Search the data

Metadata Report for BODC Series Reference Number 1878590


Metadata Summary

Data Description

Data Category Water sample data
Instrument Type
NameCategories
Niskin bottle  discrete water samplers
Metrohm 794 Basic Titrino Titrator  titrators
Instrument Mounting lowered unmanned submersible
Originating Country United Kingdom
Originator Mr Jorg Frommlet
Originating Organization National Oceanography Centre, Southampton
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) Oceans 2025
 

Data Identifiers

Originator's Identifier D332_CTD_DOXY_697:332067
BODC Series Reference 1878590
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2008-09-13 22:08
End Time (yyyy-mm-dd hh:mm) -
Nominal Cycle Interval -
 

Spatial Co-ordinates

Latitude 59.18082 N ( 59° 10.8' N )
Longitude 39.55368 W ( 39° 33.2' W )
Positional Uncertainty 0.05 to 0.1 n.miles
Minimum Sensor or Sampling Depth 36.7 m
Maximum Sensor or Sampling Depth 3023.5 m
Minimum Sensor or Sampling Height 8.8 m
Maximum Sensor or Sampling Height 2995.6 m
Sea Floor Depth 3032.3 m
Sea Floor Depth Source GEBCO1401
Sensor or Sampling Distribution Unspecified -
Sensor or Sampling Depth Datum Unspecified -
Sea Floor Depth Datum Unspecified -
 

Parameters

BODC CODERankUnitsTitle
ADEPZZ011MetresDepth (spatial coordinate) relative to water surface in the water body
BOTTFLAG1Not applicableSampling process quality flag (BODC C22)
DOXYWITX1Micromoles per litreConcentration of oxygen {O2 CAS 7782-44-7} per unit volume of the water body [dissolved plus reactive particulate phase] by Winkler titration
ROSPOSID1DimensionlessBottle rosette position identifier
SAMPRFNM1DimensionlessSample reference number

Definition of BOTTFLAG

BOTTFLAGDefinition
0The sampling event occurred without any incident being reported to BODC.
1The filter in an in-situ sampling pump physically ruptured during sample resulting in an unquantifiable loss of sampled material.
2Analytical evidence (e.g. surface water salinity measured on a sample collected at depth) indicates that the water sample has been contaminated by water from depths other than the depths of sampling.
3The feedback indicator on the deck unit reported that the bottle closure command had failed. General Oceanics deck units used on NERC vessels in the 80s and 90s were renowned for reporting misfires when the bottle had been closed. This flag is also suitable for when a trigger command is mistakenly sent to a bottle that has previously been fired.
4During the sampling deployment the bottle was fired in an order other than incrementing rosette position. Indicative of the potential for errors in the assignment of bottle firing depth, especially with General Oceanics rosettes.
5Water was reported to be escaping from the bottle as the rosette was being recovered.
6The bottle seals were observed to be incorrectly seated and the bottle was only part full of water on recovery.
7Either the bottle was found to contain no sample on recovery or there was no bottle fitted to the rosette position fired (but SBE35 record may exist).
8There is reason to doubt the accuracy of the sampling depth associated with the sample.
9The bottle air vent had not been closed prior to deployment giving rise to a risk of sample contamination through leakage.

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

Metrohm 794 Basic Titrino Titrator

The Metrohm 794 Basic Titrino is an all-purpose titrator used for dynamic and monotonic determination of solution concentrations. Titration modes of the instrument are constant or depending on the titration curve variable dosing of the titration reagent and Endpoint-Titration. The operation modes include; Dynamic Equivalence-point Titration (DET), Monotonic Equivalence-point Titration (MET), Set Endpoint Titration (SET), pH Calibration (CAL), Measuring (MEAS) and Titration Procedure (TIP) which links various commands and methods to a titration procedure. All operating modes of the Titrino can be combined to perform extensive analytical sequences.

Ready-to-start methods for the most common applications are stored in the internal method memory for example; the determination of the hardness of drinking water, diazotation of sulfonamides and primary amines, and determination of the peroxid number of edible oil sand fats. The operator is free to modify and overwrite the methods or to create and store new titration sequences.

The instrument consists of an exchange unit with a small display, which can be connected to either a magnetic stirrer (728), propeller rod stirrer (802) or Ti stand (703 or 727). Data exchange with a PC is possible with the Metrodata VESUV Software and with Metrodata TiNet Software complete keypad remote control, data acquisition and evaluation via PC is enabled.

Further details can be found in the manufacturer's user manual.

Niskin Bottle

The Niskin bottle is a device used by oceanographers to collect subsurface seawater samples. It is a plastic bottle with caps and rubber seals at each end and is deployed with the caps held open, allowing free-flushing of the bottle as it moves through the water column.

Standard Niskin

The standard version of the bottle includes a plastic-coated metal spring or elastic cord running through the interior of the bottle that joins the two caps, and the caps are held open against the spring by plastic lanyards. When the bottle reaches the desired depth the lanyards are released by a pressure-actuated switch, command signal or messenger weight and the caps are forced shut and sealed, trapping the seawater sample.

Lever Action Niskin

The Lever Action Niskin Bottle differs from the standard version, in that the caps are held open during deployment by externally mounted stainless steel springs rather than an internal spring or cord. Lever Action Niskins are recommended for applications where a completely clear sample chamber is critical or for use in deep cold water.

Clean Sampling

A modified version of the standard Niskin bottle has been developed for clean sampling. This is teflon-coated and uses a latex cord to close the caps rather than a metal spring. The clean version of the Levered Action Niskin bottle is also teflon-coated and uses epoxy covered springs in place of the stainless steel springs. These bottles are specifically designed to minimise metal contamination when sampling trace metals.

Deployment

Bottles may be deployed singly clamped to a wire or in groups of up to 48 on a rosette. Standard bottles and Lever Action bottles have a capacity between 1.7 and 30 L. Reversing thermometers may be attached to a spring-loaded disk that rotates through 180° on bottle closure.

RRS Discovery Cruise 332 (D332) Dissolved Oxygen and nutrients from CTD bottles

Originator's Data Acquisition and Processing

Sampling Strategy

A total of 74 CTD casts, excluding aborted casts, were completed during the cruise. These included three casts for calibration of the NIOZ MMP moorings. All casts used the 24-way stainless steel CTD frame. There were no major operational issues with the CTD suite during the cruise. Further methodology can be found in the cruise report.

Instrument description and methodology

Measurements of dissolved oxygen in discrete water samples were performed, using Winkler titration. The Winkler titration is based on the quantitative oxidization of iodide ions to iodine by the oxygen in a sea water sample. The amount of iodine generated in this fashion is determined by titration with a standard thiosulfate solution. Water samples from various depths were analysed regularly with this method, the depths being chosen based on observed minima and maxima in the oxygen profile. The analysis of micro-molar concentrations of nitrate+nitrite (hereinafter nitrate), phosphate and silicate was undertaken using a Scalar Sanplus Autoanalyser following the methods described in the cruise report.

Data processing

Full details of data processing for dissolved oxygen, nitrates, phosphates and silicates in cruise report.

BODC Data Processing

Data arrived at BODC in pstar format files, one for each CTD cast. Data received were loaded into the BODC database using established BODC data banking procedures. The following table shows how the variables supplied were mapped to BODC parameter codes. Duplicate samples taken from one Niskin 20L water bottle were averaged, so that the file contained only one measurement per Niskin water bottle sampled.

Originator's Parameter Originator's Units Parameter description BODC Parameter code BODC Units Comments
botsal pss-78 Practical salinity of the water body by bench salinometer PSALBSTX Dimensionless -
botoxy µmol l-1 Concentration of oxygen per unit volume of the water body DOXYWITX µmol l-1 -
no3 µmol l-1 Concentration of nitrate+nitrite {NO3+NO2} per unit volume of the water body NTRZAAZX µmol l-1 -
sio3 µmol l-1 Concentration of silicate per unit volume of the water body SLCAAAZX µmol l-1 -
po4 µmol l-1 Concentration of phosphate {PO43- CAS 14265-44-2} per unit volume of the water body PHOSAAZX µmol l-1 -

Project Information

Oceans 2025 - The NERC Marine Centres' Strategic Research Programme 2007-2012

Who funds the programme?

The Natural Environment Research Council (NERC) funds the Oceans 2025 programme, which was originally planned in the context of NERC's 2002-2007 strategy and later realigned to NERC's subsequent strategy (Next Generation Science for Planet Earth; NERC 2007).

Who is involved in the programme?

The Oceans 2025 programme was designed by and is to be implemented through seven leading UK marine centres. The marine centres work together in coordination and are also supported by cooperation and input from government bodies, universities and other partners. The seven marine centres are:

  • National Oceanography Centre, Southampton (NOCS)
  • Plymouth Marine Laboratory (PML)
  • Marine Biological Association (MBA)
  • Sir Alister Hardy Foundation for Marine Science (SAHFOS)
  • Proudman Oceanographic Laboratory (POL)
  • Scottish Association for Marine Science (SAMS)
  • Sea Mammal Research Unit (SMRU)

Oceans2025 provides funding to three national marine facilities, which provide services to the wider UK marine community, in addition to the Oceans 2025 community. These facilities are:

  • British Oceanographic Data Centre (BODC), hosted at POL
  • Permanent Service for Mean Sea Level (PSMSL), hosted at POL
  • Culture Collection of Algae and Protozoa (CCAP), hosted at SAMS

The NERC-run Strategic Ocean Funding Initiative (SOFI) provides additional support to the programme by funding additional research projects and studentships that closely complement the Oceans 2025 programme, primarily through universities.

What is the programme about?

Oceans 2025 sets out to address some key challenges that face the UK as a result of a changing marine environment. The research funded through the programme sets out to increase understanding of the size, nature and impacts of these changes, with the aim to:

  • improve knowledge of how the seas behave, not just now but in the future;
  • help assess what that might mean for the Earth system and for society;
  • assist in developing sustainable solutions for the management of marine resources for future generations;
  • enhance the research capabilities and facilities available for UK marine science.

In order to address these aims there are nine science themes supported by the Oceans 2025 programme:

  • Climate, circulation and sea level (Theme 1)
  • Marine biogeochemical cycles (Theme 2)
  • Shelf and coastal processes (Theme 3)
  • Biodiversity and ecosystem functioning (Theme 4)
  • Continental margins and deep ocean (Theme 5)
  • Sustainable marine resources (Theme 6)
  • Technology development (Theme 8)
  • Next generation ocean prediction (Theme 9)
  • Integration of sustained observations in the marine environment (Theme 10)

In the original programme proposal there was a theme on health and human impacts (Theme 7). The elements of this Theme have subsequently been included in Themes 3 and 9.

When is the programme active?

The programme started in April 2007 with funding for 5 years.

Brief summary of the programme fieldwork/data

Programme fieldwork and data collection are to be achieved through:

  • physical, biological and chemical parameters sampling throughout the North and South Atlantic during collaborative research cruises aboard NERC's research vessels RRS Discovery, RRS James Cook and RRS James Clark Ross;
  • the Continuous Plankton Recorder being deployed by SAHFOS in the North Atlantic and North Pacific on 'ships of opportunity';
  • physical parameters measured and relayed in near real-time by fixed moorings and ARGO floats;
  • coastal and shelf sea observatory data (Liverpool Bay Coastal Observatory (LBCO) and Western Channel Observatory (WCO)) using the RV Prince Madog and RV Quest.

The data is to be fed into models for validation and future projections. Greater detail can be found in the Theme documents.


Data Activity or Cruise Information

Data Activity

Start Date (yyyy-mm-dd) 2008-09-13
End Date (yyyy-mm-dd) 2008-09-13
Organization Undertaking ActivityNational Oceanography Centre, Southampton
Country of OrganizationUnited Kingdom
Originator's Data Activity IdentifierD332_CTD_332067
Platform Categorylowered unmanned submersible

No Document Information Held for the Series

Cruise

Cruise Name D332
Departure Date 2008-08-20
Arrival Date 2008-09-25
Principal Scientist(s)Sheldon Bacon (National Oceanography Centre, Southampton)
Ship RRS Discovery

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification