Search the data

Metadata Report for BODC Series Reference Number 1254998


Metadata Summary

Data Description

Data Category Water sample data
Instrument Type
NameCategories
Niskin bottle  discrete water samplers
Instrument Mounting lowered unmanned submersible
Originating Country Germany
Originator Mr Thomas Raabe
Originating Organization University of Hamburg, Department of Chemistry
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) OMEX I
 

Data Identifiers

Originator's Identifier M27_1_CTD_NUTS_9:159401
BODC Series Reference 1254998
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 1994-01-15 13:50
End Time (yyyy-mm-dd hh:mm) -
Nominal Cycle Interval -
 

Spatial Co-ordinates

Latitude 48.33178 N ( 48° 19.9' N )
Longitude 11.50208 W ( 11° 30.1' W )
Positional Uncertainty Unspecified
Minimum Sensor or Sampling Depth 13.6 m
Maximum Sensor or Sampling Depth 3693.3 m
Minimum Sensor or Sampling Height 28.0 m
Maximum Sensor or Sampling Height 3707.7 m
Sea Floor Depth 3721.3 m
Sea Floor Depth Source -
Sensor or Sampling Distribution Unspecified -
Sensor or Sampling Depth Datum Unspecified -
Sea Floor Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
 

Parameters

BODC CODERankUnitsTitle
ADEPZZ011MetresDepth (spatial coordinate) relative to water surface in the water body
AMONAATX1Micromoles per litreConcentration of ammonium {NH4+ CAS 14798-03-9} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis
BOTTFLAG1Not applicableSampling process quality flag (BODC C22)
NTRIAATX1Micromoles per litreConcentration of nitrite {NO2- CAS 14797-65-0} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis
NTRZAATX1Micromoles per litreConcentration of nitrate+nitrite {NO3+NO2} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis
PHOSAATX1Micromoles per litreConcentration of phosphate {PO43- CAS 14265-44-2} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis
SAMPRFNM1DimensionlessSample reference number
SLCAAATX1Micromoles per litreConcentration of silicate {SiO44- CAS 17181-37-2} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis

Definition of BOTTFLAG

BOTTFLAGDefinition
0The sampling event occurred without any incident being reported to BODC.
1The filter in an in-situ sampling pump physically ruptured during sample resulting in an unquantifiable loss of sampled material.
2Analytical evidence (e.g. surface water salinity measured on a sample collected at depth) indicates that the water sample has been contaminated by water from depths other than the depths of sampling.
3The feedback indicator on the deck unit reported that the bottle closure command had failed. General Oceanics deck units used on NERC vessels in the 80s and 90s were renowned for reporting misfires when the bottle had been closed. This flag is also suitable for when a trigger command is mistakenly sent to a bottle that has previously been fired.
4During the sampling deployment the bottle was fired in an order other than incrementing rosette position. Indicative of the potential for errors in the assignment of bottle firing depth, especially with General Oceanics rosettes.
5Water was reported to be escaping from the bottle as the rosette was being recovered.
6The bottle seals were observed to be incorrectly seated and the bottle was only part full of water on recovery.
7Either the bottle was found to contain no sample on recovery or there was no bottle fitted to the rosette position fired (but SBE35 record may exist).
8There is reason to doubt the accuracy of the sampling depth associated with the sample.
9The bottle air vent had not been closed prior to deployment giving rise to a risk of sample contamination through leakage.

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database


Data Access Policy

Public domain data

These data have no specific confidentiality restrictions for users. However, users must acknowledge data sources as it is not ethical to publish data without proper attribution. Any publication or other output resulting from usage of the data should include an acknowledgment.

The recommended acknowledgment is

"This study uses data from the data source/organisation/programme, provided by the British Oceanographic Data Centre and funded by the funding body."


Narrative Documents

Niskin Bottle

The Niskin bottle is a device used by oceanographers to collect subsurface seawater samples. It is a plastic bottle with caps and rubber seals at each end and is deployed with the caps held open, allowing free-flushing of the bottle as it moves through the water column.

Standard Niskin

The standard version of the bottle includes a plastic-coated metal spring or elastic cord running through the interior of the bottle that joins the two caps, and the caps are held open against the spring by plastic lanyards. When the bottle reaches the desired depth the lanyards are released by a pressure-actuated switch, command signal or messenger weight and the caps are forced shut and sealed, trapping the seawater sample.

Lever Action Niskin

The Lever Action Niskin Bottle differs from the standard version, in that the caps are held open during deployment by externally mounted stainless steel springs rather than an internal spring or cord. Lever Action Niskins are recommended for applications where a completely clear sample chamber is critical or for use in deep cold water.

Clean Sampling

A modified version of the standard Niskin bottle has been developed for clean sampling. This is teflon-coated and uses a latex cord to close the caps rather than a metal spring. The clean version of the Levered Action Niskin bottle is also teflon-coated and uses epoxy covered springs in place of the stainless steel springs. These bottles are specifically designed to minimise metal contamination when sampling trace metals.

Deployment

Bottles may be deployed singly clamped to a wire or in groups of up to 48 on a rosette. Standard bottles and Lever Action bottles have a capacity between 1.7 and 30 L. Reversing thermometers may be attached to a spring-loaded disk that rotates through 180° on bottle closure.

Nutrients for cruises Charles Darwin CD94, Meteor M27_1 and M30_1, Valdivia VLD137 and RRS Discovery cruise DI217

Document History

Converted from CDROM documentation.

Content of data series

AMONAAD2 Dissolved ammonium
Colorometric autoanalysis (0.4/0.45 µm pore filtered)
Micromoles/litre
AMONAATX Dissolved ammonium
Colorometric autoanalysis (unfiltered)
Micromoles/litre
AMONMATX Ammonium (unfiltered)
Manual colorometric analysis (unfiltered)
Micromoles/litre
NTRIAAD2 Dissolved nitrite
Colorometric autoanalysis (0.4/0.45 µm pore filtered)
Micromoles/litre
NTRIAAD5 Dissolved nitrite
Colorometric autoanalysis (0.2 µm pore filtered)
Micromoles/litre
NTRIAATX Nitrite (unfiltered)
Colorometric autoanalysis (unfiltered)
Micromoles/litre
NTRZAAD2 Dissolved nitrate + nitrite
Colorometric autoanalysis (0.4/0.45 µm pore filtered)
Micromoles/litre
NTRZAAD5 Dissolved nitrate + nitrite
Colorometric autoanalysis (0.2 µm pore filtered)
Micromoles/litre
NTRZAATX Nitrate + nitrite (unfiltered)
Colorometric autoanalysis (unfiltered)
Micromoles/litre
PHOSAAD2 Dissolved phosphate
Colorometric autoanalysis (0.4/0.45 µm pore filtered)
Micromoles/litre
PHOSAAD5 Dissolved phosphate
Colorometric autoanalysis (0.2 µm pore filtered)
Micromoles/litre
PHOSAATX Phosphate (unfiltered)
Colorometric autoanalysis (unfiltered)
Micromoles/litre
PHOSMATX Phosphate (unfiltered)
Manual colorometric analysis (unfiltered)
Micromoles/litre
SLCAAAD2 Dissolved silicate
Colorometric autoanalysis (0.4/0.45 µm pore filtered)
Micromoles/litre
SLCAAAD5 Dissolved silicate
Colorometric autoanalysis (0.2 µm pore filtered)
Micromoles/litre
SLCAAATX Silicate (unfiltered)
Colorometric autoanalysis (unfiltered)
Micromoles/litre
SLCAMATX Silicate (unfiltered)
Manual colorometric analysis (unfiltered)
Micromoles/litre
UREAMDTX Urea (unfiltered)
Manual analysis using the diacetylmonoxime method
Micromoles/litre

Data Originator

Mr Thomas Raabe, Hamburg University, Germany.

Sampling strategy and methodology

Water samples were taken from bottles deployed on a CTD rosette and analysed immediately on board ship. Samples were analysed unfiltered, provided the particulate content was not considered too high in which case the samples were GF/C filtered. Parameter coding has assumed analysis of unfiltered samples.

Samples were analysed using a Technicon autoanalyser system using the method of Murphy and Riley (1962) as modified by Eberlein and Kattner (1987) for phosphate, the method of Grasshoff (1983) for silicate, the method of Koroleff (1969) for ammonia and the methods of Armstrong et al. (1967) for nitrate and nitrite.

Comments on data quality

Charles Darwin cruise CD94

A subset of the nutrient channels (NO3+NO2, PO4 and silicate) were measured by both Hamburg and Galway universities. Both data sets included a small number of anomalous data values. These have been flagged suspect ('M') together with data from bottles where there is strong evidence of contamination through leakage.

The nitrate+nitrite and silicate data from the two groups compare extremely well and no systematic difference between the two data sets could be established. On some casts the Hamburg data were slightly higher whilst on other casts it was the Galway data that were slightly higher.

Regressing the two data sets gave the following results:

Nitrate+nitrite Galway = Hamburg * 0.9591 + 0.4471 (R2 = 98%)
Silicate Galway = Hamburg * 1.0188 - 0.1091 (R2 = 99%)

The results for phosphate were not as good. The Galway values were systematically significantly lower than the Hamburg data, sometimes by as much as 50%. The intercalibration plot exhibited much more scatter than the plots for the other two nutrients.

Regressing the two data sets gave the following result:

Phosphate Galway = Hamburg * 0.9234 - 0.0939 (R2 = 83%)

The Hamburg data compare more favourably with data from other cruises where the phosphate values are believed to be good quality. It is therefore recommended that the Galway phosphates be used with caution, bearing in mind that they are probably low. However, either nitrate+nitrite or silicate data set may be used with confidence.

References

Armstrong, F.A.J., Stearns, C.R. and Strickland, J.D.H., 1967. The measurement of upwelling and subsequent biological processes by means of the Technicon Autoanalyser and associated equipment. Deep Sea Res. 14, 381-389.

Eberlein, K. and Kattner, G. 1987. Automatic method for the determination of ortho-phosphate and total dissolved phosphorus in the marine environment. Fresenius Z. anal. Chem., 326, 354-357.

Elskens, I. and Elskens, M., 1989. Handleing voor de bepaling van nutrienten in zeewater met an Autoanalyser IITM systeem. Vrije Universiteit Brussel, 50pp..

Føyn, L., Magnussen, M. and Seglem, K., 1981. Automatisk analyse av naeringsalter med "on-line" databehandling. En presentasjon av oppbyggning og virkemåte av systemet i bruk på Havforskningsinstituttets båter og i laboratoriet. Fisken Hav., Ser. B., 4, 1-40.

Goeyens, L,. Kindermans, N., Yusuf, M.A. and Elskens, M. (submitted 1996). A room temperature procedure for the manual determination of urea in seawater. Submitted to Marine Chemistry.

Grasshoff, K., Ehrhardt, M. and Kremling, K. eds. 1983. Methods of seawater analysis. Verlag Chemie.

Koroleff, F., 1969. Direct determination of ammonia in natural waters as indophenol blue. Int. Counc. Explor. Sea, CM., 9, 19-22.

Mourino, C. and Fraga, F., 1985. Determinacion de nitratos en aqua de mar. Investigacion Pesquera, 49, 81-96.

Mulvena, P. and Savidge, G., 1992. A modified manual method for the determination of urea in seawater using diacetylmonoxime reagent. Estuarine, Coastal and Shelf Science, 34, 429-438.

Murphy, J. and Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chim. Acta, 27, 31-36.

Rees, A.P., Owens, N.J.P. and Woodward, E.M.S. (1995). Phytoplankton nitrogen assimilation at low nutrient concentrations in the NW Mediterranean Sea. Water Pollution Research Report 32 in EROS 2000 ed J-M Martin and H. Barth, European Commission, 141-148.


Project Information

Ocean Margin EXchange (OMEX) I

Introduction

OMEX was a European multidisciplinary oceanographic research project that studied and quantified the exchange processes of carbon and associated elements between the continental shelf of western Europe and the open Atlantic Ocean. The project ran in two phases known as OMEX I (1993-1996) and OMEX II - II (1997-2000), with a bridging phase OMEX II - I (1996-1997). The project was supported by the European Union under the second and third phases of its MArine Science and Technology Programme (MAST) through contracts MAS2-CT93-0069 and MAS3-CT97-0076. It was led by Professor Roland Wollast from Université Libre de Bruxelles, Belgium and involved more than 100 scientists from 10 European countries.

Scientific Objectives

The aim of the Ocean Margin EXchange (OMEX) project was to gain a better understanding of the physical, chemical and biological processes occurring at the ocean margins in order to quantify fluxes of energy and matter (carbon, nutrients and other trace elements) across this boundary. The research culminated in the development of quantitative budgets for the areas studied using an approach based on both field measurements and modeling.

OMEX I (1993-1996)

The first phase of OMEX was divided into sub-projects by discipline:

  • Physics
  • Biogeochemical Cycles
  • Biological Processes
  • Benthic Processes
  • Carbon Cycling and Biogases

This emphasises the multidisciplinary nature of the research.

The project fieldwork focussed on the region of the European Margin adjacent to the Goban Spur (off the coast of Brittany) and the shelf break off Tromsø, Norway. However, there was also data collected off the Iberian Margin and to the west of Ireland. In all a total of 57 research cruises (excluding 295 Continuous Plankton Recorder tows) were involved in the collection of OMEX I data.

Data Availability

Field data collected during OMEX I have been published by BODC as a CD-ROM product, entitled:

  • OMEX I Project Data Set (two discs)

Further descriptions of this product and order forms may be found on the BODC web site.

The data are also held in BODC's databases and subsets may be obtained by request from BODC.


Data Activity or Cruise Information

Data Activity

Start Date (yyyy-mm-dd) 1994-01-15
End Date (yyyy-mm-dd) 1994-01-15
Organization Undertaking ActivityUniversity of Bremen, Center for Marine Environmental Sciences
Country of OrganizationGermany
Originator's Data Activity IdentifierM27_1_CTD_159401
Platform Categorylowered unmanned submersible

BODC Sample Metadata Report for M27_1_CTD_159401

Sample reference number Nominal collection volume(l) Bottle rosette position Bottle firing sequence number Minimum pressure sampled (dbar) Maximum pressure sampled (dbar) Depth of sampling point (m) Bottle type Sample quality flag Bottle reference Comments
552491   12.00     3756.30 3757.80 3693.30 Niskin bottle No problem reported    
552492   12.00     3739.30 3740.80 3676.70 Niskin bottle No problem reported    
552493   12.00     3527.30 3528.80 3470.10 Niskin bottle No problem reported    
552494   12.00     3016.30 3017.80 2971.00 Niskin bottle No problem reported    
552495   12.00     2415.30 2416.80 2382.60 Niskin bottle No problem reported    
552496   12.00     1811.30 1812.80 1789.70 Niskin bottle No problem reported    
552497   12.00     1009.30 1010.80  999.80 Niskin bottle No problem reported    
552498   12.00      403.30  404.80  400.90 Niskin bottle No problem reported    
552499   12.00      247.30  248.80  246.50 Niskin bottle No problem reported    
552500   12.00      154.30  155.80  154.30 Niskin bottle No problem reported    
552501   12.00       52.90   54.40   53.90 Niskin bottle No problem reported    
552502   12.00       12.30   13.80   13.60 Niskin bottle No problem reported    

Please note:the supplied parameters may not have been sampled from all the bottle firings described in the table above. Cross-match the Sample Reference Number above against the SAMPRFNM value in the data file to identify the relevant metadata.

Cruise

Cruise Name M27_1
Departure Date 1993-12-29
Arrival Date 1994-01-17
Principal Scientist(s)Wolfgang Balzer (University of Bremen, Center for Marine Environmental Sciences)
Ship FS Meteor

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification