Search the data

Metadata Report for BODC Series Reference Number 1114320


Metadata Summary

Data Description

Data Category Surface temp/sal
Instrument Type
NameCategories
WET Labs {Sea-Bird WETLabs} WETStar fluorometer  fluorometers
Falmouth Scientific Instruments ocean temperature module  water temperature sensor
WET Labs {Sea-Bird WETLabs} C-Star transmissometer  transmissometers
Falmouth Scientific Instruments ocean conductivity module  salinity sensor
Instrument Mounting research vessel
Originating Country United Kingdom
Originator Prof Stuart Cunningham
Originating Organization National Oceanography Centre, Southampton
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) Rapid Climate Change Programme
RAPIDMOC
 

Data Identifiers

Originator's Identifier D304.QXF_SURF
BODC Series Reference 1114320
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2006-05-12 00:01
End Time (yyyy-mm-dd hh:mm) 2006-06-04 19:01
Nominal Cycle Interval 120.0 seconds
 

Spatial Co-ordinates

Southernmost Latitude 23.78100 N ( 23° 46.9' N )
Northernmost Latitude 28.46400 N ( 28° 27.8' N )
Westernmost Longitude 50.42750 W ( 50° 25.7' W )
Easternmost Longitude 13.35983 W ( 13° 21.6' W )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor or Sampling Depth 5.0 m
Maximum Sensor or Sampling Depth 5.0 m
Minimum Sensor or Sampling Height -
Maximum Sensor or Sampling Height -
Sea Floor Depth -
Sea Floor Depth Source -
Sensor or Sampling Distribution Fixed common depth - All sensors are grouped effectively at the same depth which is effectively fixed for the duration of the series
Sensor or Sampling Depth Datum Approximate - Depth is only approximate
Sea Floor Depth Datum -
 

Parameters

BODC CODERankUnitsTitle
AADYAA011DaysDate (time from 00:00 01/01/1760 to 00:00 UT on day)
AAFDZZ011DaysTime (time between 00:00 UT and timestamp)
ALATGP011DegreesLatitude north relative to WGS84 by unspecified GPS system
ALONGP011DegreesLongitude east relative to WGS84 by unspecified GPS system
ATTNUN251per metreAttenuation (unspecified wavelength) per unit length of the water body by 25cm path length transmissometer
CNDCSG011Siemens per metreElectrical conductivity of the water body by thermosalinograph
CPHLUMTF1Milligrams per cubic metreConcentration of chlorophyll-a {chl-a CAS 479-61-8} per unit volume of the water body [particulate >unknown phase] by through-flow fluorometer plumbed into non-toxic supply and manufacturer's calibration applied
FVLTWS011VoltsRaw signal (voltage) of instrument output by linear-response chlorophyll fluorometer
PSALSG011DimensionlessPractical salinity of the water body by thermosalinograph and computation using UNESCO 1983 algorithm and calibration against independent measurements
TEMPHG011Degrees CelsiusTemperature of the water body by thermosalinograph hull sensor and verification against independent measurements

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

WET Labs WETStar Fluorometers

WET Labs WETStar fluorometers are miniature flow-through fluorometers, designed to measure relative concentrations of chlorophyll, CDOM, uranine, rhodamineWT dye, or phycoerythrin pigment in a sample of water. The sample is pumped through a quartz tube, and excited by a light source tuned to the fluorescence characteristics of the object substance. A photodiode detector measures the portion of the excitation energy that is emitted as fluorescence.

Specifications

By model:

  Chlorophyll WETStar CDOM WETStar Uranine WETStar Rhodamine WETStar Phycoerythrin WETStar
Excitation wavelength 460 nm 370 nm 485 nm 470 nm 525 nm
Emission wavelength 695 nm 460 nm 530 nm 590 nm 575 nm
Sensitivity 0.03 µg l-1 0.100 ppb QSD 1 µg l-1 - -
Range 0.03-75 µg l-1 0-100 ppb; 0-250 ppb 0-4000 µg l-1 - -

All models:

Temperature range 0-30°C
Depth rating 600 m
Response time 0.17 s analogue; 0.125 s digital
Output 0-5 VDC analogue; 0-4095 counts digital

Further details can be found in the manufacturer's specification sheet, and in the instrument manual.

WETLabs C-Star transmissometer

This instrument is designed to measure beam transmittance by submersion or with an optional flow tube for pumped applications. It can be used in profiles, moorings or as part of an underway system.

Two models are available, a 25 cm pathlength, which can be built in aluminum or co-polymer, and a 10 cm pathlength with a plastic housing. Both have an analog output, but a digital model is also available.

This instrument has been updated to provide a high resolution RS232 data output, while maintaining the same design and characteristics.

Specifications

Pathlength 10 or 25 cm
Wavelength 370, 470, 530 or 660 nm
Bandwidth

~ 20 nm for wavelengths of 470, 530 and 660 nm

~ 10 to 12 nm for a wavelength of 370 nm

Temperature error 0.02 % full scale °C-1
Temperature range 0 to 30°C
Rated depth

600 m (plastic housing)

6000 m (aluminum housing)

Further details are available in the manufacturer's specification sheet or user guide.

Falmouth Scientific Inc. Ocean Sensor Modules

FSI's individual sensor modules include an Ocean Conductivity Module (OCM), Ocean Temperature Module (OTM) and Ocean Pressure Module (OPM). All three use a low power micro-controller to collect, scale and transmit real-time data via RS-232 or RS-485.

Parameter OCM Conductivity OTM Temperature OPM Pressure
Range 0 - 7.0 S/m(0 - 70 mS/cm) -2 to 32 °C User Specified:0-200 dBar0-1000 dBar0-2000 dBar0-3000 dBar0-7000 dBar
Accuracy -0.0003* S/m(-0.003 mS/cm) -0.003 °C* -0.03% full scale*
Stability /month -0.00005 S/m(-0.0005 mS/cm) -0.0005 °C -0.002% full scale
Resolution 0.00001 S/m(-0.0001 mS/cm) 0.0001 °C 0.0004% full scale
Response at 1 m/s flow 50 msec 150 msec 25 msec
Sensor Type Inductive cell Platinum thermometer Strain gauge

* Higher accuracy available

For further details, see the manufacturer's specification sheet.

RAPID Cruise D304 Sea Surface Hydrography Instrumentation

Sensor Serial number Last calibration date
FSI OCM conductivity sensor 1376 -
FSI OTM temperature sensor (remote) 1360 -
FSI OTM temperature sensor (housing) 1370 -
Wetlabs C-star transmissometer CST-112R 31/05/1996
Wetlabs fluorometer WS3S-247 05/12/2004

Near surface temperature was measured with a FSI OTM temperature sensor, located in the forward hold on the starboard side, measuring the temperature of water 5 metres below the surface. The seawater intake projects about 0.5 metres below the hull.

A thermosalinograph is fitted in the wet lab and the non-toxic supply runs from this intake. Samples were taken from the non-toxic supply in order to calibrate the conductivity data.

RAPID Cruise D304 Sea Surface Hydrography Data Processing

Data processing procedures

Originator's processing

Data were taken from the ship's TECHSAS streams and formatted into PSTAR format. All times were defined as seconds from 00:00:00 01/01/2006.

Salinity data were derived from calibrated conductivity data. Discrete bottle conductivities were compared with the TSG conductivities in order to calibrate the conductivity data. The calibration was applied back at NOC,S after the cruise had ended. Further information on originator's processing can be obtained in the D304 cruise report.

BODC processing

The data were transferred from PSTAR format into BODC internal format (a netCDF subset) to allow use of the in-house visualisation tool (EDSERPLO). Reformatting and data calibration was carried out, and is discussed in the individual instrument sections below. The following table shows the mapping of variables from the originator's files to standardised BODC parameters, along with unit conversions where applicable.

Parameter Units BODC Parameter code Units Comments
Latitude ° (+ve N) ALATGP01 ° (+ve N) -
Longitude ° (+ve E) ALONGP01 ° (+ve E) -
Attenuance Volts ATTNUN25 m-1 Generated at BODC
Conductivity mmho/cm CNDCSG01 Sm-1 Unit conversion: /10.
Chlorophyll-a concentration   CPHLUMTF mg m-3 Generated at BODC
Fluorescence   FVLTWS01 Volts -
Salinity   PSALSG01 dimensionless Calibrated against discrete sample data by originator's
Sea surface temperature °C TEMPHG01 °C Calibrated against surface CTD data at BODC
Temperature of conductivity measurement °C TMESSG01 °C Channel dropped from final series.
Transmissometer voltage Volts TVLTDZ01 Volts Channel dropped from final series.

Each data channel was visually inspected and any spikes or periods of dubious data flagged as suspect. The capabilities of the screening software allows comparative screening checks between channels. Calibrations applied at BODC are described below.

  • Temperature

    The hull temperature data were calibrated at BODC using CTD temperature data. Note, the CTD measurements have not been verified against an independent source. The offset (Underway temperature - CTD temperature) was examined to see if it varied with time or temperature. Outliers, with high standard deviations, were identified and discarded. No significant correlation was established between offset and CTD temperature or time. Therefore the data correction is in the form of a mean offset (n=8, standard deviation = 0.1002):

    Calibrated underway temperature = underway temperature - 0.0994

  • Beam attenuation

    Raw transmissometer data were converted to beam attenuance using manufacturer's coefficients in the formulae:

    c = -1/0.25 x ln(Tr)

    where

    Tr = (Vsig-0.056)/(4.753-0.056)

  • Fluorescence

    Fluorescence data were converted from raw voltages using manufacturer's coefficients in the formulae:

    Chl (µg/l) = 13.2 x (Volts - 0.038)

References

Rayner, D., et al 2007. RV Ronald H. Brown Cruise RB0602 and RRSDiscovery Cruise D304, RAPID mooring cruise report March and May 2006. Southampton, UK, National Oceanography Centre, Southampton, 165pp. (National Oceanography Centre Southampton Cruise Report, 16)


Project Information

Rapid Climate Change (RAPID) Programme

Rapid Climate Change (RAPID) is a £20 million, six-year (2001-2007) programme of the Natural Environment Research Council (NERC). The programme aims to improve our ability to quantify the probability and magnitude of future rapid change in climate, with a main (but not exclusive) focus on the role of the Atlantic Ocean's Thermohaline Circulation.

Scientific Objectives

  • To establish a pre-operational prototype system to continuously observe the strength and structure of the Atlantic Meridional Overturning Circulation (MOC).
  • To support long-term direct observations of water, heat, salt, and ice transports at critical locations in the northern North Atlantic, to quantify the atmospheric and other (e.g. river run-off, ice sheet discharge) forcing of these transports, and to perform process studies of ocean mixing at northern high latitudes.
  • To construct well-calibrated and time-resolved palaeo data records of past climate change, including error estimates, with a particular emphasis on the quantification of the timing and magnitude of rapid change at annual to centennial time-scales.
  • To develop and use high-resolution physical models to synthesise observational data.
  • To apply a hierarchy of modelling approaches to understand the processes that connect changes in ocean convection and its atmospheric forcing to the large-scale transports relevant to the modulation of climate.
  • To understand, using model experimentation and data (palaeo and present day), the atmosphere's response to large changes in Atlantic northward heat transport, in particular changes in storm tracks, storm frequency, storm strengths, and energy and moisture transports.
  • To use both instrumental and palaeo data for the quantitative testing of models' abilities to reproduce climate variability and rapid changes on annual to centennial time-scales. To explore the extent to which these data can provide direct information about the thermohaline circulation (THC) and other possible rapid changes in the climate system and their impact.
  • To quantify the probability and magnitude of potential future rapid climate change, and the uncertainties in these estimates.

Projects

Overall 38 projects have been funded by the RAPID programme. These include 4 which focus on Monitoring the Meridional Overturning Circulation (MOC), and 5 international projects jointly funded by the Netherlands Organisation for Scientific Research, the Research Council of Norway and NERC.

The RAPID effort to design a system to continuously monitor the strength and structure of the North Atlantic Meridional Overturning Circulation is being matched by comparative funding from the US National Science Foundation (NSF) for collaborative projects reviewed jointly with the NERC proposals. Three projects were funded by NSF.

A proportion of RAPID funding as been made available for Small and Medium Sized Enterprises (SMEs) as part of NERC's Small Business Research Initiative (SBRI). The SBRI aims to stimulate innovation in the economy by encouraging more high-tech small firms to start up or to develop new research capacities. As a result 4 projects have been funded.


Monitoring the Meridional Overturning Circulation at 26.5N (RAPIDMOC)

Scientific Rationale

There is a northward transport of heat throughout the Atlantic, reaching a maximum of 1.3PW (25% of the global heat flux) around 24.5°N. The heat transport is a balance of the northward flux of a warm Gulf Stream, and a southward flux of cooler thermocline and cold North Atlantic Deep Water that is known as the meridional overturning circulation (MOC). As a consequence of the MOC northwest Europe enjoys a mild climate for its latitude: however abrupt rearrangement of the Atlantic Circulation has been shown in climate models and in palaeoclimate records to be responsible for a cooling of European climate of between 5-10°C. A principal objective of the RAPID programme is the development of a pre-operational prototype system that will continuously observe the strength and structure of the MOC. An initiative has been formed to fulfill this objective and consists of three interlinked projects:

  • A mooring array spanning the Atlantic at 26.5°N to measure the southward branch of the MOC (Hirschi et al., 2003 and Baehr et al., 2004).
  • Additional moorings deployed in the western boundary along 26.5°N (by Prof. Bill Johns, University of Miami) to resolve transport in the Deep Western Boundary Current (Bryden et al., 2005). These moorings allow surface-to-bottom density profiles along the western boundary, Mid-Atlantic Ridge, and eastern boundary to be observed. As a result, the transatlantic pressure gradient can be continuously measured.
  • Monitoring of the northward branch of the MOC using submarine telephone cables in the Florida Straits (Baringer et al., 2001) led by Dr Molly Baringer (NOAA/AOML/PHOD).

The entire monitoring array system created by the three projects will be recovered and redeployed annually until 2008 under RAPID funding. From 2008 until 2014 the array will continue to be serviced annually under RAPID-WATCH funding.

The array will be focussed on three regions, the Eastern Boundary (EB), the Mid Atlantic Ridge (MAR) and the Western Boundary (WB). The geographical extent of these regions are as follows:

  • Eastern Boundary (EB) array defined as a box with the south-east corner at 23.5°N, 25.5°W and the north-west corner at 29.0°N, 12.0°W
  • Mid Atlantic Ridge (MAR) array defined as a box with the south-east corner at 23.0°N, 52.1°W and the north-west corner at 26.5°N, 40.0°W
  • Western Boundary (WB) array defined as a box with the south-east corner at 26.0°N, 77.5°W and the north-west corner at 27.5°N, 69.5°W

References

Baehr, J., Hirschi, J., Beismann, J.O. and Marotzke, J. (2004) Monitoring the meridional overturning circulation in the North Atlantic: A model-based array design study. Journal of Marine Research, Volume 62, No 3, pp 283-312.

Baringer, M.O'N. and Larsen, J.C. (2001) Sixteen years of Florida Current transport at 27N Geophysical Research Letters, Volume 28, No 16, pp3179-3182

Bryden, H.L., Johns, W.E. and Saunders, P.M. (2005) Deep Western Boundary Current East of Abaco: Mean structure and transport. Journal of Marine Research, Volume 63, No 1, pp 35-57.

Hirschi, J., Baehr, J., Marotzke J., Stark J., Cunningham S.A. and Beismann J.O. (2003) A monitoring design for the Atlantic meridional overturning circulation. Geophysical Research Letters, Volume 30, No 7, article number 1413 (DOI 10.1029/2002GL016776)


Data Activity or Cruise Information

Cruise

Cruise Name D304
Departure Date 2006-05-12
Arrival Date 2006-06-06
Principal Scientist(s)Torsten Kanzow (National Oceanography Centre, Southampton)
Ship RRS Discovery

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification