Search the data

Metadata Report for BODC Series Reference Number 1921509


Metadata Summary

Data Description

Data Category Bathymetry
Instrument Type
NameCategories
Kongsberg (Simrad) EM 120 multibeam echosounder  multi-beam echosounders
Trimble Applanix POSMV global positioning system  Differential Global Positioning System receivers; inertial navigation systems; Kinematic Global Positioning System receivers
Instrument Mounting research vessel
Originating Country United Kingdom
Originator Dr David Smeed
Originating Organization National Oceanography Centre, Southampton
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) RAPIDMOC
RAPID-AMOC
 

Data Identifiers

Originator's Identifier JC145_PROD_NAV
BODC Series Reference 1921509
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2017-02-28 07:00
End Time (yyyy-mm-dd hh:mm) 2017-04-08 00:00
Nominal Cycle Interval 60.0 seconds
 

Spatial Co-ordinates

Southernmost Latitude 23.67000 N ( 23° 40.2' N )
Northernmost Latitude 28.73483 N ( 28° 44.1' N )
Westernmost Longitude 77.35867 W ( 77° 21.5' W )
Easternmost Longitude 13.50883 W ( 13° 30.5' W )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor or Sampling Depth -
Maximum Sensor or Sampling Depth -
Minimum Sensor or Sampling Height -
Maximum Sensor or Sampling Height -
Sea Floor Depth -
Sea Floor Depth Source -
Sensor or Sampling Distribution -
Sensor or Sampling Depth Datum -
Sea Floor Depth Datum -
 

Parameters

BODC CODERankUnitsTitle
AADYAA011DaysDate (time from 00:00 01/01/1760 to 00:00 UT on day)
AAFDZZ011DaysTime (time between 00:00 UT and timestamp)
ALATGP011DegreesLatitude north relative to WGS84 by unspecified GPS system
ALONGP011DegreesLongitude east relative to WGS84 by unspecified GPS system
APEWGP011Centimetres per secondEastward velocity of measurement platform relative to ground surface by unspecified GPS system
APNSGP011Centimetres per secondNorthward velocity of measurement platform relative to ground surface by unspecified GPS system
DSRNCV011KilometresDistance travelled
HEADCM011DegreesOrientation (horizontal relative to true north) of measurement device {heading}
MBANSWCB1MetresSea-floor depth (below instantaneous sea level) {bathymetric depth} in the water body by multibeam echo sounder central beam

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database

RRS James Cook JC145 Navigation Quality Control Report

Position

Position channels look good. Two gaps just at the start and end of the dataset, which can be trimmed off at the end of processing. flags were automatically applied to this.

Heading

Heading channel looks good. There are some large fluctuations within the permitted maximum and minimum parameter values and there are some parts of the datasets where absent values have been recorded. These absent values were automatically flagged.

Bathymetry

All bathymetry channels show a similar pattern. Both the singlebeam and the multibeam data appear noisy because they were set on alternate trigger pulses that recorded data in 5 minute cycles. The singlebeam and multibeam channels follow GEBCO trend for the most part with the exception of times during which both were disabled whilst communication was undertaken with moorings transducers. The overall quality of the singlebeam and multibeam is quite good during the periods it saw use during the cruise. Both channels show a good level of consistency overall but have some unrealistic values where flags were applied. In addition, periods where the singlebeam and multibeam were disabled had absent value readings where flags were automatically applied.

The multi-beam bathymetry is the superior bathymetry and is retained in the dataset.


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

Kongsberg EM120 Multibeam Echosounder

The EM120 is a low frequency (12 kHz) multibeam echosounder with full ocean depth capability designed for bathymetric surveys. It measures water depth by monitoring the travel time of an acoustic signal that is transmitted from the ship, reflected off the seabed and received back at the ship.

The main system units of the EM120 are transducer arrays (separate for reception and transmission), preamplifier unit, transceiver unit and operator unit. Sub-bottom profiling capability is an optional extra. For both transmit and receive arrays standard beamwidth is 1° or 2°, and 4° beamwidth is available for the receive array.

The system has 191 beams with pointing angles automatically adjusted according to achievable coverage or operator defined limits. The beam spacing is normally equidistant, corresponding to 1% of depth at 90° angular coverage, 2% at 120° and 3% at 140°. The transmit fan is split into several individual sectors, each of which is corrected independently for vessel roll, pitch and yaw, which places all soundings on a "best fit" to a line perpendicular to the survey line.

The EM120 supersedes the EM12 and was itself superseded by the EM122 in 2008.

Specifications

Frequency 12 kHz
Maximum ping rate 5 Hz
Range sampling rate 2 kHz
Swath coverage sector up to 150°
Swath width up to 5.5 x water depth
Depth resolution 10 to 40 cm
Depth range 20 to 11,000 m
Pulse length 2, 5 and 15 ms
Number of beams 191
Beam width

1° x 1°
1° x 2°
2° x 2°
2° x 4°

Beam spacing (at angular coverage)

1% of depth at 90°
2% of depth at 120°
3% of depth at 140°

Further details can be found in the manufacturer's specification sheet.

RRS James Cook JC145 Navigation Instrumentation

Instrumentation

Manufacturer Model Function Comments
Trimble/Applanix GPS POSMV DGPS, Attitude and Ship Gyrocompasses The Position and Orientation Systems for Marine Vessels (POSMV) is a real time kinematic (RTK) and differential global positioning system (DGPS) receiver for marine navigation. It includes an inertial system that provides platform attitude information.
C- Nav 3050 DGPS and DGNSS C and C Technologies C-Nav3050 satellite positioning system receiver
Kongsberg Seatex Seapath Seapath 200 DGPS Sensor-based inertial navigation and Differential Global Positioning System (DGPS) receiver unit, providing heading, attitude and position.
Kongsberg Seatex DPS DPS 116 DPS A 14-channel, all-in-view, L1 GPS receiver which primarily utilises the free, WAAS, EGNOS and MSAS Satellite Based Augmentation Systems (SBAS) for differential corrections (DGPS).
Sperry Marine Gyro -Not Specified- Gyrocompass  
Kongsberg Maritime EA600 Single Beam Echo Sounder It comprises a standard EA600 single beam echosounder fitted with an additional 10 kHz transducer. The standard EA600 operates up to four high power transceivers simultaneously. Available EA600 standard frequencies span from 12 to 710 kHz with a variable power output of up to 2 kW and a 160 dB dynamic range.
Kongsberg Maritime EM120 Multibeam Echo Sounder A low frequency (12 kHz) multibeam echosounder with full ocean depth capability. The transducer array includes 191 beams with angular coverage adjustable up to 150 deg and a swath width of up to 5.5 times water depth. The instrument has pulse lengths of 2, 5 and 15 ms and a depth resolution of 10 to 40 cm.
Sonardyne Ranger 2 USBL Ultra Short BaseLine acoustic positioning system An acoustic positioning system for deep water, long range tracking of underwater targets and position referencing for dynamically positioned (DP) vessels.

Trimble Applanix Position and Orientation Systems for Marine Vessels (POSMV)

The Position and Orientation Systems for Marine Vessels (POSMV) is a real time kinematic (RTK) and differential global positioning system (DGPS) receiver for marine navigation. It includes an inertial system that provides platform attitude information. The instrument provides accurate location, heading, velocity, attitude, heave, acceleration and angular rate measurements.

There are three models of Applanix POSMV, the POS MV 320, POS MV Elite and the POS MV WaveMaster. POS MV 320 and POS MV WaveMaster are designed for use with multibeam sonar systems, enabling adherence to IHO (International Hydrographic Survey) standards on sonar swath widths of greater than ± 75 degrees under all dynamic conditions. The POS MV Elite offers true heading accuracy without the need for dual GPS installation and has the highest degree of accuracy in motion measurement for marine applications.

Specifications

POS MV 320
Componenet DGPS RTK GPS Outage
Position 0.5 - 2 m 1 0.02 - 0.10 m 1 <2.5 m for 30 seconds outages, <6 m for 60 seconds outages
Roll and Pitch 0.020° 0.010° 0.020°
True Heading 0.020° with 2 m baseline
0.010° with 4 m baseline
- Drift <1° per hour (negligible for outages <60 seconds)
Heave 5 cm or 5% 2 5 cm or 5% 2 5 cm or 5% 2
POS MV WaveMaster
Accuracy DGPS RTK GPS Outage
Position 0.5 - 2 m 1 0.02 - 0.10 m 1 <3 m for 30 seconds outages, <10 m for 60 seconds outages
Roll and Pitch 0.030° 0.020° 0.040°
True Heading 0.030° with 2 m baseline - Drift <2° per hour
Heave 5 cm or 5% 2 5 cm or 5% 2 5 cm or 5% 2
POS MV Elite
Accuracy DGPS RTK GPS Outage
Position 0.5 - 2 m 1 0.02 - 0.10 m 1 <1.5 m for 60 seconds outages DGPS, <0.5 m for 60 seconds outage RTK
Roll and Pitch 0.005° 0.005° 0.005°
True Heading 0.025° 0.025° Drift <0.1° per hour (negligible for outages <60 seconds)
Heave 3.5 cm or 3.5% 2 3.5 cm or 3.5% 2 3.5 cm or 3.5% 2

1 One Sigma, depending on quality of differential corrections
2 Whichever is greater, for periods of 20 seconds or less

Further details can be found in the manufacturer's specification sheet.

RRS James Cook JC145 Navigation Data Processing Procedures

Originator's Data Processing

The data were logged by the TECHSAS (TECHnical and Scientific sensors Acquisition System) system into daily NetCDF files. The TECHSAS system is used as the main data logging system on NMF-SS operated reserach vessels. The daily TECHSAS NetCDF navigation and bathymetry files were converted to MSTAR by the originator. These were provided to BODC and used for BODC processing. Data were additionally logged into the RVS Level-C format files which have been archived at BODC. Further details on the MSTAR processing can be found on page 23 of the cruise report

Files delivered to BODC

Filename Content description Format Interval Start date/time (UTC) End date/time (UTC) Comments
bst_jc145_01.nc Position (latitude and longitude) (Seapath 350) and True heading (POSMV Gyro) MSTAR 30 sec. 28-Feb-2017 08:30:00 08-Mar-2017 00:00:00  
sim_jc145_01.nc Depth of Seafloor (EA600) MSTAR 5 min. 28-Feb-2017 08:30:00 08-Mar-2017 00:00:00 Singlebeam set on alternate trigger pulses that records data in 5 minute cycles.
em120_jc145_01.nc Depth of seafloor (EM120) MSTAR 5 min. 28-Feb-2017 08:30:00 08-Mar-2017 00:00:00 Multibeam set on alternate trigger pulses that records data in 5 minute cycles.

BODC Data Processing

Data were banked at BODC following standard banking procedures. Data were averaged to 60 second intervals.

The originator's variables were mapped to appropriate BODC parameter codes as follows:

bst_jc145_01.nc

Originator's variable Originator's units Description BODC Code BODC Units Unit conversion Comments
time days since 1899-12-30 00:00:00 UTC Acquisition time       Not transferred
lat decimal degrees Latitude north ALATGP01 decimal degrees none  
lon decimal degrees Longitude east ALONGP01 decimal degrees none  
Heading_av degrees True heading       Not transferred.
Heading_av_corrected degrees True heading HEADCM01 degree none  

em120_jc145_01.nc

Originator's variable Originator's units Description BODC Code BODC Units Unit conversion Comments
depth meters Depth in Meters MBANSWCB meters none Multibeam

sim_jc145_01.nc

Originator's variable Originator's units Description BODC Code BODC Units Unit conversion Comments
depth meters Depth in meters MBANZZ01 meters none Single beam

All the reformatted data were visualised using the in-house EDSERPLO software. Suspect data were marked by adding an appropriate quality control flag.

Position

A check was run on positional data to identify gaps and improbable values (through the calculation of speed). There was one gap in the positional data at the start and end of the file, produced during loading to the BODC system. These gaps were trimmed after processing was complete.

Ship Velocities

Ship velocities were calculated from the main latitude and longitude channels using standard BODC procedures.

GEBCO

GEBCO bathymetry was added to the file using the main latitude and longitude channels.

Distance Run

Distance run was calculated from the main latitude and longitude channels, starting from the beginning of the file, using BODC standard procedures.

Bathymetry

Bathymetry data were screened independently as well as against GEBCO bathymetry measurements. Both the EM120 multi-beam echosounder and the EA600 single beam echosounder set on alternate trigger pulses that recorded data in 5 minute cycles. Unrealistic noisy values and absent data were flagged using BODC in-house EDSERPLO software. The EA600 Singlebeam and the EM120 multibeam echo-sounder datasets are quality sources of bathymetry and follow GEBCO's trend with a high level of consistency.

The multi-beam bathymetry is the superior bathymetry and is retained in the dataset.

Calibration

No field calibrations have been applied.


Project Information

Monitoring the Meridional Overturning Circulation at 26.5N (RAPIDMOC)

Scientific Rationale

There is a northward transport of heat throughout the Atlantic, reaching a maximum of 1.3PW (25% of the global heat flux) around 24.5°N. The heat transport is a balance of the northward flux of a warm Gulf Stream, and a southward flux of cooler thermocline and cold North Atlantic Deep Water that is known as the meridional overturning circulation (MOC). As a consequence of the MOC northwest Europe enjoys a mild climate for its latitude: however abrupt rearrangement of the Atlantic Circulation has been shown in climate models and in palaeoclimate records to be responsible for a cooling of European climate of between 5-10°C. A principal objective of the RAPID programme is the development of a pre-operational prototype system that will continuously observe the strength and structure of the MOC. An initiative has been formed to fulfill this objective and consists of three interlinked projects:

  • A mooring array spanning the Atlantic at 26.5°N to measure the southward branch of the MOC (Hirschi et al., 2003 and Baehr et al., 2004).
  • Additional moorings deployed in the western boundary along 26.5°N (by Prof. Bill Johns, University of Miami) to resolve transport in the Deep Western Boundary Current (Bryden et al., 2005). These moorings allow surface-to-bottom density profiles along the western boundary, Mid-Atlantic Ridge, and eastern boundary to be observed. As a result, the transatlantic pressure gradient can be continuously measured.
  • Monitoring of the northward branch of the MOC using submarine telephone cables in the Florida Straits (Baringer et al., 2001) led by Dr Molly Baringer (NOAA/AOML/PHOD).

The entire monitoring array system created by the three projects will be recovered and redeployed annually until 2008 under RAPID funding. From 2008 until 2014 the array will continue to be serviced annually under RAPID-WATCH funding.

The array will be focussed on three regions, the Eastern Boundary (EB), the Mid Atlantic Ridge (MAR) and the Western Boundary (WB). The geographical extent of these regions are as follows:

  • Eastern Boundary (EB) array defined as a box with the south-east corner at 23.5°N, 25.5°W and the north-west corner at 29.0°N, 12.0°W
  • Mid Atlantic Ridge (MAR) array defined as a box with the south-east corner at 23.0°N, 52.1°W and the north-west corner at 26.5°N, 40.0°W
  • Western Boundary (WB) array defined as a box with the south-east corner at 26.0°N, 77.5°W and the north-west corner at 27.5°N, 69.5°W

References

Baehr, J., Hirschi, J., Beismann, J.O. and Marotzke, J. (2004) Monitoring the meridional overturning circulation in the North Atlantic: A model-based array design study. Journal of Marine Research, Volume 62, No 3, pp 283-312.

Baringer, M.O'N. and Larsen, J.C. (2001) Sixteen years of Florida Current transport at 27N Geophysical Research Letters, Volume 28, No 16, pp3179-3182

Bryden, H.L., Johns, W.E. and Saunders, P.M. (2005) Deep Western Boundary Current East of Abaco: Mean structure and transport. Journal of Marine Research, Volume 63, No 1, pp 35-57.

Hirschi, J., Baehr, J., Marotzke J., Stark J., Cunningham S.A. and Beismann J.O. (2003) A monitoring design for the Atlantic meridional overturning circulation. Geophysical Research Letters, Volume 30, No 7, article number 1413 (DOI 10.1029/2002GL016776)


RAPID Climate Change - Atlantic Meridional Overturning Circulation (RAPID-AMOC)

RAPID-AMOC is an £8.4 million, 7 year (2013-2020) research programme that builds on the success of the Natural Environment Research Council's (NERC) RAPID and RAPID-WATCH programmes and will deliver a 16 year long time series of the Atlantic Meridional Overturning Circulation (AMOC).

Background

The Atlantic Meridional Overturning Circulation (AMOC) is a critical element in the energy balance of the global climate system. The AMOC consists of a near-surface, warm northward flow of ocean water, compensated by a colder southward return flow at depth. This heat is transferred from the ocean to the atmosphere at mid-latitudes, with a substantial impact on climate and, in particular, on that of the UK and northwest Europe.

Observing and understanding changes in the AMOC is critically important for identifying the mechanisms of decadal climate variability and change, and for interannual-to-decadal climate prediction. This includes predicting changes in the location, frequency and intensity of Atlantic hurricanes, storms in the North Atlantic and over Europe, shifts in tropical and European precipitation patterns, and the response of sea level to changing radiative forcing. Sustained observations are also critical for assessing the possibility of abrupt change in the AMOC that are known to occur in palaeoclimatic records.

Since 2004 the NERC RAPID and RAPID-WATCH programmes, in partnership with the National Science Foundation and the National Oceanic and Atmospheric Administration in the US, have supported an observing system to continuously measure the AMOC at 26.5°N via a trans-basin array of moored instruments. This measures the basin-wide strength and vertical structure of the AMOC, and its components.

Observations from the array have already revolutionised understanding of AMOC variability and documented its variability on seasonal to interannual timescales. The first few years of observations, demonstrated the feasibility of AMOC measurement, provided new insights into the seasonal cycle, and allowed apparent trends in previous historical 'snapshots' to be seen in the context of natural variability. RAPID-AMOC will extend the AMOC time series.

Objective

RAPID-AMOC's overall objective is to determine the variability of the AMOC, and its links to climate and to the ocean carbon sink, on interannual-to-decadal time scales

This will be achieved by the continued support of the monitoring array and supporting the use of the data in three key areas:

  • Application of array data for improved ocean state estimation;
  • Use of array data to understand the role of the AMOC in climate variability and predictability;
  • Addition of biogeochemical sensors to the array and use to constrain biogeochemical fluxes.

Three projects have been funded to address the objectives of RAPID-AMOC:

  • Reanalysis of the AMOC
  • DYNamics and predictability of the Atlantic Meridional Overturning and Climate (DYNAMOC)
  • Atlantic BiogeoChemical fluxes (ABC Fluxes)

Data Activity or Cruise Information

Cruise

Cruise Name JC145
Departure Date 2017-02-28
Arrival Date 2017-04-08
Principal Scientist(s)David Smeed (National Oceanography Centre, Southampton)
Ship RRS James Cook

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification