Search the data

Metadata Report for BODC Series Reference Number 1051600


Metadata Summary

Data Description

Data Category Surface temp/sal
Instrument Type
NameCategories
WET Labs {Sea-Bird WETLabs} WETStar fluorometer  fluorometers
Falmouth Scientific Instruments OEM conductivity-temperature sensor  water temperature sensor; salinity sensor
Instrument Mounting research vessel
Originating Country United Kingdom
Originator Prof Stuart Cunningham
Originating Organization Southampton Oceanography Centre (now National Oceanography Centre, Southampton)
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) Rapid Climate Change Programme
RAPIDMOC
 

Data Identifiers

Originator's Identifier D278_PRODQXF_SURF
BODC Series Reference 1051600
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2004-03-19 17:01
End Time (yyyy-mm-dd hh:mm) 2004-03-29 15:15
Nominal Cycle Interval 120.0 seconds
 

Spatial Co-ordinates

Southernmost Latitude 25.76350 N ( 25° 45.8' N )
Northernmost Latitude 26.61650 N ( 26° 37.0' N )
Westernmost Longitude 78.79700 W ( 78° 47.8' W )
Easternmost Longitude 71.95317 W ( 71° 57.2' W )
Positional Uncertainty 0.05 to 0.1 n.miles
Minimum Sensor or Sampling Depth 5.0 m
Maximum Sensor or Sampling Depth 5.0 m
Minimum Sensor or Sampling Height -
Maximum Sensor or Sampling Height -
Sea Floor Depth -
Sea Floor Depth Source -
Sensor or Sampling Distribution Fixed common depth - All sensors are grouped effectively at the same depth which is effectively fixed for the duration of the series
Sensor or Sampling Depth Datum Approximate - Depth is only approximate
Sea Floor Depth Datum -
 

Parameters

BODC CODERankUnitsTitle
AADYAA011DaysDate (time from 00:00 01/01/1760 to 00:00 UT on day)
AAFDZZ011DaysTime (time between 00:00 UT and timestamp)
ALATGP011DegreesLatitude north relative to WGS84 by unspecified GPS system
ALONGP011DegreesLongitude east relative to WGS84 by unspecified GPS system
CPHLUMTF1Milligrams per cubic metreConcentration of chlorophyll-a {chl-a CAS 479-61-8} per unit volume of the water body [particulate >unknown phase] by through-flow fluorometer plumbed into non-toxic supply and manufacturer's calibration applied
FVLTWS011VoltsRaw signal (voltage) of instrument output by linear-response chlorophyll fluorometer
PSALSG011DimensionlessPractical salinity of the water body by thermosalinograph and computation using UNESCO 1983 algorithm and calibration against independent measurements
TEMPHG011Degrees CelsiusTemperature of the water body by thermosalinograph hull sensor and verification against independent measurements

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database

RAPID Cruise D278 Underway Surface Hydrography Data Quality Report

All channels have been flagged suspect for the first hour (approximately) as it appears that the flow through pump was not switched on. The chlorophyll channel contains many negative values between 20-26 March, which have been flagged suspect. The negative concentrations are due to the manufacturer's calibration applied, and probably indicates the presence of an offset in all values logged. Therefore the chlorophyll concentrations should be used with caution.


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

Falmouth Scientific Inc. OEM CT sensor

The OEM CT sensor is designed to provide high accuracy conductivity and temperature measurements in a package that can be readily integrated into user systems. The CT sensor relies on an inductively coupled conductivity sensor, with a large inside diameter that eliminates the need for pumps. A high grade Platinum Resistance Thermometer is used to measure temperature.

Sensor specifications are given in the table below. Since 2009 this instrument has been manufactured by Teledyne RD Instruments as a Citadel CT-EK Sensor. More information about the instrument can be found on the Teledyne Citadel specification sheet.

Sensor Specifications

Instrument Parameter Small CT Cell Conductivity Large CT Cell Conductivity Temperature
Range 0 to 70 mS cm-1 0 to 70 mS cm-1 -2 to 35 degrees C
Accuracy ±0.020 mS cm-1 ±0.010 mS cm-1 ±0.050 degrees C
Stability ±0.005 mS cm-1 mo-1 ±0.003 mS cm-1 ±0.005 degrees C mo-1
Response 20 cm @ 1 m s-1 15 cm @ 1 m s-1 20 seconds internal, 1 second external

Power Input 50 mW @ 6 VDC, voltage range 6 - 14 VDC
Logic 2 0 - 5 VDC control lines
Output Impedance 500 ohms

WET Labs WETStar Fluorometers

WET Labs WETStar fluorometers are miniature flow-through fluorometers, designed to measure relative concentrations of chlorophyll, CDOM, uranine, rhodamineWT dye, or phycoerythrin pigment in a sample of water. The sample is pumped through a quartz tube, and excited by a light source tuned to the fluorescence characteristics of the object substance. A photodiode detector measures the portion of the excitation energy that is emitted as fluorescence.

Specifications

By model:

  Chlorophyll WETStar CDOM WETStar Uranine WETStar Rhodamine WETStar Phycoerythrin WETStar
Excitation wavelength 460 nm 370 nm 485 nm 470 nm 525 nm
Emission wavelength 695 nm 460 nm 530 nm 590 nm 575 nm
Sensitivity 0.03 µg l-1 0.100 ppb QSD 1 µg l-1 - -
Range 0.03-75 µg l-1 0-100 ppb; 0-250 ppb 0-4000 µg l-1 - -

All models:

Temperature range 0-30°C
Depth rating 600 m
Response time 0.17 s analogue; 0.125 s digital
Output 0-5 VDC analogue; 0-4095 counts digital

Further details can be found in the manufacturer's specification sheet, and in the instrument manual.

RAPID Cruise D278 Underway Surface Hydrography Instrumentation

Seawater was continually pumped from the hull of the ship at an approximate depth of 5m through the various underway sensors (known as the ship's non-toxic supply). The details of the sensors are shown in the table below.

Sensor Serial number Last calibration date
FSI OCM housing conductivity sensor 1376 Calibration stored internally
FSI OTM housing temperature sensor 1340 25/06/2002
FSI OTM remote temperature sensor 1348 June 2003
SeaTech transmissometer (path length 25cm) CST-113R 31/05/1996
WetLabs fluorometer WS3S-248 26/02/2003

RAPID Cruise D278 Underway Surface Hydrography Processing

Originator's Processing

Thermosalinograph (TSG) system measurements were sent along with meterological measurements to the ship's central logging system. Onboard processing was carried out on a daily basis and involved running a sequence of executable programs. The initial stage transferred the underway data from raw RVS format to PSTAR format. Subsequent processing included the calculation of salinity and the merging of different data streams. Julian Day time variable date were calculated and the resulting data examined by plotting on a daily and weekly basis.

The underway salinity channel was calibrated using independent bottle salinity samples drawn from the ship's contaminated water supply at 2-8 hour intervals. The uncontaminated water supply wasn't available for sampling during this cruise due to low water pressure.

Calibration of the salinity channel was achieved with a combination of PSTAR and Matlab routines. Bottle salinity data (.csv files) were transferred to the ship's Unix system and appended into one file. Salinities were converted back to conductivities and merged with 5 minute binned underway conductivity data. A 6 point running mean of conductivity offset was calculated in Matlab, and the calibration curve (with end point outliers excluded) applied to the original 2 minute averaged underway data. The mean offset applied (calibrated - uncalibrated salinity) was -0.13648 with a standard deviation of 0.009. Comparisons were also made between gridded 10 m CTD station and underway salinities (mean difference -0.003 with a standard deviation of 0.009).

The data were supplied to BODC as 2 minute averages in PSTAR format.

BODC Processing

The data files received were transferred from PSTAR format into BODC's in-house NetCDF format to allow use of the in-house visualisation tool (EDSERPLO). The transfer process also includes the flagging of data which fall outside of the range of acceptable values for each parameter. Ship's navigation data were merged with underway sea surface hydrography using time as the primary linking key.

Each data channel was visually inspected and any spikes or periods of dubious data flagged as suspect. The capabilities of the screening software allows all possible comparative screening checks between channels.

Salinity

Salnity data were calibrated by the data originator, as described above.

Temperature

The hull temperature data were verified by the originator against the CTD temperature data and were found to be in agreement throughout the cruise. No calibrations were applied.

Transmissometer voltages

Transmissometer data were supplied as raw voltages. On screening the data, BODC found the logged values were erroneous throughout and the channel was subsequently excluded from the series.

Fluoresence

Fluoresence data were supplied to BODC as raw voltages. The manufacturer's calibration was obtained from the sensor specification sheet and used to convert fluorescence into chlorophyll concentration as follows: Concentration = (Vsample-Vblank)*Scale Factor where Vblank = 0.062 and scale factor = 14.2.


Project Information

Rapid Climate Change (RAPID) Programme

Rapid Climate Change (RAPID) is a £20 million, six-year (2001-2007) programme of the Natural Environment Research Council (NERC). The programme aims to improve our ability to quantify the probability and magnitude of future rapid change in climate, with a main (but not exclusive) focus on the role of the Atlantic Ocean's Thermohaline Circulation.

Scientific Objectives

  • To establish a pre-operational prototype system to continuously observe the strength and structure of the Atlantic Meridional Overturning Circulation (MOC).
  • To support long-term direct observations of water, heat, salt, and ice transports at critical locations in the northern North Atlantic, to quantify the atmospheric and other (e.g. river run-off, ice sheet discharge) forcing of these transports, and to perform process studies of ocean mixing at northern high latitudes.
  • To construct well-calibrated and time-resolved palaeo data records of past climate change, including error estimates, with a particular emphasis on the quantification of the timing and magnitude of rapid change at annual to centennial time-scales.
  • To develop and use high-resolution physical models to synthesise observational data.
  • To apply a hierarchy of modelling approaches to understand the processes that connect changes in ocean convection and its atmospheric forcing to the large-scale transports relevant to the modulation of climate.
  • To understand, using model experimentation and data (palaeo and present day), the atmosphere's response to large changes in Atlantic northward heat transport, in particular changes in storm tracks, storm frequency, storm strengths, and energy and moisture transports.
  • To use both instrumental and palaeo data for the quantitative testing of models' abilities to reproduce climate variability and rapid changes on annual to centennial time-scales. To explore the extent to which these data can provide direct information about the thermohaline circulation (THC) and other possible rapid changes in the climate system and their impact.
  • To quantify the probability and magnitude of potential future rapid climate change, and the uncertainties in these estimates.

Projects

Overall 38 projects have been funded by the RAPID programme. These include 4 which focus on Monitoring the Meridional Overturning Circulation (MOC), and 5 international projects jointly funded by the Netherlands Organisation for Scientific Research, the Research Council of Norway and NERC.

The RAPID effort to design a system to continuously monitor the strength and structure of the North Atlantic Meridional Overturning Circulation is being matched by comparative funding from the US National Science Foundation (NSF) for collaborative projects reviewed jointly with the NERC proposals. Three projects were funded by NSF.

A proportion of RAPID funding as been made available for Small and Medium Sized Enterprises (SMEs) as part of NERC's Small Business Research Initiative (SBRI). The SBRI aims to stimulate innovation in the economy by encouraging more high-tech small firms to start up or to develop new research capacities. As a result 4 projects have been funded.


Monitoring the Meridional Overturning Circulation at 26.5N (RAPIDMOC)

Scientific Rationale

There is a northward transport of heat throughout the Atlantic, reaching a maximum of 1.3PW (25% of the global heat flux) around 24.5°N. The heat transport is a balance of the northward flux of a warm Gulf Stream, and a southward flux of cooler thermocline and cold North Atlantic Deep Water that is known as the meridional overturning circulation (MOC). As a consequence of the MOC northwest Europe enjoys a mild climate for its latitude: however abrupt rearrangement of the Atlantic Circulation has been shown in climate models and in palaeoclimate records to be responsible for a cooling of European climate of between 5-10°C. A principal objective of the RAPID programme is the development of a pre-operational prototype system that will continuously observe the strength and structure of the MOC. An initiative has been formed to fulfill this objective and consists of three interlinked projects:

  • A mooring array spanning the Atlantic at 26.5°N to measure the southward branch of the MOC (Hirschi et al., 2003 and Baehr et al., 2004).
  • Additional moorings deployed in the western boundary along 26.5°N (by Prof. Bill Johns, University of Miami) to resolve transport in the Deep Western Boundary Current (Bryden et al., 2005). These moorings allow surface-to-bottom density profiles along the western boundary, Mid-Atlantic Ridge, and eastern boundary to be observed. As a result, the transatlantic pressure gradient can be continuously measured.
  • Monitoring of the northward branch of the MOC using submarine telephone cables in the Florida Straits (Baringer et al., 2001) led by Dr Molly Baringer (NOAA/AOML/PHOD).

The entire monitoring array system created by the three projects will be recovered and redeployed annually until 2008 under RAPID funding. From 2008 until 2014 the array will continue to be serviced annually under RAPID-WATCH funding.

The array will be focussed on three regions, the Eastern Boundary (EB), the Mid Atlantic Ridge (MAR) and the Western Boundary (WB). The geographical extent of these regions are as follows:

  • Eastern Boundary (EB) array defined as a box with the south-east corner at 23.5°N, 25.5°W and the north-west corner at 29.0°N, 12.0°W
  • Mid Atlantic Ridge (MAR) array defined as a box with the south-east corner at 23.0°N, 52.1°W and the north-west corner at 26.5°N, 40.0°W
  • Western Boundary (WB) array defined as a box with the south-east corner at 26.0°N, 77.5°W and the north-west corner at 27.5°N, 69.5°W

References

Baehr, J., Hirschi, J., Beismann, J.O. and Marotzke, J. (2004) Monitoring the meridional overturning circulation in the North Atlantic: A model-based array design study. Journal of Marine Research, Volume 62, No 3, pp 283-312.

Baringer, M.O'N. and Larsen, J.C. (2001) Sixteen years of Florida Current transport at 27N Geophysical Research Letters, Volume 28, No 16, pp3179-3182

Bryden, H.L., Johns, W.E. and Saunders, P.M. (2005) Deep Western Boundary Current East of Abaco: Mean structure and transport. Journal of Marine Research, Volume 63, No 1, pp 35-57.

Hirschi, J., Baehr, J., Marotzke J., Stark J., Cunningham S.A. and Beismann J.O. (2003) A monitoring design for the Atlantic meridional overturning circulation. Geophysical Research Letters, Volume 30, No 7, article number 1413 (DOI 10.1029/2002GL016776)


Data Activity or Cruise Information

Cruise

Cruise Name D278
Departure Date 2004-03-19
Arrival Date 2004-03-30
Principal Scientist(s)Stuart A Cunningham (Southampton Oceanography Centre)
Ship RRS Discovery

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification