Search the data

Metadata Report for BODC Series Reference Number 1972466


Metadata Summary

Data Description

Data Category Bathymetry
Instrument Type
NameCategories
Trimble Applanix POSMV global positioning system  Differential Global Positioning System receivers; inertial navigation systems; Kinematic Global Positioning System receivers
Kongsberg EM 122 multibeam echosounder  multi-beam echosounders
Kongsberg (Simrad) EA640 Echosounder  single-beam echosounders
Instrument Mounting research vessel
Originating Country United Kingdom
Originator Dr Yvonne Firing
Originating Organization National Oceanography Centre, Southampton
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) ORCHESTRA
 

Data Identifiers

Originator's Identifier JC159_MCAL4_NAV
BODC Series Reference 1972466
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2018-02-28 18:40
End Time (yyyy-mm-dd hh:mm) 2018-04-09 17:41
Nominal Cycle Interval 60.0 seconds
 

Spatial Co-ordinates

Southernmost Latitude 32.60650 S ( 32° 36.4' S )
Northernmost Latitude 21.95017 S ( 21° 57.0' S )
Westernmost Longitude 43.18183 W ( 43° 10.9' W )
Easternmost Longitude 17.37217 E ( 17° 22.3' E )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor or Sampling Depth -
Maximum Sensor or Sampling Depth -
Minimum Sensor or Sampling Height -
Maximum Sensor or Sampling Height -
Sea Floor Depth -
Sea Floor Depth Source -
Sensor or Sampling Distribution -
Sensor or Sampling Depth Datum -
Sea Floor Depth Datum -
 

Parameters

BODC CODERankUnitsTitle
AADYAA011DaysDate (time from 00:00 01/01/1760 to 00:00 UT on day)
AAFDZZ011DaysTime (time between 00:00 UT and timestamp)
ACYCAA011DimensionlessSequence number
ALATGP011DegreesLatitude north relative to WGS84 by unspecified GPS system
ALONGP011DegreesLongitude east relative to WGS84 by unspecified GPS system
APDAGP011Degrees TrueDirection of motion of measurement platform relative to ground surface {course made good} by unspecified GPS system
APSAGP011Metres per secondSpeed of measurement platform relative to ground surface {speed over ground} by unspecified GPS system
DSRNCV011KilometresDistance travelled
HEADCM011DegreesOrientation (horizontal relative to true north) of measurement device {heading}
MBANSWCB1MetresSea-floor depth (below instantaneous sea level) {bathymetric depth} in the water body by multibeam echo sounder central beam

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

RRS James Cook cruise JC159 underway document

Cruise details

Dates 28th February 2018 - 11th April 2018 (UTC)
Principal Scientific Officer Brian A King (National Oceanography Centre, Southampton)

Kongsberg EA640 Single Beam Echosounder

The EA640 single beam echosounder comprises a standard EA600 (fitted with a standard transducer) and an additional, non-standard 10 kHz transducer.

The standard EA600 is a single beam echosounder with full ocean depth capability designed for bathymetric surveys. It measures water depth by monitoring the travel time of an acoustic signal that is transmitted from the ship, reflected off the seabed and received back at the ship.

The main components of the system are hull-mounted transducers linked to general purpose transceivers (GPTs). Up to four GPTs, each controlling one or more transducers, may be operated simultaneously. The GPT generates a signal, which is transmitted into the water column as an acoustic pulse by the transducer array, and the returning echo is recorded by the GPT. GPTs are in turn linked to a combined display and processor, where adjustments (such as sound-speed corrections) may be applied to the data. Available frequencies span from 12 to 710 kHz, and each GPT may operate at a separate frequency. A variety of transducers is available for water depths up to 11,000 m.

The EA600 stores all data internally but has a USB port which allows the possibility of connecting a CD-ROM/DVD drive to read and write the data. All echo data can be stored as files: bitmap, sample, depth or sidescan data.

In deeper waters, the EA600 supports a multipulse function, allowing for a higher pinger rate. While on passive mode, the pinger is normally attached to a device, with the purpose of tracking and displaying its current depth.

Specifications for a standard EA600 echosounder

Maximum Ping rate 20 Hz
Resolution 1 cm
Accuracy

1 cm at 710 and 200 kHz
2 cm at 120 kHZ
5 cm at 38 kHz
10 cm at 18 kHz
20 cm at 12kHz

Operating frequencies 1 or 2 kHz
Single Beam frequencies

12, 18, 33, 38, 50, 70,
120, 200, 210 or 710 kHz

Dynamic range 160 dB

Further details can be found in the manufacturer's specification sheet for the standard EA600 system.

Kongsberg EM122 12kHz Multibeam Echosounder

The EM122 is designed to perform seabed mapping to full ocean depth with a high resolution, coverage and accuracy. Beam focusing is applied both during reception and transmission. The system has up to 288 beams/432 soundings per swath with pointing angles, which are automatically adjusted according to achievable coverage or operator defined limits.

This model uses both Continuous Wave and Frequency Modulated sweep pulses with pulse compression on reception, in order to increase the maximum useful swath width. The transmit fan is split in several individual sectors, with independent active steering, in order to compensate for the vessel movements.

In multiplying mode, two swaths per ping cycle are generated, with up to 864 soundings. The beam spacing is equidistant or equiangular and the transmit fan is duplicated and transmitted with a small difference in along track tilt, which takes into account depth coverage and vessel speed, to give a constant sounding separation along track. In high density mode, more than one sounding per beam can be produced, such that horizontal resolution is increased and is almost constant over the whole swath.

The EM122 transducers are modular linear arrays in a Mills cross configuration with separate units for transmit and receive. If used to deliver sub-bottom profiling capabilities with a very narrow beamwidth, this system is known as SBP120 Sub-Bottom Profiler.

The specification sheet can be accessed here Kongsberg EM122.

Specifications

Operational frequency 12 Hz
Depth range 20 to 11000 m
Swath width 6 x depth, to approximately 30 km
Pulse forms Continuous Wave and Frequency Modulated chirp
Swath profiles per ping 1 or 2
Sounding pattern equidistant on bottom/equiangular
Depth resolution of soundings 1 cm
Sidelobe suppression -25 dB
Suppression of sounding artefacts 9 frequency coded transmit sectors
Beam focusing On transmit (per sector) and on reception (dynamic)
Swath width control manual or automatic, all soundings intact even with reduced swath width
Motion compensation
Yaw ± 10°
Pitch ± 10°
Roll ± 15°

EM122 versions

System version 0.5x1 1x1 1x2 2x2 2x4 4x4
Transmit array (°) 150x0.5 150x1 150x1 150x2 150x2 150x4
Receive array (°) 1x30 1x30 2x30 2x30 4x30 4x30
No of beams/swath 288 288 288 288 144 144
Max no of soundings/swath 432 432 432 432 216 216
Max no of swaths/ping 2 2 2 1 1 1
Max no of soundings/ping 864 864 864 432 216 216

RRS James Cook cruise JC159 navigation instrumentation

Instrumentation

Manufacturer Model Function Comments
Trimble/Applanix POSMV DGPS and attitude Scientific primary source of position.
Kongsberg Maritime Simrad EA640 Single-beam echo sounder (port drop keel) Corrected with constant sound velocity of 1500 ms-1
Kongsberg Maritime Simrad EM122 Multi-beam echo sounder (shallow) Corrected for local sound velocity using sound velocity profiles

The EA640 single-beam echo-sounder was run throughout the cruise. The 10 kHz was run in free-running mode, while the 12 kHz remained in passive. Pulse parameters were altered during the cruise in response to changing depth. It was used with a constant sound velocity of 1500 ms-1 throughout the water column .

The EM122 multibeam echo-sounder was run throughout the cruise in free-running mode. The position and attitude data were initially supplied from the Seapath 300+ due to its superior real-time heave. Sound velocity profiles were input once a day, derived from the CTD data.

Trimble Applanix Position and Orientation Systems for Marine Vessels (POSMV)

The Position and Orientation Systems for Marine Vessels (POSMV) is a real time kinematic (RTK) and differential global positioning system (DGPS) receiver for marine navigation. It includes an inertial system that provides platform attitude information. The instrument provides accurate location, heading, velocity, attitude, heave, acceleration and angular rate measurements.

There are three models of Applanix POSMV, the POS MV 320, POS MV Elite and the POS MV WaveMaster. POS MV 320 and POS MV WaveMaster are designed for use with multibeam sonar systems, enabling adherence to IHO (International Hydrographic Survey) standards on sonar swath widths of greater than ± 75 degrees under all dynamic conditions. The POS MV Elite offers true heading accuracy without the need for dual GPS installation and has the highest degree of accuracy in motion measurement for marine applications.

Specifications

POS MV 320
Componenet DGPS RTK GPS Outage
Position 0.5 - 2 m 1 0.02 - 0.10 m 1 <2.5 m for 30 seconds outages, <6 m for 60 seconds outages
Roll and Pitch 0.020° 0.010° 0.020°
True Heading 0.020° with 2 m baseline
0.010° with 4 m baseline
- Drift <1° per hour (negligible for outages <60 seconds)
Heave 5 cm or 5% 2 5 cm or 5% 2 5 cm or 5% 2
POS MV WaveMaster
Accuracy DGPS RTK GPS Outage
Position 0.5 - 2 m 1 0.02 - 0.10 m 1 <3 m for 30 seconds outages, <10 m for 60 seconds outages
Roll and Pitch 0.030° 0.020° 0.040°
True Heading 0.030° with 2 m baseline - Drift <2° per hour
Heave 5 cm or 5% 2 5 cm or 5% 2 5 cm or 5% 2
POS MV Elite
Accuracy DGPS RTK GPS Outage
Position 0.5 - 2 m 1 0.02 - 0.10 m 1 <1.5 m for 60 seconds outages DGPS, <0.5 m for 60 seconds outage RTK
Roll and Pitch 0.005° 0.005° 0.005°
True Heading 0.025° 0.025° Drift <0.1° per hour (negligible for outages <60 seconds)
Heave 3.5 cm or 3.5% 2 3.5 cm or 3.5% 2 3.5 cm or 3.5% 2

1 One Sigma, depending on quality of differential corrections
2 Whichever is greater, for periods of 20 seconds or less

Further details can be found in the manufacturer's specification sheet.

RRS James Cook cruise JC159 navigation data processing procedures

Originator's Data Processing

The data were logged by the TECHSAS (TECHnical and Scientific sensors Acquisition System) version 5.11 data logging system which is the main data logging system on NMF-SS operated research vessels. Data were processed daily using the National Oceanography Centre MSTAR data processing routines into NetCDF files, and these TECHSAS MSTAR (NetCDF) navigation and bathymetry files provided to BODC were used for BODC processing. Please refer to the cruise report for more information.

Bathymetry

The EA640 was used with a constant sound velocity of 1500 ms-1 throughout the water column to allow it to be corrected for sound velocity in post processing.

The EM122 was fed attitude and position data from the Seapath 300+ system due to its superior real time heave.

Files delivered to BODC

Filename Content description Format Interval Start date/time (UTC) End date/time (UTC) Comments
bst_jc159_01.nc Position and heading from bestnav process NetCDF 30 seconds 24/02/2018 21:29:00 09/04/2018 17:40:30 Best available position
em120_jc159_01_nav.nc Depths from the EM122 multi-beam echosounder NetCDF 300 seconds 28/02/2018 19:40:00 07/04/2018 06:55:00 -
sim_jc159_01_nav.nc Depths from the EA640 single-beam echosounder NetCDF 300 seconds 28/02/2018 18:30:00 07/04/2018 23:55:00 -

BODC Data Processing

The data were reformatted to the BODC internal format using standard banking procedures, and averaged at 60 second intervals. The following table shows how variables within the files were mapped to appropriate BODC parameter codes:

bst_jc159_01.nc

Originator's variable Originator's units Description BODC Code BODC Units Unit conversion Comments
lat degrees Latitude North ALATGP01 degrees N/A -
long degrees Longitude East ALONGP01 degrees N/A -
heading_av_corrected degrees Heading (corrected) HEADCM01 degrees N/A -
smg m/s Speed over ground APSAGP01 m/s N/A -
cmg degrees Course over ground APDAGP01 degrees N/A -

em120_jc159_01_nav.nc

Originator's variable Originator's units Description BODC Code BODC Units Unit conversion Comments
swath_depth metres Sea floor depth (swath) MBANSWCB metres N/A -

sim_jc159_01_nav.nc

Originator's variable Originator's units Description BODC Code BODC Units Unit conversion Comments
depth metres Sea floor depth (single-beam) MBANZZ01 metres N/A -

Position

A check was run on positional data to identify gaps and improbable values (through the calculation of speed). There was a small gap (two minutes) in the positional data. During BODC processing, this gap was linearly interpolated to remove it.

Ship Velocities

Ship velocities were calculated from the main latitude and longitude channels using standard BODC procedures.

Distance Run

Distance run was calculated from the latitude and longitude channels, starting from the beginning of the file, using BODC standard procedures.

Bathymetry

Bathymetry data from the EM122 multi-beam echo-sounder were deemed to be the best quality, and were screened independently. The EM122 multi-beam was run with a local sound velocity correction. The EA640 single-beam was run without a sound velocity correction and appeared more noisy.

Calibrations

Field Calibrations

No field calibrations were applied to the data at BODC.

Screening

All reformatted data were visualised using the in-house EDSERPLO software. Where calibrations had been applied, only the calibrated versions of those parameters were screened. Suspect data were marked by adding an appropriate quality control flag.


Project Information

Ocean Regulation of Climate by Heat and Carbon Sequestration and Transports (ORCHESTRA)

The Ocean Regulation of Climate by Heat and Carbon Sequestration and Transports (ORCHESTRA) is a £8.4 million, five year (2016-2021) research programme funded by the Natural Environment Research Council (NERC). The aim of the research is to to advance the understanding of, and capability to predict, the Southern Ocean's impact on climate change via its uptake and storage of heat and carbon. The programme will significantly reduce uncertainties concerning how this uptake and storage by the ocean influences global climate, by conducting a series of unique fieldwork campaigns and innovative model developments.

Background

ORCHESTRA represents the first fully-unified activity by NERC institutes to address these challenges, and will draw in national and international partners to provide community coherence, and to build a legacy in knowledge and capability that will transcend the timescale of the programme itself.

It brings together science teams from six UK research institutions to investigate the role that the Southern Ocean plays in our changing climate and atmospheric carbon draw-down. It is led by British Antarctic Survey, in partnership with National Oceanography Centre, British Geological Survey, Plymouth Marine Laboratory, the Centre for Polar Observation and Modelling and the Sea Mammal Research Unit.

The oceans around Antarctica play a critical a key role in drawing down and storing large amounts of carbon and vast quantities of heat from from the atmosphere. Due to its remoteness and harsh environment, the Southern Ocean is the world's biggest data desert, and one of the hardest places to get right in climate models. The ORCHESTRA programme will make unique and important new measurements in the Southern Ocean using a range of techniques, including use of the world-class UK research vessel fleet, and deployments of innovative underwater robots. The new understanding obtained will guide key improvements to the current generation of computer models, and will enhance greatly our ability to predict climate into the future.

The scope of the programme includes interaction of the Southern Ocean with the atmosphere, exchange between the upper ocean mixed layer and the interior and exchange between the Southern Ocean and the global ocean.

Further details are available on the ORCHESTRA page.

Participants

Six different organisations are directly involved in research for ORCHESTRA. These institutions are:

  • British Antarctic Survey (BAS)
  • National Oceanography Centre (NOC)
  • Plymouth Marine Laboratory (PML)
  • British Geological Survey (BGS)
  • Centre for Polar Observation and Modelling (CPOM)
  • Sea Mammal Research Unit (SMRU)

GO-SHIP are a third party organisation that, although not directly involved with the programme, will conduct ship based observations that will also be used by ORCHESTRA.

Research details

Three Work Packages have been funded by the ORCHESTRA programme. These are described in brief below:

  • Work Package 1: Interaction of the Southern ocean with the atmosphere
    WP1 will use new observations of surface fluxes and their controlling parameters in order to better constrain the exchanges of heat and carbon loss across the surface of the Southern Ocean.

  • Work Package 2: Exchange between the upper ocean mixed layer and the interior.
    This work package will combine observationally-derived data and model simulations to determine and understand the exchanges between the ocean mixed layer and its interior.

  • Work Package 3: Exchange between the Southern Ocean and the global ocean .
    This WP will use budget analyses of the hydrographic/tracer sections to diagnose the three-dimensional velocity field of the waters entering, leaving and recirculating within the Southern Atlantic sector of the Southern ocean.

  • Fieldwork and data collection

    The campaign consists of 12 core cruises on board the NERC research vessels RRS James Clark Ross and RRS James Cook and will include hydrographic/tracer sections conducted across Drake Passage (SR1b), the northern Weddell Sea/Scotia Sea (A23), the northern rim of the Weddell Gyre (ANDREXII) and across the South Atlantic (24S). Section I6S will be performed by GO-SHIP Project Partners. Measurements will include temperature, salinity, dissolved oxygen, velocity, dissolved inorganic carbon, total alkalinity, inorganic nutrients, oxygen and carbon isotopes, and underway meteorological and surface ocean observations including pCO2.

    Tags will be deployed on 30 Weddel seals and these will provide temperature and salinity profiles that can be used alongside the Argo data.

    Autonomous underwater ocean gliders will conduct multi-month missions and will deliver data on ocean stratification, heat content, mixed layer depth and turbulent mixing over the upper 1 km, with previously-unobtainable temporal resolution. These gliders will be deployed in the Weddell Gyre and the ACC.

    Field campaigns with the MASIN meteorological aircrafts will be conducted flying out of Rothera and Halley research stations and the Falkland Islands. These campaigns will deliver information on key variables relating to air-sea fluxes (surface and air temperature, wind, humidity, atmospheric CO2, radiation, turbulent fluxes of heat, momentum and CO2), in different sea ice conditions and oceanic regimes.

    Eart Observation datasets will be used to inform the programme on the properties of the ocean, sea ice and atmosphere and on interactions between them.

    A cluster of 6 deep ocean moorings in the Orkney Passage will collect year round series of AABW temperatre and transport. This work connects to the NERC funded project Dynamics of the Orkney Passage Outflow (DYNOPO).

    The UK Earth System model (UKESM) and underlying physical model will be used to conduct analyses of heat and carbon uptake and transport by the Southern Ocean and their links to wider climate on decadal timescales.

    An eddy-resolving (1/12°) sector model of the ocean south of 30°S with 75 vertical levels, will be built using the NEMO model coupled to the Los Alamos sea ice (CICE) model. The improvements on the ocean boundary layer will be based from the results from the NERC-funded OSMOSIS project and the inclusion of tides.

    20-5 year runs of an adjoint model will be conducted to determine how key forcings and model states affect the uptake and subduction of heat and carbon by the ocean.


Data Activity or Cruise Information

Cruise

Cruise Name JC159
Departure Date 2018-02-28
Arrival Date 2018-04-10
Principal Scientist(s)Brian A King (National Oceanography Centre, Southampton)
Ship RRS James Cook

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification