Metadata Report for BODC Series Reference Number 1359943
Metadata Summary
Problem Reports
Data Access Policy
Narrative Documents
Project Information
Data Activity or Cruise Information
Fixed Station Information
BODC Quality Flags
SeaDataNet Quality Flags
Metadata Summary
Data Description |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Data Identifiers |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Time Co-ordinates(UT) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Spatial Co-ordinates | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Parameters |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Problem Reports
No Problem Report Found in the Database
RRS Discovery AMT17 (D299) - Continuous Underway Meteorological Data Quality Report
Two unusually large gaps in all meteorological and surface hydrography data streams occurred at the beginning of the cruise on 15/10/2005 between 08:40 and 16:00 and on 16/10/2005 between 11:48 and 15:41 GMT. These gaps are not mentioned in the cruise report. UKORS technical cruise report does mention that a new logging PC and device manager were being tried and this may explain the unusual problems.
N.B.The underway data finishes two days before the end of the cruise.
Light sensors
The port TIR and PAR sensors read slightly lower (50-60 Wm-2 and 10-20 Wm-2 respectively) than the starboard sensors for a large portion of the cruise, however the trends were consistent
Wind data
The absolute wind speed is noisy but looks OK in terms of range and variations. Wind direction occasionally variable too, but there was no obvious systematic interference with the ship's structure.
Data Access Policy
Open Data
These data have no specific confidentiality restrictions for users. However, users must acknowledge data sources as it is not ethical to publish data without proper attribution. Any publication or other output resulting from usage of the data should include an acknowledgment.
If the Information Provider does not provide a specific attribution statement, or if you are using Information from several Information Providers and multiple attributions are not practical in your product or application, you may consider using the following:
"Contains public sector information licensed under the Open Government Licence v1.0."
Narrative Documents
Kipp and Zonen Pyranometer Model CM6B
The CM6B pyranometer is intended for routine global solar radiation measurement research on a level surface. The CM6B features a sixty-four thermocouple junction (series connected) sensing element. The sensing element is coated with a highly stable carbon based non-organic coating, which delivers excellent spectral absorption and long term stability characteristics. The sensing element is housed under two concentric fitting Schott K5 glass domes.
Specifications
Dimensions (W x H) | 150.0 mm x 91.5 mm |
---|---|
Weight | 850 grams |
Operating Temperature | -40°C to +80°C |
Spectral Range | 305 - 2800 nm (50% points) |
Sensitivity | 9 -15 µV/W/m2 |
Impedance (nominal) | 70 - 100 ohm |
Response Time (95%) | 30 sec |
Non-linearity | < ± 1.2% (<1000 W/m2) |
Temperature dependence of sensitivity | < ± 2% (-10 to +40°C) |
Zero-offset due to temperature changes | < ± 4 W/m2 at 5 K/h temperature change |
Skye Instruments PAR Energy Sensor Model SKE 510
The SKE 510 is suitable for measuring photosynthetically active radiation (PAR) from natural or artificial light sources. The sensor is fully waterproof and guaranteed submersible to 4m depth, and indoor versions are also available.
The instrument uses a blue-enhanced planar diffused silicon detector to measure energy (in W m-2) over the 400-700 nm waveband. It has a cosine-corrected head and a square spectral response. The sensor can operate over a temperature range of -35 to 70 °C and a humidity range of 0-100% RH.
Specifications
Sensitivity (current) | 1.5µA or 100 W m-2 |
---|---|
Sensitivity (voltage) | 1mV or 100 W m-2 |
Working Range | 0-5000 W m-2 |
Linearity error | 0.2% |
Absolute calibration error | typ. less than 3% 5% max |
Response time - voltage output | 10 ns |
Cosine error | 3% |
Azimuth error | less than 1% |
Temperature co-efficient | ±0.1% per °C |
Internal resistance - voltage output | c. 300 ohms |
Longterm stability | ±2% |
Material | Dupont 'Delrin' |
Dimensions | 34 mm diameter 38mm height |
Cable | 2 core screened 7 - 2 - 2C |
Sensor Passband | 400 - 700 nm |
Detector | Silicon photocell |
Filters | Glass type and/or metal interference |
Vaisala Analog Barometers Models PTB100 (A), (B) and PTB101 (B), (C)
The PTB 100 series analog barometers are designed both for accurate barometric measurements at room temperature and for general environmental pressure monitoring over a wide temperature range. The long-term stability of the barometer minimizes the need for field adjustment in many applications.
Physical Specifications
Size | 97 x 60 x 22 mm |
---|---|
Weight | 85g |
The barometers use the BAROCAP* silicon capacitive absolute pressure sensor developed by Vaisala for barometric pressure measurements. The BAROCAP* sensor combines the elasticity characteristics and mechanical stability of a single-crystal silicon with the proven capacitive detection principle.
Sensor Specifications
Model Number | Pressure Range (mbar) | Temperature Range (°C) | Humidity Range | Total Accuracy | |
---|---|---|---|---|---|
PTB100A | 800 to 1060 | -40 to +60 | non-condensing | +20 °C | ± 0.3 mbar |
0 to +40 °C | ± 1.0 mbar | ||||
-20 to +45 °C | ± 1.5 mbar | ||||
-40 to +60 °C | ± 2.5 mbar | ||||
PTB100B | 600 to 1060 | -40 to +60 | non-condensing | +20 °C | ± 0.5 mbar |
0 to +40 °C | ± 1.5 mbar | ||||
-20 to +45 °C | ± 2.0 mbar | ||||
-40 to +60 °C | ± 3.0 mbar | ||||
PTB101B | 600 to 1060 | -40 to +60 | non-condensing | +20 °C | ± 0.5 mbar |
0 to +40 °C | ± 1.5 mbar | ||||
-20 to +45 °C | ± 2.0 mbar | ||||
-40 to +60 °C | ± 3.0 mbar | ||||
PTB101C | 900 to 1100 | -40 to +60 | non-condensing | +20 °C | ± 0.3 mbar |
0 to +40 °C | ± 1.0 mbar | ||||
-20 to +45 °C | ± 1.5 mbar | ||||
-40 to +60 °C | ± 2.5 mbar |
* BAROCAP is a registered trademark of Vaisala
Vaisala Temperature and Relative Humidity HMP Sensors
A family of sensors and instruments (sensors plus integral displays or loggers) for the measurement of air temperature and relative humidity. All are based on a probe containing a patent (HUMICAP) capacitive thin polymer film capacitanece humidity sensor and a Pt100 platinum resistance thermometer. The probes are available with a wide range of packaging, cabling and interface options all of which have designations of the form HMPnn or HMPnnn such as HMP45 and HMP230. Vaisala sensors are incorporated into weather stations and marketed by Campbell Scientific.
All versions operate at up to 100% humidity. Operating temperature ranges vary between models, allowing users to select the version best suited to their requirements.
Further details can be found in the manufacturer's specification sheets for the HMP 45 series, HMP 70 series and HMP 230 series.
Vaisala WA15 Wind Set
The WAA151 combines a WAA151 anemometer and a WAV151 wind vane, to measure wind speed and direction.
WAA151 Anemometer
The anemometer has three lightweight conical cups in the cup wheel. A wind-rotated chopper disc, attached to the cup wheel's shaft, cuts an infrared light beam 14 times per revolution, generating a pulse output from a phototransistor. The output rate can be regarded as directly proportional to the wind speed. However, for the best accuracy, a transfer function is used to compensate starting inertia and slight over-speeding:
Uf = 0.328 + 0.101 x R, where Uf = wind speed and R = output pulse rate
A thermostatically controlled heating element in the shaft tunnel prevents the bearings from freezing in cold environments.
WAV151 Wind Vane
The WAV151 is a counter-balanced optelectronic wind vane. Infrared LEDs and phototransistors are mounted in six orbits around a 6 bit Gray coded disc. Turned by the vane, the disc determines the code received by the phototransistors.
Specifications
WAA151 Anemometer | WAV151 Wind Vane | |
---|---|---|
Measurement range | 0.4-75 m s-1 | 0-300° (at 0.4-75 m s-1) |
Starting threshold | < 0.5 m s-1 | < 0.4 m s-1 |
Resolution | - | ±2.8° |
Accuracy | ±0.17 m s-1 (within range 0.4-60 m s-1) | < ± 3° |
Output | 0-750 Hz square wave | 6 bit parallel Gray code |
Operating temperature | -50°C to 55°C | -50°C to 55°C |
Further details can be found in the manufacturer's specification document.
RRS Discovery AMT17 (D299) - Continuous Underway Meteorology Instrumentation Document
Instrumentation
Manufacturer | Model | Main Function | Serial Number | Comments |
---|---|---|---|---|
Trimble | 4000DS | Position (Latitude and Longitude) | - | - |
Vaisala | Anemometer VAA | Wind speed | P50421 | Serial number is based on other cruises around the same time |
Vaisala | Wind vane WAV151 | Wind direction | S21214 | Serial number is based on other cruises around the same time |
Vaisala | HMP44L | Temperature/Humidity | U1420016 | - |
Vaisala | PTB100A | Pressure | Z4740021 | - |
Kipp & Zonen | CM6B | TIR | 07462 and 07463 | Port and Starboard respectively |
Skye Instruments | SKE510 1204 | PAR | 28558 and 28557 | Port and Starboard respectively |
RRS Discovery AMT17 (D299) - Continuous Underway Meteorological Processing Documentation
Originator's Processing
SurfMet, the UKORS surface water and meteorological suite of instrumentation was run for the duration of the cruise. The data were logged to the RVS format 'surfmet' file.
BODC Data Processing
Reformatting
Data from the full-resolution RVS files were converted to ASCII format and then transferred to BODC's NetCDF format (QXF) under the BODC Underway Data System (BUDS). This transfer involved reducing the data to 60 second intervals using averaging. Directional data were reduced by averaging using a unit circle.
Screening
Each data channel was inspected on a graphics workstation and any spikes or periods of dubious data were flagged. The power of the workstation software was used to carry out comparative screening checks between channels by overlaying data channels. A map of the cruise track was simultaneously displayed in order to take account of the oceanographic context.
Data processing
The data were loaded from the RVS file 'surfmet'.
Relative wind speed and direction were logged from the meteorological package during the cruise. The anemometer was positioned with 0 degrees at the ship's stern. The ship's speed relative to the ground was calculated at BODC using the ship's navigational information and the ship's heading. The speed and heading were then used to correct the wind data for the effect of the ship's movement. Absolute wind speed and direction channels were created.
The raw voltage channels were transferred for the PAR and TIR sensors. These channels were converted to Wm-2 using the calibration coefficients from the calibration certificates supplied to BODC by UKORS. For the PAR sensors the conversion was 1 mV = 100 Wm-2 (conversion x105) and for the TIR sensors the conversion was 1 µV = 1 Wm-2(conversion x106).
Calibrations
PAR
The PAR data were corrected from the effect of shading by merging the calibrated values from the starboard and port PAR sensors into one channel and taking the maximum values from the two sensors (BODC ICALRF = 6135).
Total Irradiance
The TIR data were corrected from the effect of shading by merging the calibrated values from the starboard and port TIR sensors into one channel and taking the maximum values from the two sensors (BODC ICALRF = 6258).
Project Information
The Atlantic Meridional Transect - Phase 2 (2002-2006)
Who was involved in the project?
The Atlantic Meridional Transect Phase 2 was designed by and implemented by a number of UK research centres and universities. The programme was hosted by Plymouth Marine Laboratory in collaboration with the National Oceanography Centre, Southampton. The universities involved were:
- University of Liverpool
- University of Newcastle
- University of Plymouth
- University of Southampton
- University of East Anglia
What was the project about?
AMT began in 1995, with scientific aims to assess mesoscale to basin scale phytoplankton processes, the functional interpretation of bio-optical signatures and the seasonal, regional and latitudinal variations in mesozooplankton dynamics. In 2002, when the programme restarted, the scientific aims were broadened to address a suite of cross-disciplinary questions concerning ocean plankton ecology and biogeochemistry and the links to atmospheric processes.
The objectives included the determination of:
- how the structure, functional properties and trophic status of the major planktonic ecosystems vary in space and time
- how physical processes control the rates of nutrient supply to the planktonic ecosystem
- how atmosphere-ocean exchange and photo-degradation influence the formation and fate of organic matter
The data were collected with the aim of being distributed for use in the development of models to describe the interactions between the global climate system and ocean biogeochemistry.
When was the project active?
The second phase of funding allowed the project to continue for the period 2002 to 2006 and consisted of six research cruises. The first phase of the AMT programme ran from 1995 to 2000.
Brief summary of the project fieldwork/data
The fieldwork on the first three cruises was carried out along transects from the UK to the Falkland Islands in September and from the Falkland Islands to the UK in April. The last three cruises followed a cruise track between the UK and South Africa, only deviating from the traditional transect in the southern hemisphere. During this phase the research cruises sampled further into the centre of the North and South Atlantic Ocean and also along the north-west coast of Africa where upwelled nutrient rich water is known to provide a significant source of climatically important gases.
Who funded the project?
Natural Environment Research Council (NERC)
Data Activity or Cruise Information
Cruise
Cruise Name | D299 (AMT17) |
Departure Date | 2005-10-15 |
Arrival Date | 2005-11-28 |
Principal Scientist(s) | Patrick M Holligan (University of Southampton School of Ocean and Earth Science) |
Ship | RRS Discovery |
Complete Cruise Metadata Report is available here
Fixed Station Information
No Fixed Station Information held for the Series
BODC Quality Control Flags
The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:
Flag | Description |
---|---|
Blank | Unqualified |
< | Below detection limit |
> | In excess of quoted value |
A | Taxonomic flag for affinis (aff.) |
B | Beginning of CTD Down/Up Cast |
C | Taxonomic flag for confer (cf.) |
D | Thermometric depth |
E | End of CTD Down/Up Cast |
G | Non-taxonomic biological characteristic uncertainty |
H | Extrapolated value |
I | Taxonomic flag for single species (sp.) |
K | Improbable value - unknown quality control source |
L | Improbable value - originator's quality control |
M | Improbable value - BODC quality control |
N | Null value |
O | Improbable value - user quality control |
P | Trace/calm |
Q | Indeterminate |
R | Replacement value |
S | Estimated value |
T | Interpolated value |
U | Uncalibrated |
W | Control value |
X | Excessive difference |
SeaDataNet Quality Control Flags
The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:
Flag | Description |
---|---|
0 | no quality control |
1 | good value |
2 | probably good value |
3 | probably bad value |
4 | bad value |
5 | changed value |
6 | value below detection |
7 | value in excess |
8 | interpolated value |
9 | missing value |
A | value phenomenon uncertain |
B | nominal value |
Q | value below limit of quantification |