Metadata Report for BODC Series Reference Number 1114332


Metadata Summary

Data Description

Data Category Meteorology -unspecified
Instrument Type
NameCategories
Vaisala HMP temperature and humidity sensor  meteorological packages
Vaisala PTB100 barometric pressure sensor  meteorological packages
Vaisala WAA151 cup anemometer  anemometers
Vaisala WAV151 wind vane  anemometers
Kipp and Zonen CM6B pyranometer  radiometers
Skye Instruments SKE510 PAR energy sensor  radiometers
Instrument Mounting research vessel
Originating Country United Kingdom
Originator Dr Stuart Cunningham
Originating Organization National Oceanography Centre, Southampton
Processing Status banked
Project(s) Rapid Climate Change Programme
RAPIDMOC
 

Data Identifiers

Originator's Identifier D304.QXF_MET
BODC Series Reference 1114332
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2006-05-12 00:01
End Time (yyyy-mm-dd hh:mm) 2006-06-04 19:01
Nominal Cycle Interval 120.0 seconds
 

Spatial Co-ordinates

Southernmost Latitude 23.78100 N ( 23° 46.9' N )
Northernmost Latitude 28.46400 N ( 28° 27.8' N )
Westernmost Longitude 50.42750 W ( 50° 25.7' W )
Easternmost Longitude 13.35983 W ( 13° 21.6' W )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor Depth -
Maximum Sensor Depth -
Minimum Sensor Height -
Maximum Sensor Height -
Sea Floor Depth -
Sensor Distribution -
Sensor Depth Datum -
Sea Floor Depth Datum -
 

Parameters

BODC CODE Rank Units Short Title Title
AADYAA01 1 Days Date(Loch_Day) Date (time from 00:00 01/01/1760 to 00:00 UT on day)
AAFDZZ01 1 Days Time(Day_Fract) Time (time between 00:00 UT and timestamp)
ALATGP01 1 Degrees Lat_GPS Latitude north (WGS84) by unspecified GPS system
ALONGP01 1 Degrees Lon_GPS Longitude east (WGS84) by unspecified GPS system
CAPHZZ01 1 Millibars AirPress Pressure (measured variable) exerted by the atmosphere
CDTASS01 1 Degrees Celsius AirTemp Temperature of the atmosphere by dry bulb thermometer
CRELSS01 1 Percent Air_RelHumid Relative humidity of the atmosphere by humidity sensor
CSLRR1XS 1 Watts per square metre Solar_rad_MaxSens Downwelling vector irradiance as energy (solar (300-3000nm) wavelengths) in the atmosphere by pyranometer and taking the maximum value from two or more sensors
DWIRRXMX 1 Watts per square metre SurfVParMax Downwelling vector irradiance as energy (PAR wavelengths) in the atmosphere by cosine-collector radiometer and taking the maximum value from two or more sensors
EWDASS01 1 Degrees True WindDirFrom Wind from direction in the atmosphere by in-situ anemometer
EWEWSS01 1 Metres per second WindVelE Eastward wind velocity in the atmosphere by in-situ anemometer
EWNSSS01 1 Metres per second WindVelN Northward wind velocity in the atmosphere by in-situ anemometer
EWSBSS01 1 Metres per second WindSpd Wind speed in the atmosphere by in-situ anemometer
 

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

Kipp and Zonen Pyranometer Model CM6B

The CM6B pyranometer is intended for routine global solar radiation measurement research on a level surface. The CM6B features a sixty-four thermocouple junction (series connected) sensing element. The sensing element is coated with a highly stable carbon based non-organic coating, which delivers excellent spectral absorption and long term stability characteristics. The sensing element is housed under two concentric fitting Schott K5 glass domes.

Specifications

Dimensions (W x H) 150.0 mm x 91.5 mm
Weight 850 grams
Operating Temperature -40°C to +80°C
Spectral Range 305 - 2800 nm
(50% points)
Sensitivity 9 -15 µV/W/m 2
Impedance (nominal) 70 - 100 ohm
Response Time (95%) 30 sec
Non-linearity < ± 1.2% (<1000 W/m 2 )
Temperature dependence of sensitivity < ± 2% (-10 to +40°C)
Zero-offset due to temperature changes < ± 4 W/m 2 at 5 K/h temperature change

RAPID Cruise D304 Surface Meteorology Instrumentation

Sensor Serial number Last calibration date
Vaisala PTB100A (barometric pressure) sensor U1420016 -
Vaisala HMP45 (air temperature and relative humidity) sensor U1850012 12/02/2003
SKYE PPAR 28558 21/12/2004
SKYE SPAR 28557 21/12/2004
Kipp and Zonen PTIR CM 6B 047463 22/12/2004
Kipp and Zonen STIR CM 6B 047462 22/12/2004
Vaisala Waa15A Wind SPEED Sensor P50421 -
Vaisala Wav15a Wind Direction Sensor S21214 -

The PAR and TIR sensors are mounted on gimbals on each side of the ship. All other instruments are located on the foremast at a height of approximately 10m above the waterline.

Skye Instruments PAR Energy Sensor Model SKE 510

The SKE 510 is suitable for measuring photosynthetically active radiation (PAR) from natural or artificial light sources. The sensor is fully waterproof and guaranteed submersible to 4m depth, and indoor versions are also available.

The instrument uses a blue-enhanced planar diffused silicon detector to measure energy (in W m -2 ) over the 400-700 nm waveband. It has a cosine-corrected head and a square spectral response. The sensor can operate over a temperature range of -35 to 70 °C and a humidity range of 0-100% RH.

Specifications

Sensitivity (current) 1.5µA or 100 W m -2
Sensitivity (voltage) 1mV or 100 W m -2
Working Range 0-5000 W m -2
Linearity error 0.2%
Absolute calibration error typ. less than 3%
5% max
Response time - voltage output 10 ns
Cosine error 3%
Azimuth error less than 1%
Temperature co-efficient ±0.1% per °C
Internal resistance - voltage output c. 300 ohms
Longterm stability ±2%
Material Dupont 'Delrin'
Dimensions 34 mm diameter
38mm height
Cable 2 core screened
7 - 2 - 2C
Sensor Passband 400 - 700 nm
Detector Silicon photocell
Filters Glass type and/or metal interference

Vaisala Analog Barometers Models PTB100 (A), (B) and PTB101 (B), (C)

The PTB 100 series analog barometers are designed both for accurate barometric measurements at room temperature and for general environmental pressure monitoring over a wide temperature range. The long-term stability of the barometer minimizes the need for field adjustment in many applications.

Physical Specifications

Size 97 x 60 x 22 mm
Weight 85g

The barometers use the BAROCAP * silicon capacitive absolute pressure sensor developed by Vaisala for barometric pressure measurements. The BAROCAP * sensor combines the elasticity characteristics and mechanical stability of a single-crystal silicon with the proven capacitive detection principle.

Sensor Specifications

Model Number Pressure Range
(mbar)
Temperature Range
(°C)
Humidity Range Total Accuracy
PTB100A 800 to 1060 -40 to +60 non-condensing +20 °C ± 0.3 mbar
0 to +40 °C ± 1.0 mbar
-20 to +45 °C ± 1.5 mbar
-40 to +60 °C ± 2.5 mbar
PTB100B 600 to 1060 -40 to +60 non-condensing +20 °C ± 0.5 mbar
0 to +40 °C ± 1.5 mbar
-20 to +45 °C ± 2.0 mbar
-40 to +60 °C ± 3.0 mbar
PTB101B 600 to 1060 -40 to +60 non-condensing +20 °C ± 0.5 mbar
0 to +40 °C ± 1.5 mbar
-20 to +45 °C ± 2.0 mbar
-40 to +60 °C ± 3.0 mbar
PTB101C 900 to 1100 -40 to +60 non-condensing +20 °C ± 0.3 mbar
0 to +40 °C ± 1.0 mbar
-20 to +45 °C ± 1.5 mbar
-40 to +60 °C ± 2.5 mbar

* BAROCAP is a registered trademark of Vaisala

Vaisala Temperature and Relative Humidity HMP Sensors

A family of sensors and instruments (sensors plus integral displays or loggers) for the measurement of air temperature and relative humidity. All are based on a probe containing a patent (HUMICAP) capacitive thin polymer film capacitanece humidity sensor and a Pt100 platinum resistance thermometer. The probes are available with a wide range of packaging, cabling and interface options all of which have designations of the form HMPnn or HMPnnn such as HMP45 and HMP230. Vaisala sensors are incorporated into weather stations and marketed by Campbell Scientific.

All versions operate at up to 100% humidity. Operating temperature ranges vary between models, allowing users to select the version best suited to their requirements.

Further details can be found in the manufacturer's specification sheets for the HMP 45 series , HMP 70 series and HMP 230 series .

Vaisala WA15 Wind Set

The WAA151 combines a WAA151 anemometer and a WAV151 wind vane, to measure wind speed and direction.

WAA151 Anemometer

The anemometer has three lightweight conical cups in the cup wheel. A wind-rotated chopper disc, attached to the cup wheel's shaft, cuts an infrared light beam 14 times per revolution, generating a pulse output from a phototransistor. The output rate can be regarded as directly proportional to the wind speed. However, for the best accuracy, a transfer function is used to compensate starting inertia and slight over-speeding:

U f = 0.328 + 0.101 x R, where U f = wind speed and R = output pulse rate

A thermostatically controlled heating element in the shaft tunnel prevents the bearings from freezing in cold environments.

WAV151 Wind Vane

The WAV151 is a counter-balanced optelectronic wind vane. Infrared LEDs and phototransistors are mounted in six orbits around a 6 bit Gray coded disc. Turned by the vane, the disc determines the code received by the phototransistors.

Specifications

  WAA151 Anemometer WAV151 Wind Vane
Measurement range 0.4-75 m s -1 0-300° (at 0.4-75 m s -1 )
Starting threshold < 0.5 m s -1 < 0.4 m s -1
Resolution - ±2.8°
Accuracy ±0.17 m s -1 (within range 0.4-60 m s -1 ) < ± 3°
Output 0-750 Hz square wave 6 bit parallel Gray code
Operating temperature -50°C to 55°C -50°C to 55°C

Further details can be found in the manufacturer's specification document .

RAPID Cruise D304 Surface Meteorology Data Processing

Data processing procedures

Originator's processing

Meteorological data were taken from the ship's TECHSAS streams and formatted into PSTAR format. All times were defined as seconds from 00:00:00 01/01/2006.

Speed made good and course made good are calculated and, along with corrected heading, merged onto the same time stamps as the wind data from the anemometer. True wind speed and direction are then calculated.

Port and starboard PAR and TIR sensors and air pressure were logged to a TECHSAS file. These were then reformatted into PSTAR netCDF. Manufacturer's calibrations were applied to convert the data into physical units. Further information on originator's processing can be obtained in the D304 cruise report.

BODC processing

All 1 second navigation data were transferred from PSTAR format into BODC internal format (a netCDF subset) to allow use of the in-house visualisation tool (EDSERPLO). The following table shows the mapping of variables from the originator's files to standardised BODC parameters, along with unit conversions where applicable.

Parameter Units BODC Parameter code Units Comments
Latitude ° (+ve N) ALATGP01 ° (+ve N) -
Longitude ° (+ve E) ALONGP01 ° (+ve E) -
Atmospheric pressure mbar CAPHZZ01 mbar -
Air temperature °C CDTASS01 °C -
Air humidity % CRELSS01 % -
Port solar radiation Wm -2 CSLRRP01 Wm -2 Channel dropped from final series as superseded by merged port and starboard channel.
Starboard solar radiation Wm -2 CSLRRS01 Wm -2 Channel dropped from final series as superseded by merged port and starboard channel.
Solar radiation Wm -2 CSLRR1XS Wm -2 Merged port and starboard solar radiation, generated at BODC.
Port PAR irradiance Wm -2 DWIRRPSD Wm -2 Channel dropped from final series as superseded by merged port and starboard channel.
Starboard PAR irradiance Wm -2 DWIRRSSD Wm -2 Channel dropped from final series as superseded by merged port and starboard channel.
PAR irradiance Wm -2 DWIRRXMX Wm -2 Merged port and starboard PAR, generated at BODC
True wind direction ° EWDASS01 ° Corrected for ship's motion
Wind velocity EW ms -1 EWEWSS01 ms -1 Corrected for ship's motion
Wind velocity NS ms -1 EWNSSS01 ms -1 Corrected for ship's motion
True wind speed ms -1 EWSBSS01 ms -1 Corrected for ship's motion

Each data channel was visually inspected and any spikes or periods of dubious data flagged as suspect. The capabilities of the screening software allows comparative screening checks between channels.

Records from the port and starboard PAR and TIR channels were each merged into a single channel by taking the maximum of the port or starboard sensor value at every cycle to minimise shading effects. No additional processing was carried out by BODC.

References

Rayner, D., et al 2007. RV Ronald H. Brown Cruise RB0602 and RRS Discovery Cruise D304, RAPID mooring cruise report March and May 2006 . Southampton, UK, National Oceanography Centre, Southampton, 165pp. (National Oceanography Centre Southampton Cruise Report, 16)


Project Information

Rapid Climate Change (RAPID) Programme

Rapid Climate Change (RAPID) is a £20 million, six-year (2001-2007) programme of the Natural Environment Research Council (NERC). The programme aims to improve our ability to quantify the probability and magnitude of future rapid change in climate, with a main (but not exclusive) focus on the role of the Atlantic Ocean's Thermohaline Circulation.

Scientific Objectives

Projects

Overall 38 projects have been funded by the RAPID programme. These include 4 which focus on Monitoring the Meridional Overturning Circulation (MOC), and 5 international projects jointly funded by the Netherlands Organisation for Scientific Research, the Research Council of Norway and NERC.

The RAPID effort to design a system to continuously monitor the strength and structure of the North Atlantic Meridional Overturning Circulation is being matched by comparative funding from the US National Science Foundation (NSF) for collaborative projects reviewed jointly with the NERC proposals. Three projects were funded by NSF.

A proportion of RAPID funding as been made available for Small and Medium Sized Enterprises (SMEs) as part of NERC's Small Business Research Initiative (SBRI). The SBRI aims to stimulate innovation in the economy by encouraging more high-tech small firms to start up or to develop new research capacities. As a result 4 projects have been funded.


Monitoring the Meridional Overturning Circulation at 26.5N (RAPIDMOC)

Scientific Rationale

There is a northward transport of heat throughout the Atlantic, reaching a maximum of 1.3PW (25% of the global heat flux) around 24.5°N. The heat transport is a balance of the northward flux of a warm Gulf Stream, and a southward flux of cooler thermocline and cold North Atlantic Deep Water that is known as the meridional overturning circulation (MOC). As a consequence of the MOC northwest Europe enjoys a mild climate for its latitude: however abrupt rearrangement of the Atlantic Circulation has been shown in climate models and in palaeoclimate records to be responsible for a cooling of European climate of between 5-10°C. A principal objective of the RAPID programme is the development of a pre-operational prototype system that will continuously observe the strength and structure of the MOC. An initiative has been formed to fulfill this objective and consists of three interlinked projects:

The entire monitoring array system created by the three projects will be recovered and redeployed annually until 2008 under RAPID funding. From 2008 until 2014 the array will continue to be serviced annually under RAPID-WATCH funding.

The array will be focussed on three regions, the Eastern Boundary (EB), the Mid Atlantic Ridge (MAR) and the Western Boundary (WB). The geographical extent of these regions are as follows:

References

Baehr, J., Hirschi, J., Beismann, J.O. and Marotzke, J. (2004) Monitoring the meridional overturning circulation in the North Atlantic: A model-based array design study. Journal of Marine Research, Volume 62, No 3, pp 283-312.

Baringer, M.O'N. and Larsen, J.C. (2001) Sixteen years of Florida Current transport at 27N Geophysical Research Letters, Volume 28, No 16, pp3179-3182

Bryden, H.L., Johns, W.E. and Saunders, P.M. (2005) Deep Western Boundary Current East of Abaco: Mean structure and transport. Journal of Marine Research, Volume 63, No 1, pp 35-57.

Hirschi, J., Baehr, J., Marotzke J., Stark J., Cunningham S.A. and Beismann J.O. (2003) A monitoring design for the Atlantic meridional overturning circulation. Geophysical Research Letters, Volume 30, No 7, article number 1413 (DOI 10.1029/2002GL016776)


Data Activity or Cruise Information

Cruise

Cruise Name D304
Departure Date 2006-05-12
Arrival Date 2006-06-06
Principal Scientist(s)Torsten Kanzow (National Oceanography Centre, Southampton)
Ship RRS Discovery

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain