Search the data

Metadata Report for BODC Series Reference Number 1836790


Metadata Summary

Data Description

Data Category Bathymetry
Instrument Type
NameCategories
Trimble Applanix POSMV global positioning system  Differential Global Positioning System receivers; inertial navigation systems; Kinematic Global Positioning System receivers
Kongsberg (Simrad) EA640 Echosounder  single-beam echosounders
Instrument Mounting research vessel
Originating Country United Kingdom
Originator Unknown
Originating Organization British Oceanographic Data Centre, Liverpool
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) FixO3
 

Data Identifiers

Originator's Identifier DY077_PRODQXF_NAV
BODC Series Reference 1836790
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2017-04-14 08:33
End Time (yyyy-mm-dd hh:mm) 2017-05-01 07:08
Nominal Cycle Interval 60.0 seconds
 

Spatial Co-ordinates

Southernmost Latitude 48.67317 N ( 48° 40.4' N )
Northernmost Latitude 50.89167 N ( 50° 53.5' N )
Westernmost Longitude 16.94683 W ( 16° 56.8' W )
Easternmost Longitude 1.29183 W ( 1° 17.5' W )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor or Sampling Depth -
Maximum Sensor or Sampling Depth -
Minimum Sensor or Sampling Height -
Maximum Sensor or Sampling Height -
Sea Floor Depth -
Sea Floor Depth Source -
Sensor or Sampling Distribution -
Sensor or Sampling Depth Datum -
Sea Floor Depth Datum -
 

Parameters

BODC CODERankUnitsTitle
AADYAA011DaysDate (time from 00:00 01/01/1760 to 00:00 UT on day)
AAFDZZ011DaysTime (time between 00:00 UT and timestamp)
ALATGP011DegreesLatitude north relative to WGS84 by unspecified GPS system
ALONGP011DegreesLongitude east relative to WGS84 by unspecified GPS system
APEWGP011Centimetres per secondEastward velocity of measurement platform relative to ground surface by unspecified GPS system
APNSGP011Centimetres per secondNorthward velocity of measurement platform relative to ground surface by unspecified GPS system
DSRNCV011KilometresDistance travelled
HEADCM011DegreesOrientation (horizontal relative to true north) of measurement device {heading}
MBANZZ011MetresSea-floor depth (below instantaneous sea level) {bathymetric depth} in the water body by echo sounder

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database

RRS Discovery cruise DY077 navigation quality control report

Bathymetry

The channel has been flagged throughout the cruise where noise in the channel moves away from the baseline bathymetry. Drop outs of zero values were converted to the absent data value. (BODC assessment)


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

Kongsberg EA640 Single Beam Echosounder

The EA640 single beam echosounder comprises a standard EA600 (fitted with a standard transducer) and an additional, non-standard 10 kHz transducer.

The standard EA600 is a single beam echosounder with full ocean depth capability designed for bathymetric surveys. It measures water depth by monitoring the travel time of an acoustic signal that is transmitted from the ship, reflected off the seabed and received back at the ship.

The main components of the system are hull-mounted transducers linked to general purpose transceivers (GPTs). Up to four GPTs, each controlling one or more transducers, may be operated simultaneously. The GPT generates a signal, which is transmitted into the water column as an acoustic pulse by the transducer array, and the returning echo is recorded by the GPT. GPTs are in turn linked to a combined display and processor, where adjustments (such as sound-speed corrections) may be applied to the data. Available frequencies span from 12 to 710 kHz, and each GPT may operate at a separate frequency. A variety of transducers is available for water depths up to 11,000 m.

The EA600 stores all data internally but has a USB port which allows the possibility of connecting a CD-ROM/DVD drive to read and write the data. All echo data can be stored as files: bitmap, sample, depth or sidescan data.

In deeper waters, the EA600 supports a multipulse function, allowing for a higher pinger rate. While on passive mode, the pinger is normally attached to a device, with the purpose of tracking and displaying its current depth.

Specifications for a standard EA600 echosounder

Maximum Ping rate 20 Hz
Resolution 1 cm
Accuracy

1 cm at 710 and 200 kHz
2 cm at 120 kHZ
5 cm at 38 kHz
10 cm at 18 kHz
20 cm at 12kHz

Operating frequencies 1 or 2 kHz
Single Beam frequencies

12, 18, 33, 38, 50, 70,
120, 200, 210 or 710 kHz

Dynamic range 160 dB

Further details can be found in the manufacturer's specification sheet for the standard EA600 system.

RRS Discovery cruise DY077 navigation instrumentation

Instrumentation

Manufacturer Model Function Comments
Trimble/Applanix POSMV DGPS and attitude Secondary source of position for science. Used as primary source of GPS at BODC.
Kongsberg Maritime Simrad EA640 Single-beam echo sounder (hull) Corrected for constant sound velocity of 1500 m/s.
Kongsberg Maritime Simrad EM122 Multi-beam echo sounder (shallow) Corrected for constant sound velocity of 1500 m/s.

Trimble Applanix Position and Orientation Systems for Marine Vessels (POSMV)

The Position and Orientation Systems for Marine Vessels (POSMV) is a real time kinematic (RTK) and differential global positioning system (DGPS) receiver for marine navigation. It includes an inertial system that provides platform attitude information. The instrument provides accurate location, heading, velocity, attitude, heave, acceleration and angular rate measurements.

There are three models of Applanix POSMV, the POS MV 320, POS MV Elite and the POS MV WaveMaster. POS MV 320 and POS MV WaveMaster are designed for use with multibeam sonar systems, enabling adherence to IHO (International Hydrographic Survey) standards on sonar swath widths of greater than ± 75 degrees under all dynamic conditions. The POS MV Elite offers true heading accuracy without the need for dual GPS installation and has the highest degree of accuracy in motion measurement for marine applications.

Specifications

POS MV 320
Componenet DGPS RTK GPS Outage
Position 0.5 - 2 m 1 0.02 - 0.10 m 1 <2.5 m for 30 seconds outages, <6 m for 60 seconds outages
Roll and Pitch 0.020° 0.010° 0.020°
True Heading 0.020° with 2 m baseline
0.010° with 4 m baseline
- Drift <1° per hour (negligible for outages <60 seconds)
Heave 5 cm or 5% 2 5 cm or 5% 2 5 cm or 5% 2
POS MV WaveMaster
Accuracy DGPS RTK GPS Outage
Position 0.5 - 2 m 1 0.02 - 0.10 m 1 <3 m for 30 seconds outages, <10 m for 60 seconds outages
Roll and Pitch 0.030° 0.020° 0.040°
True Heading 0.030° with 2 m baseline - Drift <2° per hour
Heave 5 cm or 5% 2 5 cm or 5% 2 5 cm or 5% 2
POS MV Elite
Accuracy DGPS RTK GPS Outage
Position 0.5 - 2 m 1 0.02 - 0.10 m 1 <1.5 m for 60 seconds outages DGPS, <0.5 m for 60 seconds outage RTK
Roll and Pitch 0.005° 0.005° 0.005°
True Heading 0.025° 0.025° Drift <0.1° per hour (negligible for outages <60 seconds)
Heave 3.5 cm or 3.5% 2 3.5 cm or 3.5% 2 3.5 cm or 3.5% 2

1 One Sigma, depending on quality of differential corrections
2 Whichever is greater, for periods of 20 seconds or less

Further details can be found in the manufacturer's specification sheet.

RRS Discovery cruise DY077 navigation data processing procedures

Originator's Data Processing

The data were logged by the TECHSAS (TECHnical and Scientific sensors Acquisition System) system into daily NetCDF files. The TECHSAS system is used as the main data logging system on NMF-SS operated reserach vessels. The daily TECHSAS NetCDF navigation and bathymetry files provided to BODC were used for BODC processing. Data were additionally logged into the RVS Level-C format files which have been archived at BODC.

Files delivered to BODC

Filename Content description Format Interval Start date/time (UTC) End date/time (UTC) Comments
yyyymmdd-090000-position-Applanix_GPS_DY1.gps Position (latitude and longitude) (from POSMV) NetCDF ~ 1 sec. 12/04/2017 09:38:10 01/05/2017 07:08:21 -
yyyymmdd-090000-gyro-GYRO1_DY1.gyr True heading (from POSMV Gyro) NetCDF ~ 1 sec. 12/04/2017 09:38:11 01/05/2017 07:08:22 Most accurate source of heading from the ship's gyros
yyyymmdd-090000-EA600-EA640_DY1.EA600 Depths from central beam EA640 single-beam echosounder NetCDF <1 second 12/04/2017 09:38:16 01/05/2017 07:08:22  
yyyymmdd-090000-sb_depth-EM120_DY1.depth Depths from the EM122 multi-beam echosounder NetCDF ~15 sec. 12/04/2017 10:10:31 Not recorded

Only two files contained few data in the TECHSAS files

BODC Data Processing

Data were banked at BODC following standard banking procedures. Data were averaged to 60 second intervals.

The originator's variables were mapped to appropriate BODC parameter codes as follows:

yyyymmdd-090000-position-Applanix_GPS_DY1.gps

Originator's variable Originator's units Description BODC Code BODC Units Unit conversion Comments
measureTS day since 1899-12-30T00:00:00 UTC Measure timestamp       Not transferred
gndspeed knot Ground speed       Not transferred.
gndcourse Degrees Ground course       Not transferred.
alt meters Altitude       Not transferred.
lat decimal degrees Latitude north ALATGP01 decimal degrees none  
prec dimensionless Precision       Not transferred
lon decimal degrees Longitude east ALONGP01 decimal degrees none  
Heading degrees True heading       Not transferred
Mode dimensionless GPS mode       Not transferred
time days since 1899-12-30 00:00:00 UTC Acquisition time       Not transferred

yyyymmdd-090000-gyro-GYRO1_DY1.gyr

Originator's variable Originator's units Description BODC Code BODC Units Unit conversion Comments
heading Degrees true True heading HEADCM01 degrees none  
time days since 1899-12-30 00:00:00 UTC acquisition time       Not transferred.

yyyymmdd-090000-sb_depth-EM120_DY1.depth

Originator's variable Originator's units Description BODC Code BODC Units Unit conversion Comments
freq kHz Frequency       Not transferred
snd meters sounding       Not transferred
time days since 1899-12-30 00:00:00 UTC acquisition time       Not transferred

yyyymmdd-090000-EA600-EA640_DY1.EA600

Originator's variable Originator's units Description BODC Code BODC Units Unit conversion Comments
DepthF fathom Depth in fathoms       Not transferred
depthm meters Depth in meters MBANZZ01 meters none Single beam
depthft feet Depth in feet       Not transferred
time days since 1899-12-30 00:00:00 UTC acquisition time       Not transferred

All the reformatted data were visualised using the in-house EDSERPLO software. Suspect data were marked by adding an appropriate quality control flag.

Position

A check was run on positional data to identify gaps and improbable values (through the calculation of speed). There were gaps in the positional data and these gaps were present as the Techsas data acquisition system had to be turned off during the cruise to investigate a storage issue on the Techsas virtual machine. During BODC processing, these gaps were linearly interpolated to remove them.

Ship Velocities

Ship velocities were calculated from the main latitude and longitude channels using standard BODC procedures.

GEBCO

GEBCO bathymetry was added to the file using the main latitude and longitude channels.

Distance Run

Distance run was calculated from the main latitude and longitude channels, starting from the beginning of the file, using BODC standard procedures.

Bathymetry

Only a small amount of data was provided from the EM122 multi-beam echosounder and therefore has not been transferred. The EA640 single beam echosounder has been carried through. The EA640 single beam echosounder used a constant sound velocity of 1500 ms-1 throughout the water column to allow it to be corrected for sound velocity in post processing.

Calibration

No field calibrations have been applied.


Project Information

Fix03 - Fixed-Point Open Ocean Observatories

Fixed point Open Ocean Observatory network (FixO3) is a EUR7 million, four-year (2013-2017) research programme network including 29 partners from academia, research institutions and small and medium enterprises (SME). In addition, 12 international experts from a wide range of disciplines comprise an Advisory Board.

Background

FixO3 is coordinated by the National Oceanography Centre, UK, and seeks to integrate European open ocean fixed point observatories and to improve access to these key installations for the broader community. These will provide multidisciplinary observations in all parts of the oceans from the air-sea interface to the deep seafloor. FixO3 will build on the significant advances achieved through the FP7 programmes EuroSITES, ESONET and CARBOOCEAN.

Open ocean observation is currently a high priority for European marine and maritime activities. FixO3 will provide important data on environmental products and services to address the Marine Strategy Framework Directive and in support of the EU integrated Maritime Policy.

The FixO3 network will provide free and open access to in situ fixed point data of the highest quality. It will provide a strong integrated framework of open ocean facilities in the Atlantic from the Arctic to the Antarctic and throughout the Mediterranean, enabling an integrated, regional and multidisciplinary approach to understand natural and anthropogenic change in the ocean.

The programme will be achieved through:

1. Co-ordination activities to integrate and harmonise the current procedures and processes. Strong links will be fostered with the wider community across academia, industry, policy and the general public through outreach, knowledge exchange and training.

2. Support actions to offer a) access to observatory infrastructures to those who do not have such access, and b) free and open data services and products.

3. Joint research activities to innovate and enhance the current capability for multidisciplinary in situ ocean observation.

Further details are available on the FixO3 website.

Participants

29 different partners involved in FixO3. These institutions are;

  • Natural Environment Research Council (NERC)
  • Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS)
  • Hellenic Centre for Marine Research (HCMR)
  • MARUM, Unviersity of Bremen (UniHB)
  • Universitetet I Bergen (UiB)
  • Universitetet I Tromsø (UiT)
  • Alfred Wegener Institut für Polarund Meeresforschung (AWI)
  • University of Exeter (UNEXE)
  • SLR Consulting (SLR)
  • Institut français de recherché pour l'exploitation de la mer (IFREMER)
  • Blue Lobster IT ltd. (BLIT)
  • Istituto Nazionale di Geofisica e Vulcanologia (INGV)
  • Marine Institute (MI)
  • The University Court of The University of Aberdeen (UNIABDN)
  • Centre National de la Recherche Scientifique (CNRS)
  • GEOMAR Helmholtz Centre for Ocean Research Kiel (GEOMAR)
  • Universidad de las Palmas de Gran Canaria (ULPGC)
  • University of St Andrew (USTAN)
  • Spanish Institute of Oceanography (IEO)
  • NKE Instrumentation (NKEI)
  • Instituto Nacional de Desenvolvimento das Pescas (INDP)
  • Universitat Politècnica de Catalunya (UPC)
  • Texcel Technology Plc (TEXCEL)
  • University of Gothenburg (UGOT)
  • 52°North(52°North)
  • Consiglio Nazionale delle Richerche (CNR)
  • Stichting Koninklijk Nederlands Instituut Voor Zeeonderzoek (NIOZ)
  • Imar- Instituto do Mar (IMAR)

Research details

Overall, twelve Work Packages have been funded by the FixO3 programme. These are described in brief below:

  • Work Package 1: Project Management.
    - To effectively manage FixO3 to maximise the production of results in the most cost effective manner and to the proposed timescales.
    - To facilitate communication and integration between the partners and disseminate information about the project to the wider community.
    - To identify and resolve disputes between partners.
    - To keep the project on track, and ensure timely interaction and delivery of reports to the European Commission.

  • Work Package 2: Technical harmonization.
    - To review the current status of existing systems in operational use considered in the project;
    - To synthesize the characteristics of infrastructures offering TNA;
    - To increase the high-frequency measurements on fixed platforms;
    - To define the best technical practices for compatible, robust and cost-effective systems on a variety of fixed applications;
    - To promote tests of new or prototype instruments on a non-operational basis;
    - To define procedure for harmonizing and merging quality assessed high frequency fixed platform data;
    - To define procedures and technological solutions for integration and testing of new sensors on these systems;
    - To increase the traceability, quality and reliability of sensor metadata and data products.

  • Work Package 3: Procedural harmonization.
    To harmonise procedures across the network the following steps will be undertaken:
    1) Assessment of operational procedures for sustained Eulerian observations
    2) Further development of principles of 'best practice'
    3) Development of the FixO3 observatories 'label' building on ESONET and in collaboration with JERICO

  • Work Package 4: Data management and harmonization.
    To harmonise data policies and to provide a formal basis for data exchange between FixO3 infrastructures.
    - To improve standardisation, interoperability and compliance with major international initiatives
    - To harmonise data management and standardisation efforts with other European and international marine data and observatory infrastructures.
    - To foster the cooperation with the marine carbon observation community by disseminating FixO3 data via relevant international infrastructures and data centres such as the ICOS Ocean Thematic Centre
    To coordinate, harmonise and optimize the implementation and integration of Service Activities provided by the different partners in WP10 and to strengthen and monitor the dissemination of knowledge.

  • Work Package 5: Innovation through industry.
    - Promote interaction between the ocean observatory research community and the commercial sector
    - Proactively promote FixO3 and wider open ocean observatory products and services to the commercial sector
    - Identify innovative products and services within the ocean observatory community and develop targeted IPR agreements to encourage interest by the commercial sector.

  • Work Package 6: Interface with policy and intergovernmental bodies.
    - To link the FixO3 efforts to international and intergovernmental bodies and activities.
    - To ensure visibility and facilitate further implementation and long-term stewardship of deep-ocean fixed-point time series observations
    - To develop a strategy for the future.

  • Work Package 7: International and European networking of fixed-point observatories
    - To consolidate and promote the synergy between European research groups and institutions.
    - To enhance the interaction with industry
    - To link ocean scientists and engineers into an international team in marine science.
    - Management of TNA activities.

  • Work Package 8: Outreach and training.
    - To engage with, educate and inform public, scientific and policy user groups.
    - To develop an informative and interactive suite of complimentary tools that educates and engages public, scientific and policy user groups to maximise engagement with end users.
    - To produce educational and informational resources that deliver knowledge to end user groups
    - To deliver a series of training opportunities that informs, educates and promotes best practices to professional users of hardware, data and data products.

  • Work Package 9: Transnational access to FixO3 infrastructures
    - To support external scientific users by providing coordinated, free-of-charge, transnational access to fixed open-ocean observatories, including:
    1) Ocean surface, water column and seafloor observatory installations and systems considered for transnational access under this proposal
    2) One shallow water test site able to make practical and fast tests of instruments, systems, procedures and new technologies applicable to fixed open-ocean observatories that will be accessible under TNA

  • Work Package 10: Service activities: Access to data products and knowledge
    - To provide access to the data products and knowledge derived from most of the observatories which compromise the FixO3 network.

  • Work Package 11: Optimisation of ocean observing capability
    - To carry out research on the specification for an optimum observational network of FixO3 platforms, integrated and complemented by other platforms.

  • Work Package 12: Research and development on critical observatory functions
    - To enhance the capability of the FixO3 infrastructures to make very high quality observations
    - To develop a new low energy consuming platform design in order to promote more sensors per platform and extension capacities.

Observatories

FixO3

Observatory Location Details
Antares Ligurian Sea, NW Mediterranean Sea Multidisciplinary, permanent marine observatory proving high-bandwidth real-time data transmission from deep-sea for geosciences and marine environmental sciences. Site is part of the MOOSE network providing real-time data transmission through two deep cabled moorings. These moorings are complemented by standalone mooring near the junction box. Physical and biogeochemical parameters recorded by autonomous sensors with regular maintenance. In addition, monthly ship occupation for CTD profiles and seawater collection. Cabled extension of the neutrino telescope is offering connectors for direct link to shore in addition to operational seismometer already in place.
Biscay AGL South East Bay of Biscal Fully equipped ODAS buoy transmitting data in real-time plus monthly hydrographical and biogeochemical sampling of water column from research vessel. Buoy obtains core measurements of meteorological, physical, biogeochemical and ecological parameters with high significance to weather forecasting and climate monitoring. Data immediately provided through IEO web page (hourly).
CIS Central Irminger Sea, Subpolar North Atlantic. Characterized by particular deep winter mixed layer depth. Mixed layer deepening is promoted through the combination of the cyclonic circulation of the Irminger gyre and strong surface buoyancy forcing in winter. Focus of the interdisciplinary research is on the biogeochemical cycling in a potential deep water formation area. The physical background field (temperature, salinity, currents) of the upper 1500m is surveyed with a number of sensors. Moreover, biogeochemical sensors (O2, Chl-a, zooplankton) is measured in mixed layer.
CVOO Tropical Eastern North Atlantic A mooring and a small vessel maintaining the time-series continuity.
DELOS (Deep-Ocean Environmental Long-term Observatory System) A Angola, between the Congo and Kwanza rivers. Environmental monitoring platform locations in the near field - within 50m of a sea floor well. The platform hosts a camera module, oceanographic module and acoustic module, each with multiple instruments, plus a sediment trap module.
DELOS (Deep-Ocean Environmental Long-term Observatory System) B Angola, between the Congo and Kwanza rivers. Environmental monitoring platform in the far field (~16km from sea floor infrastructure). On a flat <1° slope on finely sedimented sea floor within petroleum lease Block 18. The platform hosts a camera module, oceanographic module and acoustic module, each with multiple instruments, plus a sediment trap module.
DYFAMED Ligurian Sea - a passage between Eastern and Western Mediterannean Sea. Multidisciplinary site within MOOSE network. A strong influence of atmospheric deposition influencing productivity and particle export monitored by atmospheric survey (Cap Ferrat) and two permanent sediment traps. Physical parameters recorded from surface to deep waters through monthly visits and permanent deep mooring. Biogeochemical parameters obtained monthly during ship visits. The site is also a way point of gliders and used for cross-validation of bio-parameters (nitrate, oxygen).
E1-M3A Eastern Mediterranean, Crete Multidisciplinary mooring, an area of open sea conditions, characterized as extremely oligotrophic where dense waters with intermediate and deep characteristics are formed.
E2-M3A South Adriatic Pit (Eastern Mediterranean Sea). Two moorings (surface buoy and sub-surface mooring line) and designed to monitor physical and biogeochemical processes in the water column from the surface down to the bottom (approximately 1220m). The surface buoy collects air/sea meteorological and physical measurements in the surface layer (2m depth). The secondary deep mooring instead, is equipped with current meters (RDI-ADCP and Seaguard-RCM), CTD's with dissolved oxygen and optical sensors. New biochemical sensors (CO2 and pH) were deployed during the first year of the FixO3 project to enhance the payload of the site.
ESTOC Central Eastern Atlantic Open ocean site with over 15 years of continuous surface and mid-water meteorological, physical and biogeochemical monitoring.
FILCHNER RONNE Filcher sill in the Souther Weddell Sea Long-term monitoring of Ice Shelf Water (ISW) Overflow, established in 1977 and continuing to deliver the longest existing marine time series from Antarctica. The position for the observatory S2 proved to be a key site for monitoring the ISW overflow produced beneath the huge Filchner Ronne Ice Shelf and is selected to be a part of the global net of monitoring sites under CLIVAR (www.clivar.org) and OceanSITES (www.oceansites.org). Time series of current speed and direction, temperature and salinity exist back to 1977. Continuous observation of dissolved oxygen started in 2009.
FRAM Fram Strait Array of moorings and permanent sampling sites across the Fram Strait. Installed to capture the exchange of Atlantic and Arctic waters, and to study the temporal development of an Arctic Marine ecosystem. enables year-round multidisciplinary long-term observations, partially with near real-time data access.
LION Gulf of Lion Deep-sea mooring aims to observe the winter convection affecting the north-western Mediterranean Sea water circulation and deep-sea ecosystem (physical data). The mooring is deployed near the ODAS meteorological surface buoy (Gulf of Lion) and integrated in the MOOSE network.
MOMAR Mid-Atlantic - Hydrothermal vent field Lucky Strike Multidisciplinary (fauna, fluid chemistry, seismicity and ground deformation); near real time communication through acoustic link, buoy and satellite. EMSO observatory node, in operation since 2010, comprises an oceanographic mooring and nested arrays of seisometers, pressure probes, temperature probes and chemical sensors in vent fluids, as well as a camera and colonization devices for faunal and microfaunal studies. Satellite transmission of a data subset, accessible on an EMSO-related server. Yearly maintenance cruises scheduled until 2015. Upgrades of system planned for 2014 with several new connection nodes accessible to FixO3 collaborations.
NEMO-SN1 Catania (Sicily) Multidisciplinary (geophysics, oceanography, bioacoustics) observatory. Deep-sea real-time multi-parameter observatory is currently being re-deployed after refurbishment and installations of new electronics.
NOC North Atlantic Sediment trap mooring with current sensors in the least productive gyre in the North Atlantic, influence to a degree by dust supply from the Sahara desert.
OBSEA Western Mediterranean The main objective for OBSEA is to be a test bed for the development of oceanographic instrumentation while being a shallow-water observatory providing real time data and database with historical values.
PAP North Atlantic Array of moorings covering the entire water column and benthos with associated repeat ship occupations for process studies and collections not possible autonomously (e.g. benthic megafauna). Longest running multidisciplinary open ocean sustained observatory delivering atmospheric, physical, biogeochemical ocean datasets in near real time.
PYLOS Adriatic and Eastern Mediterranean basins. Multidisciplinary observatory mooring. Very geologically active area, with lots of earthquakes and landslides as well as a potential source of Tsunamis that might affect the Easter Mediterranean Sea.
SOG South Atlantic A sediment trap mooring with current sensors, in the middle of the least productive gyre in the South Atlantic (in contrast to NOG). It is not influenced by dust supply.
SOR Mid-Atlantic RIdge, South of Svalbard. Single location mooring. A component of NOON (Norwegian Ocean Observatory Network) planned as a demo mission in 2012, then as a sustained observatory in 2016.
Station M Norwegian Sea Ocean Weather Station M (OWS M) has been an ocean weather station since 1948. At present there is a mooring and surface buoy measuring hydrography, O2, chlorophyll and carbon parameters. Real-time and delayed-mode capabilities. This site provides the longest existing homogeneous time series from deep ocean. The facility presented here is the mooring situated between 150 and 2000m.
W1-M3A Ligurian Sea A single multidisciplinary observatory mooring with real-time and delayed mode capability. The W1-M3A observing system is composed by a large spar buoy and a sub-surface mooring periodically deployed close to the main buoy depending on specific research needs. The W1-M3A large spar buoy specifically designed for air-sea interaction studies and the collection of meteorological data even in rough sea. Stability is the basic feature of this type of buoy with respect to the other more classical approach based on discus-shaped buoys. The buoy was specifically designed as a stable measuring platform since its total mass, the unity buoyancy at the sea level, and presence of a damping disk allow for negligible sensitivity of sea heave and height.

The British Oceanographic Data centre store data from PAP, NOG and SOG as of January 2018.


Data Activity or Cruise Information

Cruise

Cruise Name DY077
Departure Date 2017-04-14
Arrival Date 2017-05-01
Principal Scientist(s)Richard Stephen Lampitt (National Oceanography Centre, Southampton)
Ship RRS Discovery

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification