 to 70 mmho cm-1) Accuracy: 0.0003 S m-1 Resolution: 0.00004 S m-1 |
Strain gauge pressure sensor | Range: 0 to 20, 100, 350, 600, 1000, 2000, 3500, 7000 metres (expressed in metres of deployment depth capability) Accuracy: 0.1% of full scale range Resolution: 0.015% of full scale range |
Options and accessories
Additional sensors can be attached to the CTD, including:
- Dissolved Oxygen (SBE 43 DO Sensor)
- pH (SBE 18 pH Sensor or SBE 27 pH/ORP Sensor)
- fluorescence
- radiance (PAR)
- light transmission
- optical backscatter (turbidity)
The SBE 5T titanium pump can be used in place of SBE 5P pump. Further details can be found in the manufacturer's SBE 25 instrument specification.
SeaTech fluorometer S131
This fluorometer is designed to measure in situ chlorophyll-a fluorescence and provide high resolution data for assessment of phytoplankton biomass and monitoring of primary productivity in fresh or marine waters. It's versatility allows the instrument to be deployed on a mooring or in profiling mode. It is not sensitive to ambient light, permitting laboratory calibration with normal room lighting, and field measurements to be made at the water surface.
Specifications
Nominal Chl-a ranges | 3, 10, 30, 100, 300 and 1000 µg L-1 |
Time constant | 0.1, 1.0, 3.0 and 10 s |
Maximum depth | 3000 m |
Excitation filter | 425 nm peak 200 nm FWHM* |
Emission filter | 685 nm peak 30 nm FWHM |
*FWHM- Full-Width Half-Maximum
Further details can be found in the manufacturer's manual.
Chelsea Technologies Photosynthetically Active Radiation (PAR) Irradiance Sensor
This sensor was originally designed to assist the study of marine photosynthesis. With the use of logarithmic amplication, the sensor covers a range of 6 orders of magnitude, which avoids setting up the sensor range for the expected signal level for different ambient conditions.
The sensor consists of a hollow PTFE 2-pi collector supported by a clear acetal dome diverting light to a filter and photodiode from which a cosine response is obtained. The sensor can be used in moorings, profiling or deployed in towed vehicles and can measure both upwelling and downwelling light.
Specifications
Operation depth | 1000 m |
Range | 2000 to 0.002 µE m-2 s-1 |
Angular Detection Range | ± 130° from normal incidence |
Relative Spectral Sensitivity | flat to ± 3% from 450 to 700 nm down 8% of 400 nm and 36% at 350 nm |
Further details can be found in the manufacturer's specification sheet.
SeaTech Transmissometer
Introduction
The transmissometer is designed to accurately measure the the amount of light transmitted by a modulated Light Emitting Diode (LED) through a fixed-length in-situ water column to a synchronous detector.
Specifications
- Water path length: 5 cm (for use in turbid waters) to 1 m (for use in clear ocean waters).
- Beam diameter: 15 mm
- Transmitted beam collimation: <3 milliradians
- Receiver acceptance angle (in water): <18 milliradians
- Light source wavelength: usually (but not exclusively) 660 nm (red light)
Notes
The instrument can be interfaced to Aanderaa RCM7 current meters. This is achieved by fitting the transmissometer in a slot cut into a customized RCM4-type vane.
A red LED (660 nm) is used for general applications looking at water column sediment load. However, green or blue LEDs can be fitted for specilised optics applications. The light source used is identified by the BODC parameter code.
Further details can be found in the manufacturer's Manual.
BODC Processing
Data were received by BODC in one ASCII format file that was subsequently split into 58 separate files, one for each CTD profile. The series were reformatted to the internal QXF format using BODC transfer function 340. Sample calibrations were applied to the conductivity data. The following table details mapping of variables to BODC parameter codes.
Original parameter name | Original Units | Description | BODC Parameter Code | BODC Units | Comments |
---|---|---|---|---|---|
Pressure | Decibars | Pressure exerted by the water column | PRESPR01 | Decibars | |
Temperature | °C | Temperature of the water column | TEMPST01 | °C | |
Conductivity | mS cm -1 | Electrical conductivity of the water column calibrated against independent measurements | CNCLCCI1 | S m -1 | Conversion by transfer (mS cm -1 x 0.1). Sample calibrations applied by transfer. |
Salinity | Salinity of the water column | PSALST01 | Dimensionless | Derived by transfer using UNESCO 1983 algorithm | |
Fluorescence | µg l -1 | In-situ fluorescence | CPHLPS01 | mg m -3 | |
Attenuation | Volts | Transmissivity of the water column | ATTNMR01 | m -1 | |
Oxygen | ml l -1 | Oxygen concentration | DOXYSU01 | µMoles l -1 | Conversion by transfer (ml l-1 x 44.66) |
Oxygen Saturation | % | Percentage oxygen saturation of the water column | OXYSZZ01 | % | |
Irradiance | µE m -2 s -1 | Upwelling vector irradiance (PAR wavelengths) | IRRUUV01 | µE m -2 s -1 | |
Irradiance | µE m -2 s -1 | Downwelling vector irradiance (PAR wavelengths) | IRRDUV01 | µE m -2 s -1 |
Following transfer to QXF, the data were screened using BODC's in-house visualisation software, EDSERPLO. Any data considered as suspect were flagged. Flags from the originator marking suspect data were retained during transfer.
Originator's Data Processing
Sampling Strategy
A total of 58 CTD casts were performed on FRV Alba Na Mara cruise 0209A (30 January 2009 - 10 February 2009) around sea lochs in the North Minch and Voes in Shetland. The data were collected between 09:05 hours on 02 February 2009 and 12:19 hours on 09 February 2009.
Water samples were collected in order to obtain independent salinity and fluoresence measurements. The sample data were used to derive calibrations for the conductivity and fluoresence profiles collected by the CTD.
Data Processing
The raw CTD data files were processed through the SeaBird Electronics SeaSoft data processing software following standard procedures. The originators used in-house interactive visual display editing software to edit out individual spikes in the primary temperature and conductivity channels. In addition, a low-pass filter (Sy 1985) was applied to particularly noisy data. An ASCII file was generated for each CTD cast and all files from a cruise were concatenated into one ASCII file which was submitted to BODC.
Sy A., 1985. An alternative editing technique for oceanographic data. Deep Sea Research Part A: Oceanographic Research Papers, 32 (12), 1591-1599.
Field Calibrations
Independent salinity samples, obtained from the sample bottle and spread throughout the cruise, were used to calibrate the CTD conductivity data. Outlying points were discarded, and between 35 and 61 data points were used to derive the calibrations. The sample analyses yielded a straight line conductivity calibration of the form y = mx + c, where m = 1.000183 and c = 0.004357 (conductivity) and where m = 0.009299 and c = -0.200241 (fluoresence).
Parameter | Value of m (y=mx+c) | Value of c (y=mx+c) | Equation |
---|---|---|---|
Conductivity | 1.000183 | 0.004357 | C(cal) = 1.000183C(obs) + 0.004357 |
Fluoresence | 0.009299 | -0.200241 | C(cal) = 0.009299C(obs) - 0.200241 |
The uncalibrated data were submitted to BODC, who applied the appropriate corrections.
Project Information
No Project Information held for the Series
Data Activity or Cruise Information
Cruise
Cruise Name | 0209A |
Departure Date | 2009-01-30 |
Arrival Date | 2009-02-10 |
Principal Scientist(s) | Matt Gubbins (Fisheries Research Services Aberdeen Marine Laboratory) |
Ship | FRV Alba Na Mara |
Complete Cruise Metadata Report is available here
Fixed Station Information
No Fixed Station Information held for the Series
BODC Quality Control Flags
The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:
Flag | Description |
---|---|
Blank | Unqualified |
< | Below detection limit |
> | In excess of quoted value |
A | Taxonomic flag for affinis (aff.) |
B | Beginning of CTD Down/Up Cast |
C | Taxonomic flag for confer (cf.) |
D | Thermometric depth |
E | End of CTD Down/Up Cast |
G | Non-taxonomic biological characteristic uncertainty |
H | Extrapolated value |
I | Taxonomic flag for single species (sp.) |
K | Improbable value - unknown quality control source |
L | Improbable value - originator's quality control |
M | Improbable value - BODC quality control |
N | Null value |
O | Improbable value - user quality control |
P | Trace/calm |
Q | Indeterminate |
R | Replacement value |
S | Estimated value |
T | Interpolated value |
U | Uncalibrated |
W | Control value |
X | Excessive difference |
SeaDataNet Quality Control Flags
The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:
Flag | Description |
---|---|
0 | no quality control |
1 | good value |
2 | probably good value |
3 | probably bad value |
4 | bad value |
5 | changed value |
6 | value below detection |
7 | value in excess |
8 | interpolated value |
9 | missing value |
A | value phenomenon uncertain |
B | nominal value |
Q | value below limit of quantification |